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source detection approaches in astronomical images”. Monthly Notices of the Royal

Astronomical Society, 422(2), pp. 1674-1689. 2012.

Conferences

[ADASS 2013] M. Masias, J. Freixenet, M. Peracaula and X. Lladó. “Multiscale
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evaluation of source detection strategies in astronomical images”. 21st International

Conference on Astronomical Data Analysis Software and Systems. ASP Conference

Series, 461, pp. 793-796. Paris, France. November 2011.

iv



List of Acronyms

AIPS Astronomical Image Processing System

ALMA Atacama Large Millimeter/submillimeter Array

ATCA Australia Telescope Compact Array

CCD Charge-Coupled Device

CGPS Canadian Galactic Plane Survey

CRT Continuous Ridgelet Transform

CC-trees Connected Component trees

Dec Declination

DS Distilled Sensing

ESD Extended Source Detection

FDR False Discovery Rate

FITS Flexible Image Transport System

FN False Negative

FP False Positive

FSD Faint Source Detection

FWHM Full Width at Half Maximum

GALEX Galaxy Evolution Explorer

GMRT Giant Metrewave Radio Telescope

v
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Resum

Aquesta tesi se centra en la detecció automàtica de fonts (objectes) en imatges as-

tronòmiques. L’ús d’eines automàtiques per a realitzar aquest tipus de tasca esdevé d’una

gran importància en l’àmbit astronòmic degut a la creixent quantitat de dades i a la in-

eficiència i imprecisió de les inspeccions manuals. En primer lloc, s’analitza de forma

exhaustiva l’estat de l’art d’aquest tema, presentant una nova classificació de tècniques i

destacant els seus principals punts forts i febles. Complementàriament, també es propor-

ciona una avaluació quantitativa d’alguns dels mètodes més destacats. En segon lloc, es

presenten tres propostes diferents per a la detecció de fonts febles en imatges de radiointer-

ferometria (śıntesi d’obertura): la primera, anomenada WALT, combina la transformada

wavelet amb una binarització local; la segona, anomenada RCF, es basa en el compor-

tament estructural d’una funció de contrast radial; i la tercera, realitza una classificació

supervisada de ṕıxels per mitjà de caracteŕıstiques locals i d’un mètode de boosting. Fi-

nalment, també es presenta una nova proposta per tractar amb imatges infraroges i de

radiofreqüència. Aquest mètode, anomenat multiscale distilled sensing (MDS), es basa en

l’ús combinat de la transformada wavelet i un mètode molt innovador anomenat distilled

sensing. Els resultats experimentals i l’avaluació duta a terme amb imatges sintètiques

i reals han demostrat que el rendiment de les quatre propostes és millor que el d’altres

mètodes de l’estat de l’art, tant pel que fa a fiabilitat com a completesa.
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Resumen

Esta tesis se centra en la detección automática de fuentes (objetos) en imágenes as-

tronómicas. El uso de herramientas automáticas para realizar este tipo de tarea es suma-

mente importante en el ámbito astronómico debido a la creciente cantidad de datos e

a la ineficiencia e imprecisión de las inspecciones manuales. En primer lugar, se analiza

de forma exhaustiva el estado del arte de este tema, presentando una nueva clasificación

de técnicas y destacando sus puntos fuertes y débiles. Complementariamente, también se

proporciona una avaluación cuantitativa de algunos de los métodos más destacados. En

segundo lugar, se presentan tres propuestas diferentes para la detección de fuentes débiles

en imágenes de radiointerferometŕıa (śıntesis de apertura): la primera, llamada WALT,

combina la transformada wavelet con una binarización local; la segunda, llamada RCF,

se basa en el comportamiento estructural de una función de contraste radial; y la ter-

cera, realiza una clasificación supervisada de ṕıxeles mediante caracteŕısticas locales y un

método de boosting. Finalmente, también se presenta una nueva propuesta para tratar

con imágenes infrarrojas y de radiofrecuencia. Este método, llamado multiscale distilled

sensing (MDS), se basa en el uso combinado de la transformada wavelet y un método

muy innovador llamado distilled sensing. Los resultados experimentales y la avaluación

llevada a cabo con imágenes sintéticas y reales han demostrado que el rendimiento de las

cuatro propuestas es mejor que el de otros métodos del estado del arte, tanto en cuanto a

fiabilidad como a completitud.
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Abstract

This thesis is focused on the automatic detection of sources (objects) in astronomical im-

ages. The use of automatic algorithms to perform such a task becomes of great importance

in the astronomical field because of the increasing amount of data and the inefficiency and

inaccuracy of manual inspection. In the first place, we exhaustively analyze the state of

the art on this topic, presenting a new classification of techniques and pointing out their

main strengths and weaknesses. A complementary quantitative evaluation of some of the

most remarkable methods in the literature is also provided. Afterwards, we present three

different proposals to detect faint sources in radio aperture synthesis images: the first, a

method that combines the multiscale wavelet transform and local thresholding (WALT);

the second, a method based on the structural behaviour of an intensity radial contrast

function (RCF); and the third, a supervised method that classifies pixels by means of

local features (filtered patches) and a boosting classifier. Finally, we also present a new

proposal to deal with infrared and radio images. This method, called multiscale distilled

sensing (MDS), is based on the combined use of the wavelet transform and an innovative

method called distilled sensing. The experimental results and the evaluation performed

with synthetic and real data points out that the performances of our four proposals are

better than state-of-the-art approaches in terms of both reliability and completeness of

the detections provided.
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Chapter 1

Introduction

The universe contains billions of astronomical objects in constant evolution. With the

desire of better understanding the cosmos, astronomers obtain thousands of images of

these objects. These astronomical images provide information about the great variety

of celestial objects (sources) existing in the universe, the physical processes taking place

in them, and the formation and evolution of the cosmos. Over the last few years high-

resolution mappings and catalogues of astronomical objects have been published by many

observatories that use vanguard technology located both on the Earth’s surface and in

orbit [1, 19, 95, 68, 4]. These telescopes work not only in the optical domain, but in

the whole range of the electromagnetic spectrum. Therefore, it is a common practice to

acquire images with instruments that capture photons of frequencies not perceptible to

human eyes like radio frequencies or X-rays [10].

Observing the same section of sky at different frequencies produces different types of

images. Combined and comparative analyses of these images provide more comprehensive

information about the objects in this area. However, detecting objects in astronomical

images is not an easy task even for experienced astronomers. They are at distances

measured in light-years, so it is very likely that they will appear as faint bright points

or blended with other objects. Also, it is possible that some spots in these images may

be considered as objects when actually they are not. For all these reasons, astronomical

images need an exhaustive analysis in order to detect precisely when an object is present

and when not. The optimal way to carry out these analyses would be with astronomical

experts searching for the various objects to be found in these images. However, due to

the large amount of data and the fact that many objects can be almost imperceptible,

a search by humans is inefficient, very slow, and inaccurate, if not almost impossible.

Hence, it is necessary to develop highly robust, fast, efficient, and computer automated

algorithms to detect the astronomical objects by means of image processing and computer

1
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vision techniques.

The automatic detection of sources in astronomical images seems to be quite a straight-

forward task compared to other computer vision problems: the typical scenario is dealing

with light-emitting sources on dark backgrounds. Nevertheless, there are some difficul-

ties associated with astronomical images that make this a complicated task. On the one

hand, many astronomical objects do not show clear boundaries since their intensities are

similar to the detection levels (i.e. those close to the background level) and they are

mixed with noise components. On the other hand, especially in the case of wide-field deep

images showing multiple sources, the sizes and intensities of the different objects present

may vary considerably. Therefore, the images can have a high dynamic range (i.e. ratio

between the highest and lowest intensity level) and a large spatial dynamic range (i.e.

ratio between the largest and smallest detectable structure). These facts may cause image

display problems due to the limited range of intensities perceptible by human vision.

Therefore, the main challenge of object detection in astronomical images is to separate

those pixels that belong to astronomical bodies from those that belong to the background

or noise to be able to specify the coordinates where these bodies are located afterwards.

Since this goal may require searching through connected regions of pixels constituting ob-

jects, this task is also referred to as object segmentation in the computer vision community

[82]. Nevertheless, in this document we will often refer to the localization of the central

coordinates of the sources as detection. The final outcome of this detection process is a

list of the objects’ coordinates found (also known as the catalogue). The use of automatic

tools to perform this task becomes of great importance in the astronomical field because of

the increasing amount of data (usually many large-sized images per survey or observation

with up to thousands of sources) and the inefficiency and inaccuracy of manual inspection.

1.1. Astronomical images

Despite the fact that all astronomical images are greyscale images with a high dynamic

range, there are several types of images used for different purposes and with different

characteristics.

1.1.1. Types of astronomical images

People are able to perceive visible light through their eyes. This light is within the

electromagnetic spectrum through which the Sun emits most of its radiated energy. In
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Figure 1.1: Electromagnetic spectrum.

fact, visible light is only a small portion of all the electromagnetic radiation that travels

through space. Initially, the study of the universe was focused mainly on the visible band,

with the building of observatories that included optical telescopes with associated devices

like spectrometers or photometers. However, due to the large amounts of relevant infor-

mation in the invisible bands, astronomers also made efforts to develop an astronomy able

to capture non-visible radiation emitted at different frequencies (and therefore, different

wavelengths) as can be seen in the electromagnetic spectrum in Figure 1.1. On the one

hand, there is radiation emitted at frequencies lower than the visible range (with wave-

lengths between 400 and 700 nm), such as radio and infrared. On the other hand, there

is the radiation emitted at frequencies higher than the visible range, such as ultraviolet,

X-rays, and γ-rays.

Various celestial bodies, gas, dust, and other elements may be visible at specific fre-

quencies, and therefore, different types of images are used depending on the elements to

visualize. Moreover, a common practice in astronomy is to superimpose images at different

frequencies in order to combine the information provided at each band and are therefore

called multiband images. An analysis of the sky at different frequencies allows the study

of the phenomena of the universe, from the least energetic to the most, from the coolest

to the hottest radiation.

Most non-visible bands, except for radio and the zones of infrared and ultraviolet near

visible light, are blocked by the atmosphere, and for this reason, astronomy in these bands

could not be developed until the advent of the space age in the sixties and seventies. Until

this time, optical astronomy allowed astronomers to observe stars and other phenomena

which emit at medium temperatures such as the sun. A couple of examples of optical
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Figure 1.2: Two examples of telescopes. On the left, the Hubble Space Telescope in orbit.

On the right, the ALMA interferometer.

telescopes are the Hubble Space Telescope [69] (shown in orbit in Figure 1.2, left) and the

W. M. Keck Observatory [106] (in Hawaii). Nevertheless, astronomy at radio frequencies

was developed in the thirties, before than at any other frequency, since it was directly

linked to the development of the radio receiver. Radio astronomy is carried out by means

of directional radio antennas and, unlike optical images, radio images have poor resolution

(the ability to see in detail given by the ratio of the wavelength and the instrument

diameter). The astronomers calculated that to achieve the same resolution in radio as

with optical, they would need instruments 100,000 times greater (a non-viable size, since

it is technologically impossible to build antennas over 100 meters). To solve this problem,

they decided to form images by correlating (by pairs) the signal reached by multiple

antennas located in fields, laid out in very large arrays (along kilometres). These antennas

point to the same stellar object, but, as they are spaced out, the light reaches them at

different moments albeit tiny, simulating a huge antenna with a diameter of kilometres.

Afterwards, the different signals are correlated and, with some mathematical operations, a

high resolution image is formed. The whole set of antennas is called a radio interferometer.

Some examples of interferometers are the Very Large Array [95], the Very Long Baseline

Array [68], the Atacama Large Millimeter/submillimeter Array (ALMA) [112] (shown in

Figure 1.2, right) and the Square Kilometre Array (SKA) [18] (in development).

Astronomers can observe the so-called near-infrared (infrared radiation close to the vis-

ible part of the spectrum) with the same devices used in optical. The same happens

with near-ultraviolet radiation. As infrared radiation moves away from visible light, the

telescope must be placed at a higher altitude, even above the atmosphere. Infrared ob-

servations are used to observe emissions of cold clouds of gas and dust. Some examples
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of infrared telescopes in space are the Herschel Space Observatory [79], the Spitzer Space

Telescope [108], and the Wide-field Infrared Survey Explorer (WISE) [19], even though the

Hubble Space Telescope can observe at near-infrared frequencies as well. Some others have

been placed in aeroplanes, such as the Stratospheric Observatory for Infrared Astronomy

(SOFIA) [24] or on the Earth’s surface, such as the James Clerk Maxwell Telescope at the

Keck Observatory. To achieve better resolution, there are even infrared interferometers,

such as the one at the Keck Observatory.

Observations at high frequencies are usually performed from the upper atmosphere or

from space using rockets and satellites. In ultraviolet, it is possible to visualize massive

young stars and very old ones, which are very hot, and therefore, emit in an area of the

spectrum close to blue and ultraviolet. Some examples of space telescopes that observe

at ultraviolet frequencies are the Hubble Space Telescope (HST) and the Galaxy Evolu-

tion Explorer (GALEX) [60]. With X-rays, the energies are very high and show violent

phenomena or sources with extremely hot gases. In γ-rays, very violent phenomena such

as black holes, supernova explosions, or the destruction of atoms are especially detected.

Some of the X-ray satellites in use today include the X-ray Multi-Mirror Mission-Newton

(XMM-Newton) [45] and the Chandra X-ray Observatory [107], whereas some of the γ-ray

satellites currently in orbit are the INTErnational Gamma-Ray Astrophysics Laboratory

(INTEGRAL) [111], the Astro-Rivelatore Gamma a Immagini Leggero (AGILE) [66] and

the Fermi Gamma-ray Space Telescope [4].

1.1.2. Celestial coordinate system

A common practice in astronomy is to measure the position of objects by means of a

celestial coordinate system. They are usually spherical systems, although they also have a

rectangular implementation. The most commonly used is the equatorial coordinate system

which consists of projecting the latitudes and longitudes of the Earth onto the celestial

sphere (an imaginary sphere concentric with Earth with a radius that can be considered as

infinite). Equatorial coordinates are expressed as a pair: the latitudinal direction is called

declination (Dec - measured in degrees from -90◦ to 90◦) and the longitudinal direction is

called right ascension (RA - measured in degrees from 0◦ to 360◦ or in hours from 0 to

24).

Other alternative celestial coordinate systems are used as well. The galactic coordinate

system uses the Sun as the origin and the galactic plane (coincident with the plane of

the Milky Way galaxy) as its fundamental plane. The galactic latitude (b - measured
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in degrees from -90◦ to 90◦) is the angular distance above or below the galactic plane,

whereas the galactic longitude (l - measured in degrees from 0◦ to 360◦) is the angular

distance along the galactic plane. On the other hand, the ecliptic coordinate system uses

the Earth as its origin and the ecliptic (the plane that includes the orbits of the Earth and

the Sun) as its fundamental plane. The ecliptic latitude (measured in degrees from -90◦ to

+90◦) is the angular distance above or below the ecliptic, whereas the ecliptic longitude

(measured in degrees from 0 to 360) is the angular distance along the ecliptic.

1.1.3. The FITS format

FITS is the acronym for Flexible Image Transport System [75] and is the standard

computer data format widely used by astronomers to store, transmit and manipulate data

files. Unlike many image formats, FITS is designed specifically for scientific data, and for

this reason, it offers the possibility of attaching additional data as photometric and spatial

calibration information. It is basically designed to store scientific datasets consisting of

multidimensional arrays and 2-dimensional tables containing rows and columns of data.

FITS is also often used to store non-image data, such as electromagnetic spectra, photon

lists, data cubes, or even structured data. FITS files allow extensions containing data

objects. For instance, one file may store different exposures of the same area of the sky

such as X-rays and infrared exposures.

FITS was originally developed in the late seventies to provide a way to exchange as-

tronomical data between computers of different types, with different word lengths, and

different means to express numerical values. It was in 1981 when the first version of the

FITS format became standardized, and after successive updates, the last version released

was the 3.0, approved in July 2008.

The most commonly used type of FITS data is a data array of arbitrary dimension (for

example, the image) and one or more headers. The file consists of several structures called

HDU (header and data units) including a header and the data described by the header.

The primary HDU contains an n-dimensional array of pixels (e.g. a 1-D spectrum, a 2-D

image, or a 3-D data cube). Additional HDUs may appear after the primary one, and are

called FITS extensions. Three types of extensions are available: image extensions, which

are n-dimensional arrays of pixels, like in a primary array; ASCII table extensions, which

are rows and columns of data in the ASCCI character format; and binary table extensions,

which are rows and columns of data in a binary representation.

An interesting point is that the information is stored in headers in a humanly readable
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way, so that users can examine the headers and understand the file’s content such as the

size, date and time, origin, coordinates, binary data format, free-form comments, history

of the data, and anything else. For more detail, see the FITS standard [75].

1.2. Astronomical sources

An astronomical source is the origin of something that suggests the presence of an

astronomical object. Hereafter we are going to use the terms source and object without

distinction as those stellar bodies that can be detected in images.

Behind the sources detected we can find a variety of different astronomical bodies. For

instance, in our own Solar System we find a star (the Sun), eight planets, at least five

dwarf planets (objects massive enough to be nearly spherical and which have not cleared

a path around a star), hundreds of natural satellites, thousands of comets and millions

of asteroids, among others. Beyond the Solar System, apart from the objects already

mentioned, we find an incalculable number of other sources such as stars and galaxies as

well as gas, dust and cosmic rays.

Stars are basically composed of hydrogen and helium and are formed when a region

achieves enough density of matter (gas and dust) due to a gravitational instability. Thus,

a compact sphere with enough gravity at its center is formed. Afterwards, it starts to

fuse hydrogen in its core producing large amounts of energy. Once the hydrogen in the

core is exhausted (after up to billions of years), the evolution of the star depends on its

mass, so that it can become a white dwarf (a stable cool star) or a red giant (a stable

star that fuses hydrogen in a shell outside the core), or it can even explode: massive and

binary stars may explode in a violent phenomenon called supernova, while white dwarfs

may explode in a less energetic phenomenon called nova. A supernova remnant can form

new astronomical bodies including new stars.

Groups of stars and stellar remnants, gas and dust gravitationally bound and evolving

together in the Universe are known as galaxies. Depending on their morphology, they can

be classified as elliptical, spiral or irregular. Interactions between galaxies are relatively

frequent. For example, they may collide, which happens when one passes through the

other. This collision may produce changes in the morphology of the galaxies. The interac-

tion of gas and dust between the two galaxies produces disruptions and compressions and

favours the appearance of zones of star formation. Some examples of stars and galaxies

are shown in Figure 1.3.
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Figure 1.3: Some examples of astronomical objects. On the left, several isolated stars, in

the middle, a cluster of stars, and on the right, an elliptical galaxy. All these images have

been extracted from the Hubble website [69].

1.2.1. Source morphology

Sources may present different shapes depending on the type of astronomical object they

actually are. When the angular size of an object is smaller than the angular resolution

of the telescope used to perform the observation, the object appears in images as a point

source (also called unresolved). The response of a telescope to a point source is called

the point spread function (PSF, although sometimes it is also known as the beam) [10].

It describes the two-dimensional distribution of light in the telescope’s focal plane, and

therefore, the representation of a point source in an image is the convolution of the object

with the PSF, as shown in Figure 1.4. Hence, the size of a point source is given by the

PSF of the acquisition instrument, and is usually measured through its full width at half

maximum (FWHM). Great efforts are taken in order to reduce the size of the PSF in

telescopes so that the signal is not spread out over too many pixels.

Point sources typically have only a few pixels, and because of this, are sometimes con-

fused with image noise. On the other hand, sources that exceed the size of the PSF are

commonly known as extended or resolved. They might still have compact spherical shapes

(e.g. some distant galaxies) or be more irregular (e.g. supernova remnants). An example

of an astronomical image with sources of different morphology is shown in Figure 1.5. No-

tice that saturating the image by changing the contrast, the structure of some extended

sources is lost, but many faint sources appear.



1.2. Astronomical sources 9

Figure 1.4: Graphical representation of the effect of the PSF in images.

Figure 1.5: Radio image with different contrast stretching (0.1% of outliers eliminated on

the left, and 2% on the right). These images contain extended sources encircled in green,

irregular sources such as that at the top of the image, and multiple point sources.
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1.3. Background and noise

In astronomical images, empty parts of the sky are known as the background. Hereafter,

we talk about the background and the sky without distinction. Even if an object is not

present in these regions of the sky, a low luminosity mostly due to the light emitted

by nearby sources, is always present. Images taken through the atmosphere may be

polluted by light from man-made sources such as cities. Some regions of the background

may be considered as such by human eyes, however, they may hide sources visible in

other frequency bands or those so faint that they are detectable only by computer tools.

Furthermore, the background is diffuse, meaning that it is difficult to specify the exact

line that indicates where the sources end and where the background begins. Moreover, the

background is normally non-homogeneous due to the fact that some astronomical images

need a long exposure time. Also, there are changes in the atmospheric conditions so

sometimes they are mosaics made up of different images pointing at different coordinates

at different moments, as can be seen in Figure 1.6.

Astronomical images are characterized by the presence of noise. It is one of the main

disadvantages in astronomical detection, since it makes the detection process difficult.

There are different types of noise according to their origin, such as shot, thermal and

readout. Shot noise is due to the random variations in the number of light photons

acquired by the instruments; thermal noise is due to the intrinsic thermal fluctuations

in the acquisition devices that knock some electrons free; and the readout noise is due

to the imperfect conversion from an analogue signal to a digital value in an electronic

device [43]. Noise in images is usually taken as additive Gaussian and/or Poisson. For

instance, in CCD (Charge-Coupled Device) images, the arrival of photons may generate

Poisson noise while readout noise is commonly Gaussian. However, to simplify, in longer

wavelength bands (basically optical, infrared and radio), the noise and the background are

assumed to follow a Gaussian distribution. On the other hand, shorter wavelength bands

present mainly Poisson noise since they are acquired by means of photon counters [91].

The amount of noise can be measured through the so-called signal-to-noise ratio (SNR),

which is a measure used in many fields to quantify how much a signal has been corrupted

by noise. It is calculated by dividing the amount of signal by the amount of noise (see

the next chapter for more information), and therefore, the higher the ratio, the lesser the

noise impact. Noise can sometimes be estimated through knowledge of the instrument’s

properties.
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Figure 1.6: An infrared mosaic with background variations. This image, courtesy of Dr.

J. Mart́ı (private communication), is quite noisy and even presents some interferences (the

darker curved regions at the top left of the image).
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1.4. Astronomical imaging pipeline

In an astronomical imaging pipeline, also known as data reduction, several steps are

carried out in order to generate the catalogues with features of the objects present in a

region of the sky. An astronomical catalogue is a list of known astronomical objects that

share a common type, morphology, origin or detection method. Astronomical catalogues

are usually the outcome of a general map or image of a region of the sky (this is also

known as an astronomical survey).

1.4.1. Acquisition process

Astronomical observations are made in observatories by means of large telescopes. The

most widely-used telescopes are optical, able to observe the visible light emitted by stellar

bodies and some wavelengths of ultraviolet and infrared bands. These telescopes are

generally composed of two or three reflector mirrors or lenses to gather and focus light

photons. Sometimes, some filters are used in the telescope to select specific zones of the

electromagnetic spectrum (a set of these filters covering an important part of the spectrum

is known as a photometric system). They are usually placed in large observatories in high

places like mountaintops to take advantage of optimal climatic conditions such as clear

skies or dry environments due to thermal inversion as dampness is below the observatories’

location. As the atmosphere may distort the observations (the blurring and twinkling

of objects caused by turbulences in the atmosphere is called seeing), sometimes these

telescopes and some at other wavelengths, are placed at higher altitudes using aeroplanes

and satellites. Following similar principles, there are other types of telescopes according

to the band they observe. Most of them, such as infrared, ultraviolet, X-ray, and γ-ray

telescopes, are found above the atmosphere.

In order to form a radiation image that reaches the telescope, a CCD camera is frequently

used. They are used mainly due to their high sensitivity to most of the electromagnetic

spectrum, especially the visible range, their linear response to the light, their reduced size,

and their low cost. CCD cameras have an array of CCD sensors, each of which corresponds

to a pixel in the image. These sensors are based on the photoelectric effect, which converts

its received light into electric current to be translated to a pixel intensity in the digital

image afterwards. CCD cameras are able to capture visible, ultraviolet, infrared (although

in this band, infrared detector arrays are used as well) and even X-ray bands.

On the other hand, as we have already mentioned, radio frequencies are captured
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through directional radio antennas. To have high resolution in radio, interferometry must

be used, which reaches radio emissions with large arrays of antennas. Moreover, to pre-

serve an angular resolution (antennas have a concave shape), a technique called aperture

synthesis is used. This technique simulates the distribution of the set of antennas by math-

ematical corrections, taking into account the shape the huge simulated antenna should have

(a parabola or a dish shape). In radio, the image is formed by the interpretation of the

signal reached by the interferometer. In γ-rays (and sometimes also in X-rays), the image

is generally created by photon counters.

1.4.2. Preprocessing

Several preprocessing steps are used to remove instrumental signatures from the data.

For instance, a typical practice in CCD imaging is to calibrate the data by means of bias

and dark current subtraction and flat fielding. Bias frames are images taken with no

light (shutter closed) and with an exposure time of zero used to measure the signal of the

CCD pixels; dark frames are images taken with no light in a given exposure time used

to measure the dark current due to the thermal emission of the CCD pixels; and the flat

fields are images taken when a homogeneous source of light is exposed and are used to

measure the light sensitivity of the CCD pixels [43].

Some pixels in the image may be missing or corrupt (they are also known as bad or

dead pixels) due to defects in the CCD or to cosmic rays (high energy particles). Some

techniques used to deal with these outliers are, for instance, simple filtering, image recon-

struction (such as replacements or interpolations) or inpainting. Additionally, to attenuate

background variations such as noise or interferences, several instances of the same obser-

vation can be taken and pixel means or medians can be performed [114, 32, 115, 88].

In radio interferometric images, where strong fringe patters are usually present, image

restoration through deconvolution is commonly used. The so-called CLEAN algorithm [39]

is the most widely used algorithm in these images. It iteratively searches peaks (sources)

in the image, subtracts the gain of the beam at these peaks and convolves them with an

idealized beam (usually a Gaussian).

1.4.3. Source extraction

Source detection can be considered as the first step of source extraction and consists of

extracting properties and characteristics of the objects present in an astronomical image.
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Once the sources are located, a common practice is to measure their intensity radiation

(also known as flux). This process is called photometry and can provide information about

the structure of the object, its temperature, distance or age. Photometry techniques aim

to measure the light emitted by the source and discard the light from the sky. Two

different types of photometry are commonly used: aperture and differential. In aperture

photometry, the level of the sky is measured by averaging the intensity pixels of an annulus

around the source center that do not include the source, and afterwards, this value is

subtracted from the addition of the intensity of the pixels within a circle surrounding the

source (aperture). On the other hand, differential photometry measures the brightness of

the sources relative to reference sources with constant brightness. It is typically used to

determine the evolution of variable stars.

In astronomy, the brightness can be measured in different ways. The amount of energy

transferred to CCD pixels or photon counters is mostly measured in terms of flux in Jansky

(Jy) units. However, the logarithmic measure of the brightness of the objects relative to

stars of known brightness is widely used as well. It is so-called magnitude and can be

calculated as follows:

m = mref − 2.5 log10(
flux

fluxref
), (1.1)

where mref is the photometric zero point: the magnitude of a star with a brightness con-

sidered as reference (the star Vega has been classically assumed to have zero magnitude).

fluxref corresponds to the flux of the reference star. Note that the smaller the magnitude,

the brighter the source. Additionally, flux in radio astronomy is sometimes measured in

terms of brightness temperature (the temperature of a black body in thermal equilibrium)

in K units.

The determination of the position of objects in terms of celestial coordinates is then

carried out. This process is called astrometry and commonly uses the coordinates of

sources in the image well-located in other catalogues to determine the position of objects

in the image with unknown coordinates. Additionally, as many observations are performed

pointing to well-known coordinates, this prior information can also be used to determine

the astrometry in images.

Some source extraction methods also incorporate a source classification step to figure out

the type of astronomical bodies behind the sources. For instance, some software applies

star/galaxy classification or galaxy morphology determination steps.
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1.5. Research framework

This thesis is located within the framework of two research projects in which the Com-

puter Vision and Robotics (VICOROB) group [103] of the University of Girona [100] has

been recently involved: “Observational and theoretical studies of high energy galactic

sources from the radio to the VHE γ-rays” (reference AYA2007-68034-C03-03) awarded

by the Ministerio de Educación y Ciencia (2008-2010), for which Dr. Marta Peracaula

was responsible; and “High-energy phenomena in stellar objects. Theory and multiwave-

length observations” (reference AYA2010-21782-C03-02) awarded by Ministerio de Ciencia

e Innovación (2011-2013), for which Dr. Jordi Freixenet was responsible.

Both projects were coordinated by the teams of the Department of Astronomy and

Meteorology [97] and the Institute of Sciences of the Cosmos [98] of the University of

Barcelona [99], led by Dr. Josep Maria Paredes. The third member involved in the

projects was the team of the Department of Physics of the University of Jaén [101], led

by Dr. Josep Mart́ı.

The main role of VICOROB in these projects was closely related to that of this thesis.

It specifically consists of performing research on astronomical source detection algorithms

in images of different natures, paying special attention to the development of detection

and segmentation algorithms for radio images.

1.6. Objectives

As part of the two projects just mentioned, the main goal of this thesis is

the analysis and development of automatic algorithms to detect sources in

astronomical images.

This goal refers to the building of catalogues containing the coordinates, in terms of

pixels, of the centroid of sources present in images. This general objective can be divided

into three specific parts pertaining to the different stages of this thesis:

1. An exhaustive analysis of the state of the art in astronomical source

detection. This includes a review of the main methods used over the last few years

as well as the proposal of a new classification of methods according to their main

steps. This second task arises from the lack of an updated review of astronomical



16 Chapter 1. Introduction

detection techniques at the beginning of this thesis.

2. A quantitative analysis of some of the most promising methods found in

the state of the art. This evaluation includes some of the most widely used detection

algorithms as well as other innovative methods that have recently emerged. Included

is the selection of an appropriate common dataset to level the playing field consisting

of optical, infrared and radio images. Accurate catalogues of sources are also needed

in order to evaluate the detection performance of the methods.

3. The development of several proposals to automatically detect sources in

different types of astronomical images. Our main aim is the implementation

of different methods able to deal with different types of images at different bands.

However, as the research projects linked to this thesis are mainly focused on radio

frequency images, more importance is given to the use of radio images. The results

obtained with these proposals in different datasets will also be compared to those

obtained with widely-used state-of-the-art methods.

1.7. Document structure

This thesis is structured as follows:

Chapter 1. Introduction. This current chapter has explained the main points

this thesis deals with, such as what is and what the automatic detection of sources

in astronomical images involves. The planning and goals of this thesis have been

presented as well. The following chapters explain, in detail, the current techniques

in this field and introduce new proposals.

Chapter 2. Review of source detection in astronomical images. After Chap-

ter 1, a wide variety of astronomical detection techniques that have appeared over

the last few years is analyzed, pointing out their main advantages and drawbacks in

a qualitative way. We introduce a new classification based on the image transfor-

mations and the detection criteria the methods use. Finally, the performance of the

methods is discussed according to their reported results.

Chapter 3. Quantitative evaluation of source detection methods. After

reviewing the different techniques used to detect sources in Chapter 2, we present

a quantitative evaluation of some of the most salient methods found in the liter-

ature. They are tested with a unified dataset consisting of optical, infrared, and
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radio frequency images. Respective catalogues of the images are used to evaluate

the performance of these methods in terms of reliability of the detections obtained

and the number of true sources in the catalogue correctly identified. An extended

discussion is presented regarding the methods, the strategies they use and the type

of images.

Chapter 4. Faint source detection in aperture synthesis radio images. Af-

ter the exhaustive evaluation of strategies in Chapters 2 and 3, three new approaches

to detect faint sources based on different techniques are presented. They come out

of what we considered as being some of the most interesting techniques in the state

of the art: the first combines multiscale decomposition and local thresholding; the

second performs a radial contrast analysis of neighbourhoods of pixels; whereas the

third classifies pixels by means of local features and a boosting classifier. After

testing them on radio interferometric datasets, their results are compared to those

achieved with algorithms widely-used by the astronomical community.

Chapter 5. Multiscale source detection for long wavelength images. An-

other proposal to deal with the detection of sources in radio and infrared images is

presented in this chapter. It is based on the combination of commonly used multi-

scale transforms and the promising Distilled Sensing method. The combination of

these methods allows a better performance than using only Distilled Sensing. The

new proposal has been applied to different long wavelength datasets and the results

obtained have been compared to commonly-used detection software.

Chapter 6. Conclusions. This final chapter sums up the main conclusions ex-

tracted from this work. Based on these, possible solutions and future work are set

out.
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Chapter 2

Review of source detection in

astronomical images

Astronomical detection is usually the first step in the process of building astronomical

catalogues. For this reason, after astronomical detection, two other processes are also

performed: classification, which categorizes the objects into different types (e.g. stars,

clusters, galaxies, extended objects, etc.), and photometry, to account for the flux, magni-

tude or intensity of the objects. The whole process of building a catalogue is also known

as source extraction.

The development of automated algorithms to detect astronomical objects has become a

research topic of interest for the astronomical community. Even thought these algorithms

perform the same actions that an experienced astronomer can do with an appropriate

display system, their importance relies on the fact that algorithms can do these things

quickly, repeatedly, and always with maximum objectivity (properties a person can not

guarantee). As stated by Goderya and Lolling [25], their importance becomes apparent in

wide fields or large surveys with thousands of sources that can have intensities at detection

levels. In these cases, a human search is inefficient, very slow, and inaccurate, if not almost

impossible.

The first automated methods for astronomical object detection had already been de-

veloped in the seventies, and have evolved until today, although at a relatively slow pace

because simple image processing techniques are already used to achieve better results than

those performed manually by experts. Nevertheless, more accurate and reliable detection

techniques are increasingly required by astronomers so more complex strategies have been

implemented.

We are aware that astronomical imaging is a broad subject and images acquired at

19
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different frequency bands present different features and behaviours. However, we want to

give an overview of the most used techniques to find astronomical sources regardless of

the origin of the images employed. This does not mean that we obviate the importance

of the type of image. By doing this general review we can see whether a given technique

performs well with different types of images or if it is more suitable for a specific frequency

band.

In this chapter we review the current state of the art in astronomical source detec-

tion [61], including a detailed analysis of these works, their classification according to the

methods used, the image type, and the evaluation of their results. We propose a new

classification based on two main steps: image transformation and detection criterion. The

first consists of applying changes to the astronomical images to prepare them for further

processing, whereas the second consists of classifying pixels that belong to sources and

separating them from background pixels, or in finding those pixels where the sources are

centred. Moreover, we also analyze the parameters of the strategies reviewed such as the

type of image, the reference catalogue, the evaluation measures used and their perfor-

mance. To the best of our knowledge, this is the first attempt to provide a quantitative

and qualitative comparison of detection approaches according to their reported results in

the literature.

2.1. Image transformation

Image transformation is a basic step used to prepare data to achieve a better perfor-

mance in later steps. Before putting into practice some of the image processing steps,

some operations may be applied to suppress undesired distortions or enhance some fea-

tures for further processing. Image transformation steps transform raw images in some

way, creating new images with the same information content as the originals, but with

better conditions. Thus, the images are adapted to facilitate later analysis, and to obtain

better results. In astronomical imaging, the objectives of image transformation are, for

instance, to filter noise, to estimate the background or to highlight the objects.

Within this image transformation group, we find techniques such as filtering, deconvo-

lution, transforms, or morphological operations. We present a formal and more accurate

classification by dividing the image transformation steps into multiscale strategies, basic

image transformations, Bayesian approaches, and matched-filter-based strategies. More

information is given in Table 2.1, which presents the different works reviewed according to
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the image transformation method, the type of image and the specified detection aim. The

methods are grouped by their image transformation strategy. Notice that the different

strategy aims may not be exclusive, but are simply the way authors referred to them.

2.1.1. Basic image transformation

We begin this image transformation review with a range of techniques that, although

simple, offer good performance, and hence are widely used throughout the computer vision

field. They are basically used to filter noise and estimate background level.

Simple filtering techniques such as median or average are used by many authors. They

consist of a sliding window centred on a pixel that computes one of the statistics mentioned

for all the pixels in the window, and, finally, replaces the central pixel with the computed

value. For instance, the median filter was used by Damiani et al. [17] and Makovoz &

Marleau [57] to estimate the background level and minimize the effect of bright point

source light, while Yang et al. [113], Perret et al. [76], and Lang et al. [50] used it to filter

noise and smooth the image. With these two aims, Herzog & Illingworth [37], Mighell

[64] and Freeman et al. [21] used the mean filter. Notice that in some cases, pixels in the

window with high values are removed to avoid biased values.

Background estimation is a common step in astronomical object detection. A good

way to carry it out is by using the one used in well-known extraction packages such

as Daophot [92] and SExtractor [6]. Their local background estimation is performed by

iteratively applying a thresholding based on the mean and standard deviation to eliminate

outliers. Afterwards, a value of the true background is calculated as a function of these

statistics (Stetson suggested 3×median - 2×mean, while Bertin suggested 2.5×median -

1.5×mean). Some authors refer to this background estimation as σ-clipping. Others, such

as Vikhlinin et al. [105], Lazzati et al. [52], Perret et al. [76] and Men’shchikov et al. [63]

(in multiscale planes) also used this method to deal with the background estimation.

Some authors (Irwin [44], Le Fèvre et al. [53] and Slezak et al. [84]) mentioned that

they use a method that Bijaoui [7] presented more than thirty years ago. It was based on a

Bayesian estimation of the intensity at each point using the histogram of the densities. A

model of this histogram was then built, taking into account the granulation and the signal

distribution, and obtaining the best threshold to separate the sky from the foreground.

Although at first it was a widely used background estimation strategy, it became less

common due to its high computational cost.
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Table 2.1: Summary of the methods’ image transformation. Detection aims stand for:

extended source detection (ESD), faint source detection (FSD), point source detection

(PSD), and source detection (SD). The term ’n/a’ stands for not available.
Article Image transformation Image type Aim

Basic image transformations

Herzog & Illingworth (1977) [37] Mean Optical SD

Le Fèvre et al. (1986) [53] Bijaoui Multiband SD

Stetson (1987) [92] σ-clipping + Gaussian n/a SD

Slezak, Bijaoui & Mars (1988) [84] Gaussian + Bijaoui Optical SD

Bertin & Arnouts (1996) [6] σ-clipping n/a SD

Szalay, Connolly & Szokoly (1999) [93] Gaussian Multiband FSD

Mighell (1999) [64] Mean n/a SD

Hopkins et al. (2002) [42] Gaussian Radio SD

Aptoula, Lefèvre & Collet (2006) [3] Morphological Multiband SD

Yang, Li & Zhang (2008) [113] Median + Morphological Optical SD

Perret, Lefèvre & Collet (2008) [76] σ-clipping + Median + Morphological Multiband SD

Haupt, Castro & Nowak (2009)[35] Distilled Sensing Radio SD

Lang et al. (2010) [50] Median Multiband PSD

Hadjiyska et al. (2013) [31] Asterisk median filter Optical SD

Bayesian approaches

Hobson & McLachlan (2003) [38] Markov-chain n/a SD

Savage & Oliver (2007) [81] Markov-chain Infrared SD

Feroz & Hobson (2008) [20] Nested sampling n/a SD

Carvalho, Rocha & Hobson (2009) [15] Multiple posterior maximisation Optical SD

Guglielmetti, Fischer & Dose (2009) [30] Mixture model X-ray SD

Trott et al. (2011) [96] Likelihood-ratio test Radio PSD

Klepser et al. (2012) [48] Likelihood-ratio test γ-ray SD

Matched filter

Irwin (1985 ) [44] Bijaoui + Matched filter Optical SD

Vikhlinin et al. (1995) [105] σ-clipping + Matched filter X-ray SD

Makovoz & Marleau (2006) [57] Median + Matched filter Multiband PSD

Melin, Bartlett & Delabrouille (2006) [62] Matched multifilters Radio and multiband PSD

Herranz et al. (2009) [36] Matched matrix filters Radio PSD

Lanz et al. (2012) [51] Matched multifilters Radio PSD

Multiscale approaches

Bijaoui & Rué (1995) [9] Wavelet Optical SD

Kaiser, Squires & Broadhurst (1995) [47] Mexican Hat Multiband SD

Damiani et al. (1997) [17] Gaussian + Median + Mexican Hat X-ray SD

Starck et al. (1999) [87] Wavelet Mid-infrared FSD

Lazzati et al. (1999) [52] σ-clipping + Wavelet X-ray SD

Freeman et al. (2002) [21] Mean + Mexican Hat X-ray SD

Starck (2002) [86] Wavelet + Ridgelet Infrared SD

Starck, Donoho & Candès (2003) [89] Wavelet + Curvelet Infrared SD

Vielva et al. (2003) [104] Mexican Hat (spherical) Radio PSD

Belbachir & Goebel (2005) [5] Contourlet + Wavelet Infrared FSD

Bijaoui et al. (2005) [8] Wavelet + PSF smoothing Multiband SD

González-Nuevo et al. (2006) [26] Mexican Hat (family) Radio PSD

Starck et al. (2009) [90] Multiscale Variance Stabilisation γ-ray SD

Broos et al. (2010) [11] Wavelet X-ray SD

Men’shchikov et al. (2012) [63] Successive Unsharp Masking + σ-clipping Infrared SD
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A recent work proposed by Hadjiyska et al. [31] used an asterisk median filter to estimate

the background. A profile with two radii was defined, and only the pixels in the asterisk

branches between the inner and the outer radii are used to calculate the neighbour median

at that pixel.

Sometimes, when the background presents large variations or the noise level is high, a

background subtraction is applied (Le Fèvre et al. [53] and Slezak et al. [84]). After the

subtraction, the source detection process becomes easier. The background subtraction is

usually performed from the background estimation, removing those pixels considered as

background. Haupt et al. [35] developed a different method called Distilled Sensing, which

was based on the idea of ruling out the regions where the signal (sources) was not present,

and then focusing on the rest of the regions. They performed iterative thresholding to

discard regions where the signal was absent, and then the source detection was intensified

in the regions not discarded.

Another common image transformation step is to convolve the image with a Gaussian

profile. In optical imaging, this process can be understood as an approximation to model

the point spread function (PSF - the response of the acquisition instrument to a point

source of intensity 1 unit) to the image pixels, thereby obtaining a new map with the

probability that each pixel has to be part of an object. Gaussian fitting can be computed

by subtracting the mean of the sky and dividing it by the Gaussian deviation. As Stetson

[92] mentioned, Gaussian fitting is equivalent to going through each pixel and considering

the expected brightness each one should have when an object is centred on it. A numerical

answer to this question is estimated by fitting a Gaussian profile: if a star is truly centred

on that pixel, it becomes a positive value proportional to the brightness of the object.

Otherwise, the pixel value becomes close to zero or negative. Szalay et al. [93] and

Hopkins et al. [42] also applied this strategy to multiband and radio frequency images.

Moreover, Damiani et al. [17] in their multiscale approach, applied a Gaussian filter to

the image in order to smooth the spatial variations of the background. Slezak et al. [84],

also applied this convolution to optical images in order to enhance very faint objects.

Furthermore, Gaussian models may also be used to filter noise. Modelling the intensity

of the image pixels as a Gaussian, the bell-shaped zone may be considered as noise, while

the rest of the distribution may represent background and objects. This noise filtering by

Gaussian fitting of the histogram was used by Slezak et al. [84].

Morphological operations are another typical image transformation step used in com-

puter vision. A generalisation to greyscale images allows the morphological image trans-
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formation step to be applied to this type of image. The two main operations in morphology

are dilation and erosion. In binary images, white pixels are considered foreground, and

black pixels are considered background. As its name suggests, dilation expands white

pixels, replacing the patch around the pixel with a given structural element (SE - a mask

with a specific shape), while erosion compresses the foreground by replacing a patch that

matches with the SE for a unique white pixel. In other words, dilation adds pixels to

the foreground edges, while erosion removes pixels from the edges. The combination of

dilation and erosion (in this order) is called “close” operation, whereas the inverse process

is called “open” operation. In greyscale morphology, structural elements are defined as

functions.

The works that have used the morphological greyscale image transformation step include

Aptoula et al. [3] and Yang et al. [113], who filtered the noise and enhanced the image

by computing open and close operations. Another work based on morphology is Perret et

al. [76]. They proposed the use of the grey level hit-or-miss transform (a morphological

operator dedicated to template matching that uses an erosion and a pair of disjoint struc-

turing elements). In this transform, the image is convolved with two different SE types:

while the first one is used to match the object shape (foreground), the second is used to

match the spatial neighbourhood of this shape (background). In the approach by Perret

et al. [76], the SE corresponding to foreground and background are patches of objects

with variations in orientation and elongation convolved with a Gaussian filter to simulate

the PSF. A different grey level according to the background estimation is given to these

patches to get, on the one hand, the foreground SE, and, on the other, the background

SE. After the background estimation and noise filtering, the two SE are convolved with

the image and the output score image can easily be thresholded.

2.1.2. Bayesian approaches

The goal of these approaches is to prepare the data in order to establish the probability

that it is either object or background. In other words, the objective is to provide a

probability map with higher values in the zones where an astronomical object is more

likely to be located, and lower values in the zones that are more likely to be sky. Bayesian

approaches are based on the widely used Bayesian inference, where a set of evidences

or observations is used to update the probability that a hypothesis is true. Bayesian

inference tries to estimate the values of a set of parameters O in some reasonable model

(or hypothesis) of the data (in our case, the image I). For any given model, an expression of
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the probability of obtaining the data set given a particular set of values for the parameters

(this is the so-called likelihood) must be considered. Moreover, a prior probability of the

parameters based on some knowledge regarding their values before analyzing the data must

be imposed. The Bayesian approach consists of constructing the conditional probability

density relationship:

p(O|I) =
p(I|O)p(O)

p(I)
, (2.1)

which gives the posterior distribution p(O|I) in terms of the likelihood p(I|O), the prior

p(O) and the evidence p(I).

For the purpose of estimating parameters, the evidence is usually set to a constant value,

so it is usual to talk about unnormalized posterior distribution. It is called maximum-a-

posteriori (MAP) solution, and we can see it as a maximisation over O that involves a

maximum likelihood and a prior:

MAP (O) = max
O

p(I|O)p(O). (2.2)

If we are able to assess the likelihood, then, after applying a prior, we will have the

posterior probability, which is the final resulting image. It expresses the probability of

the data I given any particular set of parameters O. In practice, the likelihood is often

based on an exponential function that involves the data (the different pixels), the signal

contribution and the noise model (Gaussian, Poisson, etc.).

Referring to the prior knowledge, noise characteristics and the PSF can be used. Any

other fit parameters can also be assumed. For example, source position and amplitude may

have already been determined in another observation band. Further information about

Bayesian methodology is available at [91] and [34].

Hobson & McLachlan [38] studied two alternative strategies to detect discrete objects:

the simultaneous detection of all discrete objects in the image, and the iterative detec-

tion of objects one by one. In both cases, the parameter characterisation of the objects

of interest was carried out by means of a Markov-chain Monte Carlo sampling (MCMC)

(see [38], [81], and references therein to find out more about MCMC). By using MCMC,

they could sample numerically from an unnormalized posterior distribution. They used

as prior knowledge the mean estimation of the number of objects per image (an empirical

value). For instance, in the iterative detection method proposed by Hobson & McLachlan,

this value was set to 1, because it was the number of objects to be found at each itera-
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tion. In a similar way, Savage & Oliver [81] developed a filter to source detection (and a

simultaneous background estimation) in infrared images. Moreover, using MCMC, they

tried to determine the related probability at each pixel of being described by two different

models: empty sky and point source against a uniform background. When calculating the

maximum posterior value for each model (using the PSF as prior knowledge), a map with

the probability of where a point source was more likely to be located was generated.

On the other hand, Feroz & Hobson [20], followed the Hobson & McLachlan approach,

but they replaced the MCMC with another Monte Carlo technique; nested sampling. They

used it to calculate the posterior distribution as a by-product. In a similar way, and also

following the Hobson & McLachlan approach, Carvalho et al. [15] proposed an object de-

tection method called PowellSnakes, computationally faster than Bayesian methods based

on MCMC. In their approach, sampling was skipped and the detection method was ap-

plied directly to the posterior. An estimation of position, amplitude, and spatial shape

of sources was estimated in order to be used as prior knowledge. Guglielmetti et al. [30]

applied their Bayesian source detection method to X-ray images. They used two different

kinds of prior knowledge: exponential and inverse-Gamma functions as probability den-

sity functions of sources, and two-dimensional thin plate splines (see references in [30]) to

represent the background.

Other approaches, such as those of Trott et al. [96] and Klepser [48], used the so-called

likelihood-ratio test. In both cases, the likelihoods of the data being empty sky (null

hypothesis) and sources and sky (alternative hypothesis) were computed. Then the ratio

was calculated by dividing the likelihood of the null hypothesis by the likelihood of the

alternative, and hence, obtaining a probability map.

2.1.3. Matched filtering

The purpose of applying a filtering step is to highlight objects and reduce the background

fluctuations. The most commonly used filter to solve these two problems is the matched

filter (MF). This filter convolves the image with the profile of the objects that are expected

to be found (e.g. PSF for point source detection or other patterns for extended source

detection). In addition, the MF may be used to subtract the background locally, and is

also a filter to consider when the images present a considerable amount of noise.

Many authors have proposed filtering raw images with an MF before applying a method

to detect objects. In the eighties, Irwin [44] suggested the use of the seeing function as an

MF to detect faint sources in a noisy background. The seeing function can be obtained
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either by directly averaging suitable stellar profiles or by an analytic model fit to these

profiles. A background estimation (following the Bijaoui [7] method) was also computed

previously to correct spurious values and to homogenize the sky. The MF allowed the SNR

to be increased, so the sources and the background were easily separated by a thresholding.

Vikhlinin et al. [105] proposed a similar strategy focused on X-ray data that, first of all,

generated a background map using a sliding box thresholding that detected the brightest

sources for removal. Afterwards, an MF defined as a piecewise function was applied to the

residual image. Depending on two thresholds, obtained with the background estimation,

the current pixel was convolved with a different function branch in order to differentiate

between sources and background. Pixels that were source candidates were convolved with

the instrument PSF, whereas pixels that were background candidates were convolved so

that their values were zero or negative. Thus, a detection method could be applied to the

resulting image. This process is repeated iteratively until a stop criterion is reached.

Another approach based on MF was developed by Makovoz & Marleau [57]. It was

included in the Mopex package for astronomical image processing. To detect point sources,

first and foremost, the background was subtracted from the image by locally calculating

the median and subtracting it from the current pixel. Then, an MF based on a point

response function (PRF) was applied to the background-subtracted image. With the

background subtraction step, some bright sources could be extracted, and using patches of

these sources, the PRF could be estimated. The detection process was repeated iteratively,

so the PRF could be refined with the new sources extracted.

In the literature, some authors have also used MF with multiband images, the so-called

matched multifilter. For example, Melin et al. [62] used this extension of the MF to detect

clusters. Each band was convolved with its corresponding filter (they used knowledge of

the cluster signal, such as its spatial and spectral features at each band), and a single

filtered image was produced by combining all filtered bands. More recently, it has also

been used by Lanz et al. [51]. In a similar way, Herranz et al. [36], introduced what they

called matrix filters or matched matrix filters. The main difference was that they convolved

each band with its corresponding filter, but a filtered image per band was generated so a

final choice of which filtered bands were better to perform the detection step was needed.

2.1.4. Multiscale approaches

In computer vision, the concept of multiscale or multiresolution is often used when the

image to be segmented shows objects with very different sizes or patterns organized in
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a hierarchical structure. In astronomical image processing, multiscale approaches have

been extensively used over the last fifteen years, mainly because, in many cases, they

outperform other strategies based on more basic techniques.

Astronomical data generally has a complex hierarchical structure, and for this reason a

more suitable way to represent it is in multiscale space. Thus, images are decomposed into

components at different scales or different spatial frequencies, and objects become high-

lighted in some scales. Depending on the nature of the objects, they may appear in more

or fewer scales, and closer to the low or high frequency scales. Once the decomposition is

complete, a basic detection algorithm can be applied to the different scales as if they were

single-scale images.

In other words, multiscale strategies optimize the analysis and detection of astronomical

objects however complex they may be. Among their applications, we find denoising, source

deblending (an astronomy technique to isolate overlapping sources) and inpainting (the

process of reconstructing missed or deteriorated parts of images), among others.

Several multiscale decompositions are used in the literature. For instance, Men’shchikov

et al. [63] recently used the so-called successive unsharp masking to decompose an image

in different scales. It consists of convolving the original image with circular Gaussians

and subtracting them from one another. However, the wavelet transform is the multiscale

technique most used by far. This transform and other multiscale approaches, which focus

on the detection of astronomical objects, are commented on below. See [28] and [91] for a

more detailed description of wavelets and other multiscale transforms.

The wavelet transform

When we talk about multiscale astronomical imaging, we cannot avoid mentioning the

wavelet transform (WT). This is the common multiscale technique used in the multiscale

vision model (MVM) (Bijaoui & Rué [9]) that we will look at later. The most used

transform is the stationary wavelet transform (SWT), more commonly known as the “à

trous” algorithm (the French translation of holey meaning that zeros are inserted in the

filters), an extension of the discrete wavelet transform designed to overcome the lack of

shift-invariance. Since astronomical sources are mostly isotropic, stars, for example, or

quasi-isotropic, such as with galaxies or clusters, the SWT does not favour any direction

in the image and maintains the sampling at each scale. The SWT of a signal produces

several scales, as can be seen in Figure 2.1.
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Figure 2.1: Wavelet decomposition of an image in several scales. From left to right four

scales from high to lower frequencies

There are many extensions of the WT that are more suitable depending on the detection

goal. For example, Damiani et al. [17] proposed a method based on the Mexican hat

wavelet transform (MHWT), a special case of the family of continuous wavelets obtained

by applying the Laplacian operator to a 2D Gaussian (for more information see [47, 15, 21]

and references therein), to detect sources in X-ray images. Moreover, this kind of WT has

been used by other authors, such as Vielva et al. [104], who used the spherical Mexican hat

wavelet transform, an MHWT extension for spherical functions, to detect point sources in

all-sky radio frequency maps. More recently, Starck et al. [90] proposed a source detection

approach based on the multiscale variance stabilisation transform (MSVST), based on the

differences between two consecutive WT scales, applied to gamma-ray images. Kaiser et

al. [47] pioneered the use of WT for astronomical object detection. Specifically, they used

the MHWT in multiband images to highlight faint objects.

As the image transformation and detection in multiscale approaches are closely linked,

and sometimes one step overlaps the other, more information about these methods is

available in Section 2.2.3.

Multiscale decomposition for anisotropic data

While wavelets give a good performance with isotropic features, they are far from op-

timal with anisotropic objects. Because of this, the astronomical community has had to

find alternatives. Some multiscale methods that represent the anisotropic features well

have been demonstrated.

To overcome the weakness of wavelets in anisotropic data, Candès & Donoho [13, 14]

proposed two new methods of multiscale representation: curvelet and ridgelet transforms,

which are very different from wavelet-like systems. Curvelets and ridgelets take the form

of basic elements that exhibit high directional sensitivity and are highly anisotropic. For

instance, in two dimensions, curvelets are localized along curves, in three dimensions,
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along sheets, etc. The ridgelet transform can effectively deal with line-like phenomena in

two dimensions, plane-like phenomena in three dimensions, and so on. More details on

these two techniques are provided in [91].

In practice, the continuous ridgelet transform (CRT) is used. The idea is to apply the

Radon transform (see [13] and references therein) and perform a wavelet analysis in the

Radon domain. Thus, the image is represented as functions with simple elements that

are in some way related to ridge functions. CRT is therefore optimal to detect lines and

segments in images.

Curvelets are also an extension of the wavelet concept. The idea of the curvelet trans-

form is to first decompose the image at different scales, and then analyze each scale by

means of a local ridgelet transform. They have a strong directional character in those

elements that are highly anisotropic at fine scales. Hence, for specific astronomical data

containing edges as with planet surfaces, for example, curvelets are the best choice because

they provide a mathematical representation that is ideally adapted to represent objects

with curved shapes.

As sometimes both isotropic and anisotropic data are present in images, combined

approaches may be the best solution. Hence, a perfect multiscale decomposition should

benefit from both the wavelet advantages and the ridgelet or curvelet transforms and

maybe others as well. In common practice, these combined approaches are used instead of

curvelets or ridgelets alone. For instance, Starck et al. [86, 89] proposed, on the one hand,

combinations of wavelets and ridgelets and, on the other hand, combinations of wavelets

and curvelets to detect objects in infrared data. In another work, Belbachir & Goebel

[5] suggested the combined use of WT and contourlet (see the [5] paper and references

therein) for faint source detection also in infrared images. Contourlet is a filter bank

transform that can deal with smooth images with smooth contours, so it is similar to the

curvelet transform.

2.2. Detection criteria

Image transformation techniques provide a new image or map ready to be processed. At

this point, a detection method is ready to be applied to the images. The goal of detection

is to locate the astronomical objects and separate them from the background (the sky).

Two detection strategies stand out among the rest: thresholding and the local peak search.

Thresholding considers that connected pixel regions above a certain threshold belong to
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an object, whereas the local peak search finds those pixels that are maximums in a pixel

neighbourhood and, from this point, tries to find all the object pixels. Even though these

two methods are the most common, we also analyze other strategies that try to solve the

detection problem in different ways, most of which are relatively recent. More information

is available in Table 2.2, which shows the various works analyzed according to the detection

method, the type of image and the specified detection aim. The methods are grouped by

the way they perform the detection. Notice that the different strategy aims may not be

exclusive, but are simply the way authors referred to them.

2.2.1. Thresholding

In computer vision, thresholding is a simple method for image segmentation. Using

this method, a greyscale image is converted into a binary one where the pixels have only

two possible values: 0 or 1. These two values are assigned to pixels whose intensities are

below (0) or above (1) a specified threshold. In astronomical images as well as in many

other fields, thresholding is used to decide which regions (connected pixels) are considered

as objects and which are considered as background. In a more formal way, the binarized

image Ith is the result of applying the following function to all the pixels in an original

image I:

Ith(i, j) =







1 if I(i, j) > th

0 otherwise,
(2.3)

where Ith(i, j) and I(i, j) are the intensity of the pixels in row i and column j of the

binarized and original images, respectively, and th is the established threshold.

Defining an appropriate threshold is not easy due to several factors like noise, back-

ground variations, or the diffused edges of the objects. Any chosen threshold may result

in some true objects being overlooked (false negatives) and some spurious objects being

considered as real (false positives). Varying the threshold to the extremes minimizes one

of these types of errors but maximizes the other. Hence, the best results rely on setting

the threshold to make the two errors as small as possible.

In the papers reviewed, the authors have set the threshold following various strategies.

For example, Irwin [44], Freeman et al. [21] and Hadjiyska et al. [31] set it depending

on the sky estimation computed, while Starck et al. [87, 90] and Lang et al. [50] set it

depending on the noise as a multiple of the noise estimation. Whiting [109] used a multiple

of the estimated SNR. Szalay et al. [93] modelled the sky as a χ2 distribution, and got
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Table 2.2: Summary of the methods’ detection criterion. Detection aims stand for:

extended source detection (ESD), faint source detection (FSD), point source detection

(PSD), and source detection (SD). The term ’n/a’ stands for not available.
Article Strategy Image type Aim

Thresholding

Jarvis & Tyson (1981) [46] Local Optical FSD

Irwin (1985) [44] Global Optical SD

Le Fèvre et al. (1986) [53] Local Multiband SD

Slezak et al. (1988) [84] Global Optical SD

Bijaoui & Rué (1995) [9] Global Optical SD

Bertin & Arnouts (1996) [6] Global n/a SD

Szalay et al. (1999) [93] Global Multiband FSD

Starck et al. (1999) [87] Global Mid-infrared FSD

Lazzati et al. (1999) [52] Global X-ray SD

Hopkins et al. (2002) [42] Global X-ray SD

Freeman et al. (2002) [21] Global X-ray SD

Makovoz & Marleau (2006) [57] Global Multiband PSD

Melin et al. (2006) [62] Local Radio and multiband PSD

Yang et al. (2008) [113] Local Optical SD

Herranz et al. (2009) [36] Global Radio PSD

Starck et al. (2009) [90] Global γ-ray SD

Haupt et al. (2009) [35] Global Radio SD

Lang et al. (2010) [50] Global Multiband PSD

Trott et al. (2011) [96] Global Radio PSD

Lanz et al. (2012) [51] Global Radio PSD

Whiting (2012) [109] Global Radio SD

Hadjiyska et al. (2013) [31] Global Optical SD

Local peak search

Herzog & Illingworth (1977) [37] Detection threshold Optical SD

Newell & O’Neil (1977) [70] Detection threshold Optical SD

Kron (1980) [49] Profile fitting Multiband FSD

Buonanno et al. (1983) [12] Detection threshold Multiband SD

Stetson (1987) [92] Profile fitting n/a SD

Vikhlinin et al. (1995) [105] Detection threshold X-ray SD

Kaiser et al. (1995) [47] n/a Multiband SD

Damiani et al. (1997) [17] Detection threshold X-ray SD

Mighell (1999) [64] Profile fitting n/a SD

Vielva et al. (2003) [104] n/a Radio PSD

Hobson & McLachlan (2003) [38] Profile fitting n/a SD

López-Caniego et al. (2006) [55] Profile fitting n/a PSD

González-Nuevo et al. (2006) [26] n/a Radio PSD

Savage & Oliver (2007) [81] Profile fitting Infrared SD

Feroz & Hobson (2008) [20] Profile fitting n/a SD

Carvalho et al. (2009) [15] Profile fitting Optical SD

Broos et al. (2010) [11] n/a X-ray SD

Other methods

Andreon et al. (2000) [2] Neural networks Multiband SD

Liu, Chiu & Xu (2003) [54] Neural networks Multiband SD

Aptoula et al. (2006) [3] Watershed transform Multiband SD

Perret, Lefèvre & Collet (2010) [77] Connected Component trees Multiband SD

Molinari et al. (2011) [65] Lagrangian differentiation Infrared PSD

Friedlander et al. (2012) [22] Latent Dirichlet Allocation Radio SD

Hollitt and Johnston-Hollitt (2012) [40] Circular Hough Transform Radio ESD

Hancock et al. (2012) [33] Mean curvature maps Radio SD

Göring et al. (2013) [27] Minkowski functionals γ-ray ESD
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the threshold value from the intersection point between the theoretical distribution and

the real data distribution. In a different way, Slezak et al. [84] and Herranz et al. [36]

determined the threshold by the distribution of the peaks previously found. They set the

threshold at 3.8 and 5 times the deviation of the peak distribution, respectively. Hopkins

et al. [42], Trott et al. [96], and Hancock et al. [33], moreover, used the false discovery

rate (FDR) method to select a threshold that controls the fraction of false detections (see

the Hopkins paper for more information). Haupt et al. [35] also used a threshold obtained

through FDR after ruling out regions without sources with their Distilled Sensing method.

In a similar way, Lazzati et al. [52] obtained the threshold as a function of the number of

pixels, the background estimation, and the maximum number of spurious sources expected.

However, not all these methods are fully automated. Source extraction packages such

as SExtractor [6] and Mopex [57] use user-specified thresholds. For example, SExtractor

gives the possibility of setting the threshold to an absolute value or as a multiple of

the background level. In these tools, when a source is considered too large, it may be

assumed that it is a cluster of sources, and the threshold is raised to detect the sources

independently.

Mainly due to background variations, a common practice in astronomical image detec-

tion is local or adaptive thresholding: a different threshold is used for different regions in

the image. This can typically be computed using a sliding window. For example, Jarvis

& Tyson [46] adapted the threshold as the window progressed. Starting with a specific

threshold, if the pixels in the window were lower than the threshold, and so considered

as sky, the threshold value was updated with the sky value of these pixels. Another way

to fix the threshold locally was the way Le Fèvre et al. [53] did it. They computed the

histogram of pixel intensities at each window, and set the threshold at 1.5 times the devi-

ation distribution. Melin et al. [62] and Lanz et al. [51] used a multiple value of the SNR,

whereas Yang et al. [113] used a method to automate the threshold calculation called the

Otsu method [73], where the intra-class variance is minimized to get a good threshold.

2.2.2. Local peak search

The main principle of the local peak or maxima search method consists of searching

for pixels that are considered peaks or, in other words, that are a local maximum in a

neighbourhood. In most cases, to avoid the unnecessary analysis of all the pixels, only

those peaks above a given threshold are considered. When this detection method is used,

it is often accompanied by an image transformation step that enhances the peaks to be
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found, and another step computed after the peak search that establishes or corrects the

pixels around the peak that belong to the object. Many times, this last step is a fitting

process, which is possible because the nature of the object is well known. So the local peak

search as such provides a list of candidates that can be the central points of an object. For

this reason, this method is typically used as a previous step to photometry calculation.

The local peak search is more appropriate to detect stars and other point sources, and is

not well suited to detecting complex objects like galaxies and other extended sources. A

formal representation of this method is as follows:

Ilps(i, j) =







1 I(i, j) ≥ I(k, l)

0 otherwise,
(2.4)

where I(i, j) is the intensity of the pixels in row i and column j, and I(k, l) is the intensity

of a neighbour pixel of I(i, j). For example, considering the 8-connectivity described below,

k takes values from i-1 to i+1, and l takes values from j-1 to j+1.

This method was already being used in the late seventies by Herzog & Illingworth [37]

and Newell & O’Neil [70]. They defined a peak as a pixel with an intensity greater than

or equal to their eight adjacent pixels (8-connectivity) and above a threshold based on

the sky level computed. Therefore, the objects were the connected regions centred on a

peak. They computed some tests to deblend objects (connected regions with more than

one peak), such as the data-over-gradient test (see [37, 70] and references therein for more

information on this test). Moreover, Buonanno et al. [12] searched for peaks over the

sky level in windows of N×N, and all the pixels connected to the peaks above a certain

threshold were added to make the corresponding objects. Vikhlinin et al. [105], in X-ray

images, considered a pixel as maximum if it was greater than its 25 neighbours and above

a threshold based on the background.

In several approaches, once the peaks were found, a known distribution was fit around

them. In this sense, Kron [49] opened windows of 50×50 around the maximums found,

computed the histograms, and selected the distribution (between two different light dis-

tributions that model faint and bright sources) that best fit the histograms. In a similar

way, Savage & Oliver [81] opened a window for each peak in infrared images and selected

the distribution from among sky, point-shaped source or an extended source that best fit.

López-Caniego [55] searched for local maximums and distinguished those caused by the

presence of sources. This distinction was achieved by a constrained optimisation problem

that considered peak densities leading to an optimal distribution that fits the source in
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amplitude and curvature. Other works used sharpness and roundness statistics and PSF

fitting (Stetson [92] in his Daophot software), or analyzed the annulus surrounding the

peaks to determine what was background and what was source (Mighell [64]).

2.2.3. Multiscale vision model

The multiscale transform from the “à trous” algorithm, decomposes an image I(i, j)

in N scales or wavelet planes Wn(i, j). Thus, a detection method can be independently

applied to each of these images representing a scale. Each scale has the same number of

pixels as the image. As we have already mentioned, the original image can be expressed

as the sum of all the wavelet scales and the smoothed array FN :

I(i, j) = FN (i, j) +
N
∑

n=1

Wn(i, j). (2.5)

A further step is to consider a multiscale object representation that associates an object

contained in the data with a volume in the multiscale transform. This representation

requires the application of a segmentation method scale by scale. A general idea for

object definition lies in the connectivity property. An object is located in a physical

region, and the pixels of this region are connected to other significant adjacent pixels.

This connectivity is present both in the same scale and in contiguous scales. This is

exactly what the multiscale vision model (MVM) [9] does.

The following, are the MVM steps:

1. The WT with the “à trous” algorithm is applied to an image.

2. A scale-by-scale thresholding procedure is performed, obtaining the object segmen-

tation at each scale.

3. In order to define the object’s structure, an inter-scale connectivity graph is estab-

lished.

4. An object identification procedure extracts each connected sub-graph and considers

them as objects.

5. Finally, from each set of pixels, an image of the object can be reconstructed using

some reconstruction algorithms.
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Figure 2.2: Example of the connectivity in the wavelet scales. Adjacent significant coeffi-

cients in a scale and between contiguous scales are considered part of the same object.

So, at each scale, the so-called significant wavelet coefficients, values in a wavelet scale

above a given detection limit usually dependent on the noise model, are searched out. At

each scale, we have a boolean image with a pixel intensity equal to 1 when a significant

coefficient has been detected, and 0 otherwise. Afterwards, the segmentation is applied by

labelling the boolean values with each group of connected significant coefficients getting a

different label. An inter-scale relation between two labelled zones in two adjacent scales

exists if the maximum significant coefficient of the first one lies in the region of the second

in the next scale. Therefore, an object is defined as a set of inter-scale relations having a

graph structure. A representation of this inter-scale connectivity graph is shown in Figure

2.2.

This pipeline and similar ones based on WT have been used as reference work in many

subsequent multiscale approaches. For example, after applying a Gaussian fitting and

a median filter, Damiani et al. [17] applied the MHWT to an image and local peaks

over a significant threshold were considered as sources if their amplitude was significant

with respect to the expected fluctuations of the local background. Very similar to this

approach is the one by Freeman et al. [21]. It differs in the background estimation, since

they carried this step out at each wavelet scale with an average filter and weighting the

resulting values with the negative wings of the MHWT. In addition, they proposed a

postprocessing step that analyzed some properties of the sources detected and rejected
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those that were considered spurious.

Like Bijaoui and Rué, Starck et al. [87] used the MVM to decompose the signal into

its main components. Moreover, Broos et al. [11] recently developed a wavelet-based

strategy to find sources in X-ray images from the Chandra telescope. The image was

deconvolved using the WT and reconstructed again to smooth the PSF effects using a

reconstruction algorithm called Richardson-Lucy [80, 56] explained in detail in [11]. A

candidate list of sources was created by locating peaks in the reconstructed image, and if

those peaks fulfilled a number of properties, they were considered as sources; otherwise

they were rejected.

Nevertheless, the whole MVM process is not required. Executing the detection process

at only a few scales instead of in all may often be enough. In the work of Kaiser et al.

[47], the source positions and sizes were simply identified by locating peaks at their scales

of maximum significance. Vielva et al. [104] deconvolved all-sky surveys with the MHWT

and proposed dividing the image into different regions, estimating the optimal scale in each

region. González-Nuevo et al. [26] also decided to apply some extensions of the MHWT

to radio maps. They proposed using the Mexican hat wavelet family (MHWF), with a

range of MHWT obtained by applying another Laplacian operator to the MHWT, and

repeating this process iteratively to detect point sources by selecting the optimal scales

of different MHWT in the family. They tested the first four members of the family and

finally applied a local peak detection. In a similar way, Starck et al. [90] used the MSVST

and a thresholding was computed at those scales with significant wavelet coefficients to

finally reconstruct the image. Lazzati et al. [52] used only a few predefined scales where a

thresholding was applied, and afterwards, the detection at different scales was correlated

to remove multiple detections of the same source and to determine which nearby sources

were extended ones.

Men’shchikov et al. [63] decided to use a model made up of the different multiscale

planes, obtained through successive unsharp masking, of different wavelength bands. Af-

terwards, the background, estimated through σ-clipping, is subtracted from each scale and

the normalized resulting scales are added up, allowing the detection of sources in multiple

wavelengths in an aggregate way.

2.2.4. Other detection criteria

Although most of the classical approaches are based on thresholding and a local peak

search, other strategies have been used to detect astronomical objects. In many cases these
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approaches have been developed over the last few years and focus more on techniques from

computer vision and machine learning fields.

For example, Andreon et al. [2] turned the object detection problem into a classification

one. They classified the pixels as if they belonged to the class object or to the class

background. This task was achieved by using a kind of neural network, so they named

this package NExt, from NEural Extractor. Specifically, they used principal component

analysis neural networks (PCA-NN) to reduce the dimensionality of the input data by

eigenanalysis and basically selecting the principal vectors. They trained a PCA-NN with

patches of the representative zones in the image, and a vector with fewer features than

the returned input. Afterwards, this output became the input of an unsupervised neural

network responsible for classifying the pixels from the object and the background. Based

on this detection approach, Liu et al. [54] proposed changing the PCA-NN used by

Andreon et al. [2] to a local principal component analysis, a kind of PCA that clusters

the input data and finds the principal vectors for each cluster. They used a local PCA to

automatically extract features from the image. A clustering process was then computed,

and the pixels were classified from these clusters.

Aptoula et al. [3], after the application of morphological operations, segmented the

image with the watershed transform. Notice that in this case, the images contained only

one object to segment, mainly galaxies. This unsupervised segmentation acts as a drop of

water falling on a topographic relief corresponding to the image; every grey level may be

considered as a height in the relief. By placing a water source in each regional minimum,

the relief is flooded from the sources, and barriers are built when different sources are about

to merge. To avoid over-segmentation, they only considered a few marked minimums as

water sources. Specifically, two markers were used: one in the centre of the object and

another in a minimum external region. These two markers were found by thresholding and

morphological techniques. Hence, a good segmentation between object and background

was computed.

In a different way, Perret et al. [77] recently used connected component trees (CC-trees)

to detect sources in multiband images. CC-trees have become popular models for the

analysis of greyscale images (the authors used an extension for multiband images), since

they provide a hierarchical representation of images that can be used for segmentation

and object detection, among others. The representation of a greyscale image is based

on the thresholding between its minimum and maximum grey levels, thresholding the

image at different levels starting from the minimum value and increasing it until the
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maximum value is reached. There is a relationship of the inclusion between components

at sequential grey levels in the image. The root is the whole image and, at every level of

the tree, the various foreground regions are decomposed in some regions obtained with a

higher threshold. Perret et al. equipped the nodes with some attributes like multispectral

information of the thresholded region, and then pruned the ones considered irrelevant to

finally reconstruct the image. Therefore, the remaining nodes at significant levels were

considered as sources.

Molinari et al. [65] analyzed multidirectional second derivatives to build curvature

models of the image. They aimed at detecting point and compact sources characterized by

fairly spherical shapes. Specifically, he applied the Lagrangian differentiation (derivatives)

in four directions: the horizontal and vertical axis and the two diagonals. This way they

obtained four images with curvature values in these four directions. Those groups of

connected pixels that exceeded a specified level in all the curvature images were considered

as sources. In a similar way, Hancock et al. [33] used a discrete 2D Laplacian kernel to

calculate the curvature along four directions, but they combined the four orientations to

calculate the mean curvature map to identify blended sources.

Friedlander et al. [22] proposed the segmentation of sources in radio images by means

of Latent Dirichlet Allocation. This strategy is based on the idea of a bag of words that

considers an image as a collection of visual words. Given a vocabulary of words, the

frequency distribution of these words in an image is known as a topic, and therefore, an

image is a collection of topics as well. The authors considered that the image vocabulary

was constructed by building the histogram of pixels of the whole image, where each bin

corresponds to a word. Afterwards, the image was divided into subimages and histograms

were built for each. Through Gibbs [22], a sampling of the most latent topics, subsets

of some frequent words in subimages, are located. For instance, two topics that must

commonly occur in images are those that include background and source pixels, and in

this way, sources can be located.

Hollitt and Johnston-Hollitt [40] used the Circle Hough transform to detect circular

extended sources. The Hough transform is used to find and characterize an object with

a particular shape in images. It is based on the principle that convolving a circle profile

with the image, the pixels most likely to be part of a circle are highlighted. If multiple

profiles with circles with radii of different sizes are used as if it were a 3D representation

of a cone, then circular regions of the images with different sizes are unveiled.

Recently, Göring et al. [27] proposed an approach to detect extended sources through
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morphometric analysis. They used Minkowski functionals, which are 2D geometric quan-

tities that can be extracted from the regions found in binarized images: the area, the

perimeter and the Euler characteristic (number of components minus the number of holes).

These features were locally extracted from the image and compared to the features ex-

tracted from a region of the sky with only background. If they differed considerably, it

was more likely to be dealing with a source.

2.3. Results

Since many papers do not focus exclusively on astronomical object detection, such as

those that only make catalogues of new sources found or focus more on computing the

photometry of the sources found, in this section we present only the results of those papers

that have source detection as their main objective. We describe the measures computed in

these works and evaluate their performance, and compare and discuss the results presented,

pointing out the most interesting aspects. Finally, we highlight the techniques that are

more appropriate for each type of astronomical image.

2.3.1. Evaluation measures

In the various papers, results have been evaluated in several ways. Nevertheless, most

are measured to know which of the objects detected are truly objects. This validation is

usually done using published catalogues or data obtained from an astronomical package

used as reference (e.g. SExtractor and SAD). In some cases, the validation of real objects

is done with the assistance of an astronomical expert who considers the detections as either

true or spurious. Moreover, simulated images are widely used since the simulated sources

are placed in known positions, and therefore, it is easy to evaluate the goodness of the

results by checking the detected sources that match the previously simulated ones.

Whether using a reference catalogue or simulated data as ground truth, the performance

of the detection and segmentation methods is evaluated by computing true positives (TP),

false positives (FP), false negatives (FN), and true negatives (TN). TP are detections

that are true sources, FP are detections that are not true sources so they are spurious

detections, FN are true sources that have not been detected because they were missed

by the method, and therefore, considered as background, and TN are background zones

correctly considered as such. Figure 2.3 shows a simple example of these different measures.

Obviously, the objective is to obtain the maximum number of TP and TN, and at the same
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Figure 2.3: Simple graphical example to explain TP, FP, FN, and TN measures. On

the left, some detections provided by a detection method. On the right, the evaluation

measures: in green, TP; in solid red line, FP, and in dotted red line, the FN. Background

regions considered as such are TN.

time, the minimum number of FP and FN. However, in practice, increasing the number of

TP usually increases the number of FP, while reducing the number of FN also reduces the

number of TN. Therefore, an effort must be made to set the parameters of the detection

method to maximize TP and TN and to minimize FP and FN.

Reference catalogues may also be used to compare the performance of the methods

directly. As the catalogues used as references tend to be published in international journals,

they have a reliable list of sources and can therefore be used to extract some measures

between the reference sources and the detected ones. The two catalogues can then be

compared based on the sources that coincide in both or the sources that appear in only

one. If in addition more reference catalogues are available, cross comparisons may be

performed and the goodness of the method can be estimated by computing the number of

missed sources, meaning those not part of one catalogue but appear in the rest).

2.3.2. Analysis of the results

We provide a qualitative comparison of the results obtained from the approaches an-

alyzed. Table 2.3 summarizes the results presented in the articles analyzed. We show

the source catalogues or the source detection packages used as reference (second column),

the type images used and if they have real or simulated (sim) origin (third column), the

number of detected objects (forth column), the measures used to evaluate the results (fifth

column), and the performance (last column). Notice that the forth and sixth columns may
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have more than one value according to the different experiments performed. A qualita-

tive evaluation of these approaches is difficult to carry out because the work was done on

different types of images and with different purposes.

Several works used TP and FP rates to evaluate the performance of their approaches.

For instance, Slezak et al. [84] first estimated by eye the different sources present in a

wide field from Schmidt plates, and applied the detection method with different detection

thresholds expressed in terms of magnitude afterwards. As the magnitude threshold was

decreased, the number of sources detected decreased, but the percentage of well-detected

sources increased. The best results were obtained with a low threshold: from the 363

sources detected, 353 were TP and 10 FP. Starck et al. [87] developed an approach for

ISOCAM, one of the four instruments on board the ISO (Infrared Space Observatory),

mosaics that applied to a simulation of the ISOCAM-Hubble Deep Field North, detecting

45 sources from the 46 generated; in other words, TP = 45 and FN = 1. Andreon et al.

[2] tested several types of neural networks on a field from the Canadian Astronomy Data

Centre. This field has been widely studied, so as a reference they took a specific catalogue

that contained 4819 objects with ∼2400 too faint to be visible. The best tests found 2742

and 3776 sources in the field, among which 2059 and 2310 were TP and 683 and 1466 were

FP, respectively. Moreover, they applied the detection tool from the SExtractor package

to the same field, obtaining a catalogue with 4254 sources, with 2388 TP and 1866 FP.

Although SExtractor detected more sources, a number of sources similar to those found

by the reference catalogue, the absolute number of TP computed by Andreon et al. was

slightly lower than SExtractor’s TP, and, in the FP case, they were substantially lower.

Guglielmetti et al. [30], performed experiments using simulated images with 100 sources

and repeated them adding different levels of noise: 0.1%, 1% and 10% of the counts,

respectively. The results obtained were 64, 41, and 25 TP, and 8, 9, and 0 FP respectively,

showing that by increasing the level of noise, the number of detections became lower,

although all the detections were TP, which illustrates the importance of defining whether

the priority of the detection strategy is to find the maximum number of true sources

regardless of the number of spurious detections, or to guarantee that most of the detections

are true regardless of missing true sources. Therefore, in terms of TP, Guglielmetti et

al. obtained better results than Wavdetect, but not with FP. Carvalho et al. [15] also

used three simulated images, the first two with 16 objects and the last with 8. Their

method was able to detect 67.41%, 56.41%, and 82.95% of the simulated sources (TP),

and obtained 9.6%, 8.62%, and 8.19% of spurious detections (FP). They also estimated

the performance of their method by an error computed by adding the number of FP and
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Table 2.3: Summary of the results presented in the articles analyzed. Slashes (/) separate different experiments with different

parameter settings or different test images, while values in parentheses refer to reference catalogues, in the same order as the second

column. Value “n/a” means “not available”.
Article Reference Image type Detections Measures Performance

Slezak et al. (1988) [84] Manually Optical (real) 363 TP 353

FP 10

Damiani et al. (1997) [17] MPE and WGA catalogues X-ray (real) 453 Missed 10 (75,47)

Starck et al. (1999) [87] Simulated sources Mid-infrared (sim) 46 TP 45

FP 1

Andreon et al. (2000) [2] SExtractor Multiband (real) 2742/3776 TP 2059/2310 (2388)

FP 683/1466 (1866)

Freeman et al. (2002) [21] MPE and WGA catalogues X-ray (real) 148 Coincidences 81 (12,27)

Perret et al. (2008) [76] Manually Multiband (real) 17 Recall (%) 82/87

Guglielmetti et al. (2009) [30] Simulated sources X-ray (sim) 100 TP 64/41/25 (56/37/23)

Wavdetect FP 8/9/0 (4/1/1)

Carvalho et al. (2009) [15] Simulated sources Optical (sim) n/a TP (%) 67.41/56.41/82.95

FP (%) 9.6/8.62/8.19

Broos et al. (2010) [11] Reference catalogue X-ray (real) 100 TP 89

FP 11

Molinari et al. (2011) [65] Simulated sources Far-infrared (sim) 1690 TP (%) 84.5

FP (%) 15.5

Friedlander et al. (2012) [22] Manually Radio (real) n/a Precision 0.83/0.98/1.0/1.0

Duchamp Recall 0.93/0.99/0.99/0.89

Hancock et al. (2012) [33] Simulated sources Radio (sim) n/a Completeness (%) 93.87/99.91/99.87

SAD, Selavy, SExtractor and Sfind Reliability (%) 98.69/100.00/100.00
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FN (42.19%, 52.2%, and 25.15%, respectively). Molinari et al. [65] used far-infrared and

submillietre simulations with 2000 injected sources and achieved 1690 TP, i.e., 84.5% TP

and 15.5% FP.

Other works have used different ways to estimate their results. For instance, Damiani et

al. [17], in order to compare the performance of their method on 7 images from the ROSAT

satellite, used two catalogues called MPE with 286 sources in total and WGA, 389 sources

in total, as reference, and counted the number of sources detected by two catalogues and

missed by the other one. Their method detected 453 sources; 244 coincidences with MPE,

272 coincidences with WGA, and 197 sources present in all three catalogues. They found

that their method missed 10 sources, less than MPE and WGA, which missed 75 and

47 sources respectively. Freeman et al. [21] also used crossed comparisons between the

sources found with their method in a ROSAT image and the ones found by MPE, 100

sources found, and WGA, 127 sources found. They found 148 sources, of which 81 appear

in all three catalogues. The coincidences between their work and MPE were 97, while the

coincidences with WGA were 108 and the coincidences between MPE and WGA were 84.

Broos et al. [11] tested their local peak method in combination with Wavdetect to find

100 sources; 50 with Wavdetect and 50 with their source detection method, on a map from

the Chandra X-ray Observatory. They compared these sources with a reference catalogue

and found 89 coincidences.

Perret et al. [76] had a reference catalogue with nine galaxies detected. To validate

the good performance of their galaxy-finding method, they first tested their method on

two images, and found 17 objects; 6 galaxies from the reference catalogue and 8 new

sources that an expert also considered to be galaxies. It means a recall, percentage of true

detected galaxies, of 82%. When testing the method on 16 images, they found a recall

of 87%. Friedlander et al. [22] also used the recall measure to quantify their method’s

performance in radio images from the Australia Telescope Compact Array (ATCA). They

obtained values of 0.93, 0.99, 0.99 and 0.89 in different regions of the survey, similar

than the reference method Duchamp. They also obtained precision results of 0.83, 0.98,

1.0 and 1.0 in the same regions. In a similar way, Hancock et al. (2012) evaluated their

method’s performance in terms of completeness (recall), fraction of sources in the catalogue

correctly identified, and reliability (precision), fraction of the detections corresponding to

true positives. They performed different experiments in radio interferometric simulations

by changing the detection threshold and obtained completeness percentages of 93.87%,

99.91% and 99.87% and reliability percentages of 98.69%, 100.00% and 100.00%. These

results are on a par with those of other detections packages such as SAD, Selavy, SExtractor
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and Sfind.

In some works, the performance depends on the parameter setting selected. For instance,

Vielva et al. [104] and González-Nuevo et al. [26] repeated several experiments with

different thresholds until they got a rate of spurious sources lower than the 5% of the

total number of sources detected. Moreover, these two approaches worked with images

with several frequency channels, and therefore, a different threshold was needed at each

channel. Vielva et al. used all-sky maps with 10 channels, and, for example, in the three

lower channels, they obtained 27257, 5201, and 4195 sources, respectively. González-Nuevo

et al. also performed this strategy in an image with 3 frequency channels, and for each

channel they applied the first four transforms of the MHWF. For example, for the channel

with the lowest frequency, the sources detected were 543, 639, 583 and 418, respectively.

2.4. Discussion

As we have seen, several strategies are used to deal with the astronomical source de-

tection problem. Most of them coincide in focusing the detection criteria on the intensity

of the image pixels, whether in the image transformation steps in order to enhance the

sources with respect to the background, or in the detection process, choosing those pixels

with an intensity value suggesting they are likely to be part of an object. We have seen

that all the different image transformation and detection steps are used indistinctly in all

types (all frequency bands) of astronomical images, although there are techniques that are

more commonly used in some particular bands. An overview of the different techniques

reviewed with their strengths and weaknesses is presented in Table 2.4.

Regarding astronomical images, two main drawbacks caused by the acquisition process

hinder detection: the variable background and noise. Hence, image transformation steps

have taken a fundamental role in astronomical image processing. Therefore, some image

transformation steps must be applied depending on whether the images have background

variations, noise or both. Background inhomogeneity can be corrected by applying a

smoothing with filters or by removing the background. In many cases, background sub-

traction is preferable to filtering because it is already detecting sources implicitly by dis-

carding those regions that are most probably not sources. Furthermore, although filtering

decreases the impact of background variations and noise, it may blur the sources. In the

case of noise, filtering seems to be the most widely used technique [64, 57, 113, 76].

Multiscale approaches are also gaining in popularity because they allow the background
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Table 2.4: Overview of the different techniques reviewed with their advantages and drawbacks.
Step Description Strengths Weaknesses

Image transformation

Basic image transformations Basic transformation Intuitive, fast and easy Limited

steps such as filtering, Slightly emphasize sources May blur and twinkle the image

profile fitting or Correct background variations Often need more transformation steps

morphological operators Filter noise

Bayesian approaches Methodologies based on Emphasize sources Computational cost

Bayesian inference Good results with source variability Need prior knowledge

Reduce background variability and filter noise

Matched filtering Methods based on filters Rather emphasize sources Need prior knowledge

with the profile of the Reduce background variability and filter noise Different filters required for different sources

objects to find

Multiscale approaches Approaches that Filter noise and delete background (same time) Quite slow

decompose the image Good results with source variability Often need combinations of transforms

in several scales Allow working with different scales

Implicitly performs source detection

Can deblend sources

Detection criterion

Thresholding Pixels above a certain Good results with all sources Difficult to select the optimal threshold

threshold are considered Good results with inhomogeneous background Not suitable for faint sources

as part of the object Good results with significant contrast and high SNR

Local peak search Search pixels that are Good results with point sources Need an additional detection process

maximums in a Good results with noisy images Not suitable for extended sources

neighbourhood

Other methods Other innovative Similar results than the other two methods Still not have enough acceptance

detection methods
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to be removed and noise to be filtered at the same time. Further advantages are shown

in Table 2.4. Since they extract the signal at different scales, they are suitable when

the images have sources with different sizes and complex shapes. Furthermore, being

able to work with multiple scales and therefore multiple images, this technique offers the

possibility of extracting the best from each one, or selecting the best suited scales to

perform the detection. Most multiscale analyses are based on the wavelet transform or its

variants [17, 87, 21, 104, 26].

Analyzing more particularly the use of image transformation methods at different fre-

quency bands, we observe that basic image transformation is commonly applied to optical

and multiband images, which means that this kind of method has a good performance in

the visible band and its close frequencies, although we also find basic techniques combined

with other frequency bands, though to a lesser extent. On the contrary, approaches that

work with optical and multiband images are not based on a multiscale decomposition.

The multiscale strategies are widely applied to radio, infrared and X-ray images. We have

also noticed that matched filtering is used especially in the radio band, while Bayesian

approaches are equally applied to different bands.

Regarding detection criteria, the vast majority of works reviewed used a thresholding

and a local peak search, both of which seem to have similar performances. We have seen

that after any kind of image transformation, both methods can be used interchangeably

and equally for all types of images. However, the choice may depend on some charac-

teristics as can be seen in Table 2.4. A local peak search is not suitable for detecting

extended sources, and is preferable when images are noisy and have point sources since it

is a neighbourhood-based algorithm and easily discards noise pixels, thus avoiding confu-

sion with source pixels. When an image has an non-homogeneous background, the best

choice is to tackle the detection with local thresholding, whereas global thresholding is

preferable when an image has significant contrast between objects and background or a

high SNR. The rest of the approaches that do not use either thresholding or local peak

searches have in common that are relatively recent, most of which having been developed

over the last few years, they are all innovative, and perform object detections on a par

with the two typical methods.

Analyzing the results, we noticed that the best performances in terms of TP were

obtained by Slezak et al. [84] and Starck et al. [87]. Moreover, Damiani et al. [17]

and Freeman et al. [21] also obtained satisfactory results in terms of coincidences with

published catalogues. Some other works obtained good results, but we consider that the
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selected ones are the most significant because they deal with considerable numbers of

sources, in most cases hundreds, and did not use additional resources as astronomical

detection packages. We want to stress, on the one hand, that most of the approaches that

apply any kind of image transformation used multiscale strategies, specifically the wavelet

transform [17, 87, 21]. On the other hand, the detection step used is mostly thresholding

[84, 87, 21].

2.5. Conclusions

This chapter has reviewed automated approaches to source detection in astronomical

images, classifying them according to the type of image transformation and the detection

criterion used. In addition, the results obtained by these approaches have been summarized

and compared, and the most frequently used evaluation measures in this field have been

reviewed. We observed that the automated detection of objects in astronomical images is

a challenging task due to the huge amount of objects in the sky and the limitations of the

acquisition devices.

As illustrated in Table 2.4, the different methods reviewed have advantages and disad-

vantages and using either one or another will depend on the features in the images and

the aim. There are several factors to take into account such as noise, dynamic range,

interferences, variable background, source shapes, etc. Moreover, we have seen that the

different methods have to be properly tuned to provide optimum results.



Chapter 3

Quantitative evaluation of

astronomical source detection

methods

In the previous chapter, an overview of the reported results of the most commonly

used source detection methods was presented. This qualitative evaluation aimed at to

highlighting the strengths and weaknesses of these detection strategies and finding out

which of them is more appropriate under certain circumstances, such as the image type,

the source type to detect, or the noise level. This analysis studied the performance of

the methods based on the original results presented in the papers reviewed. Thus, the

analysis was performed using different sets of images, evaluation measures and detection

aims. The current chapter focuses on an extensive quantitative evaluation of some of the

most representative detection strategies, unifying the evaluation framework. We aim to

carry out a significant comparison of the results of different well-known detection tech-

niques applied to a common set of images, in order to highlight the best strategies for

a defined purpose with data with clearly specified characteristics (optical, infrared, and

radio astronomical images). These types of images have been selected in order to focus our

analysis on different methods specially designed to work on images with Gaussian noise

distributions. Therefore, the performance of these methods may be harmed if images with

instrumental artefacts that cannot be described as Gaussian noise are used. Moreover, we

focus on the detection of compact sources, including faint sources close to the detection

limits and discarding sources that are too extended or too saturated to yield meaningful

results with automatic detection tools.

Concerning the different elements involved in this quantitative evaluation, we first se-

lected a set of images from different bands and frequencies from public surveys. These

49
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images include several properties such as noise level, variable background, or source sizes

and shapes. Second, we selected the most promising and effective methods in the litera-

ture. In this selection, we include some of the most common source extraction software

as well as innovative approaches developed by research groups over the last few years. Fi-

nally, we have proposed a way of quantitatively evaluating the methods based on reference

catalogues used to check the validity of the detections obtained. Statistical analysis allows

us to reach conclusions about the methods’ performances, pointing out their advantages

and drawbacks.

The image sets selected cover only a small portion of the whole wavelength range of

existing wide-field images. Moreover, within a particular range of wavelengths, images can

have very different characteristics like e.g. noise pattern, depth or point-response function,

according to several factors such as the acquisition instruments, the survey strategy or the

field of view. Nevertheless, this study should be seen as a general guide exploring the

performance of different methods in images of a different nature.

3.1. Methods

In this section, we introduce the methods selected for the quantitative comparison.

What led us to choose these methods is the fact that most of them are from relatively

recent work, or software that is well known in the community, which means they are very

much in focus. On the other hand, the aim is to cover the different techniques of source

detection as much as possible. Table 3.1 sums up the type of image transformation and

detection criterion used in each approach. Columns one and two show their names and

bibliographic reference. Columns three and four show the techniques they use according

to the image transformation and detection criterion, whereas column five shows the type

of data the methods were initially developed for. Note that some of the approaches do

not use any type of image transformation. All the methods specify that they can work on

images where the noise is Gaussian. Obviously, there are other source detection methods

meant specially for other noise distributions. For instance, Wavdetect (Freeman et al. [21])

and Guglielmetti et al. [30], both used in high-frequency images (basically X-ray bands)

were designed to work on images that present a Poisson noise distribution. The first one

is based on a wavelet decomposition and a global thresholding, whereas the second uses

a Bayesian approach combined with global thresholding. The final selection of methods

grouped by image transformation is presented below.
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Table 3.1: Methods grouped by image transformation. Super-indices c, f, p, m, and i at the end of the methods’ name stand for the

programming language in which they are implemented (C, Fortran, Perl, Matlab, and Idl respectively). Asterisks (∗) next to the

methods’ name indicate that it is free software available online. Multiband includes ultraviolet, optical and near-infrared bands.
Name Reference Image transformation Detection criterion Aim

Basic

SExtractorc∗ Bertin & Arnouts (1996) [6] σ-clipping Global thresholding Multiband

SAD (AIPS)f∗ Greisen (2003) [29] - Global thresholding Radio

Distilled Sensingm Haupt et al. (2009) [35] Distilled Sensing Global thresholding Multiband

Astrometry.netc∗ Lang et al. (2010)[50] Median filter Global thresholding Multiband

PerretN/A Perret et al. (2010) [77] - Connected components trees Multiband

Matched filtering

Mopexp∗ Makovoz & Marleau (2005) [57] Median filter + Matched filter Global thresholding Infrared

Bayesian

SourceMineri Savage & Oliver (2007) [81] Bayesian filter Local peak search Infrared

Multi-scale

González-Nuevom González-Nuevo et al. (2006) [26] Mexican hat wavelet family Local peak search Cosmic microwave background
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3.1.1. SExtractor

One of the most commonly used astronomical source detection software is SExtractor

(Bertin & Arnouts (1996) [6]). The steps it follows are background estimation, threshold-

ing, deblending to separate two overlapping sources, and detection filtering.

To estimate the background, the image is divided into several subimages the number of

which can be specified by the user, the default subimage size being 64×64. Each image

histogram is iteratively clipped until a 3σ, known as σ-clipping, around the median is

reached. If the mean of the new histogram has significantly changed, the local background

estimator is set to 2.5×median − 1.5×mean. Otherwise, it is just set to the mean. A

background map is obtained by applying a median filter and interpolating between the

subimages. Using this type of background estimation, the faintest sources can be easily

detected.

A thresholding step is then performed by fixing the threshold to a specified number of

times (1.5 by default) the standard deviation of the raw image above the background map

at each pixel. This threshold can also be selected interactively by the user. Additionally,

in regions considered too large, a source deblending step can also be performed by means

of multiple thresholdings. In other words, a set of connected pixels is thresholded again

at different levels (32 by default) between the original threshold and the peak value. A

tree structure is built from the new regions found and, if a minimum intensity contrast

between branches (0.005 by default) is reached, the object is then deblended.

Finally, the resulting list of sources is filtered to discard possible spurious detections.

This is done via the analysis of the mean brightness with regard to the brightness of the

detection pixels.

SExtractor is meant to be used with wide field images and works well with crowded

populations of sources, being applied to all types of astronomical images.

3.1.2. SAD

AIPS (Astronomical Image Processing System - Greisen 2003 [29]) is a widely used

software with many astronomical data analysis features. Among them, a source recognition

and fitting procedure called SAD (Search and Destroy). This astronomical software can

work with different types of astronomical images, although it was initially intended for

radio data.

SAD locates regions of pixels above a certain specified intensity level. For each region,
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several initial estimators, such as the strength, size, or number of pixels, are computed.

Afterwards, a Gaussian function based on least-squares is fit to each region. Finally,

regions that fulfil a set of constraints based on the initial estimators computed or according

to specifications set by the user are reported as sources.

3.1.3. Mopex

Another popular astronomical detection package is Mopex from Makovoz & Marleau

(2005) [57]. First, a background estimation is performed with a method consisting of a

sliding window that computes the pixels’ median. Additionally, the median values can

be corrected by excluding a user-specified number of too-bright pixels. Thus, biased

intensities in pixels close to bright sources are avoided. Using these median values, the

background is subtracted.

Second, a matched filter is applied to the image to reduce background variations and

to enhance the sources. The pattern used is a patch containing the shape of the expected

sources to search for. According to the authors, to achieve a high performance, the pattern

should come from the data itself. As a matter of fact, the source profile is not applied

to the image directly, but combined with a Bayesian probability which involves prior

knowledge: the probability of finding a source pixel and the fact that both point sources

and background follow a Gaussian distribution.

Finally, a global thresholding with the threshold selected interactively is carried out.

Furthermore, other parameters such as the minimum number of connected pixels required

to be a source can be set. Regions that are too large are deblended by raising the threshold

iteratively.

Mopex was initially intended to be used for source detection with a variety of infrared

images, i.e., data with very high or very low intensity backgrounds or data with very noisy

backgrounds. However, it was also satisfactorily validated on other types of images such

as optical [57]. Furthermore, apart from detecting sources, Mopex also builds mosaics

from a set of input frames.

3.1.4. González-Nuevo method

The González-Nuevo et al. (2006) [26] approach, hereafter referred to as GN, is based

on an extension of the wavelet transform (WT) called the Mexican hat wavelet transform

(MHWT) obtained by applying a Laplacian operator to the two-dimensional Gaussian



54 Chapter 3. Quantitative evaluation of astronomical source detection methods

function, and more specifically, a family of MHWT (MHWF), generated by applying

consecutive Laplacian operators to the MHWT. Depending on the type of image, the

different scales in the MHWF amplify the signal (the sources) to some degree. The optimal

scale of the various members of the MHWF is the scale in which the signal-to-noise ratio

(SNR) has been increased, and therefore, where the sources are most easily found.

In the optimal scale, a local peak search is applied to all the pixels that exceed a threshold

that depends on the standard deviation of the image data (a one-step σ-clipping). Note

that in [26], the detection criterion used was different, since they used thresholding instead

of a local peak search. However, the authors have recently suggested the use of a local

peak search. This method was tested on images with a homogeneous white and Gaussian

noise background, specifically cosmic microwave background images, providing satisfactory

results [26].

3.1.5. SourceMiner

Savage & Oliver (2007) [81] developed a method based on Bayesian methodology called

SourceMiner. For each pixel in the image, their Bayesian filter tries to determine the

relative probability of it being either an empty sky pixel or a source pixel.

Hence, they consider two different models: empty sky, described by a single parameter

corresponding to the background level; and the point source, a two-dimensional Gaussian

model, with a known FWHM, with two parameters corresponding to the background level

and the flux of the source. Therefore, the parameters to be estimated are the background

level and the flux. In other words, these are the two likelihoods to be calculated. This is

achieved through several equations involving the intensity of the pixels in a local region

and the values of the modelled Gaussian that lead to a source flux map and a background

map.

By means of these likelihoods and using Bayesian evidence, the maximum a posteriori

values are computed for each of the two models, which leads to a probability map that

indicates where the sources are most likely to be located. Finally, a local peak search is

performed for the pixels above a threshold specified by the user. The authors stated that

this threshold can be seen as the number of times a pixel is more likely to be source than

background.

SourceMiner is meant to be used on infrared images, although the authors stated that

it can be used with all types of images with Gaussian noise distributions [81].
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3.1.6. DS

Haupt et al. (2009) [35] proposed a signal recovery method with applications in astro-

nomical source detection. The strength of their method, called Distilled Sensing hereafter

refered to as DS, lies in the idea of discarding those regions where the signal or sources

in astronomy is unlikely to be present, and instead focuses its detection resources on the

remaining regions.

DS is an iterative process that refines data by using information from earlier iterations.

A certain amount of energy sensing, a predefined value also called budget, is distributed

throughout the steps of the iteration. At the same time, this part of the energy is equally

distributed over the various regions of interest in the image, all the pixels in the first

iteration. A larger value of energy sensing is devoted to the first iterations and is expo-

nentially decreased in later iterations, when there are fewer regions of interest remaining.

The data is refined iteratively by allowing some uncertainty, a value drawn from a normal

distribution, and dividing by the energy sensing value corresponding to that pixel. This

leads to negative values considered noise and are discarded. Afterwards, the regions of

interest are limited to regions with positive values, and the process is repeated. Finally, a

global thresholding step determines the location of the sources. This approach considers

that both the signal and the noise follow a Gaussian distribution, while the signal is sparse

compared to the noise level, which is perfectly met in astronomical images.

3.1.7. Astrometry.net

Within the framework of the Astrometry.net project, Lang et al. (2010) [50] developed a

method to detect compact objects in various types of astronomical images. First, a median

filter is applied to the image to smooth it and reduce the impact of background variations

and noise. Afterwards, the noise level is estimated by randomly selecting a few thousand

pairs of pixels separated by five rows and columns, and calculating the standard deviation

of the differences of intensities for each pair. Next, a thresholding is performed on the

filtered image with a threshold set to eight times the deviation previously calculated. The

maximum peak of each region is located, and the peaks that do not fulfil certain conditions,

considered as probably being noise, are rejected. Finally, a 3×3 window is opened at each

remaining peak, and a Gaussian function is fit to it.
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3.1.8. Perret method

Perret et al. (2010) [77] proposed a method, hereafter referred to as Perret method,

based on connected component trees (CC-trees) to deal with the detection of sources in

multiband images. CC-trees are increasingly used in image analysis since they build a

hierarchical representation of the level sets, sets of pixels above a given threshold, in an

image.

The tree is built by thresholding the image at different thresholds, from the minimum to

the maximum pixel intensity. Each region of connected pixels is considered as a node, the

root standing for the whole image, and the regions obtained at a certain threshold that are

included in another region at the previous threshold generate the children nodes of a father

node. Furthermore, each node has attributes with features from its associated region, such

as its size. These attributes are used to discern whether the nodes are irrelevant or not by

checking which of their values are under a threshold function. The branches with irrelevant

nodes are pruned, and finally, the leaf nodes indicate the sources the algorithm has found.

In the context of this quantitative analysis, the method’s authors used a different way

to establish pixel connection based on hyper-connection, and therefore, hyper-component

trees, to improve the robustness to noise. Hyper-connections basically allow to decompos-

ing images into intersecting components, i.e., a pixel may belong to different regions at

the same time. For a more detailed description see [78].

3.2. Quantitative evaluation

3.2.1. Test datasets

Using a single dataset allows a significant comparison of the various approaches since

they are tested on a level playing field. Moreover, we have chosen different types of

images at different bands and wavelengths in order to evaluate how the methods behave

with images of a different nature. We are aware that each method was developed with a

specific aim, and meant to be used with a particular set of images. However, all the authors

have specified that their method was intended either for general use with different types of

astronomical images, or to be validated with images with Gaussian noise distributions. It is

commonly assumed that lower frequency images, such as radio frequency and submillimetre

images, have a Gaussian noise distribution [91]. For this reason, our final dataset consists

of optical, infrared, and radio images, as can be seen in Table 3.2. Column one shows
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Table 3.2: List of images in the test datasets.
Name Band Wavelength Size (pixels) Pixel scale (′′) FWHM (′′)

SDSSu

Optical

u′ (355 nm)

2048×1489 0.396

1.75

SDSSg g′ (469 nm) 1.62

SDSSr r′ (617 nm) 1.41

SDSSi i′ (748 nm) 1.23

SDSSz z′ (893 nm) 1.41

WISE3.4

Infrared

3.4 µm

1000×1000 1.375

6.08

WISE4.6 4.6 µm 6.84

WISE12 12 µm 7.36

CGPS21
Radio

21 cm
1024×1024 18

60

CGPS74 74 cm 204

their assigned name, column two their band, column three their respective wavelengths,

column four their size, column five their pixel scale, and column six the FWHM of the

point-response function.

Optical dataset

We have selected a set of optical images from the Third Sloan Digital Sky Survey

(SDSS-III, [1]). This set consists of five images acquired with the widely used photometric

system u′g′r′i′z′ [85], where each of these letters corresponds to a specific filter. Table 3.2

shows the wavelengths of these filters. All the images center on the equatorial coordinate

α = 01h40m57.85s and δ = +61◦16′52.46′′ (J2000.0), have a size of 2048×1489 pixels, and

a pixel scale of 0.3887′′.

Figure 3.1 (left, with 98% contrast stretching for visualisation purposes) shows the five

optical images. These images are very crowded, especially in longer wavelengths. Their

background is homogeneous, and has a characteristic pattern of noise most easily seen in

the shorter wavelengths, and especially in the SDSSu image. Furthermore, a diffraction

halo is clearly visible around some of the largest sources.

Infrared dataset

Concerning the infrared band, we have chosen images from the Wide-field Infrared

Survey Explorer (WISE, [19]) at three different wavelengths: 3.4, 4.6 and 12 µm. Even

though WISE surveyed the sky in 22 µm as well, we have decided to discard the image

in this wavelength because it shows very few point and compact sources and a great
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component of extended emission. These images are centred on the equatorial coordinate

α = 01h28m43.74s and δ = +59◦58′52.34′′ (J2000.0), have a size of 1000×1000 pixels, and

a pixel scale of 1.3750′′.

As can be seen in Figure 3.1 (top-right, with 98% contrast stretching for visualisation

purposes), a great number of the point sources disappear in the longer wavelength image

(WISE12), which has a more variable noisy background in which both point and extended

sources are located, thus making this particular image a challenging example.

Radio frequency dataset

In the case of the radio band, we have selected two radio continuum images from the

Canadian Galactic Plane Survey (CGPS, [94]). The CGPS surveyed a large portion of the

Galactic Plane at different infrared, millimetre and radio (both continuum and spectral)

frequencies. The radio continuum frequencies used were 1420 MHz (21 cm) and 408

MHz (74 cm). The radio images we have chosen correspond to the field centred at the

equatorial coordinate α = 01h40m12.36s and δ = +61◦19′10.37′′ (J2000.0), with size 5×5

degrees approximately (1024×1024 pixels).

These radio images show mainly point sources, although a large extended emission is

present in the top-right corner, as can be seen in Figure 3.1 (bottom-right, with 98%

contrast stretching for visualisation purposes). Except for this extended source, the rest

have a relatively small range of size. The CGPS74 image shows fewer sources than the

CGPS21 image. The background is variable, and has a high component of noise. Moreover,

there are some regions in the lower part of the images that contain missing values because

the images are mosaics formed from circle-shaped images. In order to avoid possible

problems because of these missing values, we have discarded the lower rows of the images’

pixels.

3.2.2. Reference catalogues

A method to check whether the detections are true or not is needed in a quantitative

evaluation. In order to do this, we have used public catalogues that cover the part of the

sky shown in the dataset images.

In the particular cases of SDSS and WISE, specific public source catalogues are available

together with the images [1, 19]. Specifically, we have used the SDSS-III primary imaging

catalogue and the WISE All-Sky Source Catalog. They provide the coordinates as well as
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Figure 3.1: The three datasets. On the left, the u, g, r, i, and z optical images (from top

to bottom). On the right, the 3.4, 4.6 and 12 µm infrared images, and the 21 and 74 cm

radio images (from top to bottom).
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photometric information on the sources at the different optical and infrared bands. On the

other hand, a specific catalogue of the CGPS does not exist so we have used alternative

catalogues of similar angular resolution just as [94] did. They cross-correlated the CGPS21

and NVSS (NRAO VLA Sky Survey, [16]) catalogues at the same wavelength. As no prior

calibrated survey was available at 74 cm, the photometric information on the sources in

CGPS74 was registered or matched to the logarithmic interpolation of the photometry of

the previously mentioned NVSS catalogue and the Cambridge 7C(G) [102] catalogue at

approximately 199 cm.

Hence, we have three datasets from well-known astronomical surveys that have also

been featured in well-esteemed publications, which guarantees them as reliable references.

However, the catalogues are usually computed with some detection software, such as that

analyzed in this evaluation, and we cannot be certain that a semi-supervised procedure

was not used to refine the source list. For this reasons, we have analyzed the accuracy of

the catalogues individually with every image, and refined them. For each image, we have

selected only the sources in its respective catalogue that are visible using the appropriate

display system and have discarded others that are clearly imperceptible. In order to do this

for each image, the sources of its respective catalogue were first limited to a photometric

sensitivity of 3σ. Afterwards, each source was manually checked by experts in order to

discard the sources that are imperceptible and add those that may have been missed by

the catalogues. Finally, extended sources, specially the complex structures in WISE12 and

CGPS74, objects with sizes that exceed a determined value and sources in contaminated

areas, those affected by diffraction patterns and bright stars, have been excluded, as can

be seen in Figure 3.2 (with 98% contrast stretching for visualisation purposes). Notice

that no exclusion is applied to WISE3.4 and WISE4.6 images. Furthermore, the sources

of each catalogue have been divided into three groups according to their brightnesses

(faint, mid-intensity and bright). Therefore, the results of the different methods can also

be analyzed in terms of the source intensity. Table 3.3 shows the main properties of

the resulting refined catalogues for each image. Column one indicates the image’s name,

columns two and three the number of sources and the photometric range at a significance

level of 3σ. Column four indicates the cut-off from which sources have been considered too

big (in terms of arseconds of their major axis length) to be in the catalogue. Columns five,

six and seven depict the brightness ranges of the three groups into which the catalogues

have been broken down according to the brightness of the sources (faint, mid-intensity

and bright). Columns eight and nine show the number of sources manually removed and

inserted in the refinement of the catalogues. Note that the names in column one (assigned
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by us) show the survey where the specific images and their bands come from, with the

purpose of differentiating the images used in this evaluation. The brightness ranges are in

the same units used in the catalogue (magnitude in SDSS and WISE and mJy in CGPS)

3.2.3. Evaluation measures

Using the reference catalogues presented in the previous section as ground truth, it

is possible to obtain an estimation of the performance of the methods. As mentioned

in Section 2.3.1, in the astronomical source detection literature, most of the results are

evaluated in order to discern which detections are truly objects. In this regard, we have

decided to follow this widely used practice and base the evaluation of the results on

measures such as true positives (TP), false positives (FP) or false negatives (FN).

Another interesting measure related to those mentioned above is the number of true

sources correctly detected (TSD), clearly a representative measure of the goodness of the

detections. It is obtained by dividing the number of TP by the number of sources expected

to be found, i.e., the number of sources in the reference catalogue. Therefore, we take into

account the number of TP, FP and FN, but mainly the rate of TP (reliability) and TSD

(completeness). The rate of FP and FN are in fact their complementary percentages, and

thus, TP rate + FP rate = 100% and TSD rate + FN rate = 100%. The TP rate is

achieved by dividing the number of TP by the number of detections obtained, whereas

the TSD rate is achieved by dividing the number of TP by the number of sources in

the catalogue. In the astronomical domain these measures are referred to as reliability

and completeness, although some authors use different nomenclature. For instance in the

pattern recognition field, reliability is referred to as precision while completeness is referred

to as recall or sensitivity. To sum up, reliability = TP
TP+FP

and completeness = TP
TP+FN

.

The strategy used to match the detections with the sources in the reference catalogue is

the following: first, the closest detection for each source in the catalogue is found. Second,

associations between sources and detections that are further away than a pre-established

maximum distance are deleted. We assume that the centre of two different sources cannot

be closer than the FWHM of the image, so this is the maximum distance selected. Next,

where detections associated with more than one source from the catalogue are found, only

the closest association is kept, deleting the others. In the same way, if a true source

is associated with more than one detection, only the correspondence with the shortest

distance is saved. Finally, the evaluation measures are computed: TP are the detections

associated with a source, FP are detections without any associated source, while FN are



62 Chapter 3. Quantitative evaluation of astronomical source detection methods

Figure 3.2: The three datasets with some problematic regions excluded. On the left, the

u, g, r, i, and z optical images (from top to bottom). On the right, the 3.4, 4.6 and 12 µm

infrared images, and the 21 and 74 cm radio images (from top to bottom).



3
.2
.

Q
u
a
n
tita

tive
eva

lu
a
tio

n
6
3

Table 3.3: List of the catalogues used for each image.

Image
Number Photometric Size cut-off Faint sources Mid-intensity Bright sources Sources Sources

of sources range (3σ) (′′) range sources range range removed inserted

SDSSu 651 [22.00, 14.57] 13 [22.00, 19.52] [19.52, 17.01] [17.01, 14.57] 71 12

SDSSg 1631 [22.20, 13.60] 13 [22.20, 19.33] [19.33, 16.47] [16.47, 13.60] 105 13

SDSSr 2683 [22.20, 13.42] 10 [22.20, 19.28] [19.28, 16.35] [16.35, 13.42] 216 16

SDSSi 2854 [21.30, 12.69] 9 [21.30, 18.43] [18.43, 15.55] [15.55, 12.69] 226 10

SDSSz 2748 [20.50, 12.36] 9 [20.50, 17.79] [17.79, 15.08] [15.08, 12.36] 197 19

WISE3.4 1701 [14.90, 7.21] 35 [14.90, 12.34] [12.34, 9.78] [9.78, 7.21] - 30

WISE4.6 1426 [14.90, 7.29] 35 [14.90, 12.37] [12.37, 9.81] [9.81, 7.29] - 20

WISE12 249 [12.30, 7.20] 40 [12.30, 10.60] [10.60, 8.87] [8.87, 7.20] 209 116

CGPS21 1235 [2.18, 673.54] 378 [2.18, 14.66] [14.66, 99.44] [14.66, 673.54] 189 30

CGPS74 561 [2.00, 1885] 472 [2.00, 19.83] [19.83, 184.89] [19.83, 1885] 60 164
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sources with no associations with a detection.

Another factor to bear in mind when evaluating various software is the computational

cost. The different codes have been executed using an Intel Core 2 Quad Q9550 processor

(2.83 GHz) with 8 GB of RAM memory.

3.2.4. Experimental results

Each method has been executed with its proper parameter tuning, described in Section

A.1 of Appendix A, and as a result, we have obtained a list of coordinates corresponding

to the detections, (the candidates to be true sources). Using the reference catalogues

and the evaluation measures, we have achieved a set of quantitative results that can be

interpreted and compared. Tables 3.4, 3.5, and 3.6 correspond to the optical, infrared,

and radio datasets respectively, and show the results obtained by each method in terms of

number of detections, TP, FP, FN, TSD, and computational time. The columns indicate

the method, the number and percentage of true positives, the number of false positives

and false negatives, the percentage of true sources detected, and the time consumed. The

measures that best indicate a good or bad performance by the methods are the percentages

of TP and TSD (FP and FN are complementary), as well as the mean of these values for

all the images in each dataset. The TP rate can be seen as the reliability of the detections

whereas the TSD rate can be seen as the detection capacity of the method. Obviously,

the higher these rates, the better the methods’ performances. Notice that from this point

on we only analyze the results in terms of percentages, specially that of TP (reliability)

and TSD (completeness).

Furthermore, the detections have also been analyzed in terms of the brightness of the

sources detected. In order to do this we grouped the sources in the catalogues according

to the photometric values they present. Specifically, we divided the dynamic range of the

sources into three bins corresponding to faint, mid-intensity and bright sources. Thus, we

can discuss the methods’ performance as depending on their ability to identify faint or

bright sources.

Regarding the results of the optical dataset, we noticed that in more than half the cases,

the rate of TSD obtained in SDSSu is substantially smaller than the values of the other

images, probably because in this image the noise pattern is more marked. In general,

all the methods present a relatively high percentage of TP with values close to or even

higher than 90%, such as Astrometry.net with 97.13%, Mopex with 96.13%, GN with
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95.81%, or Perret with 94.38%. On the other hand, the method that presents a low level

of TP is SAD, with 67.74%, although this low percentage is compensated by giving a

good performance in terms of TSD (83.30%). Other methods with similar TSD rates are

SExtractor with 85.84% (the best in terms of TSD) and SourceMiner with 80.38%. The

rest of the methods are able to find more than half the true sources in the images (the

Astrometry.net method presents the lowest TSD rate with 51.94%). The faster methods

are SExtractor and Astrometry.net which take less than a second to obtain detections.

SourceMiner is clearly the slowest method since it obtained detections in approximately

eighteen minutes for the optical images.

Concerning the infrared dataset, there is a greater variability among the results, and

there is not a band that stands out for its high or low rates. Depending on the method, its

TP and TSD percentages are better in some wavelengths than in others. That instability

is due to the fact that more than half the methods detect fewer true sources in WISE12

than in the other bands. Moreover, five methods detected less than a third of the true

sources in this image. This is due to the fact that it presents a structured background

that complicates the separation between sources and background. As a whole, the TP

rates are also inhomogeneous. GN is the method that offers the best mean rate with

96.84%, although it is closely followed by Perret, SourceMiner and DS all with rates above

90%. On the other hand, SExtractor has slightly more than 60%. The dominant note

in TSD is to have values between 50% and 70%. SourceMiner and SExtractor perform

best in terms of TSD (69.57% and 68.82%, respectively). Astrometry.net also presents

acceptable results (63.84%). The methods that needed less time to perform the detections

were SExtractor, DS, and Astrometry.net, all three with less than a second. On the other

hand, the method that required the most time was Mopex, which took up to two or three

minutes to perform its executions.

In the radio dataset, five of the eight methods achieved lower TP rates in CGPS21 than

in CGPS74, whereas in the case of the TSD, rate the reverse is true since, with all the

methods except for Mopex, values are higher in CGPS21 than in CGPS74. SExtractor

is the method with the worst TP rate and the best TDS rate (47.70% and 82.33%). In

contrast, DS is the method with best TP rate and the worst TDS rate (91.20% and

36.15%). These two percentages are more balanced in the rest of the methods. Another

method that stands out positively is Perret with a 93.27% TP rate, and Perret (65.22%),

SourceMiner (65.21%) and GN (61.18%) in terms of TSD. As with the other datasets,

Astrometry.net, SExtractor, and DS take less than a second per execution, while Mopex

can take more than one and a half minutes in the worst case.
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Table 3.4: Results obtained by the various methods with the optical dataset (SDSS). For

each method, each row represents the bands u, g, r, i, and z (in this order), and the last

row is the mean and the standard deviation of the five bands.
Method Detections TP TP (%) FP FN TSD (%) Time (s)

SExtractorc

529 509 96.22 20 142 78.19 0.35

1826 1436 78.64 390 195 88.04 0.43

2565 2387 93.06 178 296 88.97 0.44

3055 2590 84.78 465 264 90.75 0.56

2377 2288 96.26 89 460 83.26 0.35

89.79 ± 7.80 85.84 ± 5.10

SADf

1131 512 45.27 619 139 78.65 14.90

2411 1366 56.66 1045 265 83.75 6.30

3293 2278 69.18 1015 405 84.90 15.20

3038 2474 81.44 564 380 86.69 13.10

2633 2268 86.14 365 480 82.53 6.40

67.74 ± 17.00 83.30 ± 3.02

Mopexp

604 504 83.44 100 147 77.42 359.80

1227 1186 96.66 41 445 72.72 271.50

1692 1624 95.98 68 1059 60.53 251.00

2178 2102 96.51 76 752 73.65 258.50

2296 2190 95.38 106 558 79.69 317.50

96.13 ± 0.58 72.80 ± 7.42

GNm

487 454 93.22 33 197 69.74 132.64

824 801 97.21 23 830 49.11 128.36

1143 1113 97.38 30 1570 41.48 128.60

1838 1735 94.40 103 1119 60.79 131.53

1487 1440 96.84 47 1308 52.40 132.83

95.81 ± 1.88 54.71 ± 10.89

SourceMineri

561 536 95.54 25 115 82.33 1066.00

1259 1220 96.90 39 411 74.80 1064.00

1868 1798 96.25 70 885 67.01 1049.00

2944 2569 87.26 375 285 90.01 1067.00

2604 2411 92.59 193 337 87.74 1055.00

93.71 ± 3.96 80.38 ± 9.49

Astrometry.netc

303 289 95.38 14 362 44.39 0.57

1038 1005 96.82 33 626 61.62 0.83

1442 1413 97.99 29 1270 52.66 0.64

1717 1672 97.38 45 1182 58.58 0.77

1189 1166 98.07 23 1582 42.43 0.60

97.13 ± 1.10 51.94 ± 8.45

DSm

269 242 89.96 27 409 37.17 1.16

998 875 87.68 123 756 53.65 1.30

1642 1496 91.11 146 1187 55.76 1.34

2180 1988 91.19 192 866 69.66 1.54

2062 1879 91.13 183 869 68.38 1.37

90.21 ± 1.51 56.92 ± 13.19

PerretN/A

397 370 93.20 27 281 56.84 -

1573 1424 90.53 149 207 87.31 -

2278 2174 95.43 104 509 81.03 -

1851 1772 95.73 79 1082 62.09 -

1803 1749 97.00 54 999 63.65 -

94.38 ± 2.55 70.18 ± 13.20
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Table 3.5: Results obtained by the various methods with the infrared dataset (WISE). For

each method, each row represents the bands of 3.4, 4.6, and 12 µm (in this order), and

the last row is the mean and the standard deviation of the four bands.
Method Detections TP TP (%) FP FN TSD (%) Time (s)

SExtractorc

1739 1169 67.22 570 532 68.72 0.41

1448 979 67.61 469 447 68.65 0.37

368 172 46.74 196 77 69.08 0.21

60.52 ± 11.94 68.82 ± 0.23

SADf

1625 1435 88.31 190 266 84.36 4.80

1326 1072 80.84 254 354 75.18 4.40

49 49 100.00 0 200 19.68 0.50

89.72 ± 9.66 59.74 ± 35.00

Mopexp

526 520 98.86 6 1181 30.57 89.10

314 304 96.82 10 1122 21.32 87.00

384 98 25.52 352 151 39.36 92.60

73.73 ± 41.76 30.42 ± 9.02

GNm

1420 1349 95.00 71 352 79.31 42.18

1117 1067 95.52 50 359 74.82 42.69

60 60 100.00 0 189 24.10 42.55

96.84 ± 2.75 59.41 ± 30.66

SourceMineri

1663 1494 89.84 169 207 87.83 18.00

1485 1260 84.85 225 166 88.36 17.00

81 81 100.00 0 168 32.53 17.00

91.56 ± 7.72 69.57 ± 32.08

Astrometry.netc

1329 1172 88.19 157 529 68.90 0.64

1133 964 85.08 169 462 67.60 0.60

262 137 52.29 125 112 55.02 0.77

75.19 ± 19.89 63.84 ± 7.67

DSm

1160 1022 88.10 138 679 60.08 0.50

742 665 89.62 77 761 46.63 0.57

79 75 94.94 4 174 30.12 0.40

90.89 ± 3.59 45.61 ± 15.01

PerretN/A

448 445 99.33 3 1256 26.16 -

392 389 99.23 3 1037 27.28 -

227 175 77.09 52 74 70.28 -

91.89 ± 12.81 41.24 ± 25.16
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Table 3.6: Results obtained by the various methods with the radio dataset (CGPS). For

each method, each row represents the bands of 21 and 74 cm (in this order), and the last

row is the mean and the standard deviation of the two bands.
Method Detections TP TP (%) FP FN TSD (%) Time (s)

SExtractorc
2907 1076 37.01 1831 159 87.13 0.33

745 435 58.40 310 126 77.54 0.37

47.70 ± 15.11 82.33 ± 6.78

SADf

956 825 86.30 131 410 66.80 4.90

254 227 89.37 27 334 40.46 12.10

87.83 ± 2.17 53.63 ± 18.62

Mopexp
1058 496 46.88 562 739 40.16 88.90

307 260 84.69 47 301 46.35 89.80

65.79 ± 26.74 43.25 ± 4.37

GNm

1558 1051 67.46 507 184 85.10 76.68

219 209 95.43 10 352 37.25 76.34

81.45 ± 19.78 61.18 ± 33.83

SourceMineri
1015 882 86.90 133 353 71.42 21.00

408 331 81.13 77 230 59.00 22.00

84.01 ± 4.08 65.21 ± 8.78

Astrometry.netc
1126 810 71.94 316 425 65.59 0.33

372 286 76.88 86 275 50.98 0.19

74.41 ± 3.50 58.28 ± 10.33

DSm

619 567 91.60 52 668 45.91 0.45

163 148 90.80 15 413 26.38 0.37

91.20 ± 0.57 36.15 ± 13.81

PerretN/A

930 869 93.44 61 366 70.36 -

362 337 93.09 25 224 60.07 -

93.27 ± 0.25 65.22 ± 7.28
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3.3. Discussion

As we have seen, different approaches present different results. Nevertheless, a clear

pattern emerges: the TP and TSD rates appear anti-correlated. In other words, the

apparent certainty that the detections performed by one particular method are true sources

implies that it misses a lot of other true sources, and in turn, the detection of a great many

of true sources implies that many spurious detections are considered as true sources. For

instance, in optical images, Astrometry.net achieves 97.13% TP and 51.94% TSD, while

SAD achieves 67.74% TP and 83.30% TSD. The same happens in infrared images, with

Perret (91.89% TP and 41.24% TSD) and SExtractor (60.52% TP and 68.82% TSD), and

in radio images, with DS (91.20% TP and 36.15% TSD) and SExtractor (47.70% TP and

82.33% TSD). A point that can also be made in light of these results is that there are

methods that can achieve more than 90% and even almost 100% TP, whereas in the case

of TSD this is not possible as it achieves only around 80% for optical and radio images,

and almost 70% for infrared images as its best results. Thus, pointing out the difficulty of

detecting an important number of true astronomical sources. According to the results, we

consider that, in all types of images, good TP rates are those that are close to or above

90%. On the other hand, good TSD rates are those above 70% in optical images and close

to or above 60% in infrared and radio images.

3.3.1. Performance of the detection methods

Figures 3.3, 3.4, 3.5 and 3.6 summarize the results obtained by the different methods

in the three datasets. In the first figure, a global overview of the results is depicted while

in the other three the TSD percentages are broken down into three groups according to

the source brightness (faint, mid-intensity and bright). We can see that SExtractor is

accurate when detecting in optical images (88.79% TP), and imprecise when detecting

at infrared and radio wavelengths (60.52% and 47.70% TP, respectively). On the other

hand, it is able to detect more than two-thirds of the infrared sources (68.82% TSD) and

remarkably 85.84% and 82.33% of the optical and radio sources, respectively. In fact, this

is the method with the best TSD percentages in the optical and radio bands, and one of

the best in the infrared band. Therefore, SExtractor is a method that guarantees a high

level of completeness of detections. It is also able to detect a very good number of faint

and mid-intensity radio sources. Furthermore, it does not need any parameters to perform

detections. For the images selected, it is also able to provide a list of detections almost

instantaneously, factors that make it very useful to the astronomical community.
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SAD detects quite accurately in infrared and radio images (with 89.72% and 87.83% TP,

respectively) but fails in the optical band (67.74% TP). The TP rate in the optical band

can be increased by choosing different thresholds, although at the expense of achieving

lower TSD rates. In turn, it is a very good method to detect true optical sources, reaching

83.30%. Additionally, acceptable TSD rates close to 60% are obtained in the infrared

and radio datasets, demonstrating the validity of Gaussian fitting when detecting compact

sources at the specific frequencies of the three datasets. It is a satisfactory method to detect

faint optical and infrared sources, except for WISE12 due to the background variability.

SAD executes its detection strategy in a few seconds, but apart from the optical dataset,

requires appropriate tuning to get acceptable results. It is likely that additional, more

complex parameters that have not been tested in this work could improve the results

slightly.

Mopex is a method that provides very reliable detections with the optical dataset

(96.13% TP rate) but much lower in the other two datasets (73.73% and 65.79% TP

rate). In addition, it is not particularly good at detecting true sources, with 72.80% TSD

in optical images, 30.42% TSD in infrared images, and 43.25% TSD in radio images. These

low rates can be ascribed to the low number of faint infrared and radio sources identified.

This is most probably due to the fact that among its parameters it requires a sample

of the sources to be found in the image, and the images selected present sources with

divergent characteristics such as shape, size, brightness, or the surrounding background.

For this reason, we consider that this method is more appropriate when images present

a low dynamic range. As happens with SAD, there are other parameters that may vary

the results slightly. Furthermore, it takes between half a minute and over six minutes to

finish its execution, which is significantly slower than other methods.

González-Nuevo (GN) presents reliable detections, especially in optical and infrared

bands with 95.81% and 96.84% TP respectively, and to a lesser degree in radio images

(81.45% TP). Furthermore, it is able to detect a satisfactory number of true sources in radio

(61.18%) and infrared images (59.41%). On the other hand, 54.71% of true optical sources

detected is representatively lower than the best methods in these bands. A substantial

number of sources close to the detection limits is missed due to the fact that multiscale

techniques are suitable when images present complex sources and backgrounds such as the

ones that can be present in infrared and radio images. In the case of the optical dataset,

the signal gain is probably not as important as in the other two datasets. A point in

favour of GN is that it only needs one empirical parameter to obtain detections. On the

contrary, its computational cost is proportional to the size of the image, and it takes up
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to more than two minutes.

SourceMiner is one of the most accurate methods when detecting optical (93.71% TP)

and infrared (91.56% TP) sources, but its reliability decreases slightly with radio images

(84.01% TP). In turn, it is particularly good at identifying true sources at all the wave-

lengths analyzed, with remarkable values of 80.38% in the optical bands, 69.57% in the

infrared bands and 65.21% in the radio bands. This happens because of the fact that,

unlike most of the other methods, it performs specially well with fainter sources. All

these results show that SourceMiner is able to generate accurate models for both sky and

sources. Although several spurious detections have been found, is able to identify a good

number of true sources. As with GN, it only needs an empirical parameter to obtain

detections. Its main drawback is the computational cost, which is a function of the size

of the image, and in the case of the optical dataset can even take more than eighteen

minutes.

Astrometry.net offers high accuracy in detecting optical (a TP rate of 97.13%), but

not such good rates with infrared and radio sources (approximately two-thirds of TP).

However, it is a good method to find a large number of true infrared and radio sources

(63.84% and 58.28% TSD). As a matter of fact, it is one of the few methods that is able to

detect faint sources in WISE12 and CGPS74. However, it provides a weaker performance

when detecting optical sources (51.94% TSD), mainly because it misses several bright

and mid-intensity sources. The very short time needed to provide the detections and

the fact that it can work without any parameter tuning are two advantages that make

Astrometry.net a really handy method.

In terms of TP, Distilled Sensing (DS) offers a very good performance with all the

datasets with percentages above 90%, proving that it is a method that guarantees high

reliability on its detections. However, in terms of TSD, lower rates than the best methods

are obtained, specially in the radio images. In general, it provides similar FN rates in

sources of different brightness. As it depends on one parameter that has to be set empir-

ically, DS needs to be carefully tuned to achieve the best results. On the other hand, one

of its main advantages is its great execution speed.

Perret is another very precise method since its TP rates clearly exceed 90%. In addition,

it also presents good rates of TSD in two of the three datasets. In this case, in optical and

radio bands 70.18% and 65.22% TSD are obtained, having lower results in the infrared

dataset with 41.24%. In general, this method is able to identify correctly very good

percentages of brighter sources. Furthermore, it is the method that best deals with faint
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sources in WISE12, identifying more than half. As the Perret code was executed directly

by its authors, we do not have information about its parameter setting or computational

cost.

In this particular quantitative evaluation, the different methods provide individual de-

tection lists for each single image. However, other existing tools are able to work with

a set of images at different wavelengths simultaneously, thus providing multiwavelength

catalogues. In this way, source deblending, for example, can be solved by checking source

counterparts in higher-frequency images. A recent multiscale method that follows this

procedure is Getsources (Men’shchikov et al. (2012) [63]) designed primarily for use in

far-infrared images but can also be applied to other types of astronomical images. In

short, each wavelength is first decomposed into several scales by means of filtering with

circular Gaussian profiles and subtracting them from one another. Afterwards, noise and

background contributions are subtracted at each scale by means of a σ-clipping threshold-

ing. Finally, detections are identified by shape and position, tracking from small to large

scales. When testing Getsources with our three datasets, it provided values of 91.80% TP

and 86.44% TSD rates, 98.91% TP and 68.33% TSD rates, and 99.29% TP and 56.52%

TSD rates for optical, infrared, and radio datasets, respectively. As can be seen with these

results, this method is able to obtain very high percentages of TP as well as remarkable

rates of TSD, proving that this different way of obtaining detection lists in aggregate form

is a perfectly valid alternative to the tested methods.

3.3.2. Image datasets

The difficulty of having good results in both TP and TSD becomes evident. Conse-

quently, the importance of giving more priority to one of the two measures arises, and

selecting a detection method according to that priority. Generally, the methods that pro-

vide better TP rates are the DS and Perret approaches, whereas the methods with higher

rates of TSD are SourceMiner and especially SExtractor. As seen in the previous section,

all the tools present a poor performance when dealing with faint sources, specially in im-

ages with higher wavelengths in each dataset. The methods with a nice balance between

the two measures are SExtractor, SAD, and SourceMiner, which makes them the best

methods when dealing with different types of images. An overview of the various meth-

ods’ performances is presented in Table 3.7. It should be born in mind that the resultant

conclusions have been drawn from particular types of images with specific characteris-

tics, and cannot entirely represent the performance of the methods in the whole range of



3.3. Discussion 73

Figure 3.3: Graphical representation of the TP and TSD of the different methods in the

three different datasets.
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Figure 3.4: Graphical representation of the percentages of TSD in the optical dataset

according to the brightness of the sources. From top to bottom, the results obtained with

the different methods with the images SDSSu, SDSSg, SDSSr, SDSSi and SDSSz.
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Figure 3.5: Graphical representation of the percentages of TSD in the infrared dataset

according to the brightness of the sources. From top to bottom, the results obtained with

the different methods with the images WISE3.4, WISE4.6 and WISE12.
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Figure 3.6: Graphical representation of the percentages of TSD in the radio dataset ac-

cording to the brightness of the sources. From top to bottom, the results obtained with

the different methods with the images CGPS21 and CGPS74.
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optical, infrared and radio astronomical images.

In optical images, all the methods except for SAD provide a good percentage of TP, but

in terms of TSD, SExtractor is the best, closely followed by SAD and SourceMiner. The

methods with more balanced results and therefore recommended for use in optical images

are SExtractor and SourceMiner.

In the case of infrared images, very high values in TP rates are difficult to obtain except

with GN. The same happens with the TSD rate, where only SourceMiner, SExtractor and

Astrometry.net achieve high percentages. In general, the methods with the most interest-

ing results in infrared images are SExtractor and Astrometry.net. Most of the methods are

able to find almost all of the brighter sources, however, they make a lot of mistakes with

faint sources, specially in WISE12 where the complexity of the background complicates

their detection. The best method to identify faint infrared sources is SourceMiner.

Only two methods achieve high rates of TP in the radio dataset; DS and Perret. How-

ever, only Perret is able to detect a great number of the sources in the reference catalogues.

SourceMiner, GN, and specially SExtractor are the other methods with the best TSD rates.

The most interesting methods with radio images are GN, SourceMiner and Perret. Gen-

erally, most of the methods detect good percentages of sources of different brightness in

CGPS21. However, in CGPS74, an important number of FN is achieved by most of the

methods when detecting fainter sources. Hence, the methods that best deal with fainter

optical sources are Astrometry.net, SourceMiner and Perret.

3.3.3. Detection strategy

We have also taken into account the assumption that the various approaches should

operate differently with the three different datasets. For instance, SExtractor, DS and

Astrometry.net are methods based on simple image transformations. This group covers

a wide range of techniques, and therefore, presents divergent results with all types of

images. This inhomogeneity is due to the fact that they are based on simple procedures and

therefore, are not the most significant step in the detection process. Other complementary

image transformation steps or even the detection criterion may be more representative of

the detection performance. These techniques have provided high TP rates in the optical

and significantly lower percentages in the infrared and radio datasets. They also offer

admissible TSD rates with infrared and radio images. Hence, we claim that simple image

transformation is a good option when dealing with optical images, and are useful in some

situations when the aim is to detect sources in infrared and radio images because they can
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Table 3.7: Overview of the different methods reviewed with their main advantages and drawbacks in each dataset.
Method Optical dataset Infrared dataset Radio dataset

Strengths Weaknesses Strengths Weaknesses Strengths Weaknesses

SExtractor Acceptable TP rate - High TSD rate Low TP rate High TSD rate Low TP rate

High TSD rate Fully automatic Fully automatic

Fully automatic Very low computational cost Very low computational cost

Very low computational cost

SAD High TSD rate Low TP rate Acceptable TP rate - Acceptable TP rate -

Fully automatic Acceptable TSD rate Acceptable TSD rate

Low computational cost Simple tuning Simple tuning

Low computational cost Low computational cost

Mopex Very high TP rate High computational cost Acceptable TP rate Low TSD Simple tuning Low TP rate

Acceptable TSD rate Simple tuning High computational cost Low TSD rate

Simple tuning High computational cost

GN Very high TP rate Low TSD rate Very high TP rate High computational cost Acceptable TP rate High computational cost

Simple tuning High computational cost Acceptable TSD rate High TSD rate

Simple tuning Simple tuning

SourceMiner High TP rate High computational cost High TP rate High computational cost Acceptable TP rate High computational cost

High TSD rate High TSD rate High TSD rate

Simple tuning Simple tuning Simple tuning

Astrometry.net Very high TP rate Low TSD rate Acceptable TP rate - Acceptable TP rate -

Fully automatic High TSD rate Acceptable TSD rate

Very low computational cost Fully automatic Fully automatic

Very low computational cost Very low computational cost

DS High TP rate Low TSD rate High TP rate Low TSD rate High TP rate Low TSD rate

Very low computational cost Difficult tuning Very low computational cost Difficult tuning Very low computational cost Difficult tuning

Perret High TP rate - High TP rate Low TSD rate High TP rate -

Acceptable TSD rate High TSD rate
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deal with noisy inhomogeneous backgrounds.

Bayesian approaches are represented by SourceMiner. This is a balanced method in

all types of images, which makes it a good choice under any circumstances. Therefore,

Bayesian approaches are useful when there is not a clear priority to maximize the TP or

the TSD, and it ensures acceptable percentages in both rates.

In the case of matched filtering (MF), represented by Mopex, this technique offers ac-

ceptable detection reliability. However, from the point of view of the true sources identified,

its performance decreases noticeably in all types of images. For this reason, we consider

that while MF provides few detections in general, most of them have been correctly de-

tected as true sources. Furthermore, this technique is more appropriate when the sources

are similar in size and shape and have a low dynamic range. Contrary to what was stated

in Section 2.4, MF does not provide better results in the radio dataset than in the other

two.

Finally, GN is a multiscale method based on the wavelet transform . From the results of

this method , we can conclude that multiscale strategies perform very well in terms of TP.

Furthermore, it provides an acceptable TSD rate in all datasets. In general, the results

are good enough to take multiscale approaches into account in any type of astronomical

image, even in optical wavelengths, in spite of the fact that in Section 2.4 this strategy

was not usually employed in this band.

Concerning the detection criterion, thresholding and the local peak search are the two

methods most used by far, and they are usually interchangeable, specially with point

sources. For these reasons, this step in the whole source detection process is sometimes

less meaningful than the image transformation. Nevertheless, from the results we conclude

that the methods based on a local peak search (GN and SourceMiner) are suitable for

infrared and radio bands since their TP and TSD rates are high enough, while in optical

images they present low values in one or the other of the two.

Finally, representing thresholding, we find SExtractor, SAD, Mopex, Astrometry.net,

and DS. In this case, the influence of the image transformation becomes apparent since

the results of these techniques are different even though they share a generally good

performance in optical images. This is due to the high contrast between most of the

sources and the background, and a poor rate of TSD in infrared images.
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3.4. Conclusions

In this chapter, we have presented a quantitative evaluation of eight of the most promis-

ing astronomical source detection methods developed in recent years. Unlike Chapter 2,

where the comparison of the approaches was based mainly on a qualitative evaluation,

this chapter outlines a new comparison based on quantitative measures obtained from the

application of the different methods to a single dataset consisting of optical, infrared, and

radio frequency images.

The quantitative comparisons have allowed us to identify the best methods for each

image type. In most of the cases evaluated, the various methods have behaved according

to their reported results in the literature. In addition, advantages and drawbacks of the

different methods and techniques have been discussed (see Table 3.7 for a summary).

In both this quantitative evaluation and in the state-of-the-art review presented in the

previous chapter, we have noticed that multiscale techniques, mostly based on the wavelet

transform, are the most commonly-used to transform images. This is due to their ability to

remove the background, filter the noise and highlight the sources. Furthermore, they have

proven to be very reliable in the detections they provide in all bands and fairly complete,

specially in lower frequencies such as infrared and radio. Hence, they will definitely be

taken into account in our further detection proposals.

Other types of image transformation steps have also provided good results in some

cases. Matched filtering and Bayesian approaches are able to achieve good percentages

of TSD and specially TP in most images. By means of some prior knowledge, they are

able to better characterize both sources and background but at the expense of having a

high computational cost. On the contrary, basic image transformation steps present a

very low computational cost and a fairly good performance. In the case of the widely-used

algorithms SExtractor and SAD, apart from these useful techniques, they use optimized

implementations in C programming language which makes them really fast and the best

choice to be used as reference in the comparison of our new proposals. Moreover, is of

special interest the DS method because, even when implemented in a inefficient platform

like Matlab, it presents a very low computational cost. This, together with the fact that

it is a reliable method, makes it very interesting to exploit.

Finally, referring to the detection criterion, we have already mentioned that thresholding

and a local peak search can be used interchangeably. However, as can be seen in Table

3.1, more than half of the methods use threshnolding. To be coherent with this fact, we
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will use this technique as well in our proposals, both with global and local thresholds.
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Chapter 4

Faint source detection in aperture

synthesis radio images

In the qualitative and quantitative evaluations presented in the previous chapters a

myriad of techniques were presented, each with its respective strengths and weaknesses.

From these conclusions, we have decided to develop different strategies that take advantage

of some of the most outstanding and innovative techniques of the state of the art. In this

chapter we explore the performance of three novel approaches based on very different

strategies that are able to detect sources with intensities similar to noise levels. The first

two algorithms are based on unsupervised strategies: the first uses a multiscale transform,

while the second a pixel structural behaviour. The last algorithm is based on a supervised

strategy that includes local feature extraction and a classification process.

In order to evaluate the performance of these three methods, we have used synthetic and

real radio interferometric images. They often contain a large population of faint compact

sources with intensity values close to the detection limit that are easily missed by detection

methods. The real dataset consists of deep radio maps obtained with the Giant Metrewave

Radio Telescope (GMRT) and the Australia Telescope Compact Array (ATCA). These

types of images serve as an excellent benchmark for automated detection methods because

they show a significant amount of detail due to their high spatial dynamic range, have a

large population of compact sources and extended diffuse emission, and present unwanted

interferometric patterns, caused mainly by deconvolution artefacts and grating rings from

strong sources and possibly some correlator calibration problems. Furthermore, we include

in our study a comparison with the well-known state of the art methods SExtractor and

SAD (within AIPS).

83
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4.1. Multiresolution analysis on thresholded images

The first method incorporates the concept of multiscale analysis, which is generally

applied when the image to segment shows objects with very different sizes or patterns

organized in a hierarchical structure [58, 59]. In these cases, there is not an optimal

resolution for analyzing the image, and algorithms to process it at different resolutions

are needed. Especially suited for this purpose are algorithms that decompose the image

through a wavelet representation, using discrete versions of the wavelet transform [83, 91,

88].

Radio interferometric images often display hierarchically organized structures of objects

with irregular patterns that can be represented at different spatial frequencies. Therefore,

the analysis of such images with the purpose of detecting and classifying emitting sources

is a clear example where multiscale methods can be conveniently applied [9].

Within this approach, wavelet decomposition is used as a tool to detect and separate

objects of astronomical interest that can be represented at different spatial frequencies.

We avoid ringing artefacts created around singularities, strong sources in the case of our

radio images, by previously using thresholding techniques to remove brighter objects that

are then replaced by local noise.

Multiscale vision models [9] decompose an image in several scales or wavelet planes and

independently segment each of the images representing a scale. Low index scales highlight

high spatial frequencies, whereas high index scales highlight low spatial frequencies. The

mathematical decomposition of an image in a set of wavelet planes requires that, at each

scale, the wavelet coefficient mean must be zero. Due to this fact, to compensate the high-

lighting of the bright sources in a given scale, negative values appear in their surroundings

[91]. These negative values create artifacts that complicate the analysis.

Since astronomical sources are mostly isotropic, e.g. stars, clusters or galaxies, as-

tronomers generally choose to use a wavelet transform that does not privilege any orienta-

tion in the image and also maintains the sampling at each scale [91]. For this reason, one

of the widely used transforms in this field is the stationary wavelet transform (SWT) also

called “à trous” algorithm. The SWT decomposes an image in several scales or wavelet

planes and a smoothed array using a smoothing filter, associated with the wavelet scaling

function, in the following way:
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I(i, j) = FN (i, j) +
N
∑

n=1

Wn(i, j), (4.1)

where FN (i, j) and Wn(i, j) are calculated through the following iterative process:

F0(i, j) = I(i, j)

Fn(i, j) = 〈Hn, Fn−1〉 (i, j)

Wn(i, j) = Fn−1(i, j) − Fn(i, j)

(4.2)

with n = 1, ..., N and

〈Hn, Fn−1〉 (i, j) ≡
∑

k,l

h(k, l)Fn−1(i+ 2n−1k, j + 2n−1l), (4.3)

where the set W1, W2, ..., WN , FN represents the wavelet transform of the data. Following

Starck et al. [91] and references therein, we will use the B3-spline function as the scaling

function, which is very similar to a Gaussian one. In this way, the mask associated with

the filter h takes the following form:

h ≡
1
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Figure 4.1 shows the image wavelet decomposition in 6 scales plus the smoothed array

using the “à trous” algorithm and the filter h.

4.1.1. Algorithm steps

Methods based on thresholding are suitable for the detection of bright sources but

easily miss the fainter ones. In contrast, methods based on wavelet decomposition are not

suitable when bright sources (singularities) are present due to the polluting artefacts they

create in the decomposition, but are able to highlight faint sources. Hence, we propose a

hybrid method where both techniques are used at different stages: in a first step, bright

sources are detected using a traditional local thresholding and a residual image that does

not contain them is produced. In this way we prevent the further creation of polluting

artifacts. In a second step, a wavelet decomposition is applied to the residual image
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Figure 4.1: Decomposition of an image in 6 scales using the “à trous” algorithm and the

filter h with contrast stretching applied for visualization purposes.

in order to detect faint compact objects. Since our aim is the detection of point and

compact sources discarding the diffuse emission, we can select objects coming from the

segmentation of the first three scales. Since the method is mainly based on wavelets and

local thresholding, we call it the WALT algorithm. The steps for the WALT algorithm

(shown schematically in Figure 4.2) are the following:

1. We use Gaussian fitting of the pixel intensity distribution in subsamples of the

original image to calculate local noise and extract bright sources from the local

threshold derived.

2. Two images are created: a “residual image” where bright sources have been substi-

tuted with local noise, and a binarized image with the bright sources, with pixels

labelled with ones where the bright sources are located.

3. A wavelet decomposition is applied to the “residual image” using the “à trous”

algorithm and a B3-spline filtering function.

4. A local thresholding is applied to the first three scales.

5. A binary image from the addition of the binarized first three scales and the bright

sources is created.
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Figure 4.2: Graphical representation of the first algorithm (WALT): local thresholding

based on a noise estimation is used to detect bright sources in the raw image and faint

sources in the first three wavelet scales.
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6. Finally, from this last image, connected zones and their centroids are calculated to

produce the source positions catalogue.

Notice that only the first three wavelet scales are used because these scales are where the

point sources become most easily detected. In other cases, such as when there is interest

in highlighting extended structures, the lower wavelet scales are more suitable.

In this algorithm a Gaussian fit to the histogram of intensities of the different subimages

is carried out. The threshold of each subimage is set by selecting the intensity value where

the Gaussian function has a specified height, actually, a fraction of the Gaussian peak

height, and multiplying it by a confidence level. Therefore, three parameters need to

be tuned: the number of subimages into which the raw image is divided, and the two

parameters that model the Gaussian fitting corresponding to the fraction of the height of

the Gaussian (hereafter g), and the arbitrary factor which determines the noise confidence

level (hereafter k). Details on how to fix these parameters can be found in Section A.2 of

Appendix A.

4.2. Slope stability of a radial contrast function

The fact that many sources have intensities very similar to the noise level complicates

their detection and forces the use of very low thresholds. For this reason, our second

proposed method includes the innovative idea of using the structural behaviour of the

neighbourhood around each pixel studied. This structural analysis is performed by defining

an intensity radial contrast function and analyzing the behaviour of its slope. Thus, all

the sources can be better modelled, and lower thresholdings can be used, which leads to

an increase in the rate of faint detections.

The defined radial contrast function relates the intensity of a pixel to the mean intensity

of all its neighbours within a given radius. Through several different radial distances, it

is possible to make a structural analysis of the pixel neighbourhoods, those with the most

coherent patterns being the most likely to be sources. In other words, using the radial

contrast function, we are able to locate sets of connected pixels with a central pixel that

is brighter than their adjoining neighbours and, at the same time, these neighbours are

brighter than their corresponding neighbours and so on until the last radius is analyzed.
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Figure 4.3: Graphical representation of the second algorithm (RCF). On the left, synthetic

image of a source with 6 circles connecting neighbours at equal radial distances. On the

right, behaviour of RcF versus radial distance for two pixels belonging to real sources

(open circles and squares) and a pixel belonging to a noise region (black circles).

4.2.1. Definition of the radial contrast function

For every pixel (i, j) in a studied region, we define a radial contrast function as:

RcF (R) =

(

I(i, j) −

∑

I(k, l)(R)

Nneigh(R)

)

/I(i, j), (4.5)

whereR denotes the radial distance from the neighbours (in pixels), (k, l) are the neighbour

pixels within a radius R, and therefore k takes values from i - R to i + R and l takes

values from j - R to j + R, and Nneigh(R) is the number of neighbours within distance R.

As illustrated in the synthetic image shown in Figure 4.3 (left), if (i, j) corresponds to a

pixel near the intensity peak of the source, then RcF (R1) < RcF (R2) < RcF (R3) < ... <

RcF (Rn) ∼ RcF (Rn + 1) ∼ RcF (Rn + 2), otherwise RcF (R) will behave differently.

The behaviour of RcF at each pixel can be characterized by its slope at low radius. In

the case of the intensity in a Gaussian distribution, this slope is nearly constant. Therefore,

we fit a first degree polynomial to RcF versus radius, and we use its slope together with the

goodness of the fit to detect compact sources. See the example in Figure 4.3 (right) where

the different behaviours of the RcF curves representing source pixels and background

pixels are shown. Notice that source pixels present a monotonic increase before reaching

a plateau, where pixels that are not near a local peak show either an initial decline or a

fairly constant value.



90 Chapter 4. Faint source detection in aperture synthesis radio images

4.2.2. Algorithm steps

To apply this approach based on a radial contrast function (hereafter RCF algorithm)

to real images we use the following steps:

1. With the original image, local noise is calculated and a low local threshold is derived

to select candidate areas (those with an area greater than the FWHM of the beam).

2. RcF (R) is calculated for all pixels in the original image up to Nr radius. A data

cube of size (Nx, Ny, Nr) is created.

3. For every pixel (i, j) selected in step 1, a first degree polynomial is fit to RcF (R)

and a slope and goodness of fit, given by the coefficient of determination rsq, which

determines how accurately the regression line fits the data, is assigned to each pixel.

4. Groups of at least 4 connected pixels with associated RcF fit slopes and rsq larger

than certain threshold values are candidates to belong to a compact source.

5. Finally, connected zones and their centroids are computed to produce the source

position catalogue.

This algorithm depends on a set of values that represents the range of radius used to

create the radial contrast function, the slope (hereafter m) and the rsq. These parameters

are further discussed in Section A.2 of Appendix A.

4.3. Boosting classification system

The previously presented approaches are unsupervised, which means that they do not

need additional images to generate models of the sources to find. However, in most cases,

supervised methods perform better since they are trained with meaningful information

about their aim. Hence, our last algorithm is a supervised method based on the use of

local features extracted from a bank of filters. These features provide descriptions of the

different types of faint source structures. Our approach performs an initial training step

in order to automatically learn and select the most salient features, which are then used

in a boosting classifier [67] to perform the detection. This approach is based on the idea

that a set of features, also known as words, can intuitively describe the sources to find,

and building a model through the most characteristic features, known as dictionary, the

sources will be more easily identified.
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Figure 4.4: Graphical representation of the third algorithm (the boosting classifier): build-

ing the dictionary, training process and testing process with new images.

The proposed method is divided into three parts as shown in Figure 4.4. First, we

build a feature dictionary composed of patches (a square subsample of the images with an

arbitrary size) of faint sources. Afterwards, dictionary words are used to extract features

and the system is trained using a boosting classifier algorithm.

4.3.1. Dictionary building process

A feature dictionary contains the visual words, in our case we use patches of pixels,

that will be then used to extract features for training and testing. First of all, a random

set of images is selected to be used to create the dictionary. Afterwards, these images are

convolved with a bank of filters (see [67] for more details). All the filtered images are then

used to extract different patches centred on the objects of interest (in our case, sources).

Figure 4.5 shows the building vocabulary process. These patches become the words of our

dictionary. Notice that, as well as the patch, the filter used is also needed to extract the

image features, since each patch is convolved with the corresponding filtered image.

Once the dictionary has been built, the pixels of an image can be characterized by the

following equation:

v(i, j) = (I(i, j) ∗ f)⊗ p, (4.6)

where v is the image with characterized pixels, I the original image, f the filter, and p
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Figure 4.5: Dictionary building process.

the filtered patch. Therefore, the image is convolved (∗) with the filter and then a cross

correlation (⊗) with the patch is performed. As a result, a probability image with high

values in the regions similar to the patch is obtained.

4.3.2. Training and testing processes

The goal of the training process is to learn which features are the best to detect compact

sources. The classifier has to be trained through the pixels of a set of images devoted

to training, the class of these pixels (source or background in our case) being perfectly

known. In our case, instead of using all the pixels in the training images, which will

be computationally expensive, only a portion from each training image is selected. In

particular, these points are the center of the sources (positive training samples) and some

random locations of the background (negative training samples). Afterwards, a boosting

classifier algorithm is applied. This type of algorithm is based on the simple idea that the

sum of weak classifiers can produce a strong classifier [23]. In our case, the weak classifiers

(cw) are simple regression stumps, a tree-like structure with a single level, with a single

feature, the most likely, the one with the least error, being selected in each round. The

weak classifier function used is:

cw(I(i, j)) = a(I(i, j) > th) + b, (4.7)

where th is a threshold that determines if a pixel belongs to the object class or not,

and a and b are parameters selected to minimize the classifier’s error. After applying a

weak classifier, those samples that are misclassified are given a higher weight while those

correctly classified are given a lower weight. This process is repeated until convergence,

all the samples correctly classified, or after a certain number of rounds. The final source

classifier C(x) is the sign of the result of the sum of weak classifiers.

Once the classifier is built it is applied to new images in the testing process in order to
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perform the detection of compact sources. Note that a pixel-based classifier is also built

and therefore, a probability image where high values mean a greater confidence of being a

source is provided as a result. The images used to train the classifier are not used in the

testing step.

4.3.3. Algorithm steps

Supervised approaches like this one need different sets of images including training and

testing images. The boosting classifier algorithm steps are as follows:

1. Images of the dictionary dataset are filtered with the bank of filters, and patches are

extracted where a given number of sources are located to build the dictionary.

2. Images of the training dataset are filtered with the bank of filters and cross-correlated

with the dictionary words. Features are extracted at the location of the sources (pos-

itive examples) and at randomly selected background regions (negative examples).

3. A boosting classifier is trained from positive and negative examples.

4. Pixels in the test dataset images are classified obtaining a probability image where

a thesholding can be applied.

5. Finally, connected zones and their centroids are computed to produce the source

position catalogue.

Two parameters are required in this algorithm. The first consists of a set of values

corresponding to the sizes of the sides of the square patches to be extracted. The second,

a threshold (hereafter th) applied to the final probability image. The parameters used in

all the experiments are described in Section A.2 of Appendix A.

4.4. Test datasets

In order to analyze the performance of these three algorithms, both simulated and real

data is used. The different datasets and catalogues are described below and the main

features of each are summarized in Table 4.1. Column four indicates the FWHM of the

point response function and columns seven, eight and nine depict the brightness ranges

of the three groups into which the catalogues have been broken down according to the

brightness of the sources (faint, mid-intensity and bright).



9
4

C
h
a
p
ter

4
.

F
a
in
t
so
u
rce

d
etectio

n
in

a
pertu

re
syn

th
esis

ra
d
io

im
a
ges

Table 4.1: Summary of the main features of the datasets and catalogues.

Image
Area rms FWHM Number Flux range Faint sources Mid-intensity Bright sources

(deg2) (mJy/beam) (′′) of sources (mJy/beam) (mJy/beam) sources (mJy/beam) (mJy/beam)

Simulations 0.56 0.01 5 500 [0.01, 200] [0.01, 0.27] [0.027, 6.78] [7.79, 200]

0.02 [0.02, 200] [0.02, 0.42] [0.44, 8.71] [9.51, 200]

0.04 [0.04, 200] [0.04, 0.68] [0.69, 9.59] [12.04, 200]

GMRT 6.7 0.2 5 279 [1.65, 224.70] [1.65, 8.46] [8.61, 43.45] [43.73, 224.70]

ATCA 1.2 0.012 6 1207 [0.06, 28.85] [0.06, 0.44] [0.45, 3.51] [3.58, 28.85]
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4.4.1. Simulated data

In order to perform controlled experiments, the astronomical community usually tests

algorithms on simulated (synthetic) but realistic images. The position of the objects con-

tained in real data is a priori unknown, and catalogues are built through manual inspection

or automatic algorithms. Hence, although these catalogues are quite reliable, they are not

ideal and may be biased and incomplete. The comparison of the results from applying the

new methods to the simulated source catalogues can quantify the performance and possi-

ble biases in a systematic and objective way. It is possible to generate realistic simulations,

including noise, of a radio aperture synthesis image for any sky model and observational

setup, because the visibility data can usually be regarded as having independent Gaussian

noise of a known variance. Sources with a wide range of flux intensities above and below

the noise can be injected. The steps used to generate the simulations are the following:

1. A noise image based on Gaussian-randomized values is generated.

2. The noise image is convolved with a PSF consisting of a Gaussian profile of specified

standard deviation.

3. The convolved noise image is normalized linearly to have a specified rms noise, a

standard deviation of the noise.

4. A catalogue of a certain number of sources is randomly generated.

4.1 The coordinates of the sources in the image are randomly generated avoiding

blending (overlapping).

4.2 The peak fluxes of the sources are randomly generated in a range comprised

between the rms noise (lower limit) and a specified upper limit.

4.3 The sizes of the sources are generated according to their flux.

5. Gaussian-shaped sources with corresponding coordinates, fluxes and sizes are created

in an image.

6. The image with the sources is convolved with the PSF.

7. Sources are added to the noise image.

As stated by Offringa et al. [71], it is common knowledge that radio source fluxes behave

like power-law (negative exponential) distributions with exponents around -2. Thus, the

source peak fluxes are distributed as follows:
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N(S) ∝ S−2, (4.8)

where N is the number of sources and S is the flux. Using these flux densities, we have

assumed a source size distribution as observed by Windhorst et al. [110]. They concluded

that the median size of radio sources can be calculated as follows:

θmed = 2S0.3. (4.9)

Following this procedure, we have been able to create simulations with specific charac-

teristics. In particular, we have simulated radio images of 2000×2000 pixels, with a pixel

size of 1”, a simulated PSF of the instrument (beam) of 5” with 500 sources ranging from

the rms noise to 200 mJy. Three different images have been created with rms noise levels

of 0.01, 0.02 and 0.04 mJy to be able to test images with different degrees of confusion

between signal and noise. As can be seen in Figure 4.6, it is noticeable that, to the naked

eye, more sources can be found in the image with 0.01 rms noise than with 0.04 rms noise.

4.4.2. GMRT observations

A deep radio image obtained by Paredes et al. [74] with the Giant Metrewave Ra-

dio Telescope (GMRT) is also used to analyze the performance of the three approaches

presented. This image, which covers the TeV J2032+4130 field and is centred on an

unidentified extended source called MGRO J2019+37 (a peak of gamma emission at the

Cygnus region), is a mosaic made up of 19 circular multi-epoch observations (fields) at a

frequency of 610 MHz. The whole mosaic covers more than 6 square degrees and has a

size of 14000×14000 pixels.

As can be seen in Figure 4.7, we are dealing with a typical radio image with very bright

sources, a large number of faint objects with intensities near to detection levels, as well

as imaging artifacts. Regarding this image, despite its high noise level and interferences,

some sources can be detected by the naked eye. However, some noisy regions, such as

the edges of the external fields of the mosaic, may cause the methods to obtain unreliable

detections. For this reason, we exclude some problematic regions (basically the outer

regions of the mosaic and some other inner regions with a high component of noise and

interferences) as can be seen in Figure 4.8.

We have taken the catalogue of Paredes et al. [74] as reference and used it to evaluate

the completeness and reliability of the three methods previously discussed. It was created
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Figure 4.6: Simulations of radio astronomical images with contrast stretching (98%) for

visualisation purposes. From top to bottom rms noise levels of 0.01, 0.02 and 0.04 mJy.
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Figure 4.7: The GMRT mosaic with contrast stretching (98%) for visualisation purposes..

through a preliminary list of sources obtained with SExtractor and an extensive manual

inspection. It covers all the radio sources present in the GMRT mosaic and contains the

location of 362 sources as well as their photometric information. After discarding the

sources in the exclusion regions, the final set of true sources in the catalogue consists of

279 sources.

4.4.3. ATCA observations of the Phoenix Deep field

In order to see the behaviour of the methods with other radio aperture synthesis images,

we have also used data obtained by Hopkins et al. [41] with the Australia Telescope Com-

pact Array (ATCA). Specifically, we have selected the 1.4 GHz mosaic from the Phoenix

Deep Survey (PDS). It consists of a multiwavelength survey centred on the southern con-

stellation Phoenix that covers 4.56 square degrees.

As shown in Figure 4.9, the ATCA image also shows a marked noisy interferometric

background in which a crowded population of sources (over 2000) is present. Most of

these sources are close to detection levels (faint), and therefore, this image is a challenging

test for the methods. As the central part of the mosaic is the most sensitive and, therefore,

presents a more homogeneous background, we have decided to use a reduced subimage
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Figure 4.8: The GMRT mosaic with some problematic regions excluded with contrast

stretching (98%) for visualisation purposes.

with a size of 2000×2000 pixels (see Figure 4.10).

To evaluate the quality of the detections in terms of reliability and completeness, we

have used the catalogue produced in the PDS as reference. The original catalogue created

with the Sfind algorithm [42] contains 2090 sources with their respective locations and

photometric information. The final catalogue of the subimage selected consists of 1207

sources.

4.5. Experimental results

Each one of the three methods described earlier was applied to the test images obtain-

ing respective lists of coordinates corresponding to the centroid of the detections found.

Reference catalogues were used as the ground truth to compare the outcome of the detec-

tion methods to the true sources in the catalogues. In order to do this, we followed the

procedure already mentioned in Section 3.2.3 which considers those detections and sources

of the catalogue with a distance smaller than the FWHM of the synthesized beam to be

correct matches.
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Figure 4.9: The ATCA mosaic with contrast stretching (98%) for visualisation purposes.

Figure 4.10: The ATCA subimage used with contrast stretching (98%) for visualisation

purposes.
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The methods’ performances have also been analyzed in terms of their ability to detect

sources of different intensities. In order to do this, we have grouped the sources in the

catalogues according to their flux. Specifically, we have divided the sources’ flux range

into three bins corresponding to faint, mid-intensity and bright. Thus, we can discuss the

methods’ performance according to the number of faint or bright sources correctly iden-

tified. We include the SExtractor [6] and SAD (AIPS) [29] algorithms in the comparison

because they are widely used in radio astronomy.

In order to ensure an optimal performance, a specific and precise parameter tuning for

each method was necessary. For details on the values used, we refer to Section A.2 of

Appendix A. We selected the appropriate values that provided certain levels of reliability

(the fraction of detections corresponding to TP) and completeness (the fraction of sources

in the catalogue correctly identified). In particular, we conducted two experiments in

order to achieve a minimum of 90% and 95% of both percentages of TP (reliability) and

true sources detected (TSD - completeness). This way, by fixing the percentage of TP, we

can analyze the performance in terms of completeness, whereas by fixing the percentage

of TSD, we can analyze the performance in terms of reliability as done in [42, 35].

The outcome of the application of the different methods to the synthetic dataset is

shown in Tables 4.2 and 4.3. As expected, the lower the rms noise, the better the results.

In general, in the three levels of noise, the new proposals presented similar percentages of

TSD at high levels of reliability to the two reference algorithms. For instance, in the 0.02

rms image, WALT, RCF and the boosting classifier provided 85.00%, 85.40% and 82.80%

TSD having fixed the TP rate to 95%, whereas SExtractor and SAD provided 85.00% and

85.40%. Furthermore, in terms of TP at high levels of completeness, the new methods

tended to outperform the reference ones. WALT was the most reliable method with 0.02

and 0.04 rms levels while in the 0.01 rms image it shared this condition with the boosting

classifier. For example, in the 0.02 rms image, with 95% completeness, WALT, RCF and

the boosting classifier achieved 23.15%, 18.55% and 19.15% TP while SExtractor and SAD

achieved 7.88% and 10.63%. WALT was the most reliable method closely followed by the

boosting classifier. RCF was slightly less reliable than the other two proposals, but still

fairly better than the reference methods. In the different levels of noise, all five methods

were able to detect all the bright and mid-intensity sources, and missed similar percentages

of faint sources. To extract more consistent conclusions, we also tested the methods on

real data. A priori, their behaviour should be similar to the simulations.

A quantitative comparison of the results achieved with the three algorithms and the two
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Table 4.2: Summary of the results obtained by the various methods with synthetic images,

demanding a minimum of 90% TP (left) and TSD (right). In each row, from top to bottom,

the results obtained in images with 0.01, 0.02 and 0.04 mJy rms noise.

Method
90% minimum reliability 90% minimum completeness

Detections TP TP (%) TSD (%) Detections TP TP (%) TSD (%)

WALT 490 445 90.82 89.00 525 450 85.71 90.00

478 433 90.59 86.60 824 450 54.61 90.00

444 400 90.09 80.00 1591 452 28.41 90.40

RCF 495 446 90.10 89.20 558 450 80.65 90.00

478 431 90.17 86.20 966 450 46.58 90.00

406 390 90.34 78.60 2650 451 17.02 90.20

Boosting classifier 497 448 90.14 89.60 515 450 87.38 90.00

465 419 90.10 83.80 890 450 50.56 90.00

568 397 90.10 74.60 2466 450 18.25 90.00

SExtractor 490 442 90.20 88.40 598 451 76.57 90.20

476 430 90.34 86.00 1000 450 45.00 90.00

431 390 90.49 78.00 5367 450 8.38 90.00

SAD 496 447 90.12 89.40 582 452 77.66 90.40

478 433 90.59 86.60 820 450 54.88 90.00

441 390 90.48 79.80 5168 453 8.76 90.60

Table 4.3: Summary of the results obtained by the different methods with synthetic images,

demanding a minimum of 95% TP (left) and TSD (right). In each row, from top to bottom,

the results obtained in images with 0.01, 0.02 and 0.04 mJy rms noise.

Method
95% minimum reliability 95% minimum completeness

Detections TP TP (%) TSD (%) Detections TP TP (%) TSD (%)

WALT 460 438 95.22 87.60 1041 475 45.63 95.00

446 425 95.29 85.00 2056 476 23.15 95.20

408 389 95.34 77.80 3051 476 15.60 95.20

RCF 467 444 95.07 88.80 2019 475 23.53 95.00

449 427 95.10 85.40 2561 475 18.55 95.00

399 386 95.35 78.00 4995 475 9.51 95.00

Boosting classifier 464 441 95.02 87.80 1165 476 40.86 95.20

435 414 95.17 82.80 2481 475 19.15 95.00

459 382 95.51 73.40 3637 475 13.06 95.00

SExtractor 461 438 95.01 87.60 5717 475 8.31 95.00

446 425 95.29 85.00 6030 475 7.88 95.00

403 383 95.04 76.60 12431 476 3.83 95.20

SAD 463 443 95.68 88.60 7597 476 6.27 95.20

448 427 95.31 85.40 4469 475 10.63 95.00

409 390 95.35 78.00 13229 475 3.59 95.00
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Table 4.4: Summary of the results obtained by the different methods with the GMRT

image, demanding a minimum of 90% TP (left) and TSD (right).

Method
90% minimum reliability 90% minimum completeness

Detections TP TP (%) TSD (%) Detections TP TP (%) TSD (%)

WALT 264 239 90.53 85.66 292 252 86.30 90.32

RCF 262 236 90.08 84.59 319 252 79.00 90.32

Boosting classifier 252 228 90.12 81.72 310 252 81.29 90.32

SExtractor 252 227 90.08 81.36 333 252 75.68 90.32

SAD 240 216 90.00 77.42 405 252 62.22 90.32

Table 4.5: Summary of the results obtained by the different methods with the GMRT

image, demanding a minimum of 95% TP (left) and TSD (right).

Method
95% minimum reliability 95% minimum completeness

Detections TP TP (%) TSD (%) Detections TP TP (%) TSD (%)

WALT 214 202 95.28 72.40 368 266 72.28 95.34

RCF 237 226 95.36 81.00 448 266 59.38 95.34

Boosting classifier 201 192 95.52 68.82 357 266 74.51 95.34

SExtractor 229 219 95.63 78.49 459 266 57.95 95.34

SAD 214 204 95.33 73.12 489 266 54.40 95.34

reference ones (SExtractor and SAD) on the real datasets is shown in Tables 4.4, 4.5, 4.6

and 4.7. Figure 4.11 depicts the TSD percentages of the different methods broken down

into three groups according to the source brightness, faint, mid-intensity and bright.

Regarding the results obtained in the GMRT dataset, we can see that the five methods

provided a similar number of detections and good percentages of completeness in both

levels with 90% and 95% reliability. Specifically, demanding 90% reliability, more than

three quarters of the true sources were correctly identified in all cases. The most complete

method was WALT with 85.66% TSD, closely followed by RCF with 84.59% TSD. The

boosting classifier and SExtractor presented a similar completeness with both over 81%

TSD. SAD was the least complete method in this level of reliability with 77.42% TSD. The

method that detected the most faint sources was WALT, with 77.46%. The other meth-

ods, except for SExtractor, detected more than two thirds of the faint sources, although

SExtractor compensated for that low percentage by being the only method to detect 100%

of the mid-intensity and bright sources. On the other hand, demanding 95% reliability,

Table 4.6: Summary of the results obtained by the different methods with the ATCA

image, demanding a minimum of 90% TP (left) and TSD (right).

Method
90% minimum reliability 90% minimum completeness

Detections TP TP (%) TSD (%) Detections TP TP (%) TSD (%)

WALT 1080 975 90.28 80.78 1324 1089 82.25 90.22

RCF 1027 925 90.07 76.64 1406 1088 77.38 90.14

Boosting classifier 1100 990 90.00 82.02 1386 1087 78.43 90.06

SExtractor 628 568 90.45 47.06 2126 1088 51.18 90.14

SAD 457 412 90.15 34.13 2920 1090 37.33 90.31
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Figure 4.11: Graphical representation of the percentages of TSD obtained with the GMRT

and ATCA datasets according to the brightness of the sources.
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Table 4.7: Summary of the results obtained by the different methods with the ATCA

image, demanding a minimum of 95% TP (left) and TSD (right).

Method
95% minimum reliability 95% minimum completeness

Detections TP TP (%) TSD (%) Detections TP TP (%) TSD (%)

WALT 898 855 95.21 70.84 1989 1147 57.67 95.03

RCF 846 805 95.15 66.69 1654 1147 69.35 95.03

Boosting classifier 948 901 95.04 74.65 1684 1147 68.11 95.03

SExtractor 502 477 95.02 39.52 2699 1149 42.57 95.19

SAD 352 335 95.17 27.75 3492 1151 32.96 95.36

more than two thirds of the catalogue sources were correctly detected by all the methods.

In this case, RCF was the best method by far with 81.00% TSD. SExtractor also kept a

good completeness level with 78.49% TSD rate. The other three methods detected a lower

number of true sources, the boosting classifier being the least complete with less than 70%

TSD. That is due to that, in addition to the expected number of faint sources missed by

all the methods, the boosting classifier also missed some mid-intensity and bright sources.

All the methods detected between 50% and 60% of the faint sources, RCF and SExtractor

being the best methods in that sense with 59.86% of the faint sources detected.

In a different way, the five methods presented a different number of detections with

differences greater than 100 objects when demanding certain levels of completeness. With

a completeness level of 90%, all the methods achieved more than 75% TP except for

SAD (62.22%). The most reliable method was WALT (86.30% TP). With a completeness

of 95%, the most reliable methods were the boosting classifier and WALT (74.51% and

72.28%). The rest of the methods obtained less than 60% TP. SAD was the least reliable

in both levels of completeness probably due to the fact that, unlike the other methods, it

was not able to find a high percentage of bright sources.

Concerning the results achieved with the ATCA image, we quickly noticed that, in

general, both TP and TSD percentages were lower than those achieved with the GMRT

image. As mentioned, the ATCA image is very crowded and presents a great number

of faint sources difficult to find by the detection methods. The number of detections

provided by the methods may be very different, to the point that some methods detected

more than double the number of objects as others. In terms of completeness, the boosting

classifier stood out in both 90% and 95% levels of reliability; 82.01% in the first case and

74.65% in the second case. WALT was the second most complete method with 80.78%

and 70.84% for 90% and 95% reliability, and we found RCF’s 76.64% and 66.69% for

90% and 95% reliability good percentages. On the other hand, SExtractor and specially

SAD offered percentages of TSD substantially lower than the new algorithms. SExtractor

achieved 47.06% and 39.52% TSD (90% and 95% reliability), while SAD achieved 34.13%
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and 27.75% (90% and 95% reliability). This is due to the poor percentages of faint sources

detected by these two methods. While the three new algorithms were able to detect more

than 70% of the faint sources with a reliability of 90% and more than 60% with a reliability

of 95%, the two reference methods detected less than 40% (SExtractor) and less than 25%

(SAD) of the true sources with a 90% reliability. With a 95% reliability the results were

even lower. The best methods for detecting faint sources were the boosting classifier and

WALT with percentages around 80% with 90% reliability and 70% with 95% reliability.

It should be pointed out that all the methods presented percentages of mid-intensity and

bright sources detected above 90%.

Similarly, with respect to the reliability of the methods with the ATCA dataset, the three

new algorithms gave a better performance than the reference ones in terms of reliability.

With a completeness level of 90%, WALT was the most reliable method with 82.25% TP,

followed by the boosting classifier and RCF with 78.43% and 77.38%. SExtractor and SAD

obtained 51.18% and 37.33% TP. Similar behaviours were found with a completeness level

of 95%. In this case, the most outstanding methods were RCF and the boosting classifier

with more than two thirds of the detections corresponding to true sources (69.35% and

68.11% TP). WALT provided 57.67% TP, whereas SExtractor and SAD provided a great

number of spurious detections with 42.57% and 32.96% TP.

Figures 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17 show some qualitative results at 95% re-

liability and completeness. In the 0.02 rms simulated image we can see that in a high

reliability regime the number of TP and FP was similar for all five methods. In a high

completeness regime all the methods presented a significant number of FP. However, this

number was much greater with SExtractor and SAD than with the new proposals. With

the GMRT image, demanding 95% reliability, we can see that the reference algorithms

presented a greater number of FP around a very noisy and inhomogeneous region on the

right of the image although this region was partially excluded. The new methods presented

their FP more spread throughout the whole image and dealt better with this noisy region.

That fact was asserted in the 95% completeness results where reference methods had a

cluster of FP around this region. Even though RCF and, to a lesser degree, the boosting

classifier also clustered FP around this region, they were substantially fewer. In contrast,

WALT was not affected at all by this problem. In the case of the ATCA image, more TP

were provided by the new methods than the reference ones in the 95% reliability regime.

Furthermore, in the SExtractor results, a greater number of FP appeared in the top- and

bottom-left regions characterized by having more noise and background variations. That

fact is dramatically emphasized in the 95% completeness results, where both SExtractor
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and SAD presented a huge number of FP in the left hand region of the image. In contrast,

the new algorithms did not present this problem or at least they did it in a smaller way.

The low number of FP provided by RCF is very noticeable.

4.6. Discussion

We conclude from the analysis of the results that the three new algorithms perform well

with both synthetic and real datasets. They obtain similar and even better percentages

of true positives than SExtractor and SAD, a much smaller number of FP, and were able

to correctly identify more sources. Furthermore, they deal with the most noisy regions in

a better way. The main point illustrated by the simulations is that the new methods are

more reliable than the state-of-the art methods, and more specific conclusions have been

drawn from real datasets.

The boosting classifier is the most complete method when dealing with the crowded

ATCA image. This fact clearly demonstrates the good performance of this method with

images with a high density of sources. Its completeness with the GMRT dataset is also

acceptable as it is close to the outstanding percentages. Concerning reliability, the boosting

classifier presents remarkable TP percentages demanding 90% completeness and acceptable

TP percentages demanding 95% completeness. For all these reasons, we consider the

boosting classifier to be the method that, in general, performs better. It must be borne

in mind, however, that it is a supervised method that needs a set of training images to

work. In fact, this is, at the same time, its main strength and weakness because, on

the one hand, the general performance of this method is high, but on the other, the

need of an initial ground truth for training requires a more demanding tuning and more

computational time. Hence, we believe that this algorithm is very useful when dealing

with a great amount of data of the same nature because by simply devoting a little time

to manually identifying some positive (sources) and negative (background) examples in a

small sample of the dataset the rest of the detections can be carried out automatically

with great accuracy. With the ATCA dataset, the boosting classifier has been the method

with more faint sources detected with 80.21% and 71.70% with reliability levels of 90%

and 95%. This proves that the number and selection of positive and negative samples for

the dictionary building and training steps were appropriate.

Nevertheless, a portion of the dataset to be used for training is not always available,

and in these cases, WALT and RCF may be good choices. They present an important
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Figure 4.12: Qualitative results obtained in the 0.02 rms simulated image with 95% re-

liability. From top to bottom and left to right: the raw image, the detections obtained

with WALT, RCF, the boosting classifier, SExtractor, and SAD. Green circles indicate

TP while red circles indicate FP.
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Figure 4.13: Qualitative results obtained in the 0.02 rms simulated image with 95% com-

pleteness. From top to bottom and left to right: the raw image, the detections obtained

with WALT, RCF, the boosting classifier, SExtractor, and SAD. Green circles indicate

TP while red circles indicate FP.
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Figure 4.14: Qualitative results obtained in the GMRT image with 95% reliability. From

top to bottom and left to right: the raw image, the detections obtained with WALT, RCF,

the boosting classifier, SExtractor, and SAD. Green circles indicate TP while red circles

indicate FP.
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Figure 4.15: Qualitative results obtained in the GMRT image with 95% completeness.

From top to bottom and left to right: the raw image, the detections obtained with WALT,

RCF, the boosting classifier, SExtractor, and SAD. Green circles indicate TP while red

circles indicate FP.
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Figure 4.16: Qualitative results obtained in the ATCA image with 95% reliability. From

top to bottom and left to right: the raw image, the detections obtained with WALT, RCF,

the boosting classifier, SExtractor, and SAD. Green circles indicate TP while red circles

indicate FP.
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Figure 4.17: Qualitative results obtained in the ATCA image with the new and the ref-

erence methods with 95% completeness. From top to bottom and left to right: the raw

image, the detections obtained with WALT, RCF, the boosting classifier, SExtractor, and

SAD. Green circles indicate TP while red circles indicate FP.
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advantage: their parameter setting is simpler than the boosting classifier. They have

shown very high performances with the GMRT, specially in terms of completeness. The

fact that the distribution of sources in the GMRT image is sparser, and, therefore, overlaps

less frequently, has facilitated the thresholding of the sources in WALT and allowed an

appropriate contrast radial analysis around the peaks in RCF. Consequently, the number

of true sources detected is higher than with the other methods. WALT also achieved a high

reliability, probably due to the multiscale component of the approach that has attenuated

disruptive effects such as background variabilities or high levels of noise that may provoke

spurious detections. Even though WALT has been the method with the best percentage

of faint sources detected with a reliability of 90%, in general, RCF has been the method

that has performed better at detecting faint sources in the GMRT dataset with 73.94%

and 59.86% of them with reliability levels of 90% and 95%. Moreover, as the difference

between the rms and the flux of the faintest sources is greater in the GMRT image, thus

making the detection range greater, algorithms such as WALT and RCF, which apply

thresholding techniques to the raw data, can obtain better results.

4.7. Conclusions

Three novel approaches for the detection of faint sources in wide field radio interfer-

ometric images have been proposed. They are based on very different strategies: the

first, WALT, on local thresholding in different wavelet scales; the second, RCF, on the

pixel spatial coherence described by a radial contrast function; and the third, the boosting

classifier, on the extraction of local features and their classification. The application of

these algorithms to realistic simulations and real radio images and a posterior comparison

of the detections obtained to reference source detection software such as SExtractor and

SAD has demonstrated their good performance. For all three algorithms, a quantitative

evaluation of the detections performed has pointed out that the percentage of detections

corresponding to true sources has been similar and even better than with the reference

methods and the number of detected sources in the catalogue has been significantly better

than more widely used algorithms. The new methods also present remarkably fewer num-

bers of false detections, which allows a greater number of true sources detected at high

regimes of reliability.

The main strength of these methods is their ability to detect faint sources. Whilst no

one method was the best in all test cases, each method is able to outperform the reference

algorithms in specific situations. For images with a high density of sources, the boosting
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classifier will give the best results both in completeness and reliability. For images with

complex background structures, WALT is able to reliably detect sources whilst rejecting

noise, and the RCF algorithm is able to extract sources close to the noise level.
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Chapter 5

Multiscale Distilled Sensing:

source detection for long

wavelength images

As shown in Chapter 2, several source detection methods based on different techniques

have been developed over the last years. Of special interest is the method called Distilled

Sensing (DS) proposed by Haupt et al. (2009) [35] to detect sparse signal in noisy obser-

vations. It deals with the detection problem from a different point of view. The strength

of DS lies in the idea that it is easier to identify where the signal is absent than where it

is present. In other words, it consists of discarding those regions where the signal (sources

in the case of astronomical images) is unlikely to be present, and focuses the detection

on the remaining regions. This method has proven to work satisfactorily with optical

astronomical images as depicted in the quantitative evaluation presented in Chapter 3.

However, like many other methods, its performance decreases when images have a com-

plex background with a high level of noise and marked intensity variations. This is the case

with images acquired at long wavelengths such as radio and infrared, where an additional

image transformation step may be needed to attenuate these harmful effects. Although it

presents good percentages of reliability in all bands, its completeness decreases with these

types of images.

Aiming to improve the source detection in high wavelength images, specially in terms of

completeness, in this chapter we present a proposal based on the combined use of DS with

multiscale techniques that are widely applied to astronomical imaging for noise filtering

and source highlighting purposes. Unlike the methods proposed in Chapter 4, specially

developed to detect faint sources, the application of Distilled Sensing in multiscale space

expects an improvement in sources of different brightnesses, and not only in fainter ones.

117
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5.1. Distilled Sensing

Distilled Sensing is an adaptive sampling method for the detection and estimation of

sparse signal. These kinds of methods are also known as compressed/sparse signal/sensing

and basically recover (i.e. estimate or detect) signal in sparse observations. DS is based on

the main principle that in a noisy observation, it is far simpler to identify larger sets of non-

singal than smaller sets of signal. It can be seen as an image transformation step where,

through different iterations, the data is refined. More resources are iteratively focused on

those regions that are more likely to be signal while at the same time ignoring those regions

unlikely to be of interest. Hence the name of the method, since this procedure is similar to

the purification by distillation performed in chemistry. In this way, the increasing level of

certainty of where the sources are located increases along iterations. In the astronomical

image domain, this procedure is equivalent to discarding background/noise regions and

only taking the sources into account.

Figure 5.1 illustrates a simple example of how DS works. In the raw image, negative

components are discarded since they are considered as noise. Afterwards, an iterative

process is applied in which the data is refined and noise components are excluded. Notice

that after the refinement step, the values of the components slightly change and new

negative components arise. A certain amount of energy sensing (a predefined value) is

distributed into the iteration steps, and at the same time, this part of the energy is

equally distributed into the different interest regions in the image, being all the pixels

in the first iteration. A larger value of energy sensing is devoted to the first iterations

and decreases exponentially in the later iterations when there are fewer remaining interest

regions, finally using the remaining resources in the last iteration. The following formula

is a formal representation of this energy sensing allocation among the iterations:

Rk =







ǫk−1R1 k = 2, ...,m − 1

R1 k = m,
(5.1)

where Rk is the energy sensing allocated to the iteration k, ǫ is an arbitrary parameter

to model the relationship between the energy allocated to an iteration and that of the

previous iteration (with 0 < ǫ < 1), and m the total number of iterations fixed to:

m = max{log2 log n, 0}+ 2, (5.2)

where n is the total number of components of the observation (pixels in our case).
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Figure 5.1: Graphical representation of the DS method. Green bars represent true signal

components while grey bars represent noise.
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As can be seen, the energy of the initial and final iterations is the same because, ac-

cording to the authors, that benefits the control of the false positives in the first iteration

and the false negatives in the last one [35]. The authors also suggest that
∑m

k=1Rk ≤ n.

The data is iteratively refined using a function where some uncertainty, a random value

drawn from a normal distribution, is added to each interest pixel, and the resulting sum

is divided into the square root of the energy sensing value corresponding to the pixel [35].

The formal representation of this refinement or distillation in an iteration follows:

Yk(i, j) =







(I(i, j) + Z)
√

Rk
|Sk|

I(i, j) ∈ Sk

Z I(i, j) /∈ Sk,
(5.3)

where Yk is the refined image in iteration k, I(i, j) is the intensity of the pixel in row i

and column j, Z ∼ N (0, 1), and Sk is the set of pixels of interest of iteration k. This

equation leads to negative values considered as noise, so they are discarded. Afterwards,

the interest regions are limited to those with positive values, and the entire process is

repeated. As a result of this process, most of the background pixels are discarded. The

authors stated that in each distillation iteration, most of the pixels corresponding to signal

were retained, whereas approximately half of the background/noise pixels were ruled out.

Finally, the source locations are specified by using a data-based thresholding. In Haupt

et al. [35], the authors used a threshold that guarantees a detection reliability of 95%,

meaning that at least 95% of the detections performed by the method were true sources.

5.2. DS in multiscale space

In order to turn DS into a more robust method able to deal with images with more

complex backgrounds, we decided to apply it after a multiscale transform of the original

data. These kinds of techniques decompose images into components at different scales or

frequencies, and depending on the type of source, they become highlighted in the low or

high scales. Thus, every single scale can be treated as an image where the sources have

to be detected. As can be seen in Chapter 2, these types of techniques are widely used in

astronomical images since, apart from highlighting sources, they are good at filtering noise,

removing background, attenuating the background variability and deblending sources.

Therefore, by using a multiscale transform the background will have a lesser impact and

the detection results should improve.

Different multiscale decompositions have been used in the literature, the wavelet trans-



5.2. DS in multiscale space 121

form (WT) and its variations being the most used by far due to their performance

[17, 87, 21, 104, 26]. In this work, we have selected the two types of WT most com-

monly used:

The stationary wavelet transform (SWT), more commonly known as the ‘à trous’

algorithm, which is an extension of the discrete WT designed to overcome the lack

of shift invariance [91]. Each scale is defined as the difference between the previous

scale and the previous scale convolved with a specific discrete filter. We have used

a spline of degree 3 as a filter, as suggested in [91]. More information about this

transform can be found in Sections 2.1.4 and 4.1.

The Mexican hat wavelet transform (MHWT), a special case of the family of con-

tinuous wavelets consisting of applying a Laplacian operator to a Gaussian function

[91].

When these transformations have been done, we then apply the DS algorithm to provide

the source detections. We decided to analyze the first three scales in the SWT since most

of the sources to be found were point-like and, as stated in Chapter 2, the most suitable

scales in which to find these types of sources are those with higher spatial frequencies (the

first ones). On the other hand, we only used the first scale of the MHWT since further

scales of this transform are not commonly used in the literature. Afterwards, we applied

the DS method to each of the four resulting scales: the three scales in the SWT and the

first scale in the MHWT. We call this procedure Multiscale Distilled Sensing (MDS).

5.2.1. Algorithm steps

MDS is based on the following steps:

1. A wavelet transform is applied to the raw image and a significant scale is selected.

2. A certain value, energy sensing, is distributed into a certain number of iterations.

3. In the wavelet scale, the proportional energy sensing is distributed in the regions of

interest (the whole image in the first iteration).

4. Pixels in the region of interest are refined:

4.1 Some uncertainty is added to each interest pixel intensity.
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4.2 The resulting sum is divided into the square root of the energy sensing value

corresponding to the pixel.

5. Pixels with negative values are excluded from the regions of interest.

6. Steps 3 to 5 are repeated until the specified number of iterations is reached.

7. Finally, connected zones and their centroids are computed to produce the source

position catalogue.

The final step is based on a thresholding, and therefore, this cut-off value must be

experimentally tuned to achieve the best possible results.

5.3. Experimental results

In order to verify the performance of our approach, we have chosen the images from two

public surveys introduced in the quantitative analysis of Chapter 3: the WISE infrared

dataset and the CGPS radio dataset, both described in Section 3.2.1. These datasets

present a variable noisy background in which we can find both point (most of them)

and extended sources over a noisy background with perceptible intensity variations. The

evaluation was carried out through the refined catalogues associated with these images (see

Section 3.2.2) and following the evaluation strategy used throughout this thesis (see Section

2.3.1) which results in true positives (TP) and true sources detected (TSD) percentages. As

mentioned in Section 3.2.1, some regions of the WISE12, CGPS21 and CGPS74 containing

extended emissions were excluded.

DS is a thresholding-based method and, as such, it can provide different detections ac-

cording to the threshold used. An appropriate value must be selected in order to guarantee

a suitable compromise between reliability and completeness. We followed the same crite-

rion as with the original DS proposal [35], and found the threshold that provided a certain

specified reliability (e.g. Haupt et al. demanded a minimum of 95%). In particular, we

conducted two experiments in order to achieve a minimum of 90% and 95% reliability.

In other words, the demand was at least 90% and 95% TP (i.e. a maximum of 10% and

5% FP). Therefore, by fixing the TP rate, we could compare the results obtained with

DS in the different scales by means of the percentage of true sources correctly detected

(completeness). The parameter setting used can be consulted in Section A.3 of Appendix

A. In addition, in order to significantly evaluate the power of our proposal, we also applied

the well-known SExtractor source detection algorithm [6] to the images.
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Tables 5.1 and 5.2 show the different results achieved by directly applying DS and

SExtractor to the raw images and by applying MDS. Notice that the MHWT results in

the WISE12 image, expecting 95% TP, are missing because it was not possible to achieve

such a reliability with such a challenging image. It reached at 91.45% best. The vast

majority of results obtained using MDS were considerably better than using DS alone. In

some scales, the number of true sources detected rose significantly. For instance, in the

SWT1 scale of the WISE4.6 image, the percentage of true sources identified increased from

24.47% to 84.36% with a reliability of 95% and from 50.56% to 87.66% with a reliability of

90%. In a similar way, in the SWT3 scale of the CGPS74 image, DS was able to find 60.96%

and 68.45% with 95% and 90% reliability respectively of the catalogue sources, whereas

DS applied directly to these images was able to find 18.89% and 29.41% with 95% and 90%

reliability respectively of the catalogue sources. Figures 5.2, 5.3, 5.4, 5.5 and 5.6 depict the

qualitative results achieved in all the images tested with 95% reliability. In them we can

see the dramatic improvement in terms of true sources of the catalogue correctly detected.

For instance, there were almost 60% more correct detections in the WISE4.6 infrared image

and more than 40% more in the CGPS74 radio one. These increases are due mainly to

the greater number of fainter sources detected thanks to the use of a multiscale transform.

Furthermore, DS by itself considered blended or very close sources as unique objects as

can be seen in the images, a point that was solved with MDS.

Referring to infrared images, the best results were achieved in the first two SWT scales,

with fewer values in the third and the MHWT scales. On the other hand, in radio images

the results were more similar in all the scales. Moreover, concerning the performance of

DS in multiscale space, we noticed that in most cases the rate of true sources detected

was similar or even better than when applying SExtractor to the raw images, especially

in infrared images. The only case in which SExtractor was slightly better was with the

CGPS21 image. For the rest of the images, there was at least one scale with higher values

than SExtractor, demonstrating that in these particular images, the detection power of

MDS can compete with and improve on the results of the reference SExtractor software.

We can achieve even higher TSD rates by combining the detections achieved in the

three scales at the expense of obtaining slightly lower TP percentages. By combining

the detections with 95% reliability, the percentages of TP and TSD were 93.10% and

88.83% with the WISE3.4 image, 92.40% and 89.55% with the WISE4.6 image, 94.12%

and 64.26% with the WISE12 image, 89.53% and 71.98% with the CGPS21 image, and

91.85% and 66.31% with the CGPS74 image. Whereas by combining the detections with

90% reliability, the TP and TSD percentages were 87.10% and 90.89% with the WISE3.4
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Table 5.1: Summary of the MDS results obtained demanding 90% reliability. For each

image, the number of detections, the percentage of true positives, and the number of true

sources detected are shown.
DS MDS (SWT1) MDS (SWT2) MDS (SWT3) MDS (MHWT) SExtractor

WISE3.4

1027 1664 1601 1346 1013 1511

90.17 90.08 90.51 90.19 90.03 90.01

54.44 88.12 85.19 71.37 53.62 79.95

WISE4.6

800 1384 1354 1148 898 1240

90.25 90.39 90.10 90.07 90.09 90.16

50.63 87.73 85.55 72.51 56.73 78.40

WISE12

107 188 197 170 126 143

90.57 90.43 90.36 90.00 90.48 90.21

38.55 68.27 71.49 61.45 45.78 51.81

CGPS21

629 931 955 723 972 1041

90.46 90.55 90.47 90.04 90.02 90.11

46.07 68.26 69.46 52.71 70.85 75.95

CGPS74

183 376 422 429 384 371

90.16 90.69 90.05 90.21 90.10 90.30

29.41 60.78 67.74 68.98 61.68 59.71

Table 5.2: Summary of the MDS results obtained demanding 95% reliability. For each

image, the number of detections, the percentage of true positives, and the number of true

sources detected are shown.
DS MDS (SWT1) MDS (SWT2) MDS (SWT3) MDS (MHWT) SExtractor

WISE3.4

605 1508 1484 1240 590 1448

95.21 95.16 95.01 95.00 95.08 95.44

33.86 84.36 82.89 69.25 32.98 81.25

WISE4.6

367 1263 1254 1034 503 1183

95.10 95.25 95.14 95.16 95.43 95.35

24.47 84.36 83.66 69.00 33.36 79.10

WISE12

83 164 165 132 - 126

95.18 95.12 95.15 95.45 - 95.24

31.73 62.65 63.05 50.60 - 48.19

CGPS21

546 824 865 630 847 928

95.60 95.39 95.14 95.24 95.03 95.04

42.27 63.64 66.64 48.58 66.64 71.42

CGPS74

111 324 357 360 308 266

95.50 95.68 95.24 95.00 95.15 95.11

18.89 55.26 60.61 60.96 52.41 45.10
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image, 85.29% and 90.67% with the WISE4.6 image, 88.35% and 73.09% with the WISE12

image, 81.46% and 75.06% with the CGPS21 image, and 84.38% and 74.15% with the

CGPS74 image.

An analysis of the sources detected according to their brightness is illustrated in Figures

5.7 and 5.8. From these we can conclude that, in all cases, the number of sources detected

is clearly higher in all the brightness bins (faint, mid-intensity and bright) with MDS

than with DS. Specially remarkable are the detections in the faint bin with the first two

scales of the SWT. In the mid-intensity and bright bins the percentage of detection with

DS was already acceptable, but in spite of this fact, the values rose slightly as well. In

turn, SExtractor proved to be a very competitive algorithm to detect mid-intensity and

bright sources. However, MDS obtained similar results in these brightness levels and

outperformed SExtractor at unveiling faint objects.

5.4. Discussion

According to the results obtained with MDS, it is clear that it represents an important

improvement. The completeness of DS has increased significantly with its combination of

multiscale techniques. In some cases, the completeness of the catalogues obtained more

than doubled or tripled. In all the different variants and scales in the wavelet transform,

results were better than when using DS alone. In general, the scales that offered more

balanced percentages were the SWT1 and the SWT2. This is more evident in infrared

images. The MHWT has performed better with radio images, although the best scale

in the CGPS74 image is the SWT3. In images with mainly point and compact sources,

such as WISE3.4, WISE4.6 and CGPS21, the high spatial frequency scales, the first of the

SWT and the MHWT, have performed better because they are the most suited scales to

highlight sources with these shapes. On the other hand, in images such as WISE12 and

CGPS74, which present more extended emissions, lower spatial frequency scales performed

better. Moreover, in the vast majority of cases, MDS outperformed SExtractor, mainly

at detecting faint objects. This clearly proves that the use of WT helps DS to perform a

better characterization of images with complex backgrounds.
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Figure 5.2: Qualitative results obtained in WISE3.4 with MDS with 95% reliability. From

top to bottom and left to right: the raw image, the detections obtained with DS, those

with MDS using the SWT1 scale, and those with SExtractor. Green circles indicate TP

while red circles indicate FP.
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Figure 5.3: Qualitative results obtained in WISE4.6 with MDS with 95% reliability. From

top to bottom and left to right: the raw image, the detections obtained with DS, those

with MDS using the SWT1 scale, and those with SExtractor. Green circles indicate TP

while red circles indicate FP.
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Figure 5.4: Qualitative results obtained in WISE12 with MDS with 95% reliability. From

top to bottom and left to right: the raw image, the detections obtained with DS, those

with MDS using the SWT2 scale, and those with SExtractor. Green circles indicate TP

while red circles indicate FP.



5.4. Discussion 129

Figure 5.5: Qualitative results obtained in CGPS21 with MDS with 95% reliability. From

top to bottom and left to right: the raw image, the detections obtained with DS, those

with MDS using the MHWT scale, and those with SExtractor. Green circles indicate TP

while red circles indicate FP.
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Figure 5.6: Qualitative results obtained in CGPS74 with MDS with 95% reliability. From

top to bottom and left to right: the raw image, the detections obtained with DS, those

with MDS using the SWT3 scale, and those with SExtractor. Green circles indicate TP

while red circles indicate FP.
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Figure 5.7: Graphical representation of the percentages of TSD demanding 90% reliability

according to the brightness of the sources. From top to bottom, the results obtained with

DS, MDS using different scales and SExtractor with images WISE3.4, WISE4.6, WISE12,

CGPS21 and CGPS74.
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Figure 5.8: Graphical representation of the percentages of TSD demanding 95% of reli-

ability according to the brightness of the sources. From top to bottom, the results ob-

tained with DS, MDS using different scales and SExtractor with images WISE3.4, WISE4.6,

WISE12, CGPS21 and CGPS74.
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5.5. Conclusions

Aiming to deal with long wavelength images such as infrared and radio, we have pro-

posed a new approach based on multiscale decomposition and Distilled Sensing. In these

images characterized by complex backgrounds, Multiscale Distilled Sensing has provided

satisfactory results since the number of true sources detected has been substantially bet-

ter than using DS directly. The number of fainter sources identified has dramatically

increased in some scales. Specifically, the results have been particularly good in the first

two scales of the SWT, the ‘à trous’ algorithm. Furthermore, the quantitative comparison

of the new approach with the original DS and the commonly used SExtractor software has

demonstrated the validity of the combined use of DS and wavelets, results obtained with

MDS being better in most cases analyzed.

This method and the three others presented in Chapter 4 represent an important con-

tribution to the astronomical community. They are really useful for working on long

wavelength images. MDS has significantly outperformed DS, being able to detect more

sources of different brightness in radio and infrared images, specially faint ones. Although

MDS is also a good choice, WALT, RCF and the boosting classifier are more appropriate

methods to use in images with a large population of faint sources, such as the GMRT and

ATCA radio images, because they have been developed for this specific purpose.
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Chapter 6

Conclusions

6.1. Summary of the thesis

The goal of this thesis has been the analysis and development of different strategies to

detect astronomical sources in images. After analyzing a wide variety of techniques from

the state of the art, we saw that the detection process can be divided into two main steps:

the image transformation and the detection criterion. The first consists of applying mod-

ifications in the content of the raw image in order to achieve better conditions to detect

sources. The second consists of applying different rules to determine which pixels belong

to sources and which not, and consequently, detect the location of the sources. From

this review, we realized the importance of transforming the image with simple techniques

such as filtering or with more complex ones such as matched filtering, Bayesian or multi-

scale. Since astronomical images have an important contribution of noise, interferences,

variable and inhomogeneous background regions, and a great number of objects with a

high dynamic range and different sizes and vague shapes, the use of these types of tech-

niques is fundamental to attenuate all theses harmful effects and to increase the difference

between noise/background and sources, and therefore, to boost further detection. This

detection process is typically carried out through two main techniques that can be used

interchangeably: thresholding and local peak search.

In Chapter 2, advantages and drawbacks of the different methods were provided in a

qualitative way. However, they were based on the reported application of the methods

with specific types of images with particular features and for specific aims. For instance,

it is difficult to compare a method designed for detecting extended sources in radio images

with another designed for detecting point sources in X-ray images. Hence, we decided

to perform a more meaningful quantitative evaluation of some of the most remarkable

methods in the literature. In Chapter 3, eight methods were selected, trying to cover the

135
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whole range of techniques found in the state of the art. They were applied to the same

multiwavelength dataset consisting of optical images from the SDSS, infrared images from

the WISE, and radio images from the CGPS. Reliable catalogues were used as the ground

truth to quantify the quality of the detections of the methods in terms of true positives

and true sources correctly identified. These measures led to the identification of the

best methods in general and the best for specific types of images. Nevertheless, other

characteristics such as the computational cost or the parameter setting were taken into

account to recommend the use of the methods in particular cases.

The conclusions extracted from this exhaustive review and the quantitative evaluation

of these methods led us to some ideas to propose new detection approaches. We de-

cided to explore the detection limits of new proposals in radio aperture synthesis images,

specifically exploiting the challenging detection of faint sources with intensities close to

background/noise levels. The choice of this type of image was due to two main reasons: on

the one hand, they are excellent benchmarks because they present marked varying inter-

ferometric backgrounds and a large population of different types of sources and, therefore,

a great number of faint ones; and on the other hand, they are the principal type of image

used in the projects this PhD thesis is related to. In particular, we used images from the

GMRT and the ATCA instruments as well as simulations. Three new proposals came out:

the first, a method that combines the multiscale wavelet transform and local thresholding

(WALT); the second, a method based on the structural behaviour of an intensity radial

contrast function (RCF); and the third, a supervised method that classifies pixels by means

of local features (filtered patches) and a boosting classifier. In Chapter 4, different exper-

iments were conducted with the different methods so that they achieved different levels of

reliability, percentage of true detections, and completeness, percentage of sources of the

catalogue correctly detected. The comparison of the new proposals with commonly-used

software such as SExtractor and SAD demonstrated a remarkable performance by the first

ones. They were able to detect more sources than the reference, specially faint ones, and

fewer spurious detections were obtained. In general, the boosting classifier offered very

reliable and complete results. This was due to the fact that it is a supervised method that

requires training data to create a model to classify the pixels. WALT and RCF provided

very competitive results too, and have the advantage of a simpler parameter tuning. RCF

was the method that generally detected more faint sources, and WALT obtained very

reliable detections and dealt better with noisy regions.

Moreover, from the initial qualitative and quantitative analyses, we also found a really

interesting method called Distilled Sensing (DS). The innovation of this method lies in
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the fact that, instead of trying to detect the sources, it iteratively discards background

regions more easily identified as such. This way, at the end of this process, it is easier to

unveil the sources, e.g. with a simple threholding. Its quantitative results proved a general

good performance in terms of reliability. It was also able to provide complete catalogues

in optical data, but as with many other methods, the number of true sources detected

decreased in lower frequency bands such as radio and infrared. In Chapter 5, we decided

to overcome this lack by means of the combined use of DS and a multiscale technique such

as the wavelet transform which is widely used and characterized by attenuating the impact

of the more complex backgrounds present in this type of image. Two different variants of

the wavelet transform were used: the stationary (SWT) and the Mexican hat (MHWT)

wavelet transform. The use of DS in multiscale space (MDS) presented an important

improvement with respect to the raw DS method. The reliability of the new method rose

dramatically in both datasets and the validity of the method was proven since it achieved

better results than the widely-used SExtractor algorithm.

6.2. Contributions

The main objective of this thesis was to provide astronomers with new algorithms to

automatically detect sources in astronomical images. Additionally, the discussions pro-

vided in this work can be useful for astronomers, and can be used as a starting point when

a source detection strategy is to be used or implemented in a particular type of dataset.

Therefore, the main contributions of this thesis are:

An extensive updated review of astronomical source detection algorithms which in-

cludes a new classification of the strategies and their main strengths and weaknesses

according to their performance.

A quantitative evaluation of some of the most promising methods in the literature.

They were applied to a common radio (CGPS), infrared (WISE) and optical (SDSS)

dataset in a level playing field, and their performances were evaluated by means of

reliable catalogues and commonly used evaluation measures. The key points and

lacks of the algorithms with the various types of images were pointed out, thus this

evaluation becomes an appropriate starting point for those who want to identify

sources in images.

Three new algorithms to detect faint sources in radio aperture synthesis images:

WALT applies local thresholding, based on a histogram fitting, to the first three
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wavelet scales; RCF analyses the spatial coherence of neighbouring pixels through

an intensity radial contrast function; while the boosting classifier uses a source model

trained with local features to classify pixels into sources or background. They were

exhaustively tested using real data from the GMRT and the ATCA instruments and

simulations.

A new algorithm to detect sources in radio and infrared images based on the com-

bined use of the wavelet transform and the innovative Distilled Sensing method

(MDS). It was exhaustively tested using real data from the CGPS (radio) and the

WISE (infrared) surveys.

An experimental qualitative and quantitative comparison between our various pro-

posals and well-known state-of-the-art algorithms in terms of reliability and com-

pleteness of the detections provided.

A synthetic dataset of radio aperture synthesis images. It consists of three realistic

images with different rms noise levels and many injected sources that can be used

to test detection algorithms.

6.3. Future work

We are aware that the automatic detection of astronomical sources is a broad and

complex topic. For example, each type of image, noise distribution or source morphology

could be analyzed separately. Furthermore, we have seen that detection is just one of

the steps in the source extraction pipeline, and, at the same time, it can be divided into

different steps such as the image transformation and the detection criteria. Research

efforts can focus on particular or multiple parts of the detection or extraction pipelines.

We have developed different proposals consisting of techniques that can be studied further.

They can even be useful in different topics of the computer vision domain such as medical

imaging. Hence, some future work related to the improvement of the proposals presented

in this thesis as well as related new work are mentioned below.

An extensive quantitative evaluation of radio, infrared and optical images has been

presented. To the best of our knowledge, no other quantitative review involving such a

wide number of methods has been conducted. As we have seen in the state of the art,

these three bands are characterized by Gaussian background distributions, which makes

the use of the same methods possible with all of them. However, there are other bands
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such as X-rays and γ-rays that present Poisson background distributions. Therefore, we

believe that it would be interesting to carry out a quantitative evaluation of techniques

able to deal with these types of images to make our study more complete.

In this thesis, different proposals based on different techniques have been developed.

They have been tuned in order to achieve certain requirements of reliability or complete-

ness, and as we have claimed, these two measures tend to be anti-correlated: the more true

sources found, the more spurious detections, and vice versa; the more true detections, the

more true sources missed. Any kind of postprocess could be used to solve this problem.

It is obviously far easier to remove false positives than create true positives from nothing.

Therefore, we believe that the development of false detection steps would be a step forward

in the automation of the detection of sources in a reliable way. For instance, it could be

based on the analysis of the shape of the detections.

As we have already mentioned, the boosting classifier is a very reliable method that,

after having prior knowledge, can be useful to automatically detect huge amounts of data.

For instance, the astronomical surveys that have come out in the last few years (see

Section 1.1.1) are composed of different fields. After using a few of these fields to build

the dictionary and to train the classifier, the rest of the fields could be automatically

processed. Since we have proposed other methods to detect sources that are able to

achieve high regimes of reliability (even 100%), their detections in some fields can be

used as positive samples in the training process of the boosting classifier. With just some

negative samples, the training can be complete, and the algorithm can be applied to the

rest of the fields. Hence, the combination of the boosting classifier with WALT, RCF or

MDS could be very useful to astronomers. We believe that MDS is the most appropriate

method to be part of this incremental learning approach because, apart from providing

reliable detections, it iteratively discards, and therefore, identifies, background pixels.

This PhD thesis is focused mainly on the detection of point and compact sources.

However, objects with extended shapes are very important to the understanding of the

Universe. For this reason, other future work could be devoted to developing new methods

or to adapt those proposed in this thesis to detecting this type of source. For instance, a

good starting point could be the adaptation of WALT so that it can apply the thresholding

in lower frequency scales (higher index planes) which are more suitable for detecting

extended emissions. A method able to detect point, compact and extended sources at the

same time would be very interesting to astronomers.

Astronomers are specially interested in the photometry of sources, and hence, they ap-
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preciate those methods that provide detections together with additional information on

the sources. Therefore, another improvement we propose is the implementation of an

additional step to perform a photometric analysis of the detections obtained with our

proposals. Moreover, if we translate our codes into a more efficient and optimized pro-

gramming language (e.g. c++ or python) they could have as much impact and acceptance

as other popular source extraction algorithms such as SExtractor. Thus, a toolbox with

all the methods together could be placed at the disposal of the community.

Finally, we think that the algorithms we have presented can be useful in other areas

of computer vision and image processing. For instance, there are many medical imaging

fields that deal with challenges similar to astronomical source detection. The VICOROB

group of the university of Girona has been working on medical imaging since 1996. There

are several research lines in progress such as those devoted to the detection and diagnosis

of different types of cancer (breast, prostate and skin) or multiple sclerosis lesions. There-

fore, it would be interesting to see if the astronomical detection methods can be somehow

adapted to identify lesions in medical images. Actually, we are already collaborating in

these medical fields: the boosting classifier was recently used for the detection of micro-

calcifications and clusters (small bright spots within an inhomogeneous background that

can indicate the presence of a breast cancer) in mammographic images with great success

[72]. Still, there are many other possible applications. For example, ultrasound images of

breasts or prostates present a high level of noise that make the detection/segmentation of

lesions difficult. We could use the image transformation part of our methods to filter the

noise and ease further processing.



Appendix A

Parameter setting

A summary of the values assigned to the main parameters of the different methods used

is shown below. They have been adjusted in order to omptimize the performance of the

methods and to achieve specific requirements.

A.1. Quantitative evaluation of methods

Although we usually refer to automatic detection methods, most of them are not fully

automatic since they are based on a set of parameters that have to be tuned in advance.

With the exception of SExtractor and Astrometry.net, which are able to detect sources

with no user specification, all the other methods need an accurate tuning to achieve

the best possible performance. The parameter setting has to be done properly in order

to guarantee a suitable compromise between reliability and completeness. Most of the

methods have parameters other than those discussed here, but for the purpose of this

evaluation, we have used only those parameters that are crucial to achieve acceptable

detections. Note that there is no information on the parameters of the Perret method

because, for privacy reasons, it was executed by the authors themselves and we have only

analyzed the results obtained.

The parameter settings shown in Table A.1 lead us to what we have considered to be

the best results obtained. Notice that we have been able to apply SAD successfully to the

SDSS images with no parameter setting, while negative thresholds in SourceMiner are due

to the fact that a background pixel is more likely than a source one.

We have defined exploration ranges of thresholds with different samplings (intervals)

to find the optimal values. The following results show why this type of parameter is so

important. For instance, in the SDSSi image, by setting the absolute threshold of the DS
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Table A.1: Summary of the parameter settings used for each method and dataset involved in the quantitative evaluation in Chapter

3.
Method Parameter SDSSu SDSSg SDSSr SDSSi SDSSz WISE3.4 WISE4.6 WISE12 CGPS21 CGPS74

SAD Vector - - - - - 11 12 435 6 65

10 11 430 5.5 60

9 10 425 55

8 9 50

Mopex σ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

GN σ 1.5 1.5 1.5 1.5 1.5 0.5 0.5 0.5 1.5 1.5

SourceMiner Threshold -5.3 -5.7 -5.7 -5.7 -6 -5.7 -5.7 -6 -4.8 -7.2

DS Threshold 1.5 1.3 1.7 2.2 9.8 26.1 34.0 1198.8 51.0 4903.5
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method to 2.1, 2.2 and 2.3 we achieve 89.27%, 91.19% and 92.50% TP and 70.81%, 69.66%

and 68.33% TSD, respectively. On the other hand, in CGPS21, by fixing the threshold of

SourceMiner to -4.7, -4.8 and -4.9, we obtain 93.74%, 86.90 and 71.18% TP and 64.29%,

71.42% and 74.98% TSD, respectively. From these results, we can see that slight changes

in the values can provide different results. The higher the TP rate, the lower the TSD

rate, and vice versa. Therefore, the threshold values have been chosen in all the tests in

order to minimise the errors of both the TP and TSD percentages.

Some of the parameters can be obtained directly from the characteristics of the images

or from the information included in the catalogues. For example, the FWHM of the sources

is required for González-Nuevo (GN) and SourceMiner, which also uses the pixel scale.

The methods based on matched filtering require samples of the sources expected to be

found. In the case of Mopex, a patch of 21×21 pixels containing a sample source has been

used.

On the other hand, the detections provided by several methods depend on the accurate

tuning of some of their input parameters. In most cases, the most significant parameter

is a level or threshold that has to be fixed. That value is frequently related to the flux of

the different pixels in the image. SAD, for example, uses a vector of up to ten values with

different thresholds corresponding to different flux cut-offs that are applied sequentially in

descending order to the image. Mopex and GN are based on a σ-clipping step, a number

of σ above the mean of the image pixels, to determine the detection threshold in the

first case, and the level above which maximum of the local peak search is considered as a

source in the second. In a different way, SourceMiner needs a threshold that becomes the

argument of an exponential function that indicates the number of times a pixel is more

likely to be part of a source than part of the background. Finally, DS also requires a

parameter as an absolute threshold.

A.2. Faint source detection methods

To achieve the best results possible with WALT, RCF and the boosting classifier, we

experimented with different parameter settings. Tables A.2 and A.3 show those that

provided the best performances in synthetic and real data.
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Table A.2: Summary of the parameter settings used for each method and simulated image to achieve levels of 90% and 95% reliability

and completeness.

Method Parameter

0.01 rms noise 0.02 rms noise 0.04 rms noise

Completeness Reliability Completeness Reliability Completeness Reliability

95% 90% 90% 95% 95% 90% 90% 95% 95% 90% 90% 95%

WALT g 7 7 7 7 7 7 7 7 7 7 7 7

k 1.72 2.03 2.13 2.21 1.48 1.76 2.07 2.37 1.63 1.72 2.25 2.32

RCF rsq 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

m 1.30 3.95 5.40 6.60 0.94 3.3 4.80 4.84 0.40 0.90 2.90 5.40

Boosting th 2.15 5.3 5.55 6.33 2.64 5.32 9.29 9.81 0.88 1.49 5.73 6.59

SExtractor threshold 1.76 3.09 3.39 3.56 1.72 2.70 3.39 3.56 1.22 1.80 3.41 3.6

SAD threshold 0.022 0.037 0.04 0.042 0.05 0.068 0.0815 0.085 0.073 0.097 0.1597 0.169
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Table A.3: Summary of the parameter settings used for each method and real image to

achieve levels of 90% and 95% reliability and completeness.

Method Parameter

GMRT ATCA

Completeness Reliability Completeness Reliability

95% 90% 90% 95% 95% 90% 90% 95%

WALT g 7 7 7 7 7 7 7 7

k 5.8 7.1 7.9 10.0 2.09 2.44 2.69 2.95

RCF rsq 0.99 0.99 0.99 0.99 0.95 0.95 0.95 0.95

m 0.9831 0.9851 0.9864 0.98825 0.98582 0.988 0.98365 0.98756

Boosting th 9.2 12.7 16.3 19.1 6.9 7.12 15.42 15.49

SExtractor threshold 6.27 7.4 9.1 9.76 2.96 3.25 5.74 6.46

SAD threshold 0.0024 0.00251 0.00355 0.00401 0.0000685 0.0000735 0.000166 0.00023

In the WALT algorithm, we used 400 subimages, g = 7 and different values for k to

reach the requirements of completeness and reliability.

In the RCF algorithm, we fixed the rsq and tested different slopes to reach the require-

ments of completeness and reliability. The range of radii was set from 1 to 5 in intervals

of 0.5 for all the images.

In the boosting classifier, we extracted patches with side sizes of 3, 5 and 7 pixels for all

the images. The threshold th was adjusted differently in the various images to fulfil the

completeness and reliability requirements. In the training step, about 400 positive and

7000 negative samples were used in all the images. Additionally, other factors had to be

taken into account in this algorithm. For example, a leave-one-out strategy was used to

build the different datasets. This is an iterative process where, at each step, a different

image is used for testing while the others are used to perform the training. In our case, we

used three images to generate the dictionary and three more to extract training features.

In order to have multiple images, we created more synthetic images by using the GMRT

fields independently and dividing the ATCA image into 16 subimages.

To reach the expected levels of completeness and reliability in SExtractor and SAD, we

tuned their detection thresholds. In the first case, it was based on σ-clipping while in the

second, it was in terms of flux.

A.3. Multiscale Distilled Sensing

A key parameter in both DS and MDS is the detection threshold. It is a data-based

value that we have experimentally fixed for each image in each of the scales used. Table

A.4 summarizes the thresholds that provided the best results for reliability levels of 90%
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Table A.4: Summary of the thresholds used to achieve reliability levels of 90% and 95%

in the comparison of MDS to DS and SExtractor.
Image DS MDS (SWT1) MDS (SWT2) MDS (SWT3) MDS (MHWT) SExtractor

90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

WISE3.4 460 805 20.7 23.8 45.1 49.6 46.6 54.3 16676 45300 3.3 3.76

WISE4.6 274 402 3.94 4.45 8.65 9.6 11 12.7 4661 12940 3.09 3.47

WISE12 179578 180343 102.8 119.2 224 267 340 476 289700 - 4.66 5.53

CGPS21 50.89 51.85 1.85 2.05 1.87 2.05 1.28 1.47 4.99 5.51 3.36 3.91

CGPS74 4934 5388 11.98 13.43 31.8 36.5 63.1 76 239 303 3.24 5.16

and 95%. Notice that, since they depend on the transformed data, they are quite different.

Moreover, the parameter ǫ corresponding to the relationship between the energy sensing

allocation between two successive iterations was fixed to 0.75, since the authors of DS

mentioned that this value provides good performance in data with different levels of noise.

This value implies that the resources devoted to an iteration are 0.75 times fewer than in

the previous iteration.
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