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Abstract

This thesis deals with the detection, segmentation and classification of lesions on sonogra-
phy. The presence of these lesions is a sign of breast cancer. Hence, the earlier these lesions
are detected, the better and more effective the treatment will be. The contribution of the
thesis is the development of a new Computer-Aided Diagnosis (CAD) framework capable of
detecting, segmenting, and classifying breast abnormalities on sonography automatically.
Firstly, an adaption of a generic object detection method, Deformable Part Models (DPM),
to detect lesions in sonography is proposed. The method uses a machine learning technique
to learn a model based on Histogram of Oriented Gradients (HOG). This method is also
used to detect cancer lesions directly in a multi-class detector, simplifying the traditional
cancer detection pipeline (candidate lesion detection, segmentation, feature extraction and
classification between benign and malignant). Secondly, different initialization proposals
by means of reducing the human interaction in a lesion segmentation algorithm based
on Markov Random Field (MRF)-Maximum A Posteriori (MAP) framework is presented.
Furthermore, an analysis of the influence of lesion type in the segmentation results is per-
formed. Finally, the inclusion of elastography information in this segmentation framework
is proposed, by means of modifying the algorithm to incorporate a bivariant formulation.
The proposed methods in the different stages of the CAD framework are assessed using dif-
ferent datasets. The evaluation, carried out in a quantitative and qualitative manner, uses
several metrics for detection and segmentation, is performed for each stage independently,
and is compared with the most relevant methods in the state-of-the-art. The analysis
of the results points out a better performance relative to state-of-the-art approaches for
lesion detection, and a similar performance for cancer detection but with a considerable
simplification of the traditional pipeline. In addition, a reduction of the user interaction of
the MRF-MAP is achieved, obtaining results in line with the state-of-the-art approaches
for lesion segmentation, and a more robust and accurate performance of the segmentation

framework is reported with the inclusion of elastography.
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Resum

Aquesta tesi es centra en la deteccid, segmentacié i classificacié de lesions en imatges
d’ecografia. La preséncia d’aquestes lesions és un indicatiu de cancer de mama, i per tant,
com més rapida sigui la seva deteccid, millor i més efectiu sera el tractament proporcionat al
pacient. La contribucié d’aquesta tesi és el desenvolupament d’una nova eina de Diagnostic
Assistit per Ordinador (DAO) capac de detectar, segmentar i classificar automaticament
lesions en imatges d’ecografia de mama. Inicialment, s’ha proposat 'adaptacié del me-
tode genéric de deteccié d’objectes Deformable Part Models (DPM) per detectar lesions
en imatges d’ecografia. Aquest métode utilitza técniques d’aprenentatge automatic per
generar un model basat en ’Histograma de Gradients Orientats. Aquest metode també
és utilitzat per detectar lesions malignes directament, fent servir un detector multi-classe,
simplificant aixi l'estratégia tradicional (detecci6 de lesions candidates, segmentacio, ex-
tracci6 de caracteristiques i classificaci6 entre benigne i maligne). A continuacié, s’han
realitzat diferents propostes d’inicialitzacié en un métode de segmentacié basat en Markov
Random Field (MRF)-Maximum A Posteriori (MAP) per tal de reduir la interaccié amb
I'usuari. Per avaluar aquesta proposta, s’ha realitzat un estudi sobre la influéncia del tipus
de lesid en els resultats aconseguits. Finalment, s’ha proposat la inclusié d’elastografia en
aquesta estratégia de segmentaci6, modificant 1’algoritme amb una formulacié bi-variant.
Els métodes proposats per a cada etapa de ’eina DAO han estat avaluats fent servir bases
de dades diferents. L’avaluacio, feta de manera qualitativa i quantitativa fent servir difer-
ents meétriques, ha estat realitzada per cada etapa independentment, i ha estat comparada
amb els resultats dels métodes més importants de ’estat de ’art. En aquesta comparacio,
la nostra proposta ha obtingut els millors resultats per a deteccié de lesions, i uns resultats
similars per a deteccié de lesions malignes tot i que simplifica 'estratégia tradicional. Fi-
nalment, millora la inicialitzacié del métode MRF-MAP i ha obtingut resultats més acurats

i robustos incorporant elastografia.
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Resumen

Esta tesis se centra en la deteccién, segmentacion y clasificacion de lesiones en imégenes
de ecografia. La presencia de estas lesiones es un indicativo de cancer de mama, y por
consiguiente, cuanto mas rapida sea su deteccion, mejor y méas efectivo serd el tratamiento
proporcionado al paciente. La contribuciéon de esta tesis es el desarrollo de una nueva
herramienta de Diagnostico Asistido por Ordenador (DAO) capaz de detectar, segmentar
y clasificar autométicamente lesiones en imagenes de ecografia de mama. Inicialmente, se
ha propuesto la adaptacion de un método genérico de deteccion de objetos Deformable
Part Models (DPM) para detectar lesiones en imégenes de ecografia. Este método utiliza
técnicas de aprendizaje automatico para generar un modelo basado en el Histograma de
Gradientes Orientados. Este método también es utilizado para detectar lesiones malignas
directamente, usando un detector multi-clase, simplificando asi la estrategia tradicional
(deteccion de lesiones candidatas, segmentacion, extraccion de caracteristicas y clasifi-
cacion entre benigno y maligno). A continuacion, se han realizado diferentes propuestas
de inicializacion en un meétodo de segmentacion basado en Markov Random Field (MRF)-
Maximum A Posteriori (MAP) para reducir la interaccion con el usuario. Posteriormente,
se ha realizado un estudio sobre la influencia del tipo de lesiéon en los resultados conseguidos.
Finalmente, se ha propuesto la inclusién de elastografia en esta estrategia de segmentacion,
modificando el algoritmo con una formulacién bi-variante. Los métodos propuestos para
cada etapa de la herramienta DAO han sido evaluados usando bases de datos diferentes. La
evaluacion, hecha de manera cualitativa y cuantitativa usando diferentes métricas, ha sido
realizada en cada etapa independientemente, y ha sido comparada con los resultados de los
métodos més importantes del estado del arte. En esta comparacién, nuestra propuesta ha
obtenido los mejores resultados para la deteccion de lesiones, y unos resultados similares
para la deteccion de lesiones malignas pero simplificando la estrategia tradicional. Final-
mente, mejora la inicializacion del método MRF-MAP y obtiene resultados més precisos y

robustos incorporando elastografia.
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Introduction

1.1 Breast cancer

Breast cancer is the most common cause of death from cancer in women worldwide. Ac-
cording to a study developed in 2012 by the American Cancer Society, the chance of a
woman having invasive breast cancer some time during her life is about 1 in 8, and it is
estimated that 296,980 new cases of breast cancer will be diagnosed, and approximately
39,620 deaths are expected in the United States alone in 2013 [7]. This proportion is
reduced in our country, Catalonia, where it is estimated that 1 in 9 women will develop
breast cancer during their lifetime [1], and 4,700 new cases will be diagnosed. This quantity

represents 30% of all cancer diagnoses in women [90].

In the European Union, breast cancer is the leading cause of death from cancer among
women in most of its regions. The standardized death rate from breast cancer in the EU
was 23.1 deaths per 100,000 female inhabitants during the period 2008-10 [41]. Figure 1.1

shows the distribution of deaths from breast cancer in women by EU regions.

Breast cancer incidence has increased over the past decade due to the introduction

of screening programmes in which more cancers are detected in their early stages [90].

1
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Figure 1.1: Map of deaths from breast cancer in women by EU regions (standardized death
rate per 100,000 women) during 2008-10 [41].

However, breast cancer mortality has declined among women of all ages thanks to early
detection [7]. The earlier breast cancer is detected, better and less aggressive therapeutic

options are available.

1.2 Breast cancer diagnostic techniques

Since the causes of breast cancer still remain unknown, early detection is regarded as the

best option to reduce the death rate [27].

Breast Self-Examination (BSE) or manual palpation is a very important part of every

adult woman’s personal health care. It is recommended that BSE should be performed



1.2. BREAST CANCER DIAGNOSTIC TECHNIQUES 3

once each month beginning at age 20 and should continue throughout a woman’s lifetime.

However there are some limitations to manual palpation. The major drawback is that
the abnormality can only be felt after it has grown to a certain size (approx. 1.5 to 2 cm in
diameter) [10]. Therefore, these techniques are not sensitive enough for early breast cancer

detection.

Currently, manual examination is complemented with technology, such as imaging de-
vices and signal processing algorithms. The development of these tools/systems improves
the accuracy of human vision and judgment in the diagnosis. In the following sections,

popular techniques for breast cancer diagnosis are introduced.

1.2.1 Digital Mammography (DM)

Mammograms capture low energy X-rays which pass through a compressed breast. Nor-
mally, two different viewpoints of the X-ray projection are obtained: the Cranio-Caudal
(CC) view and the Medio-Lateral Oblique (MLO) view. In Figure 1.2, (a) shows the view-
points’ directions, while (b) and (c) show an example of the two mammogram views of the

same patient.

)%
/;J/
i /
N ¥ /

MLO
cc

(a)

Figure 1.2: Mammography viewpoints: (a) shows the direction of the two most used views,

which produce images like (b) the CC view, and (c) the MLO view. The images illustrating
this figure are taken from [98]

Nowadays, digital mammography is the most widely used and effective technique for
breast cancer detection and diagnosis, and is accepted as the “gold standard” for breast
imaging [106]. Digital Mammography (DM) can detect small cancers, known as lumps or

masses, as well as calcifications and micro calcifications, which can indicate cancers in their
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initial development.

Digital mammography can either be digitized Screen-Film Mammography (SFM) when
the image is obtained as the digitization of an analogical film or Full-Field Digital Mam-
mography (FFDM) when the image is directly generated in a digital sensor instead of a

sensitive film.

However, there are limitations to mammography in breast cancer detection. Many un-
necessary (65-85%) biopsies are due to the low specificity of mammography [26]. It is
difficult for mammography to detect breast cancer in young women with dense breasts,
where lesions have a similar attenuation compared to dense tissue |76], hence lesions are
hidden by the surrounding tissue. In addition, the radiation of mammography can increase

the health risk for patients and clinical staff.

Therefore, it is advisable to use other image modalities like Magnetic Resonance Image
(MRI) and Ultrasound (US) screening as complementary tools since they are more sensitive
than mammography when dealing with dense breasts [16]. These techniques, in some
cases, also offer higher specificity than mammography, allowing doctors and technicians
to distinguish benignant and malignancy signs, which reduces the number of unnecessary
biopsies [46, 114, 116].

Breast tomosynthesis

One of the recent advances in X-ray screening is tomosynthesis, which creates a “pseudo” 3-
dimensional picture of the breast. This technique tries to overcome the tissue overlap effect,
present in regular mammograms. The acquisition technique is similar to mammography:
the breast is compressed between two plates and X-ray attenuation is measured. The
main difference is that tomosynthesis takes multiple images of the breast from different
angles instead of from a single viewpoint. These images are further combined to reconstruct
them into cross-sectional slices. Figure 1.3 illustrates the effect of taking images at different

angles.

1.2.2 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Image (MRI) is a radiological technique begun in the 1980s. MRI
uses magnetic fields and the magnetic properties of the body to generate detailed images
of body tissues. MRI acquires 3D data, where cross sections at arbitrary view angles can

be calculated. Figure 1.4 shows the most common views: (a) the axial, (b) the sagittal
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Figure 1.3: Mammography and Tomosynthesis acquisition processes. (a) Mammography
single image take illustrating the tissue overlap problem. (b) Multiple images take for
tomosynthesis showing how the relative position between two targets vary depending on
the X-ray illumination angle. The images illustrating this figure are taken from Smith et
al. [113].

and (c) the coronal views.

MRI is a widely used method for the detection of breast cancer with sensitivity as one
of its principal strengths [32]. Some other advantages are the noninvasive nature and the
ability to image in any plane. It is also useful in the detection of recurrences after surgery

has been performed for mastectomy or lumpectomy cases.

The disadvantages of MRI are that it is expensive and time consuming. MRI is an im-
practical tool for routine screening, but plays a major role as an adjunct to mammography

and US imaging.

1.2.3 Breast ultrasound

Breast ultrasound imaging uses the transmission of high-frequency mechanical waves (sound
waves typically within the 1 ~ 20Mhz range) through the human body in order to cap-
ture the waves partially reflected at the boundaries between tissues with different acoustic
properties [40]. US imaging or sonography is an important modality in the evaluation and
treatment of breast masses. It is used as a complementary modality to answer specific

questions raised in the findings from mammography or physical examinations [122].

B-mode (Brightness-mode) ultrasound is the most common form of ultrasound imaging
nowadays. Sweeping an ultrasound beam through the area being examined while transmit-
ting pulses and detecting echoes along closely spaced scan lines produces B-scan images.

The vertical position of each bright dot is determined by the time delay from pulse trans-
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Figure 1.4: MRI viewpoints of the same patient: (a) shows axial view, (b) sagittal view,

and, (c) coronal view.

mission to return of the echo, and the horizontal position is given by the location of the
receiving transducer. To generate a rapid series of individual 2D images that show motion,
the ultrasound beam is swept repeatedly. The returning sound pulses in B-mode have dif-
ferent shades of darkness depending on their intensities. The varying shades of gray reflect
variations in the texture of internal organs. Interfaces between tissues with very different
impedances are displayed with high brightness, and, when the impedances are the same or
nearly the same, the position appears dark. This form of display is also called gray scale

(see Figure 1.5).

Nowadays, researchers and practitioners are showing an increasing interest in the use
of US images for breast cancer diagnosis [117]. Use of ultrasound can increase over all
cancer detection by 17% [35], and reduce the number of unnecessary biopsies by 40% [9].
Ultrasound examination is safe for patients and radiologists in daily clinical practice [70]

due to the lack of radiation in the acquisition procedure. Since it is a cheap and fast
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Figure 1.5: B-mode ultrasound image of a breast.

technique, it is also convenient for low-resource countries [8]. Ultrasound imaging is more
sensitive than other techniques, i.e. mammography, for detecting abnormalities in dense
breasts (normally the case of women younger than 35 years of age [35]). It is also accurate
at detecting some kinds of lesions, such as cysts, reducing the number of unnecessary
biopsies. However, US imaging is operator-dependent compared to other common used
techniques. Interpreting US images requires experienced and well-trained radiologists due

to its complexity and the existence of artifacts.

1.3 Breast US artifacts

Due to the ultrasonic image formation process, the final visible image presents some ar-
tifacts. Some of these are useful in the diagnostic procedure while others degrade the
visualization of the image. In this section, we explain the most influential artifacts in US

imaging: speckle noise and the shadowing effect.

1.3.1 Speckle noise

Speckle is an inherent characteristic of ultrasound imaging. It is generated by scatterers

located throughout the tissue, and appears as a granular structured noise [2, 3]. Speckle is
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detrimental because it reduces the distinction between the structures and the background
of the image. Although speckle seems to form an acoustic texture pattern, it is intrinsically
dependent on the imaging system, and is not directly linked to any physical characteristic

of the tissue. Figure 1.6 shows an example of speckle noise in a synthetic ultrasound image.

Figure 1.6: Example of speckle noise in a synthetic image.

1.3.2 Shadowing effect

The shadowing effect occurs when the ultrasonic beam is attenuated by a structure within
the B-mode scan range. In B-mode US images, this effect can be observed as a dark shadow
below the structures (see Figure 1.7). Shadowing may indicate the presence of tumors,
which attenuate the ultrasonic beam due to their higher tissue density. On the other hand,
the absence of shadowing may be a hint to distinguish cystic lesions as cysts are filled with
liquid and do not absorb the ultrasonic beam. Hence, shadowing is an important feature
in the diagnosis. Also, note that as long as the ultrasonic beam is propagated through the
media, it becomes inherently attenuated, and therefore, the B-mode image becomes darker

without meaning that there is any shadowing presence.

1.4 Lesion pathologies

A breast lesion is an area that is an abnormality or an alteration in the breast tissue’s
integrity. Breast lesions are mainly classified in two categories depending on whether they
are composed of cancerous cells or not. We can further categorize lesions within cancerous

or non-cancerous, such as cysts, fibroadenomas or carcinomas. Fach type of lesion has
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Figure 1.7: Shadowing effect. Breast B-mode image, where the tumor and the shadow

produced by the beam attenuation are marked with arrows.

unique characteristics that are present when visualized in sonography.

1.4.1 Benign tumors

The majority of breast tumors detected by screening are benign |7|. Benign breast tumors
are non-cancerous areas in which breast cells have grown abnormally and rapidly, often

forming a lump [62].

Benign breast tumors are not life-threatening, and do not spread beyond the breast to
other organs. Still, some benign breast conditions are important to diagnose as they are

regarded as important risk factors in developing breast cancer.

In general, benign masses tend to be of low density, and vessels may be seen through
the mass. Malignant masses, however, are often denser than the adjacent parenchyma,
and may appear too dense for their size. The most common types of benign tumors are

described below.

Cyst

Cysts are fluid-filled, anechoic, well-marginated, round or ovoid structures. The incidence
of cysts is in as many as one third of women between 35 and 50 years old. Cysts cannot re-
liably be distinguished from solid masses by clinical breast examination or mammography;
in these cases, sonography is used. Figure 1.8 shows examples of Breast Ultrasound (BUS)

images with cysts.
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(b)

Figure 1.8: Benign tumors: cysts.

Fibroadenoma

Fibroadenoma (FA) is the most common lesion in the breast, and it occurs in 25% of
asymptomatic women [39]. It is usually a disease of early reproductive life. The peak
incidence is between the ages of 15 and 35 years, but they may be found in women of any
age. Women with fibroadenomas have a slightly increased risk of breast cancer (about 1.5

to 2 times the risk of women with no breast changes) [7].

Figure 1.9 shows examples of fibroadenoma tumors. In appearance, these masses are
firm, smooth and oval shaped, with borders that are distinct from the surrounding breast
tissue. They grow as spherical nodules that are usually sharply circumscribed, and movable
in the surrounding breast tissue. Since they are not filled with fluid like cysts, the masses

appear more heterogeneous.

(b)

Figure 1.9: Benign tumors: fibroadenomas.



1.4. LESION PATHOLOGIES 11

1.4.2 Malignant tumors

Characteristics of malignant lesions include a hypo-echoic nature (heterogeneous internal
echoes and acoustic shadowing), and irregular margins, as illustrated in Figure 1.10. Ma-
lignant tumors or carcinomas are the most common malignancy seen in the female breast.
Breast carcinoma can be categorized into two main groups: ductal carcinoma, where the
malignancy originates in ductal epithelial cells, and lobular carcinoma, where the malig-

nancy originates in the more distal cells of the lobule [116].

Figure 1.10: Malignant tumors: (a) invasive ductal carcinoma and (b) invasive lobular

carcinoma.

Each category is often subdivided into ‘in-situ’ (non-invasive) and infiltrating (invasive)

types.

Non-invasive breast cancer

Non-invasive breast cancer is also known as cancer or carcinoma in situ. This cancer
is found in the breast ducts, and has not developed the ability to spread outside the
breast. This form of cancer rarely shows as a lump in the breast, and is usually found in

a mammogram. The most common type of non-invasive cancer is Ductal Carcinoma In
Situ (DCIS).
Invasive breast cancer

Invasive Carcinoma (IC) has the ability to spread outside the breast, although this does

not mean it necessarily has spread. The most common form of breast cancer is Invasive
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Ductal Carcinoma (IDC), which develops in the cells that line the breast ducts. Invasive

ductal breast cancer accounts for about 80% of all breast cancer cases |7].

1.5 Computer Aided Diagnosis

Since the introduction of screening programmes, Computer Aided Diagnosis (CAD) has
become a part of the routine clinical work for diagnosis of breast cancer [34], mostly used
in mammography. A CAD system is a set of automatic or semiautomatic tools developed
to assist radiologists in the evaluation of medical images [19, 51]. With CAD, radiologists

use the computer output as a “second opinion”, and make the final decisions.

Nowadays, with the increasing use of complementary techniques such as sonography, re-
searchers have been working on CAD systems capable of dealing with them. Hence, CAD
systems are very important in sonography due to the complexity of US images as explained
before. Reading and understanding US images requires well-trained and experienced radi-
ologists. Furthermore, even well-trained experts may have a high inter-observer variation
rate; therefore, CAD has been investigated to help radiologists in making accurate diag-
noses. One advantage of a CAD system is that it can use some features which cannot be
obtained visually and intuitively by radiologists when performing the diagnosis process.
Another advantage is that CAD systems can reproduce the diagnosis process in different
images, eliminating the operator-dependent nature inherent in sonography. Current re-
search into the use of CAD systems is being done with an eye toward helping radiologists

to increase diagnosis accuracy, reduce the biopsy rate, and save time and effort.

Generally, ultrasound CAD systems for breast cancer detection involve four stages, as

shown in Figure 1.11.

1. Lesion detection: The task of lesion detection is to provide the spatial location of
the lesion in the image. Usually, a point inside the actual lesion region is reported

as a result.

2. Lesion segmentation: Image segmentation divides the image into non-overlapping

regions and it separates the objects (lesions) from the background.

3. Feature extraction: This step finds features that can accurately distinguish between

benign and malignant lesions.

4. Lesion classification: The task of lesion classification is to classify between benign and
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Figure 1.11: A CAD system for breast cancer diagnosis.

malignant lesions the suspicious regions found in the previous stages using machine

learning techniques.

1.6 Aims and objectives

One of the main research efforts in early detection of breast cancer is to include the devel-
opment of software tools to assist radiologists in the diagnosis procedure. Along this line,

the main objective of this thesis is

to provide the basis of a new CAD system capable of automatically

detecting, segmenting, and classifying breast abnormalities in ultra-

sound images.

The main objective can be divided as follows:

e Analyze the state-of-the-art sonography CAD methods. This focuses on the critical
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and technical study of the literature to learn the main solutions previously applied
to solve the detection, segmentation, and classification problem, and highlight ad-

vantages and drawbacks.
e Propose a novel methodology for automatic lesion detection in sonography.

e Propose a lesion segmentation algorithm suitable to be implemented in a real clinical

environment.
e Study the segmentation results according to the type of lesions.

e Investigate the inclusion of additional diagnostic information (i.e. elastography) into

the CAD proposal.

1.7 Thesis outline

This thesis is organized into three parts. The first part, Chapter 1 and 2, provides funda-
mental and background knowledge of the subject area and the state-of-the-art in techno-
logical development. The second part of the thesis, Chapter 3 to 5, presents the proposed
framework. The third part, concludes the thesis with an insight to future directions of

research and development, Chapter 6.

e Chapter 1 provides an overview of the thesis. It defines the problem domain, pro-
vides background knowledge of the subject area, and specifies the thesis’ aims and

objectives. Finally, it outlines the thesis’ organization.

e Chapter 2 provides a technical review of state-of-the-art image analysis approaches
used in ultrasound breast imaging, including different detection, segmentation, and
classification techniques. It further highlights advantages and limitations of the ex-

isting algorithms.

e Chapter 3 proposes a novel automatic lesion detection approach in breast US images.
The proposed approach adapts the Deformable Part Models methodology to be used
in sonography. The best configuration of parameters for lesion detection as well
as cancer detection is studied. Finally, the performance of the proposed method is

compared to the most relevant methods in the literature.

e Chapter 4 presents a lesion segmentation framework whose user interaction process

is reduced thus making it suitable for real clinical practise. The initialization of the
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segmentation method is reduced to a seed point that can be marked by the user with a
“one-click” interaction, or provided by a lesion detection method. It further analyzes
the results depending on the lesion type. This study allows one to obtain conclusions
regarding the best segmentation approach overall and depending on lesion type, as

well as which pathologies present more complexity for the segmentation process.

e Chapter 5 proposes the inclusion of elastography information in the segmentation
framework. This provides the necessary background knowledge of the elastography
technique, as well as a technical review of state-of-the-art approaches that use elas-

tography in CAD.

e Chapter 6 concludes the thesis with a summary of contributions made by the thesis,
limitations of the present context of research and an insight into future directions of

research.
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INTRODUCTION




Literature review

2.1 Introduction

When analyzing a new image from a patient, any CAD system needs to answer a set of
questions to help the radiologists in the diagnosis process. These questions are related to
the three main stages of all CAD systems: Detection (Where is the lesion?), Segmentation

(What are the lesion margins?), and Classification (Is the lesion a cancer?).

In this chapter, the recent state-of-the-art of detection, segmentation and classification
in breast sonography is reviewed. Notice that some works may propose one (i.e. only
segmentation) or more of these stages (i.e. detection + segmentation). In such cases, each

step is analyzed individually in its corresponding section.

2.2 A review of lesion detection methods on breast sonogra-

phy

Due to the artifacts inherent in sonography, lesion detection is an important procedure for

breast US CAD systems, in which the spatial location of the abnormality is automatically

17
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provided. As a result, this location is commonly labeled with a point inside the actual

lesion region or as a Region Of Interest (ROI).

The main goal of this section is to review the most important lesion detection algorithms
found in the state-of-the-art, pointing out their advantages and disadvantages, as well as
their evaluation results. These lesion detection methods can be classified into methods

based on image processing or machine learning techniques.

First, all of the metrics used by the literature methods are commented in the following

subsection.

2.2.1 Lesion detection evaluation criteria

When analyzing different detection methods of the state-of-the-art, different measures
are commonly used. A list of the most common criteria for assessing lesion detection is
presented below. Most of the measures take into consideration the elements of the confusion

matrix in Table 2.1. In terms of lesion detection, two play an important role:

e True Positive (TP): the algorithm returns as a detection a region that is actually a

lesion.

e False Positive (FP): the algorithm returns as a detection a region that is actually

background.
Table 2.1: Confusion matrix.
Reference
Positive Negative
Positive | True Positive (TP) | False Positive (FP)
Prediction - - -
Negative | False Negative (FN) | True Negative (TN)

The following measures have been proposed in the literature for lesion detection:

True Positive Rate (TPR), also called sensitivity [75] or accuracy [130] in other works,
determines the relationship between the number of true positive detections and the total

number of actual positives.

False Positive Rate (FPR), determines the fraction of False Positive (FP) out of the
total actual negatives. Notice that in [109], False-Positive Rate (FPR) is considered as the
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fraction of mis-detected images out of the total number of images.

Receiver Operating Characteristic (ROC) analysis is a graphic plot that illustrates
the performance of a classifier system as its discrimination threshold is varied. It is created
by plotting the fraction of true positives out of the total actual positives (TPR) vs. the
fraction of false positives out of the total actual negatives (FPR) at various threshold
settings. For quantitative results, the area under the curve (A,) is used. Figure 2.1 shows
an example of different ROC curves and their respective A, value. The ROC analysis has

been used to assess the following works: 35, 37, 38, 80, 94].
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Figure 2.1: Example of different ROC curves. A perfect test has an area under the ROC
curve A, of 1.0. The chance diagonal has an A, of 0.5. Tests with some discriminating

ability have ROC areas between these two extremes.

Free-response ROC (FROC) analysis is similar to the ROC analysis, except that
the false positive rate on the X-axis is replaced by the number of false positives per image.
FROC seeks location information from the algorithm, rewarding it when the reported lesion
is marked in the appropriate location, and penalizing it when it is not. For quantitative
results, the sensitivity (or TPR) at a certain number of FP /image is reported. The FROC
analysis has been used to assess the following works: [35, 36, 37, 38].
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Average Detection Error (ADE) is used in [134] as the average Euclidean distance
between the corners of the detected box (ROI) and the ground truth box (reference delin-
eated for the radiologist).

Precision Ratio (PR) is defined in [85] as follows:

Ncr
PR =—=— 2.1
= 21)
When detecting lesions, they divide the image into lattices which are then classified as

lesion or normal tissue. Let the number of lattices classified as lesion and normal tissue be

N¢, and the number of correctly classified lattices be Nog.

Recall Ratio (RR) is defined in [85] as follows:

_ Ncor

RR= 2% (2.2)

where Npg is the number of lattices in the actual lesion region.

2.2.2 Image processing detection

Image processing detection methods involve the use of common image analysis techniques
such as thresholding, filtering, or modeling. The lesion detection procedure is performed

directly to the target image without a previous training process.

Examples of these approaches are the work of Drukker et al. [35] who studied the use
of Radial Gradient Index (RGI) filtering. Each point in the image is multiplied with a
constraining function (bivariate Gaussian function). The resulting Gaussian constrained
image is then thresholded at several levels in order to generate a set of contours. The
RGI [79] is calculated for all the contours in every contour set. The maximum RGI value
of every contour set is used to generate a RGI image, which is thresholded to determine
a set of lesion candidates. A dataset of 757 images from 400 different cases was used in
order to evaluate the methodology in terms of ROC and Free-response Receiver Operating
Characteristic (FROC) analysis. An area under the ROC curve (A4,) value of 0.84, an
overall performance by case of 94% sensitivity at 0.48 FP per image, and a sensitivity
of 89% by image was reported in the original paper. Later, they tested their proposed
method with different datasets. First, in [38], with two different datasets, one of 757
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images from 400 patients, and one of 1740 from 458 patients, obtaining an Az value of
0.91, and a sensitivity of 90% at 0.45 FP/image. Notice that these results were reported
by case instead of by image. Further in [37|, they also used two different datasets, one
consisting of 151 images all from different patients, and one with 1740 images from 458

patients, obtaining an A, of 0.95, and a sensitivity of 80% with 0.6 FP per image.

To improve the detection of malignant tumors, Drukker and Giger [36] developed a non-
linear filtering technique based on the skewness of the gray-level distribution to detect
the posterior acoustic lesion shadowing rather than the lesion itself. They reported a
sensitivity of 66% per image at a rate of 0.25 FP /image, detecting malignant lesions for a
dataset consisting of complicated cysts, solid benign lesions, and malignant lesions, and a

sensitivity of 30% at 0.25 FP /image for the overall dataset (194 images from 94 patients).

Kutay et al. [80] applied the Power-Law Shot Noise (PLSN) model for tissue characteri-
zation. The PLSN model is generated using features extracted directly from the ultrasound
Radio Frequency (RF) signal. Parameters of their model are estimated from clinical ul-
trasound images, and then used in the detector. They obtained an A, of 0.97 detecting
lesions, and 0.81 for malignant lesion detection, using a dataset of 100 images from 25

cases.

Further, Yap et al. [130] proposed the use of hybrid filtering, multifractal processing, and
thresholding segmentation for lesion detection. They first pre-processed the US images with
histogram equalization and a speckle noise reduction process that uses a hybrid filtering
approach that combines the nonlinear diffusion filtering and linear filtering (Gaussian blur).
Then, multifractals [53] are used to further enhance the partially processed images. After
pre-processing, the images are thresholded and a rule-based candidate selection (based on
the size of the region and location) is used as a discriminative criterion. They evaluated

the detection performance in a dataset of 360 images obtaining an accuracy of 86%.

Shan et al. [109] proposed a lesion detection methodology that considered both texture
features and spatial characteristics. They first use the Speckle Reducing Anisotropic Dif-
fusion (SRAD) [133] as a de-speckling method. Once the image is de-speckled, an iterative
threshold selection algorithm is applied to segment the image. Only regions that intersect
with an image center region (a window about half the size of the entire image located
at the image center) are considered as lesion candidates. A True-Positive Rate (TPR) of

95.2% and a FPR of 4.76% were reported using a dataset of 105 images.

Summarizing, image processing detection methods are fast and avoid any kind of offline

computation. In principle. they can also be used in a dataset of any size since they do
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not need to split the dataset in training and testing. However, most of these methods are
designed to obtain good results in their own datasets, taking advantage of unique features
in their images such as lesion location, speckle noise influence or intensity appearance.
This sometimes leads to a poor generalization capability of the methods, specially with

different datasets.

2.2.3 Machine learning-based detection

Machine learning-based methods generate statistic models from a training dataset to detect

lesions in a target image using any sort of machine learning techniques and features.

One of the first works to include a machine learning detection process was Madabhushi
and Metaxas [88] in the proposal of a fully-automatic segmentation method. For detecting
lesions in sonography, they proposed using the Stavros criteria [116]| to determine which
pixels are most likely to be part of a lesion. The Stavros criteria integrates the posterior
probability of intensity and texture, constraining it with prior knowledge, taking the po-
sition of the pixel into account. To generate this posterior probability, a set of training
images are needed. Although they performed a detection step for seed placement in a

segmentation process, only the segmentation results were presented in the paper.

Mogatadakala et al. |94] proposed a nonparametric model based on different order statis-
tics estimated from multiresolution decompositions (wavelets) of energy-normalized subre-
gions. The features are then classified using a Linear Classifier (LC). They assessed the
detection method using a dataset of 204 images from 84 cases, achieving an area under the
ROC curve A, of 0.91.

Liu et al. [85] also used texture features in their method, where the image is divided into
lattices of the same size. The texture information (entropy, contrast, sum average and sum
entropy) of each lattice is extracted and then a well-trained classifier based on Support
Vector Machine (SVM) is employed for classifying the lattices. In the end, the ROI is
generated according to the classification results and a set of background knowledge-based
rules. They achieved an average PR of 82.33%, and an average RR of 83.81% using a
dataset of 112 images.

Zhang et al. [134] proposed a machine learning framework using a Probabilistic Boosting
Tree (PBT) classifier with Haar-like features [123] extracted from the image. They first
collect positive patches determined by the bounding boxes of tumors and negative patches

randomly cropped from background. Then Haar-like features are extracted and a PBT
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classifier [121] is trained, which involves the recursive construction of a tree where each
of its nodes is an Adaboost classifier [52]. When testing, given a new image, tumors are
detected by exhaustively checking all possible bounding boxes within a search range. They
assessed their method in a large dataset of 347 images from different patients, obtaining
an ADE of 15.47 pixels.

Jiang et al. [75] also presented a machine learning approach for automatic tumor detec-
tion using Haar-like features extracted from the image. In contrast, an Adaboost classifier
is used in their work to locate potential tumor locations. They assessed the detection
performance in a dataset of 112 images in terms of accuracy (87.5%), sensitivity (88.8%),
and specificity (84.4%).

Recently, Massich et al. [93] used a multifeature Bayesian machine learning framework
to determine whether a particular pixel of the image is a lesion or not. From the learning
step, a Maximum A Posteriori (MAP) probability plane of the target image is obtained
and thresholded with certain confidence. Then the largest area is selected as the candidate
region for further expansion. Their work evaluated the detection results in relationship
with the segmentation results: the segmentation results are analyzed depending on the

proximity of the seed point detected by the method to the actual lesion center.

Finally, Hao et al. [64] proposed a fully-automatic segmentation framework of breast le-
sions using an objective function combining Deformable Part Models (DPM) [48] detection
with intensity histograms, texture descriptors, and position information using a graph-cut
minimization tool and normalized cuts [112] as image segments. The deformable part-
based detector produces a large number of detections for potential lesion areas. Then,
instead of selecting the detection with maximum confidence and discarding all of the oth-
ers, they propagate the confidence of any detection to the corresponding segment. As in

Madabhushi and Metaxas’ [88] work, only the segmentation results were reported.

In summary, machine learning-based methods are in general robust and adaptable.
Since such methods are machine-learning-based, a particular model is constructed for each
dataset used, which makes the method adaptable to the specific characteristics of any
dataset. However, the extracted features used to train the classifier need to be sufficiently
distinguishable to discriminate between lesions and non-lesions. Moreover, the size and

variability of the dataset play an important role in the training and testing steps.
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2.2.4 False-positive reduction

Lesion detection in breast sonography is a difficult task because of the nature of the images,
which induces, in some cases, the detection of regions without the presence of abnormalities
(known as FP). Some of the works reviewed above require an extra procedure to reduce

the number of false positive detections and thus improve their results.

Drukker et al. [35, 37, 38] proposed the use of machine learning classification to reduce
the number of lesion candidates found in the lesion detection procedure. From the rough
contours generated by thresholding the lesion in the detection process, some features such
as lesion shape, margin sharpness, texture, acoustic characteristics and shadowing are
extracted. Then, a Bayesian Neural Network (BNN) is trained to discriminate between
actual lesions and FP results. In [35], results without FP reduction were reported to
assess the performance of this process. Specifically, they obtained a TPR of 87% with 0.76
FP /image before the FP reduction and TPR of 89% with 0.48 FP /image after the process.

Another methodology that proposed the use of an additional machine learning step in
their framework to reduce the number of false-positive results was presented by Jiang
et al. [75]. In their work, a SVM classifier is trained using quantized intensity features

extracted from the lesion candidate regions to remove FPs.

Finally, Shan et al. [109] proposed a region ranking procedure to assign a value of like-
lihood for each lesion candidate taking into account the variance of the intensity values in

the center of the region, the area of the region, and its position in the image.

Notice that the results of the methods that include a FP reduction step described in
sections 2.2.2 and 2.2.3 were obtained after this process. It is also worth commenting
that only Drukker et al. [35] published the intermediate detection results to evaluate the

performance of the FP reduction process.

2.2.5 Summary

In this section, different lesion detection approaches in breast US images have been re-
viewed. We have described several algorithms, pointing out their main features. Table
2.2 summarizes the analysis done on the principal methods discussed in this section. The
methods are first sorted by the detection criteria (image processing or machine learning-
based), and then, by year of publication (ascending order). Column FP reduction specifies
the process followed, if any. Column Classifier shows the machine learning technique used

by the machine learning-based detection methods, or in the FP reduction process. Note
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that in Jiang et al. [75], an AdaBoost was used for the initial detection, and a SVM classifier
for the FP reduction step.

Table 2.2: Summary of the results presented in the articles analyzed for lesion detection.

Reference Detection Method FP Classifier Measure Result # cases
reduction (# images)
Drukker (2002) [35] Image RGI Feature BNN A, 0.84 400(757)
processing filtering extraction TPR 0.89
FP/image 0.48
Drukker (2003) [36] Image Skewness - - TPR 0.66 94(194)
processing filtering FP/image 0.25
Drukker (2004) [38] Image RGI Feature BNN A, 0.91 400(757) &
processing filtering extraction TPR 0.9 458(1740)
FP/image 0.45
Drukker (2005) [37] Image RGI Feature BNN A, 0.95 400(757) &
processing filtering extraction TPR 0.8 151(151)
FP/image 0.6
Yap (2008) [130] Image Multifractal - - TPR 86% 360(360)
processing filtering
Shan (2008) [109] Image Thresholding Region - TPR 95.2% 105(105)
processing ranking FPR 4.76%
Madabhushi and Database Stavros - - - - -
Metaxas (2003) [88] trained criteria
Mogatadakala (2006) [94] Database Wavelets - LC A, 0.91 84(204)
trained
Liu (2010) [85] Database Feature - SVM PR 82.33% 112(112)
trained extraction RR 83.81%
Zhang (2010) [134] Database Feature - PBT ADE 15.47 pix. 347(347)
trained extraction
Jiang (2012) [75] Database Feature Feature AdaBoost/ TPR 88.8% 112(112)
trained extraction extraction SVM
Massich (2012) [93] Database Thresholding - - - - -
trained
Hao (2012) [64] Database DPM - LSVM - - -
trained

The analysis in Table 2.2 shows a trend for the newest algorithms to use machine learning
techniques. We can see that the most recent work using image processing detection dates
from five years ago. The adaptability of the machine learning-based methods to the specific
characteristics of the target dataset makes them an attractive choice when designing a novel
detection algorithm. They also do not need a false positive reduction step as most of the
detection methods based on image processing, with the exception of the approach presented
by Jiang et al. [75].

In addition, two of the traditional problems in machine learning works, computation
time and the dataset size, are no longer a difficulty. Currently, when dealing with machine
learning approaches, the offline computation is not an insurmountable problem. There is
also no need of large datasets for training and testing, since training/testing strategies such
as leave-one-out or k-fold cross validation may be used in reduced datasets to simulate the
performance of the approach in large datasets. However, a representative number of cases

is needed for a good performance.
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2.3 A review of lesion segmentation methods on breast sonog-

raphy

Segmentation of lesions or abnormalities is a fundamental procedure for breast CAD sys-
tems. The aim of segmentation is to divide the image into two different regions: foreground
(lesion) and background (other tissues). Subsequently, statistics of the suspicious area can
be computed to assist radiologists in the diagnoses, therefore, it is important to obtain

accurate boundaries of the masses.

The main goal of this section is to review the most important mass segmentation algo-
rithms found in the current literature, pointing out their advantages and disadvantages.
We also describe the evaluation of the methods reported in their papers indicating the
measures, results, and size of dataset used. All of the metrics are described in subsection
2.3.1.

Classification criteria of the methods is based on the methodology used for segmenting
the lesions, hence, the segmentation techniques are classified into histogram threshold-
ing, Active Contour Models (ACM), Markov Random Fields (MRF), machine learning,
watersheds, and graph-based methods. Note that some works combine more than one
methodology; in such cases they are assigned to the methodology with the most important

role in the segmentation process.

2.3.1 Lesion segmentation evaluation criteria

Multiple criteria arise in the literature when assessing different segmentation methods.
However, this criteria can be grouped into two categories depending if they are area or
distance based metrics as illustrated in Figure 2.2. Area based metrics evaluate the amount
of area shared between the segmentation obtained and the ground truth. On the other
hand, distance based metrics quantify the displacement between the obtained and the

desired lesion boundary.

Area based metrics

When analyzing the areas described in Figure 2.2(a), as a result of assessing the segmenta-
tion result with the reference delineation, four areas become evident: True Positive (TP),
True Negative (TN), False Positive (FP), and False Negative (FN); corresponding to the

regions of the confusion matrix in Table 2.1. In terms of object segmentation, these four
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SEGMENTATION REFERENCE SEGMENTATION

(a) (b)

Figure 2.2: Methodology evaluation. Graphic representation of (a) the evaluation in terms

of area and (b) boundary distance measures.
values mean the following,

e True Positives (TP): the number of pixels segmented as foreground that are actually

foreground.

e True Negatives (TN): the number of pixels segmented as background that are actually
background.

e False Positives (FP): the number of pixels that are incorrectly classified as foreground,

when they actually belong to the background.

e False Negatives (FN): the number of pixels that are incorrectly classified as back-

ground, when they actually belong to the foreground.

Expressing the results in terms of how many pixels belong to each of these classes is not
clear enough to determine how good the results are. For that reason, different area metrics
relating the four regions are commonly used. Most of the indexes are defined within the
interval [0, 1], where 1 indicates perfect overlap and 0 means no overlap at all, although

some works report their results as a percentage.

Dice Similarity Coefficient (DSC) [33] is a well-known measure, and is the most
commonly used. This measure penalizes the over-segmentation due to the FP being in-
cluded in the denominator. However, the TP is multiplied by two to give more relevance

to the well classified pixels. This measure is expressed as

2xTP
D = 2.
5¢ 2xTP+ FP+ FN (2:3)
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It is typically considered that DSC values equal to or higher than 0.7 suggest good agree-
ment between two segmentations [13]. The DSC metric has been used to assess the follow-
ing works: [54, 69, 71, 102].

Area Overlap (AO), also known as the Jaccard Similarity Coefficient (JSC) in [54] or
Similarity Index (SI) in [110], is another common similarity index presented by Jaccard [74].
It is defined as the ratio of the area of the mass automatically segmented to the area of
the mass segmented manually by an experienced radiologist (Ground Truth (GT)). This

measure is defined as

TP
AO_TP+FP+FN (24)
and is related to the DSC as
2-A0
DSC—1+AO (2.5)

Notice that the DSC is expected to be greater than the AO. The AO metric has been used
to assess the following works: [4, 28, 30, 54, 59, 64, 66, 86, 92, 102, 110, 134].

True-Positive Rate (TPR), also known as sensitivity [102] or overlap fraction (OF) [71],
measures the number of pixels correctly labeled as lesion with respect to the area of the

lesion reference

TP

TPR=Tp TN

(2.6)

The TPR metric has been used to assess the following works: [69, 71, 67, 84, 86, 88, 110,
131].

False-Positive Rate (FPR) corresponds to the number of pixels wrongly labeled as

lesion with respect to the area of the lesion reference as expressed in

FP
FPR= 75N (27)

The FPR metric has been used to assess the following works: [67, 84, 86, 88, 110, 131].
Notice that the FPR calculated as in equation 2.7 differs from the classic FPR obtained in



2.3. A REVIEW OF LESION SEGMENTATION METHODS ON BREAST
SONOGRAPHY 29

Table 2.1, which corresponds to the ratio between FP and the total number of negatives

(FP + TN).

False-Negative Rate (FNR)) is the number of pixels belonging to the actual lesion

delineation wrongly labeled as background as expressed in

FN

FNE =75 TFN

(2.8)

The FNR metric has been used to assess the following works: [67, 84, 88, 131].

Specificity measures the proportion of negatives correctly identified. Specificity is de-

scribed as

TN
PEFC = —— 2.
SPEC TN+ FP (2.9)
and is usually given as a complementary information on the sensitivity (TPR). The speci-

ficity index is also used to assess the work in [102].

Positive Predictive Value (PPV) is the probability that the pixel is well classified
when restricted to those pixels that test positive. It is computed as in equation 2.10. The
PPV metric has been used in [102].

TP

PPVZTP—i—FP

(2.10)

Normalized Residual Value (NRV), also found as the Precision Ratio (PR) [68],
corresponds to the residual area between the segmentation (S) and the reference (R) reg-

ularized by the size of the reference delineation as described in

Area(S @ R)

NRV = Area(S)

(2.11)

where @ represents an exclusive OR operation. The NRV metric has been used to assess

the following works: [59, 68|.



30 CHAPTER 2. LITERATURE REVIEW

Distance based metrics

Distance based metrics assess the displacement between the segmentation and the refer-
ence instead of comparing the resulting overlap. As in area metrics, multiple distance
criteria arise in the literature. Most of the boundary metrics are physical quantitative

error measures that are assumed to be reported in pixels.

Most of the works base their similitude indexes on the analysis of the Minimum Distance
(MD) coefficients. The MD corresponds to the minimum distance between a particular
point s; of the segmentation boundary S and any other point r; within the reference

delineation R, and is defined as

MD(s;, R) = miu [|s; — 75| (2.12)

J

Hausdorff Distance (HD) measures the maximum distance between the two delin-

eations S and R as defined in

HD(S,R) = max{maxMD(si,R),maxMD(ri,S)} (2.13)
s, €S r€ER

This definition of HD is used in [54, 55]. However, in other works, such as Madabhushi

and Metaxas [88] and Shan et al. [110], only the error between the assessed delineation S

and the reference delineation R is considered. Here it is denoted as HD’.

HD’(S, R) = max MD(s;, R) (2.14)

s, €S

Average Radial Error (ARE) was proposed by Huang et al. [67], and is defined as

follows

1 ¢~ 15(4) — R(3)|
ARE = — —_— 2.15
w2~ TR~ R (215)
A set of n radial rays are generated from the center of the reference delineation Ry in-
tersecting both delineations. The ARE index consists of averaging the ratio between the

distance of the two outlines |S(i) — R(7)|, and the distance between the reference outline

and its center |R(i) — Rp.
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Average Minimum Euclidian Distance (AMED) is the average MD between the
two outlines [54, 55|, and it is defined as

MD(s;, R r.ep MD(r5, S
AMED(S, R) = % Zsies 5 (si, R) i > JER 7 (ri,S) (2.16)

where |S| and |R| are the number of points in the segmentation and reference bound-
ary, repectively. As in the definition of Hausdorff Distance (HD), in Madabhushi and
Metaxas [88] and Shan et al. [110] only the error between the assessed delineation S and

reference delineation R is considered. Here it is denoted as AMED’

ZSiGS MD(SZR)

AMED’(S, R) = S

(2.17)

The AMED measure also appears in some works under the names of Mean Error [88] and
Mean absolute Distance [110].

Proportional Distance (PD) regularizes the AMED distance with the area of the

reference delineation according to equation 2.18. It is used in [4, 59].

PD(S, R) =

. MD iJR T MD i’S
1 '[Zsles (s )+216R (ri, ) * 100 (2.18)

9 Area(R) ‘ S‘ ‘ R|

T

Other metrics. Zhang et al. [134] proposed using average contour-to-contour distance
(Ecc) for assessing their work, and Chiang et al. [29] the use of Computer-to-Observer
Distance (COD). However, no definition or reference can be found in their work. Cheng
et al. [28] used a distance metric called the Williams Index to deal with multiple reference

segmentations as defined in

n

1

"2 1/Dso,
]:

n n

ey 22> 1/Do.o,
i=1j=1(#1)

WI(S,0) =

(2.19)

where O; denotes the jth set of manual delineations, n is the number of manual delin-
eations for each lesion, and Dy p is the average distance between the corresponding pair

of boundaries in sets A and B.
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2.3.2 Histogram thresholding

Histogram thresholding is one of the most widely used techniques for gray level image
segmentation. In a histogram thresholding method, an intensity threshold is chosen in the

valley of the image histogram to separate the image into background and foreground.

Horsch et al. [66] proposed the use of a segmentation algorithm based on maximizing
a Gaussian constraint function over partition margins defined through gray-value thresh-
olding of a preprocessed image, in which the visualization of the mass structures were
enhanced. The final segmentation consists of finding the margin that maximizes the Aver-
age Radial Derivative (ARD) measure. However, the center, width, and height of the lesion
need to be selected manually. The segmentation performance was tested on a 400-image
dataset achieving a mean AO of 0.73, comparing the segmentation results with delineations
of an expert radiologist. Massich et al. [92| proposed a similar methodology, where the
final margin is chosen using a disparity measure instead of maximizing the ARD function.
They evaluated the segmentation performance in a small dataset of 25 images obtaining a

mean AO of 0.64. However, they reduced the user interaction to a single click.

Yeh et al. [131] proposed an iterative disk expansion methodology. The authors showed
that contour extraction of breast lesions in ultrasound images can be achieved by removing
the speckle noise after image thresholding. This methodology can be divided into three
main parts: (1) an adaptive thresholding to convert an ultrasound B-mode image into a
binary image, (2) a disk expansion to extract the significant objects, and finally, (3) a
refinement of the the extracted object to obtain the more accurate lesion boundary. The
method was evaluated on only 4 clinical cases, reporting a mean normalized TPR over

90%. However, the method needs human interaction to provide the region of interest.

Histogram thresholding methods are fast and easy to implement, but do not perform well
for very noisy images or images with a high influence of inherent artifacts in sonography.
However, histogram thresholding methods have been widely used to obtain a rough segmen-
tation to initialize more complex techniques such as active contour models or graph-based
methods [71, 88].

2.3.3 Active Contour Models (ACM)

Active Contour Models (ACM), also known as snakes, is a framework for delineating an
object boundary from a 2D image, and has been massively used as an edge-based seg-
mentation method [4, 30, 54, 69, 71, 84, 86, 88] in BUS B-mode images. This approach
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attempts to minimize the energy associated with the current contour as the sum of the
external and internal energies. During the deformation process, the forces are calculated
from the internal and external energy. The external energy is used to adapt the contour
of the desired object boundary, and the internal energy is used to control the shape and

regularity of the contour.

Combining intensity, texture, and directional gradient, a deformable shape-based model
was presented by Madabhushi and Metaxas [88] to find lesion boundaries automatically.
In their method, a set of empirical rules used by radiologists in ultrasonic breast lesion
detection is employed to determine a seed point in the image automatically, indicating the
lesion location. An initial segmentation of the lesion is obtained classifying the image pixels
according to the intensity and texture, followed by region growing. Boundary points are
found using the directional gradient of the image. These boundary points are supplied as
the initial shape of a deformable model. This method does not need any manual initializa-
tion of the contour. A dataset of 42 images was used in order to evaluate the methodology
in terms of boundary error (6.6 pixels), TPR (75%), FPR (20.9%), and FNR (25%).

A watershed transform was used by Huang et al. [69] to generate an over-segmentation of
the image automatically. The regions are then merged depending on the region intensities
and texture features to obtain a rough tumor shape and boundary delineation. Next, ACM
automatically determines the contours of the tumor. They evaluated the methodology
using a dataset of 20 images achieving a SI (called DSC in other works) of 0.88 and a TPR
of 81%. Later in |71], they proposed to preprocess the image using a modification of the
anisotropic diffusion method. Then, histogram thresholding was used to generate an initial
contour for the level set procedure. A DSC of 0.88 and a TPR of 85.7% were reported

using a dataset of 118 images.

Alemén-Flores et al. [4] used a geodesic active contour method. They first preprocess
the image using an anisotropic diffusion method based on a texture description provided
by a set of Gabor filters. Then, a manual seed initializes a snake to produce an initial
segmentation, which is used to initialize a geodesic snake ACM using intensity information
of the inner and outer parts of the lesion. A dataset of 32 images with 4 ground truth
delineations provided by 2 radiologists was used to evaluate their results, achieving an
AO of 88.3% and a PD of 4.96 pixels. In a similar way, Cui et al. [30] presented a two-
stage active contour method. The initial contour was based on a manually identified point
approximately at the lesion center. The two-stage active contour method iteratively refines

the initial contour and performs a correction on the segmentation result. A mean AO of
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0.74 was reported on a large dataset of 488 images from 250 patients.

Liu et al. [84] proposed an automatic lesion segmentation algorithm using a level set-
based method, combining both global statistical information and local edge information.
The global information is used to model the statistical information of speckle patterns
to handle the noise and undefined boundaries, while the local information is extracted
from the edges of the lesion. A dataset of 103 images was used in order to evaluate
the methodology in terms of TPR (91.31%), FPR (7.26%), and FNR (8.69%). Later, in
[86], they proposed a level set-based active contour model obtained by fitting a Rayleigh
distribution to training lesion samples. The level set evolves then to fit the model into the
target image. The level set initialization corresponds to a centered rectangle of one third
the size of the target image. Despite its naive initialization, the reported average AO using

a dataset of 76 images is 0.88.

Recently, Gao et al. [54] combined an edge stopping term taking into account phase
congruency texture and a modified Gradient Vector Flow (GVF) in a level set-based frame-
work. They evaluated their proposal in a small dataset of 20 images achieving a mean AO
of 0.863.

Although accurate segmentation results are reported using ACM, they are largely linked
to the active contour initialization. Some methodologies work directly with ROIs to avoid
this problem, while others use simpler segmentation methods to obtain an initial rough

contour. Furthermore, the snake-deformation procedure is very time-consuming.

2.3.4 Markov Random Fields (MRF)

The segmentation problem can be seen as a labeling problem consisting of assigning a set
of labels to pixels. This is a natural representation for MRF [125]. This methodology
alternatively approximates the maximization of the posterior estimation of the class labels
and estimates the class parameters. A MRF model deals with the spatial relations between
the labels obtained in an iterative segmentation process. The process of assigning pixel
labels iteratively can be achieved by maximizing either a posteriori estimation or a posterior

marginal estimation.

For instance, Xiao et al. [129] defines the ultrasound image as a multiplicative model in
which one of the components is a distortion field. It uses a combination of the Maximum A
Posteriori (MAP) and MRF to estimate that distortion field while labeling image regions

based on the corrected intensity statistics. The MAP is used to estimate the intensity
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model parameters while the MRF provides a way of incorporating the distributions of
tissue classes with a spatial smoothness constraint. The method is implemented iteratively
in an Expectation-Maximization (EM) approach, and the distributions of tissue classes
are defined as a Gaussian distributions. The method is only qualitatively evaluated in
a reduced set of synthetic and real data, and one of the main drawbacks is the user
interaction. The user is required to determine different ROIs placed inside and outside the

lesion in order to extract the intensity distribution in both regions.

MRF is also used by Boukerroui et al. [20] to model the segmentation process, and to
focus on the adaptive characteristics of the algorithm. They introduced a new function
to control the properties of the segmentation process, taking local and global statistics
into account. The performance of the algorithm is demonstrated on synthetic data, a
BUS image and on echocardiographic sequences. No quantitative results were reported

regarding breast sonography.

The merit of MRF modeling is that it takes advantage of the pixel neighboring corre-
lations. However, its iterative process is in general complex (easy to get stuck in local

minima states) and time-consuming.

2.3.5 Machine learning

When addressing the lesion segmentation problem, machine learning is also a useful and
reliable alternative. Machine learning takes advantage of ground truth data to build up a
model for predicting or inferring the nature of elements with no such GT provided. Thus,
these models generated from a training procedure can be used to drive a segmentation

procedure.

Zhang et al. [134] proposed using a two-step machine learning procedure. First, a su-
pervised machine learning for lesion detection is performed using a PBT. Detected regions
with high confidence of being lesion or non-lesion are further used to learn the appearance
model of the lesion within the target image. The second step consists of a supervised
machine learning segmentation procedure trained on the target image using the previous
detected regions. They evaluated their proposal in a dataset of 347 images, achieving an
AO value of 84%, and an average contour-to-contour distance of 3.75 pixels. However,
they only used 90% of the segmentations to perform the segmentation assessment, arguing
that the remaining segmentations suffered poor detection, and that segmentation results

assessment should not be subject to wrong initializations.
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Later, Shan et al. [110] proposed using the lesion detection to initialize a region growing
procedure to obtain a rough segmentation and, hence, generate a ROI automatically. Then
a database driven supervised machine learning segmentation procedure is carried out in
the ROI to determine a lesion/non-lesion label for all the pixels. The segmentation stage
takes advantage of intensity, texture, energy-based phase information, and distance to
the initially detected contour as features for the training process using an artificial Neural
Network (NN). They assessed the segmentation performance using a dataset of 120 images,
obtaining a SI (DSC in other works) of 0.83, a TPR of 92.8% and a FPR of 12%.

Hao et al. [64] proposed segmenting automatically breast lesions using an objective
function combining a machine learning technique (Deformable Part Models (DPM)) [48]
with intensity histograms, texture descriptors derived from grey-level co-occurrence matrix
and position information using a graph-cut minimization tool and normalized cuts [112] as
image segments. They evaluated the segmentation performance in a large dataset of 480

images achieving, an AO of 75%.

For machine learning methods, feature selection and training processes are two important
steps highly influence the segmentation results. If the extracted features are sufficiently
distinguishable and the method is well trained, machine learning methods can generate sat-
isfactory lesion segmentations. However, over-training or insufficient training may severely
affect the segmentation performance on new data. Note that the training process is usually

time-consuming, but is often performed offline.

2.3.6 Watershed transformation

The intuitive idea underlying this technique comes from topography. Any gray-level image
can be considered as a topographic surface. If we flood this surface from its minima and
prevent the merging of the waters coming from different sources, the image is partitioned
into two different sets: the catchment basins and the watershed lines. If we apply the
watershed transformation to the image gradient, the catchment basins should theoretically

correspond to the homogeneous gray level regions of the image.

Huang et al. [68] integrates a Self Organizing Map (SOM) NN classification with mor-
phological watershed segmentation. Texture features are employed to yield inputs to the
SOM NN. Finally, the watershed transformation automatically determines the contours of
the tumor. The method was evaluated in a dataset of 20 images achieving a PR (NRV in
other works) of 0.82 and a match rate (TPR in other works) of 95%.
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Another work based on watershed is the work proposed by Gomez et al. [59] where
a watershed transform is used to condition a Gaussian constraining function. As in the
Horsch et al. [66] proposal, ARD maximization is used in order to find the adequate
threshold that leads to the final segmentation. The method deals with ROIs instead of the

entire image. A mean AO of 0.85 is reported using a 50 image dataset.

Recently, Cheng et al. [28] presented a two-step perceptual organization process to seg-
ment a breast lesion in sonography. Initially, a two-pass watershed transformation is per-
formed to tessellate a ROI into a cell structure. Then, a cell competition process is carried
out by allowing merge and split operations of cells. The method then performs a contour
grouping to organize the edge entities found in the first step. Their method was evaluated

in a 324 image dataset obtaining an AO of 92.4%.

In general, watershed-based methodologies are used for fast segmentation, but they face

the problem of oversegmentation, and are sensitive to the initialization of the method.

2.3.7 Graph-based methods

Graph partitioning methods can effectively be used for image segmentation. In these
methods, the image is modeled as a weighted, undirected graph. Usually a pixel or a group
of pixels are associated with nodes, and edge weights define the (dis)similarity between
the neighborhood pixels. The graph (image) is then partitioned according to a criterion
designed to model “good” clusters. Each partition of the nodes (pixels) output from these

algorithms are considered to be an object segment in the image.

Chiang et al. [29] proposed a graph-cut segmentation method that transforms prominent
regions within a given ROI into graph nodes instead of pixels. These prominent regions
are obtained by using a two-pass watershed transformation. The method was evaluated in

a small dataset of 16 images obtaining a value of COD of 2.71 pixels.

Later, Jiang et al. [75] proposed the use of a graph-based segmentation algorithm (ran-
dom walks) [61] to retrieve the boundaries of previously detected tumor regions. The
detection process is performed in a two-stage classification. First, the method uses an Ad-
aBoost classifier on Haar-like features to detect a preliminary set of tumor regions. These
regions are further classified with a SVM using quantized intensity features. However, the

segmentation step of their proposed method was not evaluated quantitatively.

Huang et al. [67] presented a segmentation algorithm that constructs a graph using im-

proved neighborhood models. They also proposed a pairwise region comparison predicate
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to determine the mergence of adjacent subregions. This predicate takes into account the
local statistics and the measures of Signal to Noise Ratio (SNR) in US images to make the
segmentation insensitive to noise. They evaluated the method in a dataset of 10 benign
and 10 cancerous images. For the benign lesions, they achieved a TPR of 87.4%, a FPR
of 1.6%, and an ARE of 9.2 pixels. For the cancerous lesions, a TPR of 87.6%, a FPR of
1.8%, and an ARE of 8.1 pixels.

Contemporarily, Gao et al. [55] proposed the use of a normalized cuts framework [112]
with textural features extracted from homogeneous patches of the image. The algorithm
was evaluated in a dataset of 100 breast US images (50 benign and 50 malignant). The
mean HD measure, the AMED measure and the AO measure achieved 7.1 pixels, 1.58
pixels, and 86.67%, respectively, for benign tumors whereas 10.57 pixels, 1.98 pixels, and
84.41%, respectively was achieved, for malignant tumors. Their algorithm requires manual

specification of a ROI.

The use of graph-based methodologies has increased over the last few years. By analyzing
the graph-based current methodologies we can see that it obtains good results, although

some kind of user interaction is needed in most of the algorithms.

2.3.8 The role of user interaction in lesion segmentation methods

Since segmentation algorithms are designed to be integrated with a CAD system, the degree
of user interaction involved in the segmentation procedure is an important factor to take
into consideration. Here, we analyze the segmentation methods regarding their degree of

automatization: semi-automatic or fully-automatic.

Semi-automatic segmentation

Semi-automatic segmentation methods require some degree of user interaction. Commonly,
the user constrains or initializes the segmentation procedure by indicating parts or elements
belonging to each object to be segmented (i.e. foreground/background). This is the case
of Xiao et al. [129], where the user defines two windows (one for the lesion, one for the
background) to analyze the histograms of these regions. Other works such as |28, 29, 54,
55, 59, 68, 131], require the specification of a ROI that envelops the lesion. Finally, the
semi-automatic methodologies which need less interaction are those that only require a
seed point inside the lesion [4, 30, 66, 92, 102]. Finally, other works such as Huang et

al. [67] proposed a segmentation method that needs the user to tune some parameters to
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achieve a good final result.

Nowadays, semi-automatic methods play an important role in CAD systems since the
fully-automatic segmentation problem needs to achieve a better performance. It is clear
that manual delineations are unacceptable in a clinical environment due to the amount of
time and effort needed, as well as the huge inter- and intra-user variability. Hence, semi-
automatic methods have become a trade-off that reduces the inherent problems in manual

segmentation by taking advantage of the user to assist the segmentation procedure.

Fully-automatic segmentation

Fully-automatic segmentation methods perform the segmentation procedure without any
user interaction. In this category, two distinct strategies have been adopted. First, there
are methodologies that automatize semi-automatic procedures so that no user interaction
is required, commonly including a lesion detection procedure |71, 75, 88, 110, 134]. And
second, there are ad-hoc methodologies designed in a manner that can not be supplied by
user information |20, 64, 68, 69, 67, 84, 86, 131].

Although automatic segmentation of breast lesions in sonography needs to achieve a
better performance, huge efforts to obtain lesion delineations with no user interaction have

been made in the last few years.

2.3.9 Summary

We have presented and reviewed different approaches to the automatic and semi-automatic
segmentation of lesions in ultrasound images. We have described several algorithms, point-
ing out their main features. Special emphasis has been put on the different strategies and a
classification of these techniques has been proposed. In each method description, we have

outlined the main advantages and disadvantages.

Table 2.3 summarizes the analysis of the principal methods discussed in this section.
The methods are first sorted by the method used (histogram thresholding, active contours,
MRF, machine learning, watersheds, and graph-based), and then by the year of publication

(ascending order).

In order to compare the different segmentation methods more clearly, Table 2.4 provides

descriptions, advantages and disadvantages of the different methods at a glance.

Analyzing Table 2.3, we notice that, as in lesion detection, the introduction of the
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Table 2.3: Summary of the results presented in the articles analyzed for lesion segmenta-

tion.

Reference Method User interaction Measure Result 7 cases (# images)
Horsch (2001) [66] Histogram thresh. Seed point AO 94% 400(757)
Yeh (2009) [131] Histogram thresh. ROI specified TPR 90% 4(4)
FNR 15%
FPR 16%
Massich (2010) [92] Histogram thresh. Seed point AO 64% 25(25)
Madabhushi and Active contours - TPR 75.1% 42(42)
Metaxas (2003) [88] FNR 25%
FPR 20%
HD 19.72 pix.
AMED 6.6 pix.
Huang (2005) [69] Active contours - DSC 0.88 20(20)
TPR 81%
Huang (2007) [71] Active contours - DSC 0.87 118(118)
TPR 85.7%
Aleman Flores (2007) [4] Active contours Seed point AO 88.3% 32(32)
PD 4.96 pix.
Cui (2009) [30] Active contours Seed point AO 74.5% 250(488)
Liu (2009) [84] Active contours - TPR 91.3% 103(103)
FNR 8.7%
FPR 7.3%
Liu (2010) [86] Active contours - DSC 0.88 46(46)
TPR 93.9%
FPR 6.9%
Gao (2012) [54] Active contours ROI specified DSC 0.93 20(20)
OA 86%
HD 7 pix.
AMED 2 pix.
Xiao (2002) [129] MRF Histogram analysis - - -
Boukerroui (2006) [20] MRF - - - -
Zhang (2010) [134] Machine learning - AO 84% 347(347)
Ecc 3.75 pix.
Hao (2012) [64] Machine learning - AO 75% 480(480)
Shan (2012) [110] Machine learning - DSC 0.83 120(120)
TPR 92.8%
FPR 12%
Huang (2004) [68] Watersheds ROI specified TPR 94.6% 20(20)
NRV 81.7%
Gomez (2010) [59] Watersheds ROI specified AO 86% 50(50)
NRV 16%
PD 6.58 pix.
Cheng (2010) [28] Watersheds ROI specified AO 92.4% 324(324)
WI 1.07 pix.
Chiang (2010) [29] Graph-based ROI specified CcOD 2.71 16(16)
Jiang (2012) [75] Graph-based - - - -
Huang (2012) [67] Graph-based Parameter select. TPR 87% 10(10) benign
FPR 2%
FNR 13%
ARE 9.2 pix.
TPR 88% 10(10) cancerous
FPR 2%
FNR 13%
ARE 8.1 pix.
Gao (2012) [55] Graph-based ROI specified AO 86.6% 50(50) benign
HD 7.1 pix.
AMED 1.58 pix.
AO 84.4% 50(50) cancerous
HD 10.57 pix.
AMED 1.98 pix.
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Table 2.4: Advantages and disadvantages of the segmentation techniques reviewed.

Method Description Advantages Disadvantages
. No good results for
) Threshold value is . .
Histogram . images with
. selected to segment Simple and fast. .
thresholding non-bimodal

the image.

histograms.

Active contour

model

Snake-deformation

model is utilized.

It ensures closed

region boundaries.

Slow in the iteration
process. Pre-labeled
ROTI or initial
contour is required.
Complex definition
of internal and

external energies.

Markov random
fields

Probabilistic model
which captures pixel
neighborhood

constraints.

Smooth and accurate

segmentation.

Complex (easy to
get stuck in local
minima states) and
time-consuming for

many iterations.

Machine learning

Segmentation is
regarded as a

classification task.

Different lesion
characteristics can
be incorporated by

feature extraction.

How to select the
training set is
problematic, and
training is
time-consuming and
depends on the

image database.

Watershed

Considers image as a
topographic surface
where the grey level
of a pixel is
interpreted as its
altitude.

It ensures closed

region boundaries.

Over-segmentation
problem is not
completely solved.
Sensitive to the

initialization.

Graph-based

The image is
modeled as a
weighted, undirected
graph and is then
partitioned
according to a
criterion designed to

model good clusters.

Good approximation
of the optimal
segmentation can be
computed very

efficiently.

Requires user

interaction.

machine learning segmentation in the state-of-the-art has been done in the last few years.

The same trend can be observed with the graph-based methods, in which the oldest method
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analyzed dates from 2010. Also, recent works using watershed-based segmentation methods
were found in the literature, but only the work of Chen et al. [28] assessed the method
in a large dataset. Active contour based methods have been widely used for the past ten
years, and still are. They reported good results, although most have been tested in small
datasets, and the correctness of the results are highly subject to the initialization of the
contour. Histogram thresholding is not a feasible option nowadays due to the complexity of
current US images, in which the tissue structures are displayed with higher definition and
detail. Finally, it is not possible to extract any trend from MRF segmentation methods

due to the fact that any of these methods presented quantitative results.

We have also analyzed the segmentation methods regarding the user interaction involved.
We consider this as a complementary information that needs to be taken into account in
the comparison. For example, it is clear that a method that segments a given specified ROI
would have to obtain a better performance than methods dealing with the entire image
because in a ROI most of the artifacts are avoided. Analysis of Table 2.3 shows that, among
the most contemporary works, machine learning-based methods are fully automatic and

obtained good results, while graph-based methods require user interaction.

2.4 A review of lesion classification methods on breast sonog-

raphy

Finally, an important stage in a CAD system is the classification of the detected lesions.
Needless to say, the relevance in any diagnosis to determine if a located lesion is benign
or malignant is uppermost. Hence, the CAD system extracts features from the previously
segmented region to train a classifier to distinguish between cancerous and non-cancerous

abnormalities with a certain likelihood and, thus, helps radiologists in their diagnosis.

The main goal of this section is to review the most relevant works in lesion classification
found in the literature. These lesion classification methods can be grouped regarding the

classifier used to distinguish between cancerous and benign lesions.

2.4.1 Linear classifiers (LC)

Linear Classifier (LC) are easy and fast to implement due to the use of a discriminative
lineal function. Horsch et al. [65] used the segmentation results [66] to extract features

such as lesion shape, margin sharpness, echogenic texture, posterior acoustic enhancement,
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and shadowing, and then trained a LC to distinguish cancerous lesions from benign ones.
They achieved an A, value of 0.87 using a dataset of 757 images from 400 different cases,

in which 94 were malignant.

Some works do not specify the segmentation method used, and focus the work on the
features used to classify the lesions. This is the case of Seghal et al. [107], who used
the margin sharpness, margin echogenicity, and angular variation in the margin to classify
lesions in a dataset of 56 images, in which 36 were benign and 20 were malignant, obtaining
an A, value of 0.87.

Shen et al. [111] also focused on the extracted features. The segmentation of the lesions
was performed consensually by two expert radiologists. Subsequently, shape, orientation,
margin, lesion boundary, echo pattern, and posterior acoustic features are used to discrim-
inate between malignant and benign lesions. They achieved an A, value of 0.97 with a

dataset of 265 images, including 180 benign and 85 malignant masses.

Finally, within the methods that used a LC, the recent work by Alvarenga et al. 6]
should be mentioned. They investigated the combination of morphological and texture
parameters to distinguish between malignant and benign breast tumors. First, radiologists
determine the ROI in the image, and then segmentation is achieved [115]. An exhaustive
analysis for 27 different features and their combinations is then performed. The best-
performance was obtained with the combination of two morphological and three texture
features, resulting in an A, value of 0.87 in a dataset of 246 images from 197 patients,

containing 177 malignant and 69 benign tumors.

2.4.2 Neural networks (ININ)

Neural Network (NN) are inspired by the way biological nervous systems process informa-
tion. They are usually presented as systems of interconnected neurons that can compute
values from inputs by feeding information through the network. Chen, D.R. et al. [25] pre-
sented a lesion classification algorithm where initially an expert radiologist locates the ROI
in the image, and then, a naive segmentation algorithm is performed. Cooperating with the
segmentation algorithm, three feasible features, including variance contrast, autocorrela-
tion contrast, and the distribution distortion of wavelet coefficients are extracted from the
ROI images for further classification. A multilayered perceptron NN trained using an error
back-propagation algorithm with momentum is then used for the classification of breast
lesion. In the experiment, 242 cases including benign breast tumors from 161 patients and

carcinomas from 82 patients were sampled to evaluate the performance, resulting in an A,
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value of 0.93.

Further, Chen, C.M. et al. |24] proposed a classification work using a multilayer feed-
forward NN on the basis of novel morphologic features such as the number of substantial
protuberances and depressions, lobulation index, elliptic-normalized circumference, elliptic-
normalized skeleton, and long axis to short axis ratio. In order to obtain these features, the
delineation of the tumors was performed by expert radiologists. The results were assessed

in a dataset of 271 images (140 with malignant lesions) reaching an A, value of 0.96.

Joo et al. [77] determined whether a breast mass is benign or malignant by extracting
features with a naive segmentation algorithm applied to a manually preselected ROI. A NN
then distinguished malignant lesions based on five morphological features representing the
shape, edge characteristics, and darkness of the mass. They assessed the classification in
a dataset of 584 images containing 300 benign and 284 malignant breast lesions, obtaining
an A, value of 0.95.

Finally, the work by Drukker et al. |37], which has already been presented in section 2.2.2,
proposed the classification of the segmented regions using a Bayesian Neural Network
(BNN) on the basis of the extracted image features. The features used in their work are the
same as those used in Horsch et al. [65]. They used two different datasets, one for training
and one for testing. The first dataset was composed of 1740 images from 458 patients (23
with cancerous lesions, 204 benign ones and 231 patients without abnormalities), and the
second by 151 images, all from different patients (45 with cancerous lesions, 100 benign
ones and 6 patients without abnormalities). They reported A, values of 0.81 and 0.86,

distinguishing between benign and malign lesions for the two datasets.

2.4.3 Support vector machines (SVM)

Support Vector Machine (SVM) is a discriminative classifier formally defined by a sepa-
rating hyperplane in a multidimensional space. Given labeled training data (supervised
learning), the algorithm outputs an optimal hyperplane that categorizes new examples.
Huang et al. [69] proposed the use of a SVM to classify features extracted from a ROI
specified by an expert radiologist. They used the correlation between neighboring pixels
in the images as features to classify breast tumors. Two different datasets were used to
assess the proposal. First, a dataset of 140 images (88 with benign and 52 with malignant
tumors) achieved an A, value of 0.96. Second, a dataset of 250 images (215 with benign

and 35 with malignant tumors) achieved an A, value of 0.95.
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Later in [72], they outperformed the results using different texture features, such as block
difference of inverse probabilities, block variation of local correlation coefficients, and auto-
covariance matrix, to train the SVM classifier. They obtained an A, value of 0.96 using a

dataset of 250 images.

2.4.4 Summary

A summary of the results reported by the principal methods discussed in this section is
presented in Table 2.5. The methods are first sorted by the classifier used (linear classifier,
neural networks, or support vector machines), and then by year of publication (in ascending

order).

Table 2.5: Summary of the results presented in the articles analyzed for lesion classification.

Reference Classifier Training User interaction Features Measure Result 7 cases
(cancer/benign)

Horsch (2002) [65] LC Split dataset - Morphologic/ A, 0.87 400
texture (94/306)

Seghal (2004) [107] LC Leave-one-out N/A Morphologic/ A, 0.87 56
texture (20/36)

Shen (2007) [111] LC 10-fold cross Manual Morphologic/ A, 0.97 265
validation delineation texture (85/180)

Alvarenga (2012) [6] LC Split dataset ROI specified Morphologic/ A 0.87 197
texture (177/69)

Chen, D.R. (2002) [25] NN 10-fold cross ROI specified Texture A, 0.93 242
validation (82/161)

Chen, C.M. (2003) [24] NN Split dataset Manual Morphologic A, 0.96 271
delineation (140/131)

Joo (2004) [77] NN 10-fold cross ROI specified Morphologic A, 0.95 584
validation (284/300)

Drukker (2005) [37] NN Leave-one-out - Morphologic/ A 0.81 458
texture (23/204)

0.86 151
(45/100)

Huang (2005) [69] SVM 10-fold cross ROI specified Texture A, 0.96 140
validation (52/88)

0.95 250
(35/215)

Huang (2006) [72] SVM 10-fold cross ROI specified Texture A, 0.96 250
validation (35/215)

Regarding the classification methods reviewed, it is not possible to conclude which clas-
sifiers work better than others as well as which are the best features to distinguish between
malignant and benign tumors. However, both play a key role in the classification results.
Analysis of Table 2.5 shows that half of the methods (5 out of 10) chose the use of com-
bined texture and morphological features, while 3 used texture information alone, and
only 2 proposals chose the use of morphological features alone. In most of the works, these
features are extracted after a segmentation process requiring user interaction (definition of

a ROI or manual delineation of the lesion).
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In regard to the training and testing process, only 3 methods divide their dataset into
training and evaluation subsets. The k-fold cross validation is the most used procedure
(understanding the leave-one-out as a specific case where k is the number of images).
Analyzing the composition of the datasets used, only 3 works trained and assessed their
classification methods using a balanced dataset (in which the number of malignant and
benign cases are approximately the same). Hence, we notice a trend to use datasets in
relationship to the screening population (the number of benign findings is higher than
malignant ones), except in the case of Alvarenga et al. |6], who used a dataset with more

malignant than benign lesions.

Although the results are easily comparable due to the majority use of ROC analysis
in the assessment, the lack of a common dataset makes the comparison impossible. For
example, a dataset formed only of carcinomas and cysts would obtain better results (both
type of lesions are highly distinguishable) than a dataset formed of carcinomas and solid

benign masses (the lesions may look similar in some cases).

2.5 Conclusions

In this chapter we have performed a survey of the most important works in CAD sonogra-
phy. However, an accurate and fair comparison of these works is not feasible. The major
inconveniences are the lack of common assessing datasets and the inhomogeneity of the
assessing criteria. Despite these inconveniences, some trends can be extracted from this

survey.

In regard to the lesion detection methods listed in Table 2.2, a trend for the newest
algorithms to use machine learning techniques should be noticed. One can justify this
trend because of the adaptability of the machine learning-based methods to the specific
characteristics of the target dataset, as well as their avoidance of the use of an extra false

positive reduction step (necessary in most detection methods based on image processing).

In Table 2.3 we have reviewed the most relevant works in lesion segmentation. The
newest algorithms tends to use machine learning or graph-based techniques. Machine
learning methods obtained good results in large datasets and are fully automatic. On
the other hand, all the graph-based methods studied were tested in small datasets and
require user interaction. Watershed methods obtained good results, but they also require
user interaction. We consider the intervention of a user in the method as complementary

information that needs to be taken into account. For example, it is clear that a method that
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segments a given specified ROI would have to obtain a better performance than methods
dealing with the entire image because, in a ROI, most of the artifacts are avoided. Active
contour based methods have been widely used for ten years, and still are because they
report accurate results, even though their correctness is highly subject to the initialization
process. Nowadays, histogram thresholding is mostly used for initial rough segmentation
generation. The complexity of the current sonography, in which the tissue structures are
displayed with higher definition and detail, makes it infeasible for an accurate segmentation.
Finally, it is not possible to extract any trend from MRF segmentation methods due to

the fact that any of these methods presented quantitative results.

Regarding the classification methods studied in this chapter (see Table 2.5), some factors
play an important role in obtaining a better classification: the features, the classifier,
the train/test procedure and the dataset. In terms of features, we can observe a trend
for the classification methods to use combined texture and morphological features. In
most of the works, these features are extracted after a segmentation process that requires
user interaction (definition of a ROI or manual delineation of the lesion). In regard to
the training and testing process, most of the methods used the k-fold cross validation
(understanding the leave-one-out as a specific case where k is the number of images).
Finally, analyzing the composition of the datasets, a trend can be noticed in the use of
datasets in relationship with the screening population (the number of benign findings is

higher than malignant ones).
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Automatic breast lesion detection

3.1 Introduction

Detection of lesions in their early stages is a key factor in reducing the death rate. The
earlier the disease is detected, a better and more effective treatment can be provided.
Thus, one of the most important steps in CAD systems is the detection of the lesion. This
process should ideally be unsupervised to help the radiologist make a diagnosis efficiently.

For this reason, high sensitivity and specificity are required.

After the analysis performed in Chapter 2, we noticed a trend for the newest algorithms
to use machine learning techniques due to the proved adaptability to the specific charac-
teristics of a target dataset, as well as the good results obtained. Therefore, in this chapter

we propose the use of a machine learning technique to detect lesions in sonography.

Lesion detection can be seen as a specification of the well-known object detection problem
in computer vision. Thus, we propose to adapt a generic object detection technique to
locate lesions in breast US images. Specifically, we propose the use of Deformable Part
Models (DPM) presented by Felzenszwalb et al. [48], which was awarded the PASCAL
VOC “Lifetime Achievement” Prize in 2010 [45]. The aim of the work presented in this

49
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chapter is to adapt and evaluate the DPM approach to detect breast abnormalities in
BUS B-mode images and compare the performance of this method with the most relevant

proposals in the literature.

3.2 Deformable Part Models overview

The DPM approach [48] models the appearance of objects in terms of a root filter that
approximately envelops the whole object, a set of part filters that cover smaller and repre-
sentative parts of the object and deformation parameters penalizing the deviation of the

parts from their default locations relative to the root using a latent SVM classifier.

The method uses a scanning window approach that searches a model over a Histogram
of Oriented Gradients (HOG) pyramid [31] to detect objects in different scales. HOG are
feature descriptors used in image processing for the purpose of object detection. The image
is divided into small spatial rectangular regions (cells) and, in each cell, a weighted local
1-D histogram of gradient directions over the pixels of the cell is computed. Figure 3.1

shows an example of generating a HOG feature vector.

HEPZCAEsCNNEN EEEEENEHENENN
NES amNESNE NS
EUNNNERNNNERE HZZEERA NN

ANNNNENNNNENN iERNREEANE
HENENENNENESE ENEASENNrE

NESRNRNNNNREE ENSHGUNERZLER
JERERESENNEEN NONRENEHEEERG

(b) (c)

Figure 3.1: Example of generating a Histogram of Oriented Gradients (HOG) feature

vector. (a) Original image of a breast lesion in a US image, (b) image divided into cells
(c) resulting HOG descriptor for the image showing the gradient orientation histograms in

each cell.

The HOG pyramid is defined by computing the HOG features at each level of an image
pyramid. Hence, features at the top level capture coarse gradients, while at the bottom
level, finer gradients are captured. The scale sampling in a feature pyramid is determined
by a parameter A\ defining the number of levels we need to go down in the pyramid to
get a feature map computed at twice the resolution of another one. Figure 3.2 shows a
representation of the feature pyramid detecting lesions in a breast US image. The feature

pyramid is built via repeated smoothing and subsampling, and then computing a feature
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Figure 3.2: Representation of a feature pyramid detecting a lesion in a breast US image.
The root filter is located at the top of the pyramid while the part filters are located at

twice resolution of the placement of the root, with A = 2.

map from each level of the image pyramid. In this example, the filters are displayed as
white rectangles. Note that the part filters are placed at twice the spatial resolution of the

placement of the root, with A = 2.

A model is defined by a root filter that approximately envelops the whole object and part
filters at twice the resolution of the root filter that cover smaller and more representative
parts of the object. For instance, when creating a model for a bicycle detection, the root
filter could capture coarse edges of the entire bicycle, while the part filters could capture
details such as the wheels. Similarly, in breast US images, the root filter could capture
coarse boundaries while part filters could be identified as salient regions of the lesion and
internal structures. Figure 3.3 shows an example of root and part filters applied to a breast
US lesion.

3.2.1 Formal definition of DPM

Both root and part filters are rectangular templates F of size w x h specifying weights' for
subwindows of a HOG pyramid. Let H be a HOG pyramid and p = (z,y,[) a location in
the I-th level of that pyramid. The vector obtained by concatenating the HOG features in
the w x h subwindow of H in p is defined as ¢(H,p) and the score of F' in this detection

!The filter weights are part of the model and will be obtained after a learning process.
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Figure 3.3: Example of DPM applied to a breast lesion. The white box represents the

location of the root filter and the red boxes the location of the part filters.

window is F' - ¢(H,p).

The model for an object with n parts is defined by a root filter Fy and a set of parts
P, = (F;,v;,d;), where Fj is a filter for the i-th part, v; is a two-dimensional vector speci-
fying possible locations relative to the root, and d; is a four-dimensional vector specifying
coefficients of a quadratic function that defines a deformation cost for each possible place-

ment of the part. A graphical representation of a lesion model is shown in Figure 3.4.

Figure 3.4: Lesion model. (a) is the root filter, (b) the part filters with twice the resolution
and (c) shows the spatial deformation model. The filters visualization shows the positive
weights at different orientations for the histogram of oriented gradients features in (a) and
(b). The visualization of the spatial deformation model reflects the cost of placing the
center of a part filter at different locations relative to the root filter in (c), where brighter

areas represent high penalized placements.

The placement of the model is given by z = (po, ..., pn), where p; = (x;,y;,1;) specifies
the level and the position of the i-th filter. Note that the location of the root filter is

defined when ¢ = 0. The final score of a detection is the score of the root filter plus the
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score of the best location of the parts, placed at twice the resolution in the pyramid, minus

a deformation cost that penalizes undesired placements of the parts,

SCOT’G(pO, 7pn) = ZE . ¢(H7pl) - Zdl . ¢d(dmi7 dyl) + b (31)
i=0 i=1
where
(dxi, dy;) = (x4, yi) — (2(x0, yo) + vi (3.2)

gives the displacement of the i-th part relative to the root location and

de(dl’z,dyz) = (da:,dy,da:2,dy2) (33)

are the deformation costs. Note that when d; = (0,0, 1,1) the deformation cost for the i-th
part is the squared distance between its actual position and its anchor position relative to
the root. The term b is the bias that makes the scores comparable in models with different

components as we will further explain.

The score of a placement z can be expressed in terms of the dot product 5 - (H, z),

between a vector of model parameters 8 and a vector ¥(H, z):

B = (Fy,....Fn,di,....d,,b)
@b(Ha Z) - (¢(H7p0)7 7¢(H7pn)7 (34)
_¢d(d$17 dyl)) cey —de(dl'n, dyn)) 1)

Thus, each image example x is scored by a function of the form

fa(@) = Z?Zaé)ﬁ - ®(x, 2) (3.5)

where Z(x) is a range of valid placements for the root and part filters and ®(x,z) =
Y(H,po). This representation is used for learning the model parameters using a latent
SVM classifier. Formally, the classifier is trained by minimizing the following objective

function [48],

1

B5(D) = 51l + C Y max(0,1 = y; fy(w:)) (3.6)
1=1
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where D is a set of labeled examples D = ((x1,91), ..., (Tn,Yn)), where y; € {—1,1} and
x; specifies a HOG pyramid H (z;) together with a range Z(x;) of valid placements for
the root and part filters. Z(x;) is defined so the root filter must be placed to overlap the
bounding box by at least a specified threshold ¢. The term max(0,1 — y; fg(x;)) is the
standard hinge loss and C' a constant that controls the relative weight of the regularization

term.

By restricting the latent domains Z(x;) to a single choice, f3 is linear in 3, and a linear
SVM classifier can be used. In practice, classical SVM training is applied iteratively to
triples ((x1,21,Y1), -, {(Tn, Zn, Yn)), Where z; is selected to be the best scoring latent label

for z; under the model trained in the previous iteration.

An object can be represented by a mixture model with m components defined by a m-
tuple M = (Mq, ..., M), where M; is the model for the i-th component. A component is
defined by a (n + 2) tuple (Fy, P, ..., Py, b) where Fj is a root filter, P; the i-th part filter
and b a bias term to make the scores of the different components comparable. A mixture
model can capture different points of view of the same object making the detection process
more robust. This is clear in regular object detection processes such as a bicycle, where
one component could be a lateral view and another the front view. In the case of lesion
detection, the angle of the transducer during acquisition could be perceived as the same
problem. In addition, since masses have no standard shapes, the mixture of models will

help the detector to model the most common shapes.

3.2.2 Implementation details

As stated above, in practice, when training a latent SVM, a classical SVM is applied
iteratively training triples ((x1,21,91), s (T, 2n, Yn)), where z; is the best scoring latent
label for the example x; under the model trained in the previous iteration. Each of these

triples leads to an example (®(x;, 2;),y;) for training a linear SVM classifier.

Root filter initialization: The dimensions of the root filter are automatically selected
by looking at the statistics of the bounding boxes in the training data. An initial root filter
Fp is trained with no latent variables. The positive examples are scaled to size and aspect
ratio of the filter. Negative examples are generated from random subwindows in negative

images.
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Root filter update: Given the initial trained filter, the best-scoring placement for the
filter (that overlaps with the bounding box more than a given threshold t) is found for
each bounding box in the training set. Then, Fj is retrained with the new positive set,

iterating twice.

Part initialization: First, the area a of the part is defined so that 6a = 80% of the
Fy area. Then, the rectangular region of area a of Fy with the highest positive energy is
selected, and the part is initialized from the subwindow values, but filled to handle the
higher spatial resolution of the part. The initial deformation cost measures the squared
norm of a displacement with d; = (0,0, 1, 1). This procedure is repeated until the N parts

are initialized.

Model update: To update the model, new training data triples are constructed. For
each positive bounding box in the training data, the existing detector is applied at all
positions and scales with an overlap of at least ¢ with the given bounding box. Among
these, the placements with the highest score are selected as positive examples. Negative
examples are selected by finding high scoring detections in images not containing the target
object. These negative examples are added to a cache of a limited size for computational
reasons. A new model is then trained by running SVM with the new set of positive and
negative examples. The model is iteratively updated, where in each iteration the correctly
classified negative examples are removed from the cache and new negative examples are
added. Towards the final iteration, the cache contains a set of hard negatives. This
procedure is performed to deal with the vast number of negative examples in a training

set.

3.3 Experimental results in BUS lesion detection

Various experiments were performed to evaluate the DPM approach for lesion detection.
First, a default configuration of the DPM method was defined and evaluated. Posteriorly,
this default configuration was changed to tune the parameters involved. The results of these
parameters were analyzed to determine the best configuration of the DPM to detect lesions
in breast US images. Subsequently, a post-processing step of false-positive reduction was
analyzed using the best parameter configuration. In addition, an experiment to analyze
the ability of the DPM to distinguish cancerous from benign lesions was also performed.

Finally, the DPM was compared with the most relevant state-of-the-art methods using the
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same dataset.

All the tests were performed on a PC (Intel® Core’ " 2 Quad 2.83GHz 8GB RAM) using
the implementation voc-released [57] of the DPM algorithm. All the experiments were
refined using a non-maximum suppression post-processing to remove similar detections in
a local area. Subsequently, the maximum number of detections per image was limited to
the ten best detections in terms of score to avoid a large number of FPs per image but also
to ensure that all the lesions could be detected. Only in Section 3.3.3, a different number

of detections is chosen.

For the number of available images, we have configured the training and testing processes
as a k-fold cross validation with £ = 10. This methodology increases the computation costs

heavily, but allows a more accurate assessment of the method.

3.3.1 Image acquisition

Two different datasets of BUS images, namely Dataset D1 and Dataset D2, were collected
in this study. Both datasets were obtained from different US system specifications and

time periods.

Dataset D1 was collected in 2001 from a professionally didactic media file for breast
imaging specialists [103]. The images were obtained with B&K Medical Panther 2002 and
B&K Medical Hawk 2102 US systems with an 8-12 MHz linear array transducer. The
dataset consists of 406 images from different cases. From the 406 images, 306 images
contain one or more lesions and 100 were acquired from healthy breasts. Within the
lesion images, 60 images presented malignant masses and 246 were benign lesions. From
the malignant images, 27 were diagnosed as Invasive Ductal Carcinoma (IDC), 4 were
Ductal Carcinoma In Situ (DCIS), 6 were malignant phyllodes tumors and 23 were other
unspecified malignant lesions. Of the benign images, 74 were complex cysts, 89 were simple
cysts, 55 were Fibroadenoma (FA) and 28 were other benign lesions. The average size of

the images is 377x396 pixels with a nominal pixel size of 0.098 mm.

Dataset D2 was collected more recently (2012/13) from the UDIAT Diagnostic Centre
of the Parc Tauli Corporation, Sabadell (Spain) with a Siemens ACUSON Sequoia C512
system and a 17L5 HD linear array transducer (8.5 MHz). The dataset consists of 326
images from different patients, where 163 images present one or more lesions and 163 were
acquired from normal breasts. In the 163 lesion images, 53 were images with cancerous

masses and 110 with benign lesions. Of the malignant images, 40 were IDC, 4 were DCIS,
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2 were Invasive Lobular Carcinoma (ILC) and 7 were other unspecified malignant lesions.
Of the benign images, 65 were unspecified cysts, 39 were FA and 6 were other types of
benign lesions. The average size of the images is 760x570 pixels with a nominal pixel size
of 0.084 mm.

In both datasets the diagnoses were supported by a posterior biopsy/pathological ex-
amination after the acquisition. In all the images containing lesions, the lesions were
delineated by an experienced radiologist. All of the images involved in this work were
previously made anonymous to accomplish the rules issued by the Ethical Committee of

both hospitals concerning the data confidentiality.

Figure 3.5 displays three images from the two datasets to represent the differences in
three aspects: speckle noise, image quality and lesion appearance. In terms of speckle noise,
images in Dataset D1 show a significant presence of this artefact but it is less obvious in
images in Dataset D2, where the speckle noise was partly reduced by the US acquisition
system. The image quality also varies in both datasets due to different resolutions. Note
that the resolution for the recent US device used to produce Dataset D2 is better than in
the old US device (Dataset D1). Consequently, the defined structures, such as ribs, pectoral
muscle or parenchymal tissue, are more visible in Dataset D2. The lesion appearance also
differs in the two datasets. In Dataset D2, the appearance of the tissues is better defined
than in Dataset D1, as illustrated in Figure 3.5(b) where even the inner structures of the

fibroadenoma lesion are visible.

3.3.2 Parameter analysis of DPM

Lesion detection and classification in breast B-mode US images is still a challenging problem
in medical imaging due to the high variability of shapes among lesions of the same type
(i.e. cysts, fibroadenomas, etc.). One could argue that the use of DPM does not properly
fit the lesion detection problem due to the fact that breast lesion shapes present a large
variability in comparison with detecting more structured objects such as bicycles or horses.
In this work, we argue the opposite, that the deformability of the part filters in DPM and
the possibility of defining a mixture of models allows us to cope with this variability of

shapes.

Detecting objects with DPM involves different parameters which need to be set up
empirically to improve the detection results. In this work, an exhaustive test of the main
parameters of the DPM method has been performed in order to successfully detect lesions

on BUS images. Specifically, the following parameters have been tested: the number of
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(a)

Figure 3.5: Examples of images in Dataset D1 (first row) and Dataset D2 (second row). (a)

shows an example of cyst images, (b) images with a fibroadenoma lesion and (c) examples

of invasive ductal carcinoma.

components in a mixture model, the number of part filters, the size of the part filters, the
overlap threshold for detecting positive examples in the learning stage, the cell size when
computing the HOG features and the size of the HOG pyramid. Due to the vast number
of possible combinations of these parameters, we have defined a default configuration, and
only the value of one parameter at the time has been changed. The default configuration
has been set up with: 3-component mixture model with 8 parts of 6 x 6 pixels, with a
training threshold ¢ = 0.7, a cell size of 8 x 8 pixels and a parameter A = 5 that defines
the size of the HOG pyramid. Due to computational reasons, only Dataset D2 has been

used for assessment of the parameter estimation.

Evaluation criteria

The performance of each configuration was assessed using the ROC analysis [47|. For the
lesion detection process, actual lesions correctly detected were counted as TP results while
all the detections that did not locate an actual lesion were counted as FP results, and
similarly for cancerous and non-cancerous lesions. The ROC analysis was performed on a

“by region” basis [37], where each ROl is considered as an entity instead of the whole image,
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as in a typical ROC analysis. ROC analysis deals only with the classification process (i.e.
how well the classifier is able to categorize a given detection) and we also want to analyze
the performance of the detection process. For that reason, we also performed a FROC
analysis in terms of Lesion Location Fraction (LLF) (also defined as sensitivity or TPR
in other works) and Non-lesion Location Fraction (NLF) (number of FP detections per
image) which assesses the overall process, including the detection of lesion candidates [22].
In the FROC analysis, a detection is considered as a TP result if the center of the resulting
bounding box of the detection process is located within the delineation performed by a
radiologist. Other detections are considered as a FP result. Note that in both analyses,
only one TP per image is counted, while FP results are accumulative. ROC and FROC
analysis were performed for each fold in the cross-validation procedure and mean values
were computed. When analyzing FROC curves, the maximum number of sensitivity and

the number of FPs per image at that point were reported.

To determine if there are significant differences in the performance between the different
values of the parameters in comparison with the default configuration, a hypothesis test
using the A,, LLF and NLF values obtained for each configuration was performed. Initially,
the Kolmogorov-Smirnov test [91] was used to confirm that the values we compared were
normally distributed. Subsequently, a paired two-sample Student’s ¢ test [99] was then
applied. The null hypothesis specifies that there are no significant differences between the
mean values: Hg : puy # po. Test results were provided in terms of p values, where a p

value smaller than 0.05 indicates that the null hypothesis would be rejected.

Figure 3.6 shows a qualitative example of the results obtained. In Figure 3.6,(a) shows
an image where the lesion was detected correctly, while an example of unsuccessful lesion
identification is shown in (b). These FP detections generally occur when the lesion region
is small. Finally, (c) shows a lesion that is successfully detected but the size of bounding
box is not correctly estimated. We noticed that these partial detections occur when dealing

with large lesions.

Model components

The first parameter we have evaluated is the number of components in the mixture model.
Since mixture models deal with different views of the modeled object, it is necessary to
set up the best number of components to obtain the best results. For instance, it is fair
to assume that when detecting cars, the best number of configurations should be a model

of two components: one for the lateral view and one for the frontal view. In the specific
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(c)

Figure 3.6: Examples of qualitative results: (a) correct lesion detection, (b) mis-detection

and (c) partial detection where the lesion is detected but the estimation of the bounding
box size is not correct. The root detections are depicted with a white rectangle, while parts

are in red. The location of the lesions are depicted with yellow arrows.

case of lesions in BUS images, this assumption can not be made. Hence, we have tested
models with different configurations. Specifically, we have tested models composed of 1,
2, 3 and 4 components. Figure 3.7 and Table 3.1 show the ROC and FROC analysis for
these components. Note that in Figure 3.7 the LLF value at a given NLF point (in this
case NLF=0.5) is depicted in the chart legend, while in Table 3.1, the maximum LLF value
and its corresponding NLF value are reported. In terms of A,, the models composed of
1, 3 and 4 components obtained similar results while the model of 2 components obtained
the worst results. Of FROC analysis, the models composed of 1, 3 and 4 components
obtained similar results in terms of LLF but the 3-components model obtained fewer FPs
per image. However, there are no significant differences between the performance of the

different number of components, as shown in Table 3.2.

Number of parts

In Felzenszwalb et al. [48], the behavior of the model was tested using different numbers of
components with and without part filters, concluding that the use of part filters improved
object detection accuracy. However, all the experiments were performed using the same
number of part filters. In this study, we followed a similar experiment but changed the

number of parts in each model to analyze the effect of this parameter in detection accuracy.

Analyzing both ROC and FROC curves in Figure 3.8 and results in Table 3.1, we can
assume that in this case, the ROC analysis does not provide essential information. A

significance test, where any p value was higher than 0.05, confirmed this assumption (see
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Figure 3.7: (a) ROC and (b) FROC curves for different numbers of model components.
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Figure 3.8: (a) ROC and (b) FROC curves for different numbers of part filters.

Table 3.2). However, in the FROC analysis, we can see that models using parts obtained
slightly better results. A model without parts obtained a LLF value of 0.82 with 0.60 FPs
per image, while the best performance is obtained by the default configuration (with eight

parts), giving a LLF value of 0.86 with 0.28 FPs per image.
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Size of parts

Regarding part filters, it is also important to define the size of these parts in order to
properly detect the finer structures of the lesions. Figure 3.9 depicts the ROC and FROC
curves analyzing this parameter, and Table 3.1 shows the quantitative results of these
analyses. The 6x6 and 10x10 part filters obtained the best results with A, values of 0.975
and LLF values of 0.86 and 0.83 respectively. However, 10x10 part filters obtained the
best results in terms of NLF, 0.23 compared with 0.28 using the 6x6 part filters. From
Table 3.2, we can conclude that the size of the part filters does not have a significant

influence in the performance of the DPM in breast US images.

Training threshold

During the training step, a detection process is performed to obtain latent positive results.
This parameter defines the minimum area overlap needed to consider a detection as a posi-
tive result. If the training threshold is too high, the resulting detector is too restrictive and
it does not detect all the lesions in the evaluation process. If the threshold is too low, there
are too many latent positive detections and the detector will not be able to distinguish be-
tween lesions and normal tissue while evaluating a new image. Our experiments show that
all thresholds lower than 0.5 and higher than 0.8 dramatically decrease the performance
of the detector. In the specific case of thresholds higher than 0.8, the training process fails

because it does not detect any positive regions.

The ROC and FROC analysis for different training thresholds for lesion detection in
the 0.5-0.8 range are shown in Figure 3.10 and Table 3.1. Analyzing both curves and
Tables 3.1 and 3.2, we can assume that, in this case, the ROC and FROC analysis does
not provide conclusive differences. The performance of the system with the different chosen
thresholds is almost the same, reaching an A, value of 0.975. In terms of LLF values, the
training threshold selection is not a significant step while the threshold is between the
range 0.5 — 0.8, but threshold 0.7 obtained fewer FPs per image. From Table 3.2, we can

conclude that there are no significant differences between the different threshold values.

Cell size

In the DPM approach, the image features are computed by dividing the image into small
cells. In each cell, the histogram of gradient orientations is computed. Hence, the size of

the cell defines the features involved in the whole detection process. In this experiment, we
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Figure 3.9: (a) ROC and (b) FROC curves for different sizes of part filters.
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Figure 3.10: (a) ROC and (b) FROC curves for different training thresholds.
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Figure 3.11: (a) ROC and (b) FROC curves for different cell size.

have evaluated different cell sizes to analyze the effect of this parameter in the detection
process. Specifically, we have evaluated cells of 4x4, 8x8, 10x10, 12x12 and 16x16 pixels.
Figure 3.11 and Table 3.1 show the ROC and FROC analysis where an 8x8 cell size obtained
the best results in terms of A,, while cells of 10x10, 12x12 and 16x16 pixels reached a LLF
value higher than 0.87. However, Table 3.2 shows that 10x10 and 16x16 cell sizes are
significantly worse in terms of NLF. Hence, bigger cells do not capture the features of the

image properly, considerably increasing the number of false-positives per image.
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HOG pyramid size

The last parameter to analyze is the size of the HOG pyramid. Specifically, parameter A
defines the number of levels necessary to go down in the pyramid to get a feature map
computed at twice the resolution. Thus, the higher its value, the more levels of the pyramid

in the root and part filters.

The ROC and FROC analysis in Figure 3.12 and Table 3.1 show that the model created
with A = 10 obtained the worst results. Hence, if the number of levels in the pyramid
between the root and the part filters is too high, the method decreases its sensitivity when
detecting lesions due to the low resolution of the root filter. Nevertheless, Table 3.2 states

that these differences are not significant.

Summary of the parameter analysis

The results obtained in all the previously described experiments concerning the parameter
analysis are summarized in Table 3.1. Table 3.2 summarizes the statistical significance
results for parameter analysis. From all the experiments, only the cell size parameter has

a significant influence on the DPM’s performance.

In the selection of the number of components, it is also necessary to consider the compu-
tational cost of the method. Table 3.7 summarizes the computation times of the method
for training and testing. Note that all training times are the average time for one fold and

testing times are for a single image.

The training times vary greatly between 1, 2, 3 or 4 components and the different number
of parts. Note that using 8 parts in the 3 component case increases the computation time
12-fold. It is worth recalling that this procedure is performed offline, thus the selection of
the component number relies on the computational possibilities and the time available for
this computation. In terms of detection, the time also increases with the number of parts
and components (from 1.89 to 8.53 seconds for 3 components without parts and 10 parts,
respectively). Hence, if the offline computation time is not an issue, we would recommend
using a 3-component mixture model with 8 parts of 6 x 6 pixels, with a training threshold
t = 0.7, a cell size of 8 x 8 pixels and a parameter A = 5, since results indicate that this
configuration obtained the highest sensitivity detecting lesions with fewer FP results per

image.
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Figure 3.12: (a) ROC and (b) FROC curves for different HOG pyramid sizes.
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Table 3.1: Summary results for parameter analysis. Default configuration is a 3-component

mixture model with 8 parts of 6 x 6 pixels, with a training threshold ¢ = 0.7, a cell size of

8 x 8 pixels and a parameter A\ = 5.

Parameter A, (95% CI) LLF (95% CI) NLF (95% CI)
Default 0.975 (0.958-0.989) 0.860 (0.794-0.919) 0.282 (0.107-0.457)
1 root 0.962 (0.944-0.981) 0.878 (0.806-0.951) 0.346 (0.188-0.504)
Components 2 root 0.971 (0.958-0.983) 0.835 (0.749-0.921) 0.292 (0.179-0.406)
4 root, 0.950 (0.920-0.980) 0.885 (0.822-0.949) 0.675 (0.153-1.196)
0parts  0.957 (0.930-0.983) 0.821 (0.734-0.908) 0.603 (0.226-0.980)
2 parts 0.955 (0.926-0.983) 0.857 (0.791-0.923) 0.646 (0.095-1.197)

Number parts

4 parts 0.953 (0.925-0.981) 0.843 (0.784-0.901) 0.550 (0.177-0.922)
10 parts  0.957 (0.936-0.979) 0.850 (0.748-0.951) 0.675 (0.149-1.200)
3x3 pixels  0.948 (0.916-0.980) 0.879 (0.815-0.941) 0.743 (0.232-1.253)
Size parts 8x8 pixels  0.951 (0.921-0.980) 0.850 (0.782-0.917) 0.614 (0.230-0.998)
10x10 pixels  0.975 (0.963-0.987) 0.830 (0.742-0.917)  0.232 (0.103-0.361)
0.5 0.964 (0.946-0.983) 0.843 (0.762-0.923) 0.446 (0.104-0.788)
Threshold 0.6 0.967 (0.948-0.986)  0.829 (0.747-0.909)  0.410 (0.075-0.746)
0.8 0.959 (0.936-0.983) 0.864 (0.796-0.931) 0.457 (0.152-0.761)
x4 pixels  0.959 (0.942-0.977) 0.829 (0.747-0.909) 0.321 (0.162-0.480)
Cell sie 10x10 pixels  0.945 (0.918-0.971) 0.879 (0.823-0.933) 0.667 (0.365-0.969)
12x12 pixels  0.964 (0.951-0.978) 0.871 (0.799-0.943)  0.450 (0.319-0.580)
16x16 pixels 0.956 (0.935-0.976) 0.893 (0.836-0.949) 0.775 (0.443-1.106)
A=3 0.967 (0.952-0.983) 0.883 (0.796-0.971) 0.383 (0.184-0.583)
Pyramid size A=10  0.967 (0.949-0.986) 0.821 (0.733-0.909) 0.303 (0.147-0.459)

3.3.3 False-positive reduction

In the previous experiments, results were reported selecting a maximum number of ten

detections per image. In terms of the FROC analysis, the mean sensitivity reaches 0.86

with 0.28 FP detections per image in the best performance.

To reduce this number of

FP detections, we performed an experiment where only the best detection per image is

selected. Table 3.4 presents the quantitative results from which we can notice the fact

that the reduction in terms of sensitivity and false-positives per image is not significant.

This indicates that the result with the highest score successfully detects the lesion in most

cases.

In Figure 3.13,(a) shows the ROC analysis and (b) the FROC analysis for a model with

the default configuration.
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Figure 3.13: (a) ROC and (b) FROC curves for false-positive reduction comparison.
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Table 3.2: Statistical significance for parameter analysis (p value)

Parameter A, LLF NLF
1 vs. 3 comp. 0.37 0.66 0.59
Components 2 vs. 3 comp. 0.77 0.69 0.92

4 vs. 3 comp. 0.18 0.53 0.17

0 vs. 8 parts 0.28 0.52 0.14

2 vs. 8 parts 0.26 1 0.23

4 vs. 8 parts 0.22 0.74 0.21

10 vs. 8 parts 0.24 0.90 0.18

3x3 vs. 6x6 0.17 0.64 0.11

Size parts 8x8 vs. 6x6 0.19 0.88 0.14
10x10 vs. 6x6 0.92 0.62 0.67

0.5 vs. 0.7 0.46 0.78 041

Threshold 0.6 vs. 0.7 0.59 0.59 0.33
0.8 vs. 0.7 0.33 0.88 0.34

4x4 vs. 8x8 024 0.59 0.74

10x10 vs. 8x8 0.08 0.62 0.04

12x12 vs. 8x8 0.38 0.77 0.14

16x16 vs. 8x8 0.19 0.41 0.02

A=3vs. A=5 056 0.62 0.46

Pyramid size A =10vs. A=5 0.61 0.51 0.86

Number parts

Cell size

3.3.4 Bounding box estimation

All the experiments in this paper were assessed by determining if the center of the detected
bounding box lies within the delineation of an expert. In the experiments performed with
the default configuration, the mean area overlap between the TP detections and the actual
lesions is 63%, which indicates that detections considered as TP results properly overlap
the actual lesion. However, a complementary experiment was performed to evaluate the
estimation of the bounding box using the DPM methodology. Figure 3.14 depicts the
percentage of correctly segmented lesions as a function of the threshold overlap value. The
overlap value between the detected bounding box and the bounding box of the actual lesion

is computed using the AO [74].

Analysis of Figure 3.14 shows that restricting the TP detections to those with an overlap
higher to 0.4 the method achieve a sensitivity close to 0.8. This indicates that most of the

detections also estimates correctly the bounding box.
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Table 3.3: Computation times for model component selection

Components Training Time (min) Testing Time (s)

1 root + 8 parts 52.44 2.81
2 root + 8 parts 94.81 3.93
3 root + 8 parts 196.71 6.25
4 root + 8 parts 540.05 7.62

3 root, 174 1.89
3 root + 2 parts 56.2 3.16
3 root + 4 parts 74.3 4.23
3 root + 10 parts 208.36 8.53

Table 3.4: Comparison using false-positive reduction
A, (95% CI) LLF (95% CI) NLF (95% CI)
Original 0.975 (0.958-0.989) 0.860 (0.794-0.919) 0.282 (0.107-0.457)
FP reduction 0.956 (0.927-0.986) 0.785 (0.687-0.883) 0.114 (0.034-0.193)
p value 0.32 0.24 0.11
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Figure 3.14: Percentage of correctly detected lesions as a function of the threshold overlap

value.

3.3.5 Cancer vs benign lesions results

As previously stated, the traditional framework for cancer detection consists of (I) de-
tecting the suspicious lesion, (II) segmenting the lesion, (III) extracting features and (IV)

determining if the lesion is malignant with a trained classifier. However, since DPM is a
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Table 3.5: Comparison cancer detection

A, (95% CI) LLF (95% CI)  NLF (95% CI)
1 root+parts  0.926 (0.914-0.938) 0.71 (0.647-0.772) 1.54 (1.23-1.84)
2 roots+parts  0.929 (0.907-0.951)  0.78 (0.714-0.845) 1.15 (0.77-1.52)
3 roots+parts  0.953 (0.935-0.971) 0.71 (0.651-0.768) 0.79 (0.27-1.31)
4 roots+parts  0.866 (0.843-0.889) 0.70 (0.618-0.781) 1.23 (1.11-1.34)

multiclass detector, we can build models directly to detect cancerous lesions, simplifying

the framework for cancer detection considerably.

In this subsection, we assess the behavior of DPM for cancer detection. Since DPM is a
multiclass detector, we trained the system with 3 different classes: cancerous lesions, benign
lesions and normal tissue. Due to the large variability of the shapes of cancerous lesions,
the number of components becomes a relevant parameter in terms of cancer detection.

Hence, in this experiment, we compare different configurations of components.
Figure 3.15 shows the ROC and FROC results and Table 3.5 summarizes all the results.

When detecting cancerous lesions, the difference in performance between the different
number of components is higher than when detecting lesions. In this case, although A,
values were similar for 1, 2 and 3 components in the ROC analysis, the performance of two
roots with parts in the FROC analysis obtained a better sensitivity (or LLF') but the three-
component configuration obtained lower FP detections per image (or NLF) than the other
options. This can be explained by the fact that cancer detection is a more complex process
compared to lesion detection, hence the classifier needs more information to distinguish

malignant from benign lesions than when detecting lesions from normal tissue.

3.3.6 Comparison with the most representative methods

In this subsection, the best configuration of the DPM algorithm for lesion detection is
compared with some of the more important works in the current literature. One of the
main drawbacks when comparing different methods is the heterogeneity in the datasets
used. Thus, in this section, the RGI filtering proposed by Drukker et al. [35], the Multi-
fractal filtering proposed by Yap et al. [130] and the Rule-based region ranking presented
by Shan et al. [L09] have been implemented to compare the results obtained by the pro-
posed approach using the same images. Specifically, both dataset D1 and D2 have been
used for assessment of these methods. For a better comparison, all the methods in this

subsection have been assessed in terms of TPR and FP/image. The methods involved in
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Figure 3.15: (a) ROC and (b) FROC curves for cancer detection.
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this comparison are outlined next.

RGI filtering technique

Drukker et al. [35] proposed a lesion detection and classification method as a two-stage
process. The first stage is the detection of lesion candidates using a RGI filtering technique.
The second stage is the classification of these candidates, segmenting them by maximizing
an average radial gradient ARD index for regions grown from the detected points and
classifying them with a Bayesian NN into false positive results and actual lesions. This
work focuses on the performance evaluation of the initial lesion detection stage, thus only

the location of lesion candidates is evaluated.

Lesion candidates are identified using a filtering technique based on the calculation of
the RGI of contours throughout the image [79]. Lesion like shapes for a given point
(z,y) in the image are obtained by multiplying the image with a 2D isotropic Gaussian
function centered at (z,y) to construct a constrained image. Contour candidates for a
given point are obtained by gray-level thresholding on the constrained image. All possible
lesion contours within a specified size range are determined, and the RGI value is calculated

for each contour as a measure of the likelihood that a given contour represents a lesion.

1
Z(m’,y’)ec’i |§($,) y,)|

RGIi(z,y) = Z g’ y') - (2’ y) (3.7)

(2" y")€C:
where C; is the i-th possible lesion contour, g(z’,y’) is the maximum gray-value gradient

vector of length |g(2,3')| and #(2’,y’) the unit radial vector pointing from (z,y) to (z',y’).

By definition, due to normalization, the RGI values are between 1 and -1, which indicate
that, along the contour, all gradients point radially outwards and inwards respectively. For
a given image point (x,y), the contour with the maximum absolute RGI value is selected,
and this value is assigned to the (x,y) coordinate in the RGI-filtered image. The RGI-
filtered image subsequently undergoes thresholding to determine lesion candidates. The
threshold is varied iteratively until either at least one area of interest is detected, indicating

a lesion candidate, or the a minimum specified RGI threshold value is reached.

Multifractal filtering technique

The main contribution of the multifractal filtering technique lays in the implementation

of multifractal analysis in breast US. In 2008, Yap et al. [130] presented a novel lesion
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detection method based on a set of image processing operations, namely histogram equal-
isation, hybrid filtering, multifractal filtering, thresholding segmentation, and rule-based
ROI selection. To ensure the homogeneity of the US images, histogram equalization is
first implemented. Then the speckle noise is reduced using a hybrid filtering approach
to combine the strength of the nonlinear diffusion filtering [127] to produce edge-sensitive
speckle reduction, followed by linear filtering (Gaussian blur) to smooth the edges and to
eliminate over-segmentation. Subsequent to hybrid filtering, multifractals [53] are used to
further enhance the partially processed images. Multifractal analysis refers to the analysis
of an image using multiple fractals (i.e. not just one as in fractal analysis). The generalized

formulation for Multifractal Dimensions (D) of order ¢ can be represented as:

FH!E%% forge R and ¢ # 1

D, = > i log g (3.8)

li_l}(l) ZI()T forg=1
where € is the linear size of the cells, ¢ is the order for cell size ¢ and p is the measure
defined as the probability of the grayscale level in the images, where all the gray levels fall
in the range of [0, 1]. From Yap et al.’s experiment, multifractal analysis enables improved
separability of tumour regions from normal regions. Further discussion on multifractal

analysis can be found in Yap et al. [130].

After pre-processing, images were segmented by using a gray-value thresholding segmen-
tation method [101]. This thresholding segmentation often leads to the identification of
multiple regions of interest, of which, generally only one or two would be of diagnostic
importance. To identify these important regions, a rule-based ROI selection based on the
size of the region and location is used as a discriminative criterion. Based on the knowledge
provided by expert radiologists [103], it is assumed that most of the lesions are located in

the upper part of the images. Hence, a reference point (z,y) where

v image3height’ and y imageQWidth (3.9)

is chosen. Thus, the suspicious lesion is selected as the largest segment is closest to the

(z,y) location.

Rule-based region ranking

Shan et al. [109] proposed a lesion detection methodology that considered both texture and
spatial features. They first used the Speckle Reducing Anisotropic Diffusion (SRAD) [133]
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as a de-speckling method. The SRAD method iteratively processes the image with adaptive
weighted filters to reduce noise and preserve edges. The diffusion coefficient is determined
by

1
14 [P (s t) — (0]/[6d () (1 + g3 (1)]

where g(z,y;t) is the instantaneous coefficient of variation depending on the gradient VI

c(q)

(3.10)

and the Laplacian V21 and determined by

o [amvIn — e
‘J(‘”’y’t)‘\/ [+ (/v /1P &1

The initialized go(t) is given by

var|z(t)]
=YX —— — 7 3.12
where ¢ is the iteration time and z(t) is the most homogeneous area in the image at iteration

t and var(z(t)] is its variance.

Once the image is de-speckled, an iterative threshold selection algorithm is applied to
segment the image. First, all local minima of the image histogram are calculated and the
de-speckled image is binarized using the smallest local minimum as a threshold. Then, if
the ratio between the number of foreground pixels and the number of background pixels
is less than 0.1, the next local minimum value is set as a threshold. The process continues
iteratively until the ratio is larger than 0.1, which is chosen experimentally in the original
paper. After that, morphological operators (dilate and erode) are performed to remove
noisy regions. Subsequently, if none of the regions intersect with an image center region (a
window about half the size of the entire image located on the image center) the threshold
becomes the next local minimum and the process is repeated. Once a region intersects
with the central window, regions connected with the boundary that do not intersect with
the central window are removed. Then, the remaining lesion region candidates are ranked

following the scoring formula

g _ VArea,,
" dis(Cp, Cp) -var(Cyp)’

n=1,..k (3.13)

where k is the number of candidate regions, Area, is the number of pixels in the region,

C,, is the center of the region, Cj is the center of the image, dis(a,b) is the Euclidean



78 CHAPTER 3. AUTOMATIC BREAST LESION DETECTION

distance between points a and b and var(C),) is the variance of a small region (5 x 5 pixels)

centered on C,,.

Finally, the seed point is located in the center of the winning region. Thus, ((Zmin +
Tmaz) /2y (Ymin + Ymaz)/2) is considered as a seed point, where [Zyin, Ymins Tmaz, Ymaz)

defines the minimum rectangle that contains the lesion.

Comparison results

Since we used the best configuration for DPM, we have also tuned several parameters
involved in the other methods to obtain the best results in our datasets. In Shan et
al. [109], since most of the lesions appear in the top region of the image, the central
window was initialized in the center-top part of the image. In addition, the iteration time
t was set to 50 in the SRAD process. For the Yap et al. [130] approach, in the Multifractal

analysis the fractal order was set to ¢ = 1 for the cell size € = 3.

Example results from both datasets D1 and D2 are presented in Figures 3.16, 3.17
and 3.18. Figure 3.16 shows two examples from different datasets where all the detection
methods detected the lesion correctly. Both examples present lesions with well defined
boundaries and with different appearances from the normal tissue (intensity values and

texture).

Figure 3.17 depicts difficult examples in which none of the methodologies compared were
able to detect the lesion. The example from Dataset D1 presents a complex shadow that
induces all the methods to a wrong result. In the example from Dataset D2, there is a
large area of the image corresponding to lung air with a similar intensity appearance to

the lesion. In addition, the lesion’s size is small which also made the detection difficult.

Finally, Figure 3.18 shows difficult examples in which only the DPM approach detected
the lesion correctly. The example from Dataset D1 presents a complex shadow with similar
intensity to the lesion region, which made all the methods except DPM fail in detecting
the actual lesion. The same methods fail in the example from Dataset D2 that presents a
lesion with a similar appearance to normal tissue. Furthermore, the lesion is located near
the top border of the image and therefore missed by all the methodologies that assumed a

given lesion location.

Quantitative results are presented in Table 3.6. They are provided in terms of TPR
and FPs per image. Overall, the DPM approach out-performed the other methods for the
lesion detection in both datasets, with 0.8 TPR and 0.28 FP /image in Dataset D1, and
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Figure 3.16: Examples from datasets D1 and D2 in which all the methodologies correctly
detect the lesion. The ground truth is marked with a square, while the detection is marked
with an X. In the first column are the results with an image from Dataset D1, and in
the second column from Dataset D2. The first row shows the results of the RGI filtering
technique [35], the second row shows the results of the Multifractal filtering technique [130],
the third row shows the result of the Rule-based region ranking approach [109] and the

last row shows the results of the proposed method.
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Dataset D1 Dataset D2

RGI

Multifractal

Rule-based

DPM

Figure 3.17: Examples from datasets D1 and D2 where all the methodologies miss the
detection of the lesion. The ground truth is marked with a square, while the detection is
marked with an X. In the first column are the results with an image from Dataset D1, and
in the second column from Dataset D2. The first row shows the results of the RGI filtering
technique [35], the second row shows the results of the Multifractal filtering technique [130],
the third row shows the result of the Rule-based region ranking approach [109] and the

last row shows the results of the proposed method.
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Figure 3.18: Examples from datasets D1 and D2 in which only the DPM approach correctly
detects the lesion. The ground truth is marked with a square, while the detection is marked
with an X. In the first column are the results with an image from Dataset D1, and in
the second column from Dataset D2. The first row shows the results of the RGI filtering
technique [35], the second row shows the results of the Multifractal filtering technique [130],
the third row shows the result of the Rule-based region ranking approach [109] and the

last row shows the results of the proposed method.
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Table 3.6: Comparison of performance for different proposals.

Method Dataset TPR FPs per image
D1 0.76 1.57
Drukker et al. (2002) [35]
D2 0.72 2.47
D1 0.76 0.31
Yap et al. (2008) [130]
D2 0.59 0.51
D1 0.75 0.50
Shan et al. (2008) [109]
D2 0.60 0.54
D1 0.80 0.28
Proposed method
D2 0.79 0.21

0.79 TPR and 0.21 FP/image in Dataset D2. The multifractal filtering technique [130]
and rule-based region ranking [109] obtained good results for the images in Dataset D1,
0.76 and 0.75 TPR with 0.31 and 0.50 FP/image respectively, but not for the images in
Dataset D2, 0.59 and 0.60 TPR with 0.51 and 0.54 FP/image respectively. Finally, the
RGI filtering technique [35] showed a good performance in terms of TPR in both datasets
(0.76 and 0.72 TPR) but with a large number of false-positive detections per image (1.57
and 2.47 respectively).

Comparing the performance of the methodologies according to which dataset is used,
only the DPM provided similar results for both datasets. The rest of the methods were
inconsistent and provided poor results when tested on Dataset D2 compared to Dataset
D1. For that reason we made a further evaluation to see if there are significant differences
between both datasets. Specifically, we compared the lesion size, the ratio between the area
of the lesion and the area of the image, and the distance from the image center and the lesion
centroid. Figure 3.19 shows the box plot charts for these comparisons where differences
between both datasets are appreciable: the average size of the lesions in Dataset D1 is
smaller than in Dataset D2 but the ratio between lesion pixels and total image pixels is
higher. Regarding the spatial distribution of the lesions in the image, lesions in Dataset D1
are more centered than in Dataset D2. However, none of these differences are significant,
hence, other characteristics such as the quality of the image may affect the behavior of the
methodologies. The images in Dataset D2 present more defined structures such as ribs,
muscles or parenchymal tissue that may lead some methodologies to err when detecting

lesions.

Finally, the average computational time of each methods is compared, as shown in

Table 3.7. Note that in most of the cases, average detection time for dataset D2 is higher
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Figure 3.19: Dataset features comparison. Box plot chart comparing (a) the lesion size,
(b) the ratio between the area of the lesion and the area of the image, and (c) the distance

from the image center and the lesion centroid.

than D1 due to the resolution of these images. The Drukker et al. [35] approach is the
slowest approach in detecting lesions, taking an approximate time of 45 seconds per image.
This is caused by the fact that Drukker computes the RGI value for each point in the
image, which is a time-consuming task. Shan et al. [109] is notably faster than the rest
of the methodologies. The training time is also included for the DPM technique for both
datasets. Each fold in the training process in the DPM takes 211.67 minutes for Dataset
D1 and 196.71 minutes for Dataset D2.

3.3.7 Comparison of the reported results in other literature methods

In this subsection we compare the obtained results with the results reported in other
important works in the literature but have not been implemented. Tables 3.8 and 3.9

summarize the results for lesion and cancer detection respectively.
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Table 3.7: Comparison of computation time for different proposals.

Method Dataset Avg. detection  Avg. training
time/image (s) time/fold (min)
D1 45.56 -
Drukker et al. (2002) [35]
D2 44.42 -
D1 3.29 -
Yap et al. (2008) [130]
D2 5.91 -
D1 0.42 -
Shan et al. (2008) [109]
D2 0.68 -
D1 4.14 211.67
Proposed method
D2 6.25 196.71

Table 3.8: Comparison of performance for other lesion detection methods
Method A, LLF NLF
Kutay et al. (2003) [80] 0.970 - -
Drukker et al. (2005) [37] 0.950 0.80 0.60
Mogatadakala et al. (2006) [94] 0.910 - -
Proposed method 0.975 0.86 0.28

Table 3.9: Comparison of performance for other cancer detection methods.

Method A, LLF NLF
Horsch et al. (2002) [65]  0.870 - -
Drukker et al. (2003) [36] -  0.660 0.25

Kutay et al. (2003) [80]  0.810 - -
Drukker et al. (2005) [37] 0.860 0.80 0.83
Alvarenga et al. (2012) [6] 0.870 - -

Proposed method 0929 0.78 1.15

Analyzing the results of Table 3.8, in terms of lesion detection, our approach has obtained
the best performance in the ROC analysis (A, = 0.975), while in the FROC analysis it
has obtained a sensitivity of 0.86 with 0.28 FP detections per image. These results slightly
outperformed the results reported by Drukker et al. [35], who obtained a sensitivity of 0.87
with 0.76 FP detections per image. Hence, our proposal obtained a similar sensitivity with

less FP detections per image.

In the task of cancer detection (see Table 3.9), our approach has also obtained the best
performance in terms of the ROC analysis (A, = 0.929), while in the FROC analysis it has
obtained a sensitivity (0.78) close to Drukker et al. [37] (0.8) but with a higher number of
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FP detections per image (1.15 compared to 0.83).

As mentioned before, the lack of standard datasets of US images makes the comparison
between the ROC and the FROC results reported by the methods in the literature very
difficult due to the high variability in image quality between US systems, the heterogeneity
of lesion type, the size of the lesions and number of images. However, our proposal obtained
the best results for lesion detection, and seems to be in line with the best approach for

detecting cancerous lesions.

3.3.8 Discussion

After the extensive analysis of the different parameters involved in the DPM methodology,
we have found that most of the parameters do not significantly influence the results of
the DPM detecting lesions in breast US images. Although not significant, results indicate
that the configuration that obtained the highest sensitivity detecting lesions with fewer
FP results per image is a 3-component mixture model with 8 parts of 6 x 6 pixels, with a

training threshold ¢ = 0.7, a cell size of 8 x 8 pixels and a parameter A = 5.

In terms of the training threshold value, we have found that thresholds lower than 0.5
and higher than 0.8 decrease the performance of the detector significantly. The selection of
a threshold within this range is not critical for the method’s performance according to the
experimental results. We have also noticed a large difference of computation time between
different numbers of components and parts. In this case, the selection of the number
of components clearly depends on the specific problem and the available computational
resources. In cases where computation time is not an issue, a three component model with

8 parts, which obtained slightly better results, is the recommended configuration.

An experiment for reducing the FP results was analyzed. The reduction in terms of
sensitivity was not significant, which makes the results very attractive in case we want
to adapt this methodology to 3D images where the number of FP detections needs to
be strictly low without decreasing the sensitivity. Later, a bounding box estimation test
was performed to evaluate the estimation of the detected bounding box as a function of
different overlap thresholds. Comparing this with other methods in the literature, only [35]
performed a similar experiment obtaining an accuracy close to 70% for an overlap value of

0.5. These results are similar to those presented in Figure 3.14.

Regarding the comparison made with the implementation of different methods with a

common dataset, the methods based on image processing (RGI filtering [35|, multifrac-
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tal filtering [130] and rule-based region ranking [109]) obtained poor results when dealing
with images acquired from two different US systems. One explanation is that most of the
approaches take into consideration the characteristics of their datasets such as the lesion
location, the influence of the speckle noise or the appearance of the lesions. These charac-
teristics may not be the same in other datasets, reducing the accuracy of the algorithms.
We can also detect differences in performance regarding the dataset used. Dataset D2 was
acquired using a modern US system, which introduces new challenges for the existing tech-
niques in lesion detection. These US systems acquire high-resolution images which may
include other structures such as ribs, pectoral muscle or air in the lungs making the lesion
detection more difficult. Dataset D1 was obtained from an older US system. The nature of
the images is normally of a lower resolution and noisier. Hence, for a better visualization,
the radiologist tends to locate the suspected lesion in the center of the image. Nowadays,
with high quality US systems this is no longer necessary due to the fact that one image
can capture larger regions of the breast. Hence, methodologies that made any kind of

assumption about the lesion’s location fail in most cases using modern US systems.

The proposed technique obtained the best results for both datasets. This is due to
the fact that this approach adopts a training process that helps the method to build a
particular characteristics model of each dataset. Thus, it is not as dataset dependent as

the other methodologies.

For an exhaustive assessment, we have also compared the proposed methodology results
with those published in some of the most important works for lesion detection. Our
proposal slightly outperformed the other works in terms of both the ROC and FROC

analysis, although different datasets were used.

Related to cancer detection, the performance of our approach in terms of the ROC
and FROC analysis obtained worse results compared to lesion detection. This could be
explained by the fact that cancerous lesions have a large variability in terms of shape,
texture and intensity, making the process more complex. However, when comparing our
results with others reported in the literature, our proposal obtained the best performance
in terms of the ROC analysis. In terms of FROC analysis we obtained results similar to the
best work [37], but considerably reducing the typical framework (detection, segmentation,

feature extraction and classification).
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3.4 Conclusions

In this chapter we have presented a computerized lesion detection system for breast US
images using Deformable Part Models that has been evaluated in a large dataset. Different
configurations of parameters have been tested to improve the results of the DPM in breast
images. We have also performed a comparison with several of the most important methods
in the literature, using the same datasets. Amongst the different methodologies compared,
the proposed method obtained the best results for both datasets. This method is adaptable
to the specific characteristics of any dataset, since it is machine-learning-based where a
particular model is constructed for each dataset. In addition, we have compared the
results obtained with the results published by other relevant methodologies in the literature,
obtaining the best results in the ROC analysis for lesion detection. In the FROC analysis,
our method outperformed the best state-of-the-art approach in detecting lesions but we
reported a slightly higher number of false-positive detections per image when detecting
malignant lesions. We also proved that by building a model to directly detect malignant
lesions, we can considerably reduce the traditional CAD pipeline (detection, segmentation,
feature extraction, lesion classification) obtaining results similar to those reported in the

state-of-the-art.

In conclusion, we have shown that DPM can be used for lesion detection in breast
US images and has the potential of being implemented in a clinical environment. This
lesion detection approach can also be used to solve the initialization step of some lesion
segmentation algorithms, which will be dealt with in the next chapter. Furthermore, the
methodology does not make any assumption on the dimensionality of the data, hence
it is our assertion that it can be adapted to a 3D volume such as Automated Breast
Ultrasound (ABUS), which is currently being adopted in clinical practice and becoming a

relevant topic of interest in medical imaging research.
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Breast lesion segmentation

4.1 Introduction

Image segmentation plays an important role in the analysis of US images and is a relevant
step in a CAD system. The aim of the lesion segmentation algorithms in medical imaging
is to accurately describe the boundary of the lesion regions. This allows the radiologist to
compare the same abnormality over time and extract conclusions about its behavior (if the
lesion size grows or decreases) or extract discriminative features for a further classification
stage. In addition, an accurate segmentation can provide the radiologists with a realistic

measure of the lesion size before they start a biopsy procedure.

Lesion segmentation in breast sonography is an important topic of interest, as shown
in Chapter 2. Reviewing the state-of-the-art, one’s attention is drawn to the relatively
low number of approaches based on MRF, which in principle also seems an interesting
framework incorporating both spatial and intensity information. Among these, the work of
Xiao et al. [129] seems to have a good potential for segmentation, but their work was based
on a limited number of cases and also needed an important amount of manual interaction.

The aim of this chapter is to develop and evaluate a lesion segmentation algorithm based

89
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on the earlier work of Xiao et al. More specifically, we present different approaches to
improve the Xiao et al. approach by means of reducing the human interaction involved
in the method. Two datasets of US B-mode breast images obtained from two different
hospitals using different US equipment are used to evaluate these approaches and compare
them to the original method. Furthermore, the results are evaluated depending on the
lesion type. This study allows obtaining conclusive results regarding the accuracy of an
MRF based method, and the influence of the lesion type in the dataset of images used
for the segmentation process. This information could be useful in terms of further CAD
research for focusing the efforts in the pathologies that present the worst results. Finally,

a comparative study with different approaches in the literature is performed.

4.2 MRF-MAP segmentation overview

The MRF-MAP segmentation method was originally proposed by Zhang et al. [136] to
segment brain tissues on MRI by estimating a bias (or distortion) field while labeling

tissues at the same time, and later was adapted to BUS images by Xiao et al. [129].

They considered the bias field as an additive artifact in the logarithmic ideal image. This
distortion field is estimated to restore the ideal image while regions of similar intensity
inhomogeneity are identified using a MRF and MAP framework; thus, this method will be
referred to hereafter as the MRF-MAP approach (see Figure 4.1).

4.2.1 Image model

Attenuation-related intensity inhomogeneities are assumed to be a multiplicative field with
low-frequency. A logarithmic transformation yields such a multiplicative model to an
addition y = y* + d, where d denotes the log-transformed intensity distortion field. It is
assumed that ¥, ideal values at pixel 7, follow a mixture of Gaussian distributions. Hence,
assuming that the pixel intensities are statistically independent, the probability density for

the entire image given the bias field is defined as

pyld) =TT D g(yi — di; 0(x:))p(x: = 5) (4.1)

i€S jeL

where £ denotes the label set; x; is the corresponding class label of pixel 4; and S denotes

the image pixel set. The prior probability is p(z; = j) and the Gaussian distribution is
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Figure 4.1: Block diagram of MRF-MAP method.

defined as g(y;; 0(x;)) with parameters 6(z;) = (ig,, 0z, ), Ha; and oz, being the mean and

standard deviation of class x;, respectively.

Given the observed intensity values, the Baye’s rule can be used to obtain the posterior

probability of the bias field:

p(yld)p(d) (42)

pldly) = o)

where p(y) is a normalization constant, and the prior probability of the bias field p(d)
is modeled as a Gaussian with zero mean to capture its smoothness property. The MAP
principle can be used to obtain the optimal estimation of the bias field (Z, given the observed

intensity values:

A~

d = arg ml?xp(d|y) (4.3)

A zero-gradient condition is then used to assess this maximum, which leads to (see [128]

for details).
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_ pyilws, di)p(x; = j)

Wij = p(yild;) (44)
d; = % , with B = (1,1,...)7 (4.5)

where W;; is the posterior probability that pixel ¢ belongs to class j given the estimated
bias field d; F is a low-pass filter, and R is the mean residual for a pixel 7, and is defined

as

N Wi (yi — )
JEL J

and v is the mean inverse covariance, in which

> Wijo;? ifi=k
Yl =14 jec (4.7)
0 otherwise
If the prior probability p(z; = j) in equations 4.1 and 4.4 is set to be equal for all j € £
at every pixel ¢, W;; is the normalized conditional probability and its estimation is given

by a maximum-likelihood approach. Hence, an EM algorithm can be applied as follows:

Expectation step: calculates the posterior tissue class probability W;; when the bias

field d is known using equation 4.4.

Maximization step: the bias field d; is estimated when W;; is known using equation
4.5.

Initially, the bias field is initialized to zero everywhere in the image. The algorithm runs
iteratively until estimating the bias field. Once the bias field is obtained, the ideal intensity
I* can be restored by dividing the observed image I by exp(d). A class labeling x of the
pixels is obtained by assigning to each pixel ¢ € S the label j € £ that has the largest

value Wi;.

4.2.2 Label estimation using MRF-MAP framework

The maximum-likelihood approach is known to be sensitive to noise and thus one can argue
that it would not be suitable for US images. Hence, Zhang et al. [136] proved that a full
MAP estimation can be achieved incorporating a MRF prior model for the image tissue

classes. MRF formulation provides a convenient way to keep spatial information coherence.



4.2. MRF-MAP SEGMENTATION OVERVIEW 93

Let « indicate the true but unknown labeling of the given image, and & represents an
estimate of x. Both variables can be interpreted as realization of a random field X, and
the log-transformed image y can be interpreted as the realization of a random field Y.
Then, the problem becomes one of estimating z, given y, which can be obtained using

MAP estimation as follows:

& = arg max p(zy) (4.8)
According to Baye’s rule
pylz)p(x)
p(zly) = ——F——— 4.9
(z[y) e (4.9)

where p(y|z) has the form of equation 4.1, p(y) is a normalization constant, and p(z) is

discussed next.

In MRF, it is assumed that neighboring sites have direct relationships with each other,
and tend to have the same class labels. The probability density of an MRF model can be

described as a Gibbs distribution as follows

p(z) =21 exp|—U(x)] (4.10)

where Z is a normalization term and U(x) an energy function defined as

Ux) =8 Velx) (4.11)

ceC
where, V.(z) is a clique potential over all possible cliques C, which is defined as a subset
of pixels in § where every pair of pixels are neighbors and § is a positive constant that
controls the size of that clique. The clique potential of x; with respect to its clique neighbor

x; 1s of the form

Vi (@i) =1 = 0(z,=a,) (4.12)

1 ifw=a
Oai=ay) = _ . (4.13)
0 if otherwise

Once the energy function U(x) is built, the MAP of class labels is obtained as
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I = arg Ini)I(l U(ylx) + U(x) (4.14)
re

where U(y|x) likelihood energy is the logarithm of the posterior probability p(x|y), and it

is defined as follows

L 2
Utlo) = 3 | o+ tog(o) (4.15)

i€S Ti

and the prior energy U(x) can be defined as

U) =2 2 [1= 0] (4.16)

i€S i EN;

where N; denotes the set of neighbor pixels of i.

Finding the global minimum in equation 4.14 is non-trivial, due to the large number
of possible configurations for pixel labels. Hence, Iterated Conditional Modes (ICM) [18]

algorithm is used to obtain a suboptimal solution, with a fast convergence.
Now, the MRF model is introduced in the segmentation framework by substituting the
prior probability p(x; = j) in equation 4.4 for the MRF prior p(x; = j|zas;), which takes

the labels of the neighbor pixels into account.

p(yilzi, di)p(x; = jlon,)
W, = d 4.17
j pyild:) (.17

where p(x; = jlxas,) has the form of equation 4.10.

The algorithm is implemented in a multiresolution Gaussian pyramid. As further dis-
cussed in Xiao et al. [129], this implementation justifies the assumption of a Gaussian
Probability Density Function (PDF) for US images in general. Ideally, the PDF should
be derived from the ultrasound physics of image formation. However, in a multiresolu-
tion implementation, lower-resolution (“blurred”) solutions are shown to locally satisfy the
Gaussian assumption. Thus, the classification and the distortion field estimation are per-
formed at each scale, and both results are used to initialize the solution search at the next
finer scale. Therefore, in each scale, the algorithm is only adjusting rather than solving
from scratch for the parameters. Note that the Gaussian PDF assumption would not hold

if the method were applied at a single resolution.
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4.3 Automatic initialization process

Zhang et al. [136] proposed a MRF-MAP methodology for removing the bias field removal
and segmenting brain tissue on MRI. Later, this work was adapted to US images by Xiao
et al. [129]. One of the characteristics of brain MRI is its histogram, which is commonly
bimodal (see Figure 4.2). Thus, the MRI histogram has two distinctive peaks, hence the
mixture of Gaussian representation and the EM application seem a feasible approach.
However, as far as we have observed in US images, the histogram of the background
almost always overlaps with the histogram of the lesion information. Figure 4.2 shows
a comparison between the histogram of a brain MRI and a BUS image where the MRI

histogram is clearly bimodal, and on the US image, the two peaks overlap.
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Figure 4.2: Intensity distributions of a brain MRI and a BUS. (a) Brain MRI. (b) Corre-

sponding histogram. (c) Original BUS image. (d) Corresponding Gaussian distributions
(in red). The larger Gaussian corresponds to the background and the smaller to the lesion.

Both plotted over the image histogram (in blue).

The MRF-MAP proposal solved this problem by selecting the Gaussian distribution
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parameters (mean and standard deviation) empirically, analyzing the intensity histograms
of the lesion region and the background by manually defining two different windows and

manually fitting the best Gaussian distribution to them, as illustrated in Figure 4.3.
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Figure 4.3: Histograms of two regions in an US image. (a) B-mode BUS image with
the two regions delimited by rectangles. (b) Histogram of the lesion (obtained from the
central window). (c) Histogram of the background (obtained from the left window). Both

histograms depicted in blue and Gaussian distributions in red.

The main disadvantage of this initialization proposal is the cost in terms of user inter-
action. As far as we determined, the initialization step takes longer than 2 minutes and
requires a previous image processing knowledge, which is an important drawback for radiol-
ogists. We propose to improve the original initialization step including spatial information.
Due to the difficulty of implementing a fully automatic initialization using the intensity
information alone, the initialization reduces the user interaction from the empirical choice
of parameters to only one-click. Thus, the user selects the approximate location of the

lesion, and a small window is defined to characterize the lesion pixels. Our experiments
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show that most of the images in the dataset present lesions within 1 and 2 cm. Although
this choice implies including unwanted background information in the lesion window in
some cases, it is not critical for the results since the number of background pixels is much
lower than the lesion information. In addition, it is important to ensure that the window
always includes as much lesion information as possible to statistically model the infor-
mation as a Gaussian distribution. Taking these considerations into account, the size of
the lesion window is fixed to 2 cm. Subsequently, a larger window is opened to obtain a
representation of the background information. To obtain the most accurate background
information as possible, the pixels in the lesion window are ignored. However, some lesion
pixels can still be part of the background in cases where the lesion is bigger than the
predefined lesion window size, but according to our experiments, the number of these can
be neglected compared to the size of the background. This methodology is named Local
Lesion Information (LLI) strategy and can derive in two different initialization approaches
depending on how the original MRF-MAP method is applied: Local Lesion Information
at the Global image (LLIG), which uses the whole image, or Local Lesion Information at
the Partial image (LLIP), which uses a partial image obtained by cropping the image by
means of the background window. Figure 4.4 shows an example of LLI initialization using

both windows and the point placed by the user.

Figure 4.4: Local Lesion Information (LLI) acquisition. The inner rectangle contains pixel

values for the lesion description and the outer rectangle contains background information.

A third alternative to improve the initialization step is also proposed, in which the
histogram information is retrieved from 4 small windows surrounding the lesion to ensure
that no pixel belonging to the lesion is used to compute the background histogram. This

proposal is named Local Lesion Surrounding Information (LLSI). Figure 4.5 shows an
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example.

Figure 4.5: Local Lesion Surrounding Information (LLSI) acquisition. The central rect-
angle contains pixel values for the lesion description, and the outer rectangles contain

background information.

4.4 Results

4.4.1 Image acquisition

Two breast B-mode US image datasets containing 212 lesion cases in total (98 malignant
and 114 benign) were used to evaluate the performance of this proposal. The breast B-
mode US images were collected from two different hospitals and ultrasound machines.
Dataset S1 was acquired from the UDIAT Diagnostic Center of Parc Tauli Corporation
(Sabadell, Spain) with a Siemens Acuson Sequoia C512 system 17L5 HD linear array
transducer (8.5 MHz), and included 140 real BUS images: 44 malignant and 96 benign.
Dataset S2 was obtained from the Churchill Hospital (Oxford, England) with a Zonare
z.one system and a L10-5 linear array transducer (8.5 MHz), and included 72 real breast
US images: 54 malignant and 18 benign. In this study, only 1 image per case was used
in the experiments and an experienced radiologist performed the case selection on the
basis of the most representative cases for all pathologic types. Table 4.1 provides details
of the two datasets in terms of lesion type. All of the images involved in this work were
previously made anonymous to accomplish the rules issued by the Ethical Committee of

both hospitals concerning the data confidentiality.

One of the aims of this work is the evaluation of the segmentation results taking into
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Table 4.1: B-mode ultrasound dataset
Dataset S1 Dataset S2 Total Percentage

Cyst 56 2 58 27.35%

Benign FA 34 13 47 22.17%
Other benign 6 3 9 4.24%

IC (common type) 27 42 69 32.55%

Malign IC (uncommon type) 14 8 20 9.44%
DCIS 3 6 9 4.25%

Total 140 72 212 100%

account the type of lesion. Within malignant and benign cases, this study focuses on
different specific pathologies: cyst, 58 images; FA, 47 images; other benign masses, 9
images; Invasive Carcinoma (IC;common type), 69 images; IC (uncommon type), 20
images; and DCIS, 9 images. IC (common type) lesions include IDC and DCIS plus IDC.
IC (uncommon type) includes mucinous carcinoma and ILC. Other benign masses includes
papilloma, fibrosis and lymphoma. An example of each lesion type is shown in Figure 4.6.
The classification of these types is based on the radiologists’ experience, in line with the

existing literature [50].

4.4.2 Ground truth generation

For the evaluation of the segmentation results, Ground Truth (GT) provided by expert
radiologists is needed. However, US images present a high inter-observer variability, and
a consensus GT is commonly used. To generate this consensus GT, the one of the most
extended techniques was used: Simultaneous Truth And Performance Level Estimation
(STAPLE) [126]. This algorithm formulates the scenario as a missing-data problem, which
provides a hidden GT estimation inferred from the experts’ segmentation using an EM

algorithm.

4.4.3 Inter-observer study

To generate the consensus ground truth, we first analyzed the inter-observer agreement
to determine whether the differences between the experts are significant. We randomly
selected 50 images regardless of the dataset they belonged to, and performed manual
segmentations by an expert radiologist and 5 biomedical engineers to generate a consensus
Ground Truth (GT) using the STAPLE algorithm. Table 4.2 shows the results obtained
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Figure 4.6: Example of each type of lesion: (a) cyst, (b) FA, (c) fibrosis, (d) mucinous
carcinoma, (e) IDC, (f) DCIS, (g) DCIS+IDC and (h) ILC.

to compare each expert segmentations with the consensus GT. Using the DSC value as a
reference, note that there are no significant differences between the radiologist’s and the
engineers’ segmentations as shown in Figure 4.7. This finding indicates that all raters follow
a similar segmentation criterion and that their accuracy is equivalent. Thus, to evaluate
the entire dataset, we have generated a consensus ground truth using the segmentations

from a radiologist and 5 biomedical engineers for the entire dataset.
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Table 4.2: Comparison between of biomedical engineers and a radiologist segmentations

User Sensitivity —Specificity PPV~ AO  DSC
Radiologist 0.871 0.997 0.968 0.845 0.914
Engineer 1 0.806 0.999 0.991 0.800 0.885
Engineer 2 0.859 0.998 0.997 0.840 0.910
Engineer 3 0.873 0.997 0.970 0.846 0.912
Engineer 4 0.901 0.994 0.919 0.827 0.900
Engineer 5 0.878 0.998 0.969 0.852 0.915
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Figure 4.7: Box plot charts comparing the biomedical engineers’ and the radiologist’s

segmentations.

4.4.4 Quantitative and qualitative results

An initial experiment was performed to compare the original MRF-MAP work [129] with
the different proposals based on the LLI initialization (LLIG, LLIP, LLSI). Figure 4.8 shows
an example of qualitative segmentation results for different images from both datasets
using the LLST approach, where (a and e) show the original BUS images. Their estimated
distortion fields, and the restored images are shown in (b and f) and (c and g) respectively.

Finally, (d and h) show the segmentation results.

Table 4.3 details the mean values for all the measures chosen. In this experiment, the
cases where the algorithm results do not overlap with the actual lesion were included with

a DSC value of 0. This decreases the mean values reported in Table 4.3. Analysis of
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() (h)

Figure 4.8: Lesion segmentation results. (a-d) Results for an image from Dataset S1. (e-h)

Results for an image from Dataset S2. (a, e) Original image. (b, f) Estimated distortion

field. (c, g) Corrected image. (d, h) Segmentation result.

this table shows that 2 of the 3 initialization proposals (LLIG and LLSI) improve the
segmentation results and considerably reduce the user interaction in comparison with the
original MRF-MAP proposal.
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Table 4.3: Segmentation results using different evaluation criteria for each segmentation

proposal

Method  Sensitivity Specificity PPV AO DSC
Original 0.565 0.991 0.729 0.508 0.610
LLIG 0.557 0.996 0.806 0.518 0.635
LLIP 0.451 0.997 0.693 0.425 0.519
LLSI 0.604 0.995 0.804 0.550 0.663

Figure 4.9 shows the segmentation results using DSC and AO values for all the images.

Analyzing these diagrams for both measures, we can see that all median values of the

results for each method are within the confidence interval of the other methods, which

means that there are no significant differences between the methods. However, as shown in

Table 4.3, the LLSI approach obtained the best results, while the LLIP approach obtained

the worst. The way in which the LLSI approach acquires the background information (4

windows surrounding the lesion) avoids the inclusion of shadows and other intensity related

artifacts, improving the results.
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4.4.5 Lesion type comparison

In this subsection, the segmentation proposals are compared depending on the lesion ty-
pology. This allows to obtain conclusive results regarding the best segmentation approach
for both datasets and in relation to the lesion type, as well as which pathologies are more
complex for the segmentation process. This information is very valuable in terms of fur-
ther work in order to focus efforts on specific pathologies. Table 4.4 shows the comparison
results for the different cancerous lesion types and Table 4.5 summarizes the results for

benign lesions.

Table 4.4: Comparison of measure means obtained for cancerous lesions (98 images)
Method  Sensitivity Specificity PPV AO DSC

Original 0.551 0.989 0.688 0.472  0.578

IC (common type) LLIG 0.605 0.993 0.795 0.536 0.665
(69 images) LLIP 0.435 0.997 0.703  0.409 0.517
LLSI 0.611 0.991 0.752  0.529 0.646

Original 0.429 0.997 0.753 0.411  0.525

IC (uncommon type) LLIG 0.426 0.994 0.78 0.390  0.520
(20 images) LLIP 0.439 0.996 0.831 0.410 0.545
LLSI 0.476 0.994 0.818 0.428 0.567

Original 0.616 0.995 0.742  0.549 0.655

DCIS LLIG 0.606 0.997 0.796 0.585 0.686
(9 images) LLIP 0.553 0.996 0.758 0.508 0.613
LLSI 0.611 0.997 0.709  0.572  0.655

Analysis of these tables makes it possible to conclude that LLSI approach obtains better
results for IC (uncommon type), cyst, FA, and other benign lesions (134 images of 212).
The LLIG approach is better for DCIS (9 images) and IC (uncommon type; 69 images),
obtaining slightly better results than LLSI. The LLIP approach and the original MRF-
MAP [129] proposal do not provide better performances for any type of lesions. This
finding is also graphically depicted in Figure 4.10, where (a) shows the DSC values for
each type of lesion and approach, and (b) shows the percentage of mis-segmented images
for each lesion typology and approach. A mis-segmented image is defined by a DSC of less
than 0.6, which is below the commonly acceptable range. In summary, LLSI obtains the
best results comparing all of the images (see Table 4.3) and the best results for 4 different
types of lesions, which represent the 63% of the dataset.

Finally, Table 4.6 plots a summary of the results of the LLSI method, which has obtained
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Table 4.5: Comparison of measure means obtained for benign lesions (114 images)
Method  Sensitivity Specificity PPV AO DSC

Original 0.584 0.999 0.870 0.576  0.686

Cyst LLIG 0.605 0.999 0.873  0.587  0.696
(58 images) LLIP 0.546 0.998 0.786  0.528  0.628
LLSI 0.607 0.998 0.854 0.588 0.698

Original 0.543 0.982 0.590 0.451 0.535

Fibroadenoma LLIG 0.488 0.996 0.757 0.445 0.548
(47 images) LLIP 0.387 0.998 0.685 0.363  0.448
LLSI 0.618 0.994 0.782 0.557 0.664

Original 0.543 0.999 0.852  0.530  0.657

Other benign masses LLIG 0.544 0.998 0.873  0.537 0.663
(9 images) LLIP 0.303 0.994 0.547  0.299 0.376
LLSI 0.546 0.999 0.986 0.541 0.684

the best results for both datasets, indicating the DSC value, the DSC value excluding the
mis-segmented images, the percentage of mis-segmented images and the number of cases for
each type of lesion. In summary, the table indicates the performance of each segmentation

approach on every type of lesion.

Focusing on the total dataset results (datasets S1 and S2), the best performance is
obtained on cyst segmentation with a DSC of 0.69, and only 12.06% of cystic cases are mis-
segmented, as they usually show a well-defined hypoechoic lesion. FA lesions obtained the
worst results among the benign lesions (25.53% of mis-segmented images). These kinds of
abnormalities usually show intensity inhomogeneities within the lesion (see Figure 4.11(a))
leading to under-segmented lesions. Cancerous lesions (common IC, uncommon IC and
DCIS) obtained a worse performance than benign ones, all with a higher percentage of
mis-segmented images than cysts (24.63%, 55%, and 22.22%, respectively). These kinds
of lesions usually show a prominent shadow (see Figure 4.11(b)). Although the LLSI
approach tends to avoid these artifacts, however, the segmentation fails when the image
contains a large lesion. This problem could be solved in the future by using adaptable
windows depending on the lesion size to improve the background information acquisition.
The number of mis-segmented images of uncommon IC is higher than the other carcinomas
due to the fact that the images are mostly composed of ILC, which has a spiculated shape
with blurred contours, increasing the complexity of the segmentation process. Although
the quantity of DCIS images was not enough to extract definitive conclusions, the results

indicate that this type of lesion follows the tendency of common IC in terms of mis-
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Figure 4.10: Segmentation results for each lesion type and segmentation approach. (a)
Dice similarity coefficient. (b) Percentage of mis-segmented images. ICC indicates IC

(common type); ICU, IC (uncommon type); and OB, other benign lesions.

segmented images. However, when removing the mis-segmented images, the lesions were
segmented better than the other carcinomas. Finally, the number of other benign images
was also not conclusive, but the high number of mis-segmented images can be explained

by the lesion heterogeneity within this group.

Table 4.6 also gives information about the behavior of the segmentation method using

the two different datasets, S1 and S2. Although the number of cases in each dataset was
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Table 4.6: Measures for each lesion type using LLSI (best proposal)

Typology DSC DSC (no mis- Error  Cases
segmented)
IC (common type) 0.654 0.775 25.92% 27
IC (uncommon type) 0.528 0.737 57.14% 14
DCIS 0.603 0.904 33.33% 3
Dataset S1 Cyst 0.694 0.793 12.5% 56
FA 0.686 0.815 27.27% 33
Other benign masses  0.768 0.768 0% 6
All lesions 0.680 0.794 22.14% 140
IC (common type) 0.641 0.762 23.8% 42
IC (uncommon type) 0.554 0.735 50%
DCIS 0.681 0.817 16.67%
Dataset S2 Cyst 0.820 0.820 0%
FA 0.614 0.846 30.7% 13
Other benign masses  0.518 0.670 66.66% 3
All lesions 0.632 0.787 27.77% 72
IC (common type) 0.646 0.764 24.63% 69
IC (uncommon type) 0.567 0.748 55% 20
DCIS 0.684 0.924 22.22% 9
Total Dataset Cyst 0.698 0.792 12.06% 58
FA 0.664 0.798 25.53% 47
Other benign masses 0.684 0.735 22.22% 9
All lesions 0.662 0.792 24.05% 212

different, it can be observed that the results were quite similar for both datasets. The

image quality differences between both datasets can be observed in Figure 4.11, where an

image from each dataset is depicted. Dataset S1 images present more details of the breast

tissues, while images from Dataset S2 present a higher influence of speckle.

4.4.6 Comparison with other methods in the literature

In this subsection, a comparison of the obtained results with the results reported in the most

relevant works in the literature is shown. Specifically, the segmentation methods in this

comparison are recent algorithms (from 2009), which need practically no user interaction

(1 click) or none interaction at all. The results reported by these works are summarized in

Table 4.7.



108 CHAPTER 4. BREAST LESION SEGMENTATION

(a)

Figure 4.11: Example of FA and IC lesions. (a) Fibroadenoma lesion in which intensity

inhomogeneities within the lesion are present. (b) Invasive carcinoma in which a prominent
shadow is formed. The images were acquired from different ultrasound systems. Lesion

boundaries have been provided by expert manual delineation.

Table 4.7: Comparison of performance with other recent lesion segmentation methods

Method DSC Number of images
Cui et al. (2009) [30] 0.85 250
Liu et al. (2010) [86] 0.88 46
Massich et al. (2010) [92] 0.78 25
Zhang et al. (2010) [134] 0.91 347
Hao et al. (2012) [64] 0.85 480
Proposed method 0.66 212

Analysis of this table shows that our proposal obtained the worst results. However,
there is a set of conditional factors that makes this straight comparison unreliable. The
main factor is the dataset used in the assessment of the methods. Each dataset used is
completely different; acquired from different ultrasound systems, differs in the number of
images, and contains different lesion types. The results of the segmentation methods vary
depending on the image quality, the presence of artifacts, and the lesion types. As we
have shown before, it is easier to segment cystic lesions than, for instance, fibroadenomas.
In addition, we can not know if the methods are tuned to obtain good results in their
respective datasets, or if they would work properly with different ones. It is clear then,

that for a fair comparison, all the algorithms should be tested using the same datasets.

Due to the fact that we could not implement these other methods, the correctness of
our segmentation proposal must be assessed in other terms. We can take advantage of

the inter-observer study to see how well an expert radiologist segments lesions in the
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dataset used. In this case, the radiologist obtained a DSC value of 0.91. Thus, it is clear
that a computerized method can hardly obtain better results than an experienced trained

radiologist.

The proposed method obtained a DSC value close to 0.7, which is commonly considered
a good result for a segmentation method. However, this average DSC measure contains
24.05% mis-segmented images. Focusing on Dataset S1, the images that induce our method
to segmentation errors (22.14%) are mostly images where the lesions are zoomed-in on (see
Figure 4.12(a) and (b)), or where the appearance of the lesion is similar to healthy tissue
(see Figure 4.12(c) and (d)). Excluding these errors, a DSC close to 0.8 was obtained, which

indicates that the method segments the lesions well when the above mentioned artifacts

are not present (almost 80% of the images in the dataset).

(c) (d)

Figure 4.12: Example of Dataset S1 images which induce a segmentation error. (a) and
(b) are zoomed-in lesions. (c) and (d) lesions with similar appearance to the normal tissue.

The location of the lesion is labeled with a rectangle.

Regarding Database S2, most of the segmentation errors are caused by the low qual-

ity of the images. Figure 4.13 shows different images that induce the algorithm to a
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mis-segmentation results (27.77% of the images in Dataset S2) due to their low quality.

Excluding these errors, a DSC close to 0.8 was also obtained.

(b) (c)

Figure 4.13: Example of Dataset S2 images that induce a segmentation error due to their

low quality. The location of the lesion is labeled with a rectangle.

4.5 Summary and conclusions

In this chapter, an exhaustive analysis of the proposal by Xiao et al. [129] (MRF-MAP)
and a set of initialization improvements was performed using breast US images supplied
by two different hospitals. A detailed analysis of the results obtained shows that the LLSI
initialization proposal obtained the best results for both datasets. Moreover, the original
proposal by Xiao et al. [129] is considerably improved in terms of segmentation results
and the initialization procedure. This enhancement is due to the information acquisition
procedure in LLSI in which the background information is obtained by using 4 windows
surrounding the lesion. Thus, the shadowing effect is minimized, and only background
information is collected to correctly initialize the Gaussian distribution, which models the

non-lesion tissue.

Another goal of this work was to evaluate the robustness of the segmentation approaches.
This evaluation was described in the previous section, with similar results obtained from
both databases, which indicates that the method is not highly influenced by the acquisition
system used. However, the method is induced to segmentation errors in some images. One
reason is the low quality of some images, and secondly, some artifacts present in the images,
such as zooming. The results obtained excluding the mis-segmented images indicate that
we must focus on solving the influence of these artifacts to enhance the performance of

our method as future work. In addition, future work will also focus on multiple lesion
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segmentation as this is a current limitation of the method.

Finally, we studied the segmentation results by lesion type. As expected, we conclude
that cystic lesions are the easiest to segment. Fibroadenoma and cancerous lesions have
more mis-segmented images and consequently lower mean DSC values due to the inherent
artifacts related to the lesion type. These results indicate that more efforts in computer-
aided diagnosis system research must be done to improve the segmentation of malignant

lesions due to their impact on patient health.
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Breast lesion segmentation using elastography

Information

5.1 Introduction

Mammography and ultrasonography are the diagnostic methods that have shown the high-
est sensitivity in the diagnosis of breast cancer. However, both techniques present some lim-
itations. Mammography performed in dense breasts may yield false-positive results [105].
US is sensitive in the detection of lesions, but the specificity in cancer detection is low
since most of the detected solid lesions are benign. This leads to an increase of unneces-

sary biopsies causing discomfort to the patients and increasing costs [58].

To overcome these limitations and obtain a more accurate characterization of breast
lesions, US elastography was introduced. Breast US elastography is a recent diagnos-
tic technique based on imaging the difference in stiffness between cancerous and benign
tissues. Elastography is based on the principle that, in general, normal tissue is easily
deformed while cancerous tissue is stiffer. Hence, cancerous tissues are more easily iden-

tifiable in an elastogram than in other screening techniques. Clinical studies support the

113
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use of this technique to enrich current screening methods [56, 73, 137]. Following the
prominent relevance of elastography in clinical environments, it is reasonable to assume
that lesion segmentation methods could also benefit from this complementary information.
In this chapter, we propose the inclusion of elastography information in the MRF-MAP
segmentation framework presented in the previous chapter. This involves an adaption us-
ing a bivariant formulation as will be described in the following sections. This proposal is
assessed using data acquired using two different elastography techniques, which are also

presented in the following section.

5.2 Breast Elastography

Elasticity is the property of a tissue to be deformed by an external force and, when the
force is removed, to return to its original shape. The elasticity is measured by a physical
quantity called Young’s modulus and expressed in pressure units (kPa). Young’s modulus
E can be defined as the relationship between an external compression (or stress S) applied

to a solid tissue and its deformation (or strain e) inside the tissue (see Figure 5.1).

Figure 5.1: Deformation (e) of a soft solid under an external stress (.5).

Often a linear relationship is assumed between stress and strain, and is expressed in

equation 5.1.

p=2
e

(5.1)

Different tissues are expected to respond differently to the external forces. This is the
basis of manual palpation, a common cancer diagnosis technique in medical practise. In
general, fatty tissue is easily deformed while cancerous tissues are stiffer [58]. Elastography

is an imaging technique that evaluates the elasticity of the tissues, but is more sensitive and



5.3. COMPRESSION ULTRASOUND ELASTOGRAPHY (USE) 115

less subjective than palpation. Breast elastography can be performed using two different
techniques: Compression Ultrasound Elastography (USE) and Shear-Wave Elastography
(SWE).

5.3 Compression Ultrasound Elastography (USE)

Compression or conventional elastography is based on the application of a compressive force
using a conventional transducer on the breast and on the measurement of the deformation

of the tissues.

This technique allows only qualitative assessment due to the fact that the external com-
pression force is unknown, allowing only the calculation of the deformability ratio (strain)
by measuring variations in the RF of the US beam before and after compression [100], and

not the absolute elasticity value [58].

In qualitative assessment, the tissue elasticity is encoded in a color map shown as an
overlay in a B-mode, as shown in Figure 5.2. The different colors represent different
elasticity levels (in Figure 5.2 stiff tissues are represented in red while soft tissues in blue).
Note that some works encoded the color map regarding the strain values (high strain
represented in red while low strain in blue), which is the inverse mapping of Figure 5.2

(high strain indicates soft tissue while low strain indicates stiffness).

Hard

Soft

Figure 5.2: Figure (a) plots the B-mode image of a carcinoma and (b) its elastography
information represented by a color overlay. Note that red represents high values of stiffness

(hard tissue) and blue low values (soft tissue).

In order to improve the objectivity of the elastography, several works proposed scoring

systems to describe the elastic behavior of a lesion [49, 60, 73, 81|. They proposed different
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scales to classify an elastogram based on colors. For instance, Itoh et al. [73] proposed a
scale, assuming blue as the expression of stiffness and green as softness, that includes: score
1 for soft strain nodules with the entire lesion colored in green; score 2 for lesions with a
mosaic pattern of green, red and blue; score 3 for lesions with blue in the middle and green
in the periphery; score 4 for stiff strain nodules with the entire lesion colored in blue without
the surrounding area and finally, score 5 for stiff strain lesions with a blue surrounding area

(see Figure 5.3). Later, alternative, but similar, scales were proposed [49, 60, 81].

In order to obtain a more objective assessment of the elastic behavior between lesions and
normal tissue, a numerical ratio (called strain ratio) between the deformation of the lesion
and the normal tissue, and the difference in lesion size before and during the compression
(referred to as length ratio) were proposed . The strain ratio is measured from a ROI
adjusted to the lesion boundaries and a comparable ROI placed in the adjacent fat tissue [5,
120, 138]. The length ratio (or width ratio) is calculated by measuring the maximal
horizontal length of the lesion in the USE image divided by the corresponding length
measured in the B-mode image [5, 12, 104].

a. b. c. d. e.

Figure 5.3: Five point scoring criteria according to Itoh et al. [73] for breast lesions. (a)

Score 1: strain appears in the entire lesion. (b) Score 2: Strain is not seen in parts of
the lesion. (c) Score 3: Strain appears only at the periphery of the lesion. (d) Score 4:
No strain appears in the entire lesion. (e) No strain appears either in the lesion or the

surrounding area.

5.4 Shear-Wave Elastography (SWE)

Shear-wave elastography is a technique of obtaining elastography images based on the
combination of stress induced in a tissue by an ultrasonic beam, and an ultrafast imag-
ing sequence capable of acquiring the propagation of the resulting shear waves in real
time [14]. The system induces mechanical vibrations created by a focused US beam. An

ultrafast (5000 frames/s) US acquisition sequence is used to capture the propagation of
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the shear-waves. The tissue’s elasticity is directly deduced by measuring the speed of wave

propagation c, as indicated in equation 5.2

E = 3pc? (5.2)

where p is the density of the tissue, which is assumed to be a constant in the body, i.e. it

is very close to the density of water (1000 kg/m?).

Shear-waves travel faster through hard tissue and therefore, hard tissue has larger
Young’s modulus value compared to soft tissue. After the local shear-wave velocity is
recovered, the production of a two-dimensional map of shear elasticity is generated in
real-time, where stiffer tissues are coded in red and softer tissues in blue, as shown in
Figure 5.4

The production of the stress by the transducer rather than the operator (as applied in
conventional ultrasound elastography) means that shear-wave elastography is more repro-
ducible than conventional elastography. Since the absolute elasticity values of the tissues
are obtained, values for maximum stiffness, mean stiffness and standard deviation can be

calculated from a given ROI in the ultrasound acquisition machine.

Some studies established a relationship between the elasticity measures obtained with
SWE and the Breast Imaging and Reporting Data System (BIRADS) classification, and
established thresholds to differentiate between benign and malignant lesions [11, 42, 44,
119]. Other studies proposed a set of features extracted from the SWE, and analyzed
the discriminative properties of these features in the task of distinguishing benign from

malignant lesions [15, 63, 78|.

5.5 The role of elastography on CAD

Elastography is a recent technique and, although it has been shown to improve the speci-
ficity of diagnosing lesions [15, 58], it is still not widely used in routine screening programs.
For this reason, the role of the elastography on CAD systems is not relevant yet, and only
several works investigated the use of computerized techniques with elastography imag-
ing. These works can be grouped as to the stage of the CAD system in which they use

elastography: lesion detection, segmentation or classification.

Regarding automatic lesion detection, only Zhang et al. [135] proposed a fully-automatic

method for locating cystic lesions in BUS images. They used the same detection algorithm
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+180 kPa

Figure 5.4: SWE of a fibroadenoma. The bottom image depicts the B-mode and the top

image the B-mode with the elastogram overlayed.

presented in [134|, which used a machine learning framework with a PBT classifier and
Haar-like features [123] extracted from the image, but only extracting the features from

pairs of B-mode and elastography images instead of a single B-mode.

More efforts in tissue segmentation can be found in the literature. Regarding lesion
segmentation on BUS images, we can find the work of Von Lavante and Noble [124], who
added strain features extracted from the RF signal to a graph-cut segmentation framework.
Later, Nedevschi et al. [97| proposed the segmentation of elastography images using the
EM algorithm. The method automatically initializes the EM, analyzing the peaks in the
elastography histogram. Finally, Zhou et al. [139] proposed the inclusion of elastography
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in a level-set segmentation framework, but they only evaluated their approach in phantom

images.

Elastography data can also be useful in the segmentation of other organs, such as the
liver or the prostate. This is the case of Techavipoo et al. [118], who proposed a semi-
automatic algorithm to segment elastography images of the liver. In this work, the user
interaction is needed to place two ROIs to initialize a histogram thresholding segmenta-
tion process. The segmentation is then refined with a morphological operation to remove
artifacts. Liu et al. [87] also proposed the segmentation of elastography images of the liver.
They presented an ACM method, where the contour is initialized with a coarse-to-fine
transformation (Gaussian pyramid) [21]. In the field of prostate segmentation, we find the
work of Mahdavi et al. [89], where they presented a method that combines B-mode and

elastography information in an Active Shape Model.

As we mentioned in the previous section, elastography features are used to distinguish
benign from malignant lesions in BUS images in clinical studies. Hence, some works focused
their efforts on using elastography features for lesion classification. This is the case of Chang
et al. [23], who extracted features of the lesion before and after the compression (volume,
shape and contour differences) to train a SVM classifier. Moon et al. [96] evaluates a
set of features (5 from the elastography and 6 from the B-mode) extracted from manual
segmentations of the tumors, using a NN. Subsequently in [95], the same authors proposed
an algorithm to pick the best image in an elastography video and used the best combination
of features to classify a previously segmented lesion. Also Selvan et al. [108] evaluated a
set of combined features from B-mode and elastography extracted from a segmentation

performed with a level-set method.

5.6 Bivariate MRF-MAP segmentation approach

Elastography information can be seen as a grayscale image. Indeed, in clinical environments
elastography information is commonly shown as an overlay in B-mode screening process
assigning intensity value ranges to a different color to visually help radiologists, as seen
in Figures 5.2 and 5.4. Hence, elastography information can be combined with B-mode
information to improve segmentation results, mostly when the B-mode image information
is not conclusive in providing the lesion location. We propose to extend the MRF-MAP
approach to take both B-mode and elastography into account in a unique framework, by

modeling both data in a bi-variate Gaussian PDF.
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5.6.1 Image model

We assume that both images (B-mode and elastography) present intensity inhomogeneities
and these are described by a multiplicative field. A logarithmic transformation yields this
multiplicative model to an addition. Similar to the notation described in Chapter 2, let
the observed and ideal log-transformed intensities be denoted respectively by y and y*,
then y = y* +d where d denotes the log-transformed intensity bias field. Given the class
label x; € £, where £ denotes the label set. Note that now, y; at pixel ¢ refers to both
B-mode and elastography values at that pixel. It is assumed that those values, y7, follow
a bivariate Gaussian distribution with parameter 6(z;) = (u,,,Xs,;), where p,. now is a
vector of means for B-mode and elastography, and X, the covariance matrix of class x;,

and defined as follows

* * 1 1 * — *
p(y;lz:) = g(y;;0(v;)) = ——— exp §(yi — 1) S0 Yy — ) (5.3)

B 2rdet(Xy,)

(NI

Variables in bold type represent vectors to distinguish between notation of the MRF-
MAP formulation in Chapter 4 and bivariate formulation. Experimental results corroborate
the validity of the assumption of a bivariate Gaussian distribution for both lesion and
background information in B-mode and elastography, as illustrated in Figure 5.5, where
the intensity distribution for lesion and background are shown for elastography and B-

mode, and a clear bivariant Gaussian distribution can be seen.

Considering the bias field, the above distribution can be rewritten in terms of the observed

intensities y; as

p(y;lzi, di) = g(y; — di; 0(x;)) (5.4)

and the class-independent intensity distribution is denoted by

pyildi) = g(y; — di; 0(x))p(zi = j) (5.5)

JeEL
Thus, the intensity distribution is modeled as a bivariate Gaussian mixture and, assuming
that the pixel intensities are statistically independent, the probability density for the entire

image given the bias field is
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Figure 5.5: Examples of bivariate distributions: 2D histograms showing B-mode and Elas-

tography information of (a) lesion and (b) background.

pyld) =[] D 9(; — di; 6(xi))p(ai = j) (5.6)

i€S jeL

where S denotes the image pixel set.
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5.6.2 Label estimation using MRF-MAP framework

Similarly to the B-mode formulation, the MRF prior model is introduced to keep the spatial
information. It is assumed that neighboring sites have a direct relationship with each other
and tend to have the same class labels. The probability density of a MRF model can be
described as a Gibbs distribution [17] (see equation 4.10 in Chapter 4).

Following the same notation as in Chapter 4, the MAP of class labels is defined as

i = arg ng(l U(y*|z) + U(x) (5.7)

where U(y*|z) likelihood energy is the logarithm of the posterior probability, and it is

defined as follows

Ulo'le) = 3 |50 = )5 0 - )+ loglder(5)') (53)
1€S

and the prior energy U(x) can be defined as in equation 4.16 of Chapter 4.

5.6.3 Expectation Maximization (EM) algorithm

To obtain the estimation of the distortion field, the EM algorithm is also used to update
the label image and the intensity inhomogeneity field iteratively, initializing the bias field
d to be zero. Since a fast convergence is needed in a few iterations, the ICM algorithm [18]

is used (see Chapter 4).

Expectation step: calculates the posterior tissue class probability W;; using the MRF

prior model when the bias field d is known and using p(z; = j|z;)

p(y;lxi, di)p(zi = jlon,)
Wi = i 5.9
j D21 59)

Maximization step: the bias field d is estimated when Wj;; is known.
[FR);

d; = T TE, with B = (1,1,..)7 (5.10)

where F' is a low-pass filter, and R is the mean residual values for both B-mode and

elastography images, in which for pixel ¢ are defined as
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R; = Z Wij(y; — pj)S" (5.11)

JEL
The difference from Chapter 4 is that the mean residual value R; is a vector of size 1 X 2,
and that the mean inverse covariance matrix 1,0;1 at pixel 7 is a vector of size 2 x 2 defined

as follows

Pt =) wyn! (5.12)

JEL
5.7 Compression ultrasound elastography results

5.7.1 Image dataset

In this study, two datasets provided by different research institutions containing B-mode

and elastography information were used to assess the proposed segmentation method.

Dataset E1 is composed of 12 images obtained from the Churchill Hospital (Oxford,
England) with a Zonare z.one system and an L10-5 linear array transducer (8.5 MHz).
The strain information was provided by the BiomedIA research group of the University
of Oxford, based on estimating the strain information by tracking the displacement of
the RF signal [82]. Dataset E2, composed of 21 images, was provided by the Medical
Imaging Group of the Cambridge University Engineering Department. The scans were
obtained with a Dynamic Imaging Diasus ultrasound machine with a 5-10 MHz linear
array transducer, and the strain information was generated using a tissue displacement
tracking algorithm proposed by the same research group [83]. Manual delineations of the
tumors were performed by an expert radiologist, and all of the images involved in this work

were previously made anonymous to preserve the confidentiality of the patients.

5.7.2 Qualitative results

A qualitative evaluation is presented here to show the behavior of the algorithm dealing
with illustrative cases, one in which the lesion is easily segmented using B-mode information
alone (example 1) and one where this modality is clearly insufficient (example 2). Firstly,
the images are segmented using the previously proposed LLSI algorithm with B-mode
information alone. Subsequently, the image is segmented including both B-mode and

elastography information. We have compared the different results in order to determine
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the benefits of combining both ultrasound B-mode and elastography information in the

lesion segmentation problem.

Figure 5.6 shows the segmentation results of the first example, where the tumor is well
defined in the B-mode image and the elastography does not provide essential additional
information. Note that the results are similar for both performances. Although it is not
clearly appreciated in this example, the inclusion of elastography information might yield
an over-segmented result due to the fact that tumors invade surrounding tissues making

them appear stiffer.

Figure 5.6: Example 1: Segmentation results using B-mode information alone (first row),
and combining B-mode and elastography (second row). Column (a) plots the original
image, (b) the segmentation result and (c) the overlap between the result and the GT,
where the light gray colour denotes TP pixels, dark gray represents FN and white denotes
FP.

On the other hand, Figure 5.7 shows the segmentation results of the second example. In
this case, the B-mode does not provide enough information to clearly segment the tumor
and the method fails. In this kind of image, elastography provides better information on
the location of the tumor, as shown in the second row of Figure 5.7. Using this information,

the segmentation result is clearly improved.
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(b) (c)

Figure 5.7: Example 2: Segmentation results using B-mode information alone (first row),

and combining B-mode and elastography (second row). Column (a) plots the original
image, (b) the segmentation result and (c) the overlap between the result and the GT,
where the light gray colour denotes TP pixels, dark gray represents FN and white denotes
FP.

5.7.3 Quantitative results

In this subsection, quantitative results are presented. Specifically, we compared the results
obtained by using B-mode information alone and combining it with elastography informa-
tion in the segmentation framework. The results are presented in relationship with the
dataset used in Table 5.1. Analysis of this table shows that the inclusion of the elastogra-
phy in the segmentation framework considerably improves the segmentation results in the
two different datasets independently and in the total dataset (Dataset E1 and E2). For a
better comparison of these results, Figure 5.8 shows a set of box plot charts comparing the
DSC values obtained. Analyzing this figure, we can observe a significant improvement in
the results using Dataset E1, while no-significant improvements are appreciable in Dataset
E2. This difference in results between datasets can be explained by looking at the images
of each dataset: while most of the lesions appear well defined in Dataset E2, they are
more difficult to locate in Dataset E1. Hence, the impact of including elastography is
higher in datasets where B-mode information alone is not sufficient. However, the inclu-
sion of elastography information improves (being significant or not) the performance of the

segmentation algorithm in all cases.
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Table 5.1: Quantitative results using B-mode alone or including elastography information

for USE.
Information Sensitivity — Specificity PPV AO DSC
B-mode 0.427 0.907 0.722 0.370 0.501
Dataset E1
B-mode + elasto 0.661 0.990 0.839 0.583 0.728
B-mode 0.732 0.942 0.865 0.6752 0.780
Dataset E2
B-mode + elasto 0.750 0.989 0.861 0.673 0.789
B-mode 0.621 0.292 0.813 0.564 0.679
Total Dataset
B-mode + elasto 0.717 0.990 0.853 0.641 0.767
0 Dataset E1 Dataset E2 Total dataset
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Figure 5.8: Box plot charts comparing the DSC values for Dataset E1, E2 and the total

dataset.

5.8 Shear-wave elastography results

5.8.1 Image dataset

The dataset of SWE images was collected recently (2013) from the UDIAT Diagnostic

Centre of the Parc Tauli Corporation, Sabadell (Spain) with an Aixplorer V4 US system

(SuperSonic Imagine, Aix-en-Provence, France), which was equipped with a 4-15 MHz lin-

ear array transducer. The dataset consists of 24 images from different patients. Figure 5.4

shows an example of a SWE image from this dataset. The B-mode and the elasticity map

are depicted on the same screen for a better visualization. The values of elasticity are

embedded in the DICOM file when acquiring the image, and can be extracted using a

software tool provided by SuperSonic lmagine.
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5.8.2 Qualitative results

A qualitative evaluation is presented here to show the behavior of the algorithm dealing
with two representative cases. The first case, Figure 5.9(a-e), shows a well defined lesion in
the B-mode. The second case, Figure 5.9(f-j), shows a lesion which appears in the B-mode
with similar intensity values to normal tissues. In this case, the inclusion of elastography

gives essential information for the lesion identification.

Shear-wave elastography provides reliable information on the location of the lesion. How-
ever, when performing this study, we found the presence of an artifact in most of the SWE
cases, caused by the peritumoral stiffness [43, 44, 132]. As depicted in Figure 5.10, in some
cases with cancerous lesions, the stiffest tissue is found in the peritumoral region rather
than in the cancer itself. In addition, in some cases the elasticity information within the
lesion is not even measured. The presence of the peritumoral stiffness is helpful for the ra-
diologist when detecting malignant lesions. However, it induces our segmentation method
to fail. Thus, no quantitative results using SWE can be reported as most of the cases
show peritumoral stiffness. This will need further investigation to assess the nature of this

artifact.

5.9 Conclusions

In this chapter, a novel unified framework for simultaneously estimating the bias field and
segmenting lesions in breast ultrasound using both B-mode and elastography information

was proposed.

First, the inclusion of compression elastography data was evaluated. Qualitative results
were performed using two illustrative cases, one where the B-mode shows a well defined
lesion and another where elastography provides more meaningful information. The seg-
mentation results were compared by using the B-mode information alone or combining
the B-mode and elastography. These qualitative results show that combining both the
B-mode and elastography information in a unique framework improves the segmentation
results, especially when B-mode images are not conclusive, which is the often the case in
non-cystic lesions. These results are corroborated later in the quantitative results section.
The proposal has been assessed in two datasets (E1: 12 images, E2: 21 images) obtaining

better results when including elastography information in both datasets.

Finally, we evaluated the inclusion of SWE in the segmentation framework. The presence
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of the peritumoral stiffness in the majority of the cases in the dataset induced our approach
to mis-segment the images, and made its evaluation impossible with this kind of image.
Since the presence of peritumoral stiffness is helpful in the detection of cancerous lesions,

we consider that it would be interesting to include SWE information in a novel lesion

detection method.
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(e) ()

Figure 5.9: Qualitative results for two SWE breast images. (a-e) show the results for the

first case and (f-j) for the second case. (a and f) show the original image with the elasticity
map, measured within a ROI placed by the radiologist, superimposed. (b and g) show the
B-mode image corresponding to the ROI. (c,h) show the elastography map of the ROI. (d
and i) show the segmentation results. (e and j) show the overlap between the segmentation
and the GT, where the light gray color denotes TP pixels, dark gray represents FN and
white denotes FP.
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(b)

Figure 5.10: Examples of the SWE peritumoral artifact. (a) Malignant case where the
peritumoral tissues appear as the stiffer regions. (b) Elasticity values of the lesion are not

measured.



Conclusions and future work

The current and final chapter summarizes the methodology and results of the studies on the
different CAD stages presented in this thesis. It further describes the original contributions
made by this thesis to the research area of computer-aided breast cancer detection. It also
highlights possible future improvements and directions of research related to the work

presented.

6.1 Conclusions of the thesis

The aim of this thesis has been the proposal of a new pipeline capable of detecting, seg-
menting, and classifying breast lesions in ultrasound imaging. Starting with an initial study
of the state-of-the-art of breast lesion detection, it was concluded that machine learning-
based methods adapt better to the specific characteristics of the target dataset, and do not
need the use of an extra false positive reduction step, necessary in most of the detection

methods based on image processing.

A further analysis of the breast lesion segmentation literature was also provided in

order to highlight the strengths and weaknesses of each segmentation technique analyzed.

131
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Analysis of these works shows that machine learning-based methods obtained good results
and do not require any kind of user interaction. Through this analysis, it was assessed that
few approaches were based on MRF, which, in principle, can be regarded as an interesting

framework incorporating both spatial and intensity information.

Subsequently, a study of the state-of-the-art of breast lesion classification was also carried
out in order to highlight the most frequent chosen important factors, such as features, classi-
fier, train/test procedure and dataset composition, for the classification results. Regarding
the features used to classify the lesions, most are extracted from manual delineations or
from a ROI placement, and the majority of the methods studied used a combination of
texture and morphological features. It has also been demonstrated that most of the meth-
ods used the k-fold cross validation in the training/testing process as well as unbalanced

datasets, which contained fewer malignant than benign images.

Therefore, a computerized lesion detection system for breast US images using Deformable
Part Models (DPM) has been proposed. Different configurations of parameters were ex-
tensively evaluated to improve the results of the DPM in breast US images. A comparison
of several of the most important methods in the literature was performed, evaluating all
the methods with the same datasets. Amongst the different methodologies compared, the
proposed method obtained the best results. Furthermore, the detection system was trained
to detect malignant lesions directly, obtaining similar results to the best proposals in the

literature, but considerably simplifying the traditional cancer detection pipeline.

After the detection proposal, different initialization processes to include spatial infor-
mation in the MRF-MAP segmentation framework to reduce the interaction of the user
with the method were introduced. It was concluded that the LLSI initialization proposal
obtained the best results. Moreover, the segmentation results were studied in relationship
with the lesion type, concluding that cystic lesions obtained the best results due to their
well defined boundaries and the homogeneous appearance, while fibroadenoma and can-
cerous lesions performed poorly due to inherent artifacts related to the lesion type, such

as shadowing or heterogeneities within the lesion.

In order to improve the segmentation results, a novel algorithm including elastography
information has been proposed. The MRF-MAP segmentation framework was redesigned
to include both B-mode and elastography ultrasound data by modeling both types of infor-
mation as bivariate Gaussian PDFs. The proposed method was evaluated with compression
elastography, outperforming the results obtained when using B-mode information alone. It

was also evaluated with shear-wave elastography images, but the presence of peritumoral
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stiffness in most of the images induced the method to fail, and only qualitative results were

reported.

6.1.1 Contributions

The goal of this thesis is to aid radiologists in the day-to-day practise by assisting them
in the challenging task of cancer detection in breast sonography by providing them with
a second opinion and help to increase the diagnosis accuracy, reducing the biopsy rate
and saving time and effort. This second opinion should ideally be provided automatically
so as to be effective in a real clinical environment. From this point of view, the main

contributions of this thesis to both the scientific and clinical community are:

e A novel lesion detection algorithm in breast ultrasound images using Deformable
Part Models (DPM) that outperformed the current methods in the literature. This
development has been achieved after elaborating an extensive survey of the most
relevant breast ultrasound lesion detection algorithms, an exhaustive analysis of the
parameters involved in the method to determine the best configuration for sonogra-
phy, an exhaustive test using two different datasets, and an experimental comparison

between our lesion detection proposal and relevant methods in the state-of-the-art.

e A cancer detection technique in breast ultrasound images using DPM. The model
is trained to detect malignant lesions directly, simplifying the traditional cancer de-
tection pipeline, which first detect candidate lesions, segments them for extracting

features, and finally, classifies them into benign or malignant.

e A proposal of different initialization improvements of the MRF-MAP method that
reduces the interaction process involved in the original proposal to one-click. This
development has been achieved after elaborating an extensive survey of the most
relevant breast ultrasound lesion detection algorithms, an exhaustive test using two
different datasets, and an experimental comparison between our lesion segmentation

proposal and relevant methods in the state-of-the-art.

e A study of the influence of lesion type in the MRF-MAP segmentation results. To
our knowledge, this type of study has not been performed before, and indicates which

types of lesions obtain better and worst segmentation results.

e A novel lesion segmentation algorithm in breast ultrasound images including elas-

tography information in a unified framework, assessed including conventional com-
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pressing elastography and the recent shear-wave elastography. This development has
been achieved after elaborating an extensive survey of the most relevant works which

investigated the use of computerized techniques with elastography imaging.

6.2 Future work

The analysis of breast US images is a complex topic involving several aspects and multiple
research lines. This notion is exemplified in the research of CAD systems, where different
processes play an important role. The research efforts can focus on a particular stage of
the CAD pipeline, or on a combination of them. Furthermore, other interesting topics
arise from the needs of current clinical practise, with the introduction of new screening

techniques, such as elastography or ABUS.

Hence, future directions are presented divided into two categories: those related to
increasing the reliability of our proposal, and future research lines departing from this

thesis.

6.2.1 Short-term proposal improvements

After the analysis of the proposed methodologies, some potential improvements could be
made in the near future. In regard to malignant lesion detection, a more exhaustive
parameter analysis could be performed to improve the detection results. The sensitivity
of this proposal is in line with the methods of the state-of-the-art, but with a higher
number of FP per image, as commented in Chapter 3. One proposal could be a two-stage
detection method, where first, lesions are detected, and then, cancers are detected amongst
the previously detected lesions. This proposal will increase the malignant lesion pipeline,

but it will continue having fewer stages than the traditional pipeline.

Regarding the segmentation process, more efforts need to be made when dealing with
images with specific artifacts that induce the method to fail. As was shown in Chapter 4,
the method obtained results in line with the other state-of-the-art methods when excluding
these conflictive images. To solve the influence of such artifacts, we propose using adaptable
size windows in the lesion and background information acquisition and the inclusion of a
pre-processing step to enhance the lesions. Adaptable windows could manage zoomed-in
lesions, and the pre-processing step could enrich the visualization of lesions with similar
intensity to normal tissue. Another limitation of the method that would be interesting to

solve is the fact that only one lesion per image can be segmented.



6.2. FUTURE WORK 135

A new approach for lesion segmentation including elastography has been presented in
this thesis. Promising results were obtained, but an additional further evaluation in a
larger dataset should be performed. We have also shown the potential of SWE imaging.
However, further investigation of the acquisition of these images should be performed to

solve the presence of artifacts.

6.2.2 Future research lines

In the long term, there are several new research lines departing from this thesis that could
be studied. One that was initially explored in this thesis was the inclusion of elastog-
raphy information in the segmentation framework. The benefits of the introduction of
elastography in current screening programs have been proved in different studies. Hence,
we consider that elastography can play an important role in computerized lesion detection

and classification.

Regarding the MRF-MAP segmentation proposal, we consider that it would be necessary
to include spatial information in the methodology. Thus, the method could take advantage

of the lesion location provided by the user (one click) or by the lesion detection method.

Analyzing the results obtained in lesion detection by the DPM, we also consider that this
methodology has the potential of being adapted to detect lesions in 3D volumes, such as
ABUS, which is currently being adopted in clinical practice and becoming a relevant topic
of interest in medical imaging research. Because of the large number of slices or planes
in a 3D breast volume, one of the main problems in 3D lesion detection is the number
of FP. The DPM approach obtained a low ratio of FPs per image, which could possibly
be improved by including a new FP reduction post-processing technique to analyze the

propagation of the detections in the volume.
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Summary of datasets

In this thesis, different datasets have been used for evaluating the proposed methodologies.

Here, a summary of the datasets used is given.

Name: Dataset D1.

Provided by: Manchester Metropolitan Univeristy, Manchester (UK).

Images: Breast sonography.

Machine: B&K Medical Panther 2002 and B&K Medical Hawk 2102.

Transducer: 8-12 MHz linear array transducer.

Year: 2001.

Cases: 406.

Benign cases: 246.

Malignant cases: 60.

Other cases: 100 healthy images.

Avg. image size: 377x396 pixels.

Ground truth: Posterior biopsy/pathological examination, and boundary delineation of
a radiologist.

Used for: Lesion detection.
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Name: Dataset D2.

Provided by: UDIAT Diagnostic Centre of the Parc Tauli Corporation, Sabadell (Spain).

Images: Breast sonography.

Machine: Siemens ACUSON Sequoia C512.

Transducer: 8.5 MHz 17L5 HD linear array.

Year: 2012/13.

Cases: 326.

Benign cases: 110.

Malignant cases: 53.

Other cases: 163 healthy images.

Avg. image size: 760x570 pixels.

Ground truth: Posterior biopsy/pathological examination, and boundary delineation of
a radiologist.

Used for: Lesion detection.

Name: Dataset S1.

Provided by: UDIAT Diagnostic Centre of the Parc Tauli Corporation, Sabadell (Spain).

Images: Breast sonography.

Machine: Siemens ACUSON Sequoia C512.

Transducer: 8.5 MHz 17L5 HD linear array.

Year: 2012.

Cases: 140.

Benign cases: 96.

Malignant cases: 44.

Other cases: N/A.

Avg. image size: 760x570 pixels.

Ground truth: Posterior biopsy/pathological examination, and boundary delineation of
a radiologist.

Used for: Lesion segmentation.

Name: Dataset S2.
Provided by: Churchill hospital, Oxford (UK).

Images: Breast sonography.
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Machine: Zonare z.one.

Transducer: 8.5 MHz L10-5 linear array.

Year: 2009.

Cases: 72.

Benign cases: 18.

Malignant cases: 54.

Other cases: N/A.

Avg. image size: 226x1017 pixels.

Ground truth: Posterior biopsy/pathological examination, and boundary delineation of
a radiologist.

Used for: Lesion segmentation.

Name: Dataset E1.

Provided by: Churchill hospital, Oxford (UK).
Images: Breast sonography and elastography.
Machine: Zonare z.one.

Transducer: 8.5 MHz L10-5 linear array.
Year: 2010.

Cases: 12.

Benign cases: N/A.

Malignant cases: N/A.

Other cases: N/A.

Avg. image size: 226x1017 pixels.

Ground truth: Boundary delineation of a radiologist.

Used for: Lesion segmentation with elastography.

Name: Dataset E2.

Provided by: Medical Imaging Group of the Cambridge University, Cambridge (UK).
Images: Breast sonography and elastography.

Machine: Dynamic Imaging Diasus.

Transducer: 5-10 MHz linear array.

Year: 2008.

Cases: 21.
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Benign cases: 17.

Malignant cases: 4.

Other cases: N/A.

Avg. image size: 384x294 pixels.

Ground truth: Posterior biopsy/pathological examination, and boundary delineation of
a radiologist.

Used for: Lesion segmentation with elastography.

Name: Dataset E3.

Provided by: UDIAT Diagnostic Centre of the Parc Tauli Corporation, Sabadell (Spain).
Images: Breast sonography and shear-wave elastography.
Machine: SuperSonic Aixplorer V4.

Transducer: 4-15 MHz linear array.

Year: 2013.

Cases: 24.

Benign cases: N/A.

Malignant cases: N/A.

Other cases: N/A.

Avg. image size: 540x317 pixels.

Ground truth: Boundary delineation of a radiologist.

Used for: Lesion segmentation with elastography.
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