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L. Tortajada, M. Sent́ıs, and J. Freixenet. A boosting based approach for

automatic micro-calcification detection. International Workshop on Digital

Mammography, LNCS 6136, pp 251-258. Girona, Spain. June 2010.

• [IWDM 2008] M. Tortajada, R. Mart́ı, J. Freixenet, J. Fernández, M. Sent́ıs.

Image Correction and Reconstruction for Breast Biopsy. International Work-

shop on Digital Mammography, LNCS 5116, pp 545-552. Tucson, Arizona.

July 2008.
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M. Maiorino, R. Mart́ınez, J. P. Montage, G. Pellegrini, C. Puigdengoles,

M. Ullán. X-ray machine for general radiology and mammography based on

room temperature Solid State detector coupled to photon-counting electron-

ics. Evaluation of results. Computer Assisted Radiology and Surgery 21st



Publications

International Congress and Exhibition, vol 2, 1 Suppl., pp S9-S11. Berlin,

Germany. June 2007.

• [NIMPRA 2006]G. Blanchot, M. Chmeissani, A. Dı́az, F. Dı́az, J. Fernández,
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Resum

L’objectiu principal d’aquesta tesi és la detecció automàtica de masses en imatges

mamogràfiques digitals fent servir tota la possible informació mamogràfica del pa-

cient, això inclou informació bilateral, temporal i ipsilateral. Com a primer pas,

les imatges digitals són preprocessades per tal de millorar la seva qualitat abans de

començar a treballar amb elles dintre del marc de la detecció pròpiament dit. El nou

mètode de millora de la qualitat de mamografies digitals s’aplica per a compensar

la reducció del gruix mamari a la part perifèrica de la mama. A continuació, per a

obtenir la informació bilateral i temporal del pacient, es fa servir el registre af́ı seguit

del registre B-Splines, i la informació obtinguda s’incorporarà a la part de detecció

del procés global. El registre aplicat és el que ha obtingut els millors resultats a

nivell d’utilitat i d’usabilitat d’entre els diferents mètodes analitzats. Finalment, la

correspondència entre les vistes CC i MLO basada en l’ús de ĺınies epipolars és el

mètode que s’utilitza durant la part de reducció de falsos positius. La informació

ipsilateral permet distingir entre masses reals (quan existeix correspondència en-

tre lesions trobades a les vistes CC i MLO) i masses falses (en cas contrari). A

més, per tal d’afegir informació sobre la densitat de la mama analitzada, diferents

mètodes d’avaluació de densitat mamària, tant qualitatius com quantitatius, han

estat proposats i avaluats. Els resultats inicials mostren que el CAD multi-imatge

incrementa la seva sensibilitat i redueix el nombre de falsos positius respecte els

resultats obtinguts pel CAD uni-imatge.





Resumen

El objetivo principal de esta tesis es la detección automática de masas en imágenes

mamográficas digitales, usando para ello toda la información mamográfica disponible

del paciente, esto incluye información bilateral, temporal e ipsilateral. Como primer

paso, las imágenes digitales son preprocessadas para mejorar su calidad antes de

empezar a trabajar con ellas dentro del marco de la detección propiamente dicho.

El nuevo método de mejora de la calidad de mamograf́ıas digitales es aplicado para

compensar la reducción del grosor mamario en la parte periférica de la mama. A

continuación, para obtener la información bilateral y temporal del paciente se usa

el registro af́ın seguido del registro B-Splines y la información obtenida se incor-

porará en la parte de detección del proceso global. El registro aplicado es el que

ha obtenido los mejores resultados a nivel de utilidad y de usabilidad de entre los

diferentes métodos analizados. Finalmente, la correspondencia entre las vistas CC

y MLO basada en el uso de ĺıneas epipolares es el método usado durante la parte

de reducción de falsos positivos. La información ipsilateral permite distinguir entre

masas reales (cuando existe correspondencia entre lesiones halladas en las vistas CC

y MLO) y masas falsas (en caso contrario). Además, con el fin de añadir infor-

mación sobre la densidad de la mama analizada, diferentes métodos de evaluación

de densidad mamaria, tanto cuantitativos como cualitativos, han sido propuestos y

evaluados. Los resultados iniciales muestran que el CAD multi-imagen incrementa su

sensibilidad y reduce el número de falsos positivos respecto a los resultados obtenidos

por el CAD uni-imagen.





Abstract

This thesis is focused on the automatic detection of masses in FFDM images by

using case-level information which includes bilateral, temporal and/or ipsilateral in-

formation. As a first step, FFDM images are preprocessed to improve image quality

before working on the proper detection framework. A novel enhancement method

is applied to compensate the thickness reduction in peripheral edges of the breast

in FFDM. Following, B-Splines image registration with Affine initialisation is used

to obtain bilateral and temporal information that is incorporated in the detection

stage of the whole process. This registration approach is considered the optimal one

that provides useful and usable case-level information among several investigated

registration methods. Finally, CC/MLO correspondence approach based on using

curved epipolar lines is used in the FP stage. Ipsilateral information allows to dis-

tinguish between real (when CC/MLO lesion correspondence exists) and non-real

(when there is no CC/MLO lesion correspondence) masses. Furthermore, in order

to add breast density information to the detection process, different methods for

breast density assessment are analysed. Both, qualitative and quantitative meth-

ods are proposed and evaluated. Initial results show a better performance of the

multi-image CAD approach relative to the single-image CAD approach. Sensitivity

increases and the number of FPs is reduced.





Chapter 1

Introduction

The aim of this research work is the development of an automatic tool to detect

masses in digital mammographic images by including case level information. This

initial chapter is an introduction to breast cancer and the different imaging tech-

niques for detecting it. As well as an introductory explanation about single and

multiple view computer aided detection systems. In addition, a general overview of

this thesis is provided.

1.1 Breast Cancer

Breast cancer is a disease characterised by the uncontrolled growing of cells in the

breast that attack the neighbouring healthy cells. Breast cancer is the second most

frequent malignant tumour around the world, exceeded only by lung cancer. In

the female population, breast cancer is by far, the most common cancer with an

estimated 1.67 million worldwide new cancer cases diagnosed in 2012 (25% of all

cancers). It is the most common cancer in women both in more and less developed

regions with slightly more cases in less developed (883.000 cases) than in more

developed (794.000 cases) regions [225].

Breast cancer ranks as the fifth cause of death from cancer overall (522.000

deaths) and while it is the most frequent cause of cancer death in women in less

developed regions (324.000 deaths, 14.3% of total), it is now the second cause of

cancer death in more developed regions (198.000 deaths, 15.4%) after lung cancer.
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The range in mortality rates between world regions is less than that for incidence

because of the more favorable survival of breast cancer in (high-incidence) developed

regions [225]. Nowadays, breast cancer survival rate is growing thanks to factors

such as mammographic screening programs (for an early detection) or more efficient

treatments [85, 310].

1.2 Breast Cancer Detection Imaging Techniques

Mammography (x-ray image of the breast) is the most common method used for

breast cancer detection. Mammography is used in breast cancer screening programs

due to capacity of depicting cancers at a smaller size and earlier stage [275]. Current

commercial machines can detect lesions up to 70µm using low-dose radiation. During

an usual screening mammographic exam 4 images are acquired, CC and MLO views

from left and right breasts. CC view images the breast from above and MLO view is

taken from an oblique or angled view (usually 45◦) (see Fig. 1.1). Although recently,

trying to improve the performance of mammography, digital breast tomosynthesis

(DBT) has been developed. DBT is a 3D imaging technology that acquires images

of the compressed breast at multiple angles during a short scan. Images are then

reconstructed into a series of 1mm thick high-resolution slices. In addition, CC

and MLO images are synthetically reconstructed from the 3D dataset. These 2D

reconstructed images are known as C-Views [281, 280, 361, 243].

(a) (b) (c) (d)

Figure 1.1: Complete mammographic screening case: (a) CC view of the right breast,
(b) CC view of the left breast, (c) MLO view of the right breast, and (d) MLO view
of the left breast.
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However, not all breast cancer can be detected with x-rays and of course, mam-

mography has limitations, so other imaging techniques have to be used. Breast US

(see Fig. 1.2(a)) is becoming a necessary technique in the screening environment,

especially in dense breast cases. Recently, the automated breast ultrasound (ABUS)

has been presented as an emerging approach that allows improved consistency and

reproducibility of images, minimizes operator dependence, and aids with inclusion

of the whole breast [46].

Breast MRI (see Fig. 1.2(b)) is another technique that can be used for breast

cancer detection, although in most cases is a complement for mammography. Nev-

ertheless, in high risk women with BRCA1, BRCA2 (genetic mutation) is used as

a detection method [170] . In addition to the aforesaid breast imaging techniques,

optical imaging, breast thermography, positron emission mammography, electric

impedance imaging or breast CT are also techniques that can be used for breast

cancer detection and/or evaluation [288, 101].

(a) (b)

Figure 1.2: Example of breast imaging techniques: (a) breast US, and (b) breast
MRI.

1.2.1 Mammographic Abnormalities

According to BI-RADSR© [275] there are several important findings in mammograms.

Calcifications, asymmetries, architectural distortions, masses, intramammary lymph

nodes, skin lesions or solitary dilated ducts are included in the aforesaid findings

group.
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Calcifications

Breast calcifications are calcium deposits within the breast that appear in

mammograms as white spots similar to grains of salt. There are two types

of breast calcifications according to their size: macrocalcifications and micro-

calcifications. Macrocalcifications look like large white dots or dashes and are

almost always noncancerous. On the contrary, microcalcifications are very fine

white specks and their irregular clustering is usually a sign of cancer [187].

Asymmetries

Altough both breasts are externally different, at an internal level they are

structurally similar, so the fact of detecting an asymmetry of the breast

parenchyma between left and right breasts may be indicative of the presence

of a lesion or the development of a cancer [187]. Depending on the type of

asymmetry, this is visible on only one mammographic projection or on more

than one projection, although all types of asymmetries have concave-outward

borders and usually are seen to be interspersed with fat tissue [275].

Architectural distortions

Architectural distortions are characterised by the distortion of the parenchyma

with no definite mass visible. For mammography, this includes thin straight

lines or spiculations radiating from a point, and focal retraction, distortion,

or straightening at the anterior or posterior edge of the parenchyma. Archi-

tectural distortions may also be associated with asymmetry or calcifications.

In the absence of an appropriate history of trauma or surgery, architectural

distortions are suspicious for malignancy [275].

Masses

A lesion is classified as mass when is 3-dimensional and occupies space. Masses

are seen on two different mammographic projections and have completely or

partially convex-outward borders and radiologically appears denser in the cen-

ter than at the periphery. If a potential mass is seen only on a single projection,

it should be called an asymmetry until its 3-dimensionality is confirmed [275].

Masses can be classified by shape (see Fig. 1.3), by margin (see Fig. 1.4) or

by density (see Fig. 1.5). Shape describes the roundness of the mass, while
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margin characterises the edge or border of the lesion. Even though, both

descriptors (margin and shape) are important predictors of whether a mass is

benign or malignant. Finally, density is used to define the x-ray attenuation

of the mass relative to the expected attenuation of an equal volume of normal

fibroglandular breast tissue. Most breast cancers that present as a mass are of

equal or higher density than an equal volume of normal fibroglandular tissue.

However, breast density is a subjective evaluation that is least reliable among

the mammographic features of masses (i.e., shape and margin) [275].

Masses by shape are classified in oval, round and irregular (see Fig. 1.3). An

oval mass is elliptical or egg-shaped. A round mass is spherical, ball-shaped,

circular, or globular in shape. Finally, the shape of an irregular mass is neither

round nor oval [275].

(a) (b) (c)

Figure 1.3: Example of masses by shape: (a) oval, (b) round, and (c) irregular.
Images extracted from ACR BI − RADSrAtlas [275].

Masses by margin are classified in circumscribed, obscured, microlobulated,

indistinct or spiculated (see Fig. 1.4). The margin of circumscribed masses

is sharply demarcated with an abrupt transition between the lesion and the

surrounding tissue. An obscured margin is one that is hidden by superimposed

or adjacent fibroglandular tissue. The margin of microlobulated masses is

characterised by short cycle undulations. In indistinct masses, there is no

clear demarcation of the entire margin, or of any portion of the margin, from

the surrounding tissue. Finally, spiculated mass margin is characterised by

lines radiating from the mass [275].
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(a) (b) (c) (d) (e)

Figure 1.4: Example of masses by margin: (a) circumscribed, (b) obscured, (c)
microlobulated, (d) indistinct, and (e) spiculated. Images extracted fromACR BI−
RADSrAtlas [275].

Masses by density are classified in high-density, equal-density, low-density

and fat-containing (see Fig. 1.5). When the x-ray attenuation of the mass is

greater than the expected attenuation of an equal volume of fibroglandular

breast tissue is considered as high-dense. While, when x-ray attenuation of

the mass is the same or lower as the expected attenuation of an equal volume

of fibroglandular breast tissue are considered as equal-density and low-density

respectively. Finally, fat-containing masses category includes all masses con-

taining fat, such as oil cyst, lipoma, or galactocele, as well as mixed-density

masses such as hamartoma [275].

(a) (b) (c) (d)

Figure 1.5: Example of masses by margin: (a) high density, (b) equal density,
(c) low density, and (d) fat-containing. Images extracted from ACR BI −
RADSrAtlas [275].

1.3 CAD Systems

Due to the difficulty of finding lesions in mammograms, computerized tools were and

still are being developed to help radiologists in the evaluation of mammograms. This
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is the case of computer aided detection (CADe) mammographic systems and com-

puter aided diagnosis (CADx) mammographic systems. CADe systems indicate the

presence of possible abnormalities whereas CADx systems classify potential lesions

into malignant or benign often in terms of malignancy likelihood [99].

CADe systems have been used by radiologists in their daily work for more than

15 years, although the way of using this information can vary. One mode is to

read mammographic images without displaying CADe marks and then compare the

results with the output of CADe systems before taking a final decision. Radiologists

decide to discard lesions detected in the initial read or take into account lesions

overlooked in the initial read. But this mode probably increases the reading time.

To reduce the reading time, another way of working is to display CADe marks first

and then take the final decision, but it is uncertain if lesions may be missed when

CADe does not prompt to the radiologists. Then, a reasonable solution for solving

this possible effect is the increase of the sensitivity of the general CADe systems [99].

CADe mammographic systems search for breast abnormalities such as microcal-

cifications, masses, architectural distortions or asymmetries, although most of the

works are focused on detecting clustered microcalcifications and masses [255]. Due

to the difficulty of distinguishing masses from the surrounding breast parenchyma,

the sensitivity of CADe systems for detecting microcalcifications is higher than the

ones for detecting masses, although the number of FP is higher than desired in both

cases. Current research works are focused on both, increasing the sensitivity and

reducing the number FP of CADe systems.

CADx systems have been proposed to help radiologists in the discrimination

of benign and malignant mammographic lesions and so, to improve the positive

predictive value (biopsies positives for cancer / biopsies tested) of mammogram

interpretation. The task of distinguish between benign and malignant lesions is

usually considered as a two-class classification problem. Most CADx approaches

start with the delimitation of a ROI that contains the lesion to classify. Then,

systems have a four-stage process: lesion segmentation, feature extraction, feature

selection, and lesion classification. CADx systems are slowly being introduced in

the clinical workflow as CADe systems begin to give more information beyond just

localization [99, 80].
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1.3.1 Commercial CAD systems

There are various commercial CAD systems with Food and Drug Administration

(FDA) approval [226]: the AccuDetect Mammography CAD, the Kodak Mammog-

raphy CAD Engine, the M-Vu CAD System, the R2 ImageChecker CAD or the

iCAD Second Look. R2 ImageChecker CAD [137] was the first CAD mammog-

raphy system approved by FDA. ImageChecker analyses 2D digital and digitised

mammographic images and marks suspicious masses (asterisk), clusters of calcifica-

tions (triangle) and masses and calcifications at the same location (four points of a

compass) (see Fig. 1.6(a)). iCAD Second Look [142] is another remarkable CAD

system. Second Look detects potential microcalcifications (rectangle) and masses

(ellipse) (see Fig. 1.6(b))

(a) (b)

Figure 1.6: Example of commercial CAD mammographic systems: (a) R2 Im-
ageChecker CAD, and (b) iCAD Second Look.
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1.3.2 Multi-Image CAD techniques

An open research line for improving the results of CAD systems is mimicking radi-

ologists’ way of reading mammograms and analysing multiple images of the same

patient to have a global idea of the detected abnormalities. Due to the fact that

most CAD schemes use the information of a single mammogram for detecting abnor-

malities, adding case-level information to CAD systems is presented as a promising

approach [354, 223]. This case level-information can be used to detect real lesions

or to discard false lesions (FPs).

Based on the idea that both breasts are structurally similar [168], comparison

of the same view of left and right breasts (bilateral comparison) can allow finding

differences between breasts that are indicative of lesions (see Fig. 1.7) and can

also allow finding similarities between corresponding regions that are indicative of

normality.

(a) (b)

Figure 1.7: (a) Right MLO mammogram with lesion squared in red compared with
(b) left MLO mammogram.
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Current and prior homonym images examination (temporal comparison) can be

used for analysing breast changes that could be considered as cancerous sign [342].

Abnormalities changes in size or shape (see Fig. 1.8) or the current presence of an

abnormality are indicative of lesion.

(a) (b)

Figure 1.8: (a) Current right MLO mammogram with lesion squared in red compared
with (b) prior right MLO mammogram with the same lesion squared in red.
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The comparison of CC and MLO projections of the same breast (ipsilateral com-

parison) can allow matching suspicious findings [21]. When the same abnormality

is present in CC and MLO corresponding regions is regarded as true lesion (see

Fig. 1.9), however when an abnormality is located in only one view is considered as

false lesion.

(a) (b)

Figure 1.9: (a) Right MLO mammogram with lesion squared in red compared with

(b) right CC mammogram with the same lesion squared in red.

1.4 Objectives of this Thesis

The main objective of this thesis is the proposal of a framework for detecting

masses independently of its shape, margin or density in FFDM images by using

not only information from each mammogram but also case-level information.

In order to address the main goal of this thesis we divide the main objective into

a set of sub-objectives. Sub-objectives are either directly or indirectly related with

CAD systems.
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FFDM images usually have an overexposed region in the outer part of the breast

due to the thickness reduction in the periphery of the breast [150]. To compensate

this effect, a determining sub-goal of this thesis is the development of an algorithm

for breast peripheral image enhancement. In addition to breast peripheral

overexposition issue, breast density is also related with image quality. FFDM ac-

curacy is really dependent of the amount of breast dense tissue [48], in this sense,

another significant sub-goal is the development of an algorithm for breast density

assessment.

To obtain the case-level information several approaches can be used. The ma-

jority of bilateral and temporal strategies are based on estimating a geometric

transformation between FFDM images to obtain a spatial correspondence between

them [354]. So, an important sub-goal is the study of the different image regis-

tration algorithms to determine the optimal alignment between either bilateral or

temporal images. Other approaches are based on defining a coordinate system to de-

termine the relative coordinates of a ROI in its corresponding (bilateral/ipsilateral)

view [229]. In this direction, another sub-goal is to develop an algorithm for ipsi-

lateral correspondence.

Starting from a single-image CAD system that detects masses independently of

its shape, margin or density, the key question is where to add the generated case-

level information to transform the single-image CAD system into a multi-image one.

This information can be added in the detection stage or in the FPs reduction stage.

So, two required sub-goals are the analysis of using case-level information in both

steps, detection and FPs reduction.

1.5 Overview of this Thesis

Even though the objective of this thesis is the development a mammographic CAD

system that uses case-level information to detect masses, there are several issues

that need to be considered previously: the necessity of a preprocessing stage before

image analysis, the assessment of types and quantities of breast tissue or how to

obtain this case-level information.

This thesis is organised as follows. Chapter 2 describes our novel approach for

FFDM peripheral enhancement. In this thesis two types of images are used, digitised
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and digital. Digitised images do not need a previous enhancement process however,

digital images need a preprocessing step to deal with the overexposed area in the

breast periphery. After overexposed area delimitation, the correction algorithm is

applied and enhancement results are evaluated, showing the beneficial effects in the

image quality.

Related also with the quality of the data provided in mammographic images,

it is important to identify the amount of dense tissue in each mammogram, since

the sensitivity of mammography is reduced in dense breasts. Chapter 3 presents

an study about breast tissue characterisation. Breast is composed by fatty and

dense tissue. Different strategies for breast segmentation according tissue types are

evaluated. Finally both, qualitative and quantitative analysis are used to classify

mammograms according the amount of dense tissue.

Another key point in the multi-image CAD development is the discussion about

obtaining the case-level information. In Chapter 4 we analyse different known reg-

istration algorithms, as well as some registration methods combinations and mul-

tiresolution approaches. Registration results are evaluated in order to find the best

approaches that could provide useful and suitable not only bilateral but also tem-

poral information to our multi-image CAD system.

Chapter 5 presents a CAD scheme that includes bilateral, temporal and ipsi-

lateral information. Based on our previously developed single-image digitised CAD

mammographic system, we develop a multi-image FFDM CAD system. Single CAD

parameters are tuned to adapt the system to digital inputs. Moreover, bilateral and

temporal information is added in the detection framework and ipsilateral informa-

tion is used during the FP reduction step. Results when using or not case-level

information are compared.

Finally, the thesis concludes with Chapter 6. In this final chapter, conclusions

are extracted and the future research work is described.
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Chapter 2

Breast Peripheral Enhancement

During mammographic acquisitions, the breast is compressed with a tilting compres-

sion paddle, hence the breast thickness is non uniform across the mammogram, being

thinner in the periphery and thus overexposing this area. In this chapter we present

a new approach for breast peripheral enhancement in digital mammograms.

2.1 Introduction

As a consequence of the current digital revolution, traditional film-based hospitals

are being converted to digital hospitals, where patient medical records, chart in-

formation, and test results are easily available electronically for physicians from

anywhere in the hospital and beyond. By definition, FFDM is part of this digital

scenario. In digital mammography, digital acquisition, digital storage, and digital

display processes may be separated and individually optimised [343, 18, 276].

Digital detectors offer higher quantum efficiency and higher resolution than tra-

ditional screen-film receptors [282]. These translate into both lower dose and im-

proved image quality mammograms. Besides, Berns et al. [23] showed that digital

mammography acquisition is, a highly significant 35%, shorter acquisition in time.

Once the images are acquired, the Digital Imaging and Communications in Medicine

(DICOM) [14] standard handles the storage and communication protocol, enabling

also the integration of the different imaging devices of the hospital. Thus displays,

scanners, servers, workstations, printers, and network hardware can be integrated in

49
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a fully digital system, usually referred as the Picture Archiving and Communication

System (PACS). From here, the images are sent to the screening workspace, where

usually, one or more experts will analyse and diagnose the case.

In contrast with the typical film-screen image, experts view the images on an

electronic display (also called soft-copy display). In contrast to (static) film reading,

soft-copy offers new opportunities. For instance, there is experimental evidence that

alternating the current and prior mammograms on the same display allows better

evaluation of temporal changes than conventional display of images next to each

other [324]. However, a faulty inadequately calibrated or improperly set up display

can compromise the overall quality of a diagnostic procedure [241].

In order to help radiologists during breast imaging evaluation, different image

processing algorithms are developed to improve the visualisation of digital mammo-

grams, either enhancing some image features to allow the detection of different types

of lesions [278, 213] or improving the quality of the mammograms to compensate

for possible acquisition limitations [292]. This chapter presents a proposal for image

quality improvement, specifically for the correction of a known issue, the presence

of an overexposed boundary area in the majority of mammograms, as it is shown in

Figure 2.1(a).

In general, mammography x-ray beam consists of a central ray (perpendicular

to the image receptor) and a diverging beam. The intensity of the x-ray beam is

not uniform being lower in the anode side than in the cathode side (the called heel

effect). This is because the rays which are parallel or near parallel to the anode

get absorbed by the anode itself. For an appropriate exploitation of the heel effect,

in mammography the x-ray tube is oriented with the cathode side placed over the

chest wall area and the anode side placed over the nipple [56, 332]. However tube

orientation is not enough to save the overexposition effect. This effect is due to

the change of the breast thickness during mammographic acquisition and to the air

gap effect where the skin is separated from the compression paddle and detector

platform [284]. Unfortunately, this overexposition effect cannot be solved by modi-

fying the typical window width/center parameters that viewers use (parameters that

specify a linear conversion from stored pixel values to values to be displayed [13]).

Several methods have been proposed for overexposed area correction in mam-

mography, which can be classified in non-parametric [26, 52, 154, 24], paramet-
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ric [291, 284, 8, 150, 314] or other [104, 159] approaches. Non-parametric approaches

try to adjust the intensity of the overexposing areas by means of traditional image

processing techniques, like segmentation and equalisation. In contrast, parametric

approaches adjust the intensity of the images according to a different model, which

may be as specific as the type of digital detector [291] or as general as a 3D represen-

tation of the breast [284, 8, 150, 314]. The others group includes methods that do

not belong to any of the above categories. This is the case of the approach proposed

by Goodsitt et al. [104, 159] who designed physical filters to adjust the x-ray beam

distribution for compensating the tissue thickness.

(a) (b)

Figure 2.1: Example of the peripheral enhancement: (a) original and (b) enhanced
images. The images are obtained after the best manual window width and window
center configuration.

In non-parametric approaches, the correction of the overexposed area follows an

additive approach, where the intensities of this area (which are too dark) are added

with another factor in order to obtain an intensity distribution more homogeneous

throughout the breast. The different approaches may vary in the determination of

the correction area and in the factor which is added. Regarding the area, algorithms

could be applied to the whole area [26] or just to a region determined by a segmen-

tation algorithm [292]. In the first case, the correction in the inner part of the breast
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is inappreciable, since the additive factor is assumed to be 0 in that part. In the

second one, authors segment the breast using intensity based features in order to

locate those areas which were overexposed, and the correction algorithm is limited

just to this part. Regarding the correction factor, Bick et al. [26] generated a curve

based on the mean grey level of all points in the same distance to the skin-line.

A second curve was generated by subtracting this curve from the mean intensity

value of the image. The intensity value of this second curve at each distance was

then added to the corresponding pixels. Karssemeijer and te Brake [154, 155] firstly

computed a smoothed version of the mammogram. Subsequently, all pixels below

a threshold were corrected by subtracting from the original intensity the smoothed

intensity and adding the mean value of the inner part of the breast. A similar ap-

proach was also developed by Byng et al. [52]. The underlying assumption of these

approaches is that thickness variations are smoother than density variations. Bessa

et al. [24] use a gamma intensity correction based approach. Once the distance of

each pixel to the skin line is computed, each gamma correction value is calculated

as a sigmoid function of its distance to the skin line.

Our work focuses on non-parametric approaches, since it is a more general ap-

proach able to improve the quality of a single image without needing extra informa-

tion, for instance the effective attenuation coefficients for breast tissues [284, 150] or

the x-ray spectrum [8]. To compensate the thickness variations in the periphery of

the breast, we propose a peripheral enhancement method that applies a multiplica-

tive correction factor for each pixel of the overexposed area according to grey-level

continuity constraints. Figure 2.1(b) shows an example of the application of this al-

gorithm. Note that the correction of the overexposed area also affects the behaviour

of the window width and window center adjustments. The proposed peripheral en-

hancement not only represents an improvement in the appearance of the images but

also for breast cancer detection [61, 331]. The enhancement method is described

in detail in Section 2.2. Results are shown in Section 2.3. Section 2.4 shows the

benefits of our approach in two different applications. Chapter ends with discussion

and conclusions.
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2.2 Peripheral Area Correction

Figure 2.2 depicts our proposal for breast peripheral enhancement. The method can

be divided into two main steps: determining the overexposed and non-overexposed

areas, and equalising the mean intensities of both areas, in order to enhance the

intensities of the overexposed area to be similar to the ones of the non-overexposed

area. Before determining the overexposed area, an initial step is necessary in order

to separate the breast region from other areas of the mammogram. Besides, for the

intensity correction, the distance transform of the image is also computed. A final

optional step is the integration of the pectoral muscle into the final mammogram.

Figure 2.2: Graphical description for the overexposed area correction.

2.2.1 Breast Area Segmentation

In addition to the actual breast, mammograms contain other regions that must be

removed before applying the enhancement technique, namely the background (which

may contain some labels) and the pectoral muscle.

There are a lot of methods to segment breast area from background on mammo-

graphic images [289, 290, 320, 15, 349, 251, 139, 239], although majority of works

are histogram [177, 350, 27] or gradient [206, 155, 267, 324, 198, 308, 307, 309]

based techniques, either to determine one unique threshold that separates the x-ray

exposed area from the rest [177, 27, 155, 265, 139, 338] or to find two limits, one

that differentiates the x-ray exposed region from the rest and other that delimits

the x-ray exposed area that contains or not the breast [351, 206, 207, 205].
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In conventional film-screen mammograms, the background is noisy and inhomo-

geneous [254, 58], however in FFDM this region is totally black and uniform, and

hence it does not require any pre-processing, a clear advantage over conventional

screen-film. Therefore, the background is composed by all pixels with intensity equal

to zero. Additionally, labels can be removed by keeping just the larger region of the

image.

Different approaches have been proposed for detecting the pectoral muscle in

MLO images [173, 87, 254, 218]. In this work we implemented the proposal of Kwok

et al. [173] and according to their assumptions CC view is not considered because the

pectoral muscle is only seen in about 30% − 40% of CC images. Roughly, initially

the pectoral edge is estimated by a straight line which is automatically obtained

by comparing the brighter and darker regions of the mammogram’s upper corner.

Subsequently, this straight line is transformed to a curve. This process consists in

moving each pixel in the line through a few pixels along its perpendicular line and

looking for the best cliff candidate, which is paced as a new edge. When all the

pixels in the line are moved to each candidate position, the new edge is smoothed

by least square fitting. This process is iteratively performed until convergence.

The algorithm was initially developed for digitised mammograms, however the same

approach has been successfully tested with digital mammograms [235].

Therefore, mammograms are divided into breast area, background, and pectoral

muscle, and only the breast area is kept for subsequent processing. Figure 2.3(a)

shows the result of this step, where black areas are not considered in the rest of the

processing steps.

2.2.2 Overexposed Area Determination

To determine the overexposed area, the histogram of the breast area is computed.

Figure 2.3(b) shows the histogram of the breast shown in Figure 2.3(a). Two differ-

ent areas can be seen in the histogram. The right part of the histogram corresponds

to the brighter intensities, which are located in the inner part of the breast. In this

region, no single intensity dominates over the rest and the wide peak reflects the

inhomogeneous tissues of that region. Conversely, the left part of the histogram

shows a narrow high peak, which corresponds to the outer part of the breast that
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shows a darker intensity, due to the overexposing effect. This is the part that needs

to be corrected.

In initial experiments, the overexposed area was determined by the automatic

Otsu thresholding algorithm. However, in dense breasts, this algorithm tended to

group the overexposed area with fatty tissue. So finally, to locate the overexposed

part we analysed the histogram of the mammogram, automatically locating the first

local peak and subsequently looking for its adjacent local valley. The intensities

contained between the histogram origin and this valley are the ones that will be

corrected. These intensities correspond to the pixels of the overexposed area, as

it is shown in the binary map of Figure 2.3(c). This map has been refined using

morphological transformations to obtain a smoother contour.
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(a) (b) (c)

Figure 2.3: Example of the thresholding process: (a) breast area segmentation, (b)
histogram of the breast area clustered in 64 bins, (c) overexposed area segmentation.

2.2.3 Distance Transform

Before the calculation of the correction factor, the Euclidean distance map of the

mammogram is obtained by computing the minimum distance from each pixel to

the breast skin-line. This image helps to speed up the whole process, since the use

of the distance map makes it possible to deal with all pixels at the same distance at

the same time.

The distance transform depends on the metric used, being the Euclidean or Man-

hattan metrics the most common ones. The latter provides a faster resolution of

the problem, especially in multidimensional images, at the expense of obtaining just
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an approximated solution. Rosenfeld et al. [259] provided the roots for fast compu-

tation of the Euclidean distance transform, and recently Fabbri et al. [83] reviewed

different approaches for computing it, distinguishing among three classes accord-

ing to their own implementation: ordered propagation algorithms, raster scanning

and independent scanning. In ordered propagation algorithms [84], the algorithm

starts from the seeds (0 distance) and progressively transmits the information to

other pixels in order to increase the distance. In raster scanning algorithms [274],

2D masks are used to guide the processing of pixels line by line, top to bottom,

then bottom to top. Finally, independent scanning schemes process each row of

the image, independently of the other, and then process each column of the result

(similarly to the implementation of the Fourier transform of an image by a sequence

of 1D transforms in orthogonal directions). Independent scanning schemes can be

divided into parabola intersection algorithms [70], mathematical morphology based

algorithms [138], and algorithms based on Voronoi tessellation [202, 335], these latter

providing a more general scheme and allowing parallel computing implementations.

The implementation used in this paper follows the approach of Maurer et al. [202],

which allows fast computation of the Euclidean distance transform to multidimen-

sional spaces. At each dimension level, the distance transform is computed by

constructing the intersection of the Voronoi diagram (whose sites are the feature

voxels) with each row of the image. This construction is performed efficiently by us-

ing the distance transform in the next lower dimension. Authors demonstrated that

the algorithm has linear time complexity (O(N)), while the parallel version of the

algorithm being used here runs in O(N/p) time, being p the number of processors.

2.2.4 Correction Factor

Once the overexposed area is located, the goal is to correct its intensities by con-

sidering the values of the non-overexposed area of the mammogram by following an

iterative process. Firstly only the pixels belonging to the inner overexposed area are

corrected looking at the intensities of its neighbouring pixels which are not overex-

posed. Once these pixels have been corrected, the overexposed area mask is reduced

and the new inner overexposed pixels are corrected. This process is applied until all

pixels are corrected.
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Formally, given a pixel x of breast B with intensity I(x), we define its neigh-

bourhood as:

N(x) = {t ∈ B : d(t, S) = d(x, S) ∧ d(t, x) ≤ k} (2.1)

where t is a pixel of the breast, S is the skin-line contour, d() refers to the distance

(notice that the first distance is point-to-line while the second one is the common

Euclidean distance between two points) and k represents the size of the neighbour-

hood (discussed in Section 2.3). Notice that with this definition, we are considering

a neighbourhood N(x) of pixel x the closest neighbours of x with same distance to

the breast skin-line.

We also define Nin(x) as the neighbourhood of x located one pixel further inside

the breast:

Nin(x) = {t ∈ B : d(t, S) = d(x, S) + 1 ∧ d(t, x) ≤ k} (2.2)

With these definitions and from the furthest overexposed pixel from the skin-line

boundary to the closest, each intensity of each pixel is iteratively corrected as:

I ′(x) = I(x)
INin(x)

IN(x)

where I refers to the mean intensity of each neighbourhood. The rationale behind

this equation is twofold. By dividing by the mean value of the neighbours at the

current distance we are normalising the overexposed values without losing informa-

tion, while when multiplying by the mean of previous values we are giving more

weight to the intensity continuity constraints. Notice that the use of the distance

map allows us to speed up the process dealing at the same time with all the pixels

which are located at the same distance of the skin-line.

2.2.5 Pectoral Muscle Integration

The final step of the algorithm is the integration of the pectoral muscle into pro-

cessed images. This step may be unnecessary for posterior computer-based analysis
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such as the detection of abnormalities [95, 235] or the analysis of the breast den-

sity [230, 234]. However, we have experimentally observed that radiologists feel

more comfortable when the pectoral muscle appears in the mammogram. This is

done just adding the result of the pectoral muscle segmentation and the enhanced

mammogram, since they are disjoint regions.

2.3 Results

A total of 334 FFDM acquired using a Hologic Selenia mammographic system, with

resolution equal to 70 µm pixel, size 4096× 3328 or 3328× 2560, and 12-bit depth

were used in this work. These images included CC and MLO views of 117 women,

50 full exams (CC and MLO of left and right breasts) while the rest were CC and

MLO of either right or left breasts. After double-reading by the experts, 98 images

contained masses (10 of them were located in the peripheral region).

(a) (b) (c)

Figure 2.4: Example of the peripheral enhancement when the value of the size of
the neighbourhood is varied: (a) k = 20, (b) k = 100, and (c) k = 180. The best
results were obtained using values of k around 100 pixels.

The only parameter in our algorithm that needs to be tuned is the size of the

neighbourhood used for correcting intensities of the overexposed pixels (parameter

k). We fix this size to be 100 pixel (i.e. 7 mm). Figure 2.4 shows the resulting

image when smaller, similar, and larger values of k are used. If k is too small the
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neighbourhood is also small, and the new value assigned depends on just few pixels.

Hence, the propagated value is always close to the reference pixels and corrected

pixels are assigned with similar intensity. On the other hand, when k is large, the

appearance of the mammograms is better, although a dark ribbon appears due to

the fact that new value depends from pixels far from it. The best results were

obtained with k close to 100 pixels. Actually, the tuning of this parameter allows

for a certain flexibility, since we obtained similar results using values of k between

70 and 120 pixel (4.9 and 8.4 mm).

Figure 2.5 shows the result of the enhancement on five different mammograms,

three CC and two MLO views (displayed without adjusting the contrast of the im-

ages). The first column corresponds to the original mammograms while the second

one shows the corrected images. In MLO views the boundary automatically found

between the pectoral muscle and the breast is depicted in black. Comparing the

mammograms, the dark overexposed areas have been corrected, obtaining a more

homogeneous intensity distribution along all the breast area, and obtaining a mam-

mogram with much more visual detail in the peripheral area. Additionally, notice

that the structures lying between the overexposed and non-overexposed areas are

continuous and have not been altered or disrupted in any place. This means that

the tissue shown in the improved area corresponds to the real tissue of that region,

and that our approach is not introducing artefacts that could affect the subsequent

analysis of the image.

To quantitatively analyse the improvement in terms of image quality, Figure 2.5(c)

and (d) shows the histograms of the breast area (without including the pectoral mus-

cle in MLO images) before and after the enhancement, respectively. As expected,

the big peak in the overexposed area is not present in the corrected histogram, and

in contrast, the smooth wide peak reflects that the intensities are distributed among

all the breast area.
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Figure 2.5: Example of the peripheral enhancement: (a) original mammogram and

(b) corresponding corrected mammogram, where in MLO views the border between

pectoral muscle and the breast is shown in black, (c) breast area histogram of the

original mammogram, and (d) breast area histogram of the corrected mammogram.

Notice that the narrow peak of darker intensities has been removed and the his-

togram is now more homogeneous.
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To determine the quality of the processed images, visual assessment was per-

formed by one radiologist with more than 10 years of experience in mammographic

images. All original and corrected images were displayed side by side and the ob-

server just labelled the images as correctly processed or not, where correctly pro-

cessed means that the quality of the images substantially improved after the en-

hancement. A total of 90.42% of the images were evaluated as correctly processed.

In the rest of cases, the overexposed area was not as dark as in the rest of the images,

due to either less radiation or breast physiology and the correction was actually not

necessary. When applying our approach to these images, the area selected for cor-

rection was the full mammogram, and the final output was the original image but

globally enhanced, i.e. without obtaining any local effect. For all cases, the quality

of the images did not decrease after the processing.

A quantitative analysis was also performed by comparing the mean intensity

and the histograms of the original and enhanced mammograms. Regarding mean

intensity, since overexposed areas have darker intensities, a ”visually better” mam-

mogram should obtain a larger mean intensity value. On the other hand, we also

have to define what a ”better” histogram means. Histograms from overexposed

mammograms present a high peak in dark intensities. This peak is the one that

should be reduced when enhancing the mammograms, obtaining a histogram with a

well-defined central peak after enhancement. To measure this, we compute the skew-

ness and the kurtosis of the histogram. The skewness measures how asymmetric the

histogram is, 0 being a totally symmetric distribution. The kurtosis measures how

wide the peak is, being 3 the kurtosis defined by a normal distribution. Figure 2.6

compares the mean intensity and both the skewness and kurtosis measures for the

334 analysed mammograms summarised in terms of boxplots. As expected, the

mean intensity value has increased, almost doubling its value. On the other hand,

skewness has been reduced, hence obtaining a more symmetric distribution, while

kurtosis is also reduced, obtaining a wider peak of the breast area. Analysing the re-

sults using paired t-Student test, the improvements in each measure were significant

with p-value< 0.0001.
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Figure 2.6: Quantitative analysis of the original and enhanced histograms in terms
of boxplots: (a) mean intensity of the breast area, (b) skewness, and (c) kurtosis.

2.4 Applications

In this section two important applications are showed. The use of the peripheral

enhancement allows improving the procedures: first, in expert detection of masses

routinely performed in clinical practice, and secondly, in a computer aided applica-

tion focusing on computing the breast density of the mammogram.
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2.4.1 Mass Detection After Enhancement

A total of 334 FFDM were used for mass detection assessment. 98 of the 334 images

contained masses and 10 of the masses were located in the peripheral breast region

(see Section 2.3 for more detail).

To perform an estimation of the benefits of the approach for manual analysis

of the breast we asked to the same experts that diagnosed the mammograms to

analyse all the cases again but after the peripheral enhancement (the radiologists

were different from the one that performed the qualitative evaluation). Notice that

there was more than one year of difference between the first and the second diagnosis,

and we can consider that radiologists did not remember the cases.

As expected, radiologists were able to diagnose again all the cases containing

masses. After asking their opinion about the enhancement, they reported two main

favourably reasons to the enhancement. First of all, masses were easier to detect,

allowing a faster analysis of the images. For instance, Figure 2.7 shows three ex-

amples of mammograms with masses located at the overexposed area. Notice that

the masses are highlighted after peripheral correction. And secondly, the border

of the masses was also clearer compared to without the enhancement. This is an

important result, since the border and the shape of the masses are two important

features when diagnosing the mass as cancer or benign.
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(a) (b)

Figure 2.7: Example of the peripheral enhancement in mammograms containing

masses: (a) original mammogram and (b) corresponding enhanced mammogram.

The white arrow indicates the location of the mass in each image, which is zoomed in

the small box for a better visualisation. Notice that using the proposed enhancement

the contrast of the lesion is now clearer.



2.5 Discussion and Conclusions 65

2.4.2 Automatic Breast Density Estimation After Enhance-

ment

Breast density is an important risk factor for breast cancer. It is well known that

dense breasts are more likely to develop breast cancer than fatty breast, and besides,

the analysis of dense breasts is more difficult, since the own tissue may mask the

abnormalities. Breast density estimation allows for the classification of mammo-

grams according to their internal tissue. Consequently, it is a first step to a more

personalised analysis.

Oliver et al. [230] developed an automatic method for breast density analysis

based on first segmenting the mammograms into two classes: fatty and dense. Sub-

sequently, features from both sets were extracted and used to classify the mam-

mograms. Authors obtained good results using two different digitised databases

(kappa=0.81 and kappa=0.67, respectively). However, when using this approach in

digital mammograms [313] (specifically in 236 FFDM of our digital database), the

method fails to obtain good results due to overexposed area (kappa less than 0.4). In

order to overcome this issue and obtain better results, the peripheral enhancement

was applied. The results were improved to kappa=0.88 (see Chapter 3 for more

details).

2.5 Discussion and Conclusions

Overexposed areas in a mammogram are observed as darker areas, and the struc-

tures lying in this region are hardly visible. In this chapter we presented a novel

algorithm that automatically enhances the intensity of that region to obtain similar

intensities to the rest of the mammogram. Our approach was inspired by the addi-

tive models used to enhance the mammograms [26, 52, 154]. However, we claim that

our multiplicative model not only provides intensity continuity on the overexposed

area (the same as the additive model) but also preserves the relationship between

the pixels of the overexposed area.

The presence of the overexposed area cannot be solved by common visualisation

contrast tools, due to the fact that most of these tools are based on histogram infor-

mation. For instance, manually applying one of the most common tools such as the
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adjustment of window width and window center [224, 175] the whole mammogram

cannot be properly visualised. Actually, experts should tune the parameters for both

overexposed and non-overexposed areas independently, which is not possible. When

applying our enhancement approach, we are locally correcting the overexposed area

without considering global histogram information. Instead, each pixel is corrected

using just neighbourhood information. After applying the peripheral enhancement,

and using the window width and center adjustment tool, the full mammogram can

be properly visualised, as shown in Figure 2.1.

The proposed approach presents many benefits, either for manual or automatic

analysis of the mammogram. In manual analysis, the proposed enhancement helps

uncover different kind of abnormalities in the peripheral zone. Although expert

radiologists may actually find them after thorough analysis of the mammogram,

abnormalities are easier to detect after the enhancement. Moreover, the physical

limits of the mass, which were not visible on the original mammograms, could prop-

erly be assessed after enhancement. On the other hand, automatic analysis, such as

computer aided detection and breast density measurement systems can also benefit

from this enhancement [151, 313].

We have provided a peripheral enhancement algorithm for digital mammograms.

This step is necessary to balance the overexposure of the breast periphery. The

algorithm has been tested on a large database of digital mammograms, considering

visually better for diagnostic in 90.42% of the images. In these images, the correction

of the overexposed area helps to improve the quality of the image and to obtain a

better visualisation and assessment.
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Breast Density Classification

Mammographic breast density is strongly associated with breast cancer, being demon-

strated its potential as a risk indicator for the development of this type of disease.

Furthermore, breast density reduces the accuracy of mammography and the sensitiv-

ity of automatic breast lesion detection systems is significantly dependent on breast

tissue characteristics. Here, we describe the development of an automatic breast

tissue classification methodology for digital mammograms.

3.1 Introduction

Mammographic density represents the amount of fibroglandular tissue, which is

radiographically dense, in contrast to fat tissue, that appears lucent in a mammo-

gram [185]. The majority of studies about the relationship between breast density

and breast cancer reported that women with high dense breast have greater risk of

suffering from breast cancer than those with low dense breast [36, 203, 318], so breast

density is considered one of the strongest risk factors for breast cancer [348, 38].

Besides the risk of developing breast cancer, density is also related to the dif-

ficulty of radiological reading of mammograms [304, 32, 10, 48] and the difficulty

of automatic breast cancer detection [153, 229, 232, 48]. Specifically, studies show

that even though breast density does not affect the sensitivity of microcalcification

detection CAD systems, it significantly affects mass detection and the sensitivity of

CAD systems for mass detection decreases in dense mammograms [258] whereas the

67
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specificity of the system remains relatively constant [135] or is decreased [45]. There-

fore, breast density assessment is regarded as an important tool to help radiologists

and CAD systems to detect breast cancer.

Dense tissue segmentation is commonly used as the first step in breast den-

sity evaluation methods. This is a difficult task, very time consuming and prone

to inter/intraraters subjectivity. Semiautomated [50, 51, 35] and automated tech-

niques [153, 151, 121] are being developed, although the lack of a reliable ground

truth is a hard problem to evaluate those approaches.

A huge variety of strategies can be found in the literature. For instance, some

authors try to find a threshold to obtain a suitable segmentation [53, 262, 221, 87,

204, 236, 217]. Byng et al. [54] and Lu et al. [186] obtain an interactive threshold by

using local skewness and fractal dimension measurements, although Byng et al. use

digitised mammograms and Lu et al. adapt the method to analyze digital images.

Sivaramakrishna et al. [279] use a modified version of Kittler’s method. Zhou et

al. [358] and Martin et al. [201] apply a rule based classification to classify the breast

images into four classes and depending on the class use a discriminant analysis based

method or a maximum entropy principle to calculate the optimal threshold. Torrent

et al. [311] use a threshold technique based on the excess entropy. El-Zaart [78]

considers that the histogram of an image is a mixture of gamma distributions and

selects the thresholds at the valleys of the multimodal histogram. Kim et al. [161]

and Nickson et al. [222] determine the best threshold that divide dense and nondense

regions by combining statistical and boundary information, although Kim et al.

work with FFDM and Nickson et al. adapted the method for digitised images.

However some authors consider that the use of thresholds may not be sufficient

to distinguish all of the dense parts of the breast and use other segmentation ap-

proaches, for instance clustering techniques [19, 198, 311]. Strange et al. [293] and

Elmoufidi et al. [79] use k-means clustering, although Elmoufidi et al. also use a

recurrent seed based region growing technique. Oliver et al. [231, 233, 230], Chen

et al. [64] and Keller et al. [157, 158] use a fuzzy C-means based algorithm. Oliver

et al. divide the breast area in two regions (dense and fatty) whereas Chen et al.

divide the breast in four regions (fatty, fatty glandular, dense glandular and dense)

and Keller et al. [157, 158] calculate the appropriate number of clusters for each

image. Zwiggelaar et al. [367, 364, 365] use a set of cooccurrence matrices to gener-
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ate a texture feature vector at a pixel level and divide this data in six classes using

the expectation maximisation clustering. Selvan et al. [269] assume that mammo-

grams can be represented by a finite generalized gaussian mixture model (as many

gaussians as regions) and compare the results of the estimation of the model param-

eters by using the expectation maximization algorithm and an heuristic parameter

estimation approach. He et al. [124] employ an unsupervised clustering technique

focused on incorporating an optimal centroids initialisation step and on reducing

the number of missegmentation by using an adaptive cluster merging method.

Regardless of the dense tissue segmentation applied, texture analysis [192, 210,

295, 245, 366, 123, 363, 120] is one of the most common procedure used during the

density assessment process. Authors work with moments [51, 54, 153, 183, 294],

with fractal dimension [55, 51, 54, 312, 316], with local binary patterns [233, 319],

with Laws’ masks [210, 32, 169], with cooccurrence matrices [29, 367, 364, 365, 233,

219, 151, 319] or with textons [247, 246, 31, 102, 214] among other texture fea-

tures. Nevertheless, there isn’t a classifier that stands out among others, SVM [216,

183, 294, 48, 316, 158, 319, 1], neural networks [32, 48, 151, 319], nearest neigh-

bours [153, 230, 219, 169, 253], bayesian [230, 48, 319] or probabilistic latent seman-

tic analysis [31, 60] are examples of the classifiers used. Although, in breast tissue

classification, it’s important to review not only the classification technique applied

but also the type of classification measurement (qualitative or quantitative) used.

For qualitative evaluation of mammographic density [155, 29, 32, 198, 131, 219,

294], the Wolfe categories [55, 304, 303, 312, 215, 366], the Tabár grade [215, 126,

123, 120, 122, 121, 127, 125], the Boyd classes [35, 215] or the ACR BI-RADS

score [201, 215, 186, 60, 145, 62, 63, 319] can be used. Wolfe [348] takes into account

the density of the parenchyma and the duct pattern. Tabár [300] uses the amount

of nodular densities, linear structures, homogeneous fibrous tissues and radiolucent

adipose fatty tissues. Boyd [35] works with the percentage density (PD) (dense

area divided by total area) similar to BI-RADS [227]. However the BI-RADS is

becoming a standard in the medical community on the assessment of mammographic

images. According to the BI-RADS protocol, mammograms can be classified into

four categories:

I. The breast is almost entirely fat (< 25% glandular).
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II. There are scattered fibroglandular densities (25− 50% glandular).

III. The breast tissue is heterogeneously dense (51− 75% glandular).

IV. The breast tissue is extremely dense (> 75% glandular).

Figure 3.1 shows four mammograms, one of each density class. The amount of

fibroglandular tissue increases with each category, which could obscure detection of

small masses or lower the sensitivity of mammography.

(a) (b)

(c) (d)

Figure 3.1: Four FFDM of increasing internal density. (a) BI-RADS I, (b) BI-RADS
II, (c) BI-RADS III, and (d) BI-RADS IV.
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For quantitative assessment of mammographic density [133, 86, 30, 344, 2, 117,

263, 293], area based and volumetric approaches are developed. Area based methods

estimate the PD, the absolute density and/or the absolute nondensity [358, 221, 131,

130, 151, 157, 132, 158]. This is the case of the semiautomated Cumulus software [50,

35], the fully automated ImageJ based methods [181, 287] or the fully automated

AutoDensity software [222]. All these tools use digitised screen film (analogue) mam-

mograms although Cumulus and ImageJ based methods also work in converting the

raw digital images into ”analogue-like” images. Volumetric approaches calculate

the volumetric PD and the dense tissue volume [273, 242, 34, 184, 43, 106]. The

Volpara software [323, 134, 270], the Quantra software [204, 4, 65], the CumulusV al-

gorithms [10, 8, 9] or the Single X-ray Absorptiometry (SXA) method [271, 194, 272]

are examples of fully automated volumetric tools to measure breast tissue composi-

tion from preprocessed (raw) digital mammograms.

Both, qualitative and quantitative assessment approaches are equaly valid and

used for breast density evaluation, the choice of one or another depends on the

intended use [81]. In this chapter, we present different approaches for mammographic

density classification and analysis of both types. In Section 3.2, density assessment

methods are described in detail. Section 3.3 contains the results of each approach

and the proper result comparisons. Finally, discussion and conclusions are presented

in Section 3.4.

3.2 Proposals

We present three different methods for breast density analysis. Two of them au-

tomatically classify mammograms according BI-RADS categories. Methods follow

the same line of work, the breast area is segmented in regions, then morphological

and texture features are extracted from fatty and dense regions and finally different

classifiers are applied to classify the mammograms in BI-RADS I, II, III or IV. The

most significant differences between them are the image preprocessing applied and

the segmentation technique used. Obviously, these methods belong to the family

of qualitative breast density assessment approaches. On the contrary, the third

method focuses on quantifying the amount of breast dense tissue. This approach

classifies each pixel in dense or fatty by using intensity, texture, and morphological
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information.

Note, that all of the approaches have a common preprocessing step to extract

the breast area and remove the background, labels, and pectoral muscle areas (see

Fig. 3.2(a)-(b), Fig. 3.3(a)-(b)). The method applied for breast area segmentation

is described in detail in Section 2.2.1. However, in few images this method failed

and the pectoral muscle was manually removed.

Note also, that during mammographic acquisitions, the breast is compressed with

a tilting compression paddle, so the breast thickness through the mammogram is

nonuniform, being lower in the periphery. This implies that pixels near the skin line

are overexposed, and in a mammogram those pixels appear darker than the rest of

breast pixels (see Fig. 3.1, Fig. 3.2(a)-(b), Fig. 3.3(a)-(b), and Fig. 3.4(a)). Methods

deal with this issue differently. Specifically, for qualitative methods, the region

segmentation methodology used depends on the presence or not of this overexposed

area.

3.2.1 Qualitative Methods

3.2.1.1 Region Based Classification Using Eigen Analysis

The proposed method is based on an initial three class segmentation of the breast

region. After segmentation, a set of morphological and texture features of the tissues

of interest are extracted, and finally, mammograms are classified according to BI-

RADS categories. In the following sections we will describe each of these steps.

Segmentation

After breast area extraction, our segmentation method takes into account the

possibility of presenting the already known overexposed region and distin-

guishes between 3 classes: fatty, dense and overexposed.

The segmentation approach consists of two main steps. Firstly (the training

stage) the system learns what each tissue represents and secondly (the testing

stage) the system is able to detect if a new area is fatty, dense or overexposed.

During the training stage, a database of ROIs that contain the three tissue

types was created. This set of ROIs was used as input of an algorithm based on
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the eigenfaces approach [315], and a set of templates that represents the three

classes was obtained. Finally, during the testing stage, a Bayesian pattern

matching approach [143] was used to decide when a pixel is part of a fatty or

a dense or a overexposed region. Figure 3.2(c) shows an example of the final

segmentation.

(a) (b) (c)

Figure 3.2: Example of the firsts steps of the tissue classification methodology: (a)
original image, (b) preprocessed image (only breast region is preserved) and (c) three
class segmentation.

Feature Extraction

The result of segmentation algorithm is the division of the breast into three

clusters, although we focused on fatty and dense tissue that are really our

tissues of interest. A set of features for both classes are extracted from the

original images. In this work, we used morphological and texture features, sim-

ilar to Oliver et al. [230]. The relative area, the first four histogram moments

(mean intensity, the standard deviation, the skewness, and the kurtosis), a

set of features derived from Laws’ texture measures [178] and grey level cooc-

currence matrices (GLCM) [116] were calculated. We generated 25 Laws’ 5x5

operators that were convoluted to each digital image to generate 25 features.

From GLCM, we extract 176 features. GLCM can be specified as a matri-

ces of relative frequencies Pij, in which two pixels separated by a distance d

and angle θ have grey levels i and j. Here, we used four different directions:

0◦, 45◦, 90◦ and 135◦, and four distances (1, 4, 7 and 10 pixels). For each

cooccurrence matrix, contrast, energy, entropy, homogeneity, correlation, sum
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average, sum entropy, sum variance, difference average, difference entropy and

difference variance were calculated.

Each of these features were extracted from fatty and dense class, then we

dealed with 412 features in total (2 relative areas, 8 moments, 50 from Laws’

texture measures and 352 from cooccurrence matrices). Note that, all features

were normalized to unit variance and zero mean.

Classification

The classification of mammograms according to BI-RADS categories was per-

formed using the following classifiers: Naives Bayes [146], KNN [3], RF [44],

AdaBoost [96] and SVM [68]. Due to the large number of features, we in-

cluded a feature selection step that automatically selected the most effective

subset of features. Various feature selection techniques were proposed and

evaluated such as Principal Component Analysis [148], Gain Ratio attribute

evaluation [347] or SVM [111]. The data was analysed by using WEKA [115]

data mining software.

3.2.1.2 Region Based Classification Using FCM Analysis

This classification method is based on a previously developed algorithm for breast

tissue density classification [230] of digitised mammograms. It is an adaptation to

digital images. The adapted method consisted in: (1) preprocessing, (2) segmen-

tation in fatty and dense tissue, (3) feature extraction from both classes, and (4)

classification according to BI-RADS categories.

Preprocessing

Once breast area was extracted, the fuzzy C-Means (FCM) clustering approach

was applied. The first results of the FCM segmentation were not accurate

enough (see Fig. 3.4) due to the presence of the known overexposed area (see

Fig. 3.3(a)-(b) and Fig. 3.4(a)). So, we decided to compensate the thickness

variations in the periphery of the breast by using a peripheral enhancement

method that is described in detail in Chapter 2. An example of the overall

preprocessing process can be seen in Figure 3.3.
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(a) (b) (c)

Figure 3.3: Example of the preprocessing process: (a) original image, (b) breast
area segmentation and (c) peripheral enhancement.

(a) (b) (c) (d)

Figure 3.4: Example of the segmentation process: (a) original breast area, (b)
FCM without previous peripheral enhancement, (c) breast area after peripheral
enhancement and (d) FCM with previous peripheral enhancement.

Segmentation

Grey level information in combination with the FCM approach [25] is used to

group the pixels of the breast area into fatty and dense tissue classes. We use

the same criterion function and the same initial seed placement methodology

as in the work of Oliver et al. [230].
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Feature Extraction

Once the breast area is divided into two classes, a set of morphological and tex-

ture features for fatty and dense tissue are extracted, similar to the eigen region

based approach. The relative area, the first four moments of the histogram,

25 Laws’ texture features and 176 texture features derived from cooccurrence

matrices are calculated for fatty and dense tissue, 412 features in total (see

Feature Extraction Section in Sec. 3.2.1.1 for more details).

Classification

Due to the large number of features, a feature selection step is included select-

ing the most effective subset of features. Various feature selection techniques

are evaluated (using WEKA [115] data mining software) such as Principal

Component Analysis [148], Gain Ratio attribute evaluation [347] or SVM [111].

The classification of mammograms according to BI-RADS categories is also

performed with WEKA. We used different popular classifiers like RF [44] or

SVM [68] and some combinations of classifiers as AdaBoost [96] or a binary

tree of SVM. The binary tree consists in firstly, classification of digital mam-

mograms in low or high breast density category and then low dense cases are

classified in BI-RADS I or II and independently, high dense cases in BI-RADS

III or IV. The reason was to convert our multiclass classification problem into

multiple binary classification problems because SVM is originally a binary

classifier [7].

3.2.2 Quantitative Methods

3.2.2.1 Pixel Based Classification

Figure 3.5 graphically shows our proposal for breast density segmentation. Since it is

a supervised approach based on a classifier, two main parts can be distinguished, the

training and the testing part. In the training part, the classifier learns to distinguish

between fatty and dense pixels, and in the testing part, the classifier assigns the fatty

or dense label to each pixel of the input image. In order to use not only intensity but

other information, a previous step is performed in order to compute features related

to morphology or texture of each pixel. Moreover, before processing the images,
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an initial preprocessing step is necessary in order to remove the pixels outside the

breast area and also for enhancing the peripheral breast area. Each step is described

in more detail below.

Figure 3.5: Our approach follows a pixel based classification scheme. Firstly, the
algorithm learns to distinguish between fatty and dense tissue (blue box), and sub-
sequently, it is used to segment new images (green box).

Preprocessing

The preprocessing step is the same as the one used in the FCM region based

approach (Section 3.2.1.2). Firstly, the breast area is extracted and then

the overexposed area is improved by a peripheral enhancement method (see

Chapter 2).

Feature Extraction

A common feature used for breast density segmentation is the own image

intensity [311]. However, this information alone might not be enough for
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performing a correct classification. Hence, texture information allows to in-

troduce information of the neighbourhood of the pixel into the segmentation

algorithm [233]. Additionally, the use of morphological features, incorporates

information on the likely locations of dense tissue into segmentation algo-

rithms [151]. Our proposed tool also combines intensity, texture, and morpho-

logical features.

We computed all the features shown in Table 3.1 using two mammograms of

each BI-RADS class (hence, 8 mammograms in total) and a large variety of

scales. To compute the texture features, a search window was centered on a

pixel to define a ROI. Textural features were computed inside this region and

assigned to the corresponding central pixel. This process was repeated for all

pixels on the image, except for pixels located at the border of the image where

the window could not be placed; these pixels were excluded from further pro-

cessing. The size of the window allowed experimentation with different texture

scales. Small windows allowed detection of small tissue patterns whereas large

windows allowed detection of bigger patterns. The range of sizes used enabled

the detection of most textural patterns present in the breast density.

Windows from 1.96mm to 28.28mm were used to calculate the three first his-

togram moments, the histogram entropy, the three first Laplacian moments,

the Laplacian homogeneity and entropy, the GLCM (at 0◦, 45◦, 90◦ and 135◦

directions) contrast, energy, entropy and homogeneity, the fractal dimension

average, the magnitude of quaternion energy and standard deviation, the phase

angle (associated with the direction k) standard deviation and weighted (mag-

nitude of quaternion norm) standard deviation and the LBP histogram (10

bins). In total, 245 features including the original and corrected (i.e. pixel

value after peripheral enhancement) intensities, the position, the distance to

skin, the distance to nipple and the angle to nipple.

We created one image representation for each one of the 245 features. Each

image representation was generated using the pixel computed feature as pixel

value. In total,1960 image representations were created (245 image represen-

tations for each mammogram that is 8 image representations for each feature).

The BI-RADS classification of each mammogram allowed us to, from the com-
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Type Feature

Intensity
Original
Corrected

Morphologic
Position x, y
Distance to skin
Distance to nipple
Angle to nipple

Texture

Histogram moments 1, 2, 3
Histogram entropy
Laplacian moments 1, 2, 3
Laplacian homogeneity and entropy
Cooccurrence matrices
Fractal dimension
Quaternion wavelets
Local binary patterns

Table 3.1: Features initially analysed for breast density segmentation.

plete feature set, visually select the features that best distinguished between

dense and fatty tissue (notice that the lack of a proper ground truth prevents

the use of automatic feature selection algorithms). This led us to a smaller set

of features, which are summarised in Table 3.2. In total, 51 features were used:

original and corrected intensities, position x and y, distance to skin, the three

first histogram moments and histogram entropy (computed at four different

scales), the three first Laplacian moments and Laplacian homogeneity and en-

tropy (also at four different scales), and Local Binary Patterns [228] (we used

10 bins), which were computed using an elliptical neighbourhood. As Nanni et

al.[220] observed, using an anisotropic neighbourhood rather than an isotropic

one is usually more useful in medical imaging, as anisotropic distributions are

more common in these types of images.

Segmentation

The segmentation step was performed for classification at the pixel level by

means of a SVM classifier [327]. SVM separates pixels in two possible cate-

gories: fatty pixel or dense pixel.

To train the SVM, dense and fatty regions were manually selected from a set of

8 mammograms (two for each BI-RADS category) that were removed from the
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Feature Window size (in mm)

Original intensity N/A
Corrected intensity N/A
Position x, y N/A
Distance to skin N/A
Histogram moments 1.96, 4.20, 9.80, and 19.88
Histogram entropy 1.96, 4.20, 9.80, and 19.88
Laplacian moments 1.96, 4.20, 9.80 and 19.88
Lapl. homog. & entr. 1.96, 4.20, 9.80 and 19.88
Local binary patterns 11.48 (10 bins)

Table 3.2: Features used for breast density segmentation along with the scale where
they have been computed.

dataset and not used for further testing and subsequent analysis. Therefore,

each pixel was characterised using its intensity, neighbourhood texture and

morphological information and was used as an input for training the classifier.

To extract the training data, we combined two different strategies:

• Manual selection of ROIs being clearly dense or fatty. However, using

only these regions, the classifier had the lack of data from those regions

where the tissue is not clearly dense or fatty.

• Manual selection of ROIs from regions containing fatty and dense tissue.

The pixels in these ROIs were divided using an automatic threshold [237].

Pixels with intensity higher than this threshold were considered as dense,

whereas pixels with lower intensity than the threshold were considered as

fatty.

One of the main drawbacks of SVM is its large computational time for training.

Notice that the training step is performed prior to the testing step, hence

allowing a fast segmentation of the mammograms.
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3.3 Results

3.3.1 Qualitative Methods

3.3.1.1 Region Based Classification Using Eigen Analysis

The method was applied to 233 mammograms from our local digital database. This

subset is composed of left or right MLO mammograms from 233 healthy women. An

expert mammographic reader classified all the images in year 2005 using BI-RADS.

We used a leave-one-case-out methodology, i.e., each mammogram is analyzed by

a classifier trained using the mammograms of all other women in the database. The

confusion matrices for the best three classifiers (RF, AdaBoost and SVM) are shown

in Table 3.3, where each row corresponds to results based on the manual classifica-

tion by the expert. Cohen’s kappa (κ) coefficient [66] and the correct classification

percentage (CCP) are also shown, defining κ as:

κ =
P (D)− P (E)

1− P (E)
(3.1)

where P (D) is the percentage of classified mammograms that are correct and

P (E) the expected proportion by chance. A κ equal to 1 means a statistically

perfect model whereas a value equal to 0 means every model value was different

from the actual value.

And being CCP the sum of the diagonal elements of the confusion matrix divided

by the total number of used mammograms.

Without applying feature selection seems that the best classifier for high dense

breasts is RF, while for low dense breast SVM achieves the best results. But when

feature selection is considered, only AdaBoost and SVM improve remarkably, mainly

for BI-RADS III and IV.

3.3.1.2 Region Based Classification Using FCM Analysis

The method was applied to the whole set of 236 mammograms acquired with a Sele-

nia FFDM system that form our local digital database. This database is composed

of left and/or right MLO mammograms from 233 healthy women.
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RF AdaBoost SVM

κ = 0.58 κ = 0.55 κ = 0.57

CCP = 70% CCP = 67% CCP = 69%

N
o

F
e
a
t
u
r
e
S
e
le
c
t
io
n

I II III IV I II III IV I II III IV

I 30 19 0 1 34 14 0 2 34 15 0 1

II 10 65 8 3 10 66 8 2 7 70 8 1

III 0 13 32 7 0 14 27 11 0 15 27 10

IV 3 1 6 35 4 1 10 30 3 2 10 30

RF AdaBoost SVM

κ = 0.60 κ = 0.63 κ = 0.67

CCP = 71% CCP = 73% CCP = 76%

S
V
M

F
e
a
t
u
r
e
S
e
le
c
t
io
n

I II III IV I II III IV I II III IV

I 34 13 1 2 35 12 1 2 35 14 0 1

II 13 66 6 1 8 69 9 0 6 72 8 0

III 0 13 31 8 0 15 30 7 0 11 34 7

IV 3 1 6 35 3 0 6 36 2 0 7 36

(A) (B) (C)

Table 3.3: Confusion matrices. (A) RF, (B) AdaBoost, and (C) SVM.

Segmentation

To determine the quality of the segmentation results, visual assessment was

performed by one observer with more than 10 years of experience in mammo-

graphic images. To assess the segmentation improvements, the observer eval-

uated the differences in the segmentation results when images were enhanced

or not. Around 92% of the segmentations obtained after image enhancement

were considered similar or better than the ones obtained before enhancement.

Specifically, the 45% were regarded as strictly better, therefore results show

that there is a clear improvement in the segmentation results when images are

previously peripheral enhanced (see Fig. 3.4).

Experts Classification

Four expert mammographic readers classified all the images using BI-RADS in

year 2011 (readers are different from the ones that participated in the digitised

study [230]). The ground truth was determined by majority vote. In case of
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tie, the median value was considered as the consensus opinion (like in [230]).

Expert A Expert B Expert C Expert D

κ = 0.94 κ = 0.78 κ = 0.70 κ = 0.61

CCP = 96% CCP = 86% CCP = 79% CCP = 73%

I II III IV I II III IV I II III IV I II III IV

C
on

se
n
su
s I 84 1 0 0 85 0 0 0 54 31 0 0 51 34 0 0

II 1 86 1 0 17 67 4 0 0 77 11 0 0 85 2 1

III 0 0 39 7 0 8 36 2 0 2 42 2 0 1 18 27

IV 0 0 0 17 0 0 4 13 0 0 3 14 0 0 0 17

(A) (B) (C) (D)

Table 3.4: (A)-(D) Confusion matrices for four expert radiologists and their consen-
sus opinion in 2011.

Table 3.4 shows the confusion matrices for the classification of FFDM for the

four readers and the consensus opinion in year 2011. Like in the previous work

carried out in our research group for digitised mammograms classification [230],

the results show an evident interobserver variability, illustrating the difficulty

of the breast tissue density classification task. In low dense breasts categories

{BI-RADS I & II}, expert B tends to classify in BI-RADS I (17 mammograms

were classified as BI-RADS I being BI-RADS II) whereas experts C and D tend

to classify in BI-RADS II (31 and 34 mammograms respectively were classified

as BI-RADS II being BI-RADS I). Note also that expert B repeats this under-

estimation assignment when classifying in BI-RADS II (8 mammograms were

classified as BI-RADS II being BI-RADS III) and expert C repeats the over-

estimation when classifying in BI-RADS III (11 mammograms were classified

as BI-RADS III being BI-RADS II). In high dense categories {BI-RADS III

& IV}, expert D differs from the rest considering a few BI-RADS III mammo-

grams (18/46) and a lot of BI-RADS IV (27 mammograms were classified as

BI-RADS IV being BI-RADS III). When considering the individual BI-RADS

classes, the CCP values for expert A are really high (99%, 98%, 85%, 100%,

respectively). The results of the other experts are less homogeneous and lower,

except for expert C in BI-RADS III with CCP = 91%. Using the κ values,

the agreement of expert A with the consensus opinion belongs to the almost

perfect category (κ = 0.94) whereas the agreement of experts B, C and D with

the consensus opinion belong to the substantial category (κ = 0.78, 0.70, 0.61
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respectively).

Expert D Expert D

(Year 2011) (Year 2005)

κ = 0.61 κ = 0.41

CCP = 73% CCP = 57%

I II III IV I II III IV

C
on

se
n
su
s I 51 34 0 0 49 36 0 0

II 0 85 2 1 0 52 35 1

III 0 1 18 27 0 0 17 29

IV 0 0 0 17 1 0 0 16

(A) (B)

Table 3.5: (A) Confusion matrix for one expert radiologist and the consensus opinion
in 2011 and (B) confusion matrix for the same expert radiologist and the consensus
opinion in 2005.

Furthermore, a few years after the first experiment, one of the experts classi-

fied the same database according to BI-RADS. Table 3.5 shows the confusion

matrices for the classification of FFDM for one reader and the consensus opin-

ion, for two different periods in time. Results reveal intraobserver variability

in BI-RADS II and III classification. In the past the reader classified 88 mam-

mograms as BI-RADS II whereas now the number increases to 120. On the

other hand, 52 mammograms were considered BI-RADS III compared to the

current 20. Examining each class, there are no significant variations in CCP

values for BI-RADS I (before: 58%, after: 60%), BI-RADS III (before: 37%,

after: 39%), and BI-RADS IV (before: 94%, after: 100%), in contrast with

the CCP values for BI-RADS II (before: 59%, after:97%).

Automatic Classification

To evaluate our algorithm, we used a leave-one-out methodology, i.e., each dig-

ital mammogram is analyzed by a classifier trained using the mammograms of

all other women in the database. Table 3.6(C) shows the best confusion matrix

after analyzing different feature selection and classification methods. Specif-

ically the confusion matrix is obtained using SVM feature selection (SVS)

followed by binary tree of SVM classification (BTSVC) and this combination
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achieved a κ of 0.88 and a CCP of 92% (216/236). These values are higher

than the values of experts B, C and D although they are lower than the ones

of the expert A. When considering each BI-RADS classes, the CCP for BI-

RADS I is 93% (79/85), for BI-RADS II is 89% (78/88), for BI-RADS III is

93% (43/46) and for BI-RADS IV is 94% (16/17). Note that BI-RADS III

reaches the highest CCP value in comparison with the ones reached by the

experts (A: 85%, B: 78%, C: 91%, D: 39%).

Bayesian MIAS Bayesian DDSM SVS + BTSVC

κ = 0.81 κ = 0.67 κ = 0.88

CCP = 86% CCP = 77% CCP = 92%

I II III IV I II III IV I II III IV

C
on

se
n
su
s I 79 1 3 4 58 25 23 0 79 6 0 0

II 3 86 6 8 15 295 26 0 5 78 5 0

III 0 2 85 8 12 46 196 1 0 2 43 1

IV 0 6 4 27 5 18 18 93 0 0 1 16

(A) (B) (C)

Table 3.6: Confusion matrices for MIAS, DDSM and digital databases classification
and their respectively consensus opinion: (A) Bayesian combination of KNN and
C4.5 classifiers in MIAS, (B) Bayesian combination of KNN and C4.5 classifiers in
DDSM and (C) SVS + BTSVC in digital database.

Table 3.6(A)-(B) also shows the best confusion matrices of the previous work

carried out in our research group in [230]. In this case the used classifier

was a Bayesian combination of KNN and C4.5 classifiers and the classification

method was tested using two public databases: the Mammographic Image

Analysis (MIAS) database [296] and the Digital Database for Screening Mam-

mography (DDSM) [128] which were obtained from scanned or digitised film

images. Although a direct comparison with our previous results is difficult

because the datasets used are different, in principle, the confusion matrix of

the digital database (Table 3.6(C)) seems to be better than the others because

there are less nonzeros off-diagonal elements. When comparing κ and CCP

values in digital and digitised databases (κ = 0.81, CCP = 86% (277/322)

for MIAS and κ = 0.67, CCP = 77% (642/831) for DDSM), they are slightly

better in the digital case. Examining the individual BI-RADS classes, the
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CCP for MIAS data set were 91%, 83%, 89% and 73% (respectively) and for

DDSM were 55%, 88%, 77% and 69% (respectively). All these values are also

somewhat better in the digital case (93%, 89%, 93% and 94%), although the

highest difference is in BI-RADS IV. Using the two class classification (low

vs high density), the CCP for low case is 91% for digital, 87% for MIAS and

80% for DDSM, whereas for high case is 94% for digital, 85% for MIAS and

74% for DDSM, so in both cases, the percentage is higher for digital database.

These results make explicit the improvement reached adapting the method

from digitised to digital.

Similar comparison can be made between the best confusion matrix obtained

with the eigen region based approach (Table 3.3(C) with SVM feature se-

lection) and the confusion matrix of the FCM region based approach (Ta-

ble 3.6(C)). Although consensus opinion used in FCM region based work

was obtained after the eigen region based work, therefore eigen and FCM

approaches were evaluated using different consensus opinion.

Using the same criterions, Table 3.6(C) can be also considered better than Ta-

ble 3.3(C) with SVM feature selection, because has less nonzeros off-diagonal

elements and κ and CCP values are quite higher in FCM region based case

(0.67 vs 0.88 and 76% vs 92%). Comparing the CCP for each BI-RADS class:

70% vs 93%, 84% vs 89%, 65% vs 93% and 80% vs 94% (respectively), all

values are larger in FCM region based case, mainly in BI-RADS III and I.

Obviously, when comparing low vs high density CCP (79% vs 91% and 72%

vs 94%) results show the same behaviour. So, the preprocessing step and

the segmentation algorithm used in the FCM region based method seem to

be a significant upgrade from the initial method (i.e., the eigen region based

approach).

Note that, for the sake of concreteness, results of the half-way points between

the initial quantitative approach (eigen based segmentation with no enhance-

ment) and the last quantitative approach (FCM based segmentation with en-

hancement) are not presented. Although, it should be pointed that FCM with

no enhancement obtained worse results than eigen with no enhancement (see

segmentation results in Fig. 3.6(a)-(c)). And eigen with enhancement obtained
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a worse segmentation than FCM with enhancement (see segmentation results

in Fig. 3.6(d)-(f)).

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Example of the different segmentation processes: (a) eigen without
previous peripheral enhancement, (b) original image, (c) FCM without previous pe-
ripheral enhancement, (d) eigen with previous peripheral enhancement, (e) original
image and (f) FCM with previous peripheral enhancement.

3.3.2 Quantitative Methods

To evaluate the performance of the tool, we used three different strategies. Firstly,

using a boxplot, we compared the percentage of dense tissue clustered according to

its BI-RADS class. Ideally, the denser the class, the higher the mean percentage of

dense tissue should be. This analysis allows us to manually correlate the ground

truth labelled by the experts with the results of the tool, and it provides a strong
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evaluation of the tool due to the absence of manually segmented images.

To provide a complementary evaluation, we estimated the dense tissue percentage

in bilateral breasts (left and right) and in ipsilateral views (MLO and CC views). In

the first case, it is well known that the internal tissue distribution is similar, despite

being two different breasts, and therefore, the percentage of dense tissue should be

highly correlated. In the second case, we are comparing the tissue distribution of

the same breast but using different points of view, which should also be closely

correlated. These analyses allow us to test the repeatability of the tool.

As a potential use of this tool, we analysed the evolution of breast density during

three screening exams. The result of our study was compared with the three different

models that Boyd et al. [38] proposed to describe density change over time. Specifi-

cally, these models use the 25th and 75th percentile (i.e. first and third quartiles) of

the distribution of density percentage to describe the different density behaviours.

In all models, the percentage of breast density decreases when age increases, but

the change of the interquartile range (IQR) is different depending on the model. In

model A the IQR increase with age, in model B does not change, and in model C

IQR decreases.

Transversal Analysis

Figure 3.7 presents a box-and-whisker plot representation of the mammo-

graphic density percent according to the BI-RADS classification given by the

experts. In this type of plot, a box is drawn enclosing the first and third quar-

tiles of the data, and the median value divides the box into two parts. More-

over, the whiskers show the variability outside the upper and lower quartiles.

Therefore, each box represents the variability of the automatic estimation of

the dense percentage clustered according to the experts’ manual annotation.

It can be seen in the figure that the dense percentage increases as the BI-

RADS class increases, showing a high agreement between manual annotation

and automatic estimation.

Moreover, the distinction between BI-RADS I, II, and III is very clear (the

boxes are well separated). In contrast, the boxes of BI-RADS III and IV are

partly overlap, although the median for BI-RADS IV is outside the enclosed

area in BI-RADS III. Additionally, this figure seems to indicate that it is
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Figure 3.7: Boxplot between BI-RADS and density percent of the segmentation
result.

easier to segment dense tissues in low dense mammograms than in highly dense

mammograms, where dense regions can be distributed along the mammogram.

These claims are reinforced numerically based on analysis of the mean density

of each BI-RADS class. Specifically, we obtained the following results: BI-

RADS I: 0.20 ± 0.08, BI-RADS II: 0.32 ± 0.09, BI-RADS III: 0.47 ± 0.10

and BI-RADS IV: 0.58 ± 0.13. Upon analysis of the independence of each

class using pairwise t tests, we found that the distributions were significantly

different (p value < 0.01).

Figure 3.8 compares the percentages of dense tissue in the transversal study.

Figure 3.8(a) shows the results of the comparison between dense percentage of

all left and right MLO mammograms for the basal exploration (bilateral com-

parison), whereas Figure 3.8(b) shows the relationship between both views of

the same breast (ipsilateral comparison). Note that in each graph, a point

corresponds to a particular case. As expected, the segmentation results for bi-

lateral comparison are highly correlated, as indicated by the plotted regression

line ρ = 0.958 (p value < 0.05). These results can be extrapolated to the fact

that mammograms with similar tissue density are segmented with a similar

percentage of dense area. Regarding the ipsilateral comparison, the correlation

between the dense area segmentation in both views is also very strong (p value

< 0.05). However, in contradiction to the bilateral comparison, the slope of
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the regression line is greater than 1, indicating that the density percentage in

MLO mammograms is slightly lower than the CC view. This fact agrees with

the results reported in other studies, where a high correlation between both

views and a lower dense percentage for MLO view were observed [49, 318].
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Figure 3.8: Comparison of the transversal density estimation results. (a) Bilateral
comparison and (b) ipsilateral comparison.
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Longitudinal Analysis

 S0                                                S1                                                S2

B
D

P

Breast density change

 

 

  26.9  

  51.0  

  24.4  

  47.9  

IQR : 24.1

IQR : 23.5

25th percentile
75th percentile

(a)

 S0                                                S1                                                S2

B
D

P

Breast density change for BIRADS I

 

 

  18.7  

  29.6  

  12.7  

  24.2  IQR : 10.9

IQR : 11.5

25th percentile
75th percentile

 S0                                                S1                                                S2

B
D

P
Breast density change for BIRADS II

 

 

  26.2  

  42.4  

  25.7  

  35.2  

IQR : 16.2

IQR : 9.5

25th percentile
75th percentile

 S0                                                S1                                                S2

B
D

P

Breast density change for BIRADS III

 

 

  40.2  

  58.3  

  38.6  

  53.5  

IQR : 18.1

IQR : 14.9

25th percentile
75th percentile

 S0                                                S1                                                S2

B
D

P

Breast density change for BIRADS IV

 

 

  47.0  

  70.0  

  46.6  

  68.5  

IQR : 23.0
IQR : 21.9

25th percentile
75th percentile

(b)

Figure 3.9: First (dotted line) and third (continuous line) quartile evolution of breast
density percentage when using (a) all the database together or (b) the database
splitted according to the BI-RADS categories (from left top to bottom right BI-
RADS I, BI-RADS II, BI-RADS III, and BI-RADS IV). S0 contains the first follow
up exams, S1 the second follow up, and S2 the third follow up. Notice that the
behaviour is different depending on the density category.
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Regarding the analysis of the density evolution, we computed the density

percentage of all patients in the first, second and third acquired studies. Af-

terwards, and similarly to the boxplot analysis, we derived the first and third

quartiles at each time in order to obtain the evolution of the breast density,

as was performed by Boyd et al. [38]. Figure 3.9(a) shows the regression line

for the first and third quartiles when including the whole dataset in the study.

As expected, breasts tend to decrease their density with time, and it seems

that the decrease in the first quartile is slightly slower than the decrease in

the third quartile.

We repeated the same procedure for all of the patients but clustered the mam-

mograms according to the BI-RADS density categories assigned by the experts

in the first study. These results are shown in Figure 3.9(b). Notice that al-

though both quartiles decrease their density in all categories, the behaviour is

different in each of these categories. Specifically, for BI-RADS I, the decrease

in the ratio of both quartiles is significant and almost parallel, although the

decrease of the first quartile is slightly greater than that of the third one. For

BI-RADS II and III, the decrease in the third quartile is significant, whereas

the first quartile remains almost unaffected. Finally, for BI-RADS IV, there

is only a slight decrease in both the first and third quartiles.

Furthermore, for each case within the database, we computed a line of best

fit for density percentage variation over time, and we analysed the different

slopes. As expected, the mean slope for all women in the database was negative

(−0.02), indicating a density decrease. Upon analysing the data in terms of BI-

RADS category, the mean slope was also negative. Specifically, for BI-RADS

IV, we obtained the lowest mean slope (−0.003).

3.4 Discussion and Conclusions

3.4.1 Qualitative Methods

We have provided two qualitative approaches for breast density classification. Re-

sults of the initial approach demonstrate the improvement of using a feature selection
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step to reduce the huge number of features (412), since all the classifiers obtained

better results after feature selection.

To improve our initial results, we propose an alternative to deal with the over-

exposed breast area and we explore other segmentation techniques. After using our

own peripheral enhancement method (Chapter 2) and a FCM clustering algorithm,

we obtained a κ of 0.88 and a CCP of 92% (that represents a better agreement in

3 out of 4 radiologists that classify the images). These results are better than the

initial ones (κ = 0.67 and CCP = 76%), which indicates that the included changes

improve the overall method.

After testing different classifiers, SVM obtained the best results in both qualita-

tive methods. Since SVM is originally designed for binary classification, we convert

our multiclass problem in several binary class problems to optimize SVM results,

and as expected, our binary tree of SVM obtains better results than the multiclass

SVM.

The comparison with other automatic approaches, it’s a difficult task because the

datasets used are different, although the confusion matrices can be compared, and

also the κ and the CCP values. Comparing these parameters, results of the FCM

region based approach are also better than the previous work carried out in our

research group [230] using MIAS (κ = 0.81 and CCP = 86%) and DDSM (κ = 0.67

and CCP = 77%).

3.4.2 Quantitative Methods

A novel automatic tool developed for breast density tissue segmentation has been

validated in this work. The bilateral comparison of the results has shown a very

strong correlation that agrees with previous studies that analysed manually seg-

mented mammograms. Additionally, the ipsilateral comparison also showed a very

strong correlation between both views and with almost the same slope reported in

previous studies performed with manually segmented images.

Comparisons with other automatic approaches that segment the breast accord-

ing to its density is not an easy task because it is not feasible to obtain a ground

truth detailing all the dense regions in a large set of mammograms. In addition to

this difficult computational task, inter and intraexpert variability is very high when
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looking at breast densities [230]. However, by considering the location of dense areas

that plays a key role in its classification, could be seen as an improvement over the

threshold based approaches or the clustering approaches that just use image inten-

sities. We also tested the use of different classifiers typically used in mammography,

such as a neural network [151] and a boosting algorithm [235]. The performance

of both classifiers was worse than that obtained with SVM, with slightly better re-

sults obtained using the neural network compared to the boosting classifier. The

main drawback of SVM is its computational cost, mostly due to the amount of time

needed to compute the features. Note that once the features are computed for each

pixel, the classification can be quickly performed by parallelising techniques.

The longitudinal analysis confirms the well known fact that breast density de-

creases with age. Although there are other factors involved in breast density varia-

tions, such as menopause status, pregnancy and childbearing [37], in this work, we

focused on the evolution with age, comparing our results with the theoretical models

proposed by Boyd et al. [38] based on the IQR. According to the results obtained

with our database and graphically shown in Figure 3.9(a), we observed that breast

densities decreased over time, whereas the IQR slightly decreased. Therefore, our

data seems to be congruent with model C, although the decrease is so slight that it

could also be congruent with model B. However, depending on the BI-RADS score,

no single model always described the density behaviour of all the women. Specifi-

cally, for BI-RADS I, densities decreased with age, whereas IQR increased; therefore,

model A or B should have been assigned in this case. On the other hand, BI-RADS

II and III were clearly well described by model C. Finally, the BI-RADS IV category

label should be assigned to model B or C. Our database was composed by only three

screening studies per woman, which limits the fitting of this model. More studies for

each patient are required to provide a better adjustment. Additionally, the lower

average slope obtained for high density breasts indicates that the group with an

increased risk of breast cancer [51] has a slower decrease in the density of the breast.

There are some limitations in our study. The lack of manual annotations of

dense regions in a large dataset of mammograms prevents not only the compari-

son between manual and automatic segmentations using quantitative overlapping

measures but also the use of automatic feature selection algorithms. On the other

hand, regarding the longitudinal analysis, 6 years is a short time to detect changes
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in breast density, and this does not allow significant clinical conclusions to be made.

However, automatic tools allow the detection of density changes in this short period

of time.

Automatic tools based on computational approaches allow accurate estimation

of breast density and quantification of changes with time. Longitudinal changes

in breast density are dependent on the internal density of each breast, in addition

to other factors. In our experiments, density changes in low density breasts pre-

sented a more heterogeneous behaviour than those in high density breasts, where

the percentage of dense tissue seemed to be more stable over time.
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Chapter 4

Image Registration

Image registration is a process that studies how to map one image into another. The

complexity of the image registration method depends on the geometric differences

between images. In this chapter, we evaluate different techniques to align mammo-

graphic images, as well as the possibility of use this information in other fields such

as automatic mass detection. Left and right mammograms are registered to anal-

yse bilateral dissimilarities. Current and prior mammographic images registration

is used to evaluate temporal changes in the breast.

4.1 Introduction

Image registration is the process of finding an optimal transformation function that

overlays one image into another. A registration framework is composed by a trans-

formation, an interpolator, a metric and an optimizer (see Fig. 4.1). Two images

are used as input data, the fixed or target image and the moving or template image

which will be transformed to be as similar as possible to the fixed one. During the

transformation step, the points of the moving image are mapped into the points of

the fixed one and the interpolator calculates the intensities of the moving image at

non-natural positions. Next, a metric measures the similarity of the fixed image

and the transformed one. Similarity measurement is used as input by the optimizer

to recalculate the transformation parameters in order to find a better mapping or

otherwise, to finish the process.

97
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Figure 4.1: Registration framework.

• Transformation

The geometric differences between fixed and moving images can be linear or

non-linear, so transformation functions can be divided according the type of

the geometric deformation in linear or global and non-linear or local [283].

– Linear Mapping

In linear mapping models all pixels suffer the same transformation. Trans-

lation, rigid transformation (translation and rotation), similarity transfor-

mation (translation, rotation and scaling) or affine transformation (trans-

lation, rotation, scaling and shearing) are examples of the used mod-

els [283], but rigid and affine transformations are the most commonly

used [140].

For medical images, rigid transformation is considered a good approx-

imation since satisfies the rigid-body constraints [193].

Given the original point (x,y), the rigid transformed point (X,Y) is defined

as:
(

X

Y

)

=

(

cos θ − sin θ

sin θ cos θ

) (

x

y

)

+

(

tx

ty

)

where θ is the rotation angle and (tx, ty) is the translation vector.

Affine transformation is more general than the rigid one and allows

additional information about scaling and shearing factors that can be

useful when scaling parameters are unknown/incorrect or when images

are skewed during the acquisition [193, 93].

Affine transformation is defined as:
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(
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a b

c d
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)

+
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where (x, y) are the original points, a, b, c, and d are the affine parameters,

(tx, ty) is the translation vector and (X, Y ) are the transformed points.

– Non-linear Mapping

Although global mapping may be sufficient in many applications, the

geometric difference between images can be complex and sometimes a

more flexible transformation model is needed, allowing for local deforma-

tion [359]. In non-linear mapping models, pixels are transformed locally

having a different transformation depending on their position. There

are a huge variety of non-linear geometric transformations, for instance

transformations derived from physical models, transformations inspired

by interpolation theory or transformations based on prior knowledge.

Physical models category includes elastic body models or diffusions mod-

els, among others. Within the group of interpolation theory, radial basis

functions, free form deformations or locally affine models are found [286].

Diffeomorphic Demons belongs to the diffusion models group within

the physical models category and has been used successfully in vari-

ety of registration scenarios including brain MRI [164, 277, 71], cardiac

CT [248], breast CT [268] or breast MRI registration [238]. The Diffeo-

morphic Demons [330] algorithm derives from Thyrion’s Demons [306].

The mapping function used in Diffeomorphic Demons registration is con-

tinuous, smooth and invertible and its inverse is also smooth (by definition

of diffeomorphism). Furthermore, Diffeomorphic Demons registration for-

malises Demons optimization over the space of displacement fields and

has different variants corresponding to the operation allowed in the space

of deformation field: exponential, addition and composition.

Thin-Plate Spline belongs to the radial basis functions group within

the interpolation theory category. Thin-Plate Spline is one of the most

commonly used methods for non-linear medical image registration [147]

and is applied, among other medical fields, in registration of brain im-

ages [147], breast images [334, 199], prostate images [329, 212] or liver
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images [176]. Thin-Plate Spline provides smooth deformations with easily

controlled behaviour [346, 199].

Given n control points xi, the Thin-Plate Spline mapping function is

defined as:

X = ao + a1x+ a2y +

n
∑

i=1

cig(x, xi)

Thin-Plate Spline is composed by an optional low-degree polynomial (ao+

a1x+a2y) plus a sum of weighted Thin-Plate Spline radial basis functions

with the form:

g(x, xi) = ‖x− xi‖
2 ln(‖x− xi‖).

B-Splines free form deformation belongs to the free-from deforma-

tions group within the interpolation theory category. Free form defor-

mation modelled by B-Splines is popular in medical applications (brain

CT [174], brain MRI [260], breast MRI [261], cardiac US [179], lung

CT [326] or x-ray mammography [72, 59] image registration). Free form

deformation using B-Splines is based on deforming an image by modi-

fying a mesh of control points following a maximization of a similarity

measure. These control points define a mesh of smooth and continuous

B-Splines functions with limited support, i.e, control points can be lo-

cally controlled and modifying a control point only affects neighbouring

points. The degree of deformation of the mesh can be modelled with

the resolution of the mesh (coarse meshes are more suited for large scale

transforms and finer meshes for local deformations) [72].

• Interpolator

The nearest neighbour interpolation [190, 180, 305, 98, 6, 40], the linear inter-

polation [180, 305, 98, 6, 5, 333, 40], the cubic interpolation [180, 305, 98, 40],

the cubic splines interpolation [180, 6, 5] or the sinc interpolation [180, 305,

6, 5] belong to the most commonly used interpolators for calculating the new

grey values of the moving image after transformation [359].

Linear interpolation is one of the simplest, fastest and popular interpolation

methods [305, 12, 92]. Linear interpolation estimates the grey value of the
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transformed image (y) by computing the straight line between the nearest

neighbours.

Given x in the interval (x0, x1):

y = y0 + (y1 − y0)
x− x0
x1 − x0

where y0 and y1 are the grey values of x0 and x1 respectively.

• Metric

Different similarity measures can be minimised/maximised in order to opti-

mize the transformation parameters [193]. For instance, sum of absolute dif-

ferences [136, 77], cross-correlation [160, 17], SSD [171, 112, 113, 336, 73, 41]

or MI [261, 267, 346, 322, 199, 337, 309, 73] among others.

SSD is commonly used for registering images of the same modality based on

the idea that corresponding pixels have equal grey values [286], and also due

to its simplicity and fast computation [67].

SSD =
∑

(i,j)∈F

(IF (i, j)− IM(i, j))2

where F is the fixed image, IF (i, j) is the intensity value of F in the (i, j)

position and IM(i, j) is the intensity value of the moving image (M) in the

(i, j) position.

MI is also a robust similarity measure for image registration problems [249].

Although MI is less strict than SSD and assumes only a statistical relation

between the intensities of the images [165].

MI = H(F ) +H(M)−H(F,M)

where H(F ), H(M) denote the marginal entropies of the fixed image F and

the moving image M respectively and H(F,M) denotes their joint entropy,

which is calculated from the joint histogram of F and M .
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• Optimizer

To obtain the optimal transformation parameters, several methods can be

applied, the most commonly used [107, 333, 286] include: gradient descent

method [171, 191, 261, 257, 256, 113, 336, 166], conjugate gradient method [119,

191, 336, 166], Levenberg-Marquardt algorithm [149, 12], Newton-Raphson

method [362, 209], quasi-Newton method [191, 166], Neyer-Mead downhill

simplex method [191, 208], and Powells method [191, 75, 333].

Gradient descent method belongs to the first order derivative methods, since

requires the first order derivative of the objective function at each iteration.

Being C(p) the cost function at p (transformation parameters), gradient de-

scent finds p that minimises C by following the direction that decreases the

energy. At each iteration, the current position is updated according to:

pn+1 = pn − αn

∂C

∂p
(pn)

where αn is the step size.

Although image registration is used in a wide variety of fields, in this chapter,

we focus on medical imaging, specifically in mammographic images. Most of the

mammographic published approaches focus on registering image features such as

breast boundary [265, 355], nipple [290, 33] or internal regions, for example, the

pectoral muscle [98], salient regions [167, 198] or internal linear structures [200]. But

also, there are approaches that only use intensity information [47, 322] or combine

feature-based and intensity-based techniques [346, 257, 20].

Registration methods are often used independently, however it is commonly ac-

cepted that results can be improved in terms of accuracy and robustness by combin-

ing different approaches [193, 346, 199, 118, 182]. Algorithm combination exploits

the benefits of the different methods, for instance using a global and a local method.

In this case, the global method recovers for main pose and scale differences and the

local method accounts for localized non-linear deformations.

Results can also be improved by using a MR approach [317, 92] since by reducing

the size of the images reduce the geometric difference between them and simplify

the correspondence process [105]. Registration is first achieved between images at
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the lowest resolution, propagating parameter estimation into a higher resolution and

registering again [257, 256, 182]. This often avoids local minima in the parameter

search space and reduces computational time.

Van Engeland et al [322] report that linear transformations obtain more robust

results compared to non-linear methods in terms of producing less non realistic dis-

tortions in mammographic images. However Dı́ez et al. [72] evaluated a larger num-

ber of linear and non-linear intensity-based algorithms and showed that although

these unrealistic deformations can occur, well parametrised non-linear algorithms

obtain a better overall performance. Next, in Section 4.2, different linear and non-

linear intensity-based approaches are proposed, as well as some combination of linear

and non-linear methods and some MR approaches. The results of the registration

methods are evaluated according to different strategies in Section 4.3 and finally

conclusions are presented.

4.2 Proposals

Image registration is regarded as an important tool for the analysis of bilateral and

temporal mammograms [265, 196, 257, 97, 322, 91, 113]. Although the clinical use

of the image registration results themselves is unusual due to the computational cost

and the complexity of validating the results, especially in non-linear approaches [69].

However, image registration results are useful for automatic breast abnormalities

detection systems [177, 360, 155, 33, 205, 22, 189, 338].

Note that in bilateral and temporal registration of digital mammograms, a pre-

processing stage is applied. During this stage, the pectoral muscle was manually

segmented. Background and pectoral muscle areas were also eliminated to preserve

the breast area. To reduce computation time, images were resized (quarter size

image) using bilinear interpolation. In addition, mammograms were flipped when

necessary to match the orientation of the breasts in each mammogram. After that,

a peripheral enhancement was applied to compensate thickness variations in breast

periphery (see Chapter 2).
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4.2.1 Bilateral Registration

Bilateral comparison of mammographic images is justified from a clinical point of

view by Kopans [168], who makes two important observations when comparing bi-

lateral mammograms of the same woman: though one breast may be larger than

the other, internal structures are quite symmetric over broad areas, and overlapping

tissue structures that form summation shadows and normal tissue variations on the

mammogram highlight asymmetries. Also, the radiologists Tabár and Dean [299]

developed a method for looking for lesions based on comparing corresponding re-

gions of the left and right mammographic images to detect differences that could be

lesions.

Based on the popularity of different algorithms for mammography registration,

bilateral mammographic images were registered by using Rigid, Affine and B-Splines

transformation methods. Furthermore, all these methods were used to study the role

of some commonly used registration aspects such as Affine initialisation and MR

approach. Specifically, Rigid (R), Affine (A), Affine with MR (mA), B-Spline (B),

B with MR (mB), A in combination with B (AB) and mA in combination with mB

(mAmB) were evaluated. In latter digital works, additive Diffeomorphic Demons

was also evaluated for bilateral registration.

Transformation parameters were recovered by maximizing two different similarity

measures: SSD and MI. Finally, linear interpolation and gradient descent method

were used as interpolator and optimiser respectively.

4.2.2 Temporal Registration

Temporal comparison of mammograms is also an important part of the diagnostic

procedure. When older mammograms are available, radiologists compare them with

more recent images, since interval changes analysis allows detection of new lesion

over time and assessment of the lesion growing [195, 308, 285].

The main goal of temporal work was to evaluate the suitability of Diffeomorphic

Demons for temporal mammographic registration, in particular the additive variant.

For comparison purposes, Affine and B-Splines were also considered, as well as Affine

initialisation and MR approach. Specifically, A, Diffeomorphic Demons with MR
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(mD), A in combination with Diffeomorphic Demons (AD), mA in combination with

mD (mAmD), mB, AB and mAmB were evaluated.

Like in bilateral work, SSD and MI were used as metric, linear interpolation as

interpolator and gradient descent as optimiser, except for Demons based methods

that use an optimization function defined over the space of displacement fields.

4.3 Results

All registration methods were implemented using the Insight Toolkit (itk) libraries [141].

We used 128 histogram bins and 10000 samples for metric computations. A mini-

mum step length stopping criteria was also used. For practical reasons we also fixed

a maximum number of iterations for all methods to a maximum of 1000 iterations.

In combined or MR methods these iterations were evenly distributed between the

methods or MR levels.

Metric values are the most widely used tool to measure image similarity in com-

puter vision. Concerning their application to intensity-based registration of medi-

cal images, their use is twofold: first they provide the quantification of similarity

between images. Second, the registration process in usually formalized as an opti-

mization problem and metric values determine both stopping conditions and solution

update. This is true for Affine and B-Spline registration but not for Demons, as

these methods use an optimization function defined over the space of displacement

fields.

Consequently, metric measurements provide an objective value on how successful

some methods were in terms of optimization and how similar two images are in their

own particular terms. Unfortunately, a metric that is able to express exactly what

medical experts perceive as a ”better” registration does not yet exist, so other criteria

are also necessary. In the results presented, SSD and MI are used as similarity

measurement.

We used two different subsets of mammograms, one was composed by digitised

images and the other by digital images.
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4.3.1 Digitised Mammograms

In initial experiments, we used 208 digitised mammograms extracted from MIAS

database [296], including 104 pairs of left and right MLO mammograms. In total,

there were 52 mammograms containing at least one mass.

4.3.1.1 Bilateral Registration

Figure 4.2 shows an example of the registration results of our initial experiments.

Fig. 4.2(b) is the mammogram which is registered with Fig. 4.2(a). The resulting

mammogram is shown in Fig. 4.2(c), while Fig. 4.2(d) and Fig. 4.2(e) shows the

difference of the images after and before of the registration. Note that Fig. 4.2(e)

is more homogeneous than Fig. 4.2(d), indicating that the mammogram after regis-

tration is more similar to the target mammogram without registration.

(a) (b) (c)

(d) (e)

Figure 4.2: mAmB registration example of mammographic images: (a) fixed image,
(b) moving image, (c) registered image, (d) difference image before registration ”(a)-
(b)”, and (e) difference image after registration ”(a)-(c)”.
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For evaluating the results of registration methods we computed similarity met-

rics before (BEF) and after registration to obtain an indication of how similar the

bilateral images were. A higher similarity after image registration was expected and

the method with the highest similarity was considered the best.

Table 4.1 presents the numeric results for the complete digitised subset for both

metrics. As can be seen, results are useful to compare registration methods using

the same metric but is not possible to compare results between metrics due to the

fact that the results are related to the metric optimized by the algorithm. With

both metrics the standard deviation (SD) is large with respect to mean values. This

can be explained by the heterogeneity of the images and, nevertheless, SD decreases

after registration. The methods that obtained the best results were mB for the SSD

metric and mAmB for the MI metric.

SSD MI
Mean SD Mean SD

BEF 2369.33 1656.87 0.73 0.24
R 795.84 502.77 0.83 0.27
A 503.03 310.15 1.05 0.21
B 277.51 131.69 1.34 0.23
mA 788.25 476.13 1.05 0.21
mB 218.56 100.93 1.34 0.23
AB 276.69 143.14 1.37 0.21

mAmB 221.30 111.29 1.38 0.22

Table 4.1: Evaluation of the analysed registration methods for bilateral digitised
mammograms.

Once the best methods for each metric were chosen according the numeric results,

images after registration were reviewed by different observers to qualitative evaluate

the registration results. MI obtained better results than SSD, because in some SSD

registered images appear artefacts and unrealistic structures (see Fig. 4.3).

4.3.2 Digital Mammograms

Images used in latter experiments were obtained from our local digital database.

We used 584 FFD mammograms from 86 patients with breast cancer. 30 patients

have one study, 52 patients have two studies and 4 patients have three studies.
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(a) (b)

(c)

(d)

Figure 4.3: Example of SSD distortions: (a) fixed image, (b) moving image, (c)
registered image with SSD as similarity metric, and (d) registered image with MI
as similarity metric.

Each study contains four mammographic images, two views (CC and MLO) of left

and right breasts. Mammograms were acquired using a Selenia FFD mammography

system, with resolution 70 micron per pixel, size 4096x3328 or 2560x3328, and 12

bit depth. Presence of masses was annotated by expert radiologists and this allowed

us to distinguish between those registration instances containing masses and those
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not containing them.

4.3.2.1 Temporal Registration

For temporal comparison of mammograms, each mammographic image was regis-

tered with its homonymous mammogram in posterior studies using different regis-

tration methodologies doing in total more than 3450 temporal registrations. We

use boxplots as a compact way to describe thousands of data. We present several

multiple boxplots where each box will group the data resulting from a registration

method.

Figure 4.4 shows compared performances of the different registration approaches

evaluating the similarity between resulting images with SSD (see Fig. 4.4(a)) and

with MI (see Fig. 4.4(b)). We see how Demons based methods obtain better re-

sults than other approaches using both, SSD and MI measurements and we also

observe how Demons improve using Affine initialisation and applying MR with both

similarities.

For B-Splines based methods, Affine initialisation and MR approaches do not

seem to be an improvement when SSD measure is calculated, however it obtains a

better result for MI measurement. The three B-Splines based methods (mB, AB,

mAmB) obtain similar SSD values. When comparing MI values, AB and mAmB

(a) (b)

Figure 4.4: Temporal registrations: (a) SSD (lower positive values stand for better
results), and (b) MI (higher positive values stand for better results).
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outperform mB and the difference among them is not really clear. Similar trends

were observed in bilateral digitised registration results.

Taking into account that MI was considered better than SSD in bilateral digi-

tised registration work, we have focused on MI data analysis. MI data is provided

separately for registrations without and with masses in Figure 4.5. Demons based

methods obtain better results than other approaches independently of the presence

of masses. Despite separation, Demons and B-Splines do better when using Affine

initialisation and applying MR. If only one of the two improvements is used, Demons

based methods seem to benefit more from MR while B-Splines benefits from Affine

initialisation.

(a) (b)

Figure 4.5: Temporal registrations without masses (a) and with masses (b). Values
correspond to MI, therefore higher positive values stand for better results.

Concerning the presence of masses, both median and mean MI values slightly

increase for Demons based methods when masses are present (see Table 4.2). The

fact that images with masses obtain higher MI values than images with no masses

could be considered as an indicator of mass presence. This suggests the possibility

of using Demons based methods in registration applications such as mass detection.

This possibility will be addressed further in Deformation Fields Analisys subsection

in Section 5.3.2 and in Section 5.4.2.

Figure 4.6 shows an example of Demons and B-Splines registration methods.

Although Demons based methods obtain better numeric results than B-Splines based

methods, as expected, Demons results are not visually understandable or clinically



4.3 Results 111

Median Mean
Without With Without With
Masses Masses Masses Masses

mD 0.80 0.83 0.80 0.82
AD 0.80 0.81 0.80 0.82

mAmD 0.85 0.86 0.87 0.88

Table 4.2: Evaluation of Demons registration methods for temporal digital mam-
mograms.

(a) (b)

(c)

(d)

Figure 4.6: Example of Demons and B-Splines registrations: (a) fixed image, (b)
moving image, (c) mAmD registered image, and (d) mAmB registered image.
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usable (see Fig. 4.6(c)), exactly the opposite of B-Splines (see Fig. 4.6(d)).

4.3.2.2 Bilateral Registration

For bilateral comparison of mammograms, each right mammographic image was

registered with its left homonymous mammogram. More than 4000 bilateral reg-

istration were analised. In general, bilateral data values are quite similar to the

temporal ones, there is no a method that stands out depending on the nature of the

registered images (bilateral or temporal). The same as the temporal case, Demons

based methods obtain better results than other approaches using both measure-

ments, SSD and MI (see Fig. 4.7). Regarding the improvement of using an Affine

initialisation and MR, we also see how Demons based methods improve their results

when similarity assessment is calculated with MI, even though this is more subtle

for SSD measure.

Although in bilateral and temporal digital cases, mAmD obtains the best results,

the behaviour of AD and mD is different. For bilateral digital registrations mD does

better or similar than AD (with MI and SSD assessment respectively), however for

temporal digital registrations AD works better or similar than mD (when using SSD

and MI as metric respectively).

Bilateral B-Splines based methods have similar performance to temporal ones.

(a) (b)

Figure 4.7: Bilateral registrations: (a) SSD (lower positive values stand for better
results), and (b) MI (higher positive values stand for better results).
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For SSD metric, the three approaches (mB, AB, mAmB) have closest results and for

MI metric, AB and mAmB work similarly and better than mB. Therefore, B-Splines

based methods seem to be more stable than Demons based method, independently

of the nature of the images.

When we focus on MI data, as in the temporal digital case, Demons based meth-

ods obtain the best results in both cases, without and with masses (see Fig. 4.8). In

addition, Demons and B-Splines work better after Affine initialisation and MR ap-

plication. Similar to the temporal case, when techniques are analysed independently,

MR approach benefits more Demons methods than Affine initialisation. Conversely,

for B-Splines methods, the Affine initialisation improvement is higher than the MR

one.

(a) (b)

Figure 4.8: Bilateral registrations without masses (a) and with masses (b). Values
correspond to MI, therefore higher positive values stand for better results.

Median Mean
Without With Without With
Masses Masses Masses Masses

mD 0.82 0.83 0.83 0.82
AD 0.79 0.78 0.78 0.79

mAmD 0.85 0.84 0.84 0.85

Table 4.3: Evaluation of Demons registration methods for bilateral digital mammo-
grams.

In contrast with the temporal digital results, Demons median and mean values
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do not increase when a mass is present (see Table 4.3). If Demons median values

increase then mean values decrease and viceversa. So, in principle bilateral digital

deformations do not allow the possibility of using them for mass detection.

For comparing digital and digitised bilateral registration results (see Table 4.1),

we present a table with mean and SD values of SSD and MI metrics (see Table 4.4).

Values are calculated by using only bilateral registrations that contain at least one

mass, like in digitised bilateral registrations analysis. SSD values are larger than the

digitised ones, because digital images are 12 bits instead of 8 bits. B-Splines based

methods obtain the best results for both, SSD and MI. For SSD measurements,

mAmB obtains the lowest mean value, although mB could be considered the best

method, as in the digitised case, due to the negligible difference between the mean

values and also since mB has a lower SD value. For MI metric, the highest values

are obtained with AB and mAmB, the same trend as in the digitised experiment,

although the difference between these approaches is not really significant.

SSD MI
Mean SD Mean SD

BEF 240217.14 141286.79 0.47 0.15
A 169057.34 106847.13 0.53 0.16
mB 137611.93 90849.03 0.56 0.17
AB 139618.50 94333.26 0.59 0.18

mAmB 137427.87 92561.67 0.59 0.18

Table 4.4: Evaluation of the analysed registration methods for bilateral digital mam-
mograms.

4.4 Discussion and Conclusions

We have presented results using over 7500 bilateral and temporal registrations cor-

responding to breast cancer patients. The analysis of bilateral registrations over

digitised images shows how B-Spline based methods outperform Rigid and Affine

registrations. We have also studied the use of MR and Affine initialisation. There

is no a significant difference when both techniques are used together, however when

they are applied individually, for SSD, MR approach improves registration results,
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while for MI, Affine initialisation makes a difference. Since it is not possible to com-

pare results between metrics due to the different nature of the measurements (direct

pixels difference vs entropies analysis), qualitative assessment criteria was used to

evaluate results according the metric used and MI is considered better than SSD.

According to our digital study, Demons based methods provide the best re-

sults in terms of measures commonly used (SSD and MI) to evaluate the quality of

registration. However, B-Splines methods show more stability and similar trends,

independently of the type of the registered images (temporal or bilateral digital

mammograms).

In general, local methods (Demons and B-Splines) show the best results when

combining Affine initialisation and MR approach. This is clearer for MI metric

than for the SSD. However, both improvements do not seem to be significantly

necessary, since only the MR approach seems to provide enough improvement for

Demons methods and only Affine initialisation seems to offer suitable enhancement

for B-Spline.

The analysis of digital registration data shows how Demons based methods are

better than Affine and B-Splines based approaches. Although the unrealistic de-

formations obtained from Demons based methods, indicates that the direct image

difference between registered images cannot be used by automatic breast abnormali-

ties detection systems. However, temporal Demons based methods show application

possibilities in specific fields such as mass detection. Therefore, other ways to use

Demons temporal registration information has to be studied, such as deformation

fields analysis (see Deformation Fields Analysis in Sec. 5.3.2 and in Sec. 5.4.2).

Having in mind the idea of using the information obtained from registrations

for helping automatic mass detection systems, MI B-Splines based methods obtain

less artefacts so direct registered image difference information could be used as an

indicator of the presence of a lesion. Besides, for B-Splines based methods it is easy

to keep the transformation computed and to apply it to the original digital image

(without resizing) for calculating the image difference in the original size. Accord-

ing to our digital study (including both temporal and bilateral digital registrations),

the bests MI B-Splines based methods are AB and mAmB, being not really remark-

able the difference between them. So in order to improve the computational time,

MR approach can be dismissed and AB can be considered as the best method for
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calculating the direct registered image difference.



Chapter 5

Multi-Image CAD System

CAD systems are tools developed to help radiologists during the medical image read-

ing and cancer diagnosing processes. These systems commonly analyse each image

independently of the rest of the available data of the patient in order to find abnor-

malities. In contrast, we propose a new framework for automatic mass detection in

FFDM images that takes into account bilateral, temporal and also ipsilateral infor-

mation of the patient.

5.1 Introduction

Breast cancer is considered one of the most frequent tumour in women. However,

an early detection considerably increases the life expectancy. So, a key point in the

fight against this type of disease is to achieve its detection in early stages. CAD

mammographic systems are automatic or semi-automatic software tools developed

to assist radiologists in the detection and/or classification of mammographic abnor-

malities [94]. Although the idea of developing computer systems to assist radiologists

in the detection and classification of breast cancer is not recent, the development

of FFDM imaging systems has been a catalyst in the increase of such computer

systems [172].

CAD mammographic systems are starting to be integrated into clinical workflow

in hospitals and these systems are becoming part of the cancer diagnosis process.

The success is, in part, due to the past and ongoing efforts on research and devel-

117
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opment of CAD systems [74]. However, the idea of adding additional information

from different views based on the workflow of the radiologists, that compare dif-

ferent views of the same patient when reading mammograms, is not used in these

commercial CADs. Even though, in the literature, different works that use bilateral,

temporal or ipsilateral comparison of mammograms for improving CAD systems can

be found and evidence the benefits of incorporating all the available information from

the patient.

Note that independently of the comparison information added to CAD systems,

since the breast area is really the region to study and to provide a reference for the

pairing process, greater number of works apply a preprocessing step for breast area

segmentation [290, 155, 309, 251, 139, 239, 338] (see Section 2.2.1 for more detail).

After breast border detection, the background and the burned information on the

image (usually labels) are removed and breast area is isolated. Some authors, also

take into account the presence of the pectoral muscle in the segmented breast area,

since the influence of pectoral muscle presence in the correspondence process is a well

known issue [197]. The variations on the placement and tension of pectoral muscle

in mammograms and also the intensity value differences between breast region pixels

and pectoral muscle pixels may cause problems not only for matching mammograms

but also for detecting abnormalities. In order to increase the reliability of CAD

systems, pectoral area is removed [211, 265, 198, 239] or is processed to avoid the

intensity level differences [155, 308, 307, 325, 309, 321, 139].

5.1.1 Bilateral Information

Bilateral breast comparison is based on exploiting architectural symmetry between

left and right breasts [168]. Symmetry statement gives rise to two complemen-

tary hypothesis: differences between corresponding areas of both breasts indicate

the presence of lesions and similarities between corresponding areas of both breasts

indicate normality. Some CAD systems use these hypothesis for detecting abnormal-

ities [28, 33, 15, 205, 16, 39] or for reducing the number of FP [22, 255, 349, 139, 57],

although the detection works [211, 290, 155, 265] are far more common than the

FP works. In the detection case, the system looks for breast areas misalignments or

non-correspondence between ROIs and identifies these findings as abnormalities. In
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the FP reduction case, the system analyses the probability of being an abnormality

by taking into account both, the features of the candidate area and the features of

its corresponding area in the bilateral breast.

Even though left and right breast images are usually taken under similar con-

ditions of breast compression thickness, exposure parameters or breast position,

bilateral mammograms are not truly a mirror of the other. Then, obtaining not

only the differences but also the similarities between bilateral images it is not a triv-

ial subtraction process, a general description about the whole process is described

below.

Correspondence between bilateral images

In works related with bilateral breast comparison, two main different tech-

niques can be found to establish a correspondence between images. One is

based on finding an optimal geometric transformation between bilateral breast

images to fit them (bilateral registration) and the other one is based on defin-

ing a coordinate system to determine the relative coordinates of a ROI in its

bilateral image.

Image registration algorithms estimate a transformation between two images

in order to align them. One image, the moving image, is deformed to match

the other one, the fixed image. Some authors consider that transformation

between bilateral images can be regarded as global by assuming that bilat-

eral breasts are architectural symmetric and bilateral mammographic images

are taken under similar conditions [177, 100, 351, 289, 207, 33, 205, 22]. As

opposed to this idea, some authors consider that global registration is not

enough for matching bilateral breasts, due to the fact that the breast is a

deformable object. Although there are works that apply only non-linear reg-

istration [155, 196, 257, 59], it is common to firstly apply a global method for

recovering the main translation, rotation, scaling and shearing differences and

finally, apply a non-linear method for local refinement by recovering soft tissue

deformations [167, 265, 345, 346, 199, 82].

Besides registration, to define a procedure that establishes the same coordinate

system in left and right breast images can also be used for finding correspon-

dences between points or ROIs from bilateral breasts. Once the coordinate
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systems are defined and the coordinates of the ROIs are given, the relative

coordinates of the above mentioned ROIs in the bilateral breast are calculated

as proportion to the given ones. In the literature, either Cartesian [139] or

Polar [349, 156] coordinate systems are used.

Adding bilateral information

After establishing relation between bilateral breasts areas, the information

about comparing corresponding areas can be used by the systems for detect-

ing potential lesions [211, 290, 28, 265, 15, 16, 39], either masses [351, 360,

155, 167, 33, 205, 82] or other asymmetries [177, 156, 316, 341]. A common

practice for detecting potential lesions is to use grey-level differences informa-

tion obtained from the subtraction of left and right images. For subtracting

them, different methods are applied as simple linear subtraction, multiple lin-

ear subtraction [290] or non-linear subtraction [350]. However, bilateral linear

subtraction is the most common approach to identify regions that differ from

one image to another [355, 155, 207, 33, 156, 59]. There are also other methods

not based on pixel by pixel comparison that can be used for detecting masses.

This is the case of methods that compare features of left and right breasts

or features of specific regions of bilateral breasts to measure the dissimilarity

between these corresponding regions [177, 211, 167, 338].

Bilateral comparison information can be used not only for detection but also

(although less common) for FP reduction [88, 113, 255, 57]. The main idea of

FP reduction methods is to take into account features of the suspicious regions

and features of the corresponding bilateral regions for classifying the possible

masses in real or non-real [22, 301, 302, 349, 139].

5.1.2 Temporal Information

Temporal comparison of mammograms is used for assessing breast changes through

time [342]. When a lesion is detected in the current mammogram but not in the

prior one, this may be considered as a cancerous sign. In the same way, if in current

and prior mammograms a lesion is detected and its size and/or shape have changed,

this may be classified as sign of potential cancer. Otherwise, no changes may be
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considered as non-cancer lesion. These assumptions can be used by CAD systems to

either detect new lesions [250, 264, 360, 167, 339, 340] or to classify them as benign

or malignant [114, 309, 188, 189], although the detection purpose seems to be more

common than the classification one.

Although temporal comparison works with mammogramms of the same breast,

acquisition parameters variation and breast tissue changes over the time cause im-

portant differences at radiographic appearance level. So, unfortunately, like in the

bilateral case, comparing temporal mammograms is not a trivial subtraction process.

An overview of temporal processes is presented below:

Correspondence between temporal images

The comparison of temporal mammograms usually is more complex than the

bilateral one, because exposure parameters, patient position and breast com-

pression in current and prior acquisitions normally are considerably different.

And also, in spite of being the same breast and view, breast is on a continuous

changing process [197]. Due to the substantial radiographic appearance differ-

ences and being a deformable body, majority of authors use non-linear geomet-

ric transformations for registering previous and current mammograms, instead

of applying only global approaches. Thin-Plate Spline based techniques are

abundant in the literature [345, 196, 346, 324, 198, 334, 199], although other

approaches are also used as B-Splines based ones [118].

Adding temporal information

Although linear subtraction of prior and current post-registered mammogramms [264,

196, 346, 257] is often used for obtaining the breast variations over the time

that could indicate the presence of a new/changeable lesion, features compar-

ison of temporal registered images or specific ROIs [114, 324, 91, 309, 340]

seems to be most commonly used either for detection of lesions or for be-

nignity/malignancy classification of abnormalities. Note that classification in

benign and malign could be considered as a FP reduction step, because lesions

classified as benign can be suppressed [188, 189].
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5.1.3 Ipsilateral Information

The majority of lesions are visible in both mammographic views (CC and MLO).

Having in mind this idea, when a suspicious lesion is only present in one of the two

views, it may be considered as a false lesion. Otherwise, when the suspicious lesion

is detected in MLO and its presence is confirmed in the CC view (and viceversa), it

is considered as a real lesion and a biopsy of the abnormality is recommended [21].

CAD systems follow this correspondence rule and when a candidate lesion is not

detected in both views is definitely considered as a non-lesion, i.e, as a FP.

Correspondence between ipsilateral images

To locate the corresponding position of a candidate mass in its ipsilateral view,

authors commonly use the distance from the nipple to the mass location [297,

11, 339, 252, 321, 266, 357]. Although more sophisticated techniques can be

used, for instance, curved epipolar lines [162, 163]. CC and the MLO images

are related to the geometry of stereo vision. In stereo vision, given a point in

one image, a straight line which indicates where the point lies (epipolar line)

can be defined in the other image. However this cannot be applied directly for

CC and MLO images, since the breast is a non-rigid object and the deformation

variations of the breast during the compression affect on the stereo problem.

The solution is to calculate curved epipolar lines by developing a simulation

of object deformation into the stereo geometry.

Adding ipsilateral information

To evaluate the similarity between matched regions, different features can be

extracted [103, 109, 325, 251, 266]. The most commonly used are texture [240,

297, 11, 110, 321, 353, 239, 341], spatial [252, 90, 139, 89, 328] or shape [356,

108, 252, 90, 89] features. Usually, these features are the input of artificial

neural networks based classifiers [298, 297, 325, 356, 321, 353, 139]. These

classifiers are used either for distinguishing between benign and malignant

lesions [109, 110, 108, 239] or for FP reduction [298, 240, 321, 266, 139, 244,

328].
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5.2 Single-Image CAD System Proposal

Figure 5.1: Layout of the single-image CAD system (top center flow diagram),
depicting graphically the main steps with details in the specific boxes. The bottom
row shows the results of the CAD system: the original images, the template matching
and the FP reduction step. Note, however, that in the second mammogram a FP
remains.

Fig. 5.1 depicts the single-image CAD previously developed in our research

group [95]. The CAD follows a model-based approach where an initial training

stage to learn the morphology of the masses on the current database is needed.

After this step, the system is able to detect masses in new mammograms.

The training stage is divided in two steps (Fig. 5.1). First, using a database

of Regions of Interest (ROI), which each contain a mass in the center, the sys-

tem automatically learns their size and shape. The approach is based on using the

Karhunen-Loeve transform to take the variation of the mass shapes into account.

The output of this initial step is a template per each size. Templates are defined by

their mean shape and possible deformations. The second step of the training stage

is directed to FP reduction, which in this case means to distinguish between normal

tissue and real masses. For this purpose the training images should now include



124 Chapter 5. Multi-Image CAD System

instances of real masses and also instances of ROIs being normal tissue. Hence,

a second database is constructed by adding normal ROIs to the mass database.

Regarding the number of mass ROIs, three times as many normal ROIs were in-

cluded for each size-cluster. This ratio results in a good compromise between the

performance of the FP reduction algorithm and the huge variability of FP ROIs.

Therefore, the output of this second learning step is a classifier (2DPCA) trained to

predict if a ROI contains a mass or normal tissue.

Once the system has been trained, it is ready to detect masses in unseen mam-

mograms. This testing stage is, again, divided in two steps (Fig. 5.1). The first

stage is focused on the detection of all suspicious regions, while the second stage

(FP reduction) aims to classify the detected regions as normal tissue or masses. The

detection step consists in matching the templates to regions in the mammograms.

According to the used probabilistic framework, the objective function to minimize

is (see the original work for details [95]):

λ =
N
∑

k=1

(ξk − 1)2 + Ω(ψs,ξ,d, Y ) (5.1)

where ξi are the set of parameters that models the template deformations and

Ω(ψs,ξ,d, Y ) is the potential function that measures the agreement between the tem-

plate deformed with parameters ξi and the image itself (Y ). Therefore, this function

λ consists of two terms: a first one that measures the deviation of the deformed tem-

plate from the prototype (hence penalizing larger deviations from the template), and

a second one which describes the fitness of the deformed template to the boundaries

of the image (the closer the template to the image, the smaller the potential value).

The output of this step is, hence, a set of detected suspicious regions. In order to

ensure that these regions are real masses, the FP reduction step is applied. Each

suspicious region is cropped from the image and used as the input to the 2DPCA

classifier. Therefore, only the regions classified as being real masses are marked in

the mammogram.
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5.3 Multi-Image CAD System Proposal

We have developed a model-based multi-image CAD system for mass detection for

FFDM, extending the single-image CAD system to work with digital images and

to use case-level information. The multi-image CAD system includes information

from the automatic registration of bilateral and temporal mammographic images

and from the automatic correspondence between ipsilateral mammographic images.

This information can be integrated either as a priori or a posteriori information:

• In the a priori case, the registration is performed before the detection starts.

Mammogram registration comparison is inserted in the probabilistic detection

framework by modifying the potential function (see Fig. 5.1).

• In contrast, in the a posteriori case, the detection step is executed indepen-

dently of the case-level information. At the end of the algorithm, however, the

non-correspondence between detected regions is used as a way to reduce the

number of FPs.

According to the trends in multi-image works (see Sections 5.1.1, 5.1.2 and 5.1.3),

in our multi-image CAD scheme, the comparison between bilateral and temporal

mammograms is integrated into the probabilistic CAD detection framework as a

priori information. And the correspondence between ipsilateral mammograms is

integrated into the CAD FP reduction framework as a posteriori information.

Note that all the used FFDM images are preprocessed. During the preprocessing

step, pectoral muscle is manually segmented and eliminated, and labels are also

removed. Once the breast region is extracted, a peripheral enhancement is applied

(see Chapter 2 for more detail).

5.3.1 Bilateral Information

Image registration is used in order to detect differences between bilateral images

that could be due to the development of lesions. Specifically, before the detection

starts, a registration algorithm combining two intensity-based methods is applied.

We use an Affine transformation to recover the main pose and scaling differences and

a B-Splines registration method for localized non-linear deformations according the
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results obtained in Chapter 4. Once the images are aligned, the absolute difference

between the registered and the fixed images is calculated (see in Fig. 5.2 an illustra-

tion of the bilateral image difference process). This subtracted image is normalized

and multiplied (pixel by pixel) by the original image (only subtracted values bigger

than 0 are used). In some sense we are dealing with this bilateral information as

an enhancement procedure. Hence, as the result of the multiplication, regions with

different structures are highlighted. To avoid adding noise to our CAD system, only

the most significant differences (10%) are used to enhance the image that contains

the lesion.

// ED

@A
//

(a) (c)

(f)

// //

BC

GF

(b) (d) (e)

Figure 5.2: Example of the bilateral image difference calculation. (a) Original right
MLO mammogram with lesion squared in red, (b) original left MLO mammogram,
(c) preprocessed right MLO mammogram with lesion squared in red, (d) prepro-
cessed left MLO mammogram, (e) left MLO mammogram after registration, and (f)
difference image with possible lesion squared in red (|(c)− (e)|).
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5.3.2 Temporal Information

Image Subtraction

In the same way as in bilateral comparison, the absolute image difference is

considered as an option to add temporal information. Temporal subtraction

process is equal to the bilateral one. After B-Splines registration with Affine

initialisation, images are subtracted (see in Fig. 5.3 an illustration of the tem-

poral image difference process). Then, subtracted image is multiplied by the

original one to enhance the differences.

// ED

@A
//

(a) (c)

(f)

// //
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GF

(b) (d) (e)

Figure 5.3: Example of the temporal image difference calculation. (a) Previous
original right MLO mammogram, (b) current original right MLO mammogram with
lesion squared in red, (c) preprocessed previous right MLO mammogram, (d) prepro-
cessed current right MLO mammogram with lesion squared in red, (e) current right
MLO mammogram after registration with lesion squared in red, and (f) difference
image with possible lesion squared in red (|(c)− (e)|).
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Deformation Fields

Following the opened research line in Chapter 4, we studied alternatives to

image subtraction in order to incorporate mass detection information from

Demons methods to our multi-image CAD system and we focused on the

study of Demons deformation fields.

In Demons based registration approaches, every pixel is transformed in a way

that does not necessarily be related to its neighbouring pixels. Each of these

movements can be expressed by a displacement vector (the displacement suf-

fered by each pixel normalised by the image size). The union of all these

vectors stands for a displacement (or deformation) field that characterises the

non-linear transformation. Diffeomorphic Demons with MR (mD), Affine in

combination with Diffeomorphic Demons (AD) and Affine MR in combination

with mD (mAmD) were evaluated.

Fig. 5.4 shows a visual example of a deformation field. For ease of visual-

ization, only vector norms are presented in the image in the form of a color

code. Pixels closer to red correspond to higher norm values and pixels closer

to white to lower values. The figure shows the potential of deformation fields

for applications such as mass detection. Pixels corresponding to the mass ap-

pearing in the second temporal study present the highest norm values in the

whole of the image.

(a) (b) (c)

Figure 5.4: Deformation field example: (a) source image , (b) target image with
visible mass and (c) corresponding AD deformation field.
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Feature Based Classification

Besides, B-Splines and Demons, TPS is an interesting registration transfor-

mation as described in Chapter 4 (Sec. 4.1) and in Section 5.1. So, we also

studied the utility of the TPS based registration results and also how to add

them to our multi-CAD system.

After an initial affine registration, the proposed algorithm extracts interest

points found in the boundary and applies a robust point matching (RPM)

approach obtaining a non-linear transformation based on a TPS [199]. RPM

is compared to using Affine registration and no registration at all (see results

in Section 5.4.2).

From the registration results three sets of features are extracted which are

then used to classify a patient into normal or abnormal. The first feature

set is computed from the difference image while the second set is extracted

from the deformation field. In these two sets (difference image and defor-

mation field) the features computed are the first five statistical moments of

the intensity or deformation distribution. Finally, the third set of features

is composed of various similarity measures commonly used in image registra-

tion computed between the fixed and moving images: root mean squared error,

cross-correlation, entropy of the difference image and mutual information [359],

having a total of 14 features.

Figure 5.5 shows an example of image registration of a normal and abnormal

case, with the transformed moving image, the difference image and the defor-

mation field magnitude. While differences in the deformation field are difficult

to appreciate, structural dissimilarities in the difference image are highlighted,

including the lesion in the abnormal case.

The above described features are computed for each single temporal regis-

tration. As we are registering left and right temporal mammograms of the

same patient independently, we also study the effect of combining the features

hence obtaining a unique feature vector for each woman. The hypothesis is

that this combination can help towards the classification as in normal cases

those features are likely to be more stable compared to abnormal cases due

to the development of breast cancer. Various simple combinations have been
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(a) (b) (c) (d)

Figure 5.5: Image Registration: (a) Fixed and (b) transformed moving mammo-
grams, (c) image difference and (d) deformation field magnitude. Top row shows a
normal mammogram and bottom a mammogram with a lesion (white circle).

tested: mean, signed and absolute differences, and minimum and maximum.

Features have been used in a RF classifier in order to differentiate between

normal and abnormal cases containing a mass. The parameters are empiri-

cally set to 500 decision trees and a feature subset size of 3 features for each

tree. Although other classifiers (such as SVM, Adaboost and KNN) and fea-

ture selection methods have been tested, RF obtained the best results overall.

PRTools software has been used for the implementation [76]. All features have

been normalised to a zero mean and unit standard deviation. A leave-one-

woman-out validation approach has been used for testing.

5.3.3 Ipsilateral Information

With the aim of reducing the number of FPs, we propose to take advantage of

the correspondence between CC and MLO views. The suspicious lesions with no

ipsilateral correspondence are considered less probable to be real lesions than the
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ones with positive correspondence.

Detection is applied to CC and MLO images independently. After detection,

a CC/MLO correspondence approach based on using curved epipolar lines [163]

is applied over each suspicious region in CC. Given a point in the 2D CC image,

it is reconstructed as a line in the 3D CC-compressed breast. This straight line

is transformed in a curved line when the breast is uncompressed according the

compression model proposed by Kita et al. [163]. This curved line is rotated to

pass to MLO space and it is transformed according the aforementioned compression

model and MLO-projected (see Fig. 5.6). If a MLO suspicious lesion is situated along

the curved epipolar line generated by the CC suspicious lesion, this is considered

as a positive correspondence between ipsilateral images and the CC abnormality is

regarded as a true lesion. Otherwise is considered as a FP.

Figure 5.6: Overview of the CC/MLO correspondence process. Extracted from Kita
et al. [163].
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5.4 Results

5.4.1 Bilateral Information

Digitised

We used two different databases: the Mammographic Image Analysis Society

(MIAS) database [296] and the Digital Database for Screening Mammography

(DDSM) [129]. For the MIAS database we have obtained detailed annota-

tions of the masses, while for the DDSM database this is not available. This

determines that we can only use the MIAS database for detailed evaluation,

but DDSM for training (see [95] for further details). The experimental results

presented in this section were performed using a subset of 208 mammograms

extracted from MIAS, including 104 pairs of left and right MLO mammograms.

In total there were 52 mammograms containing at least one mass.

The registration methods that obtained the best results were B-Splines MR

for SSD metric and B-Splines MR with Affine MR initialisation for MI metric.

Once the best methods for each metric were chosen, another criteria, visual

assessment, was performed to determine the metric to be used. Difference

images after registration were reviewed by different observers to evaluate dis-

similarities from a global point of view where MI obtained better results than

SSD (see Chapter 4 for details, specifically Sec. 4.3). Therefore, B-Splines MR

with Affine MR initialisation method with MI metric was the one used to test

the proposed dual-image CAD system.

To perform the quantitative evaluation we used Receiver Operating Charac-

teristic (ROC) and Free-Response ROC (FROC) analysis. Although before

presenting results, for the sake of clarity, some concepts will be revised.

True Positive (TP): System detects an abnormality in an abnormal case.

True Negative (TN): System no detects abnormalities in a normal case.

False Positive (FP): System detects an abnormality in a normal case.

False Negative (FN): System no detects abnormalities in an abnormal case.

Lesion Localisation (LL): System marks a region as abnormal and is close to

a lesion (within an agreed upon accuracy).
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Non-Lesion Localisation (NL): System marks a region as abnormal but is no

close to any lesion.

Derived form these definitions, the True Positive Fraction (TPF) and the False

Positive Fraction (FPF) are defined as:

TPF =
TP

TP + FN
FPF =

FP

FP + TN

And the Lesion Localisation Fraction (LLF) and the Non-Lesion Localisation

Fraction (NLF) are defined as:

LLF =
LL

Total Number of Lesions
NLF =

NL

Total Number of Images

In ROC analysis, a graphical curve represents the TP rate as a function of

the FPs rate, i.e., the ROC curve is the plot of TPF along the y-axis vs FPF

as the confidence level is varied. The Area Under the ROC curve (Az) is the

probability that an abnormal case is rated higher than a normal case, therefore,

Az is an indication for the overall performance of the observer, and is typically

used to analyse the performance of the algorithms [42]. On the other hand, in

FROC analysis the LLF is plotted against the NLF [352]. Note that in this

analysis the definition of a detected region is needed. In this work we assume

that a region is detected if the overlap between that region and the suspicious

region is at least 50% [152].

Without taking the bilateral information into account and using the above

mentioned dataset, our CAD system obtained Az = 0.716. In contrast, when

adding this information this value increased to Az = 0.852. On the other

hand, Fig. 5.7 shows the results of the FROC analysis without and with using

the bilateral information. Note that at lower sensitivities this information was

not useful. However, at higher sensitivities the dual-image CAD improved

the single-image one. For instance, at a LLF of 80% the single-image CAD

obtained 1.68 FPs per image, while the dual-image CAD reduced to 0.90,

and at a LLF of 88% the FPs per image were 1.85 and 0.99, respectively.

The obtained results show the benefits of including the bilateral information,

increasing the sensitivity of the CAD at less FPs per image.
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Figure 5.7: FROC analysis for the CAD system without (CAD single-image) and
with (CAD multi-image) considering bilateral information.

Digital

To evaluate the performance of the multi-image CAD system, a set of 74 cases

containing masses from our FFDM database is used. Each case contains left

and right mammograms of a patient. The evaluation of our experiments is

done by comparing the detection results of our CAD system when using or

not bilateral information. Initial results indicate benefits of including bilateral

information in contrast with our previous developed single-image CAD system

(Fig 5.1). Detection sensitivity is improved by a factor of 10% (from 0.76 to

0.83). Using bilateral information, the main detection errors are found in

subtle masses in extremely dense breasts where difference image is not able to

highlight the lesion.

5.4.2 Temporal Information

Image Subtraction

To evaluate the performance of the multi-image CAD system, a set of 47

cases containing masses from our FFDM database is used. Each case contains

current and previous mammograms of a patient. The evaluation of our exper-

iments is done by comparing the detection results of our CAD system when

using or not temporal information. Mass detection does not significantly im-
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prove (sensitivity around 85% with both systems). Simple image subtraction is

able to emphasize the lesion when the mass is not present in previous studies,

similar to bilateral cases. However, when current and previous images contain

a mass, lesion changes are subtle and can be obfuscated by the changes in the

overall structure breast (i.e. dense tissue decrease) or acquisition parameters.

Deformation Fields

For the automatic study of deformation fields, several parameters can be con-

sidered [144]. We focus on two of them: average and maximum norms of the

vectors in the deformation field. Our aim is to provide statistical support

to the claim that Diffeomorphic Demons, can be used for mass detection in

digital mammography images.

Concerning the average norm of the deformation field of the methods studied,

we computed the mean values of this average norm for every method before

and after registration. A noticeable increase was observed for Diffeomorphic

Demons methods when FFDM contain masses. This behaviour was observed

even more clearly for the maximum norm indicator (see Table 5.1). Note that

only Demons based methods are shown in this table because the other methods

did not provide significant information.

Average Norm Max Norm
Without Masses With Masses Without Masses With Masses
µ σ µ σ µ σ µ σ

mD 13.99 4.04 15.45 7.45 105.65 34.54 127.21 67.36
AD 4.04 1.43 4.19 1.32 69.24 24.44 70.30 21.35

mAmD 7.79 3.23 8.07 2.96 91.13 32.91 98.17 35.42

Table 5.1: Statistical summary of deformation fields for Demons methods. Regis-
trations with and without masses are presented separately.

In order to provide inferential backing to these observations of descriptive

statistics, a set of pairwise t-tests was performed to check if the maximum norm

of a given method was significantly different for registrations with and without

masses. The alternative hypothesis (H1) was stated as ”the maximum norm

is higher for registrations with masses than for those without masses”. Results

showed statistically significant difference for mD (p − value = 0.00127) and
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for mAmD (p− value = 0.05547). This shows the potential of Diffeomorphic

Demons methods for mass detection in digital mammography.

Results of the maximum norm of the vectors in the deformation field are also

visualised in Fig. 5.8. Maximum norms for all Demons based methods studied

are presented, data is provided separately for registrations with and without

masses. We also see how, as expected, using Affine initialisation decreases the

maximum norm. This happens as the initial Affine step helps to cover part

of the transformation of each pixel in order to reach its corresponding pixel.

Furthermore, the increase in maximum norm for registrations with masses is

also visible.

(a) (b)

Figure 5.8: Deformation field maximum norm. Temporal registrations (a) without
masses and (b) with masses.
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Feature Based Classification

Figure 5.9 and Table 5.2 show classification results in terms of area under

the curve (AUC) when using the proposed algorithm (RPM) compared to no

registration (No Reg), and Affine transformation using MI (Aff). Features are

computed for two cases: for a single registration (Single) or combining left and

right temporal features using the maximum (experimental results have shown

that combining using the maximum value obtained the best results) of both

features (Combined). For the single case, only one mammogram is used for

feature extraction: the one with the mass for abnormal cases and left or right

randomly selected for normal ones.

(a)

(b)

Figure 5.9: Abnormal classification ROC curves using features from RPM and Aff
also compared to no registration. Single features (a) are compared to their combi-
nation using the maximum operation (b).
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No Reg RPM Aff
Single 0.69 0.76 0.70

Combined 0.76 0.88 0.84

Table 5.2: AUC for classification of abnormal cases. Features used in the classi-
fier are obtained after no registration (No Reg), Aff or RPM. Single features are
compared to their combination using the maximum operation.

Regarding the ROC curves with single features, the use of image registration

shows a clear improvement compared to no registration, specially for the RPM

case. This is also reflected in the AUC values (0.69 compared to 0.70 of the

Aff or 0.76 for the RPM). For each case, single ROCs are obtained hence sta-

tistical significance could no be computed. Regarding feature combination,

it is also clear that results improve in all cases, including the no registration

case. Differences are relevant with respect to the use of registration algorithms

compared to no registration, although between Aff and RPM (0.84 vs 0.88)

this difference is not that evident. This would need further investigation which

will include the comparison with other non-rigid algorithms. Regarding feature

analysis it has been observed that features based on the intensity similarity

(moments of the difference image and mutual information) show better dis-

criminant properties than the rest of the features. However, with the inclusion

of other registration algorithms this could change in favour of other features

such as the deformation field.

5.4.3 Ipsilateral Information

To evaluate the performance of the multi-image CAD system, a set of 74 cases

containing masses from our FFDM database is used. Each case contains CC and

MLO mammograms of a patient. Once detection is applied to CC and MLO im-

ages, curved epipolar lines are generated (one by each CC suspicious lesion) and

an accurate ipsilateral correspondence between ROIs is obtained (see an example

in Figure 5.10). A CC abnormality is considered as a true lesion if any MLO sus-

picious lesion is on its curved epipolar line, if along the curved epipolar line there

is only one lesion, MLO abnormality is also considered as a true lesion. When no

correspondence is found, the suspicious lesion is considered as a FP and is rejected.
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Results indicate that FPs are reduced by a factor of 15%.

(a) (b)

Figure 5.10: Curved epipolar line. (a) Right CC mammogram, and (b) homonym
right MLO mammogram. Point marked with a red cross in (a) is situated across
the curved epipolar line (yellow line) in (b).

5.5 Discussion and Conclusions

Initial digitised work presents a comparison for a mass detection CAD system when

using or not registration information of bilateral mammograms. According to the

obtained results, the introduction of the registration information as a priori infor-

mation is considered as an improvement of our previously developed single-image

CAD system.

Later work integrates bilateral, temporal and ipsilateral information into our

single-image CAD system. According to the obtained results, the introduction of

the bilateral information as a priori information via image subtraction can be seen

as an improvement of our single-image CAD system, however the introduction of

the temporal information by the same way does not seem to be an improvement.
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Regarding ipsilateral correspondence, results show a promising option for FP reduc-

tion.

In order to add useful temporal information to our CAD system, we investigate

the use of other image similarity measures like the average norm or the maximum

norm of the deformation fields. Access to annotations from an expert radiologist

allowed us to discriminate those registrations containing masses from those not con-

taining them. The analysis of differences between both scenarios using deformation

fields showed statistically significant differences in behaviour for Demons methods.

A framework to classify mammograms into normal and abnormal cases is also

presented. Framework is based on classifying image based features from temporal

image registration results. Feature combination between left and right breast has

been shown to obtain better results in terms of ROC analysis compared to using

single features alone. This indicates that combining features with other views such

as CC and MLO could further improve the results.
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Conclusions

In this last chapter we present the summary of the thesis as well as the obtained

conclusions. Furthermore, we describe the future directions of our work.

6.1 Summary of the Thesis

CAD mammographic systems were and are being developed to help radiologists

in the detection of lesions in mammograms. During the evaluation of the images,

radiologists use information about all available images of each patient, that is, left

and right images of the same view, CC and MLO views of the same breast or

previous examinations of the patient. However, the majority of CAD systems use

only each image independently to find abnormalities. The research presented in this

thesis includes the development of a multi-image CAD system for detecting masses

to outperform the single-image one.

Mass detection is a complex task because this type of lesions are extremely

difficult to see and some of the times only appear very subtle signs of them in FFDM

images. Fortunately, it is proved that CAD mammographic systems are useful tools

that help radiologists to detect masses. In addition, mammogram preprocessing

and the use of breast density information have been demonstrated that improve

CAD detection rates, as well as adding information from other mammograms of the

same patient. The first part of this thesis is addressed to enhance FFDM images.

Subsequently, the second part is focused on breast density classification. The third

141
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part analyses different mammogram registration approaches which are going to be

applied to several multi-image CAD schemes.

During the FFDM acquisition the breast is compressed. Despite the compression

is non-uniform is still needed to compensate the thickness reduction in outer breast

edges. A novel peripheral enhancement algorithm was developed that keeps the non-

overexposed area unchanged and balances the overexposed area using information

from the non-overexposed region. Corrected images are considered visually better

for diagnostic than non-corrected ones. Furthermore, peripheral breast enhancement

improves expert detection of masses and automatic breast density classification.

Breast density is related with an increased risk of breast cancer. Women with

high-dense breast have more probability of developing a cancer than women with

low-dense breast, furthermore, breast density decreases FFDM accuracy and CAD

systems sensitivity. Two algorithms for breast density classification were proposed

and developed. The first one classified breasts density according BI-RADS. This

qualitative approach was tested with FFDM images from our local database and

outperformed other automatic approaches. The second one classified each pixel

as dense or fatty. This quantitative method was also tested with digital images.

Despite of the lack of a reliable ground truth, longitudinal analysis confirmed that

breast density decreases with age and the transversal analysis confirmed the high

density correlation between left and right breasts, and also between CC and MLO

views.

Registration is an important tool to compare two images. In order to find differ-

ences and similarities between two mammograms a correct alignment is needed. We

investigated which method obtained best results for bilateral and also for temporal

mammogram pairs. Non-linear and linear based approaches were tested. Non-linear

methods outperformed linear-methods, in addition, non-linear methods with linear

initialisation as well as MR approaches improved registration results, however the

more flexible the transformation model the lower the qualitative evaluation results.

CAD systems help radiologists during the reading process. Although current

systems do not take into account all the available information of each patient. We

developed a multi-image CAD system that uses case-level information to detect

masses on FFDM images. Bilateral and temporal information are used during the

detection step, while ipsilateral information is integrated on the FP reduction stage.
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The proposal is tested with FFDM images from our local database. Multi-image

CAD system performs better when case-level information is added, except when

temporal comparison is used. As an alternative, deformation fields analysis or im-

age based features analysis of temporal registration pairs seems to provide useful

information regarding mass detection.

6.1.1 Contributions

Thus, we consider that the main contributions of this thesis are:

• A new algorithm to compensate the thickness reduction in breast periphery

which balances the overexposure in this peripheral region.

• An algorithm for qualitative breast density classification based on FCM seg-

mentation and SVM classification.

• A new algorithm for quantitative breast density classification based on pixel

classification.

• An exhaustive analysis about inter- and intra-expert variability in breast den-

sity classification.

• An accurate comparison about several linear and non-linear registration meth-

ods, as well as some combinations of linear and non-linear methods and MR

approaches.

• A proposal for automatic mass detection which takes into account case-level

information in terms of bilateral, temporal and ipsilateral images.

6.2 Further Work

Both, multi-image CAD system and breast tissue classification issues need additional

work to increase the reliability of the proposals. Furthermore, both issues would be

interesting starting points for future research lines. Different directions are pos-

sible: to add the whole case-level information (bilateral, temporal and ipsilateral
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information) at the same time in our multi-image CAD systems, to add tempo-

ral information by using either Demons deformation fields analysis or robust point

matching based features analysis, to add breast density information, to reduce the

computational time of our CAD system, to adapt our system to other x-ray imaging

techniques or to go in depth in our qualitative breast density classification approach.

As we have shown, when bilateral comparison is added to CAD scheme, results

are better than the ones obtained when this information is not used, the same as

in the ipsilateral case. But, experiments using both data, bilateral image difference

and ipsilateral correspondence, are not yet tested. Therefore, a logical direction

in the automatic case-level detection framework would be the integration of firstly

bilateral information during the detection stage and finally ipsilateral information

for FP reduction.

Regarding the temporal comparison, even though adding this information does

not penalize our multi-image CAD system but it does not improve the results either.

Therefore, we should not to add the temporal image difference during the detection

stage. In fact, according the results, the image difference is useful for enhancing

obvious differences between images (when a mass is present in only one image),

however changes in size or shape are too subtle to be detected by image subtraction.

Nevertheless, helpful temporal information could be obtained in another way, for

instance from Demons deformation fields analysis or from robust point matching

based features analysis. Both analysis are useful to distinguish between normal and

abnormal mammographic images and this conclusion would be important to reduce

the number of FP. Therefore, in the final stage of our multi-image CAD system

as well as to use ipsilateral correspondence, the system would use the temporal

abnormal/normal scheme for FP reduction.

As well as adding case-level information to our multi-image CAD system, adding

qualitative density information would be an improvement during detection process

itself. The fact that density reduces FFDM accuracy makes necessary a different

detection process depending on the amount of breast density. So, depending on the

breast density classification (i.e, depending on the BI-RADS category), the algo-

rithm parameters could be tuned different and the used training databases of ROIS

could not be the same.

Although adding case-level and qualitative density information could improve our
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CAD results, the large quantity of information to analyse and generate transforms

our CAD in a slow system which is not helpful for radiologists. A key point for

the near future would basically be the optimization of the registration steps since

BI-RADS density classification is more efficient.

Taking into account that new x-ray mammographic imaging techniques are being

developed and integrated in hospitals, the idea of a CAD that detects masses in

FFDM images would be an obsolete challenge in near future, so a future work

would be to adapt our multi-image CAD system to tomosynthesis and/or C-View

images.

Breast density qualitative process seems to be an already robust framework how-

ever, the lack of a breast density segmentation ground truth makes incomplete the

testing part of our breast density quantification approach. Therefore the first step in

this future line, is to obtain a reliable breast density segmentation ground truth and

test the algorithm segmentation results. Furthermore, breast density quantification

approach should be optimised, because the classification of each pixel in fatty and

dense is high time consuming and, the same for CAD system, the algorithm could

be also adapted for working with C-Views.
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[234] A. Oliver, X. Lladó, E. Pérez, J. Pont, E. R. Denton, J. Freixenet, and J. Mart́ı.

A statistical approach for breast density segmentation. Journal of Digital

Imaging, 23(5):527–537, 2010.
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