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14.1 INTRODUCTION

Various registration approaches have been adopted to correlate areas in mammo-
grams and detect differences. These differences are likely to be associated with
the development of an abnormality. Most of these methods rely on corresponding
landmarks between images. Obtaining these landmarks turns out to be the most dif-
ficult task and plays an important role in the alignment accuracy. Manual landmark
generation is a tedious and time-consuming task when the number of landmarks
is large and, moreover, introduces variability in placing the landmarks (two con-
secutive experiments with the same images could have different landmarks and
errors). Therefore, a large number of these methods are based on automatically
extracting and corresponding landmarks from mammographic images. The land-
marks include breast boundary,1–3 pectoral muscle,3 salient regions extracted us-
ing wavelets,4 isointensity contours5 or steerable filters,2 and crossing points of
horizontal and vertical structures.6

This chapter presents an approach to extract correspondence in mammographic
images based on anatomical features that appear as linear structures (i.e., fibrous
tissue, ducts, and vessels). Correspondence is used here in two different applica-
tions: for mammographic image registration and for tracking linear structures.

Registration is applied to temporal and contralateral mammograms of the same
woman. A framework for the detection of abnormal structures based on registration
is developed, and some initial promising results are given. Tracking of linear struc-
tures (see Section 14.6) is performed for the same breast over several screening
rounds. This could be used to assess and model the development of architectural
changes and abnormal structures. By being able to track regions back in time, the
available information helps to improve early detection of subtle abnormalities that
are initially missed by radiologists. One could argue that contralateral registra-
tion based on the linear structures in the left and right breasts should not be per-
formed because linear structures present large differences. However, it is generally
accepted that overall duct, vessel, and tissue structure shows similarities between
left and right breasts of the same woman. Figure 14.1 illustrates those similarities
in temporal and contralateral images. The aim is to use these similarities to guide
the registration process.
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(a) (b) (c)

Figure 14.1 Similarities between temporal and contralateral mammograms:
(a) right breast obtained in 1992; (b) right breast obtained in 1995; and (c) left
breast obtained in 1995.

14.2 CORRESPONDENCE OF MAMMOGRAPHIC IMAGES

Many scientific subject areas (i.e., medicine, remote sensing) have to deal with
the problem of image correspondence (also known as image registration or image
matching). This problem arises when there is a need to extract information about
an object by comparing a set of different images in which this object appears. Most
of the time, this comparison cannot be performed easily because of differences be-
tween images such as viewpoint changes, use of different sensors, images taken
at different times, and changes in general imaging conditions. Given such differ-
ences, a way to align different images of the same object is needed. In medical
applications, and specifically in mammography, radiologists have to deal with all
the above problems. For example, a way to detect abnormal structures in the breast
is to compare temporal (images of the same breast taken at different times) or con-
tralateral (using left-right breast) mammograms.

Since images are taken under different conditions (i.e., film sensitivity, radi-
ation exposure, breast compression, and patient movement) and/or time intervals
(e.g., screening interval of three years), the structure of the breast is likely to suf-
fer some changes, although overall similarity will be maintained. A way to detect
those changes is to align the images and compare the results using, for instance,
simple image subtraction.

A general methodology for image alignment typically follows these steps:

(1) Selection and extraction of features. A registration method can be based
on matching different image primitives. For instance: points,7 edges,8

ridges,9,10 surfaces,11 or a whole image.12–15 The selection of a suitable
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primitive is a trade-off between the information it provides and its com-
plexity. For instance, raw pixels with only intensity information provide
a straightforward comparison. On the other hand, taking the whole image
provides more (and more complex) information. Primitives are described
by a set of features extracted from them. This is the case, for instance, for
shape features extracted from regions or curvature values extracted from
linear structures.

(2) Similarity metric. A way to measure the similarity between the extracted
features is needed. Many different similarity metrics have been proposed
and their suitability depends on the chosen feature.

(3) Selection of the mapping function and estimation of its parameters. The
complexity of a mapping function should be determined depending on the
application field and type of misalignment being dealt with. Once a map-
ping function is selected, its parameters need to be estimated. This requires
a definition of an optimum search space and search strategy that is often re-
lated to cost function optimization, which is related to a similarity measure
previously mentioned.

(4) Alignment of images using the mapping function. When the function para-
meters are known, an image can be transormed in order to minimize the
initial misalignment.

The remainder of this section presents various image-registration approaches.
Methods investigated are split into point-based and mutual-information-based ap-
proaches. In addition, a hybrid approach is proposed, which incorporates aspects
from point- and correlation-based methods. Algorithms and initial results are given
for both x-ray and MR images. In addition, x-ray registration are further evaluated
using a larger data set to determine a suitable transformation function.

X-ray registration is performed using temporal mammograms—mammograms
of the same breast and same woman taken three years apart. A pair of temporal
mammograms and the difference image (where darker areas indicate larger mis-
registration) are shown in Fig. 14.2. It is clear that there are large differences near
the pectoral muscle and the breast edge; but also, internally there are significant
mismatched areas.

Three-dimensional registration of MR images has generally been applied to
dynamic sequences registering a precontrast volume to a volume after a contrast
agent had been injected. In this case, misalignment is usually small, generally due
to patient movement, and intensity distribution in both images is not correlated due
to the increased contrast of some areas in the postcontrast volume. MR registration
could also be performed using temporal images; that is MR volumes taken at differ-
ent times, typically a period of several months to a year. In this case, misalignment
is likely to be larger due to patient reposition, different MR acquisition parame-
ters, and use of breast compression. A pair of slices from temporal MR volumes
is shown in Fig. 14.3, along with the difference image where darker areas indicate
larger misregistration. Although examples are shown using slices, MR registration
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(a) (b) (c)

Figure 14.2 An example of temporal mammograms: (a) reference, (b) target, and
(c) difference images.

(a) (b) (c)

Figure 14.3 An example of temporal MR volumes: same slice number from the
(a) reference, (b) target volumes, and (c) difference image.

is tackled in this chapter as a 3D registration problem. A large misregistration is
found that can be described in terms of both global and local distortions.

14.2.1 POINT-BASED METHODS

The use of various registration methods based on correspondence between control-
point is covered in this section.



492 CHAPTER 14

14.2.1.1 2D local affine

A 3D affine transformation is described by 12 parameters
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where tx, ty , and tz are translation values and ai , bi , and ci are the transformation
parameters responsible for rotation, scaling, and shearing.

In 2D, the number of parameters is reduced to six; therefore, the computation
of the transformation parameters needs at least three corresponding control points.
Using three control points, a global affine registration is obtained. A local approach
can be achieved by having a larger number of control points and solving the affine
transformation at each pixel using its three closest control points.

14.2.1.2 2D thin-plate splines

Thin-plate splines (TPS) are a type of radial basis function that was popularized
by Bookstein.7 TPS solves mapping between a set of 2D points by minimizing a
measure of bending energy on a thin-plate surface, given by
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where f is the mapping function. This function ensures that f (xi, yi) = pi for all
control points pi and performs interpolation for all the other values. The mapping
function is given by

fx(x, y) = axx + ayy + tx +
N∑

i=1

wiU(| �pi − (x, y)|)

fy(x, y) = bxx + byy + ty +
N∑

i=1

wiU(| �pi − (x, y)|),
(14.3)

where ax, ay, tx, bx, by, ty , and wi are the deformation parameters, N is the number
of points, �pi is the ith control point, (x, y) is any point, and U is the thin-plate
surface equation defined as

U(r) = r2 log r2. (14.4)

Thin-plate splines assure piecewise nonlinear registration and have been used
in different registration algorithms applied to digital mammography.1–4,16
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14.2.1.3 Control points

These methods rely on defining sets of control points that provide correspondence
between images. The first issue that arises when using point-based methods is the
number of control points needed for an accurate registration. Initial results show
that a number of control points from 16 to 20 achieves good registration results,
while increasing the number of control points does not result in a more accurate
registration. This fact is shown in Fig. 14.4, which plots the similarity between
original and registered images using mutual information related to the number of
control points with local affine and thin-plate spline methods. Local affine trans-
formation achieves poorer measures than the thin-plate splines-based method. The
same conclusion is reached using other similarity measures: normalized cross-
correlation, entropy of the difference image, and mutual information computed
from co-occurrence matrices.32

14.2.1.4 3D elastic-body splines

A 3D elastic model was proposed in Ref. 17, called the elastic-body spline (EBS).
The model is based on the Navier equilibrium partial differential equation (PDE),
which describes a homogeneous isotropic elastic material subject to a force field.
EBSs are obtained as a linear combination of translated versions of the solution
of the Navier PDE, subject to a smooth force field. Forces at each dimension are
described as a 3D thin-plate spline, which ensures the smoothing constraint. Dis-
placements are given by

�d(�x) =
N∑

i=1

G(�x − �pi) �ci + A�x + �b, (14.5)

Figure 14.4 Comparison between local affine (P) and thin-plate splines (1) regis-
tration related to the number of control points, using mutual information.
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where G(�x − �pi) �ci is the solution of the Navier PDE for a given 3D point �pi ,
subject to a force �f (�x) = �c|�x|, �ci are the deformation coefficients, and A�x + �b
is the affine part that describes the EBS behavior away from the control points (at
infinity). This equation is very similar to the function defined for TPS in Eq. (14.3).
The main difference lies in the definition of G (a 3 × 3 matrix), which for EBS is
defined as

G(�x) = [α|�x|2I − 3�x �xt ]|�x|, (14.6)

where α is the Poisson ratio that is related to the elastic characteristics of the ma-
terial and I is the 3 × 3 identity matrix. The applied force field is not unique,
�f (�x) = �c/|�x| has also been proposed resulting in a different solution that is stated

to obtain more accurate results. Similarly, other spline transformations can be de-
scribed using the same approach, just by redefining the function G. This is the
case for a 3D version of thin-plate splines (G(�x) = |�x|I ) and for volume splines
(G(�x) = |�x|3I ).

In Ref. 17, the authors applied the approach to the registration of MR images
using manually placed control points. They stated that EBS performed better than
3D thin-plate and volume splines using the same number of control points. Similar
experiments to the 2D TPS case showed that the number of control points needed
for a satisfactory registration lies between 20 and 30, which agrees with the number
of control points used. Registration is performed manually by selecting control
points and applying EBS. The selection of control points from a 3D volume is an
even more tedious task than for the 2D case.

14.2.2 MUTUAL INFORMATION-BASED METHODS

Registration using maximization of mutual information (MI) has been shown to be
very efficient when applied to rigid18–20 and nonrigid12,21 registration. The com-
mon factor in these approaches is that they find the transformation parameters by
optimizing the mutual information measure between images. The cost function for
mutual information (MI) is described as

F(α) = C[A,Tα(B)], (14.7)

where α denotes the transformation parameters and C(A,B) is the MI measure
between images A and B . The optimal parameters are obtained by maximizing the
above function

α = max
α

[F(α)]. (14.8)
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14.2.2.1 Mutual information

Mutual information,18,19 based on Shannon’s information theory concepts,22 mea-
sures the amount of information a random variable (A) can predict from an-
other random variable (B). In the case of variable independence [pAB(a, b) =
pA(a)pB(b)], MI is minimal as it measures the distance between the joint vari-
able distribution. MI is determined by

C(A,B) =
I∑

i=0

J∑
j=0

pAB(i, j) log
pAB(i, j)

pA(i)pB(j)
, (14.9)

where pA and pB are the marginal probability distribution of the random vari-
ables A and B , respectively; pAB is their joint probability distribution; and I and
J are the number of graylevels (or histogram bins) used in images A and B , re-
spectively. Applied to images, each image is identified as one random variable;
therefore, it can be determined that the similarity of one image to another by using
Eq. (14.9). In this case, probabilities are obtained from normalized marginal and
joint histograms.

Since the above measure is dependent on the amount of image overlap, the
normalized mutual information is used12 because it is independent of the number
of overlapping pixels in both images and is given by

C(A,B) = C(A,B)∑I

i
pA(i) log

1

pA(i)

. (14.10)

Mutual information has proved to be very efficient in measuring the spatial
correspondence between objects23 and it has been used as a basis of multimodal
registration algorithms.12,15,18,21,24 Mutual information does not rely on intensity
relationships between images, instead it is based on statistical properties between
two random variables. This issue is of significant importance when working with
multimodal images.

An important issue that arises when using mutual information on small or sub-
sampled images is the statistical weakness of the mutual information measure. This
is due to interpolation artifacts, which may affect the intensity distribution and,
therefore, the mutual information. These problems are more pronounced when us-
ing small images and a large number of bins for the joint histogram. Interpolation
artifacts can be avoided by oversampling the images, using a higher-order inter-
polation, or modifying the intensity distribution in order to minimize interpolation
effects21 (i.e., apply random resampling or a prior-joint probability).

Maximization of mutual information can be applied on a global or local basis.
A global approach solves the transformation function for the whole image, while a
local method recovers different deformations locally. The latter has a higher com-
putation cost, but is able to deal with local distortions.
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14.2.3 HYBRID APPROACH

It is possible to combine thin-plate splines and mutual information. Thin-plate
splines achieve good registration results, but their main weakness is the tedious
and difficult task of establishing point correspondence. Mutual information has
been shown to be a reliable similarity measure to use in image registration, but
the computational cost involved in finding transformation parameters in complex
deformations becomes prohibitive in some applications.

The developed method automatically establishes control-point correspondence
using mutual information and then recovers breast deformation using these points
in the thin-plate splines algorithm. This process is based on a multilevel approach
for which a two-level example is illustrated in Fig. 14.5. At the first level, the whole
corresponding images (named reference and warped) are rigidly aligned, obtaining
the transformation parameters α1. Subsequently, at the second level, each mam-
mogram is divided into six rectangular subimages, and each subimage is rigidly
aligned to its corresponding subimage. Note that transformation parameters are
carried through each level, assuming that each subimage at a lower level would
suffer a different transformation, but are related to the deformation at the higher
level. Assume this speeds up the optimization process as well as avoiding local
minima situated away from the optimum solution. Once the last level is reached,
point correspondence is extracted from corresponding subimages (i.e., the center
pixel), assuming that in such small subimages the local nonrigid deformation is
very small and can be ignored.

To ensure a correct correspondence, the following constraints are imposed on
the control points:

(1) The distance between each point in the warped image, before and after
transformation, has to be smaller than a threshold D, which is set to the
maximum size of the subimage.

(2) Subimage correspondence would be taken into account if the similarity
between subimages is higher than a given threshold S.

Figure 14.5 Point correspondence using multilevel mutual information.
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(a) (b) (c)

Figure 14.6 Temporal registration using multilevel mutual information and
thin-plate splines: (a) registered; (b) difference; and (c) original difference images.

A similar algorithm was also proposed21 for the nonrigid correspondence in
muscle fiber images. The approach used here is similar, with the main difference
being that the thin-plate algorithm is applied at the end of the multilevel process,
and not at each level. It is our assertion that the use of thin-plate splines at each
level can have a negative impact on the registration accuracy by increasing in-
terpolation errors. Once correspondence points have been found, they are used to
recover the deformation using thin-plate splines. Figure 14.6 shows an example of
this method applied to mammographic registration. Registration results using this
approach are found to be less accurate than using thin-plate splines with manually
placed control points, although it is certainly better than the unregistered case and
using a global affine transformation. This illustrates how landmark placement af-
fects registration accuracy in point-based methods. The lower accuracy is because
automatic landmarking with mutual information establishes good point correspon-
dence, but it does not use the most representative points, such as internal structures
or salient regions, as is done in manual landmarking. Therefore, the next step to
the automatic landmarking proposed here would be to identify more salient points
(not using subimage centers as were used so far), which would be obtained using
feature detection methods (see Section 14.3).

14.2.4 EVALUATION

Initial registration results based on 19 sets of temporal x-ray mammograms us-
ing three of the methods previously described (local affine, thin-plate splines, and
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global affine using mutual information) are discussed here. Figure 14.7 shows
similarity measures between registered and reference images using four similar-
ity metrics: normalized cross-correlation, entropy of the difference image, mutual
information, and mutual information computed from co-occurrence matrices.32 For
all (except entropy), a higher (lower) measure indicates higher similarity. As ex-
pected, thin-plate splines obtain a better overall result. The local affine transforma-
tion achieves good registration results, but its overall performance is lower since
it contains some discontinuous deformations and does not account for nonlinear
deformations.

A summary of those results is shown in Table 14.1, which computes various
statistics obtained from Fig. 14.7. In all cases, the conclusion is that thin-plate
splines is the method that obtains the most accurate results (i.e., high similarity
measures). In addition, it can be concluded that the cross-correlation measure does
not produce results independent of the registration method, which is more so with
the other measures. Finally, the MI measure provides the most stable results over-
all.

The evaluation experiment above is based on the assumption that a better sim-
ilarity measure (e.g., a higher value for mutual information) accounts for a better
registration (i.e., the registered images are more similar). One could argue that this
will not be always the case, and a higher measure of similarity could mean a reg-
istration of worse quality. Although difficult to validate, the following experiment
was conducted to determine if there is a correlation between objective measures of
similarity (e.g., mutual information) and assessment by a human observer. The im-
ages used are the same as those used in the previous experiment shown in Fig. 14.7.
The observers were presented with three registered images obtained with the three
methods under evaluation (global and local affine transformation and thin-plate
splines) for each of the 19 cases. The registration results were presented in random
order next to each other. They were asked to rate the three images, from what they
considered to be the best quality registration to the worst. For each registered im-

Table 14.1 Evaluation of image registration approaches: mean and standard devi-
ation of various similarity measures evaluating global affine using MI (Global AT),
local affine (Local AT), and thin-plate splines (TPS). Similarity measures used are
normalized cross-correlation (CC), entropy of the difference image (EN), mutual
information (MI), and co-occurrence-based mutual information (CM).

CC Mean StDev EN Mean StDev
|Global AT 0.932 0.047 | Global AT 1.551 0.129
|

Local AT 0.767 0.229 | Local AT 1.606 0.157
|

TPS 0.955 0.028 | TPS 1.474 0.119|
MI Mean StDev CM Mean StDev

|Global AT 0.427 0.086 | Global AT 0.442 0.062
|

Local AT 0.434 0.081 | Local AT 0.463 0.056
|

TPS 0.514 0.0531 | TPS 0.504 0.049|
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(a) (b)

(c) (d)

Figure 14.7 Evaluation of image registration approaches: global affine us-
ing MI (1), local affine (P), and thin-plate splines (E), using (a) normalized
cross-correlation, (b) entropy of the difference image, (c) mutual information, and
(d) co-occurrence-based mutual information.

age, the observer could choose to see the registered image (aiming to match the
reference image), and the difference image between the registered and the refer-
ence images. They could assess the transformation function using the registered
image (i.e., smoothness, continuity, large distortions, etc.) and spot misregistered
areas using the difference image. Figure 14.8 shows the result of the observer ex-
periments. Three different observers familiar with mammographic images but not
experienced radiologists, took part in the experiment. Each observer did the obser-
vation twice to minimize their variability.

Results show a similar trend compared to the similarity measures obtained in
Fig. 14.7. For instance, the better quality of registration in mammogram six for
the global affine transformation is captured by all similarity measures. In addition,
and although a perfect agreement with the human observer is not always achieved,
graphs show similar trends, e.g., in case 12 where global and local affine have sim-
ilar quality (graphs get closer together in Fig. 14.8), which is captured by similar
MI measures in Figs. 14.7(c) and (d).

Table 14.2 summarizes the results obtained in the observer study. This shows
a confusion table for each similarity measure where the human classification or-
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(a) (b)

(c) (d)

Figure 14.8 Observer study, evaluation of image registration approaches: global
affine using MI (1), local affine (P), and thin-plate splines (E), by three different
observers (a), (b), (c), and their mean in (d).

der is compared to those based on the various similarity measures. The presented
results show higher correct classification rates for the cross-correlation and mutual-
information-based measures. However, without taking the local affine transfor-
mation case into account (which human observers agreed had the worst results),
mutual-information-based measures obtain the highest correct classification rates
(76% and 74% for MI and CM measures, respectively) compared to CC and EN
measures (66% and 61%, respectively). These results agree with the conclusions
drawn above. In addition, the fact that mutual information does not rely on the in-
tensity correlation between images is regarded as an advantage compared to mea-
sures such as cross-correlation, when used in multimodal applications.

14.2.5 SUMMARY

Various registration approaches have been evaluated and their suitability to be
used in mammographic registration has been investigated. The obtained results
agree with our initial belief that a nonparametric model (thin-plate or elastic-body
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Table 14.2 Observer study: confusion tables for each similarity measure with hu-
man observer as ground truth, where GAT is global affine transformation, LAT is
local affine transformation, TPS is thin-plate splines, CC is 41/57 (72% correct), EN
is 35/57 (61% correct), MI is 39/57 (68% correct), and CM is 37/57 (65% correct).

1 2 3 1 2 3 1 2 3
| |CC 1 0 0 0 | 1 12 0 0 | 1 2 5 0
| |

2 0 0 3 | 2 5 2 0 | 2 0 9 0
| |

3 0 0 16 | 3 0 0 0 | 3 0 3 0| |
1 2 3 1 2 3 1 2 3

| |EN 1 0 0 0 | 1 12 0 0 | 1 3 6 0
| |

2 0 0 7 | 2 4 3 0 | 2 0 5 0
| |

3 0 0 12 | 3 0 0 0 | 3 0 5 0| |
1 2 3 1 2 3 1 2 3

| |MI 1 0 0 0 | 1 17 0 0 | 1 2 0 0
| |

2 0 0 9 | 2 0 2 0 | 2 0 8 0
| |

3 0 0 10 | 3 0 0 0 | 3 0 9 0| |
1 2 3 1 2 3 1 2 3

| |CM 1 0 0 0 | 1 17 0 0 | 1 2 0 0
| |

2 0 0 10 | 2 0 2 0 | 2 0 7 0
| |

3 0 0 9 | 3 0 0 0 | 3 0 10 0| |
LAT TPS GAT

splines) is needed to deal with the complexity of the breast deformation in both
x-ray and MR images. This has been assessed using x-ray images, but can also
be extrapolated to MR and, moreover, agrees with conclusions drawn by other
authors.2,12,13,17 The nonparametric models investigated obtained accurate results,
but care has to be taken in selecting control points. An automatic correspondence
method has been described based on a multilevel mutual-information method that
yields promising results. The main bottleneck of the described approach, which is
the automatic selection of salient control points, is further discussed in the next
section.

14.3 IDENTIFYING SALIENT LINEAR STRUCTURES

Extraction of features, that describe an image or parts of it, plays a crucial role in
the success of image registration, or any other process that makes use of those fea-
tures. This section reviews various approaches used for feature extraction in med-
ical applications, placing special emphasis on mammographic features. A novel
approach to the extraction of robust features from x-ray (2D) mammographic im-
ages is presented. Feature extraction applied to MR (3D) images is also described
following a similar methodology to the 2D case.
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14.3.1 MAMMOGRAPHIC FEATURES

Various approaches have been developed to extract characteristic features from
mammographic images. Those features include the breast boundary, nipple, pec-
toral muscle, parenchymal tissue, and internal (blob and linear) structures.

The breast outline is one of the most commonly used features in the registration
of mammographic images since it provides valuable information about the breast
in terms of deformation and volume. In addition, other features are extracted from
the boundary, such as the nipple, rib cage, or axila positions. Simple global thresh-
olding has often been used to separate the breast from the background. However,
other approaches have been proposed; for example, in Ref. 25 the authors model
the gray-level distribution of the mammographic background using a second-order
polynomial and then subtract it from the original image.

In this work, the breast boundary is extracted using a similar approach as in
Ref. 26. Global thresholding and morphological opening (using an octagonal struc-
turing element) are applied to the images. The breast boundary is obtained by ex-
tracting the largest region in the image.

A common approach to detecting the nipple position is to regard its position as
a point of high local curvature in the breast outline.4,27 However, in some mam-
mograms, the nipple does not show up in the breast profile and therefore cannot be
accurately extracted. Based on the curvature of the breast outline, other features are
also obtained such as the rib cage and axila points,4 but as before, those points may
not be visible in all cases. Extraction of the pectoral muscle has been used in order
to isolate the breast region from the bright pectoral area. This is useful to limit the
processing area of certain methods (e.g., breast boundary points for image regis-
tration as in Ref. 26). However, abnormalities may develop in the pectoral muscle
area; therefore, for abnormality detection systems, a removal of such areas is not
always a satisfactory solution. The pectoral muscle area usually corresponds to the
brighter, approximately triangular area in the top left of the mammogram (top right
for a right mammogram). Generally, two approaches have been used: detection of
a straight line at a given orientation and image thresholding. As an example of the
former, a Hough-transform-based method has been successfully used to remove
the pectoral muscle in a parenchymal-tissue-classification method.28 In Ref. 26,
the pectoral muscle is extracted by image thresholding and posterior opening us-
ing a triangular structuring element. However, other approaches3 incorporate the
pectoral area as part of the breast region and perform intensity transformation (i.e.,
using a distance transform) in order to remove the characteristic brightness of this
region.

Extraction of internal features from the breast region has also been an important
research subject. In Ref. 29, a review and comparison of various ridge (or line)
detection methods applied to mammography is given, concluding that best results
are obtained using orientated bins and the nonlinear line operator.

A multiscale wavelet analysis has been used by Ref. 4 for the detection of
internal breast regions and used for mammographic registration.
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In Ref. 5, the authors extract internal regions that maximize a saliency metric
related to isointensity areas. Correspondence between regions in different mam-
mograms is obtained. Hence, salient regions where a correspondence has not been
found are likely to be related to recently developed areas that could be due to an
abnormality.

Salient points are obtained in Ref. 6 where the authors extract points of cor-
respondence between mammograms based on finding a matching of features ex-
tracted from the crossing of horizontal and vertical linear structures.

In the next section, a feature-extraction method for mammographic images is
described. The proposed method uses both linear structures from the breast bound-
ary and from the breast region (i.e., ducts, vessels, fibrous tissue, and pectoral
muscle). A distinction between boundary and internal structures is made because
boundary information is used to restrict the detection area of internal structures.
This results in faster (applying detection to a smaller area) and more robust (avoid-
ing mammographic artifacts) detection.

14.3.2 INTERNAL LINEAR STRUCTURES

The detection of internal linear structures is approached using a nonlinear line
operator.29 At a given scale, the line operator provides a strength and orientation
of the linear structure for every pixel. Line strength is obtained by comparing the
mean gray level from a straight line of pixels with its neighborhood, and obtaining
the maximum value from a number of orientations. Direction of the line strength
is determined by the angle of the line that gives the highest line strength. In ad-
dition, scale information can be obtained from the maximum line strength of the
detector at different scales. An example of the application of the line operator to
mammographic images is shown in Fig. 14.9(b).

14.3.2.1 Line processing

Once line strength, direction, and scale information have been obtained, different
operations are performed to facilitate the feature-extraction process. First, a con-
servative threshold on the line-strength image is set in order to remove background

(a) (b) (c)

Figure 14.9 Feature extraction: (a) original mammogram, (b) detection of linear
structures, and (c) extracted linear structures (gray) and curvature points (black).
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noise. Nonmaximum suppression is then applied, which removes pixels with low
intensity values compared to their neighbors along the normal of the linear struc-
ture. Scale information extracted from the line operator is used here to determine
the position of candidate pixels to be suppressed. In addition, short lines that do not
provide valuable information are removed. Finally, a thinning operation (based on
preserving pixel connectivity) obtains the backbone of the most representative lin-
ear structures in the mammograms. Figure 14.9(c) shows thinned linear structures
obtained from a region of a mammogram using the above processing.

14.3.3 FEATURE EXTRACTION

After obtaining the salient linear structures, extraction of features is needed in order
to have descriptors of such structures. Features used in the literature include line
strength (contrast),30 line width,30,31 line length,31 orientation,30,31 curvature,33

corners,34 crossing points,33 and end points.30,31,33 Corresponding linear struc-
tures in two mammograms can present large differences related to line strength
and line continuity (due to different radiation exposure and breast compression),
but width and orientation of the line and local curvature and branching points are
more likely to be preserved, and often are features used by radiologists when com-
paring mammograms. Therefore, features that take line length, end points, and line
strength into account turn out to be unreliable features to be used in a correspon-
dence approach. Here, local features such as curvature, width, and orientation are
used. The basic idea of the developed approach is to extract characteristic points
of linear structures determined by their maximal local curvature along the linear
structure. Examples of such points are shown in Fig. 14.9(c). It should be noted
that branching points and corner points are detected, but not end points.

Curvature values at each pixel are obtained with a similar approach as used in
Ref. 33. Curvature (or directional change) between two pixels p and q is defined by
the scalar product of their normal vectors. Hence, the curvature measure of a given
pixel p is obtained by computing the scalar product between p and its neighboring
pixels,

Cp = 1

N

N∑
i=1

exp
(−d2

ip

)[
1 − cos(φp − φi )

]
, (14.11)

where φi is the angle of the normal at a pixel i. Since curvature is going to be
extracted from binary thinned images, unit vectors are assumed. N is the number
of points in a local neighborhood and dip is the Euclidean distance between points i

and p. The distance factor is used here to weight the curvature of each point i, in
order to incorporate a bias to points closer to p.

Position, orientation, and width are then extracted from those points that are
to be used in the matching process described in Section 14.4. Orientation is ob-
tained directly from the thinned linear structures, while width is extracted after non-
maximum suppression of the line strength images as described in Section 14.3.2.



MAMMOGRAPHIC REGISTRATION FRAMEWORK 505

The width of a linear structure at a point is given by the number of pixels along the
normal of the structure until a nonstructure pixel is found.

14.3.3.1 Initial results

Corresponding linear structures are likely to suffer local distortions between im-
ages taken at different times, but it is believed that the local features such as the
ones described will remain similar. Figure 14.10 shows thinned linear structures
extracted from areas of the same mammographic images, where one of the images
has been deformed using a nonlinear transformation using TPS (based on real re-
sults from a temporal registration). In addition, maximum curvature points are also
shown depicted by a darker color. Although corresponding lines present different
distortions and broken structures, an overall similarity should be clear.

Using the same example, a different area is shown in Fig. 14.11 that includes
width and orientation information extracted from the linear structures. Black lines
represent normal vectors of the linear structure at a maximum curvature point. The
length of the normal is related to the width of the linear structure. It can be seen
from both Figs. 14.10 and 14.11 that curvature points and features extracted at
those points remain fairly constant. This illustrates that the points extracted using

Figure 14.10 Extracted linear structures (in gray) and points of maximum curva-
ture (in black) from two mammographic images: original (left) and deformed (right).

Figure 14.11 Width and orientation features obtained from linear structures from
two mammographic images: original (left) and deformed (right).
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the described approach can be invariant to realistic nonlinear transformations, and
therefore used in a correspondence approach.

14.3.4 EXTENSION TO 3D

So far, the feature-extraction process has been applied to 2D x-ray images. Here
the use of the same principle applied to 3D images, such as MR images are inves-
tigated. This involves the extension of a number of the techniques to 3D, such as
the line operator and line processing, which are described below.

14.3.4.1 3D line operator

The idea behind the line operator in 2D has been extended to the detection of lines
in 3D images. At a given orientation, the line strength at a voxel is defined by the
difference between neighboring voxels (in a 3D neighborhood) and voxels along
the line. The final pixel strength is obtained by extracting the maximum value for
all orientations. The orientation where the maximum is obtained is also describe the
orientation of the line at that voxel. Line orientation is defined as the tangent angle
of the line, and it is represented in spherical coordinates by two angles (φ and θ),
which are related to a 3D rotation along the y- and x-axes, respectively. As in
the 2D case, the operator can be applied at different scales. This is achieved by
recursively subsampling the image (using Gaussian convolution) and applying the
kernel at each scale.

14.3.4.2 Line processing

Similar to the 2D case, after setting a conservative threshold, nonmaximum sup-
pression is applied. In the 3D case, voxels are removed if they have a lower inten-
sity value compared to their neighbors following the orthonormal directions (�u, �v)
to the tangent vector �t along the linear structure as depicted in Fig. 14.12. Sub-
sequently, a 3D-thinning operation is performed in order to obtain the backbone
of the linear structure. The algorithm has been developed based on existing 2D
thinning approaches.

Figure 14.12 Directions involved in the 3D nonmaxima suppression: u� and v� are
the orthonormal vectors to t�, the tangent vector to a voxel in the linear structure.
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14.3.4.3 Feature extraction

The extraction of salient points from the 3D-thinned volume is based on the same
local line curvature definition presented for the 2D case [see Eq. (14.11)]. Local
curvature is defined by computing the tangent disparity using the vector dot product
of tangent vectors (again assuming unit vectors):

Cp = 1

N

N∑
i=1

exp
(−d2

ip

)(
1 − �tp · �ti

)
, (14.12)

where �tp is the tangent vector of voxel p.
Finally, two width measures are obtained for each voxel, given by the number

of nonzero pixels in the �u and �v directions (see Fig. 14.12) from the nonmaximum
suppression image.

14.3.4.4 Initial results

Results of the 3D extraction process are shown in this section. For display pur-
poses, some of the examples are shown as slices, but it should be emphasized that
the whole process is performed in 3D. An example of feature extraction applied
to MR images is shown in Fig. 14.13. Figures 14.13(a)–(c) show a line strength
image obtained using the line operator. The small size of the MR images (at most a
region of approximately 150 × 150 × 50 voxels) limited the use of a large range of
scales for the line detector. Therefore, in the remainder of this chapter, two different
scales have been used.

Figure 14.13(b) shows a slice obtained after nonmaximum suppression, show-
ing the extend of the linear structures. A volume rendering of the thinned linear
structures is shown in Fig. 14.13(c). Finally, in Fig. 14.13(d) maximum local cur-
vature points are obtained. Although difficult to assess, the obtained points can be
seen to describe internal linear structures with a homogeneous distribution.

14.3.5 SUMMARY

This section has reviewed different approaches for the extraction of features in
images. It has focused on the detection of edges and ridges, with special emphasis
on medical applications. A methodology for the extraction of salient points in x-ray
images has been presented based on extracting points of maximal local curvature
along the linear structures. Evaluation has shown that those are stable points. In
addition, the methodology has been extended to MR (3D) images based on the
same principles. In this case, a 3D-line detector has been developed based on a
previous approach used for 2D images. Although of higher computational cost
compared to other edge/ridge detectors, initial results are promising. It is believed
that it could provide higher response in noisy images since has been reported to
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(a) (b)

(c) (d)

Figure 14.13 Feature extraction applied to a 3D MR volume: (a) line strength from
the line operator. Salient points are shown in (d) after performing nonmaximum
suppression (b) and thinning (c).

do so with the 2D case. In the extension to the third dimension, the postprocessing
step has been described stating the major differences compared to the 2D case.

14.4 REGISTRATION USING LINEAR STRUCTURES

The problem of establishing line correspondence in mammograms involves various
steps: (1) identifying linear structures in both mammograms, (2) extracting reliable
information from those structures, and (3) obtaining correspondence between the
structures based on the best match of the information previously extracted (see Sec-
tion 14.4.1). Detection of linear structures and feature extraction were described
in the previous section. Those features from the linear structures are used by a
matching process to find correspondence between points. Once correspondence
has been established, registration can be performed in both mammograms using a
point-based method like thin-plate splines.7 For the tracking application, instead
of applying a registration method, a process of identification and matching of lin-
ear structures in various images is performed based on the point correspondence.
It should be noted that the matching process remains exactly the same for both
applications (registration and tracking).
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Figure 14.14 Overview of the proposed method.

The matching algorithm is developed using a multiscale approach in order to
obtain more robust correspondence (see Section 14.4.1). Figure 14.14 shows an
overview of the proposed method.

14.4.1 MATCHING

The feature extraction described in Section 14.3 provided various features obtained
from characteristic points on the linear structures. The goal is to establish corre-
spondence between those points in two (or more) mammograms. Matching two
sets of feature points is a common problem in computer vision. To minimize com-
putation time, different approaches have been used such as chamfer matching,35

iterative closest point,36 and relaxation-based approaches.30,31 However, all the
methods make assumptions that are not applicable to our matching problem (i.e.,
rigid movement and a geometric relationship between structures). The matching
process of two sets of feature points needs to consider the following four assump-
tions:
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(1) Nonrigid motion: linear structures in mammograms suffer local distortions;
therefore, they may move independently, and no geometrical relationship
is established between neighboring structures.

(2) Multiple matches: a linear structure in one mammogram can match more
than one structure in the other mammogram, and vice versa.

(3) Nonbijectivity: a linear structure in one mammogram may not have a cor-
responding linear structure in the other, and vice versa.

(4) Localization: after global breast misalignment is removed, matched linear
structures lie in approximately the same area in both mammograms; the
localization area M .

14.4.1.1 Method

Here, a similar but more general approach than the one used in Ref. 6 is adopted.
The set of feature points from both mammograms are denoted as {ai |1 ≤ i ≤ Ni}
and {bj |1 ≤ j ≤ Nj }, where Ni and Nj are the number of feature points used,
which may not be the same. Subsequently, a distance matrix (DM) is built in
which each position DM(i, j) describes the normalized distance between features
of points ai and bj . Hence, a low value means good matching between points. The
use of the distance matrix structure fulfills the first three assumptions: independent
motion (matched points ai, bj do not imply matching ai+1, bj+1); a point ai may
have multiple matched points bj ; and a point in either mammogram may remain
unmatched.

Satisfying the last assumption, localization, position DM(i, j) only has a finite
value if points ai and bj are in the same localization area in both mammograms.
This assumption can only be stated if both mammograms are globally aligned;
that is, global deformation (i.e., rotation, translation, scale, and shear) is removed.
Therefore, mammograms are initially registered maximizing a mutual information
measure using an affine transformation. The normalized distance is determined by
three components. The first distance is the Euclidean distance (DE) between point
coordinates. Coordinates of one of the points are transformed (Tα) using the para-
meters obtained from the registration mentioned earlier. The second distance is the
orientation difference between two points (Dφ), similar to the curvature definition
in Eq. (14.11). The third distance is the width difference between two points (Dw)
normalized using the maximum width of all the linear structures (W ). Using equal
weighting, the normalized distance is given by

DM(i, j) = DE + Dφ + Dw

= |Tα(ai) − bj |
M

+ 1 − cos(φi − φj )

2
+ |wi − wj |

W
. (14.13)
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14.4.1.2 Multilevel approach

A multilevel approach similar to the local affine method described in the previous
section (see Section 14.2.3 and Fig. 14.5) is used here to ensure a spread of control
points over the whole image and to improve the accuracy of the global registration
process. At the first level, the full images are aligned, obtaining the transformation
parameters α1. Subsequently, at the second level, each mammogram is divided into
six rectangular subimages and again each subimage is aligned to its corresponding
subimage. Note that transformation parameters are carried through each level, as-
suming that each subimage at lower levels would suffer a different transformation,
but it would be related to the deformation on the higher level. Assuming this, the
optimization process is sped up and local minima situated away from the optimum
solution is avoided. Once the last level i is reached, transformation parameters αi at
each level establish correspondence between structures within the subimages. Ex-
tracting the local best matches in each subimage assures that a minimum number of
matches are present in each subimage, providing a homogeneous point distribution
over the mammograms. This multilevel algorithm is based on the principles of the
algorithm described in Section 14.2, but in this case points are obtained from the
linear structures instead of using the central pixel of the subimages.

14.4.2 EVALUATION

In this section, different aspects of the matching method applied to mammographic
registration are evaluated. In the presented experiments, only normal mammo-
grams, from 10 women were used.

In order to assess the accuracy of the developed approach, a comparison be-
tween registration using matches from the author’s method and matches obtained
manually is given. Subsequently, a framework to detect structural abnormalities in
mammograms using information from the registration is proposed.

Figure 14.15 shows two mammograms of the same woman taken three years
apart, where matches between the linear structures are indicated by numbers (in
white). In addition, manually placed control points (in black) are also shown. It
should be noted that points matched with the developed approach follow a homo-
geneous and coherent distribution that is comparable to the manually placed points.

Figure 14.16 shows the deformation applied (using the developed approach)
and subtracted images (where darker areas mean larger misalignment) obtained
after registration, using the proposed method [Fig. 14.16(b)] and manual points
[Fig. 14.16(c)]. Although misregistration can be observed near the breast outline,
registration of the internal breast region is comparable to manual placement of the
control points.

Figure 14.17 shows registration results of temporal (same breast taken at dif-
ferent times) and contralateral (right-left comparison) mammograms. Graphs are
normalized to manual registration. They show that automatic registration performs
equally or slightly better than manual registration in most cases, although some
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(a) (b)

Figure 14.15 Correspondence between linear structures in temporal mammo-
grams: (a) reference and (b) warped images.

(a) (b) (c)

Figure 14.16 Correspondence between linear structures in temporal mammo-
grams: (a) applied deformation using the proposed approach, difference between
registered image and reference based on (b) automatic and (c) manual correspon-
dence.
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(a) (b)

Figure 14.17 Results for (a) temporal and (b) contralateral registration where the
proposed method (1) is compared to registration using the breast outline (P) and
manual registration (E).

Table 14.3 Registration results from temporal and contralateral mammograms.

Temporal Mean StDev Contralateral Mean StDev
|Manual 0.498 0.040 | Manual 0.502 0.059
|

This approach 0.522 0.041 | This approach 0.501 0.050
|

Breast boundary 0.497 0.059 | Breast boundary 0.496 0.044|

poor results are also obtained. The method is also compared to registration using
only the breast boundary, which has been used by other authors. Although similar
results are obtained, including internal information achieves a more robust regis-
tration.

Table 14.3 shows mean and standard deviation measures of similarity (mutual
information) obtained from the temporal and contralateral registration. For the tem-
poral case, the developed approach obtains the highest mean value, whereas in the
contralateral case its value is close to the manual registration.

14.5 DETECTION OF ABNORMALITIES

Registration results using the developed approach (in both temporal and contralat-
eral cases) are comparable to manual registration. It is believed that the use of fea-
tures extracted from the difference image could be used to discriminate between
normal and abnormal mammograms. For a normal mammogram, the difference
between registered images should be minimal, whereas for an abnormal case it is
likely to highlight the abnormal region. An example of an abnormal case is shown
in Fig. 14.18, where the right mammogram contains a spiculated lesion. Contralat-
eral registration is performed using the proposed approach. From the difference
image after registration [Fig. 14.18(c)], it can be seen that the spiculated lesion is
clearly highlighted and misalignment is minimized compared to the original image
difference [Fig. 14.18(b)].
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(a) (b) (c)

Figure 14.18 Correspondence in contralateral mammograms: (a) applied defor-
mation and difference images (b) before and (c) after registration.

Registration has been performed on a data set containing pairs of temporal
mammograms taken at different screening rounds (with approximately 3 years be-
tween each pair—1993, 1996, and 1999). The data set contains 22 women with
12 of them presenting abnormalities (structural distortions or spiculated lesions) in
the last screening round.

All the above expectations are confirmed in the results shown in Fig. 14.19,
which plots features extracted from the thresholded-difference image in both nor-
mal and abnormal cases after registration. For the normal case, similar results are
obtained from the three different screening rounds, although decreasing mean val-
ues are obtained through the years that could be due to changes in breast density
(increase of the fatty tissue). On the other hand, abnormal mammograms in the
last screening year (when the abnormality was diagnosed) show high dissimilari-
ties compared to previous years and to normal mammograms. It should be noted
that in the early screenings (1993 and 1996), a similar trend to the normal case is
obtained for the abnormal mammograms, although slightly higher values are ob-
tained. Features used in Fig. 14.19 are the normalized area and perimeter of the
largest region in the difference image. Other features have been tested, obtaining
similar but less pronounced results.

In addition, the registration approach can be used to track regions of inter-
est over time; in this case a region containing an abnormal structure. Figure 14.20
shows registered regions of three mammograms taken at different screening rounds
(with approximately three years time between each one, i.e., 1992, 1995, and
2000), where an abnormality was diagnosed in the last screening round. Track-
ing regions is performed by registering the 1995 and 2000 images to the 1992
image, regarded here as the reference image. This shows that the abnormality is
only present in the final year, with no mammographic evidence in earlier screening
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(a) (b)

Figure 14.19 Features from registration of normal (a) and abnormal (b) mammo-
grams in several screening rounds: 1999 (P); 1996 (1); and 1993 (E), and the
mean value for each year (∗).

(a) (b) (c)

Figure 14.20 Tracking of an abnormal region in mammograms from various
screening years: (a) 1992, (b) 1995, and (c) 2000.

rounds. These tracking results could be used as a training tool for radiologists and
also to investigate early signs of cancer in the regions prior to the detection of the
abnormality.

14.6 TRACKING OF LINEAR STRUCTURES

Tracking objects in image sequences is a well-developed area.37 However, in gen-
eral, this involves rigid objects (such as cars38) or objects with a predictable be-
havior (such as humans39 or animals40). Another difference with the current appli-
cation is the fact that tracking is traditionally established using sequences of tens
to hundreds of images and not only a few. Matched points can be used to identify
and track linear structures in sequences of images. Corresponding linear structures
are those structures that contain common matched points, as the example shown
in Fig. 14.21. Linear structures that do not contain any control points remain un-
matched (note that these are likely to be small structures).
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(a) (b)

Figure 14.21 Tracking of linear structures: (a) original and (b) deformed mammo-
grams.

14.6.1 EVALUATION

To demonstrate the proposed tracking method, it is tested using mammographic im-
ages. Figure 14.21 shows tracking between a mammogram and a deformed version
of itself (the deformation has a local nature and is based on registration between
screening rounds), where numbers depict corresponding linear structures. This in-
dicates the local movement of the linear structures. Due to line fragmentation, lin-
ear structures in one image may correspond to more than one linear structure in the
other. This explains the repeated numbers in Fig. 14.21. It can be seen that major
linear structures have been successfully identified and tracked.

Using the example of Fig. 14.21, the robustness of the tracking algorithm
was tested in the presence of noise and outliers. Evaluation has been carried out
counting the number of matching errors found in the images. It should be noted
that a matching error does not mean that both corresponding structures are com-
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pletely mismatched, since linear structures are being mathched not only points.
Therefore, the number of matching errors and the number of matches are not re-
lated.

Figure 14.22(a) shows the number of matching errors found in the images when
different amounts of Gaussian noise N(µ,σ) are added to the feature points. At
each plotted point in Fig. 14.22(a), noise is affecting all features: position with
N(0,20), orientation with N(0,π/6), and width with N(0,10). It should be noted
that noise for each point is added to the previous noise level and the graph presents
a linear behavior that denotes the robustness of the method. Another test has been
performed to determine the dependence of the method on the presence of outliers.
Outliers are defined here as matched points that are not related to major mammo-
graphic linear structures; most of the time these are due to noise, image artifacts,
or spurious structures. Outliers have been generated using the following method:
a number of initially extracted feature points have been randomly removed and re-
placed by the same number of randomly generated points. Figure 14.22(b) plots
the number of matching errors as a function of the percentage of those outliers.
Again, the response presents a linear behavior, even with a large percentage of
outliers.

14.6.2 RESULTS

This section presents initial tracking results. Figure 14.23 shows the tracking of
linear structures in temporal mammograms. It can be seen that tracking results are
not as good as in the test image in Fig. 14.21, but major linear structures are still
being tracked. It should be noted that the abnormality occurs in an area that does
not contain a large number of matched mammographic linear structures.

(a) (b)

Figure 14.22 Evaluation of the tracking of linear structures: (a) Gaussian noise
added to feature points and (b) presence of outliers.
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14.7 AUTOMATIC MR CORRESPONDENCE BASED ON LINEAR

STRUCTURES

This section extends the registration algorithm described in the previous section
to MR (3D) registration. The approach is also based on finding correspondence
between internal structures in images given by matching features extracted from
salient points.

Registration could be applied to dynamic MR studies, where MR volumes are
taken at short intervals after a contrast agent is injected and tissue uptake mea-
sured. Misalignment in such cases is generally of small magnitude and of non-
linear nature, both due to involuntary movement (i.e., breathing and heart beat,
among others). Figure 14.24 shows an example of a dynamic MR study where pre-
and postcontrast volumes are shown.

On the other hand, temporal MR registration could also be performed using
volumes obtained at longer intervals, typically periods ranging from months to a

(a) (b) (c)

Figure 14.23 Tracking of linear structures in mammograms from various screening
years: (a) 1992; (b) 1995; and (c) 2000.

(a) (b) (c) (d)

Figure 14.24 Slices and volume renderings from a dynamic study: (a) and (c) pre-
contrast, and (b) and (d) postcontrast acquisitions.
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(a) (b) (c) (d)

Figure 14.25 Slices and volume renderings from a temporal study: (a) and (c)
February, and (b) and (d) April acquisitions.

year. These temporal series are often used for women to monitor the development
of detected abnormalities. In addition, the success of treatment (i.e., chemotherapy)
is often evaluated by acquiring MR volumes at shorter intervals (typically days or
weeks). As expected, images taken at larger intervals suffer larger misalignments
compared to dynamic cases. This is due to the fact that the patient is repositioned
for acquisition. This is illustrated in Fig. 14.25, which shows an example of a tem-
poral MR study.

In all registration cases, being able to find correspondence between areas in
various volumes would help to detect changes in the breast such as an increasing
contrast region or a recently developed suspicious area. In addition, as mentioned
before, being able to track regions in images would also help to assess the efficiency
(i.e., tumour regression) of an ongoing therapy.

14.7.1 REVIEW

Looking at the existing literature, there are only a limited number of publications
addressing the problem of image registration applied to MR images or any other
applications with similar implications. This could be explained by the relatively
recent need for such methodologies mainly due to the increasing spread of MR
in mammography, especially in countries where its use in screening is being in-
vestigated [i.e., the magnetic resonance imaging for breast screening (MARIBS)
study41]. Moreover, approaches published so far limit their application to the reg-
istration of dynamic sequences, where deformations are generally less severe. Al-
though dynamic sequences are more common than temporal analysis (where im-
ages are more difficult to obtain), it is our aim to investigate a common approach
for both registration cases. The developed method should not rely on intensity cor-
relation between images because, as shown in Fig. 14.24, dynamic studies show
intensity variations depending on the contrast-agent uptake. Therefore, similar-
ity measures such as mutual information are expected to provide more accurate
results.15,23 About the work published by other authors, one should mention the
approach taken by Hayton et al.13 who applied (2D) registration to pre- and post-
contrast MR slices using an optical flow model based on a Bayesian formulation
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and maximization of mutual information. Rueckert et al.12 also proposed a novel
registration approach based on mutual information. They described a 3D nonrigid
registration algorithm based on a B-spline grid that deformed, maximizing a cost
function based on a mutual-information measure and additional smoothness con-
straints. Although other approaches have been proposed, their applicability is ques-
tionable since they either make the assumption of a rigid transformation42 or linear
intensity correlation in dynamic studies.43

14.7.2 METHODOLOGY

The correspondence problem is addressed by proposing a methodology that aims
to match salient internal structures such as linear structures (i.e., vessels, ducts) and
tissue boundaries. This can be regarded as an extension to the third dimension of
the approach described in the previous section. As in the 2D case, correspondence
is based on matching salient points along the linear structures. Those points happen
to be invariant to intensity correlation and nonsevere (realistic) nonlinear deforma-
tions. The intensity invariance is due to the use of features from the linear structures
instead of intensity information as such. Moreover, when a measure of similarity is
used (i.e., in the matching process), mutual information is chosen due to its inde-
pendence on image intensity. If the assumption of a nonsevere nonlinear transfor-
mation holds, the linear structures would present a similar overall structure. Once
points have been extracted, matches in MR volumes are found by comparing their
local features, such as orientation, width, and position, using the same distance
matrix matching approach. Potential matches are assumed to lie in approximately
the same volume after a global alignment is carried out based on maximizing a
normalized mutual-information measure using a rigid transformation.

A multilevel alignment could also be used here, as in the x-ray case, but due
to the small size of the subimages, the mutual-information measure did not return
robust results. This is due to the statistical weakness of the intensity distribution
induced by interpolation artifacts.21,44 The use of methods to robustly estimate the
probability distribution could be applied (as in Ref. 44), but this will need further
investigation. Therefore, a single-level matching approach is used here.

Finally, volumes are aligned using the matched points and a point-based
method such as volume, thin-plate, or elastic-body splines. Here, an elastic-body
spline (EBS)17 mapping function is used based on a deformation model of an elas-
tic material that can be regarded as a simple model of breast tissue. EBS was shown
to be more appropriate compared to the other mentioned spline functions applied
to MR mammographic registration.17

14.7.3 EVALUATION AND RESULTS

Initial results are shown using a synthetic registration case. A volume is matched
to a deformed version of itself. The deformation is generated by manually corre-
sponding a number of points and applying an EBS transformation to the volume.
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The use of EBS for the generation of the deformed volume can be seen as a draw-
back of this evaluation, but it should be stressed that the experiment is to show that
the points found by the developed approach are reliable, and not to evaluate the
EBS method.

Results are shown measuring the similarity [using normalized cross-correlation
(CC) and mutual information (MI)] between the registered and original volumes.
As seen in Table 14.4, an increased value is always obtained when the registration
is applied. A maximum is obtained when using the proposed method.

This is also indicated by looking at the registration images in Fig. 14.26, which
show difference images (where darker means larger differences) between the regis-
tered and the original volumes for a particular slice. It should be noted that there is
a large improvement compared to unregistered and even registration using a global
rigid transformation. However, it can be seen that some differences are found in the
breast outline area. That will be a common characteristic of registration results with
the proposed method that is explained by the fact that only internal linear structures
are used for the matching process, aiming to provide an accurate registration of
those areas. It is our belief that the use of points along the breast boundary in the
MR volume would yield more accurate results in such areas, but this extension is
not discussed here and is expected to be incorporated in future work.

14.7.3.1 Registration of temporal sequences

Initial results of registration of temporal MR images are presented in this section.
Temporal volumes are difficult to obtain. This fact is reflected by the number of

Table 14.4 Evaluation: similarity measures between
registered and original volumes.

Registration CC MI

No registration 0.819 0.243
Rigid registration 0.822 0.246
Our approach 0.850 0.286

(a) (b) (c)

Figure 14.26 Evaluation: difference image between registered and original vol-
umes for a particular slice, using (a) no registration; (b) rigid registration; and (c) the
developed approach.
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temporal volumes (only two) available in our database at the time of writing. How-
ever, the results obtained are a good example of the additional difficulties involved
in this type of registration. Misalignment between images is likely to be large due to
the fact that images are acquired at different times, involving patient repositioning
and different imaging parameters (i.e., the use of breast compression and different
MRI protocols). In general, this misalignment can be described in terms of dif-
ferences related to pose (therefore involving a rigid transformation) and to local
deformation (involving a nonlinear transformation). An example of the former is
shown in Figs 14.27(d)–(f), where rigid registration by maximizing the mutual-
information measure has been applied to temporal volumes. This process removes
pose differences, leaving nonlinear deformations, which are minimized by using
the proposed registration approach as shown in Figs 14.27(g)–(i).

Figure 14.27 Temporal MR registration: recovering pose differences and nonlocal
deformation. A slice from the (a) reference and (b) target volumes, and (c) its differ-
ence. Registration results (d) using rigid transformation by maximization of mutual
information, and (e) and (f) difference between slices. Registration results (g) using
the proposed approach, and (h) and (i) difference between slices. Here (f) and (i)
show enlarged regions of (e) and (h), respectively.
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In temporal studies, the nonlinear magnitude of the deformation could be much
larger than the example shown in Fig. 14.27. This fact was experienced for the
registration of the second volume, where images present large nonlinear differences
that registration was unable to recover. It is blieved that the use of the multilevel
approach for the matching would obtain better results since matching at different
levels would obtain a better description of the breast deformation, but this is an
aspect that will need further development.

Temporal registration results for two cases are also shown in Table 14.5, where
similarity measures are computed from volumes using no registration, rigid reg-
istration, and the developed approach. Measures agree with the qualitative results
shown in the mentioned figures. In all cases, the use of the developed approach
yields the best results, even when registration fails (Table 14.5b).

14.7.4 SUMMARY

A novel method to register MR breast images based on correspondence between
their internal linear structures has been presented. This was based on the method-
ology described for the 2D case.

Initial results using synthetic and real data indicate the validity of the devel-
oped approach, although further evaluation is needed. Interesting results have been
obtained for temporal cases where deformation has been recovered successfully,
with the exception of a case of a severe distortion. However, the inclusion of other
features (local intensity similarity) along with a multilevel implementation of the
point-matching process could improve the robustness of the method, and will be
investigated.

Correspondence is only based on matching meaningful anatomical structures
found in both images; therefore, in principle, differences (due to the presence of
abnormalities or severe structural changes) are not used in the correspondence.
This latter aspect can be seen as a drawback of methods such as those in Refs. 12
and 13 which use the whole image (inclusive of any abnormalities when present)
to obtain correspondence.

Although the method was applied to mammography, it is believed that the
method can be applied to any 3D data that incorporates some sort of structural
information (i.e., MR of other body areas, or CT images) since no data-related as-

Table 14.5 Temporal MR registration: similarities between registered and original
volumes using no registration, rigid registration, and the developed approach for
the two cases.

(a) CC MI (b) CC MI
|No registration 0.607 0.091 | No registration 0.383 0.092
|

Rigid registration 0.856 0.124 | Rigid registration 0.459 0.088
|

Our approach 0.884 0.147 | Our approach 0.465 0.092|
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sumptions have been introduced. This, along with further evaluation using a larger
MR breast database, will be the focus of future work.

14.8 CONCLUSIONS

The work presented here describes a novel approach to solve the problem of ex-
tracting of reliable features in mammographic images, and establishes correspon-
dence between them in pairs of mammograms.

It has been shown here that features extracted from linear structures can pro-
vide a robust automatic approach to the generation of control points for image reg-
istration. Local features based on scale, orientation, and position have been used.
In addition, it is clear that the use of the multilevel approach provides additional
information about breast deformation that helps to improve the robustness of the
method.

Initial results based on a temporal and contralateral comparison indicate that
the automatic approach is comparable to manual registration. Different applica-
tions have been developed based on the same correspondence principles. Auto-
matic registration of normal and abnormal temporal mammograms has shown that
it is feasible to develop automatic approaches for the detection of structural ab-
normalities based on the analysis of the difference image. Although not developed
here, classification could be used to provide a diagnosis based on those results. The
analysis of abnormal temporal mammograms showed that images presented slight
differences in years before the abnormality was diagnosed that could indicate early
signs of cancer. Registration in this case could also be used as a training tool to
study the same region over time in order to assess any differences. Another ap-
plication is the development of a framework to track internal linear structures in
temporal mammographic images. Initial results show that this could be beneficial
to assess structural breast changes due to the development of abnormalities.

Registration and tracking results strongly rely on satisfactory line and feature
detection, which is not straightforward to achieve because of different and uncon-
trollable imaging conditions (breast compression, radiation exposure, and patient
movement). However, for the different applications presented, promising results
were obtained. Further work could be focused on incorporating additional features
from the salient points such as local shape contexts45 that also make use of intensity
information.

In addition, other line-detection methods and image-normalization approaches
could be investigated. Linear structures appear to be nonuniformly fragmented over
the images. Line-linking algorithms could be applied, but special care has to be
taken in choosing the linking criterion due to the complex geometry of the linear
structures. Finally, statistical modeling of the tracked abnormal regions over time
can also be used to assess the subtle presence of abnormalities in early screen-
ings.
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