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Abstract. It is widely accepted in the medical community that breast
tissue density is an important risk factor for the development of breast
cancer. Thus, the development of reliable automatic methods for classifi-
cation of breast tissue is justified and necessary. Although different works
in this area have been proposed in recent years, only a few are based
on the BIRADS classification standard. In this paper we review differ-
ent strategies for extracting features in tissue classification systems, and
demonstrate, not only the feasibility of estimating breast density using
automatic computer vision techniques, but also the benefits of segmen-
tation of the breast based on internal tissue information. The evaluation
of the methods is based on the full MIAS database classified according
to BIRADS categories, and agreement between automatic and manual
classification of 82% was obtained.

1 Introduction

Breast cancer is considered a major health problem in western countries, and
constitutes the most common cancer among women in the European Union. It
is calculated that between one in eight and one in twelve women will develop
breast cancer during their lifetime [1]. Mammography is still the preferred and
most efficient method for detecting breast cancer at early stages, a crucial issue
for a high survival rate.

Computer Aided Diagnosis (CAD) systems are being developed to assist
radiologists in the evaluation of mammographic images [2, 3]. However, recent
studies have shown that the sensitivity of these systems is significantly decreased
as the density of the breast increases while the specificity of the systems remains
relatively constant [4]. From a medical point of view, these studies are disap-
pointing, because it is well-known that there is a strong positive correlation
between breast parenchymal density in mammograms and breast cancer risk [5].
Therefore, automatic classification of breast tissue will be beneficial, not only to
estimate the density of the breast, but also to establish an optimal strategy to
follow if, for example, the user is looking for masses.



Automated parenchymal pattern classification is not a recent topic. Effec-
tively, a number of different proposals can be found in literature [6, 7]. However,
only a small number of those papers have classified the density according to BI-
RADS categories [8–11] , which is the U.S. standard in radiology, and the
one that many European countries are introducing. All these methods
are based on extracting features from the breast, which can be related to tex-
ture or just gray-level information. A main difference between these works is the
regions from which the features are extracted. For instance, Bovis and Singh [8]
extract texture features as if the breast has homogenous texture, Karssemei-
jer [7] extracts features from regions selected according to the distance to the
skin-line, and Oliver et al. [10] segment the breast according to internal tis-
sue information. Figure 1 shows graphically these different strategies. In this
work we implemented all those strategies and compared them using the MIAS
database [12], with the aim to demonstrate the effectiveness of a segmentation
strategy. The remainder of this work is structured as follows. The next section
presents the implemented strategies, while Section 3 shows the obtained results.
The paper ends with a discussion and conclusions section.

2 Breast density classification

The aim of this paper is to evaluate the application of a segmentation step prior
to the extraction of features in the mammogram. Thus, the strategies are divided
in (a) no segmentation of the breast, (b) segmentation of the breast according
to the distance of each pixel to the skin-line and (c-e) segmentation of the breast
according to internal tissue information, where (c) uses Fuzzy C-Means, (d)
fractal analysis, and (e) a statistical approach. The following subsections provide
more details on these strategies, while the remaining subsections describe the
extracted features, as well as the classifier used in this work.

However, the first step is the segmentation of the profile of the breast. The
aim of this initial segmentation is to isolate the breast area from other objects
present in a mammographic image such as background, annotations and pectoral
muscle in MLO images. We used a previous developed algorithm for such
proposal [13].

2.1 Strategies on breast tissue density segmentation

No segmentation The first approach is the extraction of features of the global
breast, without any kind of segmentation. Note that this approach implicitly
considers the breast area as homogeneous, with the same texture for the whole
breast.

Segmentation according to the distance to the skin-line This approach,
graphically shown in Figure 1(c), was first suggested by Karssemeijer [7]. The
main idea for such approach is the assumption that a strong correlation exists
between tissue thickness and distance to the skin line. To compute the distance



to the skin line of the breast a distance transform is used. First, a binary ob-
ject is formed by merging the breast tissue and the pectoral (or the equivalent
segmented region). This object is eroded repeatedly using a circular structuring
element. The number of erosions that it takes for a pixel to remove it from the
object represents its taken as the distance to the skin-line.

Segmentation through Fuzzy C-Means In contrast with the previous ap-
proach, the approach proposed by [10] aims to divide the breast into two different
clusters according to the internal breast density, as is shown in Figure 1(d). The
Fuzzy C-Means algorithm [14] was used in order to group the pixels of the breast
in two separate categories: fatty and dense tissue. As the authors suggested, in-
stead of using a random placement of the initial seeds, the initialization is done
by using the gray level values that represent 15% and 85% of the accumulative
histogram of the breast pixels.

Segmentation using Fractal analysis Another work segmenting the breast
using breast tissue information is the work of Raba et al. [15], in which the
breasts were divided using a fractal scheme. The fractal coding recursively splits
the image in quadrants depending on the information that is contained in each
region. The function to determine if a region should be split is based on a local
histogram measure. A broad histogram means that the region contains intensi-
ties that covers a large spectrum from dark to lighter values, and can be split
in four regions. These regions are recursively evaluated until the decision func-
tion determines that the region has not to be split, thus obtaining regions with
uniform properties of tissue. Figure 1(e) shows some results using this algorithm.

Segmentation via Statistical analysis This novel approach is based on a
statistical analysis of the breast. Thus, windows of 25 × 25 pixels of one mam-
mogram are extracted and used as the ground-truth in order to segment the other
breasts mammograms. Some of the windows represent dense breast tissue while
others represent non-dense tissue. Hence, using the fisherfaces approach [16],
these windows are used to construct a model from each part of the mammo-
gram, and subsequently, each subwindow of the mammogram is classified as one
of those regions. Thus, we finally obtain a segmentation of the breast in two
regions, which represents fatty and dense tissue, as is shown in Figure 1(f).

2.2 Extracted Features

Once the breast is divided in regions, a set of morphological and texture features
is extracted from each one.

As morphological features, the relative area and the four first histogram
moments for the fatty and dense regions were calculated.

On the other hand, a set of features derived from co-occurrence matri-
ces [17] were used as texture features. Co-occurrence matrices are essentially



two-dimensional histograms of the occurrence of pairs of gray-levels for a given
displacement vector. Formally, the co-occurrence of gray levels can be specified
as a matrix of relative frequencies Pij , in which two pixels separated by a dis-
tance d and angle θ have gray levels i and j. In this work we use four different
directions: 0◦, 45◦, 90◦, and 135◦, and three distances equal to 1, 5, and 9 pix-
els. For each co-occurrence matrix the following statistics were used: contrast,
energy, entropy, correlation, sum average, sum entropy, difference average, differ-
ence entropy, and homogeneity features. Thus, we deal with a set of 113 features
for each class.

2.3 Classification

In order to train the system, we used a Bayesian classifier which combines two
well-known classifiers: the k-Nearest Neighbours (kNN) algorithm and the C4.5
decision tree. Briefly, the kNN classifier [18] consists of classifying a non-classified
vector into the k most similar vectors presents in the training set, while a deci-
sion tree recursively subdivides regions in feature space into different subspaces,
using different thresholds in each dimension to separates the classes “as much as
possible”. In this work we used the C4.5 algorithm developed by Quinlan [19],
improved by a boosting procedure.

Thus, when a new case is studied, it is classified according to the classic
Bayes equation:

P (x ∈ Bi|A(x)) =
P (A(x)|x ∈ Bi)P (Bi)∑

j=1..4 P (A(x)|x ∈ Bj)P (Bj)
(1)

Translating this formula into words, we consider the probability of a mammo-
gram (x), with a set of features A(x), to belong to the class Bi as the posterior
problem. The prior is the probability of the mammogram to belong to a class
before any observation of the mammogram is done. Here we used as the prior
probability the number of cases that exists in the database for each class, divided
by the total number of cases. The likelihood estimation is calculated by using
a non-parametric estimation, which is explained in the next paragraph. Finally,
the evidence is just a normalization factor, needed to ensure that the sum of
posteriors probabilities for each class is one. The value of j indicates the number
of BIRADS classes.

The likelihood estimation is based on the combination of the explained clas-
sifiers. This is achieved following a soft-assign approach where binary (or dis-
crete) classification results are transformed into continues values which depict
class membership. For the kNN classifier, the membership value of a class is pro-
portional to the number of neighbors belonging to this class. The membership
value for each class will be the sum of the inverse Euclidean distances between
neighboring patterns belonging to that class and the unclassified pattern. A fi-
nal normalization to one between all the membership values is required. On the
other hand, in the traditional C4.5 decision tree, a new pattern is classified by
using the vote of the different classifiers weighted by their accuracy. Thus, in



order to achieve a membership for each class, instead of considering the voting
criteria we take into account the result of each classifier. Adding all the results
for the same class and normalizing all the results, the membership for each class
is obtained.

3 Results

In order to test the proposed methods we used the MIAS database [12], which
is a public database of digitized mammograms. An expert has classified all the
322 mammograms according to the BIRADS lexicon, obtaining 129 BIRADS I,
79 BIRADS II, 70 BIRADS III, and 44 BIRADS IV samples. To evaluate the
different methods, a leave-one-woman-out procedure was used, in which each
sample was analyzed by a classifier which was trained using all other samples
except for those from the same woman. Note that this is necessary in order to
not bias the results as, typically, both mammograms for a single women have
similar internal morphology.

The confusion matrix for the first strategy (no segmentation) is shown in
Table 1(a). This should be read as follows: rows indicate the object to be recog-
nized (the true class) and columns indicate the label the automatic classifier
associates with this object, thus obtaining the correct classified mammograms
in the diagonal of the matrix. Therefore, the performance of this approach is
62%. Moreover, we can see that the mammograms better classified are those
belonging to BIRADS I, while mammograms belonging to BIRADS IV are the
worst classified. The Cohen’ kappa (κ) coefficient [20] is also included
in the results. A κ coefficient equal to one means a statistically per-
fect model whereas a value equal to zero means every model value was
different from the actual value. A commonly used interpretation of
the various κ values [21] is: < 0 poor, [0, 0.20] slight, [0.21, 0.40] fair,
[0.41, 0.60] moderate, [0.61, 0.80] substantial, and [0.81, 1.00], almost per-
fect agreement.

Table 1(b) shows the results obtained by the second approach, which is the
segmentation of the breast in regions according to the distance to the skin-line.
Using such approach, the results are drastically increased compared with the
no-segmentation approach, obtaining 79% correct classification and κ = 0.71.
Although the performance of all the classes are improved, the highest improve-
ment is found in BIRADS IV.

Finally, Table 2 shows the results obtained by using a segmentation of the
breast according to the internal breast tissue, explained above. Here (a) shows
the results obtained by the Fuzzy C-Means approach, (b) based on the Fractal
approach, and (c) using the Statistical approach. Note that the overall perfor-
mance for each algorithm is similar: 82%, 81%, and 80%, and κ = 0.75, κ = 0.73,
and κ = 0.73, respectively, and all are better than the results obtained by the
other two approaches.

The results obtained by the Fuzzy C-Means and the Statistical approach
are quite similar, with more than 90% of correct classification for mammograms



Table 1. Confusion matrix for the classification of the mammograms of MIAS database
(a) without segmentation of the breast and (b) segmenting according to the distance
to the skin-line.

Aut. Classif.
B-I B-II B-III B-IV

T
ru

th
B-I 98 9 15 7
B-II 11 44 20 4
B-III 11 8 46 5
B-IV 5 9 18 12

Aut. Classif
B-I B-II B-III B-IV

T
ru

th

B-I 117 6 6 0
B-II 10 55 14 0
B-III 8 6 55 1
B-IV 0 3 13 28

κ = 0.47 κ = 0.71

Table 2. Confusion matrices for MIAS mammogram classification by using the internal
breast density as a segmentation strategy: (a) Fuzzy C-Means, (b) Fractal, and (c)
Statistical approaches.

Aut. Classif
B-I B-II B-III B-IV

T
ru

th

B-I 118 7 4 0
B-II 8 59 9 3
B-III 6 11 53 0
B-IV 0 3 6 35

Aut. Classif
B-I B-II B-III B-IV

T
ru

th

B-I 112 11 4 2
B-II 9 61 7 2
B-III 2 4 52 12
B-IV 0 2 7 35

Aut. Classif
BI-I B-II B-III B-IV

T
ru

th

B-I 116 8 5 0
B-II 6 59 10 4
B-III 2 8 52 8
B-IV 0 3 8 33

κ = 0.75 κ = 0.73 κ = 0.73

(a) (b) (c)

belonging to BIRADS I. This percentage is reduced for the rest of classes to
values around 75%. In contrast, in the Fractal approach, the percentage of correct
classification for BIRADS I, is lower compared to the other approaches, but the
other classes are slightly better classified.

4 Discussion and Conclusions

This paper has presented five different automatic methods to classify mammo-
grams according to the BIRADS standard. The paper has focused on the strategy
used for the breast tissue density segmentation. Thus, we distinguished
among no breast segmentation, segmentation of the breast according to the dis-
tance to the skin-line, and segmentation of the breast according to their internal
breast tissue. Moreover, we compared three different ways to segment the breast
according to this latter strategy.

Figure 1 shows the segmentation of the breast according to those strategies.
The three last columns (which corresponds to the segmentation algorithms that
use breast tissue information) show similar results, therefore the classification
results for these strategies are also similar. Analysing the results in more detail,
one can conclude that the fractal approach results in a pixelated segmentation,
while the statistical approach obtains larger and clearly separated regions. On
the other hand, the Fuzzy C-Means performance is an intermediate solution



and classification results are slightly improved compared to the other two. The
different behaviour of the algorithms can be explained by their own
nature. Thus, the fractal approach recursively splits the image using
a quadtree structure. When there is not sufficient variance into a
quadrant, the algorithm stops splitting, thus obtaining quadrangular
regions. On the other hand, with the statistical analysis of the breast,
small tissue variations are insufficient to modify the assigned density
class. In contrast, these small variations vary the result of the Fuzzy
C-Means algorithm .

The obtained results show that the segmentation step increases the perfor-
mance of the classification, improving the results by more than 15%. Moreover,
we have shown that using the segmentation according to the breast tissue out-
performs the segmentation according to the distance to the skin-line. We have
also noted, that the strategy used to segment the internal breast tissue do not
result in major variation in the results, with the Fuzzy C-Means based results
slightly better than the other ones.

Bovis and Singh [8] and Petroudi et al. [9] have classified breast tissue accord-
ing to BIRADS categories. While Bovis and Singh reached 71% of correctly clas-
sified mammograms, Petroudi et al. obtained 90%, 64%, 70% and 78% of correct
classification for mammograms belonging to BIRADS I, BIRADS II, BIRADS
III and BIRADS IV respectively, achieving a total of 76% correct classification
for all the cases. In contrast, using a segmentation according to the internal
breast tissue, these results are clearly improved, obtaining 82% of correct classi-
fication. It should be noted that our results are based on a leave-one-woman-out
methodology.
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