
when compared to mammography and needle biopsy pathology

was determined to be upgraded at excision from in situ disease to

invasive in 24% (n = 9) lesions. These upgrades were identified as

calcium (n = 8) and mass (n = 1). The tissue densities that the

lesions resided in were 44% (n = 4) extremely dense tissue, 44%

(n = 4) heterogeneously dense, and 11% (n = 1) scattered. These

findings of pathological correlations are shown in Table 4.

4. Conclusions

CAD has demonstrated the potential to detect mammographically

visible cancers imaged with digital mammography. In this small

subset evaluated, CAD demonstrated a lesion/ case sensitivity of

87% (n = 39) which is similar to detection rates cited in the lit-

erature for digital mammography [4]. MLO view image sensitivity

was found to be 69% (n = 31) and 78% (n = 35) in the CC view

as shown in Fig. 1. Further evaluation of CAD detection for

digital mammography is needed to explore false-positive markers

in these cases and the specific features of lesions not marked by

CAD in the study cohort.
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Mass eigendetection and the benefits of introducing breast density

information
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Abstract The purpose of this paper is to present a novel algorithm

for mass detection in a mammographic computer-aided diagnosis

system. Four key points provide the novelty of our approach: (1)

the use of eingenanalysis for describing variation in mass shape

and size; (2) a Bayesian formulation providing a mathematical

sound framework, flexible enough to include additional infor-

mation; (3) the use of two dimensional PCA for false positive

reduction; and (4) the incorporation of breast density information,

an internal feature of the breasts closely related to the perfor-

mance of most mass detection algorithms and which, in contrast,

has not been considered in existing approaches. The robustness

and the database independence of our approach are shown by the

fact that different databases are used for training and testing

procedures.

Keywords CAD Æ Mammography Æ Mass detection Æ Breast density

1. Introduction

Breast cancer is one of the most common forms of cancer in

women of western countries, remaining the leading cause of death

in women aged 40–55 in the United States. Mammography allows

the detection of breast cancer at its early stages, a crucial issue for

lowering the death rate. Computer aided detection (CAD) systems

are being developed to help radiologists to detect and diagnose

new cases. However, most of these algorithms do not take the

breast density into account, which has been shown as an impor-

tant factor for the performance of these systems. Usually, as most

dense is the breast, worst is the performance of the CAD. In this

paper we present a new framework for mass detection based on a

template matching scheme which incorporates the breast density

information.

2. Methods

Three different steps can be clearly identified in our approach: the

template creation, the matching step, and the false positive

reduction step. As stated, breast density is also included in all the

steps.

2.1 Template creation

The first step of the algorithm is the design of a set of reliable

templates. This is based on learning the shapes and sizes from real

masses. Thus, the initial input of the algorithm is a database of

roughly annotated masses, where only the centre and the maxi-

mum radius of the masses are known. Note that, in some cases,

this is the only information we can obtain, as there are masses for

which is difficult to exactly find their boundary. Therefore, using

this set of regions of interest (RoIs), the shapes of the masses are

analyzed and learnt by an algorithm inspired on the eigenfaces

approach [1].

This algorithm makes use of the Karhunen–Loeve transform to

find the set of vectors that best account for the distribution of the

initial images. In order to reduce the size variance of our problem,

we initially cluster the database in few classes according to the

lesion size. Thus, at this point, a set of ‘‘eigenmasses’’ per size are

found. Subsequently, the contours of the N eigenmasses con-

taining 95% of variation explanation are extracted and, per each

size, an initial image template is created where the brightest pixels

represent the pixels with high probability to be a contour of the

mass, while the darkest ones represent pixels with low probability

(for instance, the central region). This template is finally con-

structed by adding each contour image weighted by its corre-

sponding eigenvalue.

The interesting point of this template creation is that varying the

weight of each eigenmass contour, a new shape can be defined or

adapted when looking for a new mass in a mammogram. Thus, we

Fig. 1 FROC analysis of the proposed algorithms over the set of

120 mammograms. Gray lines show the results obtained using the

template matching algorithm (Eig), while black lines show the

ones obtained by the proposed algorithm and the false positive

reduction (Eig+FPRed). Square marks are obtained without

considering breast density information (BDI), and triangular

marks when this information is included
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will consider as plausible mass shapes, those obtained from nor-

malized linear combinations of the eigenmass contours.

2.2 Matching the template in a mammogram

The second step of the algorithm is the matching process, which is

based on a Bayesian pattern matching scheme. We follow the

approach of Jain et al. [2], although clear differences are found in

the way of specifying the deformations. We define an a priori

probability which specifies the global transformations (changes in

translation and scale) and local deformations that can be applied

to the prototype templates. In contrast to the work of Jain et al.

we do not consider rotations for two different reasons: firstly, the

created templates are slightly round, and secondly to reduce the

computational cost. The likelihood probability is a measurement

of the similarity between the templates and the object(s) present in

the mammogram. Finally, the a posteriori probability is found by

multiplying the a priori and the likelihood probabilities. The aim

is to find those points where the a posteriori probability is a

maximum. This is approached here by using a gradient ascent

algorithm.

The result of this step is a set of regions of interest of the mam-

mogram (RoIs) marked as containing potential masses. However,

some of the RoIs actually correspond to normal tissue and

therefore, a subsequent step is necessary for reducing the number

of false positives.

2.3 2DPCA false positive reduction

The third step is inspired on the 2DPCA algorithm [3], a recent

improvement of the eigenfaces algorithm. As stated by the au-

thors, 2DPCA is simpler and more straight-forward to use for

image feature extraction since it is directly based on the image

matrix, and also it is easier to accurately evaluate the covariance

matrix. Note that one could argue that the template in the

detection step could be obtained using such algorithm. However,

this was not used here for computational reasons. Using our ap-

proach, the deformations of the template are modeled using only a

vector of coefficients. Instead, with the 2DPCA approach, a vector

of vectors will be necessary because, with this approach, each

principal component is a vector.

Once the 2DPCA transform is applied, each RoI is compared with

the set of original images already transformed (the training set),

and it is classified according to the behavior of the most similar

image (which can be a mass or normal tissue). Thus, for doing

such task, a different training database of RoIs has to be used, as

we need RoIs with masses and RoIs being normal tissue (a pro-

portion of one RoI with masses for three RoIs being normal tissue

has been selected to both account for the higher variability of

normal tissue and for the higher number of normal RoIs found in

screening data).

2.4 The breast density role

The breast density information can be naturally incorporated into

the previous steps. The training databases are clustered not only in

size, but also according to the breast density. In more detail, from

the first step we will obtain a set of templates for RoIs belonging

to BIRADS I mammograms, another set for RoIs belonging to

BIRADS II mammograms, and so on. Therefore, when looking

for masses in a new mammogram, firstly this will be automatically

classified according to BIRADS standard (see, for example, the

work of Oliver et al. [4] for a recent comparison of automatic

procedures to perform such task), and subsequently, only the

templates of the classified density will be used to find the masses.

This process is also used in the false positive reduction step.

3. Experimental results

The robustness of our approach can be stated by the fact that, in

contrast with previous works, we used a database for training (the

DDSM database [5]) and another one for testing (the MIAS

database [6]). The reasons for this are twofold. Firstly, the algo-

rithm needs a huge database of RoIs for learning and training the

system, in order to get representative instances of the different

shapes and sizes of the masses, which is given by the DDSM

database. Secondly, for evaluation purposes we need an accurately

segmentation of the lesions, and we have this information from

the MIAS database.

Therefore, a set of 120 mammograms were extracted from MIAS

database to test the system, 40 showing confirmed masses (the

ground-truth accurately marked by an expert) while the remaining

80 were normal mammograms. According to the experts consen-

sus, the breast density of this set was distributed in 35 cases for

BIRADS I, 30 for BIRADS II, 30 for BIRADS III, and 25 for

BIRADS IV. On the other hand, a total of 1,440 MLO right

mammograms were extracted from the DDSM database for

training. We selected only MLO mammograms as the MIAS

database only shows this view. Among these, 360 present a mass

being the rest normal ones.

In Fig. 1 the capability to detect masses of the presented algo-

rithm is evaluated using FROC analysis. The gray line with square

marks shows the proposed template matching performance,

obtaining a number of false positives per image. This number is

clearly reduced by the false positive reduction algorithm, the black

line with square marks. The lines with triangular marks are ob-

tained when including the breast density information. Note that

the performance of both algorithms is increased when we take the

internal breast density into account.

A comparison between our approach and others is provided in

Fig. 2. These approaches are based on the works of Tourassi et al.

[8] and Karssemeijer [7]. The former (d1) is a CBIR based algo-

rithm using mutual information which can be considered as an

adaptation of the original work of Lai et al. [9]. The latter (d2) is a

scale-space based algorithm which extracts a set of features of

suspicious regions, and classifies them using a kNN algorithm.

Note that our approach clearly outperforms both algorithms.

In terms of ROC analysis, the overall performance over the

40 mammograms containing masses resulted in an area under the

curve (Az) of 0.84 ± 0.08 and 0.88 ± 0.06 without and with

considering breast density information, respectively. Note that

again the benefits of using the breast density information are clear.

4. Conclusions

We have presented a new algorithm for mass detection. We have

shown that our proposal, even when using different databases of

mammograms for training and testing, outperforms current

Fig. 2 FROC comparison between the proposed approach and

algorithms d1 and d2
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works. Besides, we have demonstrated the important benefits of

developing an initial classification of the mammograms according

to their internal tissue. Further work is focusing on the expansion

of this approach to a larger database of mammograms in order to

clinically assess the full benefits of the developed work.
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Abstract The present study investigates the effect of spatial reso-

lution on co-occurrence matrix-based texture features in discrim-

inating breast lesions as benign masses or malignant tumors. The

highest classification result, in terms of the area under the receiver

operating characteristics (ROC) curve, of Az = 0.74, was ob-

tained at the spatial resolution of 800 lm using all 14 of Hara-

lick’s texture features computed using the margins, or ribbons, of

the breast masses as seen on mammograms. Furthermore, our

study indicates that texture features computed using the ribbons

resulted in higher classification accuracy than the same texture

features computed using the corresponding regions of interest

within the mass boundaries drawn by an expert radiologist.

Classification experiments using each single texture feature

showed that the texture F8, sum entropy, gives consistently high

classification results with an average Az of 0.64 across all levels of

resolution. At certain levels of resolution, the textures F5, F9, and

F11 individually gave the highest classification result with

Az = 0.70.

Keywords Breast cancer Æ Breast masses Æ Haralick’s texture

features Æ Mammography Æ Mass margin Æ Ribbon Æ

Texture analysis Æ Texture features Æ Tumor classification

1. Introduction

Texture analysis, using some or all of the 14 texture features

proposed by Haralick et al. [1], based upon gray-level co-occur-

rence matrices (GLCMs), is a popular approach for the analysis

and classification of many medical images, including breast mas-

ses and tumors seen in mammograms [2–4]. Digital or digitized

mammograms are usually acquired at the spatial resolution of

50 lm, with 4,096 gray levels represented using 12 bits per pixel

(bpp). However, the GLCM of a 12 bpp image would be exces-

sively large for practical computation; furthermore, several pairs

of gray levels would occur with very low rates of incidence to

permit the derivation of reliable statistics. Therefore, in order to

avoid sparse GLCMs, it is common to reduce the image to 256

gray levels, that is, to use 8 bpp. A recent study by Lee et al. [5]

compared the performance of texture features computed using 50,

100, and 400 levels of quantization of gray levels in the classifi-

cation of breast masses; the highest level of classification accuracy

was obtained with the combined use of the texture measures

computed using all three levels of quantization. Our previous

studies have shown that the GLCM-based texture features com-

puted using a ribbon surrounding the region of interest (ROI) of a

mass, that is, using the margin of the ROI, can lead to higher

accuracy of discrimination between benign masses and malignant

tumors, as compared to the same texture features computed using

the entire ROI [6–8].

The present study investigates the effect of spatial resolution on

texture features, in terms of the accuracy of discrimination be-

tween benign masses and malignant tumors. Mammographic films

are generally sampled at 50 lm, close to the resolution of the film

used. At this level of resolution, scanning and film-grain noise may

affect the quality of the image; lowpass filtering and downsam-

pling the images could reduce the effect of the noise on the

GLCM. Several studies have investigated the effect of using var-

ious pixel distances to compute the GLCM on the classification

performance of GLCM-based texture features [2, 3]. Using a pixel

Fig. 1 Examples of the contour, ROI, and ribbon of a a benign mass, and b a malignant tumor
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