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ABSTRACT

A novel technique to simultaneously determining the three-
dimensional geometry and reflectance map of a scene in un-
derwater imaging will be presented . Underwater light is af-
fected by an exponential wavelenght-dependent absorption
and undesired scattering effects. These special conditions
make image and video processing a difficult task in partic-
ipating media. In this paper it is shown how to use this
disturbing absorption effect to find a new way to accurately
estimate the scene depth-map and multispectral reflectivi-
ties. The process requires the acquisition of a multispectral
image of the underwater scenario with the appropriate cam-
era and lightsource arrangement. The algorithm has been
tested on several synthetic images for different noise lev-
els. The promising results show that the technique provides
accurate and stable results.

1. INTRODUCTION

Depth-map reconstruction at pixel level is an important prob-
lem in computer vision [1]. Many techniques have appeared
in the past to recover three-dimensional scene structure from
two-dimensional images. A possible classification of these
techniques broadly divides them into passive and active me-
thodologies []. The most popular passive techniques are
stereo [2] or “structure from motion”, which use multiple
views to resolve structure ambiguities inherent in a single
image. The main bottleneck of these methods is solving the
correspondence problem [3], which is even more difficult
in the case of underwater imaging. Another widely-used
passive technique is “depth from defocus” [4], where the
relationship between focused and defocused images is com-
puted. As in the case of the previous techniques, depth from
defocus requires scenes with enough texture frequency. With
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respect to the second category, among active techniques,
light stripe methods appear as the most popular range sens-
ing techniques. However, to achieve depth maps with suf-
ficient spatial resolution, a large number of closely spaced
stripes has to be used []. This implies projecting one stripe
at a time, and acquiring a sequence of images to be able to
associate a unique stripe with a given pixel. In this case, a
large number of images is necessary to obtain dense recon-
structions. Evolution of this technique gave rise to assig-
nation of gray-codes to the stripes, reducing the number of
required images [5], or the use of color-coded stripe pat-
terns [6], which reduce the number of required images to 1.
The inherent weakness of this approach is the difficulty in
segmentation of the stripes in a real scenario which reflects
differently many wavelengths of light.

Recovering dense depth maps is even more difficult if
we consider an underwater scene. A major obstacle to pro-
cessing images of the ocean floor is related to the special
transmission properties of the light in the underwater me-
dium [7]. Light suffers two different processes in the aquatic
environment [8]: (i) absorption, where light “disappears”
from the image-forming process, and (ii) scattering, unwanted
multiple inter-reflection in the medium. These transmission
properties of the medium causes blurring of image features
and limited visual range [9, 10].

In this paper we propose a novel method for estimating
the depth-map of an underwater scene by exploiting the at-
tenuation coefficients of the water. At the same time, the
mathematical derivation will allow also to recover the re-
flectance properties of the scene. An iterative and a closed
form solution to the estimation of a dense depth map are
provided.

The remainder of this paper is organised as follows: first,
in Section 2, we present the theoretical derivation of our
strategy. Then, Section 5 illustrates the performance of the
technique over a set of synthetic images, demonstrating the
validity of our proposal. Finally, conclusions are given in
Section 6.



2. CAMERA AND LIGHTING ARRANGEMENT

In undewater imaging, and especially in deep ocean appli-
cations, the “longest” visual range is obtained by means of
using only a limited interval of the spectrum in the bluish
range [7]. Unfortunately, also the use of the bluish range
is limited to a few tens of meters. Thereby, for multispec-
tral images narrow-band spectral intervals have to be used.
Despite the fact that this is an energy-consuming approach,
it is better than the efficiency of laser techniques. The pro-
posed method does not need time consuming scanning, as
required by laser, but taking single shots with 2 or 3 lamps
a large area can be processed.

Let us consider 3 spectral channels to illustrate our new
method for depth-map reconstruction. These channels are
not pure spectral colors but tight spectral windows accord-
ing to band-pass filters of 5-20 nm. In a small spectral win-
dow we can assume a homogenous, nearly constant behav-
ior of the most important optical parameters, like scattering
and absorption.

For simplicity, let us call the 3 channels r, g and b,
although they can represent e.g. 460-480, 440-460, 420-
440 nm, three bluish intervals in deep ocean water. Consider
we have several point light sources. In practice we can use
flashes with lenses and optical filters to create a pinhole-like
lightsource. The narrow-band filters could be either (i) built
in a multispectral camera, (ii) placed in front the lens of a
standard grayscale camera, or (iii) applied directly to the
light sources. Let k be the index of lightsources (Lk). Two
lamps are required with known spatial energy distribution,
and known extrinsic (position and orientation) parameters.
The use of a higher number of lights provides redundancy,
thus, increasing accuracy.

Prior to the experiments, both the intrinsic and extrin-
sic parameters of the camera have to be modeled through
calibration, together with the geometry of the lightsources
with respect to the camera. In addition, the absorption fac-
tors of the 3 channels (aR, aG, aB) have to be obtained
also through calibration. Without loss of generality, we as-
sume that the absorption factors are constant in the field of
view. Other central assumption is that the reflectance mod-
els, i.e., the Bidirectional Reflectance Distribution Func-
tions (BRDFs), have the following properties: the ratio of
reflected rgb radiance values is practically constant for the
used light and view directions. That is true for a diffuse
material, but also for a wider class of BRDFs where the
shape of the distribution is similar at every wavelength, dif-
fering only by a linear multiplicative factor. Replacing the 3
“pseudo” rgb channels with “real” rgb colors a pseudo color
image can be created, typically with low-saturated colors.
Namely, the differences of 3 neighboring bluish narrow-
bands in the reflectance curve are small. In order to ob-
tain enhanced colorful images with increased contrast [11]
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Fig. 1. Projection of a 3D world point M onto the image
plane (m); d defines the unknown distance from scene point
M the focal point of the camera, while dk is the distance
from lamp k to M, and Θk defines the angle between the
incident light from lightsource k and the surface normal at
point M.

or [12] can be applied.

3. THE BASIC EQUATIONS

In order to determine the depth map it would be enough
to use 2 of the above mentioned “pseudo” rgb channels to
derive the equations. Thereby, let us assume we work only
with 2 wavelengths. For simplicity let us call the used λ1

and λ2 wavelengths r and g, independently of its real value.
We will demonstrate the method for diffuse materials.

In this case the BRDF is a simple constant value [13]. Strictly,
the BRDFs are:

BRDFr =
r

π
[sr−1], BRDFg =

r

π
[sr−1] (1)

where r and g are the ‘reflectivity’ values in the interval
[0, 1].

Consider a scene point M, which is projected into the
image plane at coordinates m = (xi, yi) (see figure 1). For
a given lamp k, every pixel m of the image defines the fol-
lowing equations:

Rk = r · cosΘk · PRk · d−2
k · e(aR·d) · e(aR·dk) (2)

Gk = g · cos Θk · PGk · d−2
k · e(aG·d) · e(aG·dk) (3)

where d is the unknown distance from scene point M to the
focal point C of the camera; dk is the distance from lamp
k to M; (r, g) define the reflectivity of scene point M, ac-
cording to eq. 1; Θk is the light incident angle; (PRk, PGk)
defines the power of lamp k at wavelengths r and g; and



(aR, aG) are the absorption factors. Finally, (Rk, Gk) are
the values measured by the camera at point m. It should be
noted that we have ignored in eqs. (2–3) some multiplicative
constants: the factor 1

π
in eq. (1) and a factor 1

4π
describing

the irradiance at point M. Namely, the mentioned irradi-
ance value is Pk/(4πd

2
k). This approach is allowed here

since we will only use in the following equations the ratio
between eqs. (2–3).

The intrinsic parameters of the camera can be modeled
through calibration. Thereby, view direction is known for
every pixel. We aim to determine the camera-scene distance
at pixel resolution (d), to obtain a dense depth-map of the
scene.

The unknowns in eqs. (2–3) are d, dk, r, g and Θk.
Therefore, for every pixel, 5 unknowns and 2 equations are
obtained for every lamp k. Let us consider the minimal re-
quired number of lamps, i.e. 2, and assume that both light-
sources reach point M. An additional constraint arises from
the dependence of dk as a function of d, according to the
spatial geometry of the camera-lightsources. Thus, we have
a partly overdetermined problem, but determining Θk is im-
possible using the equations derived for a single point M,
since we have no information about surface normal n

¯
(see

Fig. 1).
In order to solve for the unknowns we use logarithmic

scales. The difference of logarithm of eq. (2) and eq. (3) is
the logarithm of the ratio of eq. (2) and eq. (3). First, we
compute the difference between eqs. (2) and (3) for k = 1,
as shown in eq. (4). Then, the difference between eqs. (3)
and (2) for the second light source (k = 2) (see eq. (5)).

logR1 − logG1 = log r − log g + logPR1−
− logPG1 + d(aR − aG) + d1(aR − aG)

(4)

logG2 − logR2 = log g − log r + logPG2−
− logPR2 + d(aG − aR) + d2(aG − aR)

(5)

Fortunately, proceeding in this way Θk disappears from the
equations. The sum of eqs. (4-5) results in the expression of
eq. (6).

ρ+ P = d1(aR − aG) + d2(aG − aR) (6)

where ρ is a constant which depends on the ratio of Rk and
Gk; and the constant P depends on the power of the light
sources.

ρ = logR1 − logR2 − logG1 + logG2 (7)

P = − logPR1 + logPG1 − logPG2 + logPR2, (8)

thus, eqs. (7) and (8) can be expressed as:

ρ = log

(

R1 ·G2

R2 ·G1

)

(9)

P = log

(

PR2 · PG1

PR1 · PG2

)

(10)

With this approach, the terms containing r or g eliminate
each other. Eq. (6) is a non-linear function of the unknowns
d1 and d2, which can be solved by iteration. We can write
eq. (6) as:

ρ+ P = (aR − aG)(d1 − d2) (11)

Writing d1 and d2 as a function of the depth d of image
point m (see Fig. 1):

dk(d) = ‖M − Lk‖ (12)

Since M = C + d · t
¯
, being M the 3D coordinates of the

imaged scene point, C the 3D position of the camera focal
point and t

¯
the unit vector of the viewing direction, which

can be computed from the intrinsic parameters of the cam-
era. Therefore, eq. (12) can be written as:

dk(d) = ‖C + d · t −̄ Lk‖ (13)

dk(d) =





∑

j

(Cj + d · tj − Lkj)
2





1

2

(14)

with j being the x, y and z coordinates.

4. SOLVING THE EQUATIONS

Knowing the geometry of the system, if the distances from a
scene point to the lamps has been computed, any two values
d1 and d2 allow the computation of d for that given pixel.
We can use as initial value to accelerate the computations
the distance values of a neighboring pixel, or the values of
a lower resolution picture.

dk(d) =





∑

j

(Akj + d · tj)2




1

2

(15)

with j being the x, y and z coordinates. Therefore, expand-
ing eq. (15), the distance dk from every pixel to lamp k can
be expressed as a function of the form dk =

√
d2 + bk · d+ ck,

where only d is unknown and bk and ck are constants. Re-
taking eq. (11), we can write:

ρ+ P

aR − aG

= d1 − d2 (16)

Now, we can define the constant B as

B =
ρ+ P

aR − aG

and considering d1 and d2 as expressed above, eq. (17) is
obtained:

B =
√

d2 + b1 · d+ c1 −
√

d2 + b2 · d+ c2 (17)



Solving eq. (17), two possible solutions for d can be ob-
tained

d =
−2b1B

2
− 2b2B

2 + 2c1b1 − 2b1c2 + 2c2b2 − 2c1b2 ± 4ψ

2 · (4B2 − b2
2
− b2

1
+ 2b1b2)

(18)
with

ψ =
√

B2 · (b22c1 + b21c2 + b1B2b2 +B4 + c21 + ∆)

∆ = c22 − 2B2c1 − 2B2c2 − b1c1b2 − b1c2b2 − 2c2c1

4.1. Removing the absorption effect

Knowing the distances we have to determine the r, g and
cos Θk values using eqs. (2–3). To approximate the cos Θk

values, the known depth map and finite element gradient
estimation for the local gradient of the underwater terrain
can be used.

The final step is to compute the corrected r and g reflec-
tivities using the absorption and distance values. Having
more than 2 lamps, we can build –for every selected pair of
lamps– the eqs. (2-11). This redundancy increases the accu-
racy or enables the computation of the surface points which
may be in shadow for some of the lamps.

The average or median value of the reflectivities for the
active lamps gives the desired reflectivity values, be them r
and g or rgb pseudo color triplets.

For non-diffuse, but appropriate class of BRDFs the co-
sine term will be multiplied by a term which depends on the
geometry. The basic assumption: the constancy of rgb ratio
is deeply used in the derivation above.

5. EXPERIMENTAL RESULTS

6. CONCLUSIONS

A new strategy for dense depth estimation has been de-
scribed. This scene reconstruction is not only valid for dif-
fuse materials (with constant BRDF), but for a wide class of
materials, having “non- color-changing” BRDFs.

The algorithm takes into account BRDF functions both
to compute the depth map of the scene, and to perform a
radiometric correction of the pixels of the scene.

The up-to-date high-speed CMOS camera sensors and
high power flashes ensure a viable implementation of our
technique.
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Fig. 2. Average percentage of correct correspondences after elim-
inating all the outliers using the proposed texture based methods
(1 − 6). (a) Original synthetic image. (b) Reconstructed image
(continuous case). (c) Reconstructed image (discrete case with 16
bits per pixel).


