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László Neumann1, Rafael Garcia1, Jordi Ferrer1, and Attila Neumann2

Institute of Informatics and Applications
University of Girona, Spain

Abstract. A new technique to simultaneously determining the three-
dimensional geometry and reflectance map of a scene in underwater
imaging will be presented. Underwater light is affected by an exponential
wavelength-dependent absorption effect. These special conditions make
image and video processing a difficult task. In this paper it is shown how
to use this disturbing absorption effect to find a new way to accurately
estimate the scene depth-map and multispectral reflectivities. The pro-
cess requires the acquisition of a multispectral image of the underwater
scenario with appropriate camera and light source arrangement. In ad-
dition, the method also allows the computation of the normal vectors of
every point of the reconstructed scene. In contrast to usual approaches,
our algorithm does not require any information of the neighborhood to
compute the surface normal at a given point. Thereby, this estimation is
stable at depth-discontinuities.
The algorithm has been tested on several synthetic images for differ-
ent noise levels. The promising results show that the technique provides
accurate and stable results.



2

1 Introduction

Depth-map reconstruction at pixel level is an important problem in computer vi-
sion [11]. Many techniques have appeared in the past to recover three-dimensional
scene structure from two-dimensional images. A possible classification of these
techniques broadly divides them into passive and active methodologies. The most
popular passive techniques are stereo [2] or “structure from motion”, which use
multiple views to resolve structure ambiguities inherent in a single image. The
main bottleneck of these methods is solving the correspondence problem [13],
which is even more difficult in the case of underwater imaging. Another widely-
used passive technique is “depth from defocus” [7], where the relationship be-
tween focused and defocused images is computed. As in the case of the previous
techniques, depth from defocus requires scenes with enough texture frequency.
With respect to the second category, among active techniques, light stripe meth-
ods appear as the most popular range sensing techniques. However, to achieve
depth-maps with sufficient spatial resolution, a large number of closely spaced
stripes has to be used. This implies projecting one stripe at a time, and acquiring
a sequence of images to be able to associate a unique stripe with a given pixel. In
this case, a large number of images is necessary to obtain dense reconstructions.
Evolution of this technique gave rise to assignation of gray-codes to the stripes,
reducing the number of required images [12], or the use of color-coded stripe
patterns [1], which reduce the number of required images to 1. The inherent
weakness of this approach is the difficulty in segmentation of the stripes in a
real scenario which reflects differently many wavelengths of light.

Recovering dense depth-maps is even more difficult if we consider an un-
derwater scene. A major obstacle to processing images of the ocean floor is
related to the special transmission properties of the light in the underwater me-
dium [5]. Light suffers two different processes in the aquatic environment [3]:
(i) absorption, where light “disappears” from the image-forming process, and
(ii) scattering, unwanted multiple inter-reflection in the medium. These trans-
mission properties of the medium causes blurring of image features and limited
visual range [4, 6].

In this paper we propose a novel method for estimating the depth-map of an
underwater scene by exploiting the attenuation coefficients of the water. At the
same time, the mathematical derivation will allow also to recover the reflectance
properties of the scene for some wavelengths (typically in the bluish range). A
closed form solution to the estimation of a dense depth-map is provided.

2 Camera and lighting arrangement

In underwater imaging, and especially in deep ocean applications, the “longest”
visual range is obtained by means of using only a limited interval of the spectrum
in the bluish range [5]. Unfortunately, also the use of the bluish range is limited
to a few tens of meters. We suggest the use of standard flash lamps and narrow-
band filters. Despite the fact that this seems an energy-consuming approach, it
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is better than the efficiency of laser techniques. The proposed method does not
need time consuming scanning, as required by laser, but taking single shots with
2 or 3 lamps a large area can be processed.

Let us consider 3 spectral channels to illustrate our new method for depth-
map reconstruction. These channels are not pure spectral colors but tight spec-
tral windows according to band-pass filters of 5-20 nm. In a small spectral win-
dow we can assume a homogenous, nearly constant behavior of the most impor-
tant optical parameters, like scattering and absorption.

For simplicity, let us call the 3 channels r, g and b, although they can rep-
resent e.g. 460-480, 440-460, 420-440 nm, three bluish intervals in deep ocean
water. Consider we have several point light sources. In practice we can use flashes
with lenses and optical filters to create a pinhole-like light source. The narrow-
band filters could be either (i) built in a multispectral camera, (ii) placed in
front the lens of a standard grayscale camera, or (iii) applied directly to the
light sources. Let k be the index of light sources (Lk). Two lamps are required
with known spatial energy distribution, and known extrinsic (position and ori-
entation) parameters. The use of a higher number of lights provides redundancy,
thus, increasing accuracy.

Prior to the experiments, both the intrinsic and extrinsic parameters of the
camera have to be modeled through calibration, together with the geometry of
the light sources with respect to the camera. In addition, the absorption factors
of the 3 channels (aR, aG, aB) have to be obtained also through calibration.
Let us assume that the absorption factors do not change in the field of view
and that the reflectance models, i.e., the Bidirectional Reflectance Distribution
Functions (BRDFs), have the following properties: the ratio of reflected rgb
radiance values is practically constant for the used light and view directions.
That is true for a diffuse material, but also for a wider class of BRDFs where the
shape of the distribution is similar at every wavelength, differing only by a linear
multiplicative factor. Replacing the 3 “pseudo” rgb channels with “real” rgb
colors a pseudo color image can be created, typically with low-saturated colors.
Namely, the differences of 3 neighboring bluish narrow-bands in the reflectance
curve are small. In order to obtain enhanced colorful images with increased
contrast [9] or [10] can be applied.

3 Computing depth and reflectance

3.1 The basic equations

In order to determine the depth-map it is enough to use 2 of the above mentioned
“pseudo” rgb channels to derive the equations. Let us assume we work only with
2 wavelengths. For simplicity let us call the used λ1 and λ2 wavelengths r and
g, independently of its real value.

We will demonstrate the method for diffuse materials. In this case the BRDF
is a simple constant value [8]. Strictly, the BRDFs are:

BRDFr =
r

π
[sr−1], BRDFg =

g

π
[sr−1] (1)
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Fig. 1. Projection of a 3D world point M onto the image plane (m); d defines the
unknown distance from scene point M the focal point C of the camera, while dk is the
distance from lamp k to M, and Θk defines the angle between the incident light from
light source k and the surface normal n at point M

where r and g are the “reflectivity” values in the interval [0, 1].
Consider a scene point M, which is projected into the image plane at coor-

dinates m = (xi, yi) (see Fig. 1). For a given lamp k, every pixel m of the image
defines the following equations:

Rk =
1

4π2
· rk · cosΘk · PRk · d−2

k · e(−aR·d) · e(−aR·dk) (2)

Gk =
1

4π2
· gk · cosΘk · PGk · d−2

k · e(−aG·d) · e(−aG·dk) (3)

where d is the unknown distance from scene point M to the focal point C of the
camera; dk is the distance from lamp k to M; (rk, gk) define the reflectivity, or
more precisely the reflected radiance of scene point M for the lamp Lk and view
point geometry, according to eq. (1); Θk is the light incident angle; (PRk, PGk)
defines the power of lamp k at wavelengths rk and gk; and (aR, aG) are the
absorption factors. To illustrate their effect, consider an absorption parameter
a = 0.2, then the radiance will be e−0.2·1 = 0.8187 times smaller after 1 meter.
Finally, (Rk, Gk) are the incoming radiance values [Wm−2sr−1], which can be
computed after appropriate calibration from the pixel signal of the camera and
the exposure time. It should be noted that we have used in eqs. (2–3) the multi-
plicative constant 1

4π2 coming from the factor 1
π

in eq. (1) and from the factor 1
4π

describing the irradiance at point M. Namely, the mentioned irradiance value is
Pk/(4πd

2
k).

The intrinsic parameters of the camera can be modeled through calibra-
tion. Thereby, view direction is known for every pixel. We aim to determine the
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camera-scene distance at pixel resolution (d), to obtain a dense depth-map of
the scene.

The unknowns in eqs. (2–3) are d, dk, rk, gk and Θk. Therefore, for every
pixel, 5 unknowns and 2 equations are obtained for every lamp k. Let us consider
the minimal required number of lamps, i.e. 2, and assume that both light sources
reach point M. An additional constraint arises from the dependence of dk as a
function of d, according to the spatial geometry of the camera-light sources.
In order to solve for the unknowns we use logarithmic scales. The difference of
logarithm of eq. (2) and eq. (3) is the logarithm of the ratio of eq. (2) and eq. (3).
First, we compute the difference between eqs. (2) and (3) for k = 1, as shown in
eq. (4). Then, the difference between eqs. (3) and (2) for the second light source
(k = 2) (see eq. (5)).

lnR1 − lnG1 = ln r − ln g + lnPR1 − lnPG1 + d(aG − aR) + d1(aG − aR) (4)

lnG2 − lnR2 = ln g − ln r + lnPG2 − lnPR2 + d(aR − aG) + d2(aR − aG) (5)

Fortunately, proceeding in this way Θk disappears from the equations. The
sum of eqs. (4-5) results in the expression of eq. (6).

ρ+ P = d1(aG − aR) + d2(aR − aG) (6)

where ρ is a value which depends on the ratio of Rk and Gk; and the constant P
depends on the power of the light sources. To ensure a solvable eq. (6) we have
to select wavelengths where aR 6= aG.

ρ = lnR1 − lnR2 − lnG1 + lnG2 (7)

P = − lnPR1 + lnPG1 − lnPG2 + lnPR2, (8)

thus, eqs. (7) and (8) can be expressed as:

ρ = ln

(

R1 ·G2

R2 ·G1

)

P = ln

(

PR2 · PG1

PR1 · PG2

)

(9)

With this approach, the terms containing r or g eliminate each other. Eq. (6) is a
non-linear function of the unknowns d1 and d2, which can be solved by iteration.
We can write eq. (6) as:

ρ+ P = (aG − aR)(d1 − d2) (10)

Writing d1 and d2 as a function of the depth d of image point m (see Fig. 1):

dk(d) = ‖M − Lk‖ (11)

Since M = C + d · t
¯
, being M the 3D coordinates of the imaged scene point, C

the 3D position of the camera focal point and t
¯

the unit vector1 of the viewing

1 In order to provide a clearer view to the reader, unit vectors are written in underline
form ( )
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direction, which can be computed from the intrinsic parameters of the camera.
Therefore, eq. (11) can be written as:

dk(d) = ‖C + d · t
¯
− Lk‖ (12)

dk(d) =





∑

j

(Cj + d · tj − Lkj)
2





1

2

(13)

with j being the x, y and z coordinates.

3.2 Closed form solution

Expanding eq. (??), the distance dk from every pixel to lamp k can be expressed
as a function of d in the form dk(d) =

√
d2 + bk · d+ ck, where only d is unknown

and bk and ck are constants. Retaking eq. (10), we can write:

ρ+ P

aR − aG

= d1 − d2 (14)

Now, we can define the constant B = d1 − d2 and considering dk as expressed
above, for the two lamps, d1 and d2 eq. (15) is obtained:

B =
√

d2 + b1 · d+ c1 −
√

d2 + b2 · d+ c2 (15)

Squaring and simplifying eq. (15), two possible solutions for d can be obtained

d =
λ± 2 ·

√
ψ

τ
(16)

with

λ = −B2 · (b1 + b2) + b2 · (c2 − c1) + b1 · (c1 − c2)

ψ = B2 · ((c1 · (−2 · c2 + c1 + b2 · (b2 − b1)))

+(c2 · (c2 + b21))

+(b1 · b2 · (B2 − c2))

+(B2 · (B2 − 2 · (c1 + c2))))

τ = 4 ·B2 + 2 · b2 · b1 − b22 − b21

The correct root of eq. (16) is selected through the following strategy. Con-
sider 3 light sources and 3 wavelengths in a real scenario. Nine noisy d values
for every pixel will be obtained according to eq. (16). Then, d can be estimated
as the median of the 9 noisy solutions. However, since eq. (16) comes from a
quadratic equation, it provides 2 different solutions for every selected pair of
lamps and wavelengths. In some cases, one of the non-real solutions can be re-
jected easily knowing the geometrical arrangement, obtaining a unique solution.
Unfortunately, there are problematic cases where both solutions satisfy all the
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equations (6) to (16). In this situation, the selection of the correct solution is
a hard problem, which cannot be solved through a simple geometrical analy-
sis. In this case, we ignore both of these two solutions, obtaining less than 9
d values. Finally, the median of the unique solutions will be accepted as the
estimated depth value. If none of the 9 pairs gives any unique solution for d,
the depth map of this point will remain unknown. Fortunately, these cases are
rather unfrequent.

3.3 Particular camera-light source arrangement

In this section we develop the equations of a special case in the arrangement of
the geometry of the system. If one of the light sources is located at the focal point
of the camera (e.g. through a beamsplitter as in the case of vision the systems
used in industry), one of the square roots in equation (15) can be eliminated.
Then, a simpler equation containing only one root can be obtained. Consider
the case where L1 is located at the focal point (d1 = d). The following equation
is obtained:

B = d−
√

d2 + b2 · d+ c2

d =
−c2 +B2

b2 + 2 ·B
or, if the lamp L2 is located at the focal point (d2 = d):

B = d+
√

d2 + b1 · d+ c1

d =
−c1 +B2

−b1 + 2 ·B

3.4 Removing the absorption effect

Having an image with absorption for every lamp, and knowing d and dk values for
every pixel, we can remove the unwanted absorption effect by dividing the pixel
radiances Rk and Gk of eqs. (2–3) by e−aR(d+dk) and e−aG(d+dk), respectively.
Proceeding in this way, a different image is obtained for every lamp. All these
images can be merged into a single image by a linear combination of these
absorption-less images.

The final step is to determine r and g reflectivities, knowing d and dk values.
Writing eqs. (2–3) for lamps k = 1 and k = 2, we obtain 4 equations and
the 4 unknowns: r, g, cosΘ1 and cosΘ2. After logarithmic transformation, the
appropriate linear equation system can be solved.

Having more than 2 lamps, we can build –for every selected pair of lamps–
eqs. (2–10). This redundancy increases the accuracy or enables the computation
of the surface points which may be in shadow for some of the lamps. Having L
active lamps for a given pixel, and using W different wavelengths, we can build a

total number of

(

L

2

)

·
(

W

2

)

different equation systems with appropriate power

selection in eq. (8).
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The median value or RANSAC-like estimation of the reflected radiances for
the active lamps provides the desired reflectance values.

4 Estimation of the normal vectors of the surface

The depth-map of the part of the scene acquired by the camera can be calculated
using only 2 light sources. If 3 lamps are used, in addition to the depth-map,
the surface normal vectors can also be determined for those points of the scene
that receive light from the 3 light-sources.

Consider the 3D point M, which belongs to the surface. Knowing the depth-
map d at point M, the coordinates of M can be computed provided that M =
C + d · t (see fig. 1). Therefore, vector lk can be expressed as lk = M−Lk, and
lk is the unit norm version of lk

lk =
M − Lk

‖M − Lk‖

If the unknown surface normal n at point M were a unit vector (n), then
the cosine factor in eq. (3) would be simply the scalar product of the two unit
vectors lk and n:

lk · n = cos θk (k = 1, 2, 3) (17)

The k indices in eq. (17) refer to the 3 selected lamps. The positivity condition
lk · n > 0 holds, because the two normal vectors point towards the same half-
space and neither lighting nor the visibility are perfectly tangential. The length
of n is unknown, thus the cos θk values are also unknown. Fortunately, knowing
the depth-map, the value of the product rk · cos θk (or for other wavelength)
can be computed from eqs. (2) or (3). For now let us concentrate on a single
wavelength and the 3 selected lamps. They determine a linear equation system
of 3 unknowns, namely of the components of the non-normalized surface normal
vector n.

l1 · n = r1 · cos θ1
l2 · n = r2 · cos θ2
l3 · n = r3 · cos θ3

(18)

where the product terms (rk ·cos θk) are known, and lk can be computed from the
estimated d. The remaining unknowns are rk and the normal vector n, provided
that cos θk = lk · n if ‖lk‖ = ‖n‖ = 1.

Solving the linear system (18) the elements nx, ny and nz of the non-
normalized vector n are obtained. Then, knowing n, his normalized form n

can be computed, and we will obtain from eq. (17) the cos θk values. Finally, we
determine, having all of other numbers, from eq. (18) the reflectance or BRDF
values r1 , r2 and r3 values, which depend on light and viewpoint geometry, can
be obtained. Similarly, the appropriate reflectance values can be computed for
the other wavelengths.
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It is important to note that our proposal to compute the surface normals is
not based not on a finite difference like in local estimation methods, where inte-
gration is used at neighbouring pixel-depths [14]. This new approach allows the
direct computation of the surface normals, independently of the normal vectors in
the neighbourhood. Thereby, this estimation is stable at depth-discontinuities.
Furthermore, the reflectance value of the surface is obtained for the selected
wavelengths as a “side-effect”.

5 Simulation Results

In order to prove the correctness of the proposed approach we have carried
out extensive simulations. Consider a scene with the camera facing downwards,
simulating the situation of an underwater robot navigating close to the ocean
floor. The camera is located at a distance of 8 meters over the seabed. Three
light sources have been placed as illustrated in Fig. 2. It can be noted that in
this case the light sources are located at relative small incident angles to avoid
large shadows induced in the scene.

A real CCD camera has been simulated by rounding the floating point values
of the image into 16-bit integer numbers. The simulated camera is the HiRes IV

Plus from DTA, which integrates a Kodak CCD (model KAF-1301LE ), and the
noise added to the image corresponds to the specifications of the manufacturer.
Fig. 3(a) illustrates a sample synthetic image, which simulates an underwater
scene with a typical bluish fast-darkening effect. The absorption parameters have
been selected slightly high in this example (around 0.15 for every wavelength),
differently from the true deep ocean values, being them about 2 or 3 times
smaller according to the data provided in [5] for the deep ocean. The reason
of this selection was to study the nature of numerical errors, which in normal
situation are significantly less. We can observe in fig. 3(a) how colors are darker
and more saturated at the top corners, according to the longest light paths.

The original image has been perturbed by a zero-mean Gaussian noise (ac-
cording to DTA) with σ = 1.3, and the equations for the depth and reflectance
maps have been solved. Taking into consideration 3 light sources and 3 wave-
lengths, the depth of every pixel is computed according to eq. (16). Fig. 3(b)
shows the result of removing the absorption by means of the proposed approach.
The colors in this image correspond to the originally selected BRDFs with the
shadowing effects.

In order to prove the goodness of the method, noise has been added not
only to the image acquired by the camera, but to the parameters that should
be calibrated. The absorption parameters of the medium can be calibrated by
means of a standard underwater spectrophotometer. We have added noise to the
absorption parameters according to the specifications of the ac-9 device by WET

Labs. Besides, the extrinsic parameters of the camera (position and orientation of
the camera and light sources) have been perturbed with arbitrary noise. Finally,
the power of the lamps can be calibrated by means of a spectral lightmeter (e.g.
PR-650 SpectraScan Colorimeter by Photo Research). Again, noise has been
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added to the system according to the specifications of the manufacturer. On the
other hand, fig. 3 shows the obtained reflectance and 3D reconstruction of the
scene, after adding all the noise described above. The obtained depth-map is
illustrated in Fig. 5.

As a summary, Table 1 illustrates the performance of the algorithm under dif-
ferent conditions. The first row proves the correctness of the presented method.
The average and standard deviation error are presented in the first and second
columns and expressed in meters. The last column shows the percentage of the
image that has not been reconstructed since the depth-map could not be com-
puted through the algorithm presented in section 3.2. The second and third rows
of the table show the results of estimating the depth-map after quantization of
the image with 16 bits without noise and with Gaussian noise added to the image,
respectively. The next row shows the result of applying the different sources of
error to the system, i.e. noise in the extrinsic parameters, estimated power of the
lamps and absorption parameters. The worst case when all the possible sources
of error occur is illustrated in the last row, where the two previous sources of
error (image and calibrated parameters) are applied before reconstructing the
scene. Also in this case, the resulting depth-map presents an average depth error
of less than 3 cm for a distance of more than 8 meters.

Table 1. Summary of the performance of the algorithm under different conditions

Average Error Std. Error Not Reconstructed

Continuous 2.3544 · 10−14 m 2.0377 · 10−14 m 0.0 %
Discrete 16 bits 6.2043 · 10−3 m 6.2027 · 10−3 m 1.2374%
D16 - RGB Noise 1.8673 · 10−2 m 1.8418 · 10−2 m 5.3830%
D16 - Param. Noise 2.1764 · 10−2 m 1.5635 · 10−2 m 29.8656%
D16 - All Noise 2.8926 · 10−2 m 2.2397 · 10−2 m 34.1474%

6 Conclusions

Depth-map estimation using structure from motion techniques is susceptible
to poor density and limited accuracy in underwater imaging. In addition, it is
important in many applications to obtain accurate and dense depth-map and re-
flectivities of the scene. The theoretical background to recover pixel-dense depth
and reflectance maps using a new strategy has been presented. The otherwise
undesired absorption of the medium allows the method to work, taking ad-
vantage of this unwanted effect. This scene reconstruction is not only valid for
diffuse materials (with constant BRDF), but for a wide class of materials, having
“non-color-changing” BRDFs. The approach can be applied to any scene in a
participating medium, after computation of the system intrinsic and extrinsic
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parameters and the absorption coefficients of the medium for the selected wave-
lengths. Finally, we have proposed a methodology to compute the normal vectors
of the surface without the need of neighbouring points information. The algo-
rithm has been tested on several synthetic images for different noise levels. The
promising results show that the technique provides accurate and stable results.
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Fig. 2. Geometry of the system. The top sphere represents the position of the camera.
The part of the scene viewed by the camera is illustrated through the red lines. The
other 3 spheres represent the position of the light sources
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(a)

(b)

Fig. 3. (a) Original synthetic image. (b) Reconstructed image after removing the ab-
sorption effect (continuous case)
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Fig. 4. Resulting 3D geometric and reflectance reconstruction after adding realistic
noise to the acquired image, absorption parameters, power of the lamps and the system
geometry

Fig. 5. Depth-map (d) of the reconstructed scene obtained from the noisy input data.
The reference coordinate system is located at the focal point of the camera


