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Abstract. Machine learning techniques are the cornerstone to han-
dle the amounts of information available for building comprehen-
sive models for decision support in medical practice. However, the
datasets use to have a lot of missing information. In this work we
analyse how the random forests technique could be used for deal-
ing with missing phenotype values in order to prognosticate diabetes
type 2.

1 INTRODUCTION

Diagnosis of type 2 diabetes is made typically using clinical criteria.
However, some population studies, specially in which young people
is involved, have provided evidence that the diagnosis should be sup-
ported by phenotype data [16]. This phenotype data is not just useful
for handling inheritance factors, but also for understanding nutrition
conditions in pre and post-natal stages (see [8] and [9] for a reviewed
version). In fact, phenotype data could provide new possibilities for
handling risk prognosis for both, type 1 and type 2 diabetes [17],
and also find explanations for other combination processes known as
undetermined diabetes or 1.5 diabetes [16].

Our work concerns on using phenotype data to building a clini-
cal decision support system (CDSS) for diabetes 2 prognosis. To that
end, we are provided with a huge dataset of patient samples, each
one characterised by a considerable amount of phenotypes. There-
fore, we require the application of a machine learning technique to
obtain a prognosis model to be handled by the CDSS. In so doing,
our challenge is to handle the considerable amount of missing infor-
mation, a typical situation when dealing with phenotypes [14].

There are several methods to deal with missing data that can be or-
ganized in four categories [15]. First, methods that discard instances
(i.e. samples) with missing information. Second, methods that ac-
quire missing values to complete the information, which involves
some additional costs. Third, imputation methods are the largest fam-
ily, and can be in turn organized in three groups: predictive value
computation methods (e.g. mean, mode, the most popular ones),
distribution-based computation (which take into account the class or
diagnose of the samples), and unique-value imputation (replacing the
missing value by a given value that represents it). Finally, the fourth
category of methods are the reduced-feature models which incorpo-
rate only the phenotypes known in a given query (test). These latter
kind of methods have been shown to be the ones that most improve
the prognosis accuracy [15]
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Handling missing values by adding and removing features accord-
ing to a given query as reduced model approaches do is quite simi-
lar to the random forests (RF) machine learning technique. RF is a
method that combines several decision tree models to provide a clas-
sification outcome (i.e. prognosis) [5]. Each decision tree is learned
by using a base learner method applied to a subset of features (phe-
notypes) that are randomly selected, as well as to a subset of samples
that are also randomly chosen. In fact, the RF technique could be con-
sidered as a combination of discard instance methods and reduced-
feature models for handling of missing values. However RF does not
remove any information which could be useful towards a person-
alised prognosis. In this paper, we analyse such possibility by apply-
ing RF to prognosticate diabetes type 2 from a dataset of phenotypes
with a considerable amount of missing values.

This paper is organized as follows. First, we describe in Section
2 some previous related work. Next, in Section 3 we explain our
method. We continue in Section 4 by describing the experimentation
carried out and providing the results obtained. We end the paper in
Section 5 with some conclusions and discussion about future work.

2 RELATED WORK

The application of machine learning techniques to gene expression
data is becoming a key issue for Biomedicine [3]. For example, [7]
build a binary logistic regression model based on phenotypes and
genotype data to risk prediction of inheritance diabetes. 5639 patients
were considered in the study, from which samples with at most a
10% of missing features were considered. We are not provided with
so many patient data, and we need to handle a higher number of
missing information to keep enough samples for learning a model.

In [14] and approach for imputing missing phenotypes based on
a method called co-trained is presented. Co-trained means that miss-
ing phenotypes are predicted (in-silico phenotypes) based on a sec-
ond class of information (i.e. clinical data). The method is applied
in phenotypes related to migraine. the use of in-silico phenotypes
generation implies that two machine learning methods are combined
(one for phenotype learning, the second one for disease prediction
from the phenotypes), and transfer leaning complex issues should be
taken into account. Our aim is to keep original data as much as pos-
sible, handling missing data in the machine learning technique itself.

Another interesting work is [11], which use self-organizer maps
to look for associated diseases (kidney disease, retinopathy, hyper-
tension). Self organized maps allows to obtain groups of biomakers
than should next be interpreted by the clinicians. In our work, we are
dealing with classification (i.e. prognosis), although [11] could be
considered to extend the follow-up of diagnostic persons, in a hybrid
methodology of [11] and ours.
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In [1] a comparison analysis among different imputation meth-
ods is performed, including instance deletion, mean imputation, me-
dian imputation, and k-nearest neighbour (knn) over a parametric
and a non-parametric machine learning methods. The results highly
depend on the characteristics of the data set, that is, the amount
of missing features. Nevertheless, it seems that the case-deletion
methods is the one that performs the worst, while the knn showed
a higher robustness to missing data. The latter results agree with
[2], where the authors analyse also several methods and demon-
strate the out-performance of knn. The knn approach was analysed
also in [15] as part of the reduced model approaches, and the results
were slightly different, obtaining best performance with the authors
approach called reduced-feature ensemble (RFE). RFE consists on
generating several models, in which a feature is excluded in each of
them. Given a query case, the outcomes of the different models are
combined in a voting approach to obtain the final prediction value.
This approach is also known as bagging ("bootstrap aggregating’)
[4]. However, bagging suffers from a higher correlation of the pre-
dictions [12]. The RF technique applied in our work decorrelate the
base learners thanks to the random choice of features and samples.

3 METHODOLOGY

Our aim is to build a prediction model from phenotype data, which
involves a considerable amount of missing values. The technique we
are proposing is RF, because our hypothesis is that RF are able to
handle missing information in a similar way than remove-feature and
remove-instance missing information methods. However, RF does
not discard any data a priori, which could provide nice properties
regarding individualization (i.e. personalized prognosis).

RF is a supervised method, meaning that each instance or sample
is labelled with the outcome (prognosis). Each instance is noted as
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(z,y), where x is a list of attributes a1, az,...,a, and its values
v1,V2,...,Un; and y the class to which the patient belongs. In our
particular case, y € C = {healthy, diabetisType2}. Moreover, a;
are the phenotypes, and we use v;; to denote the j value of the 7 phe-
notype. Each phenotype ¢ has NV A; values. In our particular case,
NV A; = 4 (Vi), 3 values, plus the unknown value. Therefore, we
are considering phenotypes with missing information in our machine
learning technique °.

RF  consists of an ensemble of k  classifiers
hi(x),ha(z),. .., he(z), being h(z) the joint classifier [13, 5].
Each classifier h;(x) consists of a decision tree, in which nodes
are attributes (see Figure 1). The selection of which attribute is
collocated in a node is performed as follows: 1) by randomly
selecting a subset of features, 2) an evaluation measure is applied
to the selected attributes according to their capability to provide
homogeneity partitions of the samples, and 3) the attribute with
the highest score is chosen. In particular, we use the change of the
Gini impurity function (GC) to compute the score, as described in
Equation 1:

NV A,
GCai) ==Y P*(C)+ Y p(viy) Y p*(Crlviy) (D
cReC j=1 CrecC

Once a node is set with an attribute a;, the the data is split into as
many sets as values the a; attribute has. Then, the tree is growth with
new nodes in each branch that are obtained by repeating the attribute
selection process. The stopping conditions is defined according to
the number of instances remaining in a node: if this number is lower
than a given threshold 7, the algorithm stops. Samples used to build
each tree are also selected randomly with replacement.

5 In fact, this could be considered as a unique-value imputation method, as
the unknown or missing value is treated as another attribute value.



Given a query case ¢, each decision trees provides an outcome,
h(g), and the final prediction is obtained by using a voting mecha-
nism.

4 RESULTS AND DISCUSSION

In this section we describe our data, the experimental scenarios, and
the results obtained.

4.1 Dataset description

The experimentation has been carried out with a dataset of 1074 pa-
tients, of whom we knew whether they had diabetes or they do not.
For 196 patients, the diagnosis was unknown and therefore, have
been removed from the dataset, remaining a total of 878 instances
for experimentation. Each sample contains 101 phenotypes regard-
ing diabetes type 2.

Regarding missing information, Figure 2 shows the distribution of
missing data along the different samples. It is worthy to observe that
some of the samples accumulates a huge percentage of missing in-
formation. On the other hand, Figure 3 shown the amount of missing
values per phenotypes® (blue color). Phenotypes have been ordered
in the x-axis according to their amount of missing values.

% Missing Phenotypes per Sample

Figure 2. Percentage of missing phenotype values per sample. X-axis:
cases.

4.2 Experimental set up

In order to analyse the implications of RF to handle missing data, the
following experimental scenarios have been defined:

Raw data The dataset is used as provided.

Reduced features Features with the highest degree of missing in-
formation are removed. In particular, all features with more than
23% of missing values have been removed. This percentage has
been set up according to the information visualized in Figure 3.

Reduced samples Samples with more than 25% of missing infor-
mation has been removed. The percentage has been set up accord-
ing to Figure 2.

6 Phenotypes names are hidden for simplicity reasons and medical research
confidentiality issues.

Reduced features and samples Both, the reduced features and
samples criteria is applied to the dataset.

The number of decision tress has been set to k=1000. According
to [5], as the number of trees increases, for almost surely the RF
converges to the real predictor. The experimentation methodology
used has been the stratified k-fold cross validation (we set 5 folds).
Results are analysed in terms of accuracy.

4.3 Results

Table 1 shows the results obtained in the different scenarios. The
highest accuracy is obtained when removing samples with a huge
amount of missing values (in bold). On the other hand, it is interest-
ing to observe that the results when removing features are very bad,
even when the removed features contain a lot of missing values. This
fact also impacts in the combination scenario. Therefore, RF is han-
dling appropriately missing information. Internally, RF are building
several trees in which the phenotypes with a high amount of missing
features could be skipped, but the presence of all of the phenotypes
are important for prognosis prediction. In that regard, individualiza-
tion is keep in the model, favouring a personalized prognosis.

On the other hand, RF is not able to handle samples with a huge
number of missing information (scenario raw data). Although inter-
nally samples are randomly selected for building the decision trees,
RF require from some pre-processing that filter outs the data with
a huge amount of missing information in order to provide good ac-
curacy results. Therefore, a pre-processing step for performing such
remove-instances method is still required.

Table 1. Accuracy results

Scenario Experiment Accuracy
1 Raw data 80.50%
2 Reduced features 62.93%
3 Reduced samples 86.91%
4 Combine 2+3 62.67%

5 CONCLUSION

The application of machine learning techniques to phenotype
datasets for building models for disease prognosis need to deal with a
huge amount of missing information. In this work we present an ap-
plication of RF that shows how this technique could deal with miss-
ing information. Results show than RF can perform well with fea-
tures with missing values. Keeping all phenotypes lead us to think
that RF favours personalized prognosis, considering all the particu-
larities of an individual. However, regarding samples, RF requires a
minimum information in the samples to achieve good accuracy re-
sults.

As a future work, we need also to explore the combination of phe-
notype data with clinical information, as well as other environmen-
tal factors; diabetes type 2 is an heterogeneous disorder that require
considering all these factors [10]. On the other hand, the use of RF
causes a loss of the nice interpretation properties of a single decision
tree. In that regard, the work of [6] could provide some insights.
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Figure 3. Distribution of phenotype values. Phenotypes are ordered according to the highest to lowest number of missing values (blue color).
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