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Abstract: A composite image constructed by combining a set of smaller images is known as mosaic. Mosaics of the ocean floor are very useful in undersea exploration, creation of visual maps, navigation, etc. Tedious manual control of Remotely Operated Vehicles can be avoided by introducing mosaicking capabilities into the submersible, allowing the operator to concentrate on the target task. This paper surveys several computer vision techniques for constructing visual mosaics of the ocean floor. It analyses the intricacies of applying computer vision techniques to underwater imaging, examining the problems of scattering, non-uniform illumination and lack of well-defined features. Next, a common frame is proposed to detail the phases that most of the methods accomplish in order to construct a mosaic: correction of lens distortion and lighting inhomogeneities, registration of consecutive frames, registration of the current frame with the mosaic image, image warping and mosaic actualization. The advantages and drawbacks of the existing underwater mosaicking systems are examined, taking into consideration aspects such as image registration strategy, assumed motion model, real-time capabilities, etc. Further, promising directions for the development of new mosaicking techniques are depicted. 

Keywords: Computer Vision, Mosaicking Systems, Motion estimation, Autonomous vehicles, Image registration, Robot navigation.

1. Introduction

In the last few years, the use of Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs) has appeared as an important tool for the exploration of the ocean. On the one hand, when marine biologists and researchers explore the ocean by means of a submersible platform, they are limited to a narrow field of view since the camera has to be placed quite close to the observed area due to light attenuation. Visual mosaics are an important tool to gain a global perspective of the site of interest. A mosaic is a composite image that is constructed from smaller images belonging to a video sequence. On the other hand, the problem of vehicle localization has been solved by means of acoustic transponders disposed on the ocean floor to act as landmarks for the vehicles. These absolute-positioning transponders include acoustic super short, short and long baseline navigation sensors. All of them require the vehicle to move within the area they are covering, restricting the autonomous capabilities of the submersible to this area. Moreover, the high cost of these devices, together with the necessity of modifying the environment and the limited working area has favored the use of video cameras for position estimation. Visual mosaics can also provide positioning information when the vehicle is navigating close to the sea floor, following the principle of the Concurrent Mapping and Localization strategy [Smi87,Leo92]. The basis of this strategy consists on building a map (visual mosaic) while concurrently localizing the vehicle in the map that is being built.

In terrestrial applications, mosaics have been very useful in a wide range of applications, i.e. the construction of aerial maps [Zha97], resolution enhancement [Zom00,Neg98d], image stabilization [Mor97, Han94], video compression and coding [Neg98b, Neg00] and sequence analysis, among others. In the context of underwater imaging, mosaicking has been accomplished in the last few years as a promising research subject in order to automate the construction of sea-floor maps. Beyond the creation of visual maps, construction of underwater mosaics is very useful for undersea exploration, navigation, control of vehicle motion, wreckage visualization, pipe inspection, docking, etc. The task of station keeping has also been ameliorated by means of the mosaics. Originally, a snapshot of the desired hover station point was stored in a static reference image. As the vehicle moved, i.e. due to marine currents, etc., the image at the current position was correlated against the reference image, providing a direct measurement of the vehicle motion. However, this approach suffers from a limitation of the area were the vehicle can move (limited to a single frame). Large disturbances originate a loss of station, missing the vehicle position. Obviously, the construction of a composite mosaic while the vehicle is moving allows an augmentation of the working area.

This paper surveys some significant vision systems that have been implemented with the goal of mapping the ocean floor. It is our aim to provide in this work a starting point to aid underwater researchers in deciding which is the most adequate solution to solve the problem of image mosaicking. An effort has been done in order to compare the different techniques that have been applied to this field. The paper is organized as follows: first, the underwater properties.....

(Això ho completarem al final, quan veiem quina estructura te...)
2. Underwater Optical Imaging

The application of standard computer vision techniques to underwater imaging involves dealing with additional problems due to the medium transmission properties [Fun72]. The optical properties of different water bodies depend on the interaction between the light and the aquatic environment. This interaction includes basically two processes [Neg95b??]: absorption and scattering (see Figure 1). Absorption is the process whereby light energy is converted to a different form, primarily heat. Therefore, light disappears from the image-forming process. Scattering is the change of direction of individual photons, mainly due to the different sizes of the particles forming the water. It is nearly independent of wavelength. This change of direction is known as backscatter when the light is reflected in the direction of the imaging device. On the other hand, forward scattering is produced when the light reflected by the imaged object suffers from small changes in its direction. This effect normally produces a blurring of the object when viewed from the camera. Backscattering is normally reduced by increasing the distance (l) between the light source and the imaging device, and forward scattering can be attenuated by decreasing the distance Z to the sea floor (or the imaged object).
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Figure 1. Lighting problems to be faced in underwater image processing.

For all the transmission properties of the media described above, underwater images suffer from the following problems:

· They often lack distinct features (e.g., points, lines or contours) that are commonly exploited in terrestrial vision systems for tracking, positioning, navigation, etc. This absence of features is twofold: first of all, the sea-floor lacks well-defined contours, where even man-made objects like pipes or cables loose their straightness due to the proliferation of marine life; and secondly, the light reflected by the objects suffers from the above mentioned forward scattering [Jules-Jaffe?], originating a blurring of these elements in the image.

· Moreover, the range is limited due to light absorption and the need for artificial light introduces many new properties to the image, such as low contrast and non-uniform illumination. 

· Sub-sea scenes frequently present little structure and high clutter in the regions of interest for exploration.

· Quite often, small observable particles floating in the water show up as marine snow making feature extraction difficult (backscattering). This effect is due to suspended particles, as much as the own water molecules [Car94].

However, there is an advantage in the processing of underwater imaging with respect to most terrestrial applications [Neg00], which is that basically we are dealing with the 3D rigid body motion of the underwater vehicle relative to a motionless background: the seafloor environment.

The next section is devoted to survey the different alternatives that have been described in the literature to construct underwater mosaics, while special attention is paid to devise the means of minimizing the problems derived from the transmission properties of the medium. 

3. Overview of UNDErWATER mosaicKING strategies proposed on the literature

3.1 Introduction 

Ocean floor mosaics usually obtain the individual images to form the mosaic by setting a camera on an Unmanned Underwater Vehicle (ROV or AUV). The camera is attached to the submersible, looking down to the bottom of the sea, and the acquired images cover a small area of the ocean floor, as shown in figure 2.


[image: image2.wmf]
Figure 2. Set-up of a mosaicking system for underwater sea-floor applications.

Several alternatives have been proposed to solve the mosaicking problem. First, we overview the general aspects of the different strategies; and next, the common denominator among them is used to propose general mosaic-construction approach that allows a comparative study. Figure 3 shows a set of block diagrams that broadly describe the main different approaches which can be found in the literature regarding underwater visual-based mosaicking systems.

One of the first computer-aided systems to automate the construction of underwater mosaics was the one presented by Haywood in [Hay86]. In this work, mosaicking was accomplished by snapping images at well-known positional coordinates, and these images were then warped together since the registration between images was known beforehand.

Some years later, IFREMER researchers set the starting point for estimating the motion of an underwater vehicle from a sequence of video images [Agu90]. Their approach consisted in detecting and matching feature points in successive images. A Kalman Filter was used to predict the features position in the next image and the trajectory of the vehicle was estimated through the generalized Hough Transform (GHT).

Fiala and Basu [Fia96] patched images together into a large composite image, in order to obtain a 3D representation of underwater objects. This vision system was used in conjunction with a ROV equipped with 3D position/orientation measuring devices. The authors limited their experiments to the mapping of planar textures onto the model of a marine vessel. No attempt was done in [Fia96] to explain how they solve the image registration problem.

A well-known underwater mosaicking system was developed by the Stanford University jointly with? the Monterrey Bay Aquarium Research Institute [Mar95]. Their system has created mosaics from the images provided by the OTTER semi-autonomous underwater robot, and the Ventana remotely-operated vehicle in real time. This high performance was possible thanks to the use of a special purpose hardware for image filtering and correlation. Figure 3a shows a block diagram (at the highest level of abstraction) of their dataflow. It should be noted that their system only adds a new image to the mosaic if sufficient motion is detected between the present image and the last one added to the mosaic (fixed distance intervals). 

Gracias and Santos-Victor have proposed a quite accurate mosaicking strategy, based on the detection of corner points in one image and their correspondences in the next one [Gra98,Gra00]. The accuracy of the system is improved due to the implementation of robust outlier-detection techniques which eliminate false matches. Finally, a planar transformation matrix relates the coordinates of the two consecutive images (see figure 3e). The same authors present an alternative approach that proposes the correlation of the present image directly with the mosaic images, thus improving the accuracy (see figure 3f) because small errors in the inter-image motion in the motion estimation do not tend to accumulate.

Researchers at the University of Miami have implemented a mosaicking system with real-time capabilities which is based on the Direct Motion Estimation algorithm [Neg98c]. This algorithm allows the estimation of the vehicle motion without the intermediate computation of image features, thus reducing the sources of error and allowing a faster computation (real-time performance without special purpose hardware). Their system only adds a new image to the mosaic every L images of the sequence (fixed time interval), and then it refines the motion estimation by comparing the present image with an image extracted from the mosaic at the position initially predicted for the present image (see figure 3d).

Another interesting approach is that presented in [Rzh00], where the mosaic is built as from image analysis in the frequency domain. Their system pays special attention to the equalization of non-uniform illumination in the images to improve the Fourier-based image registration phase.

Woods-Hole Oceanographic Institution researchers have used image mosaics to perform volumetric flow rate measurements of a hydrothermal vent site. They have recently proposed a feature-less image registration algorithm to automatically construct visual mosaics of  the ocean floor [Eus00].

From those systems described above, we have chosen a representative subset of mosaicking alternatives in order to get an overview of the different philosophies that can be used. For the sake of space not all the alternatives are illustrated in figure 3. Moreover, we should bear in mind that figure 3 represents a quite simplified model of every mosaicking system. If we analyze the main differences among the systems illustrated above, we can realize that most of the techniques consist on comparing the present image with the previous one, or with an image extracted from the mosaic. The approach to perform this comparison significantly varies from one approach to another.

The basis of a mosaic is the computation of the displacement of the camera relative to its environment, i.e. the sea floor. In order to construct a map of the ocean floor, several short-range images have to be warped together. Normally, the fusion of this images goes through some (or sometimes all) the following steps:
· Correction of geometric deformations mainly due to lens distortion.

· Lighting inhomogeneities/artifacts removal

· Motion detection between consecutive images of the sequence (Image registration)

· Mosaic actualization?

· If the mosaic should be actualized: Motion detection between the mosaic and the current frame.

· Image warping and mosaic construction.

3.2 Correction of geometric deformations

Real-world applications cannot rely on an ideal distortion-free image. If we attempt to construct a mosaic as from a sequence of well-known positions of the camera, the visual appearance of the resulting mosaic might not be satisfactory due to the discrepancies between the geometrical model of the camera and the behavior of the physical sensor itself (see figure 4). A commonly used geometrical model is the pinhole model [Tsa87,Aya91], which assumes that the light beams pass trough a small point (pinhole), forming the image on a plane placed at a fixed distance f of the pinhole. This perspective projection provides a linear relationship relating a 3D-point P of the scene with its corresponding 2D-point p on the image plane:
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. Unfortunately, as a result of some imperfections in the design and assembly of the lens composing the optical system, the linear relationship of equation (1) does not hold true [Wen92]. In this way, the physical lenses introduce a non-linear distortion in the observed image points. Moreover, when treating underwater images, the ray deflections at the water-camera housing and the air-camera housing interfaces introduce a second distortion [Xu00], which normally attenuates the lens distortion. The total distortion can be modeled by a radial and tangential approximation. Since the radial component causes most of the distortion, most of the works correct only this one [Gra98, Gar01]. Complete camera calibration is not necessary for eliminating the distortion. 
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Figure 3. Block diagram of the different mosaicking systems proposed in the literature (a) Marks et. al.; (b) Rzhanov et. al.; (d) Xu and Negahdaripour; (e) and (f) Santos-Victor; 
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Figure 4.  Visual mosaics constructed from the exact camera position/orientation provided by a robot arm. (a) Set-up of the system; (b) Mosaic construction. Lens distortion has not been corrected; (c) mosaic construction after lens distortion correction.

Severe lens distortion can be corrected by applying several calibration algorithms [Fau86, Tsa87, Wen92]. A generic equation to compute the radial distortion is given by: 
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By applying the method of Faugeras [Fau86], 
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obtaining a cubic equation, where 
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Another widely used technique to solve equation (2) consists on applying the method of Tsai, setting 
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where 
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 are constant values computed from the parameters provided by the camera manufacturer, and 
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 is the scaling factors in the x direction. This is the option taken by the researchers of the Instituto Superior Tecnico in [Gra97].

Negahdaripour et al. also take into account tangential distortion in order to compensate the distortion of the lenses [Xu00]. It can be computed by an infinite series [Wen92] that is normally approximated by one or two terms. However, tangential distortion is the responsible of a small percentage of the total lens distortion, and some authors consider that only the radial component should be computed to avoid numerical instability in calibration [Tsa87].
The calibration phase has to be performed underwater, since the medium properties can modify the camera parameters that would be measured out of the water. Figure 5 illustrates this effect.
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Figure 5. Correction of lens distortion in underwater images: (a) Image with severe lens distortion; (b) corrected image.

By correcting the lens distortion the further steps of the mosaic construction will be more accurate and reliable, although some authors consider that the effect of lens distortion can be ignored. In this sense, the system presented in [Mar95] utilizes a camera with a narrow field-of-view (less than 20(). That way, the perspective effects caused by such geometry are minimized in two ways: first, data failing to accomplish the unique-plane condition assumed by the mosaic are less annoying; and secondly the effect of lens distortion can be ignored. However, as the field of view is small, more images are needed to cover the same area.

3.3 Lighting inhomogeneities/artifacts removal

Often, natural light is not sufficient for imaging the sea floor. For this reason, a light source attached to the submersible provides the necessary lighting to the scene. Besides the artifacts described in the previous section (scattering, absorption, etc.), the artificial light sources tend to illuminate the scene in a non-uniform fashion, producing a bright spot in the center of the image with a poorly illuminated area surrounding it. Then, brightness of the scene changes as the vehicle moves. Figure 6a shows a typical underwater frame suffering from this effect.
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(a)
(b)

Figure 6. Underwater image showing lighting (a) inhomogeneities; and (b) artifacts; 

Some authors have proposed the use of local equalization to compensate for the effects of non-uniform lighting [Sin98], darkening the center of the image and lighting the dark zones of the sides. The motivation of the work described in [Sin98] was to eliminate differences in intensity among the images forming the mosaic, thus enhancing the sense of continuity across the mosaic. However, this idea can be applied to make the image irradiance more uniform before image registration is computed.

Rzhanov et al. presented in [Rzh00] a similar method for removal of lighting inhomogeneities: the so-called de-trending technique. It consists on the fit of a surface to every frame, and then subtract it from the image. The knowledge about the nature of the light may suggest the best shape for the surface function. A two-dimensional polynomial spline is normally enough. Figure 7c illustrates the effect of correcting the image of figure 6a through this method.
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(a)
(b)
(c)

Figure 7. (a) spline surface fitted to the image of figure 6a; (b) corresponding image; (c) correction of non-uniform illumination through spline subtraction as described in [Rzh00]. 

Marks et al. [Mar95] adopted an alternative technique to deal with lighting non-uniformities. They proposed the use of a spatial filter that attenuates the lighting inhomogeneities: the Laplacian-of-Gaussian (LoG), proposed by Marr and Hildreth in [Marr80]. It was initially introduced as an edge detector, since it detects abrupt intensity variations in the image. It consists on a Gaussian smoothing of the image which reduces the effect of noise on the image. When applied to underwater imaging, this low-pass filtering reduces the high-frequency artifacts on the image originated by backscattering, or “marine snow”, although it may also destroy part of the information in the rest of the image. For this reason the  standard deviation of the filter (() must be set up accurately. Next, a Laplacian operator performs a spatial second derivative on the image. According to Fleischer et al. this has the effect of separating the image into regions of similar texture. To obtain this effect, the filter requires the use of larger masks. Balasuriya and Ura [Bal01] have also used LoG filter to reduce backscatter, setting the mask size to 16(16. When both the Gaussian and the Laplacian filters are applied together, the result is a band-pass filter, with a band frequency that can be adjusted by means of the parameter ( of the Gaussian filter. Figure 8 shows the shape of the LoG filter with (=4 and a size of 25(25 pixels. In [Mar94-b?c?], the authors set the size of the filter to up to 40(40 pixels as typical values. Figure 9 illustrates the effect of convolving the images (6a) and (7c) with the LoG filter. The binary image resulting from the SLoG filter is used in [Mar94b,Fle97] to register the image with the rest of the mosaic.
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Figure 8. (a) Laplacian-of-Gaussian convolution mask. Size: 25(25 pixels. 
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(c)
(d)

Figure 9. (a) and (b) gray-level images presenting different levels of illumination; 

  (c) and (d) signum of Laplacian-of-Gaussian to the top images
A different approach is taken by Negahdaripour et al. The problem of light variation in the temporal domain is solved by applying the so-called Generalized Dynamic Image Model [Neg93] [Neg98c]. In this case, temporal radiometric differences on the image pixel values are taken into account by introducing two additional parameters into the constant-brightness optical flow equations. In order to provide a better global understanding, this method is explained in the next section, after the description of the Direct Estimation method.  

3.4 Motion detection between consecutive frames

3.4.1 Introduction

This phase consists of detecting the apparent motion of the camera. This measurement will be computed in image coordinates. Most of the works that can be found in this study consider that the vehicle has 4 degrees of freedom: they assume that the vehicle is passive stable in roll and pitch, therefore only 3D translation and yaw motion is taken into account. This is a very reasonable assumption when the center of mass of the submersible is below its center of buoyancy. The literature exhibits two different approaches in the selection of the coordinate system to describe the vehicle motion. The first, assume a coordinate system of the vehicle as commonly taken in underwater robotics [Sna50] (figure 10a), while the second modify the coordinate system to make it agree with the image plane of the camera (see figure 10b). In this case, the coordinate origin OC is attached to the focal point of the camera, as normally considered in visual servoing tasks [Lot00].
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(a)
(b)

Figure 10. Cartesian coordinate system attached to the underwater vehicle and associated angles.

The motion detection techniques can be classified according to different parameters, as illustrated in figure 11. The most general classification would distinguish between techniques working in the spatial or frequencial domain. Although it is known that a two-dimensional translation between two images can be determined by the phase shift theorem, the Fourier transform of each image is obtained. The combined inverse Fourier transform taking into account the magnitude of one of input images and considering the phase, which is equal to the phase difference of the transformed images. The rotation and scaling between two input images are obtained using the Fourier transform and a log-polar representation. Then, the application of the Mellin transform allows to obtain the rotation and scaling factors.

Very few works have used this technique in order to construct a mosaic (only [Rzh00] to the best of our knowledge). Moreover, some authors have compared spatial and frequencial techniques applied to underwater image processing (i.e. Olmos et al. in [Olm00]), concluding that spatial methods (feature-detection in their case) provided better results than the frequency-based methods on both synthetic and real images, “although not for a significant advantage”. However, due the low use (poc utilitzat) of frequencial techniques in underwater mosaicking systems, these will not be described in detail in this report.
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Figure 11. Classification of the main motion-detection techniques used in underwater mosaicking.

Spatial techniques can be further classified in two categories: feature-based and featureless methods. The first presume that feature correspondences between image pairs can be obtained, and utilize these matchings to find a transform which registers the image pairs. The last, on the contrary, minimize an energy function searching for the best transform without using any correspondences. In both cases, the aim can be reduced to the estimation of the parameters 
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denote a correspondence point in the images taken at time k and k+1, respectively, expressed in homogeneous coordinates. The equations for perspective projection to the image plane are non-linear when expressed in non-homogeneous coordinates, but are linear in homogeneous coordinates. This is characteristic of all transformations in projective geometry, not just perspective projection. It provides one of the main motivations for the use of homogeneous coordinates, since linear systems are symbolically and numerically easier to handle than non-linear ones.
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(5)

The estimation of 
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 is known as image registration, and these 9 parameters relate the coordinates of two images in the sequence (determining a projective transform). The symbol 
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 indicates equality up to scale.

Matrix kHk+1 represents a projective transform describing the inter-frame motion. Some refer to this matrix as a homography (or collineation) [Sze94]. The homography matrix kHk+1 relates the 2D coordinates of any point of image I(k+1) with the coordinates of the same point expressed in the reference frame of image I(k).

3.4.2 Feature-based techniques

In terrestrial environments, typical features to track are points, lines or contours. As pointed out in section 2, straight lines and contours are normally difficult to find in the underwater environment. The feature-based methods normally solve the registration by first detecting image corners or highly textured patches in one image
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, and then matching them through correlation on the next image
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, or minimizing a cost function, considering in both cases that the same scene radiance is kept constant through the image sequence. Generally, images are low-pass filtered before correlation, since correlation strength is sensitive to noise [Gia99].
One of the first feature-based mosaicking systems was developed by MBARI/Stanford researchers [Mar95, Fle96, Fle00]. They locate features with a large image gradient (i.e. contours) through the use of the "Laplacian of the Gaussian" (LoG) operator. Instead of correlating brightness values, a binary image is obtained depending on the resulting signum of LoG. It simplifies the correlation to a XOR operation. Moreover, as described in section 3.3, this method provides some degree of robustness with respect to artifacts due to non-uniform illumination.

The researchers of Heriot-Watt/Udine Universities [Tom98, Fus99, Odo99, Pla00] select the features to compute image registration by means of the Shi-Tomasi-Kanade tracker [Shi94]. In this way, given a point 
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for which the motion is to be estimated, a small region 
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 centered at this point is considered. Then, the matrix of the partial derivatives G is computed as follows:
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(6)

A feature point 
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 is a good candidate to track if G is well-conditioned, that is, if both eigenvalues of G are above a user-defined threshold. This means that the image point 
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 presents a rapid intensity variation on neighboring pixels in the x and y directions. The entire image is scanned searching for good candidate points 
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. This approach can be compared to the detection of corner points [Har87], since it enhances regions with a high spatial frequency content in both x and y directions. Considering that the time sample frequency is sufficiently high, the intensities of every interest point and its neighboring pixels can be considered to remain unchanged in two consecutive images, as introduced by the Brightness Constancy Model in [Hor86]:
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In this way, the motion is approximated  by a simple translation 
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. Since the assumed motion model is not perfect, and the image irradiance may not remain constant, the problem is rediscussed as finding the displacement d which minimizes the SSD residual:
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If the image motion is assumed to be small, the term 
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 can be approximated by its Taylor series expansion, truncated to the linear term, and imposing that the derivatives with respect to d are zero:
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where 
[image: image71.wmf](

)

t

IIt

=¶¶

 and 
[image: image72.wmf]t

is the elapsed time between images 
[image: image73.wmf]()

k

I

and 
[image: image74.wmf](1)

k

I

+

.  Operating the terms in equation 9:
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Then, deriving 
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which can be arranged as:
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Then, the following linear system can be obtained [Odo99]:
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The displacement vector d can be computed for every selected point 
[image: image83.wmf]i
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 through an iterative Newton-Raphson scheme that minimizes equation 13. 

We have described until now how to match feature points in two consecutive images. However, this idea was later extended to compute the motion between the first frame of the sequence (known as “reference frame”) and every incoming image, tracking point features over longer sequences [Tom98, Tru00, Odo99]. For this reason, the translational consecutive-frame displacements, proposed initially in [Tom91], have been extended to an affine model, which could cope with more complex motions over longer sequences [Shi94]. In this way the feature window can undergo rotation, scaling and shear in addition to translation, and the affine model can be used to monitor the quality of the tracking. Nevertheless, when constructing a mosaic, the initially tracked features may disappear from the field of view. In this case, a new reference image has to be selected, and new features are chosen to be tracked. 

Once the Shi-Tomasi-Kanade tracker has detected a set of correspondences 
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 can be found by solving the following rank-deficient system of homogeneous linear equations [Odo99]:
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Equation 14 can be obtained by expanding equation 5 for the case where several point matches are available between images I(k) and I(k+n). Equation 14b is solved in [Odo99] through Singular Value Decomposition (SVD), after imposing the constraint of unit norm for h. 

The computation of equation 14 requires at least four pairs of corresponding points 
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, as long as collinearity between any 3 points is avoided. Normally, more than 4 points are used, obtaining an over-determined system of equations solved through a least squares approach.

Another feature-based strategy is used by Gracias and Santos-Victor [Gra97,Gra98,Gra00], who detect features in image I(k) by means of a slightly modified version of the Harris corner detector [Har87]. Then, the corresponding matchings in the next image I(k+1) are obtained through correlation.  In the correlation phase, they obtain sub-pixel accuracy by means of an optical flow technique applied to the patches around each corner [Gra97-MsThesis]. It is possible to obtain sub-pixel accuracy by estimating the peak location of the cross-correlation, and then fitting a parametric surface to the location of every corner [Mar95??]. Once the correspondences are available, matrix kHk+1 is computed following the same strategy as described above. 

When a new image has to be added to the mosaic, kHk+1 provides its best fitting with respect to the previous image (or to the mosaic image). The most general homography has 8 free parameters and is known as projective transformation (translation, rotation, scaling, and perspective deformation). Since projective transformation can be expressed in terms of 8 degrees of freedom, it may not be the best way to describe a given motion, and a better motion model can be assumed.

As described in [Gra00], if the sort of camera motion is known beforehand, the projective model may contain more free parameters than necessary. The simplest transformation is pure translation, followed by translation and rotation (rigid or euclidean model), and next a more complicated motion model can be described by introducing scaling (similarity model). More complex transformations are obtained with the affine model (translation, rotation, scaling, and shear). Finally, the projective transformation introduces the perspective deformation to the affine transformation. Table 1 shows the homographies representing some of the most popular transformations. Depending on the nature of the motion, the most suitable motion model will provide the best results in the image registration phase. The problem is that in general, it is difficult to know the motion model that best describes the motion of the vehicle beforehand. 

rigid transformation
affine transformation
projective transformation

translation and rotation
translation, rotation, scaling  and shear
translation, rotation, scaling and perspective deformation
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Table 1: Possible motion models for planar transformations.

As can be observed in table 1, the most general planar transformation has eight independent parameters (projective model). In the case of underwater imaging, additional constraints can be available on the camera motion. For instance, if the vehicle is known to be passively stable in pitch and roll, the parameters 
[image: image92.wmf]31
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 and  
[image: image93.wmf]32

h

of the projective model can be set to zero, since no perspective deformation will occur on the image, obtaining the affine transformation of table 1. Therefore, the simplest 3x3 matrix that fits the motion of the camera will be the best approximation of its described trajectory, with respect to more complex motion models. 

Improving image registration
Before the computation of the homography that registers two consecutive images, better results can be obtained by analyzing the data that is used to find matrix kHk+1. Some of the homography-based mosaicking systems (i.e. [Gra98, Gra00, Odo99, Gar01]) reduce the amount of “outliers” (data describing a movement in gross disagreement with the general motion) by applying robust techniques to the pairs point-matching.

A widely-used technique for detecting outliers is the LMedS algorithm [Rou97]: given the problem of computing the homography matrix kHk+1from a set of data points, where n is the minimum number of data points which determine a solution, compute a candidate solution based on a randomly chosen n-tuple from the data. Then, estimate the fit of this solution to all the data, defined as the median of the squared residuals. The median of the squared residuals is defined by: 




[image: image94.wmf](

)

(

)

(

)

(

)

)

(

1

1

)

1

(

2

)

1

(

1

)

(

2

~

,

~

~

,

~

k

j

k

k

k

j

k

j

k

k

k

j

j

err

d

d

med

M

p

H

p

p

H

p

-

+

+

+

+

+

=


(15)

where 
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are the homogene​ous coordinates of a 2D point 
[image: image96.wmf]p

 defined in the image plane; and 
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 is the square distance from a point 
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, defined on image I(k), to the projection on the same image plane of its correspondence  
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Once the best solution has been found, a minimal median is obtained. As from the median, the mean ( and the standard deviation ( can be computed (see [Rou87] for details). Therefore, those points at a distance d larger than ((( are eliminated, and matrix kHk+1 is recomputed with the remaining points, through a least squares criteria. This outlier rejection process is called Dominant Motion Estimation in [Odo99].

According to [Odo99], when Gaussian noise is present, the relative statistical efficiency of LMedS can be increased by running a weighted Least Squares fit after LMedS. In this case, weights are selected depending on the residual of the LMedS procedure [Rou87]. 

Gracias and Santos-Victor propose a two-step variant of LMedS, known as MEDian SEt REduction (MEDSEDERE) [Gra97]. It consists on two iterations of LMedS random sampling, choosing the best data points in fitting the cost function of equation 15. This technique requires less random sampling than LMedS while obtaining the same degree of outlier rejection.

Tommasini et al. [Tom98,TomXX] devised a method called X84 to automatically reject incorrect matching points in the image sequence, as initially proposed in [Ham86]. Their method is based on a measurement of the residual of the match between the initial image and every frame of the sequence. A tracked feature is considered to be good (reliable) or bad (unreliable) according to this residual.

Moreover, in addition to the techniques described above, a better-conditioned problem can be obtained if the data undergoes a standarization process [Gra97?], achieving more accurate results. A typical standarization consists on placing the coordinate center of the images in the centroid of the data points. Then, the points are re-scaled, so that the average distance from the center to all the points is 
[image: image100.wmf]2
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3.4.3 Feature-less techniques

Idees:

There are two approaches: 

1- Minimization technique. It computes a 2D projective transformation.

2- Direct method. It provides 3D motion.

Advantage (in both cases): These approaches do not need to establish correspondences between features.

Direct method: 3D motion without the need of computing 2D optical flow (or compute correspondences) as an intermediate step.
An alternative to the methods described above is the computation of motion without the need of estimation of feature correspondences. Two approaches fall into the feature-less group: (1) Homography-based global minimization techniques, which compute a 2D (projective) transformation matrix; and (2) a direct method –derived from the optical flow equation– that is able to provide 3D motion estimation without the need of intermediate 2D computations.

3.4.3.1 Estimating the 2D transformation through global minimization

The feature-less techniques minimize the sum of the squared intensity errors over all corresponding pairs of pixels, which are present in two consecutive images, as was shown in equation 8, but this time the window 
[image: image101.wmf]i
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 is extended to the whole image:
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where I(k) and I(k+1) represent the images taken at time instant k and k+1, respectively. The equation which relates the pixels in both images by means of a homography (eq. 5), is then taken as a cost function that minimizes the matching criterion 
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 of equation 16, in order to obtain the parameters 
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 through a nonlinear minimization technique.

Acquisition and matching of good features for motion detection is a difficult task in underwater images. Feature-based methods are on this account error-prone. On the other hand, since featureless methods do not rely on explicit feature correspondences, they suffer no problems associated with feature detection and tracking. Nevertheless, these methods require good initialization values in order to converge to a solution. Moreover, they demand a small change from one image to the next. But, even when the motion between images is smooth, there is no guarantee that the parameter estimate process will lead to the optimal solution. Special efforts must be made to prevent the parameter estimation from falling into local minima. Finally, when dealing with the computation of the homography matrix, the computational requirements of the feature-less methods is higher than that of the feature-based approach.

For all the reasons explained above, homography-based feature-based methods are more popular than featureless ones in subsea mosaicking applications.
3.4.3.2 Direct method to compute 3D motion

Direct motion estimation methods are based on the following statement: if the aim of the mosaicking system is to obtain the 3D motion of the vehicle, it is not necessary to first compute the 2D image motion, to finally use this estimation to obtain the 3D measure. The use of spatio-temporal image gradients 
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 allows the computation of the 3D motion directly. Negahdaripour et al. derive their solution of the motion problem by applying the Brightness Constancy Model (BCM) [Hor86]. Then, revisiting equation 7, the BMC assumes that a pixel located at coordinates (x,y) in one image conserves its brightness when located at position 
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, equation 7 can be re-written as:
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where (u,v) are the image velocity components of the pixel at time (k) in the x and y directions, respectively. Again, applying Taylor series expansion to equation 17, the optical flow equation is obtained: 
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If the image motion is expressed in terms of the translational 
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 motion of the vehicle, equation 19 can be derived.
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where f is the focal length of the camera (obtained through calibration), 
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is the average vertical distance to the sea floor at time instant k; 
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 represent the 3D translation and yaw rotation of the vehicle (the only unknowns in the equation); and 
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are the image coordinates of any pixel i. Equation 19 holds for all the image, with 
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 and It varying for every pixel. This equation is applied to n pixels, solving the following system for the 4 unknowns through a least squares method: 
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, where 
[image: image119.wmf]
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The solution of this system is constrained to a relatively flat bottom, as has also been assumed by the homography-based methods. Therefore, the local differences in altitude all over the image should be insignificant relative to the average distance Z from the vehicle to the seabed.

Falta comentari sobre la relacio de Z(k) i la Z(0) that may be acquired from a sonar reading.
Although equations 17 to 20 have been described for the constant illumination case, Negahdaripour et al. [Neg99] have proved that temporal radiometric differences on the image pixel values can be taken into account by introducing two additional parameters: a multiplying factor m and an offset c. This approach is based on the so-called Generalized Dynamic Image Model (GDIM) [Neg93] [Neg98c]. The radiometric transformation fields m and c are considered low frequency spatial signals that explain the instantaneous rate of image irradiance variation between a point (x,y) in one image with the same point
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 in the next image of the sequence, as shown in equation 21.
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This equation can also be expanded to a Taylor series up to the first order terms, expressing the two unknowns (u,v) in terms of the vehicle motion 
[image: image122.wmf](

)

,,,

xyz

ttt

Y

:


[image: image123.wmf]()

0

0

1

(,)10,for1..

T

x

u

k

y

tii

iiv

z

ii

f

tZ

fI

m

tZ

IIxyin

xyI

c

tZ

yx

éù

-

éù

æö

êú

ç÷êú

-

-

æö

éù

êú

ç÷êú

éù

+××+×»=

ç÷

êú

ëû

êú

ç÷êú

ëû

èø

êú

ç÷êú

ç÷

-

Y

êú

êú

èø

ëû

ëû


(22)

Although equation 22 holds for all the image points, parameters m and c vary (smoothly) through the image. Bearing in mind this low frequency characteristic, Negahdaripour et al. [Neg99] divide the image in small regions Ri, assuming a constant value of m and c within these regions. 

Direct methods [Neg99] present some advantages over optical flow or feature correspondences, such as a lower computational cost, higher accuracy, and the possibility to take into account radiometric variations. For this reason it can be efficiently implemented for achieving real-time performance.

3.5 Mosaic registration and actualization

Section 3.4 has described the methods to detect motion between consecutive images. Some of these methods constrain the inter-frame motion to a small value, to facilitate the detection of correspondences between images. Obviously, small errors in the detection of motion between consecutive frames provoke an accumulated error as the mosaic increases in size. This error can be reduced if the current frame is periodically registered with the mosaic image, as will be described in this section.

Once a first estimate of the image registration parameters is known, the mosaicking system has to decide when, either it is worth actualizing the mosaic with the present image, or it does not pay to update the mosaic because the contribution of the present image to the mosaic. Three criteria can be used to take the decision of updating the mosaic: (i) use all the registered images to update the mosaic; (ii) update at constant time intervals; and (iii) update at constant displacement intervals. 

Strategy (i) is used by the Oceans Systems Lab [Tru00,Odo99] and IST [GraXX] researchers, capturing the images at quite a high frequency (close to video rate), and then processing them offline. In general, this works present the advantage of providing a rich amount of information, allowing the use of temporal filtering to segment moving objects from the stationary background, as will be described later in this paper. We could consider that Rhzanov et al. [Rhz00] also uses this technique, although their approach is slightly different due to a lower capture rate (2-3 fps), thus presenting a smaller overlap between consecutive images.

Strategy (ii) is taken by Negahdaripour et al. [NegXX]. In order to operate in real time, updating the mosaic with every new image of the sequence implies a loss of computational efficiency. For this reason, a constant parameter L governing the actualization rate of the mosaic is set in  [NegXX]. In this way, the mosaic is updated with a new image every L frames. Parameter L is adjusted depending on the motion of the vehicle and its distance to the sea floor. When an image is selected to actualize the mosaic, an “a priori” estimation of the location of the image in the mosaic is computed through the registration of this image with the previous one. Then, an image is extracted from the mosaic in the estimated location and refined motion estimation is performed, thus reducing the accumulated error.

MBARI/Stanford researchers have selected strategy (iii) as a good solution also to obtain real-time performance [Mar95,FleXX]. Their system captures images at 30 Hz. Then, every image is registered with the last image added to the mosaic. The image may be selected to be part of the mosaic (“acquired”) depending on its overlapping region with some previously acquired image. Marks et al. consider that a new image is “acquired” only when it is fed into the composite mosaic image, and not when it is snapped by the camera. The live image is acquired only if the horizontal and vertical image offsets are close enough to a desired set of offsets. In this way, the amount of images composing the mosaic is kept to a small value in relation to the mapped area. The authors consider that camera rotation and scaling can be considered to be small since the special-purpose hardware allows a high enough cycle time for processing the images. So this motion will not significantly degrade correlation and the consequent (consiguiente) registration.

Once the frame-to-frame motion parameters have been obtained, these transformations are combined to form a global model. The global model takes the form of a global registration, where all the frames are mapped into a common, arbitrarily chosen, reference frame, as shown in figure 12.

The last step consists on merging together the registered (aligned) images, in order to create a mosaic. Some of the works in the literature refer to this step as mosaic reference. Once the best transformation kHk+1 has been found, images I(k+1) and I(k) can be warped together, but a base frame is necessary as an initial coordinate system. Some approaches use the first image of the sequence as an initial coordinate system, while other approaches map the first image into an arbitrarily chosen reference frame. This second approach was introduced in [Gra98a], where the mosaicking system that was able to handle severe violations in the assumption of the camera being parallel to the ocean floor. In this way, every live image of the sequence can be registered with a virtual reference frame, as the one illustrated in Figure 13.
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Figure 12. Construction of the mosaic. The global registration matrix 1Hk+1 relates the image coordinates of any point in image I(k+1) with respect of the coordinate frame of image I(1).

Once the first image is attached to the mosaic, the following images have to be registered not only to the previous image of the sequence, but also to the reference frame. This process of global registration relates the image coordinates of any point in image I(k+1) with respect of the coordinate frame of image I(1). The global registration matrix 1Hk+1 is computed by multiplying the set of transformation matrices:
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Figure 13. Arbitrary-chosen reference frame to obtain a better perception of the sea floor. It simulates the effect of having the camera parallel to the floor. Bilinear interpolation has been applied to the warped image.

3.6 Image warping and mosaic construction

Once the frame-to-mosaic motion parameters are known, the registered images are merged onto a composite mosaic image. Then, a same region of the scene is viewed from different images, generating an overlapping area in the mosaic. As illustrated in figure 14, the set of pixels in the registered images belonging to the same output point can be though of as lying on a line which is parallel to the time axis [Gra98a]. Several temporal filters can be used to “compose” the mosaic image on the overlapping regions. They can be divided into two main approaches:

(a) every mosaic pixel is obtained by combining the overlapping pixels

(b) only one of the aligned images is taken into account.

Method (a) requires accurate alignment over the entire image, otherwise the resulting mosaic will present some blurred zones. Method (b) requires alignment only along the seams. Some implementations trying to obtain a uniformly-looking mosaic image also disguise the lighting differences along the seams through some sort of correction of the lighting inhomogeneities. 
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Figure 14. Space-time volume defined by the aligned images forming the mosaic. The line lp, going along the temporal axe, intersects pixels that correspond to the same world point (in absence of parallax).

The combination of pixels which overlap in time can be performed by means of different strategies: (a1) temporal average, (a2) temporal median, (b1) most recent pixel or (b2) less recent pixel. Temporal average attenuates the presentation of fast moving objects (i.e. fishes) onto the motionless background, generating a slight blurring on the areas where the object has moved. Temporal median solves more effectively this problem, but it is especially useful in the case of moving objects which occupy background pixel-coordinates during less than half the frames. These two temporal filters compromise the real-time performance of the mosaicking systems, all at the time of demanding more memory resources in order to construct the overlapping structure.  For all the reasons described above, the mosaicking systems that perform in real-time normally choose strategy (b): taking into account only one of the aligned pixels. In this case, one can select either the most recent information (called “use-last” in [Gra98]) to update the mosaic, or the less recent information (or “use-first”), which implies that every new image only actualizes the mosaic on that zones that have not been updated before. Negahdaripour et al. have selected this last strategy in order to obtain real-time performance [NegahXXX]. In other respect, Odone and Fusiello proposed in [Odo99] two more temporal filters: (a3) weighed temporal median and (a4) weighed temporal average. In this case, weight decreases with the distance of the pixel from the image center. Figure 15 illustrates a classification of the temporal filters.

MBARI/Stanford researchers call to this phase the consolidation process. It uses the registration parameters to determine how to fuse the acquired image to the mosaic, but only the images that provide enough new information are consolidated into the mosaic.
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Figure 15. Classification of temporal filters to render the mosaic image.

4. mosaic-driven navigation

In order to analyze the visual mosaicking systems, one further aspect has to be taken into account. According to the obtained information related to the mosaic, the control system has to decide how should the vehicle move to achieve the task of mosaic construction in the most adequate manner. This vision-based vehicle control allows the development of path-planning algorithms that aid the construction of mosaics. In this way, the vehicle can revisit a zone that has been already surveyed when the system detects that a gap has been left in the mosaic.

A commonly used technique to construct sea-bed visual mosaics consists on consecutive-image mosaicking. By using this strategy, every new image is registered with the last image that was added to the mosaic. This technique is also known as single-column mosaic, and it is the strategy followed by most of the systems surveyed in this work (i.e. [Gra98a, Xu97, Rzh00, Mar94]). It is obvious that every time an image is consolidated into the mosaic, there is a chance for error in the parameters registering this image to any other image. Therefore, considering a sequence of n images (from I(0) to I(n-1)), the total error accumulates for every new image consolidated into the mosaic, obtaining an error o(n) if the n images are used to update the mosaic. However, significant differences arise among the works that use this technique, as was pointed out in section 3.5. While IST [Gra00] and Heriot-Watt [Tru00] researchers use all the images of the sequence to generate the mosaic, MBARI/Stanford mosaicking system adds a new image I(k) to the mosaic only when the overlapping region with the previously added image is small enough. This operation is called XXXX “acquisition” in [Mar95]. This strategy reduces the drift error to o(m), where m is the amount of images that have been consolidated into the mosaic (with m<n). Negahdaripour et al. reduce the error to o(n/L) by registering the present image with the mosaic image every L images.

Consideration: 

(a) consolidate all images into the mosaic

(b) compute the motion between every pair of consecutive images, but use only one image every L to update the mosaic, correcting the position estimation of this image by computing the motion with respect to the mosaic image.

Conclusion:

While (a) accumulates more drift, (b) computes the motion with less overlapping information between the images, producing a worst frame-to-frame motion estimation...
In order to map a wide area of the ocean floor, sonar-scan mapping systems have been using column-relative path planning for several years [REF-Pere]. This idea was applied to visual mapping by Marks et al. in [Mar94d, Mar95], where the new image is registered to the contiguous image of the previous column. In this way, the construction of a square mosaic formed by n images reduces the accumulated error to 
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. The column-relative mosaic described in [Mar94d] could be accomplished in real time thanks to a specific hardware for image processing, although an additional constraint was introduced to simplify the registration phase: images had to be acquired at the same orientation. Thereby, the motion of the vehicle is restricted to a column, where the vehicle heading has to be kept constant, as shown in figure 16. A significant contribution of [Mar95] was the demonstration of the possibility of creating mosaics of the ocean floor in real time, as the vehicle was moving. This strategy allowed a proper image acquisition in order to avoid visual gaps in the mosaic. On the other hand, on-line processing allows the mosaic data to be used immediately for vehicle navigation. 


[image: image132.wmf]
Figure 16. Multiple-column mosaicking system of [Mar95]. The system requires the vehicle to move forwards and backwards without altering its heading. 

The peculiar acquisition strategy of MBARI/Stanford researchers of [Mar95,Mar94] was taken on step forward in [Fle97], defining with which previously acquired image has to be correlated every new live image (see figure 17). 
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Figure 17. The acquisition module governs how to handle every new image. In strategy (a) every new image is registered to the last image which was added to the mosaic; in (b) every new image is registered to the contiguous image of the previous column. 

(c) and (d) define whether the vehicle is teleoperated independently of the mosaic creation, or if the construction of the mosaic governs the motion of the vehicle so as to avoid leaving gaps in the final mosaic, respectively.

As the size of the mosaic increases, there will usually appear distortions in the mosaic due to accumulated misregistration errors. It means that as the vehicle moves, the uncertainty (covariance) in the positional estimates of the vehicle increases with time. For this reason, Fleischer et al. proposed in [Fle97] a continuous optimal estimation theory, so as to reduce the location error whenever the vehicle path crosses itself. The basic idea of this technique arises from propagating back the error corrections around loops like the one illustrated in figure 18. In this situation, the additional knowledge on the position of the vehicle can be propagated back through the image chain, improving the global placement of all the images of the mosaic.
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Figure 18. Arbitrary mosaic describing a rectangular trajectory in the XY plane while maintaining a constant heading. At the end of the trajectory the smoother filter [Fle97] minimizes the errors in the location of previous images of the mosaic. 

By registering image n to image j, as well as image (n-1), an additional measurement of the global state of the nth image is obtained. In addition, this new measurement is more accurate, since image j was consolidated earlier in the mosaic, and its location measurement had a lower variance. Therefore, drift can be corrected when the vehicle revisits a previously mapped zone. In this way, all the images placed between images n to j are relocated in the mosaic image by the filter, taking advantage of the extra positional information gained with the loop. In [Fle96] the smoother filter was applied in a discrete fashion, considering that the local displacements were constant between consecutive images. Unfortunately, this assumption was difficult to achieve in practice, since acquisition of a new image before the vehicle has moved the desired displacement grants the system with a higher degree of robustness. Moreover, the derivation and implementation of the discrete algorithm when multiple loops of the vehicle are present is more difficult than its derivation in the continuous case. For this reason, the same authors proposed later a continuous version of its smoother filter [Fle97], preventing the system from the problems described above. Unfortunately, the smoother filter used by MBARI/Stanford researchers considers that the errors accumulate smoothly all over the loop. However, in practical situations the errors in building the mosaic are not distributed uniformly across the mosaic. On the contrary, in some points the error is much larger than on other points, although the line where the images are joined together at their edges has good visual registration. This effect is proved in [Sin98] (see figure 4 in [Sin98]), where by the researchers of the Woods Hole Oceanographic Institution together with the Johns Hopkins University analyze the quality of the visual mosaics by using extremely accurate (an expensive) navigation data. In [Sin98] the distortion across the mosaic is quantified by comparing the average distance of separation between the images that form the mosaic and the actual distance provided by the vehicle’s accurate navigation system
. 

5. A comparative Classification

Several criteria can be applied in order to classify the previously described image-mosaicking techniques. In order to provide an overview of the presented systems, Table 1 shows a comparative summary of the analyzed mosaicking systems. The first row identifies the different systems by giving the institution name and the referred papers. The next two rows consider the necessity of correcting the distortions introduced by the lenses and the on-board lighting, respectively.  While some of the works correct the lens distortion, other systems choose a large focal-length camera to minimize this effect (reducing the field of view). Several techniques have been proposed to solve lighting inhomogeneities. Normally, scene radiance is assumed to change smoothly along the image. Therefore, some authors [NegXX] propose a radiometric model to compensate for variations in the scene illumination, while others [Rzh00] suggest the fitting of a surface to the gray-levels of the image, and then subtract it from the original frame (de-trending technique in the table). The following three rows provide information about the nature of the motion performed by the vehicle, the assumed motion model, and the technique that has been used to detect motion, respectively. Most of the systems consider the vehicle is passively stable in pitch and roll, therefore those angles are not computed in order to estimate the vehicle motion. Moreover, it should be noted the low incidence of frequential methods in the phase of motion estimation (only one of the systems that have been analyzed computes motion by means of the Fourier Transform). Feature-based techniques select image regions that maximize an interest criterion, such as the presence of zero crossings of the Laplacian of the image [Mar95,Fle97], or a high spatial gradient in both x and y directions [Gra00,Tru00].

The next two rows compare the image capture rate and the mosaic actualization rate, while the following row details whether the mosaicking system is able to work in real time as the vehicle is moving or if the mosaic has to be constructed offline. Next, the table specifies which is the main purpose of the mosaic: the construction of a visual map itself or to serve as a navigation tool to estimate the motion of the submersible. Finally, the last two rows indicate which technique (if any) is applied to correct drift as the mosaic increases in size, and how the input images are merged together to construct the mosaic.





Spatial Techniques


Frequential Techn.




Feature-based

Featureless













Heriot-Watt University
[Odo99] [Pla00] [Tru00]
Instituto Sup. Tecnico

(Lisboa)

+

Univ. Of Genova

[Gra98a] [San94] [Bra98c] [Mur94] [Gra00]
Stanford University

+ 

MBARI

[Mar94b] [Mar95] [Mar94d] [Fle95] [Fle96] [Fle97] [Fle98] [Hus98]
ENSTB + IFREMER

[Agu90], [Agu88]
Underwater Vision and Imaging Laboratory

Univ. Of Miami

[Xu97] [Str97] [Neg98d] [Neg98a] [Neg98e] 
Woods Hole Oceano​graphic Institution

[Eus00] [Sin98]

(Altres: [Whi99], [Yoe00], [Whi00], [Sin00a], [Whi98], [Sin00b])
University of New Hampshire

+

Heriot-Watt University

[Rzh00]

Distortion correction?
None


Radial distortion
Suggest the use of a narrow-field-of-view camera (20º)
No
Corrects the distortion due to refraction
None


None



Technique to compensate  lighting problems
None
None
signum of LoG filter
Explicitly assume lighting conditions are constant.
Radiometric model
Adaptative histogram equalization

Laplacian of Gaussian pyramid
Lighting Artifacts elimination through de-trending

Motion Model
Projective
- Translation and zoom

- semi-rigid

- affine

- projective
4-parameter semi-rigid: 

Horizontal and vertical shift (tx,ty) scale factor (()

rotation in the image plane (()
2D translation, a trajectory is computed by adding all the displacements of the sequence.
Consider 3D translation and Yaw (tx,ty,tz,() 

(no pitch and roll)
- affine

- projective
- affine



Motion detection
Shi-Tomasi-Kanade tracker


Corner detection

Correlation
Features with high spatial gradient detected through the zero crossings of the LoG operator
Apply a Sobel, Compute Hough (GHT), select the 5 best 80x80 windows
Direct Flow

(Optical Flow)
Manual selection of matchings/ Automatic for simple motions (translation and rotation about the camera optical centre)
Fourier

Details of Computation of Registration parameters 
1. Detect features of high spatial gradient; 2. Feature registration by minimizing frame regions in both images; 3. Use of robust regression techniques for outlier rejec​tion (X84 in [Pla00,Tru00], LMedS in [Odo99])
Use of robust regression techniques for outlier rejection before the computation of the 2D transformation (MEDSEDERE)
At frame rate (30 Hz)

Live image is registered to the last image added to the mosaic.

1. Filtering (LoG)+Correlation. 

2. Optimization technique to compute the 4 parameters.

Do not construct a mosaic, but find the trajectory followed by the submersible, choosing the first image as reference frame.
Uses small images to compute the registration

64 ( 60

or

128 ( 120 
Levenberg Marquardt optimization procedure in [Eus00]

Not detailed in [Sin98]
Translation determined from the phase shift theorem, and application of the Mellin transform to determine rotation & scaling factors

Image Capture Rate
25 ips
25 ips
30 ips
5 ips (200 ms)
30 ips
Variable capture rate

Processed offline
2-3 ips

Actualization of the mosaic
Fixed time
Fixed time
Fixed visual intervals

Only the images that incorporate some additional information are used to actualize the mosaic. (at a lower rate than 30 Hz)

Fixed-time

Computationally more economical to update the mosaic every L frames
Not specified. Manual choice. 
Fixed time Every image is taken into account (low frame rate)

Real time?
No

Yes, 30 Hz
No, CPU time for every image is 16 sec. (on a microVAX 3100)
Yes
No
Yes, the authors argue 2 fps is already real time.

Main application of the mosaic
Obtaining a map


Obtaining a map
Navigation
Navigation
Navigation


Obtaining a map


Obtaining a map


Drift correction
Use a constant base frame
None
1. Consolidate images at fixed visual intervals (spare mosaic)

2. Looping trajectories
None
Consolidate images every L frames



Mosaic Rendering








Table 1. A summary of the analyzed mosaicking systems (ips: images per second; )

6. Conclusions

The main mosaicking techniques for aiding autonomous underwater navigation have been reviewed in this paper, in order to point out the strengths and weaknesses of the different strategies. The comparative study could orientate the researchers to decide which techniques and solutions are the most adequate to endow his vehicle with visual mosaicking capabilities. 

One of the fundamental difficulties the underwater vision systems have to face is that related to the lighting effects. The vehicle has to carry its own light source, producing non-uniform illumination, shadows and scattering effects. Several techniques have been proposed to compensate these effects: LoG filtering, de-trending, radiometric models, etc. When using feature-based techniques, the Laplacian of Gaussian (LoG) operator has appeared as a widely-used technique to locate features in front of lighting inhomogeneities. However, none of the proposed methods produces satisfactory results in the presence of backscatter or “marine snow”. 

Image registration is a key step in the construction of visual mosaics. However, there is no a perfect methodology to recover the registration parameters between two images. Optical flow strategies are typically affected from the aperture problem, while feature methods do not suffer from this difficulty. However, feature-based correlation techniques have serious problems dealing with image rotations (yaw motion in mosaicking), and zooming effects. Most authors attenuate this problem by introducing the constraint of a high image capture rate. Dense flow-based methods, though accurate, are computationally expensive and sensitive to local minima. Direct methods for motion estimation allow the estimation of 3D motion directly from spatio-temporal image gradient, without the need of any intermediate measure (like feature correspondences or the flow field). However, they suffer from the problems inherited from flow-based methods, and its accuracy decreases as image motion gets further from one pixel. This inconvenient has to be tackled by introducing a multi-resolution pyramidal scheme. On the other hand, direct estimation method is more accurate than cross-correlation techniques in the estimation of motion over non-flat terrains, since differences in depth create intersections in the image that do not correspond to a physical point of the image. Nevertheless, it has been proved that when the texture is poor, the use of correlation-based algorithms provides better results than those obtained with differential techniques [Gia00]. 

According to [Sin98], there is no guarantee that, in practice, mismatches occur gradually and smoothly, as Fleischer et al. assumed; on the contrary, sporadic impulse-type errors in the estimation of camera motion are more likely. For this reason, Negahdaripour et al. only actualize the mosaic within the regions where no previous information exists. When the vehicle moves to a zone where the image maps completely onto some part of the existing mosaic, this new information is only used for positioning correction.

Real-time mosaicking with standard hardware has already been demonstrated by several researchers. The advantages of real-time systems are twofold: firstly, the possibility of providing navigational information while constructing the mosaic (Concurrent Mapping and Localization); and lastly, the detection of gaps in the mosaic can be corrected within the same mission by revisiting the interest zone.

Occlusion problems
7. FUTURE TRENDS 

Idees:

Estimation of the most adequate motion model.

Real-time performance

Drift due to long surveys
Com es reparteix la variança de l’error en els loops? No uniformement!! Podem mesurar-la a partir de la imatge?
[Eus00]- In the future the mosaicking systems should be able to cope with the unstructured three-dimensional nature of the underwater terrain, taking into account occlusions, etc.
The accuracy of the mosaicking systems is limited due to several factors. Improvement on the accuracy on any of these factors implies an amelioration of the accuracy of the whole system. Feature-based methods suffer from the uncertainty in the measurement of the image features. That impossibility of measuring the exact position of the features in the image cause errors in the motion estimation, and therefore, in the mosaic alignment. Robust algorithms such as LMedS, RANSAC or MEDSEDERE can reduce to a large extent the amount of noisy data (called “outliers”). The development of new algorithms that could effectively detect the non-consistent data would improve the results of mosaicking systems.

On the other hand, featureless methods face the problem of non-linear least squares estimation. At the moment, these methods require a good initial guess at the solution in order to converge to the global minimum. Otherwise the iteration may lead to a local minimum, or may not converge at all.

At the moment, mapping a large area is constrained by the hardware limitations.

Most of the visual mosaicking systems that have been analyzed in this survey are uniquely taking information from the on-board cameras. In some cases, other on-board sensors such as compasses, gyros, sonars or Inertial Navigation Systems (INS) have been timidly used. It has been proved that local accuracy provided by visual sensing is higher than that of any other sensor (with a similar cost). However, as the mosaic increases in size, the system is biased by a considerable drift. For this reason, sensor fusion integrating vision with other sensors which are not subject to drift, such as some LBL sonar sensors able to provide GPS readings, could improve to a large extent the correctness in the construction of a visual map.
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� This system is comprised of a conventional long-baseline acoustic navigation, a bottom-lock doppler multibeam sonar, and a ring-laser gyroscope heading reference. 





� In spite of the fact that an error minimisation technique is proposed for finding the four parameters that best fit the data, for the sake of clarity only the solution requiring the correspondences of two points was examined in [Mar95].
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