Contents

List of figures iv
List of tables vii
Agraïments 1
Resum 5
Abstract 6

1 Introduction 7
1.1 Introduction to 3D metrology 7
1.2 Context and motivation 14
1.3 Objectives .. 14
1.4 Thesis outline ... 16

2 Triangulation 3D laser scanners 19
2.1 Introduction .. 19
2.2 The principle of triangulation 20
2.3 Proposed classification 23
2.4 Systems and methods for shape acquisition 31
2.4.1 Pose measurement 32
2.4.2 Projective approach 34
2.4.3 Euclidean approach 38
2.4.4 Time multiplexing. Switching the laser slit 43
2.4.5 Lookup Table generation 46

3 Laser peak detection 49
3.1 Introduction .. 49
3.2 Scanning different surfaces 50
3.3 Noise sources .. 50
3.4 A new method for peak detection 53
CONTENTS

3.5 Summary .. 54

4 Calibration with the Complete Quadrangle .. 57
 4.1 Introduction 57
 4.2 Projective geometry 58
 4.2.1 Homogeneous coordinates 59
 4.2.2 The cross-ratio 61
 4.2.3 The complete quadrangle 61
 4.3 Parameter estimation 62
 4.4 Previous work 66
 4.5 A new method for obtaining point correspondences 68
 4.5.1 Points on the upper and lower edges 68
 4.5.2 Points on the laser stripe 70
 4.5.3 Validation 70
 4.6 Calibration 72
 4.7 Summary .. 75

5 Experimental results .. 77
 5.1 Test bench 77
 5.2 Experiments with the peak detector 78
 5.3 Experiments with the scanner calibration 85
 5.4 Qualitative results 85
 5.5 Summary .. 88

6 Conclusion .. 97
 6.1 Contributions 97
 6.2 Conclusions 98
 6.2.1 Survey of triangulation laser devices 98
 6.2.2 Applications 99
 6.2.3 Peak detector 99
 6.2.4 Calibration method 100
 6.3 Future work 100
 6.3.1 Peak optimisation 101
 6.3.2 Improvement of parameter estimation 101
 6.3.3 kaka .. 102
 6.4 Related publications 102
 6.4.1 Journals 102
 6.4.2 Conferences 103
CONTENTS

A Applications ... 105
 A.1 The Chen & Kak system 105
 A.2 Smart sensors. Yet another approach 110
 A.2.1 Slit detection 110
 A.2.2 Calibration procedure 110
 A.2.3 Noise evaluation 119
 A.2.4 Simulation results 122
 A.3 An attempt to Underwater Range Sensing 122
 A.3.1 Introduction .. 122
 A.3.2 The Underwater Robot 125
 A.3.3 The use of light underwater: Scattering and Absorption 126
 A.3.4 The Range Imaging System 126
 A.3.5 Experimental Results 131

B Notation ... 133
 B.1 Mathematics Convention 133

References .. 135
List of Figures

1.1 Concentration of light transducers on the retina. 9
1.2 Cones and Rods present on the retina. 10
1.3 Side section of a human eye. 11
1.4 Interconnections in the vision system. Sub-cortical areas: LGN, Lateral Geniculate Nucleus; SupCol, Superior Colliculus; Pulv, Pulvinar nucleus. Cortical areas: MT, Middle Temporal; MST, Middle Superior Temporal; PO, Parieto-occipital; VIP, LIP, MIP, AIP, Ventral, Lateral, Medial and Anterior intraparietal respectively; STS, Superior Temporal Sulcus. 12
1.5 A text as seen with a foveal vision sensor. 12
1.6 The basic 3D laser scanner. 13

2.1 Triangulation principle using 2 cameras. 21
2.2 Laser scanner system with scanning light source. 22
2.3 3D reconstruction by triangulation using a laser plane and a camera. 23
2.4 A stereo rig with only one camera and a laser stripe. 33
2.5 Centroid Computation Strategy in Oke et.al. 34
2.6 The system arrangement of Chen & Kak. 36
2.7 Elements of two dimensional projectivity. 37
2.8 Oxford/NEL range-finder scheme. 38
2.9 Low cost wand scanner. 41
2.10 Low cost wand slit scanner. 42
2.11 Calibration-free 3D laser scanner. 43
2.12 Space-encoding method. 44
2.13 Yu et al. digitiser geometric parameters. 45
2.14 Change on the slit ray projection axis. 47
2.15 Line of sight computation in Gruss et al. 48
2.16 Calibration target used in Gruss et al. 48
LIST OF FIGURES

3.1 Behaviour of light reflected on a specular surface (a), and a lambertian surface (b). .. 51
3.2 Behaviour of light reflected on a lambertian surface. 52
3.3 A laser stripe on a translucent (left) and a lambertian (right) surface. ... 53
3.4 Laser peak and first derivative. ... 55

4.1 The Last Supper, by Leonardo da Vinci 60
4.2 Cross-ratio of a pencil of lines ... 62
4.3 The complete quadrangle .. 63
4.4 Total Least Squares and Algebraic Least Squares examples 64
4.5 Geometric scheme of Chen & Kak's method. 67
4.6 The cross-ratio and the complete quadrangle. 69
4.7 The laser plane defined by upper and lower points (a) and Point generation (b). ... 71
4.8 Plots of the values of WT_I and the lines fitted. 74

5.1 A picture of the test bench (a) and the lab scanner. 79
5.2 Peak estimation with the 6 methods, SN=0.92dB. 82
5.3 Effect of peak detection on a lambertian (up) and translucent (down) surface. Using PM. ... 83
5.4 Effect of peak detection on a lambertian (up) and translucent (down) surface. Using BR ... 84
5.5 Effect of peak detection on a lambertian (up) and translucent (down) surface. Using CM. ... 84
5.6 Errors in the reconstruction of the calibration planes using (a) TLS and (b) FNS methods. ... 86
5.7 Reconstruction of a cylinder (a). .. 87
5.8 A dense cloud of points of a bust of Wagner. 89
5.9 The bust of Wagner: interpolated surface (a), the extracted profile (b) and its picture (c). ... 90
5.10 A laughing sun: interpolated surface (a), the extracted profile (b) and its picture (c). ... 91
5.11 A meditative samurai: interpolated surface (a), the extracted profile (b) and (c) its picture. ... 92
5.12 The bust of a horse: Interpolated surface (a) and its picture (b). 93
5.13 Reconstruction of a translucent surface with letters carved on it (a) and its picture (b). ... 94
5.14 Reconstruction of a portion of human tissue. 95

A.1 Co-ordinate frames for Chen & Kak system simulation. 106
LIST OF FIGURES

A.2 Reconstruction errors as a function of range. 107
A.3 Reconstruction of a plane at Wz=0. 108
A.4 Reconstruction of a plane at Wz=110. 109
A.5 Co-ordinate frames for Smart Sensor-based system simulation. 111
A.6 Detection of laser slit by voltage comparison 111
A.7 One row in common cathode. 112
A.8 Detection circuit. .. 112
A.9 Intersection between a line-of-sight and the laser plane 118
A.10 The underwater robot GARBI. 125
A.11 Laser system with the 8 parameters describing its model. 129
LIST OF FIGURES
List of Tables

2.1 Classification of three-dimensional digitiser systems. 24
4.1 Fit of a plane equation to each of the laser plane positions. 72
5.1 Estimator formulae. The δ stand for the subpixel offset. The a, b and c stand for the 3 consecutive pixels of the peak, where b is the maximum in intensity value. The x₀, y₀, x₁, y₁ of PM are the coordinates of two points to which a line is fitted, as explained in chapter 3. 81
5.2 Values of σ estimating the peak using the 6 methods with 4 S/N levels. 81
5.3 Mean value and σ, estimating the peak on two types of material under different light power conditions (S/N values in dB). 83
5.4 Reconstructed diameter of the fitted cylinder with different noise levels. 87

A.1 Performance of the Chen and Kak scanner. 108
A.2 The three main electrical noise sources under consideration. 120
A.3 Performance evaluation in terms of the S/N. 121
A.4 Metric errors due to electric noise. 122
A.5 Metric errors due to quantisation. 123
A.6 Metric errors due to both quantisation and electric noise. ... 123