
80C186EC/80C188EC
Microprocessor
User’s Manual

80C186EC/80C188EC
Microprocessor
User’s Manual

1995 Order Number 272047-003

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions
of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION, 1995

CONTENTS
CHAPTER 1
INTRODUCTION

1.1 HOW TO USE THIS MANUAL... 1-2
1.2 RELATED DOCUMENTS .. 1-3
1.3 ELECTRONIC SUPPORT SYSTEMS ... 1-4

1.3.1 FaxBack Service ...1-4
1.3.2 Bulletin Board System (BBS) ..1-5

1.3.2.1 How to Find ApBUILDER Software and Hypertext Documents on the BBS ...1-6
1.3.3 CompuServe Forums ..1-6
1.3.4 World Wide Web ...1-6

1.4 TECHNICAL SUPPORT .. 1-6

1.5 PRODUCT LITERATURE.. 1-7
1.6 TRAINING CLASSES .. 1-7

CHAPTER 2
OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.1 ARCHITECTURAL OVERVIEW .. 2-1
2.1.1 Execution Unit ...2-2
2.1.2 Bus Interface Unit ...2-3
2.1.3 General Registers ...2-4
2.1.4 Segment Registers ...2-5
2.1.5 Instruction Pointer ...2-6
2.1.6 Flags ...2-7
2.1.7 Memory Segmentation ..2-8
2.1.8 Logical Addresses ...2-10
2.1.9 Dynamically Relocatable Code ...2-13
2.1.10 Stack Implementation ...2-15
2.1.11 Reserved Memory and I/O Space ...2-15

2.2 SOFTWARE OVERVIEW .. 2-17
2.2.1 Instruction Set ...2-17

2.2.1.1 Data Transfer Instructions ...2-18
2.2.1.2 Arithmetic Instructions ...2-19
2.2.1.3 Bit Manipulation Instructions ...2-21
2.2.1.4 String Instructions ..2-22
2.2.1.5 Program Transfer Instructions ...2-23
2.2.1.6 Processor Control Instructions ..2-27

2.2.2 Addressing Modes ..2-27
2.2.2.1 Register and Immediate Operand Addressing Modes2-27
2.2.2.2 Memory Addressing Modes ...2-28
2.2.2.3 I/O Port Addressing ...2-36
2.2.2.4 Data Types Used in the 80C186 Modular Core Family2-37
iii

CONTENTS
2.3 INTERRUPTS AND EXCEPTION HANDLING.. 2-39
2.3.1 Interrupt/Exception Processing ...2-39

2.3.1.1 Non-Maskable Interrupts ...2-42
2.3.1.2 Maskable Interrupts ...2-42
2.3.1.3 Exceptions ...2-42

2.3.2 Software Interrupts ..2-44
2.3.3 Interrupt Latency ...2-44
2.3.4 Interrupt Response Time ..2-45
2.3.5 Interrupt and Exception Priority ...2-46

CHAPTER 3
BUS INTERFACE UNIT

3.1 MULTIPLEXED ADDRESS AND DATA BUS.. 3-1
3.2 ADDRESS AND DATA BUS CONCEPTS... 3-1

3.2.1 16-Bit Data Bus ...3-1
3.2.2 8-Bit Data Bus ...3-5

3.3 MEMORY AND I/O INTERFACES... 3-6
3.3.1 16-Bit Bus Memory and I/O Requirements ...3-7
3.3.2 8-Bit Bus Memory and I/O Requirements ...3-7

3.4 BUS CYCLE OPERATION .. 3-7
3.4.1 Address/Status Phase ..3-10
3.4.2 Data Phase ...3-13
3.4.3 Wait States ..3-13
3.4.4 Idle States ...3-18

3.5 BUS CYCLES .. 3-20
3.5.1 Read Bus Cycles ..3-20

3.5.1.1 Refresh Bus Cycles ...3-22
3.5.2 Write Bus Cycles ...3-23
3.5.3 Interrupt Acknowledge Bus Cycle ...3-26

3.5.3.1 System Design Considerations ...3-28
3.5.4 HALT Bus Cycle ..3-29
3.5.5 Temporarily Exiting the HALT Bus State ...3-32
3.5.6 Exiting HALT ...3-34

3.6 SYSTEM DESIGN ALTERNATIVES ... 3-36
3.6.1 Buffering the Data Bus ..3-37
3.6.2 Synchronizing Software and Hardware Events ...3-39
3.6.3 Using a Locked Bus ..3-40

3.7 MULTI-MASTER BUS SYSTEM DESIGNS... 3-41
3.7.1 Entering Bus HOLD ..3-41

3.7.1.1 HOLD Bus Latency ..3-42
3.7.1.2 Refresh Operation During a Bus HOLD ..3-43

3.7.2 Exiting HOLD ..3-45

3.8 BUS CYCLE PRIORITIES ... 3-46
iv

CONTENTS
CHAPTER 4
PERIPHERAL CONTROL BLOCK

4.1 PERIPHERAL CONTROL REGISTERS.. 4-1
4.2 PCB RELOCATION REGISTER.. 4-1

4.3 RESERVED LOCATIONS ... 4-4
4.4 ACCESSING THE PERIPHERAL CONTROL BLOCK.. 4-4

4.4.1 Bus Cycles ...4-4
4.4.2 READY Signals and Wait States ...4-4
4.4.3 F-Bus Operation ...4-5

4.4.3.1 Writing the PCB Relocation Register ...4-6
4.4.3.2 Accessing the Peripheral Control Registers ..4-6
4.4.3.3 Accessing Reserved Locations ...4-6

4.5 SETTING THE PCB BASE LOCATION... 4-6
4.5.1 Considerations for the 80C187 Math Coprocessor Interface4-7

CHAPTER 5
CLOCK GENERATION AND POWER MANAGEMENT

5.1 CLOCK GENERATION.. 5-1
5.1.1 Crystal Oscillator ...5-1

5.1.1.1 Oscillator Operation ...5-2
5.1.1.2 Selecting Crystals ..5-5

5.1.2 Using an External Oscillator ..5-6
5.1.3 Output from the Clock Generator ..5-6
5.1.4 Reset and Clock Synchronization ...5-6

5.2 POWER MANAGEMENT... 5-10
5.2.1 Idle Mode ..5-11

5.2.1.1 Entering Idle Mode ..5-11
5.2.1.2 Bus Operation During Idle Mode ...5-13
5.2.1.3 Leaving Idle Mode ...5-14
5.2.1.4 Example Idle Mode Initialization Code ..5-15

5.2.2 Powerdown Mode ...5-16
5.2.2.1 Entering Powerdown Mode ...5-17
5.2.2.2 Leaving Powerdown Mode ..5-18

5.2.3 Power-Save Mode ..5-19
5.2.3.1 Entering Power-Save Mode ..5-20
5.2.3.2 Leaving Power-Save Mode ...5-22
5.2.3.3 Example Power-Save Initialization Code ...5-22

5.2.4 Implementing a Power Management Scheme ..5-24

CHAPTER 6
CHIP-SELECT UNIT

6.1 COMMON METHODS FOR GENERATING CHIP-SELECTS....................................... 6-1

6.2 CHIP-SELECT UNIT FEATURES AND BENEFITS .. 6-1
6.3 CHIP-SELECT UNIT FUNCTIONAL OVERVIEW ... 6-2
v

CONTENTS
6.4 PROGRAMMING... 6-5
6.4.1 Initialization Sequence ..6-6
6.4.2 Start Address ..6-10
6.4.3 Stop Address ..6-10
6.4.4 Enabling and Disabling Chip-Selects ..6-11
6.4.5 Bus Wait State and Ready Control ...6-11
6.4.6 Overlapping Chip-Selects ...6-12
6.4.7 Memory or I/O Bus Cycle Decoding ..6-14
6.4.8 Programming Considerations ..6-14

6.5 CHIP-SELECTS AND BUS HOLD... 6-15

6.6 EXAMPLES ... 6-15
6.6.1 Example 1: Typical System Configuration ..6-15
6.6.2 Example 2: Detecting Attempts to Access Guarded Memory6-20

CHAPTER 7
REFRESH CONTROL UNIT

7.1 THE ROLE OF THE REFRESH CONTROL UNIT... 7-2

7.2 REFRESH CONTROL UNIT CAPABILITIES... 7-2
7.3 REFRESH CONTROL UNIT OPERATION.. 7-2
7.4 REFRESH ADDRESSES... 7-4

7.5 REFRESH BUS CYCLES.. 7-5
7.6 GUIDELINES FOR DESIGNING DRAM CONTROLLERS.. 7-5
7.7 PROGRAMMING THE REFRESH CONTROL UNIT... 7-7

7.7.1 Calculating the Refresh Interval ..7-7
7.7.2 Refresh Control Unit Registers ...7-7

7.7.2.1 Refresh Base Address Register ..7-8
7.7.2.2 Refresh Clock Interval Register ...7-8
7.7.2.3 Refresh Control Register ...7-9
7.7.2.4 Refresh Address Register ...7-10

7.7.3 Programming Example ...7-11
7.8 REFRESH OPERATION AND BUS HOLD.. 7-13

CHAPTER 8
INTERRUPT CONTROL UNIT

8.1 FUNCTIONAL OVERVIEW: THE INTERRUPT CONTROLLER 8-1
8.2 INTERRUPT PRIORITY AND NESTING... 8-4

8.3 OVERVIEW OF THE 8259A ARCHITECTURE... 8-4
8.3.1 A Typical Interrupt Sequence Using the 8259A Module ...8-6
8.3.2 Interrupt Requests ..8-9

8.3.2.1 Edge and Level Triggering ..8-9
8.3.2.2 The Interrupt Request Register ...8-9
8.3.2.3 Spurious Interrupts ..8-10

8.3.3 The Priority Resolver and Priority Resolution ...8-10
vi

CONTENTS
8.3.3.1 Default (Fixed) Priority ...8-11
8.3.3.2 Changing the Default Priority: Specific Rotation ..8-11
8.3.3.3 Changing the Default Priority: Automatic Rotation ..8-12

8.3.4 The In-Service Register ..8-12
8.3.4.1 Clearing the In-Service Bits: Non-Specific End-Of-Interrupt8-13
8.3.4.2 Clearing the In-Service Bits: Specific End-Of-Interrupt8-13
8.3.4.3 Automatic End-Of-Interrupt Mode ...8-13

8.3.5 Masking Interrupts ..8-14
8.3.6 Cascading 8259As ..8-14

8.3.6.1 Master/Slave Connection ..8-14
8.3.6.2 The Cascaded Interrupt Acknowledge Cycle: An Example8-16
8.3.6.3 Master Cascade Configuration ..8-17
8.3.6.4 Slave ID ...8-17
8.3.6.5 Issuing EOI Commands in a Cascaded System ..8-17
8.3.6.6 Spurious Interrupts in a Cascaded System ...8-18

8.3.7 Alternate Modes of Operation: Special Mask Mode ..8-19
8.3.8 Alternate Modes of Operation: Special Fully Nested Mode8-19
8.3.9 Alternate Modes of Operation: The Poll Command ..8-20

8.4 PROGRAMMING THE 8259A MODULE... 8-20
8.4.1 Initialization and Operation Command Words ...8-20
8.4.2 Programming Sequence and Register Addressing ...8-21
8.4.3 Initializing the 8259A Module ..8-21

8.4.3.1 8259A Initialization Sequence ...8-21
8.4.3.2 ICW1: Edge/Level Mode, Single/Cascade Mode ..8-23
8.4.3.3 ICW2: Base Interrupt Type ..8-25
8.4.3.4 ICW3: Cascaded Pins/Slave Address ...8-26
8.4.3.5 ICW4: Special Fully Nested Mode, EOI Mode, Factory Test Modes8-26

8.4.4 The Operation Command Words ..8-30
8.4.4.1 Masking Interrupts: OCW1 ..8-30
8.4.4.2 EOI And Interrupt Priority: OCW2 ...8-30
8.4.4.3 Special Mask Mode, Poll Mode and Register Reading: OCW38-34

8.5 MODULE INTEGRATION: THE 80C186EC INTERRUPT CONTROL UNIT............... 8-36
8.5.1 Internal Interrupt Sources ...8-36

8.5.1.1 Directly Supported Internal Interrupt Sources ...8-37
8.5.1.2 Indirectly Supported Internal Interrupt Sources ...8-38
8.5.1.3 Using the Interrupt Request Latch Registers ..8-39
8.5.1.4 Using the Interrupt Request Latch Registers to Debug Interrupt Handlers ...8-40

8.6 HARDWARE CONSIDERATIONS WITH THE INTERRUPT CONTROL UNIT........... 8-42
8.6.1 Interrupt Latency and Response Time ..8-43
8.6.2 Resetting the Edge Detector ...8-43
8.6.3 Ready Generation ...8-44
8.6.4 Connecting External 8259A Devices ..8-44

8.6.4.1 The External INTA Cycle ...8-45
8.6.4.2 Timing Constraints ..8-46

8.7 MODULE EXAMPLES ... 8-47
vii

CONTENTS
viii

CHAPTER 9
TIMER/COUNTER UNIT

9.1 FUNCTIONAL OVERVIEW.. 9-1
9.2 PROGRAMMING THE TIMER/COUNTER UNIT .. 9-6

9.2.1 Initialization Sequence ..9-11
9.2.2 Clock Sources ...9-12
9.2.3 Counting Modes ..9-12

9.2.3.1 Retriggering ...9-13
9.2.4 Pulsed and Variable Duty Cycle Output ..9-14
9.2.5 Enabling/Disabling Counters ...9-15
9.2.6 Timer Interrupts ...9-16
9.2.7 Programming Considerations ..9-16

9.3 TIMING .. 9-16
9.3.1 Input Setup and Hold Timings ...9-16
9.3.2 Synchronization and Maximum Frequency ...9-17

9.3.2.1 Timer/Counter Unit Application Examples ...9-17
9.3.3 Real-Time Clock ...9-17
9.3.4 Square-Wave Generator ...9-17
9.3.5 Digital One-Shot ..9-17

CHAPTER 10
DIRECT MEMORY ACCESS UNIT

10.1 FUNCTIONAL OVERVIEW.. 10-1
10.1.1 The DMA Transfer ..10-1

10.1.1.1 DMA Transfer Directions ...10-3
10.1.1.2 Byte and Word Transfers ..10-3

10.1.2 Source and Destination Pointers ..10-3
10.1.3 DMA Requests ..10-3
10.1.4 External Requests ...10-4

10.1.4.1 Source Synchronization ..10-5
10.1.4.2 Destination Synchronization ..10-5

10.1.5 Internal Requests ..10-6
10.1.5.1 Integrated Peripheral Requests ...10-6
10.1.5.2 Timer 2-Initiated Transfers ..10-6
10.1.5.3 Serial Communications Unit Transfers ..10-7
10.1.5.4 Unsynchronized Transfers ..10-7

10.1.6 DMA Transfer Counts ...10-7
10.1.7 Termination and Suspension of DMA Transfers ...10-7

10.1.7.1 Termination at Terminal Count ..10-8
10.1.7.2 Software Termination ..10-8
10.1.7.3 Suspension of DMA During NMI ...10-8
10.1.7.4 Software Suspension ..10-8

10.1.8 DMA Unit Interrupts ..10-8
10.1.9 DMA Cycles and the BIU ..10-8
10.1.10 The Two-Channel DMA Module ..10-9

10.1.10.1 DMA Channel Arbitration ...10-9

CONTENTS
10.1.11 DMA Module Integration ...10-12
10.1.11.1 DMA Unit Structure ...10-13

10.2 PROGRAMMING THE DMA UNIT .. 10-15
10.2.1 DMA Channel Parameters ..10-15

10.2.1.1 Programming the Source and Destination Pointers10-15
10.2.1.2 Selecting Byte or Word Size Transfers ..10-19
10.2.1.3 Selecting the Source of DMA Requests ..10-22
10.2.1.4 Arming the DMA Channel ..10-23
10.2.1.5 Selecting Channel Synchronization ...10-23
10.2.1.6 Programming the Transfer Count Options ...10-24
10.2.1.7 Generating Interrupts on Terminal Count ..10-25
10.2.1.8 Setting the Relative Priority of a Channel ..10-26

10.2.2 Setting the Inter-Module Priority ...10-26
10.2.3 Using the DMA Unit with the Serial Ports ..10-26
10.2.4 Suspension of DMA Transfers Using the DMA Halt Bits10-27
10.2.5 Initializing the DMA Unit ..10-27

10.3 HARDWARE CONSIDERATIONS AND THE DMA UNIT ... 10-28
10.3.1 DRQ Pin Timing Requirements ...10-29
10.3.2 DMA Latency ..10-29
10.3.3 DMA Transfer Rates ...10-29
10.3.4 Generating a DMA Acknowledge ..10-30

10.4 DMA UNIT EXAMPLES ... 10-30

CHAPTER 11
SERIAL COMMUNICATIONS UNIT

11.1 INTRODUCTION ... 11-1
11.1.1 Asynchronous Communications ..11-1

11.1.1.1 RX Machine ...11-2
11.1.1.2 TX Machine ...11-4
11.1.1.3 Modes 1, 3 and 4 ...11-6
11.1.1.4 Mode 2 ..11-7

11.1.2 Synchronous Communications ...11-8

11.2 PROGRAMMING... 11-9
11.2.1 Baud Rates ...11-10
11.2.2 Asynchronous Mode Programming ...11-13

11.2.2.1 Modes 1, 3 and 4 for Stand-alone Serial Communications11-13
11.2.2.2 Modes 2 and 3 for Multiprocessor Communications11-14
11.2.2.3 Sending and Receiving a Break Character ...11-14

11.2.3 Programming in Mode 0 ..11-18
11.3 HARDWARE CONSIDERATIONS FOR THE SERIAL PORT................................... 11-18

11.3.1 CTS Pin Timings ...11-18
11.3.2 BCLK Pin Timings ...11-18
11.3.3 Mode 0 Timings ..11-20

11.3.3.1 CLKOUT as Baud Timebase Clock ...11-20
11.3.3.2 BCLK as Baud Timebase Clock ..11-21
ix

CONTENTS
11.4 SERIAL COMMUNICATIONS UNIT INTERRUPTS .. 11-21
11.5 SERIAL PORT EXAMPLES... 11-21

11.5.1 Asynchronous Mode Example ..11-21
11.5.2 Mode 0 Example ...11-23
11.5.3 Master/Slave Example ..11-24

CHAPTER 12
WATCHDOG TIMER UNIT

12.1 FUNCTIONAL OVERVIEW.. 12-1
12.2 USING THE WATCHDOG TIMER AS A SYSTEM WATCHDOG 12-1

12.2.1 Reloading the Watchdog Timer Down Counter ...12-3
12.2.2 Watchdog Timer Reload Value ...12-4
12.2.3 Initialization ...12-5

12.3 USING THE WATCHDOG TIMER AS A GENERAL-PURPOSE TIMER 12-6
12.4 DISABLING THE WATCHDOG TIMER... 12-6
12.5 WATCHDOG TIMER REGISTERS.. 12-8

12.6 INITIALIZATION EXAMPLE... 12-12

CHAPTER 13
INPUT/OUTPUT PORTS

13.1 FUNCTIONAL OVERVIEW.. 13-1
13.1.1 Bidirectional Port ...13-1
13.1.2 Output Port ..13-3
13.1.3 Open-Drain Bidirectional Port ...13-3
13.1.4 Port Pin Organization ..13-3

13.1.4.1 Port 1 Organization ...13-6
13.1.4.2 Port 2 Organization ...13-6
13.1.4.3 Port 3 Organization ...13-7

13.2 PROGRAMMING THE I/O PORT UNIT... 13-7
13.2.1 Port Control Register ..13-7
13.2.2 Port Direction Register ..13-8
13.2.3 Port Data Latch Register ...13-9
13.2.4 Port Pin State Register ...13-10
13.2.5 Initializing the I/O Ports ...13-11

13.3 PROGRAMMING EXAMPLE... 13-12

CHAPTER 14
MATH COPROCESSING

14.1 OVERVIEW OF MATH COPROCESSING.. 14-1
14.2 AVAILABILITY OF MATH COPROCESSING.. 14-1
14.3 THE 80C187 MATH COPROCESSOR.. 14-2

14.3.1 80C187 Instruction Set ...14-2
14.3.1.1 Data Transfer Instructions ...14-3
x

CONTENTS
14.3.1.2 Arithmetic Instructions ...14-3
14.3.1.3 Comparison Instructions ..14-5
14.3.1.4 Transcendental Instructions ..14-5
14.3.1.5 Constant Instructions ...14-6
14.3.1.6 Processor Control Instructions ..14-6

14.3.2 80C187 Data Types ..14-7
14.4 MICROPROCESSOR AND COPROCESSOR OPERATION...................................... 14-7

14.4.1 Clocking the 80C187 ...14-10
14.4.2 Processor Bus Cycles Accessing the 80C187 ..14-10
14.4.3 System Design Tips ..14-11
14.4.4 Exception Trapping ...14-13

14.5 EXAMPLE MATH COPROCESSOR ROUTINES.. 14-13

CHAPTER 15
ONCE MODE

15.1 ENTERING/LEAVING ONCE MODE... 15-1

APPENDIX A
80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

A.1 80C186 INSTRUCTION SET ADDITIONS ... A-1
A.1.1 Data Transfer Instructions .. A-1
A.1.2 String Instructions ... A-2
A.1.3 High-Level Instructions ... A-2

A.2 80C186 INSTRUCTION SET ENHANCEMENTS... A-8
A.2.1 Data Transfer Instructions .. A-8
A.2.2 Arithmetic Instructions .. A-9
A.2.3 Bit Manipulation Instructions ... A-9

A.2.3.1 Shift Instructions ... A-9
A.2.3.2 Rotate Instructions ... A-10

APPENDIX B
INPUT SYNCHRONIZATION

B.1 WHY SYNCHRONIZERS ARE REQUIRED... B-1
B.2 ASYNCHRONOUS PINS.. B-2

APPENDIX C
INSTRUCTION SET DESCRIPTIONS

APPENDIX D
INSTRUCTION SET OPCODES AND CLOCK CYCLES

INDEX
xi

CONTENTS

FIGURES
Figure Page
2-1 Simplified Functional Block Diagram of the 80C186 Family CPU2-2
2-2 Physical Address Generation ...2-3
2-3 General Registers ..2-4
2-4 Segment Registers...2-6
2-5 Processor Status Word ..2-9
2-6 Segment Locations in Physical Memory...2-10
2-7 Currently Addressable Segments...2-11
2-8 Logical and Physical Address ..2-12
2-9 Dynamic Code Relocation..2-14
2-10 Stack Operation..2-16
2-11 Flag Storage Format ..2-19
2-12 Memory Address Computation ...2-29
2-13 Direct Addressing ...2-30
2-14 Register Indirect Addressing ..2-31
2-15 Based Addressing ..2-31
2-16 Accessing a Structure with Based Addressing...2-32
2-17 Indexed Addressing..2-33
2-18 Accessing an Array with Indexed Addressing ..2-33
2-19 Based Index Addressing ..2-34
2-20 Accessing a Stacked Array with Based Index Addressing ...2-35
2-21 String Operand ...2-36
2-22 I/O Port Addressing ..2-36
2-23 80C186 Modular Core Family Supported Data Types..2-38
2-24 Interrupt Control Unit ..2-39
2-25 Interrupt Vector Table...2-40
2-26 Interrupt Sequence...2-41
2-27 Interrupt Response Factors..2-46
2-28 Simultaneous NMI and Exception ..2-47
2-29 Simultaneous NMI and Single Step Interrupts..2-48
2-30 Simultaneous NMI, Single Step and Maskable Interrupt ..2-49
3-1 Physical Data Bus Models..3-2
3-2 16-Bit Data Bus Byte Transfers..3-3
3-3 16-Bit Data Bus Even Word Transfers ...3-4
3-4 16-Bit Data Bus Odd Word Transfers...3-5
3-5 8-Bit Data Bus Word Transfers...3-6
3-6 Typical Bus Cycle...3-8
3-7 T-State Relation to CLKOUT..3-8
3-8 BIU State Diagram ...3-9
3-9 T-State and Bus Phases ..3-10
3-10 Address/Status Phase Signal Relationships ..3-11
3-11 Demultiplexing Address Information...3-12
3-12 Data Phase Signal Relationships ...3-14
3-13 Typical Bus Cycle with Wait States ..3-15
3-14 READY Pin Block Diagram...3-15
xii

CONTENTS

FIGURES
Figure Page
3-15 Generating a Normally Not-Ready Bus Signal ...3-16
3-16 Generating a Normally Ready Bus Signal ..3-17
3-17 Normally Not-Ready System Timing ..3-18
3-18 Normally Ready System Timings ...3-19
3-19 Typical Read Bus Cycle ...3-22
3-20 Read-Only Device Interface ...3-23
3-21 Typical Write Bus Cycle..3-24
3-22 16-Bit Bus Read/Write Device Interface...3-25
3-23 Interrupt Acknowledge Bus Cycle...3-27
3-24 Typical 82C59A Interface ...3-28
3-25 HALT Bus Cycle ...3-31
3-26 Returning to HALT After a HOLD/HLDA Bus Exchange ..3-32
3-27 Returning to HALT After a Refresh Bus Cycle ...3-33
3-28 Returning to HALT After a DMA Bus Cycle..3-34
3-29 Exiting HALT (Powerdown Mode) ..3-35
3-30 Exiting HALT (Active/Idle Mode)...3-36
3-31 DEN and DT/R Timing Relationships ...3-37
3-32 Buffered AD Bus System..3-38
3-33 Qualifying DEN with Chip-Selects ..3-39
3-34 Timing Sequence Entering HOLD ..3-42
3-35 Refresh Request During HOLD..3-44
3-36 Latching HLDA ...3-45
3-37 Exiting HOLD..3-46
4-1 PCB Relocation Register..4-2
5-1 Clock Generator ...5-1
5-2 Ideal Operation of Pierce Oscillator..5-2
5-3 Crystal Connections to Microprocessor..5-3
5-4 Equations for Crystal Calculations..5-4
5-5 Simple RC Circuit for Powerup Reset ..5-7
5-6 Cold Reset Waveform ..5-8
5-7 Warm Reset Waveform ..5-9
5-8 Clock Synchronization at Reset..5-10
5-9 Power Control Register ..5-12
5-10 Entering Idle Mode ...5-13
5-11 HOLD/HLDA During Idle Mode...5-14
5-12 Entering Powerdown Mode ..5-17
5-13 Powerdown Timer Circuit ...5-19
5-14 Power-Save Register ...5-21
5-15 Power-Save Clock Transition ...5-22
6-1 Common Chip-Select Generation Methods..6-2
6-2 Chip-Select Block Diagram...6-3
6-3 Chip-Select Relative Timings ...6-4
6-4 UCS Reset Configuration ...6-5
6-5 START Register Definition ...6-7
xiii

CONTENTS

FIGURES
Figure Page
6-6 STOP Register Definition ...6-8
6-7 Wait State and Ready Control Functions ...6-12
6-8 Overlapping Chip-Selects...6-13
6-9 Using Chip-Selects During HOLD ..6-15
6-10 Typical System ...6-16
6-11 Guarded Memory Detector ...6-20
7-1 Refresh Control Unit Block Diagram...7-1
7-2 Refresh Control Unit Operation Flow Chart..7-3
7-3 Refresh Address Formation..7-4
7-4 Suggested DRAM Control Signal Timing Relationships...7-6
7-5 Formula for Calculating Refresh Interval for RFTIME Register7-7
7-6 Refresh Base Address Register ...7-8
7-7 Refresh Clock Interval Register..7-9
7-8 Refresh Control Register ..7-10
7-9 Refresh Address Register ..7-11
7-10 Regaining Bus Control to Run a DRAM Refresh Bus Cycle......................................7-14
8-1 Interrupt Control Unit Block Diagram..8-2
8-2 Interrupt Acknowledge Cycle..8-3
8-3 8259A Module Block Diagram..8-5
8-4 Priority Cell ...8-7
8-5 Spurious Interrupts ...8-10
8-6 Default Priority ..8-11
8-7 Specific Rotation ..8-11
8-8 Automatic Rotation ...8-12
8-9 Typical Cascade Connection..8-15
8-10 Spurious Interrupts in a Cascaded System ..8-18
8-11 8259A Module Initialization Sequence ...8-23
8-12 ICW1 Register ..8-24
8-13 ICW2 Register ..8-25
8-14 ICW3 Register — Master Cascade Configuration..8-27
8-15 ICW3 Register — Slave ID...8-28
8-16 ICW4 Register ..8-29
8-17 OCW1 — Interrupt Mask Register..8-31
8-18 OCW2 Register ..8-32
8-19 OCW3 Register ..8-34
8-20 Poll Status Byte ..8-35
8-21 Interrupt Request Latch Register Function...8-37
8-22 Default Slave 8259 Module Priority ..8-38
8-23 Multiplexed Interrupt Requests...8-39
8-24 DMA Interrupt Request Latch Register...8-40
8-25 Serial Communications Interrupt Request Latch Register..8-41
8-26 Timer Interrupt Request Latch Register ...8-42
8-27 Interrupt Resolution Time ...8-43
8-28 Resetting the Edge Detection Circuit..8-44
xiv

CONTENTS

FIGURES
Figure Page
8-29 Typical Cascade Connection for 82C59A-2 ...8-45
8-30 Software Wait State for External 82C59A-2 ...8-46
9-1 Timer/Counter Unit Block Diagram...9-2
9-2 Counter Element Multiplexing and Timer Input Synchronization..................................9-3
9-3 Timers 0 and 1 Flow Chart ...9-4
9-4 Timer/Counter Unit Output Modes..9-6
9-5 Timer 0 and Timer 1 Control Registers ..9-7
9-6 Timer 2 Control Register ..9-9
9-7 Timer Count Registers..9-10
9-8 Timer Maxcount Compare Registers..9-11
9-9 TxOUT Signal Timing ...9-15
10-1 Typical DMA Transfer...10-2
10-2 DMA Request Minimum Response Time ...10-4
10-3 Source-Synchronized Transfers...10-5
10-4 Destination-Synchronized Transfers ..10-6
10-5 Two-Channel DMA Module ..10-10
10-6 Examples of DMA Priority...10-11
10-7 Internal DMA Request Multiplexer..10-12
10-8 80C186EC/C188EC DMA Unit ...10-14
10-9 DMA Source Pointer (High-Order Bits)...10-16
10-10 DMA Source Pointer (Low-Order Bits) ...10-17
10-11 DMA Destination Pointer (High-Order Bits) ..10-18
10-12 DMA Destination Pointer (Low-Order Bits)...10-19
10-13 DMA Control Register...10-20
10-14 DMA Module Priority Register ..10-24
10-15 Transfer Count Register ...10-25
10-16 DMA Module HALT Register ..10-28
11-1 Typical 10-Bit Asynchronous Data Frame..11-2
11-2 RX Machine..11-3
11-3 TX Machine ..11-5
11-4 Mode 1 Waveform ..11-6
11-5 Mode 3 Waveform ..11-7
11-6 Mode 4 Waveform ..11-7
11-7 Mode 0 Waveforms ..11-8
11-8 Serial Receive Buffer Register (SxRBUF) ..11-9
11-9 Serial Transmit Buffer Register (SxTBUF) ...11-10
11-10 Baud Rate Counter Register (BxCNT) ...11-11
11-11 Baud Rate Compare Register (BxCMP)...11-12
11-12 Calculating the BxCMP Value for a Specific Baud Rate...11-12
11-13 Serial Port Control Register (SxCON) ..11-15
11-14 Serial Port Status Register (SxSTS)...11-16
11-15 CTS Recognition Sequence ...11-19
11-16 BCLK Synchronization ...11-19
11-17 Mode 0, BxCMP > 2 ...11-20
xv

CONTENTS

FIGURES
Figure Page
11-18 Master/Slave Example ...11-25
12-1 Block Diagram of the Watchdog Timer Unit ...12-2
12-2 Watchdog Timer Reset Circuit..12-2
12-3 Generating Interrupts with the Watchdog Timer...12-3
12-4 WDTOUT Waveforms...12-6
12-5 WDT Reload Value (High) ..12-9
12-6 WDT Reload Value (Low)...12-10
12-7 WDT Count Value (High)..12-11
12-8 WDT Count Value (Low)...12-12
13-1 Simplified Logic Diagram of a Bidirectional Port Pin ..13-2
13-2 Simplified Logic Diagram of an Output Port Pin ...13-4
13-3 Simplified Logic Diagram of an Open-Drain Bidirectional Port13-5
13-4 Port Control Register (PxCON) ..13-8
13-5 Port Direction Register (PxDIR)..13-9
13-6 Port Data Latch Register (PxLTCH) ...13-10
13-7 Port Pin State Register (PxPIN) ...13-11
14-1 80C187-Supported Data Types..14-8
14-2 80C186 Modular Core Family/80C187 System Configuration....................................14-9
14-3 80C187 Configuration with a Partially Buffered Bus...14-12
14-4 80C187 Exception Trapping via Processor Interrupt Pin..14-14
15-1 Entering/Leaving ONCE Mode ...15-1
A-1 Formal Definition of ENTER .. A-3
A-2 Variable Access in Nested Procedures ... A-4
A-3 Stack Frame for Main at Level 1.. A-4
A-4 Stack Frame for Procedure A at Level 2 ... A-5
A-5 Stack Frame for Procedure B at Level 3 Called from A... A-6
A-6 Stack Frame for Procedure C at Level 3 Called from B .. A-7
B-1 Input Synchronization Circuit... B-1
xvi

CONTENTS

TABLES

Table Page
1-1 Comparison of 80C186 Modular Core Family Products...1-2
1-2 Related Documents and Software..1-3
2-1 Implicit Use of General Registers...2-5
2-2 Logical Address Sources..2-13
2-3 Data Transfer Instructions ..2-18
2-4 Arithmetic Instructions ..2-20
2-5 Arithmetic Interpretation of 8-Bit Numbers ...2-21
2-6 Bit Manipulation Instructions ..2-21
2-7 String Instructions...2-22
2-8 String Instruction Register and Flag Use..2-23
2-9 Program Transfer Instructions..2-25
2-10 Interpretation of Conditional Transfers ...2-26
2-11 Processor Control Instructions ...2-27
2-12 Supported Data Types ...2-37
3-1 Bus Cycle Types ..3-12
3-2 Read Bus Cycle Types...3-20
3-3 Read Cycle Critical Timing Parameters..3-21
3-4 Write Bus Cycle Types ...3-24
3-5 Write Cycle Critical Timing Parameters..3-26
3-6 HALT Bus Cycle Pin States..3-30
3-7 Signal Condition Entering HOLD..3-42
4-1 Peripheral Control Block...4-3
5-1 Suggested Values for Inductor L1 in Third Overtone Oscillator Circuit.........................5-4
5-2 Summary of Power Management Modes ...5-24
6-1 Chip-Select Unit Registers ...6-5
6-2 Memory and I/O Compare Addresses..6-10
6-3 Example Adjustments for Overlapping Chip-Selects..6-14
7-1 Identification of Refresh Bus Cycles...7-5
8-1 Operation Command Word Addressing..8-30
8-2 OCW2 Instruction Field Decoding ..8-32
9-1 Timer 0 and 1 Clock Sources ...9-12
9-2 Timer Retriggering..9-13
10-1 DMA Unit Naming Conventions and Signal Connections...10-13
11-1 BxCMP Values for Typical Baud Rates and CPU Frequencies................................11-13
13-1 Port 1 Multiplexing Options ..13-6
13-2 Port 2 Multiplexing Options ..13-6
13-3 Port 3 Multiplexing Options ..13-7
14-1 80C187 Data Transfer Instructions...14-3
14-2 80C187 Arithmetic Instructions...14-4
14-3 80C187 Comparison Instructions ...14-5
14-4 80C187 Transcendental Instructions..14-5
14-5 80C187 Constant Instructions ..14-6
14-6 80C187 Processor Control Instructions..14-6
14-7 80C187 I/O Port Assignments..14-10
xvii

CONTENTS

TABLES

Table Page
C-1 Instruction Format Variables..C-1
C-2 Instruction Operands ...C-2
C-3 Flag Bit Functions..C-3
C-4 Instruction Set ...C-4
D-1 Operand Variables ..D-1
D-2 Instruction Set Summary ...D-2
D-3 Machine Instruction Decoding Guide...D-9
D-4 Mnemonic Encoding Matrix ... D-20
D-5 Abbreviations for Mnemonic Encoding Matrix ... D-22
xviii

CONTENTS

EXAMPLES
Example Page
5-1 Initializing the Power Management Unit for Idle or Powerdown Mode5-16
5-2 Initializing the Power Management Unit for Power-Save Mode5-23
6-1 Initializing the Chip-Select Unit...6-17
7-1 Initializing the Refresh Control Unit ..7-12
8-1 Initializing the Interrupt Control Unit ...8-47
8-2 Template for a Simple Interrupt Handler ..8-50
8-3 Using the Poll Command..8-51
9-1 Configuring a Real-Time Clock...9-18
9-2 Configuring a Square-Wave Generator ..9-21
9-3 Configuring a Digital One-Shot...9-22
10-1 Initializing the DMA Unit ...10-31
10-2 DMA-Driven Serial Transfers..10-34
10-3 Timed DMA Transfers ..10-37
11-1 Asynchronous Mode 4 Example...11-22
11-2 Mode 0 Example ..11-23
11-3 Master/Slave — Implementing the Master/Slave Routines11-26
11-4 Master/Slave — The _select_slave Routine...11-27
11-5 Master/Slave — The slave_1 Routine..11-29
11-6 Master/Slave — The _send_slave_command Routine ..11-32
12-1 Reload Sequence (Peripheral Control Block Located in I/O Space)12-4
12-2 Reload Sequence (Peripheral Control Block Located in Memory Space)12-5
12-3 Disabling the Watchdog Timer (Peripheral Control Block in I/O Space)12-7
12-4 Disabling the Watchdog Timer (Peripheral Control Block in Memory Space)12-8
12-5 Initializing the Watchdog Timer (Peripheral Control Block Located in I/O Space)....12-13
13-1 I/O Port Programming Example..13-12
14-1 Initialization Sequence for 80C187 Math Coprocessor ..14-15
14-2 Floating Point Math Routine Using FSINCOS..14-16
xix

1
Introduction

rocom-
rld to-

essary.
mplex
e same

 family
6/8088
se to
rmance

e clear
 family:
g an
 run at
.

mily.
8 CPU
ond, the
s. The
mily

The
ower
gement
ce in a

 new
high-
 com-
ritical
C186
CHAPTER 1
INTRODUCTION

The 8086 microprocessor was first introduced in 1978 and gained rapid support as the mic
puter engine of choice. There are literally millions of 8086/8088-based systems in the wo
day. The amount of software written for the 8086/8088 is rivaled by no other architecture.

By the early 1980’s, however, it was clear that a replacement for the 8086/8088 was nec
An 8086/8088 system required dozens of support chips to implement even a moderately co
design. Intel recognized the need to integrate commonly used system peripherals onto th
silicon die as the CPU. In 1982 Intel addressed this need by introducing the 80186/80188
of embedded microprocessors. The original 80186/80188 integrated an enhanced 808
CPU with six commonly used system peripherals. A parallel effort within Intel also gave ri
the 80286 microprocessor in 1982. The 80286 began the trend toward the very high perfo
Intel architecture that today includes the Intel386, Intel486 and Pentium microprocessors.

As technology advanced and turned toward small geometry CMOS processes, it becam
that a new 80186 was needed. In 1987 Intel announced the second generation of the 80186
the 80C186/C188. The 80C186 family is pin compatible with the 80186 family, while addin
enhanced feature set. The high-performance CHMOS III process allowed the 80C186 to
twice the clock rate of the NMOS 80186, while consuming less than one-fourth the power

The 80186 family took another major step in 1990 with the introduction of the 80C186EB fa
The 80C186EB heralded many changes for the 80186 family. First, the enhanced 8086/808
was redesigned as a static, stand-alone module known as the 80C186 Modular Core. Sec
80186 family peripherals were also redesigned as static modules with standard interface
goal behind this redesign effort was to give Intel the capability to proliferate the 80186 fa
rapidly, in order to provide solutions for an even wider range of customer applications.

The 80C186EB/C188EB was the first product to use the new modular capability.
80C186EB/C188EB includes a different peripheral set than the original 80186 family. P
consumption was dramatically reduced as a direct result of the static design, power mana
features and advanced CHMOS IV process. The 80C186EB/C188EB has found acceptan
wide array of portable equipment ranging from cellular phones to personal organizers.

In 1991 the 80C186 Modular Core family was again extended with the introduction of three
products: the 80C186XL, the 80C186EA and the 80C186EC. The 80C186XL/C188XL is a
er performance, lower power replacement for the 80C186/C188. The 80C186EA/C188EA
bines the feature set of the 80C186 with new power management features for power-c
applications. The 80C186EC/C188EC offers the highest level of integration of any of the 80
Modular Core family products, with 14 on-chip peripherals (see Table 1-1).
1-1

INTRODUCTION

ffers
of-the-

of

ular
8EA,

-

The 80C186 Modular Core family is the direct result of ten years of Intel development. It o
the designer the peace of mind of a well-established architecture with the benefits of state-
art technology.

1.1 HOW TO USE THIS MANUAL

This manual uses phrases such as 80C186 Modular Core Family or 80C188 Modular Core, as
well as references to specific products such as 80C188EA. Each phrase refers to a specific set
80C186 family products. The phrases and the products they refer to are as follows:

80C186 Modular Core Family: This phrase refers to any device that uses the mod
80C186/C188 CPU core architecture. At this time these include the 80C186EA/C18
80C186EB/C188EB, 80C186EC/C188EC and 80C186XL/C188XL.

80C186 Modular Core: Without the word family, this phrase refers only to the 16-bit bus mem
bers of the 80C186 Modular Core Family.

80C188 Modular Core: This phrase refers to the 8-bit bus products.

80C188EC: A specific product reference refers only to the named device. For example, On the
80C188EC… refers strictly to the 80C188EC and not to any other device.

Table 1-1. Comparison of 80C186 Modular Core Family Products

Feature 80C186XL 80C186EA 80C186EB 80C186EC

Enhanced 8086 Instruction Set

Low-Power Static Modular CPU

Power-Save (Clock Divide) Mode

Powerdown and Idle Modes

80C187 Interface

ONCE Mode

Interrupt Control Unit 8259
Compatible

Timer/Counter Unit

Chip-Select Unit Enhanced Enhanced

DMA Unit 2 Channel 2 Channel 4 Channel

Serial Communications Unit

Refresh Control Unit Enhanced Enhanced

Watchdog Timer Unit

I/O Ports 16 Total 22 Total
1-2

INTRODUCTION

eriph-
ice op-
 code

ot dis-
 the de-

 incor-
rature.
ations,
Each chapter covers a specific section of the device, beginning with the CPU core. Each p
eral chapter includes programming examples intended to aid in your understanding of dev
eration. Please read the comments carefully, as not all of the examples include all the
necessary for a specific application.

This user’s guide is a supplement to the device data sheet. Specific timing values are n
cussed in this guide. When designing a system, always consult the most recent version of
vice data sheet for up-to-date specifications.

1.2 RELATED DOCUMENTS

The following table lists documents and software that are useful in designing systems that
porate the 80C186 Modular Core Family. These documents are available through Intel Lite
In the U.S. and Canada, call 1-800-548-4725 to order. In Europe and other international loc
please contact your local Intel sales office or distributor.

NOTE

If you will be transferring a design from the 80186/80188 or 80C186/80C188
to the 80C186XL/80C188XL, refer to FaxBack Document No. 2132.

Table 1-2. Related Documents and Software

Document/Software Title Document
Order No.

Embedded Microprocessors (includes 186 family data sheets) 272396

186 Embedded Microprocessor Line Card 272079

80186/80188 High-Integration 16-Bit Microprocessor Data Sheet 272430

80C186XL/C188XL-20, -12 16-Bit High-Integration Embedded Microprocessor
Data Sheet

272431

80C186EA/80C188EA-20, -12 and 80L186EA/80L188EA-13, -8 (low power
versions) 16-Bit High-Integration Embedded Microprocessor Data Sheet

272432

80C186EB/80C188EB-20, -13 and 80L186EB/80L188EB-13, -8 (low power
versions) 16-Bit High-Integration Embedded Microprocessor Data Sheet

272433

80C186EC/80C188EC-20, -13 and 80L186EC/80L188EC-13, -8 (low power
versions) 16-Bit High-Integration Embedded Microprocessor Data Sheet

272434

80C187 80-Bit Math Coprocessor Data Sheet 270640

Low Voltage Embedded Design 272324

80C186/C188, 80C186XL/C188XL Microprocessor User’s Manual 272164

80C186EA/80C188EA Microprocessor User’s Manual 270950

80C186EB/80C188EB Microprocessor User’s Manual 270830

80C186EC/80C188EC Microprocessor User’s Manual 272047

8086/8088/8087/80186/80188 Programmer’s Pocket Reference Guide 231017
1-3

INTRODUCTION

Intel
World
l infor-

ou can
cs, de-
ay, 7

h your
t a doc-

se Fax-
t order
e, sta-
 the past
ber fol-
 docu-
ument
1.3 ELECTRONIC SUPPORT SYSTEMS

Intel’s FaxBack* service and application BBS provide up-to-date technical information.
also maintains several forums on CompuServe and offers a variety of information on the
Wide Web. These systems are available 24 hours a day, 7 days a week, providing technica
mation whenever you need it.

1.3.1 FaxBack Service

FaxBack is an on-demand publishing system that sends documents to your fax machine. Y
get product announcements, change notifications, product literature, device characteristi
sign recommendations, and quality and reliability information from FaxBack 24 hours a d
days a week.

1-800-628-2283 U.S. and Canada

916-356-3105 U.S., Canada, Japan, APac

44(0)1793-496646 Europe

Think of the FaxBack service as a library of technical documents that you can access wit
phone. Just dial the telephone number and respond to the system prompts. After you selec
ument, the system sends a copy to your fax machine.

Each document has an order number and is listed in a subject catalog. The first time you u
Back, you should order the appropriate subject catalogs to get a complete list of documen
numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list the titl
tus, and order number of each document that has been added, revised, or deleted during
eight weeks. To recieve the update for a subject catalog, enter the subject catalog num
lowed by a zero. For example, for the complete microcontroller and flash catalog, request
ment number 2; for the daily update to the microcontroller and flash catalog, request doc
number 20.

8086/8088 User’s Manual Programmer’s and Hardware Reference Manual 240487

ApBUILDER Software 272216

80C186EA Hypertext Manual 272275

80C186EB Hypertext Manual 272296

80C186EC Hypertext Manual 272298

80C186XL Hypertext Manual 272630

ZCON - Z80 Code Converter Available on BBS

Table 1-2. Related Documents and Software (Continued)

Document/Software Title Document
Order No.
1-4

INTRODUCTION

 BBS
firm-

 from
. The
 num-

tomatic
14400

 During
r name
t time,
The following catalogs and information are available at the time of publication:

1. Solutions OEM subscription form

2. Microcontroller and flash catalog

3. Development tools catalog

4. Systems catalog

5. Multimedia catalog

6. Multibus and iRMX® software catalog and BBS file listings

7. Microprocessor, PCI, and peripheral catalog

8. Quality and reliability and change notification catalog

9. iAL (Intel Architecture Labs) technology catalog

1.3.2 Bulletin Board System (BBS)

The bulletin board system (BBS) lets you download files to your computer. The application
has the latest ApBUILDER software, hypertext manuals and datasheets, software drivers,
ware upgrades, application notes and utilities, and quality and reliability data.

916-356-3600 U.S., Canada, Japan, APac (up to 19.2 Kbaud)

916-356-7209 U.S., Canada, Japan, APac (2400 baud only)

44(0)1793-496340 Europe

The toll-free BBS (available in the U.S. and Canada) offers lists of documents available
FaxBack, a master list of files available from the application BBS, and a BBS user’s guide
BBS file listing is also available from FaxBack (catalog number 6; see page 1-4 for phone
bers and a description of the FaxBack service).

1-800-897-2536 U.S. and Canada only

Any customer with a modem and computer can access the BBS. The system provides au
configuration support for 1200- through 19200-baud modems. Typical modem settings are
baud, no parity, 8 data bits, and 1 stop bit (14400, N, 8, 1).

To access the BBS, just dial the telephone number and respond to the system prompts.
your first session, the system asks you to register with the system operator by entering you
and location. The system operator will set up your access account within 24 hours. At tha
you can access the files on the BBS.

NOTE

If you encounter any difficulty accessing the high-speed modem, try the
dedicated 2400-baud modem. Use these modem settings: 2400, N, 8, 1.
1-5

INTRODUCTION

 the

 area

l
for

rtext

rox-
nload

s, and
 service

lect

estions
ur voice
ide the
1.3.2.1 How to Find ApBUILDER Software and Hypertext Documents on the BBS

The latest ApBUILDER files and hypertext manuals and data sheets are available first from
BBS. To access the files, complete these steps:

1. Type F from the BBS Main menu. The BBS displays the Intel Apps Files menu.

2. Type L and press <Enter>. The BBS displays the list of areas and prompts for the
number.

3. Type 25 and press <Enter> to select ApBUILDER/Hypertext. The BBS displays severa
options: one for ApBUILDER software and the others for hypertext documents
specific product families.

4. Type 1 and press <Enter> to list the latest ApBUILDER files, or type the number of the
appropriate product family sublevel and press <Enter> for a list of available hype
manuals and datasheets.

5. Type the file numbers to select the files you wish to download (for example, 1,6 for files 1
and 6 or 3-7 for files 3, 4, 5, 6, and 7) and press <Enter>. The BBS displays the app
imate time required to download the selected files and gives you the option to dow
them.

1.3.3 CompuServe Forums

The CompuServe forums provide a means for you to gather information, share discoverie
debate issues. Type “go intel” for access. For information about CompuServe access and
fees, call CompuServe at 1-800-848-8199 (U.S.) or 614-529-1340 (outside the U.S.).

1.3.4 World Wide Web

Intel offers a variety of information through the World Wide Web (http://www.intel.com/). Se
“Embedded Design Products” from the Intel home page.

1.4 TECHNICAL SUPPORT

In the U.S. and Canada, technical support representatives are available to answer your qu
between 5 a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include yo
telephone number and indicate whether you prefer a response by phone or by fax). Outs
U.S. and Canada, please contact your local distributor.

1-800-628-8686 U.S. and Canada

916-356-7599 U.S. and Canada

916-356-6100 (fax) U.S. and Canada
1-6

INTRODUCTION

raining
1.5 PRODUCT LITERATURE

You can order product literature from the following Intel literature centers.

1-800-468-8118, ext. 283 U.S. and Canada

708-296-9333 U.S. (from overseas)

44(0)1793-431155 Europe (U.K.)

44(0)1793-421333 Germany

44(0)1793-421777 France

81(0)120-47-88-32 Japan (fax only)

1.6 TRAINING CLASSES

In the U.S. and Canada, you can register for training classes through the Intel customer t
center. Classes are held in the U.S.

1-800-234-8806 U.S. and Canada
1-7

2
Overview of the
80C186 Family
Architecture

 8086,
r Core
ors,
 fewer

the Bus
 and

n Exe-
cal
a bus
terface

ds op-
kes the

and are

tic
ove-

ea of
 using
tions.

gisters,
ral-pur-
ons as
 arith-
rs (CS,
s and
) reg-
CHAPTER 2
OVERVIEW OF THE 80C186 FAMILY

ARCHITECTURE

The 80C186 Modular Microprocessor Core shares a common base architecture with the
8088, 80186, 80188, 80286, Intel386™ and Intel486™ processors. The 80C186 Modula
maintains full object-code compatibility with the 8086/8088 family of 16-bit microprocess
while adding hardware and software performance enhancements. Most instructions require
clocks to execute on the 80C186 Modular Core because of hardware enhancements in
Interface Unit and the Execution Unit. Several additional instructions simplify programming
reduce code size (see Appendix A, “80C186 Instruction Set Additions and Extensions”).

2.1 ARCHITECTURAL OVERVIEW

The 80C186 Modular Microprocessor Core incorporates two separate processing units: a
cution Unit (EU) and a Bus Interface Unit (BIU). The Execution Unit is functionally identi
among all family members. The Bus Interface Unit is configured for a 16-bit external dat
for the 80C186 core and an 8-bit external data bus for the 80C188 core. The two units in
via an instruction prefetch queue.

The Execution Unit executes instructions; the Bus Interface Unit fetches instructions, rea
erands and writes results. Whenever the Execution Unit requires another opcode byte, it ta
byte out of the prefetch queue. The two units can operate independently of one another
able, under most circumstances, to overlap instruction fetches and execution.

The 80C186 Modular Core family has a 16-bit Arithmetic Logic Unit (ALU). The Arithme
Logic Unit performs 8-bit or 16-bit arithmetic and logical operations. It provides for data m
ment between registers, memory and I/O space.

The 80C186 Modular Core family CPU allows for high-speed data transfer from one ar
memory to another using string move instructions and between an I/O port and memory
block I/O instructions. The CPU also provides many conditional branch and control instruc

The 80C186 Modular Core architecture features 14 basic registers grouped as general re
segment registers, pointer registers and status and control registers. The four 16-bit gene
pose registers (AX, BX, CX and DX) can be used as operands for most arithmetic operati
either 8- or 16-bit units. The four 16-bit pointer registers (SI, DI, BP and SP) can be used in
metic operations and in accessing memory-based variables. Four 16-bit segment registe
DS, SS and ES) allow simple memory partitioning to aid modular programming. The statu
control registers consist of an Instruction Pointer (IP) and the Processor Status Word (PSW
ister, which contains flag bits. Figure 2-1 is a simplified CPU block diagram.
2-1

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

terface
 within
al reg-
ts wide
Figure 2-1. Simplified Functional Block Diagram of the 80C186 Family CPU

2.1.1 Execution Unit

The Execution Unit executes all instructions, provides data and addresses to the Bus In
Unit and manipulates the general registers and the Processor Status Word. The 16-bit ALU
the Execution Unit maintains the CPU status and control flags and manipulates the gener
isters and instruction operands. All registers and data paths in the Execution Unit are 16 bi
for fast internal transfers.

SP
BP
SI
DI

ALU

Σ

AH
BH
CH
DH

AL
BL
CL
DL

General
Registers

Data
Bus

(16 Bits)

Address Bus (20 Bits)

(16 Bits)

Temporary
Registers

Flags
Q Bus
(8 Bits)

EU
Control
System

Bus
Control
Logic

Instruction Queue

Execution Unit
(EU)

Bus Interface Unit
(BIU)

External
Bus

ALU Data Bus

1 2 3 4 5 6

DS

CS

SS

ES

IP

Internal
Communications

Registers

A1012-0A
2-2

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

rom a
ry or a
a. Ad-
ever,
yte of

e in-
n Unit
fetch

 iden-
tics of
his unit
 several
nit on

er shifts
 com-
e 2-2).
The Execution Unit does not connect directly to the system bus. It obtains instructions f
queue maintained by the Bus Interface Unit. When an instruction requires access to memo
peripheral device, the Execution Unit requests the Bus Interface Unit to read and write dat
dresses manipulated by the Execution Unit are 16 bits wide. The Bus Interface Unit, how
performs an address calculation that allows the Execution Unit to access the full megab
memory space.

To execute an instruction, the Execution Unit must first fetch the object code byte from th
struction queue and then execute the instruction. If the queue is empty when the Executio
is ready to fetch an instruction byte, the Execution Unit waits for the Bus Interface Unit to
the instruction byte.

2.1.2 Bus Interface Unit

The 80C186 Modular Core and 80C188 Modular Core Bus Interface Units are functionally
tical. They are implemented differently to match the structure and performance characteris
their respective system buses. The Bus Interface Unit executes all external bus cycles. T
consists of the segment registers, the Instruction Pointer, the instruction code queue and
miscellaneous registers. The Bus Interface Unit transfers data to and from the Execution U
the ALU data bus.

The Bus Interface Unit generates a 20-bit physical address in a dedicated adder. The add
a 16-bit segment value left 4 bits and then adds a 16-bit offset. This offset is derived from
binations of the pointer registers, the Instruction Pointer and immediate values (see Figur
Any carry from this addition is ignored.

Figure 2-2. Physical Address Generation

Shift left 4 bits

21 3 4 0

0

22

0

00

15

19

+

= 1

19

2 3 6 2

0

Physical Address

To Memory

22

0

00

15

43

0

21

15

Segment Base

Offset

Logical
Address

A1500-0A
2-3

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

 Unit
ly full,

). The
egisters
ed the
During periods when the Execution Unit is busy executing instructions, the Bus Interface
sequentially prefetches instructions from memory. As long as the prefetch queue is partial
the Execution Unit fetches instructions.

2.1.3 General Registers

The 80C186 Modular Core family CPU has eight 16-bit general registers (see Figure 2-3
general registers are subdivided into two sets of four registers. These sets are the data r
(also called the H & L group for high and low) and the pointer and index registers (also call
P & I group).

Figure 2-3. General Registers

15

Data
Group

08 7
H L

AX

BX

CX

DX

AH AL

BH

CH

DH

BL

CL

DL

SP

BP

SI

DI

Accumulator

Base

Count

Data

Stack Pointer

Base Pointer

Source Index

Destination Index

Pointer
and

Index
Group

A1033-0A
2-4

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

 be used
access-
nd log-
. Some

l seg-
segment
e Figure
 to be
rations.
iables.
e. The
grams
The data registers can be addressed by their upper or lower halves. Each data register can
interchangeably as a 16-bit register or two 8-bit registers. The pointer registers are always
ed as 16-bit values. The CPU can use data registers without constraint in most arithmetic a
ic operations. Arithmetic and logic operations can also use the pointer and index registers
instructions use certain registers implicitly (see Table 2-1), allowing compact encoding.

The contents of the general-purpose registers are undefined following a processor reset.

2.1.4 Segment Registers

The 80C186 Modular Core family memory space is 1 Mbyte in size and divided into logica
ments of up to 64 Kbytes each. The CPU has direct access to four segments at a time. The
registers contain the base addresses (starting locations) of these memory segments (se
2-4). The CS register points to the current code segment, which contains instructions
fetched. The SS register points to the current stack segment, which is used for all stack ope
The DS register points to the current data segment, which generally contains program var
The ES register points to the current extra segment, which is typically used for data storag
CS register initializes to 0FFFFH, and the SS, DS and ES registers initialize to 0000H. Pro
can access and manipulate the segment registers with several instructions.

Table 2-1. Implicit Use of General Registers

Register Operations

AX Word Multiply, Word Divide, Word I/O

AL Byte Multiply, Byte Divide, Byte I/O, Translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, Word Divide, Indirect I/O

SP Stack Operations

SI String Operations

DI String Operations
2-5

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

 offset
ointer,

e, if the
xt in-

g exe-
ddress
Figure 2-4. Segment Registers

2.1.5 Instruction Pointer

The Bus Interface Unit updates the 16-bit Instruction Pointer (IP) register so it contains the
of the next instruction to be fetched. Programs do not have direct access to the Instruction P
but it can change, be saved or be restored as a result of program execution. For exampl
Instruction Pointer is saved on the stack, it is first automatically adjusted to point to the ne
struction to be executed.

Reset initializes the Instruction Pointer to 0000H. The CS and IP values comprise a startin
cution address of 0FFFF0H (see “Logical Addresses” on page 2-10 for a description of a
formation).

15 0

CS Code Segment

DS Data Segment

SS Stack Segment

ES Extra Segment
2-6

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

 Unit
a pro-
nt in-

 high
der

er bit
tract
er by

igit
ocation.
this

inary
sign of

is flag

sor op-

s are
string
ess (or

al or
 Flag

ng. In
llows

-5). Re-
2.1.6 Flags

The 80C186 Modular Core family has six status flags (see Figure 2-5) that the Execution
posts as the result of arithmetic or logical operations. Program branch instructions allow
gram to alter its execution depending on conditions flagged by a prior operation. Differe
structions affect the status flags differently, generally reflecting the following states:

• If the Auxiliary Flag (AF) is set, there has been a carry out from the low nibble into the
nibble or a borrow from the high nibble into the low nibble of an 8-bit quantity (low-or
byte of a 16-bit quantity). This flag is used by decimal arithmetic instructions.

• If the Carry Flag (CF) is set, there has been a carry out of or a borrow into the high-ord
of the instruction result (8- or 16-bit). This flag is used by instructions that add or sub
multibyte numbers. Rotate instructions can also isolate a bit in memory or a regist
placing it in the Carry Flag.

• If the Overflow Flag (OF) is set, an arithmetic overflow has occurred. A significant d
has been lost because the size of the result exceeded the capacity of its destination l
An Interrupt On Overflow instruction is available that will generate an interrupt in
situation.

• If the Sign Flag (SF) is set, the high-order bit of the result is a 1. Since negative b
numbers are represented in standard two’s complement notation, SF indicates the
the result (0 = positive, 1 = negative).

• If the Parity Flag (PF) is set, the result has even parity, an even number of 1 bits. Th
can be used to check for data transmission errors.

• If the Zero Flag (ZF) is set, the result of the operation is zero.

Additional control flags (see Figure 2-5) can be set or cleared by programs to alter proces
erations:

• Setting the Direction Flag (DF) causes string operations to auto-decrement. String
processed from high address to low address (or “right to left”). Clearing DF causes
operations to auto-increment. Strings are processed from low address to high addr
“left to right”).

• Setting the Interrupt Enable Flag (IF) allows the CPU to recognize maskable extern
internal interrupt requests. Clearing IF disables these interrupts. The Interrupt Enable
has no effect on software interrupts or non-maskable interrupts.

• Setting the Trap Flag (TF) bit puts the processor into single-step mode for debuggi
this mode, the CPU automatically generates an interrupt after each instruction. This a
a program to be inspected instruction by instruction during execution.

The status and control flags are contained in a 16-bit Processor Status Word (see Figure 2
set initializes the Processor Status Word to 0F000H.
2-7

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

up of
s long.
and sep-
 memory
on seg-
d (see
gical
2.1.7 Memory Segmentation

Programs for the 80C186 Modular Core family view the 1 Mbyte memory space as a gro
user-defined segments. A segment is a logical unit of memory that can be up to 64 Kbyte
Each segment is composed of contiguous memory locations. Segments are independent
arately addressable. Software assigns every segment a base address (starting location) in
space. All segments begin on 16-byte memory boundaries. There are no other restrictions
ment locations. Segments can be adjacent, disjoint, partially overlapped or fully overlappe
Figure 2-6). A physical memory location can be mapped into (covered by) one or more lo
segments.
2-8

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE
Figure 2-5. Processor Status Word

Register Name: Processor Status Word

Register Mnemonic: PSW (FLAGS)

Register Function: Posts CPU status information.

Bit
Mnemonic

Bit Name
Reset
State

Function

OF Overflow Flag 0 If OF is set, an arithmetic overflow has occurred.

DF Direction Flag 0
If DF is set, string instructions are processed high
address to low address. If DF is clear, strings are
processed low address to high address.

IF
Interrupt
Enable Flag

0
If IF is set, the CPU recognizes maskable interrupt
requests. If IF is clear, maskable interrupts are
ignored.

TF Trap Flag 0 If TF is set, the processor enters single-step mode.

SF Sign Flag 0
If SF is set, the high-order bit of the result of an
operation is 1, indicating it is negative.

ZF Zero Flag 0 If ZF is set, the result of an operation is zero.

AF Auxiliary Flag 0

If AF is set, there has been a carry from the low
nibble to the high or a borrow from the high nibble
to the low nibble of an 8-bit quantity. Used in BCD
operations.

PF Parity Flag 0
If PF is set, the result of an operation has even
parity.

CF Carry Flag 0
If CF is set, there has been a carry out of, or a
borrow into, the high-order bit of the result of an
instruction.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to ensure compatibility with future Intel products.

15 0

O
F

D
F

I
F

T
F

S
F

Z
F

A
F

P
F

C
F

A1035-0A
2-9

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

). The
, a 64

ther seg-

d log-
mory
U and

ed with-
sts of
se value
 the tar-
ned 16-
Figure
e be-
Figure 2-6. Segment Locations in Physical Memory

The four segment registers point to four “currently addressable” segments (see Figure 2-7
currently addressable segments provide a work space consisting of 64 Kbytes for code
Kbytes for stack and 128 Kbytes for data storage. Programs access code and data in ano
ment by updating the segment register to point to the new segment.

2.1.8 Logical Addresses

It is useful to think of every memory location as having two kinds of addresses, physical an
ical. A physical address is a 20-bit value that identifies a unique byte location in the me
space. Physical addresses range from 0H to 0FFFFFH. All exchanges between the CP
memory use physical addresses.

Programs deal with logical rather than physical addresses. Program code can be develop
out prior knowledge of where the code will be located in memory. A logical address consi
a segment base value and an offset value. For any given memory location, the segment ba
locates the first byte of the segment. The offset value represents the distance, in bytes, of
get location from the beginning of the segment. Segment base and offset values are unsig
bit quantities. Many different logical addresses can map to the same physical location. In
2-8, physical memory location 2C3H is contained in two different overlapping segments, on
ginning at 2B0H and the other at 2C0H.

Physical
Memory

0H 10000H 20000H 30000H

Fully
Overlapped

Partly
Overlapped

Contiguous

Segment B

Segment C

Segment D

Segment E

Logical
Segments

Disjoint

Segment A

A1036-0A
2-10

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

ation
 leads to

dress.
e type

termines
ference
rently
bly lan-
Figure 2-7. Currently Addressable Segments

The segment register is automatically selected according to the rules in Table 2-2. All inform
in one segment type generally shares the same logical attributes (e.g., code or data). This
programs that are shorter, faster and better structured.

The Bus Interface Unit must obtain the logical address before generating the physical ad
The logical address of a memory location can come from different sources, depending on th
of reference that is being made (see Table 2-2).

Segment registers always hold the segment base addresses. The Bus Interface Unit de
which segment register contains the base address according to the type of memory re
made. However, the programmer can explicitly direct the Bus Interface Unit to use any cur
addressable segment (except for the destination operand of a string instruction). In assem
guage, this is done by preceding an instruction with a segment override prefix.

B

E

J

B

A

F

D

E

G
H

J

K

CS:

SS:

ES:

FFFFFH

Code:

Stack:

Extra:

DS:Data:

0H

C

I

H

A1037-0A
2-11

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE
Figure 2-8. Logical and Physical Address

Physical
Address

Segment
Base

Logical
Addresses

2C4H

2C3H

2C2H

2C1H

2C0H

2BFH

2BEH

2BDH

2BCH

2BBH

2BAH

2B9H

2B8H

2B7H

2B6H

2B5H

2B4H

2B3H

2B2H

2B1H

2B0H
Segment

Base

Offset
(3H)

Offset
(13H)

A1038-0A
2-12

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

 the in-
e cur-

ck from
rent data
en, the
e. The
e “Ad-
.

ruction
urrently
he des-
estina-
ions
 a time.

riable is
y to ac-
ently ad-

nam-
ram-
 write

isk-res-
ever it

vailable
gh con-
Instructions are always fetched from the current code segment. The IP register contains
struction’s offset from the beginning of the segment. Stack instructions always operate on th
rent stack segment. The Stack Pointer (SP) register contains the offset of the top of the sta
the base of the stack. Most variables (memory operands) are assumed to reside in the cur
segment, but a program can instruct the Bus Interface Unit to override this assumption. Oft
offset of a memory variable is not directly available and must be calculated at execution tim
addressing mode specified in the instruction determines how this offset is calculated (se
dressing Modes” on page 2-27). The result is called the operand’s Effective Address (EA)

Strings are addressed differently than other variables. The source operand of a string inst
is assumed to lie in the current data segment. However, the program can use another c
addressable segment. The operand’s offset is taken from the Source Index (SI) register. T
tination operand of a string instruction always resides in the current extra segment. The d
tion’s offset is taken from the Destination Index (DI) register. The string instruct
automatically adjust the SI and DI registers as they process the strings one byte or word at

When an instruction designates the Base Pointer (BP) register as a base register, the va
assumed to reside in the current stack segment. The BP register provides a convenient wa
cess data on the stack. The BP register can also be used to access data in any other curr
dressable segment.

2.1.9 Dynamically Relocatable Code

The segmented memory structure of the 80C186 Modular Core family allows creation of dy
ically relocatable (position-independent) programs. Dynamic relocation allows a multiprog
ming or multitasking system to make effective use of available memory. The processor can
inactive programs to a disk and reallocate the space they occupied to other programs. A d
ident program can then be read back into available memory locations and restarted when
is needed. If a program needs a large contiguous block of storage and the total amount is a
only in non-adjacent fragments, other program segments can be compacted to free enou
tinuous space. This process is illustrated in Figure 2-9.

Table 2-2. Logical Address Sources

Type of Memory Reference Default
Segment Base

Alternate
Segment Base Offset

Instruction Fetch CS NONE IP

Stack Operation SS NONE SP

Variable (except following) DS CS, ES, SS Effective Address

String Source DS CS, ES, SS SI

String Destination ES NONE DI

BP Used as Base Register SS CS, DS, ES Effective Address
2-13

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

d must
ust be
ry, pro-
Figure 2-9. Dynamic Code Relocation

To be dynamically relocatable, a program must not load or alter its segment registers an
not transfer directly to a location outside the current code segment. All program offsets m
relative to the segment registers. This allows the program to be moved anywhere in memo
vided that the segment registers are updated to point to the new base addresses.

Code
Segment

Stack
Segment

Data
Segment

Extra
Segment

Stack
Segment

Data
Segment

Extra
Segment

Before
Relocation

After
Relocation

Free Space

Code
Segment

CS
SS
DS
ES

CS
SS
DS
ES

A1039-0A
2-14

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

 Stack
ut only
ximum
 of the
tack, not
t points

nts one
ing the
pying

own in
tack. The

 family.

ble.

 code

 Intel
 used as
2.1.10 Stack Implementation

Stacks in the 80C186 Modular Core family reside in memory space. They are located by the
Segment register (SS) and the Stack Pointer (SP). A system can have multiple stacks, b
one stack is directly addressable at a time. A stack can be up to 64 Kbytes long, the ma
length of a segment. Growing a stack segment beyond 64 Kbytes overwrites the beginning
segment. The SS register contains the base address of the current stack. The top of the s
the base address, is the origination point of the stack. The SP register contains an offset tha
to the Top of Stack (TOS).

Stacks are 16 bits wide. Instructions operating on a stack add and remove stack eleme
word at a time. An element is pushed onto the stack (see Figure 2-10) by first decrement
SP register by 2 and then writing the data word. An element is popped off the stack by co
it from the top of the stack and then incrementing the SP register by 2. The stack grows d
memory toward its base address. Stack operations never move or erase elements on the s
top of the stack changes only as a result of updating the stack pointer.

2.1.11 Reserved Memory and I/O Space

Two specific areas in memory and one area in I/O space are reserved in the 80C186 Core

• Locations 0H through 3FFH in low memory are used for the Interrupt Vector Ta
Programs should not be loaded here.

• Locations 0FFFF0H through 0FFFFFH in high memory are used for system reset
because the processor begins execution at 0FFFF0H.

• Locations 0F8H through 0FFH in I/O space are reserved for communication with other
hardware products and must not be used. On the 80C186 core, these addresses are
I/O ports for the 80C187 numerics processor extension.
2-15

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE
Figure 2-10. Stack Operation

A1013-0A

1060

1062

105E

105B

105A

1058

1056

1054

1052

1050

22

00

44

66

88

AA

34

45

89

CD

33

11

55

77

99

BB

12

67

AB

EFN
ot

 p
re

se
nt

ly

on
 s

ta
ck

B
ot

to
m

 o
f s

ta
ck

POP AX
POP BX

TOS

SS

SP

BB AA

10 50

1060

1062

105E

105B

105A

1058

1056

1054

1052

1050

22

00

44

66

88

AA

34

45

89

CD

33

11

55

77

99

BB

12

67

AB

EF

12 34

1060

1062

105E

105B

105A

1058

1056

1054

1052

1050

22

00

44

66

88

AA

01

45

89

CD

33

11

55

77

99

BB

23

67

AB

EF

00 0A

10 50

TOS

SS

SP00 06

10 50

TOS

SS

SP00 08

10 50

PUSH AX

Existing
Stack

Stack operation for code sequence
PUSH AX
POP AX
POP BX
2-16

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

ll the
86 In-
y cat-

roces-
ages
based
werful
ally,

linked

early
te op-
ptions:
 be ma-

of reg-
ams. In
ster and

ne is
er, the

e) in-
imme-
PUs,

roxi-
mple,
use the
ver, re-
ht sin-

 pro-
he op-
raphs
2.2 SOFTWARE OVERVIEW

All 80C186 Modular Core family members execute the same instructions. This includes a
8086/8088 instructions plus several additions and enhancements (see Appendix A, “80C1
struction Set Additions and Extensions”). The following sections describe the instructions b
egory and provide a detailed discussion of the operand addressing modes.

Software for 80C186 core family systems need not be written in assembly language. The p
sor provides direct hardware support for programs written in the many high-level langu
available. The hardware addressing modes provide straightforward implementations of
variables, arrays, arrays of structures and other high-level language data constructs. A po
set of memory-to-memory string operations allow efficient character data manipulation. Fin
routines with critical performance requirements can be written in assembly language and
with high-level code.

2.2.1 Instruction Set

The 80C186 Modular Core family instructions treat different types of operands uniformly. N
every instruction can operate on either byte or word data. Register, memory and immedia
erands can be specified interchangeably in most instructions. Immediate values are exce
they must serve as source operands and not destination operands. Memory variables can
nipulated (added to, subtracted from, shifted, compared) without being moved into and out
isters. This saves instructions, registers and execution time in assembly language progr
high-level languages, where most variables are memory-based, compilers can produce fa
shorter object programs.

The 80C186 Modular Core family instruction set can be viewed as existing on two levels. O
the assembly level and the other is the machine level. To the assembly language programm
80C186 Modular Core family appears to have about 100 instructions. One MOV (data mov
struction, for example, transfers a byte or a word from a register, a memory location or an
diate value to either a register or a memory location. The 80C186 Modular Core family C
however, recognize 28 different machine versions of the MOV instruction.

The two levels of instruction sets address two requirements: efficiency and simplicity. App
mately 300 forms of machine-level instructions make very efficient use of storage. For exa
the machine instruction that increments a memory operand is three or four bytes long beca
address of the operand must be encoded in the instruction. Incrementing a register, howe
quires less information, so the instruction can be shorter. The 80C186 Core family has eig
gle-byte machine-level instructions that increment different 16-bit registers.

The assembly level instructions simplify the programmer’s view of the instruction set. The
grammer writes one form of an INC (increment) instruction and the assembler examines t
erand to determine which machine level instruction to generate. The following parag
provide a functional description of the assembly-level instructions.
2-17

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

 bytes
een the
 and

ect and
struc-
ws the
bles in-
2.2.1.1 Data Transfer Instructions

The instruction set contains 14 data transfer instructions. These instructions move single
and words between memory and registers. They also move single bytes and words betw
AL or AX register and I/O ports. Table 2-3 lists the four types of data transfer instructions
their functions.

Data transfer instructions are categorized as general purpose, input/output, address obj
flag transfer. The stack manipulation instructions, used for transferring flag contents and in
tions used for loading segment registers are also included in this group. Figure 2-11 sho
flag storage formats. The address object instructions manipulate the addresses of varia
stead of the values of the variables.

Table 2-3. Data Transfer Instructions

General-Purpose

MOV Move byte or word

PUSH Push word onto stack

POP Pop word off stack

PUSHA Push registers onto stack

POPA Pop registers off stack

XCHG Exchange byte or word

XLAT Translate byte

Input/Output

IN Input byte or word

OUT Output byte or word

Address Object and Stack Frame

LEA Load effective address

LDS Load pointer using DS

LES Load pointer using ES

ENTER Build stack frame

LEAVE Tear down stack frame

Flag Transfer

LAHF Load AH register from flags

SAHF Store AH register in flags

PUSHF Push flags from stack

POPF Pop flags off stack
2-18

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE
Figure 2-11. Flag Storage Format

2.2.1.2 Arithmetic Instructions

The arithmetic instructions (see Table 2-4) operate on four types of numbers:

• Unsigned binary

• Signed binary (integers)

• Unsigned packed decimal

• Unsigned unpacked decimal

A1014-0A

U = Undefined; Value is indeterminate
O = Overflow Flag
D = Direction Flag
I = Interrupt Enable Flag
T = Trap Flag
S = Sign Flag
Z = Zero Flag
A = Auxiliary Carry Flag
P = Parity Flag
C = Carry Flag

Z

6

U

5

A

4

U

3

P

2

U

1

C

0

S

7

T

8

I

9

D

10

O

11

U

12

U

13

U

14

U

15

PUSHF
POPF

LAHF
SAHF

Z U A U P U CS
6 5 4 3 2 1 07
2-19

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

 num-
packed
rands in
d data
struc-
Table 2-5 shows the interpretations of various bit patterns according to number type. Binary
bers can be 8 or 16 bits long. Decimal numbers are stored in bytes, two digits per byte for
decimal and one digit per byte for unpacked decimal. The processor assumes that the ope
arithmetic instructions contain data that represents valid numbers for that instruction. Invali
may produce unpredictable results. The Execution Unit analyzes the results of arithmetic in
tions and adjusts status flags accordingly.

Table 2-4. Arithmetic Instructions

Addition

ADD Add byte or word

ADC Add byte or word with carry

INC Increment byte or word by 1

AAA ASCII adjust for addition

DAA Decimal adjust for addition

Subtraction

SUB Subtract byte or word

SBB Subtract byte or word with borrow

DEC Decrement byte or word by 1

NEG Negate byte or word

CMP Compare byte or word

AAS ASCII adjust for subtraction

DAS Decimal adjust for subtraction

Multiplication

MUL Multiply byte or word unsigned

IMUL Integer multiply byte or word

AAM ASCII adjust for multiplication

Division

DIV Divide byte or word unsigned

IDIV Integer divide byte or word

AAD ASCII adjust for division

CBW Convert byte to word

CWD Convert word to double-word
2-20

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

 three
 their

), as
D op-

hifts
e count
e shift

de bi-
s.
2.2.1.3 Bit Manipulation Instructions

There are three groups of instructions for manipulating bits within bytes and words. These
groups are logical, shifts and rotates. Table 2-6 lists the bit manipulation instructions and
functions.

Logical instructions include the Boolean operators NOT, AND, OR and exclusive OR (XOR
well as a TEST instruction. The TEST instruction sets the flags as a result of a Boolean AN
eration but does not alter either of its operands.

Individual bits in bytes and words can be shifted either arithmetically or logically. Up to 32 s
can be performed, according to the value of the count operand coded in the instruction. Th
can be specified as an immediate value or as a variable in the CL register. This allows th
count to be a supplied at execution time. Arithmetic shifts can be used to multiply and divi
nary numbers by powers of two. Logical shifts can be used to isolate bits in bytes or word

Table 2-5. Arithmetic Interpretation of 8-Bit Numbers

Hex Bit Pattern Unsigned
Binary

Signed
Binary

Unpacked
Decimal

Packed
Decimal

07 0 0 0 0 0 1 1 1 7 +7 7 7

89 1 0 0 0 1 0 0 1 137 –119 invalid 89

C5 1 1 0 0 0 1 0 1 197 –59 invalid invalid

Table 2-6. Bit Manipulation Instructions

Logicals

NOT “Not” byte or word

AND “And” byte or word

OR “Inclusive or” byte or word

XOR “Exclusive or” byte or word

TEST “Test” byte or word

Shifts

SHL/SAL Shift logical/arithmetic left byte or word

SHR Shift logical right byte or word

SAR Shift arithmetic right byte or word

Rotates

ROL Rotate left byte or word

ROR Rotate right byte or word

RCL Rotate through carry left byte or word

RCR Rotate through carry right byte or word
2-21

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

 bits ro-
 of bits
 or the
ctions.
ry) or

d) at a
 avail-
om the
ed by a
strings
 termi-

n can
rce string
tination
es to ad-
 address

ter are
lized to
, LES
Individual bits in bytes and words can also be rotated. The processor does not discard the
tated out of an operand. The bits circle back to the other end of the operand. The number
to be rotated is taken from the count operand, which can specify either an immediate value
CL register. The carry flag can act as an extension of the operand in two of the rotate instru
This allows a bit to be isolated in the Carry Flag (CF) and then tested by a JC (jump if car
JNC (jump if not carry) instruction.

2.2.1.4 String Instructions

Five basic string operations process strings of bytes or words, one element (byte or wor
time. Strings of up to 64 Kbytes can be manipulated with these instructions. Instructions are
able to move, compare or scan for a value, as well as to move string elements to and fr
accumulator. Table 2-7 lists the string instructions. These basic operations can be preced
one-byte prefix that causes the instruction to be repeated by the hardware, allowing long
to be processed much faster than is possible with a software loop. The repetitions can be
nated by a variety of conditions. Repeated operations can be interrupted and resumed.

String instructions operate similarly in many respects (see Table 2-8). A string instructio
have a source operand, a destination operand, or both. The hardware assumes that a sou
resides in the current data segment. A segment prefix can override this assumption. A des
string must be in the current extra segment. The assembler does not use the operand nam
dress strings. Instead, the contents of the Source Index (SI) register are used as an offset to
the current element of the source string. The contents of the Destination Index (DI) regis
taken as the offset of the current destination string element. These registers must be initia
point to the source and destination strings before executing the string instructions. The LDS
and LEA instructions are useful in performing this function.

Table 2-7. String Instructions

REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not equal/not zero

MOVSB/MOVSW Move byte string/word string

MOVS Move byte or word string

INS Input byte or word string

OUTS Output byte or word string

CMPS Compare byte or word string

SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string
2-22

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

essing
e auto-
r both

ition of
re the
d and

the in-
ins the

emory
ction
nsfer
 causes
 longer
mory

nit and

Table
nd in-
String instructions automatically update the SI register, the DI register, or both, before proc
the next string element. The Direction Flag (DF) determines whether the index registers ar
incremented (DF = 0) or auto-decremented (DF = 1). The processor adjusts the DI, SI, o
registers by one for byte strings or by two for word strings.

If a repeat prefix is used, the count register (CX) is decremented by one after each repet
the string instruction. The CX register must be initialized to the number of repetitions befo
string instruction is executed. If the CX register is 0, the string instruction is not execute
control goes to the following instruction.

2.2.1.5 Program Transfer Instructions

The contents of the Code Segment (CS) and Instruction Pointer (IP) registers determine
struction execution sequence in the 80C186 Modular Core family. The CS register conta
base address of the current code segment. The Instruction Pointer register points to the m
location of the next instruction to be fetched. In most operating conditions, the next instru
will already have been fetched and will be waiting in the CPU instruction queue. Program tra
instructions operate on the IP and CS registers. Changing the contents of these registers
normal sequential operation to be altered. When a program transfer occurs, the queue no
contains the correct instruction. The Bus Interface Unit obtains the next instruction from me
using the new IP and CS values. It then passes the instruction directly to the Execution U
begins refilling the queue from the new location.

The 80C186 Modular Core family offers four groups of program transfer instructions (see
2-9). These are unconditional transfers, conditional transfers, iteration control instructions a
terrupt-related instructions.

Table 2-8. String Instruction Register and Flag Use

SI Index (offset) for source string

DI Index (offset) for destination string

CX Repetition counter

AL/AX Scan value

 Destination for LODS

 Source for STOS

DF Direction Flag

 0 = auto-increment SI, DI

 1 = auto-decrement SI, DI

ZF Scan/compare terminator
2-23

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

n the
t trans-
t trans-
 and

AR
inter
e stack
struc-
 are in
nto the

ng on
uction
ically
LSE,
are
e next
struc-
ointer.
s.
Unconditional transfer instructions can transfer control either to a target instruction withi
current code segment (intrasegment transfer) or to a different code segment (intersegmen
fer). The assembler terms an intrasegment transfer SHORT or NEAR and an intersegmen
fer FAR. The transfer is made unconditionally when the instruction is executed. CALL, RET
JMP are all unconditional transfers.

CALL is used to transfer the program to a procedure. A CALL can be NEAR or FAR. A NE
CALL stacks only the Instruction Pointer, while a FAR CALL stacks both the Instruction Po
and the Code Segment register. The RET instruction uses the information pushed onto th
to determine where to return when the procedure finishes. Note that the RET and CALL in
tions must be the same type. This can be a problem when the CALL and RET instructions
separately assembled programs. The JMP instruction does not push any information o
stack. A JMP instruction can be NEAR or FAR.

Conditional transfer instructions are jumps that may or may not transfer control, dependi
the state of the CPU flags when the instruction is executed. Each conditional transfer instr
tests a different combination of flags for a condition (see Table 2-10). If the condition is log
TRUE, control is transferred to the target specified in the instruction. If the condition is FA
control passes to the instruction following the conditional jump. All conditional jumps
SHORT. The target must be in the current code segment within –128 to +127 bytes of th
instruction’s first byte. For example, JMP 00H causes a jump to the first byte of the next in
tion. Jumps are made by adding the relative displacement of the target to the Instruction P
All conditional jumps are self-relative and are appropriate for position-independent routine
2-24

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE
Table 2-9. Program Transfer Instructions

Conditional Transfers

JA/JNBE Jump if above/not below nor equal

JAE/JNB Jump if above or equal/not below

JB/JNAE Jump if below/not above nor equal

JBE/JNA Jump if below or equal/not above

JC Jump if carry

JE/JZ Jump if equal/zero

JG/JNLE Jump if greater/not less nor equal

JGE/JNL Jump if greater or equal/not less

JL/JNGE Jump if less/not greater nor equal

JLE/JNG Jump if less or equal/not greater

JNC Jump if not carry

JNE/JNZ Jump if not equal/not zero

JNO Jump if not overflow

JNP/JPO Jump if not parity/parity odd

JNS Jump if not sign

JO Jump if overflow

JP/JPE Jump if parity/parity even

JS Jump if sign

Unconditional Transfers

CALL Call procedure

RET Return from procedure

JMP Jump

Iteration Control

LOOP Loop

LOOPE/LOOPZ Loop if equal/zero

LOOPNE/LOOPNZ Loop if not equal/not zero

JCXZ Jump if register CX=0

Interrupts

INT Interrupt

INTO Interrupt if overflow

BOUND Interrupt if out of array bounds

IRET Interrupt return
2-25

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

se in-
trol in-
tes of

pt ser-
rrupt.
tes in
Iteration control instructions can be used to regulate the repetition of software loops. The
structions use the CX register as a counter. Like the conditional transfers, the iteration con
structions are self-relative and can transfer only to targets that are within –128 to +127 by
themselves. They are SHORT transfers.

The interrupt instructions allow programs and external hardware devices to activate interru
vice routines. The effect of a software interrupt is similar to that of a hardware-initiated inte
The processor cannot execute an interrupt acknowledge bus cycle if the interrupt origina
software or with an NMI (Non-Maskable Interrupt).

Table 2-10. Interpretation of Conditional Transfers

Mnemonic Condition Tested “Jump if…”

JA/JNBE (CF or ZF)=0 above/not below nor equal

JAE/JNB CF=0 above or equal/not below

JB/JNAE CF=1 below/not above nor equal

JBE/JNA (CF or ZF)=1 below or equal/not above

JC CF=1 carry

JE/JZ ZF=1 equal/zero

JG/JNLE ((SF xor OF) or ZF)=0 greater/not less nor equal

JGE/JNL (SF xor OF)=0 greater or equal/not less

JL/JNGE (SF xor OF)=1 less/not greater nor equal

JLE/JNG ((SF xor OF) or ZF)=1 less or equal/not greater

JNC CF=0 not carry

JNE/JNZ ZF=0 not equal/not zero

JNO OF=0 not overflow

JNP/JPO PF=0 not parity/parity odd

JNS SF=0 not sign

JO OF=1 overflow

JP/JPE PF=1 parity/parity equal

JS SF=1 sign

NOTE: The terms above and below refer to the relationship of two unsigned values;
greater and less refer to the relationship of two signed values.
2-26

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

tions.
ocessor
or flag

 Oper-
s. Ad-
ressing
para-
escrip-

s. This
d no bus
ds, des-
2.2.1.6 Processor Control Instructions

Processor control instructions (see Table 2-11) allow programs to control various CPU func
Seven of these instructions update flags, four of them are used to synchronize the micropr
with external events, and the remaining instruction causes the CPU to do nothing. Except f
operations, processor control instructions do not affect the flags.

2.2.2 Addressing Modes

The 80C186 Modular Core family members access instruction operands in several ways.
ands can be contained either in registers, in the instruction itself, in memory or at I/O port
dresses of memory and I/O port operands can be calculated in many ways. These add
modes greatly extend the flexibility and convenience of the instruction set. The following
graphs briefly describe register and immediate modes of operand addressing. A detailed d
tion of the memory and I/O addressing modes is also provided.

2.2.2.1 Register and Immediate Operand Addressing Modes

Usually, the fastest, most compact operand addressing forms specify only register operand
is because the register operand addresses are encoded in instructions in just a few bits an
cycles are run (the operation occurs within the CPU). Registers can serve as source operan
tination operands, or both.

Table 2-11. Processor Control Instructions

Flag Operations

STC Set Carry flag

CLC Clear Carry flag

CMC Complement Carry flag

STD Set Direction flag

CLD Clear Direction flag

STI Set Interrupt Enable flag

CLI Clear Interrupt Enable flag

External Synchronization

HLT Halt until interrupt or reset

WAIT Wait for TEST pin active

ESC Escape to external processor

LOCK Lock bus during next instruction

No Operation

NOP No operation
2-27

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

e either
e and
n imme-
nt value.

ry op-
eeds to
e Bus

 20-bit

Effec-
d’s dis-
it can
 the in-
erand.
mer.

ents of
f these
Immediate operands are constant data contained in an instruction. Immediate data can b
8 or 16 bits in length. Immediate operands are available directly from the instruction queu
can be accessed quickly. As with a register operand, no bus cycles need to be run to get a
diate operand. Immediate operands can be only source operands and must have a consta

2.2.2.2 Memory Addressing Modes

Although the Execution Unit has direct access to register and immediate operands, memo
erands must be transferred to and from the CPU over the bus. When the Execution Unit n
read or write a memory operand, it must pass an offset value to the Bus Interface Unit. Th
Interface Unit adds the offset to the shifted contents of a segment register, producing a
physical address. One or more bus cycles are then run to access the operand.

The offset that the Execution Unit calculates for memory operand is called the operand’s
tive Address (EA). This address is an unsigned 16-bit number that expresses the operan
tance, in bytes, from the beginning of the segment in which it resides. The Execution Un
calculate the effective address in several ways. Information encoded in the second byte of
struction tells the Execution Unit how to calculate the effective address of each memory op
A compiler or assembler derives this information from the instruction written by the program
Assembly language programmers have access to all addressing modes.

The Execution Unit calculates the Effective Address by summing a displacement, the cont
a base register and the contents of an index register (see Figure 2-12). Any combination o
can be present in a given instruction. This allows a variety of memory addressing modes.
2-28

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

t gen-
. The
Figure 2-12. Memory Address Computation

The displacement is an 8- or 16-bit number contained in the instruction. The displacemen
erally is derived from the position of the operand’s name (a variable or label) in the program
programmer can modify this value or explicitly specify the displacement.

A1015-0A

CS 0000

0000

0000

0000

SS

DS

ES

Assumed Unless
Overridden
by Prefix

Explicit
in the

Instruction

Encoded
in the

Instruction

Single Index Double Index

or

or

or

Physical Addr

Effective
Address

BX

BP

SI

DI

or

or

or

BX

BP

or

SI

DI

or

EU

BIU

Displacement

+

++

++
2-29

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

ulation.
ement
ion. This
lues in
ulations

 are in-
. Pro-

directly
various
gister

ntents of
cts the
t over-

y to ac-
The BX or BP register can be specified as the base register for an effective address calc
Similarly, either the SI or the DI register can be specified as the index register. The displac
value is a constant. The contents of the base and index registers can change during execut
allows one instruction to access different memory locations depending upon the current va
the base or base and index registers. The default base register for effective address calc
with the BP register is SS, although DS or ES can be specified.

Direct addressing is the simplest memory addressing mode (see Figure 2-13). No registers
volved, and the effective address is taken directly from the displacement of the instruction
grammers typically use direct addressing to access scalar variables.

With register indirect addressing, the effective address of a memory operand can be taken
from one of the base or index registers (see Figure 2-14). One instruction can operate on
memory locations if the base or index register is updated accordingly. Any 16-bit general re
can be used for register indirect addressing with the JMP or CALL instructions.

In based addressing, the effective address is the sum of a displacement value and the co
the BX or BP register (see Figure 2-15). Specifying the BP register as a base register dire
Bus Interface Unit to obtain the operand from the current stack segment (unless a segmen
ride prefix is present). This makes based addressing with the BP register a convenient wa
cess stack data.

Figure 2-13. Direct Addressing

Opcode Mod R/M

EA

Displacement

A1016-0A
2-30

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

different
ents of
tructure
Figure 2-14. Register Indirect Addressing

Figure 2-15. Based Addressing

Based addressing provides a simple way to address data structures that may be located in
places in memory (see Figure 2-16). A base register can be pointed at the structure. Elem
the structure can then be addressed by their displacements. Different copies of the same s
can be accessed by simply changing the base register.

SI

DI EA

Opcode Mod R/M

BP

BX
or

or

or

A1017-0A

EA

BP

BX

Opcode Mod R/M Displacement

or +

A1018-0A
2-31

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

and the
 to ac-
e array,
0H, the
ithmetic
Figure 2-16. Accessing a Structure with Based Addressing

With indexed addressing, the effective address is calculated by summing a displacement
contents of an index register (SI or DI, see Figure 2-17). Indexed addressing is often used
cess elements in an array (see Figure 2-18). The displacement locates the beginning of th
and the value of the index register selects one element. If the index register contains 000
processor selects the first element. Since all array elements are the same length, simple ar
on the register can select any element.

Displacement

(Rate)

EA

Displacement

(Rate)

Base Register

EA

Age Status

Rate

SickVac

Dept Div

Employee

High Address

Low Address

+

Base
Register

+

Age Status

Rate

SickVac

Dept Div

Employee

A1019-0A
2-32

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE
Figure 2-17. Indexed Addressing

Figure 2-18. Accessing an Array with Indexed Addressing

EA

DI

SI

Opcode Mod R/M Displacement

or +

A1020-0A

Displacement

EA

High Address

Index Register

14

Array (8)

Array (7)

Array (6)

Array (5)

Array (4)

Array (3)

Array (2)

Array (1)

Array (0)

Displacement

EA

Index Register

2

1 Word
Low Address

+ +

A1021-0A
2-33

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

 an index
mined at

ated on
e stack.
d local
ed by a
 Arrays
h based

ead, the
the SI
oint to
auto-
struc-
r is the

ata lo-
Based index addressing generates an effective address that is the sum of a base register,
register and a displacement (see Figure 2-19). The two address components can be deter
execution time, making this a very flexible addressing mode.

Figure 2-19. Based Index Addressing

Based index addressing provides a convenient way for a procedure to address an array loc
a stack (see Figure 2-20). The BP register can contain the offset of a reference point on th
This is typically the top of the stack after the procedure has saved registers and allocate
storage. The offset of the beginning of the array from the reference point can be express
displacement value. The index register can be used to access individual array elements.
contained in structures and matrices (two-dimensional arrays) can also be accessed wit
indexed addressing.

String instructions do not use normal memory addressing modes to access operands. Inst
index registers are used implicitly (see Figure 2-21). When a string instruction executes,
register must point to the first byte or word of the source string, and the DI register must p
the first byte or word of the destination string. In a repeated string operation, the CPU will
matically adjust the SI and DI registers to obtain subsequent bytes or words. For string in
tions, the DS register is the default segment register for the SI register and the ES registe
default segment register for the DI register. This allows string instructions to operate on d
cated anywhere within the 1 Mbyte address space.

EA

BP

BX

SI

DI

Opcode Mod R/M Displacement

or

or

+

+

A1022-0A
2-34

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE
Figure 2-20. Accessing a Stacked Array with Based Index Addressing

Displacement

EA

High Address

Index Register

6

12

Base Register

Displacement

EA

Index Register

6

Base Register

Array (6)

Array (5)

Array (4)

Array (3)

Array (2)

Array (1)

Array (0)

Parm 2

Parm 1

IP

Old BP

Old BX

Old AX

Count

Temp

Status

12

(BP)(BP)

1 Word
Low Address

+

+

+

+

A1024-0A
2-35

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

emory-
with an

-22). For
d ac-
dress-
 0 to

 in the
justs the
Figure 2-21. String Operand

2.2.2.3 I/O Port Addressing

Any memory operand addressing modes can be used to access an I/O port if the port is m
mapped. String instructions can also be used to transfer data to memory-mapped ports
appropriate hardware interface.

Two addressing modes can be used to access ports located in the I/O space (see Figure 2
direct I/O port addressing, the port number is an 8-bit immediate operand. This allows fixe
cess to ports numbered 0 to 255. Indirect I/O port addressing is similar to register indirect ad
ing of memory operands. The DX register contains the port number, which can range from
65,535. Adjusting the contents of the DX register allows one instruction to access any port
I/O space. A group of adjacent ports can be accessed using a simple software loop that ad
value of the DX register.

Figure 2-22. I/O Port Addressing

Opcode

SI

DI

Source EA

Destination EA

A1025-0A

Opcode Data

Port Address

Opcode

Port AddressDX

Direct Port
Addressing

Indirect Port
Addressing

A1026-0A
2-36

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

trated
2.2.2.4 Data Types Used in the 80C186 Modular Core Family

The 80C186 Modular Core family supports the data types described in Table 2-12 and illus
in Figure 2-23. In general, individual data elements must fit within defined segment limits.

Table 2-12. Supported Data Types

Type Description

Integer A signed 8- or 16-bit binary numeric value (signed byte or word). All operations assume
a 2’s complement representation.

The 80C187 numerics processor extension, when added to an 80C186 Modular Core
system, directly supports signed 32- and 64-bit integers (signed double-words and
quad-words). The 80C188 Modular Core does not support the 80C187.

Ordinal An unsigned 8- or 16-bit binary numeric value (unsigned byte or word).

BCD A byte (unpacked) representation of a single decimal digit (0-9).

ASCII A byte representation of alphanumeric and control characters using the ASCII
standard.

Packed BCD A byte (packed) representation of two decimal digits (0-9).One digit is stored in each
nibble (4 bits) of the byte.

String A contiguous sequence of bytes or words. A string can contain from 1 byte to 64
Kbytes.

Pointer A 16- or 32-bit quantity. A 16-bit pointer consists of a 16-bit offset component; a 32-bit
pointer consists of the combination of a 16-bit base component (selector) plus a 16-bit
offset component.

Floating Point A signed 32-, 64-, or 80-bit real number representation.

The 80C187 numerics processor extension, when added to an 80C186 Modular Core
system, directly supports floating point operands. The 80C188 Modular Core does not
support the 80C187.
2-37

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE
Figure 2-23. 80C186 Modular Core Family Supported Data Types

15 +1 8 7 0 016+22324
+3

31

NOTE: *Directly supported if the system contains an 80C187.

1514 +1 8 7 0 0 15 +1 8 7 0 0

7 0 7 0

BCD Digit n BCD Digit 1 BCD Digit 0

0

ASCII Character n ASCII Character 1 ASCII Character 0

15 +1 8 7 0 016+22324+331

+1 0
01516+2+33132

+4+5+6+7
474863

7 0+n

7 0+n

079 +9 +8 +7 +6 +5 +4 +3 +2 +1 +0

Most
Significant Digit

Least
Significant Digit

Byte Word n Byte Word 1 Byte Word 0

+1

Signed Byte

Signed Quad
Word*

Unsigned
Word

Packed BCD

String

Pointer

ASCII

Floating
Point*

Binary Coded
Decimal (BCD)

Signed Word

Signed Double
Word*

Unsigned Byte
MSB

Sign Bit

Sign Bit MSB

Sign Bit

Sign Bit

Sign Bit

7 0+n

7 0+n

7 07 0

MSB

MSB

MSB

7 0 7 00+1

7 0 7 00+1

7 0 7 0
0+1

Magnitude

Exponent Magnitude

Selector Offset

Magnitude

Magnitude

Magnitude

MagnitudeMagnitude

A1027-0B
2-38

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

n error
ptions
r can
-

evices
rent
 pre-
 2-24).
 to the
apter

-entry
ch en-
IP) of
 type
at in-
2.3 INTERRUPTS AND EXCEPTION HANDLING

Interrupts and exceptions alter program execution in response to an external event or a
condition. An interrupt handles asynchronous external events, for example an NMI. Exce
result directly from the execution of an instruction, usually an instruction fault. The use
cause a software interrupt by executing an “INTn” instruction. The CPU processes software in
terrupts in the same way that it handles exceptions.

The 80C186 Modular Core responds to interrupts and exceptions in the same way for all d
within the 80C186 Modular Core family. However, devices within the family may have diffe
Interrupt Control Units. The Interrupt Control Unit handles all external interrupt sources and
sents them to the 80C186 Modular Core via one maskable interrupt request (see Figure
This discussion covers only those areas of interrupts and exceptions that are common
80C186 Modular Core family. The Interrupt Control Unit is proliferation-dependent; see Ch
7, “Interrupt Control Unit,” for additional information.

Figure 2-24. Interrupt Control Unit

2.3.1 Interrupt/Exception Processing

The 80C186 Modular Core can service up to 256 different interrupts and exceptions. A 256
Interrupt Vector Table (Figure 2-25) contains the pointers to interrupt service routines. Ea
try consists of four bytes, which contain the Code Segment (CS) and Instruction Pointer (
the first instruction in the interrupt service routine. Each interrupt or exception is given a
number, 0 through 255, corresponding to its position in the Interrupt Vector Table. Note th
terrupt types 0–31 are reserved for Intel and should not be used by an application program.

Interrupt
Control

Unit

Maskable
Interrupt
Request

Interrupt
Acknowledge

External
Interrupt
Sources

CPU

NMI

A1028-0A
2-39

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

roces-

rd onto

. This
essor

rrupt
Figure 2-25. Interrupt Vector Table

When an interrupt is acknowledged, a common event sequence (Figure 2-26) allows the p
sor to execute the interrupt service routine.

1. The processor saves a partial machine status by pushing the Processor Status Wo
the stack.

2. The Trap Flag bit and Interrupt Enable bit are cleared in the Processor Status Word
prevents maskable interrupts or single step exceptions from interrupting the proc
during the interrupt service routine.

3. The current CS and IP are pushed onto the stack.

4. The CPU fetches the new CS and IP for the interrupt vector routine from the Inte
Vector Table and begins executing from that point.

CS

IP

CS
IP

CS

IP

CS

IP

CS

IP

CS

IP

3FE

3FC

82

80

7E

7C

46

44

42

40

3E

3C

1E

1C

1A

18

16

14

12

10

0E

0C

0A

08

06

04

02

00 IP

CS

IP

CS

IP

CS

IP

CS

IP

CS

IP

CS

IP

CS

IP

CS

Memory
Address

Table
Entry

Vector
Definition

Type 255

User
Available

Reserved

Type 32

Type 31

Memory
Address

Type 4 - Overflow

Type 3 - Breakpoint

Type 2 - NMI

Type 1 - Single
Step

CS =Code Segment Value
IP = Instruction Pointer Value

Type 17

Type 16 - Numerics
 (80C186EC)

22

20
Type 8

Type 15

CS

IP

Type 0 - Divide
Error

Type 5 - Array
Bounds

Type 6 - Unused
Opcode

Type 7 - Esc
Opcode

2 Bytes

2 Bytes

Table
Entry

Vector
Definition

A1011-0A
2-40

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

ally by
ntents
t En-

ng off
owing
The CPU is now executing the interrupt service routine. The programmer must save (usu
pushing onto the stack) all registers used in the interrupt service routine; otherwise, their co
will be lost. To allow nesting of maskable interrupts, the programmer must set the Interrup
able bit in the Processor Status Word.

When exiting an interrupt service routine, the programmer must restore (usually by poppi
the stack) the saved registers and execute an IRET instruction, which performs the foll
steps.

1. Loads the return CS and IP by popping them off the stack.

2. Pops and restores the old Processor Status Word from the stack.

The CPU now executes from the point at which the interrupt or exception occurred.

Figure 2-26. Interrupt Sequence

A1029-0A

Stack

SP

CS

IP

Interrupt Enable Bit

PSW

CS

IP

Trap Flag

Instruction Pointer

Code Segment Register

Processor Status Word

Interrupt
Vector
Table

0 0

21

3

4

2-41

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

or a
sked)

fter ex-
U au-

tion on
period
ultiple
 man-

ftware
 Inter-

esents
s the
ong
for-

he ex-
ay. The

etected
 and ser-
 stack
is al-

cessing

imum
2.3.1.1 Non-Maskable Interrupts

The Non-Maskable Interrupt (NMI) is the highest priority interrupt. It is usually reserved f
catastrophic event such as impending power failure. An NMI cannot be prevented (or ma
by software. When the NMI input is asserted, the interrupt processing sequence begins a
ecution of the current instruction completes (see “Interrupt Latency” on page 2-44). The CP
tomatically generates a type 2 interrupt vector.

The NMI input is asynchronous. Setup and hold times are given only to guarantee recogni
a specific clock edge. To be recognized, NMI must be asserted for at least one CLKOUT
and meet the correct setup and hold times. NMI is edge-triggered and level-latched. M
NMI requests cause multiple NMI service routines to be executed. NMI can be nested in this
ner an infinite number of times.

2.3.1.2 Maskable Interrupts

Maskable interrupts are the most common way to service external hardware interrupts. So
can globally enable or disable maskable interrupts. This is done by setting or clearing the
rupt Enable bit in the Processor Status Word.

The Interrupt Control Unit processes the multiple sources of maskable interrupts and pr
them to the core via a single maskable interrupt input. The Interrupt Control Unit provide
interrupt vector type to the 80C186 Modular Core. The Interrupt Control Unit differs am
members of the 80C186 Modular Core family; see Chapter 7, “Interrupt Control Unit,” for in
mation.

2.3.1.3 Exceptions

Exceptions occur when an unusual condition prevents further instruction processing until t
ception is corrected. The CPU handles software interrupts and exceptions in the same w
interrupt type for an exception is either predefined or supplied by the instruction.

Exceptions are classified as either faults or traps, depending on when the exception is d
and whether the instruction that caused the exception can be restarted. Faults are detected
viced before the faulting instruction can be executed. The return address pushed onto the
in the interrupt processing instruction points to the beginning of the faulting instruction. Th
lows the instruction to be restarted. Traps are detected and serviced immediately after the instruc-
tion that caused the trap. The return address pushed onto the stack during the interrupt pro
points to the instruction following the trapping instruction.

Divide Error — Type 0

A Divide Error trap is invoked when the quotient of an attempted division exceeds the max
value of the destination. A divide-by-zero is a common example.
2-42

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

 bit set
. Inter-
gment
t ser-
tores
ed.

d by
ong, it

tatus
 han-

cution
ten-

amily
er (see
 the
tine em-
oating

nerate
Single Step — Type 1

The Single Step trap occurs after the CPU executes one instruction with the Trap Flag (TF)
in the Processor Status Word. This allows programs to execute one instruction at a time
rupts are not generated after prefix instructions (e.g., REP), after instructions that modify se
registers (e.g., POP DS) or after the WAIT instruction. Vectoring to the single-step interrup
vice routine clears the Trap Flag bit. An IRET instruction in the interrupt service routine res
the Trap Flag bit to logic “1” and transfers control to the next instruction to be single-stepp

Breakpoint Interrupt — Type 3

The Breakpoint Interrupt is a single-byte version of the INT instruction. It is commonly use
software debuggers to set breakpoints in RAM. Because the instruction is only one byte l
can substitute for any instruction.

Interrupt on Overflow — Type 4

The Interrupt on Overflow trap occurs if the Overflow Flag (OF) bit is set in the Processor S
Word and the INT0 instruction is executed. Interrupt on Overflow is a common method for
dling arithmetic overflows conditionally.

Array Bounds Check — Type 5

An Array Bounds trap occurs when the array index is outside the array bounds during exe
of the BOUND instruction (see Appendix A, “80C186 Instruction Set Additions and Ex
sions”).

Invalid Opcode — Type 6

Execution of an undefined opcode causes an Invalid Opcode trap.

Escape Opcode — Type 7

The Escape Opcode fault is used for floating point emulation. With 80C186 Modular Core f
members, this fault is enabled by setting the Escape Trap (ET) bit in the Relocation Regist
Chapter 3, “Peripheral Control Block”). When a floating point instruction is executed with
Escape Trap bit set, the Escape Opcode fault occurs, and the Escape Opcode service rou
ulates the floating point instruction. If the Escape Trap bit is cleared, the CPU sends the fl
point instruction to an external 80C187.

80C188 Modular Core Family members do not support the 80C187 interface and always ge
the Escape Opcode Fault.
2-43

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

or. The
s
lt in-
e ad-
ed onto
the ex-

n 0 and
errupt
 bits in

pts, ex-

 inter-
ound-
n be

ment
mem-
family

rs in

is set.

s not
Numerics Coprocessor Fault — Type 16

The Numerics Coprocessor fault is caused by an external 80C187 numerics coprocess
80C187 reports the exception by asserting the ERROR pin. The 80C186 Modular Core check
the ERROR pin only when executing a numerics instruction. A Numerics Coprocessor Fau
dicates that the previous numerics instruction caused the exception. The 80C187 saves th
dress of the floating point instruction that caused the exception. The return address push
the stack during the interrupt processing points to the numerics instruction that detected
ception. This way, the last numerics instruction can be restarted.

2.3.2 Software Interrupts

A Software Interrupt is caused by executing an “INTn” instruction. The n parameter corresponds
to the specific interrupt type to be executed. The interrupt type can be any number betwee
255. If the n parameter corresponds to an interrupt type associated with a hardware int
(NMI, Timers), the vectors are fetched and the routine is executed, but the corresponding
the Interrupt Status register are not altered.

The CPU processes software interrupts and exceptions in the same way. Software interru
ceptions and traps cannot be masked.

2.3.3 Interrupt Latency

Interrupt latency is the amount of time it takes for the CPU to recognize the existence of an
rupt. The CPU generally recognizes interrupts only between instructions or on instruction b
aries. Therefore, the current instruction must finish executing before an interrupt ca
recognized.

The worst-case 80C186 instruction execution time is an integer divide instruction with seg
override prefix. The instruction takes 69 clocks, assuming an 80C186 Modular Core family
ber and a zero wait-state external bus. The execution time for an 80C188 Modular Core
member may be longer, depending on the queue.

This is one factor in determining interrupt latency. In addition, the following are also facto
determining maximum latency:

1. The CPU does not recognize the Maskable Interrupt unless the Interrupt Enable bit

2. The CPU does not recognize interrupts during HOLD.

3. Once communication is completely established with an 80C187, the CPU doe
recognize interrupts until the numerics instruction is finished.
2-44

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

ction
cep-

 until
ut an

fixes
refix

AIT

ction
ptions
ecause
ontrol

supply
use of
The CPU can recognize interrupts only on valid instruction boundaries. A valid instru
boundary usually occurs when the current instruction finishes. The following is a list of ex
tions:

1. MOVs and POPs referencing a segment register delay the servicing of interrupts
after the following instruction. The delay allows a 32-bit load to the SS and SP witho
interrupt occurring between the two loads.

2. The CPU allows interrupts between repeated string instructions. If multiple pre
precede a string instruction and the instruction is interrupted, only the one p
preceding the string primitive is restored.

3. The CPU can be interrupted during a WAIT instruction. The CPU will return to the W
instruction.

2.3.4 Interrupt Response Time

Interrupt response time is the time from the CPU recognizing an interrupt until the first instru
in the service routine is executed. Interrupt response time is less for interrupts or exce
which supply their own vector type. The maskable interrupt has a longer response time b
the vector type must be supplied by the Interrupt Control Unit (see Chapter 7, “Interrupt C
Unit”).

Figure 2-27 shows the events that dictate interrupt response time for the interrupts that
their type. Note that an on-chip bus master, such as the DRAM Refresh Unit, can make
idle bus cycles. This can increase interrupt response time.
2-45

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

le in-
. The

ighest

o ex-
 the sin-
or now),

 NMI
xcep-
taken,
high-
Figure 2-27. Interrupt Response Factors

2.3.5 Interrupt and Exception Priority

Interrupts can be recognized only on valid instruction boundaries. If an NMI and a maskab
terrupt are both recognized on the same instruction boundary, NMI has precedence
maskable interrupt will not be recognized until the Interrupt Enable bit is set and it is the h
priority.

Only the single step exception can occur concurrently with another exception. At most, tw
ceptions can occur at the same instruction boundary and one of those exceptions must be
gle step. Single step is a special case; it is discussed on page 2-47. Ignoring single step (f
only one exception can occur at any given instruction boundary.

An exception has priority over both NMI and the maskable interrupt. However, a pending
can interrupt the CPU at any valid instruction boundary. Therefore, NMI can interrupt an e
tion service routine. If an exception and NMI occur simultaneously, the exception vector is
then is followed immediately by the NMI vector (see Figure 2-28). While the exception has
er priority at the instruction boundary, the NMI interrupt service routine is executed first.

Clocks

Idle

Idle

Read CS

Idle
Push Flags

Idle

Push CS

Push IP

Idle

5

4

4
4

4

3

4

4
5

5

Read IP

Total 42

First Instruction Fetch
From Interrupt Routine

A1030-0A
2-46

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

struc-
ely by
terrupt
by exe-
 limit
Figure 2-28. Simultaneous NMI and Exception

Single step priority is a special case. If an interrupt (NMI or maskable) occurs at the same in
tion boundary as a single step, the interrupt vector is taken first, then is followed immediat
the single step vector. However, the single step service routine is executed before the in
service routine (see Figure 2-29). If the single step service routine re-enables single step
cuting the IRET, the interrupt service routine will also be single stepped. This can severely
the real-time response of the CPU to an interrupt.

NMI

F = 1

Divide Error

Push PSW, CS, IP
Fetch NMI Vector

Execute NMI
Service Routine

Push PSW, CS, IP
Fetch Divide Error Vector

Execute Divide
Service Routine

IRET

IRET

Divide

A1031-0A
2-47

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

rrupts
e. The
t ser-
p ser-
 same,
tine.

her ex-
s prior-
cuting
To prevent the single-step routine from executing before a maskable interrupt, disable inte
while single stepping an instruction, then enable interrupts in the single step service routin
maskable interrupt is serviced from within the single step service routine and that interrup
vice routine is not single-stepped. To prevent single stepping before an NMI, the single-ste
vice routine must compare the return address on the stack to the NMI vector. If they are the
return to the NMI service routine immediately without executing the single step service rou

Figure 2-29. Simultaneous NMI and Single Step Interrupts

The most complicated case is when an NMI, a maskable interrupt, a single step and anot
ception are pending on the same instruction boundary. Figure 2-30 shows how this case i
itized by the CPU. Note that if the single-step routine sets the Trap Flag (TF) bit before exe
the IRET instruction, the NMI routine will also be single stepped.

NMI

IRET

Instruction Trap Flag = 1

Push PSW, CS, IP
Fetch Divide Error Vector

Trap Flag = 0

Execute Single Step
Service Routine

Push PSW, CS, IP
Fetch Single Step Vector

Trap Flag = ???
A1032-0A
2-48

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE
Figure 2-30. Simultaneous NMI, Single Step and Maskable Interrupt

A1034-0A

NMI

Push PSW, CS, IP
Fetch Divide Error Vector

IRET

Divide Timer Interrupt

Push PSW, CS, IP
Fetch Single Step Vector

Push PSW, CS, IP
Fetch Single Step Vector

IRET

Execute Single Step Service Routine

Execute Single Step
Service Routine

Push PSW, CS, IP
Fetch NMI Vector

Interrupt Enable Bit (IE) = 1
Trap Flag (TF) = 1

Interrupt Enable Bit (IE) = 0
Trap Flag (TF) = 0

Interrupt Enable Bit (IE) = 0
Trap Flag (TF) = 0

Interrupt Enable Bit (IE) = 0
Trap Flag (TF) = 0

Interrupt Enable Bit (IE) = 0
Trap Flag (TF) = ???

Interrupt Enable Bit (IE) = 1
Trap Flag (TF) = X

Interrupt Enable Bit (IE) = 1
Trap Flag (TF) = X
2-49

3
Bus Interface Unit

, pass
nits.

art of a
ng the
f data

. In a
ation

ed bus.
ckage
rectly
le
tem.

ry space
t data
 word).
mory

ddress
e lower
s to the
 select
CHAPTER 3
BUS INTERFACE UNIT

The Bus Interface Unit (BIU) generates bus cycles that prefetch instructions from memory
data to and from the execution unit, and pass data to and from the integrated peripheral u

The BIU drives address, data, status and control information to define a bus cycle. The st
bus cycle presents the address of a memory or I/O location and status information defini
type of bus cycle. Read or write control signals follow the address and define the direction o
flow. A read cycle requires data to flow from the selected memory or I/O device to the BIU
write cycle, the data flows from the BIU to the selected memory or I/O device. Upon termin
of the bus cycle, the BIU latches read data or removes write data.

3.1 MULTIPLEXED ADDRESS AND DATA BUS

The BIU has a combined address and data bus, commonly referred to as a time-multiplex
Time multiplexing address and data information makes the most efficient use of device pa
pins. A system with address latching provided within the memory and I/O devices can di
connect to the address/data bus (or local bus). The local bus can be demultiplexed with a sing
set of address latches to provide non-multiplexed address and data information to the sys

3.2 ADDRESS AND DATA BUS CONCEPTS

The programmer views the memory or I/O address space as a sequence of bytes. Memo
consists of 1 Mbyte, while I/O space consists of 64 Kbytes. Any byte can contain an 8-bi
element, and any two consecutive bytes can contain a 16-bit data element (identified as a
The discussions in this section apply to both memory and I/O bus cycles. For brevity, me
bus cycles are used for examples and illustration.

3.2.1 16-Bit Data Bus

The memory address space on a 16-bit data bus is physically implemented by dividing the a
space into two banks of up to 512 Kbytes each (see Figure 3-1). One bank connects to th
half of the data bus and contains even-addressed bytes (A0=0). The other bank connect
upper half of the data bus and contains odd-addressed bytes (A0=1). Address lines A19:1
a specific byte within each bank. A0 and Byte High Enable (BHE) determine whether one bank
or both banks participate in the data transfer.
3-1

BUS INTERFACE UNIT

ee Fig-
ue

e Figure
value
 from

byte at
re 3-3).

ns (see
nd op-
o-byte
Figure 3-1. Physical Data Bus Models

Byte transfers to even addresses transfer information over the lower half of the data bus (s
ure 3-2). A0 low enables the lower bank, while BHE high disables the upper bank. The data val
from the upper bank is ignored during a bus read cycle. BHE high prevents a write operation from
destroying data in the upper bank.

Byte transfers to odd addresses transfer information over the upper half of the data bus (se
3-2). BHE low enables the upper bank, while A0 high disables the lower bank. The data
from the lower bank is ignored during a bus read cycle. A0 high prevents a write operation
destroying data in the lower bank.

To access even-addressed 16-bit words (two consecutive bytes with the least-significant
an even address), information is transferred over both halves of the data bus (see Figu
A19:1 select the appropriate byte within each bank. A0 and BHE drive low to enable both banks
simultaneously.

Odd-addressed word accesses require the BIU to split the transfer into two byte operatio
Figure 3-4). The first operation transfers data over the upper half of the bus, while the seco
eration transfers data over the lower half of the bus. The BIU automatically executes the tw
sequence whenever an odd-addressed word access is performed.

0
2
4

FFFFC
FFFFEFFFFF

FFFFD

1
3
5

512 KBytes 512 KBytes1 MByte

Physical Implementation
of the Address Space for

16-Bit Systems

Physical Implementation
of the Address Space for

8-Bit Systems

D7:0 D15:8A19:1A19:0 D7:0BHE A0

FFFFF
FFFFE

0
1
2

A1100-0A
3-2

BUS INTERFACE UNIT
Figure 3-2. 16-Bit Data Bus Byte Transfers

Even Byte Transfer

Odd Byte Transfer

A19:1 D15:8 D7:0 A0
(Low)

BHE
(High)

A19:1 D15:8 D7:0 A0
(High)

BHE
(Low)

Y
(X)

Y + 1
X + 1

Y
X

Y + 1
(X + 1)

A1104-0A
3-3

BUS INTERFACE UNIT

ansfer
d-only

te op-
ed in
HE
Figure 3-3. 16-Bit Data Bus Even Word Transfers

During a byte read operation, the BIU floats the entire 16-bit data bus, even though the tr
occurs on only one half of the bus. This action simplifies the decoding requirements for rea
devices (e.g., ROM, EPROM, Flash). During the byte read, an external device can driveboth
halves of the bus, and the BIU automatically accesses the correct half. During the byte wri
eration, the BIU drives both halves of the bus. Information on the half of the bus not involv
the transfer is indeterminate. This action requires that the appropriate bank (defined by B or
A0 high) be disabled to prevent destroying data.

A19:1 D15:8 D7:0 A0
(Low)

BHE
(Low)

(X)(X + 1)

A1107-0A
3-4

BUS INTERFACE UNIT

1 Mbyte
Unlike
er data

fers to
rts the
rogram-
Figure 3-4. 16-Bit Data Bus Odd Word Transfers

3.2.2 8-Bit Data Bus

The memory address space on an 8-bit data bus is physically implemented as one bank of
(see Figure 3-1 on page 3-2). Address lines A19:0 select a specific byte within the bank.
transfers with a 16-bit bus, byte and word transfers (to even or odd addresses) all transf
over the same 8-bit bus.

Byte transfers to even or odd addresses transfer information in one bus cycle. Word trans
even or odd addresses transfer information in two bus cycles. The BIU automatically conve
word access into two consecutive byte accesses, making the operation transparent to the p
mer.

A1108-0A

Second Bus Cycle

A19:1 D15:8 D7:0 A0
(High)

BHE
(Low)

Y
X(X + 1)

A19:1 D15:8 D7:0 A0
(Low)

BHE
(High)

(Y)
XX + 1

First Bus Cycle

Y + 1
3-5

BUS INTERFACE UNIT

ransfer
bus in-

hange
cles.
write,
eriph-
s the

uctions
l device

the I/O
gh the

rrupt
For word transfers, the word address defines the first byte transferred. The second byte t
occurs from the word address plus one. Figure 3-5 illustrates a word transfer on an 8-bit
terface.

Figure 3-5. 8-Bit Data Bus Word Transfers

3.3 MEMORY AND I/O INTERFACES

The CPU can interface with 8- and 16-bit memory and I/O devices. Memory devices exc
information with the CPU during memory read, memory write and instruction fetch bus cy
I/O (peripheral) devices exchange information with the CPU during memory read, memory
I/O read, I/O write and interrupt acknowledge bus cycles. Memory-mapped I/O refers to p
eral devices that exchange information during memory cycles. Memory-mapped I/O allow
full power of the instruction set to be used when communicating with peripheral devices.

I/O read and I/O write bus cycles use a separate I/O address space. Only IN and OUT instr
can access I/O address space, and information must be transferred between the periphera
and the AX register. The first 256 bytes (0–255) of I/O space can be accessed directly by
instructions. The entire 64 Kbyte I/O address space can be accessed only indirectly, throu
DX register. I/O instructions always force address bits A19:16 to zero.

Interrupt acknowledge, or INTA, bus cycles access an I/O device intended to increase inte
input capability. Valid address information is not generated as part of the INTA bus cycle, and
data is transferred only over the lower bank (16-bit device).

A1109-0A

Second Bus CycleFirst Bus Cycle

A19:0 D7:0 D7:0

(X + 1)
(X)

A19:0
3-6

BUS INTERFACE UNIT

to store
uction
 of

ddress
 In re-
 Kbyte

. All
nsfers

external
locks
lling
ts at the
arts at
 BIU
3.3.1 16-Bit Bus Memory and I/O Requirements

A 16-bit bus has certain assumptions that must be met to operate properly. Memory used
instruction operands (i.e., the program) and immediate data must be 16 bits wide. Instr
prefetch bus cycles require that both banks be used. The lower bank contains the even bytes
code and the upper bank contains the odd bytes of code.

Memory used to store interrupt vectors and stack data must be 16 bits wide. Memory a
space between 0H and 3FFH (1 Kbyte) holds the starting location of an interrupt routine.
sponse to an interrupt, the BIU fetches two consecutive, even-addressed words from this 1
address space. Stack pushes and pops always write or read even-addressed word data.

3.3.2 8-Bit Bus Memory and I/O Requirements

An 8-bit bus interface has no restrictions on implementing the memory or I/O interfaces
transfers, bytes and words, occur over the single 8-bit bus. Operations requiring word tra
automatically execute two consecutive byte transfers.

3.4 BUS CYCLE OPERATION

The BIU executes a bus cycle to transfer data between any of the integrated units and any
memory or I/O devices (see Figure 3-6). A bus cycle consists of a minimum of four CPU c
known as “T-states.” A T-state is bounded by one falling edge of CLKOUT to the next fa
edge of CLKOUT (see Figure 3-7). Phase 1 represents the low time of the T-state and star
high-to-low transition of CLKOUT. Phase 2 represents the high time of the T-state and st
the low-to-high transition of CLKOUT. Address, data and control signals generated by the
go active and inactive at different phases within a T-state.
3-7

BUS INTERFACE UNIT

ive T-
ultiple
Figure 3-6. Typical Bus Cycle

Figure 3-7. T-State Relation to CLKOUT

Figure 3-8 shows the BIU state diagram. Typically a bus cycle consists of four consecut
states labeled T1, T2, T3 and T4. A TI (idle) state occurs when no bus cycle is pending. M
T3 states occur to generate wait states. The TW symbol represents a wait state.

The operation of a bus cycle can be separated into two phases:

• Address/Status Phase

• Data Phase

CLKOUT

RD / WR

Valid Status

ALE

AD15:0

S2:0

T4 T1 T2 T3 T4

DataAddress

A1507-0A

CLKOUT

(Low Phase) (High Phase)
Phase 1 Phase 2

TN

Falling
Edge

Rising
Edge

A1111-0A
3-8

BUS INTERFACE UNIT

 starts at
ses.
The address/status phase starts just before T1 and continues through T1. The data phase
T2 and continues through T4. Figure 3-9 illustrates the T-state relationship of the two pha

Figure 3-8. BIU State Diagram

Bus Ready
Request Pending
HOLD Deasserted

Bus Not
Ready

Halt Bus Cycle

Bus Ready
No Request Pending
HOLD Deasserted

HOLD Asserted

Request Pending
HOLD Deasserted

T2T1 T3

T4

TI

RESIN
Asserted

A1538-01
3-9

BUS INTERFACE UNIT

. A bus
he
vious

 multi-
ng the
cuit for

so be
Figure 3-9. T-State and Bus Phases

3.4.1 Address/Status Phase

Figure 3-10 shows signal timing relationships for the address/status phase of a bus cycle
cycle begins with the transition of ALE and S2:0. These signals transition during phase 2 of t
T-state just prior to T1. Either T4 or TI precedes T1, depending on the operation of the pre
bus cycle (see Figure 3-8 on page 3-9).

ALE provides a strobe to latch physical address information. Address is presented on the
plexed address/data bus during T1 (see Figure 3-10). The falling edge of ALE occurs duri
middle of T1 and provides a strobe to latch the address. Figure 3-11 presents a typical cir
latching addresses.

The status signals (S2:0) define the type of bus cycle (Table 3-1). S2:0 remain valid until phase
1 of T3 (or the last TW, when wait states occur). The circuit shown in Figure 3-11 can al
used to extend S2:0 beyond the T3 (or TW) state.

T4
or TI T1 T2

T3
or TW

CLKOUT

Address/
Status Phase

Data Phase

T4
or TI

A1113-0A
3-10

BUS INTERFACE UNIT
Figure 3-10. Address/Status Phase Signal Relationships

ALE

AD15:0
A19:16

CLKOUT

S2:0

BHE
NOTES:

T4
or TI T1 T2

1 4

2
3

5

6

1.
2.
3.
4.
5.
6.

T
T
T
T
T
T

CHOV
CLOV
AVLL
CHOV
CLOF
LLAX

Valid

Valid

: Clock high to ALE high, S2:0 valid.
: Clock low to address valid, BHE valid.
: Address valid to ALE low (address setup to ALE).
: Clock high to ALE low.
: Clock low to address invalid (address hold from clock low).
: ALE low to address invalid (address hold from ALE).

A1101-0A
3-11

BUS INTERFACE UNIT
Figure 3-11. Demultiplexing Address Information

Table 3-1. Bus Cycle Types

Status Bit
Operation

S2 S1 S0

0 0 0 Interrupt Acknowledge

0 0 1 I/O Read

0 1 0 I/O Write

0 1 1 Halt

1 0 0 Instruction Prefetch

1 0 1 Memory Read

1 1 0 Memory Write

1 1 1 Idle (passive)

4 I

I

STB

8

8

O

OALE

Latched
Address SignalsSignals From CPU

A19:16

AD15:8

AD7:0

8

8

I3

LS2:0

O 4 LA19:16

LA7:0

LA15:8

S2:0
3

OE

I

STB O

OE

STB

OE

A1102-0A
3-12

BUS INTERFACE UNIT

 cycle
rs infor-
he ad-
f data.

h of the
 before

provide
ypical

nput
)

tes,
 wait
ase 1
n take
3.4.2 Data Phase

Figure 3-12 shows the timing relationships for the data phase of a bus cycle. The only bus
type that does not have a data phase is a bus halt. During the data phase, the bus transfe
mation between the internal units and the memory or peripheral device selected during t
dress/status phase. Appropriate control signals become active to coordinate the transfer o

The data phase begins at phase 1 of T2 and continues until phase 2 of T4 or TI. The lengt
data phase varies depending on the number of wait states. Wait states occur after T3 and
T4 or TI.

3.4.3 Wait States

Wait states extend the data phase of the bus cycle. Memory and I/O devices that cannot
or accept data in the minimum four CPU clocks require wait states. Figure 3-13 shows a t
bus cycle with wait states inserted.

The READY input and the Chip-Select Unit control bus cycle wait states. Only the READY i
is described in this chapter. (See Chapter 6, “Chip-Select Unit,” for additional information.

Figure 3-14 shows a simplified block diagram of the READY input. To avoid wait sta
READY must be active (high) within a specified setup time prior to phase 2 of T2. To insert
states, READY must be inactive (low) within a specified setup time to phase 2 of T2 or ph
of T3. Depending on the size and characteristics of the system, ready implementation ca
one of two approaches: normally not-ready or normally ready.
3-13

BUS INTERFACE UNIT
Figure 3-12. Data Phase Signal Relationships

AD15:0
Write

AD15:0
Read

S2:0

CLKOUT

T2
T3

or TW

RD/ WR

NOTES:
1.
2.
3.
4.
5.
6.
7.

 T
T
T
T
T
T
T

CLOV
CLOV
CLIS
CLOV
CLIH
WHDX
RHAV

: Clock low to valid RD/ WR active; Write data valid
: Clock low to status inactive
: Data input valid to clock low
: Clock valid to RD/ WR inactive
: Data input HOLD from clock low
: Output data HOLD from WR high
: Bus no longer floating from RD high

1 42

3

5

6

7

Valid
Read Data

Valid Write Data

T4
or TI

A1103-0A
3-14

BUS INTERFACE UNIT
Figure 3-13. Typical Bus Cycle with Wait States

Figure 3-14. READY Pin Block Diagram

ALE

S2:0

A19:16

AD15:0

READY

WR

CLKOUT

T1 T2 T3 TW TW T4

Valid

Address

Address Valid Write Data

A1040-0A

D Q

READY

BUS READY

CLKOUT Rising
Edge

D Q

Falling
Edge

A1079-01
3-15

BUS INTERFACE UNIT

nal a
gh to
rate a
-
th usu-

rising
rive
ugh
tes one

 signal
t low

le cir-

mally

mains

tern,
,
hrough
A normally not-ready system is one in which READY remains low at all times except to sig
ready condition. For any bus cycle, only the selected device drives the READY input hi
complete the bus cycle. The circuit shown in Figure 3-15 illustrates a simple circuit to gene
normally not-ready signal. Note that if no device is selected the bus remains not-ready indef
initely. Systems with many slow devices that cannot operate at the maximum bus bandwid
ally implement a normally not-ready signal.

The start of a bus cycle clears the wait state module and forces READY low. After every
edge of CLKOUT, INPUT1 and INPUT2 are shifted through the module and eventually d
READY high. Assuming INPUT1 and INPUT2 are valid prior to phase 2 of T2, no delay thro
the module causes one wait state. Each additional clock delay through the module genera
additional wait state. Two inputs are used to establish different wait state conditions.

Figure 3-15. Generating a Normally Not-Ready Bus Signal

A normally ready signal remains high at all times except when the selected device needs to
a not-ready condition. For any bus cycle, only the selected device drives the READY inpu
to delay the completion of the bus cycle. The circuit shown in Figure 3-16 illustrates a simp
cuit to generate a normally ready signal. Note that if no device is selected the bus remains
ready. Systems that have few or no devices requiring wait states usually implement a nor
ready signal.

The start of a bus cycle preloads a zero shifter and forces READY active (high). READY re
active if neither CS1 or CS2 goes low. Should either CS1 or CS2 go low, zeros are shifted out on
every rising edge of CLKOUT, causing READY to go inactive. At the end of the shift pat
READY is forced active again. Assuming CS1 and CS2 are active just prior to phase 2 of T2
shifting one zero through the module causes two wait states. Each additional zero shifted t
the module generates one wait state.

Input 1

Out READY

Wait State Module

Input 2

Clear

Clock

ALE

CLKOUT

CS1

CS2

CS3

CS4

A1080-0A
3-16

BUS INTERFACE UNIT

dy or
 input
e. The
ollow-
itions.

event
Figure
 Figure
tem.
Figure 3-16. Generating a Normally Ready Bus Signal

The READY input has two major timing concerns that can affect whether a normally rea
normally not-ready signal may be required. Two latches capture the state of the READY
(see Figure 3-14 on page 3-15). The first latch captures READY on the phase 2 clock edg
second latch captures READY and the result of first latch on the phase 1 clock edge. The f
ing items define the requirements of the READY input to meet ready or not-ready bus cond

• The bus is ready if both of these two conditions are true:

— READY is active prior to the phase 2 clock edge, and

— READY remains active after the phase 1 clock edge.

• The bus is not-ready if either of these two conditions is true:

— READY is inactive prior to the phase 2 clock edge, or

— READY is inactive prior to the phase 1 clock edge.

A normally not-ready system must generate a valid READY input at phase 2 of T2 to pr
wait states. If it cannot, then running without wait states requires a normally ready system.
3-17 illustrates the timing necessary to prevent wait states in a normally not-ready system.
3-17 also shows how to terminate a bus cycle with wait states in a normally not-ready sys

Enable

Out READY

Wait State Module

Load

Clock

ALE

CLKOUT

CS1

CS2

A1081-0A
3-17

BUS INTERFACE UNIT

ormally
annot

rt wait
ith wait

mbers
mance
perfor-

. How-
us cy-
on the
Figure 3-17. Normally Not-Ready System Timing

A valid not-ready input can be generated as late as phase 1 of T3 to insert wait states in a n
ready system. A normally not-ready system must run wait states if the not-ready condition c
be met in time. Figure 3-18 illustrates the minimum and maximum timing necessary to inse
states in a normally ready system. Figure 3-18 also shows how to terminate a bus cycle w
states in a normally ready system.

The BIU can execute an indefinite number of wait states. However, bus cycles with large nu
of wait states limit the performance of the CPU and the integrated peripherals. CPU perfor
suffers because the instruction prefetch queue cannot be kept full. Integrated peripheral
mance suffers because the maximum bus bandwidth decreases.

3.4.4 Idle States

Under most operating conditions, the BIU executes consecutive (back-to-back) bus cycles
ever, several conditions cause the BIU to become idle. An idle condition occurs between b
cles (see Figure 3-8 on page 3-9) and may last an indefinite period of time, depending
instruction sequence.

READY

CLKOUT

In a Normally-Not-Ready system, wait states will be inserted until both 1 & 2 are met.

T2
or T3

or TW T4

CHIS1.

2.

 : READY active to clock high (assumes Ready remains
 active between 1 & 2)
: READY hold from clock low

CLIH

T

T

1 2

T3
or TW
or TW

A1082-0A
3-18

BUS INTERFACE UNIT

pera-
Figure 3-18. Normally Ready System Timings

Conditions causing the BIU to become idle include the following.

• The instruction prefetch queue is full.

• An effective address calculation is in progress.

• The bus cycle inherently requires idle states (e.g., interrupt acknowledge, locked o
tions).

• Instruction execution forces idle states (e.g., HLT, WAIT).

READY

CLKOUT

In a Normally-Ready system, a wait state will be inserted when 1 & 2 are met.

T2 T3 TW

CHIS
CHIH

1.
2.

: READY low to clock high
: READY hold from clock high

T
T

READY

CLKOUT

Alternatively, in a Normally-Ready system, a wait state will be inserted when1 & 2 are met.

CLIS
CLIH

1.
2.

: READY low to clock low
: READY hold from clock low

T
T

T4

T2 T3 TW

1 2

T4

1 2

!
Failure to meet READY setup and hold can cause a device failure
(i.e., the bus hangs or operates inappropriately).

A1083-0A
3-19

BUS INTERFACE UNIT

e con-
 bus.
er bus

errupt
ussions.
cycles
ormat.

t. The

es.
An idle bus state may or may not drive the bus. An idle bus state following a bus read cycl
tinues to float the bus. An idle bus state following a bus write cycle continues to drive the
The BIU drives no control strobes active in an idle state except to indicate the start of anoth
cycle.

3.5 BUS CYCLES

There are four basic types of bus cycles: read, write, interrupt acknowledge and halt. Int
acknowledge and halt bus cycles define special bus operations and require separate disc
Read bus cycles include memory, I/O and instruction prefetch bus operations. Write bus
include memory and I/O bus operations. All read and write bus cycles have the same basic f

The following sections present timing equations containing symbols found in the data shee
timing equations provide information necessary to start a worst-case design analysis.

3.5.1 Read Bus Cycles

Figure 3-19 illustrates a typical read cycle. Table 3-2 lists the three types of read bus cycl

Table 3-2. Read Bus Cycle Types

Status Bit
Bus Cycle Type

S2 S1 S0

0 0 1 Read I/O — Initiated by the Execution Unit for IN, OUT, INS, OUTS instructions
or by the DMA Unit. A19:16 are driven to zero (see Chapter 10, “Direct Memory
Access Unit”).

1 0 0 Instruction Prefetch — Initiated by the BIU. Data read from the bus fills the
prefetch queue.

1 0 1 Read Memory — Initiated by the Execution Unit, the DMA Unit or the Refresh
Control Unit. A19:0 select the desired byte or word memory location.
3-20

BUS INTERFACE UNIT

. The
us. Four
ry (or

hese
 or

xt bus
ight

t con-
3-37).
Figure 3-20 illustrates a typical 16-bit interface connection to a read-only device interface
same example applies to an 8-bit bus system, except that no devices connect to an upper b
parameters (Table 3-3) must be evaluated when determining the compatibility of a memo
I/O) device. TADLTCH defines the delay through the address latch.

TOE, TACC and TCE define the maximum data access requirements for the memory device. T
device parameters must be less than the value calculated in the equation column. An equal to
greater than result indicates that wait states must be inserted into the bus cycle.

TDF determines the maximum time the memory device can float its outputs before the ne
cycle begins. A TDF value greater than the equation result indicates a buffer fight. A buffer f
means two (or more) devices are driving the bus at the same time. This can lead to short circuit
conditions, resulting in large current spikes and possible device damage.

TRHAX cannot be lengthened (other than by slowing the clock rate). To resolve a buffer figh
dition, choose a faster device or buffer the AD bus (see “Buffering the Data Bus” on page

Table 3-3. Read Cycle Critical Timing Parameters

Memory Device
Parameter Description Equation

TOE Output enable (RD low) to data valid 2T – TCLOV2 – TCLIS

TACC Address valid to data valid 3T – TCLOV2 –TADLTCH – TCLIS

TCE Chip enable (UCS) to data valid 3T – TCLOV2 – TCLIS

TDF Output disable (RD high) to output float TRHAX
3-21

BUS INTERFACE UNIT

e

Figure 3-19. Typical Read Bus Cycle

3.5.1.1 Refresh Bus Cycles

A refresh bus cycle operates similarly to a normal read bus cycle except for the following:

• For a 16-bit data bus, address bit A0 and BHE drive to a 1 (high) and the data value on th
bus is ignored.

• For an 8-bit data bus, address bit A0 drives to a 1 (high) and RFSH is driven active (low).
The data value on the bus is ignored. RFSH has the same bus timing as BHE.

ALE

S2:0

A19:16

CLKOUT

T1 T2 T3 T4

A18:16 = 0, A19=Valid Status

A15:8
RFSH Valid

A15:0
[AD7:0]

RD

DT / R

DEN

BHE

Status Valid

Address Valid

Data
Valid

Address
Valid

A1084-0A
3-22

BUS INTERFACE UNIT

 ALE

es of
Figure 3-20. Read-Only Device Interface

3.5.2 Write Bus Cycles

Figure 3-21 illustrates a typical write bus cycle. The bus cycle starts with the transition of
high and the generation of valid status bits S2:0. The bus cycle ends when WR transitions high
(inactive), although data remains valid for one additional clock. Table 3-4 lists the two typ
write bus cycles.

O0-7

O0-7

27C256
A0-14

A0-14

27C256

Note: A and BHE are not used.0

UCS

RD OE

OE

CE

CE

AD7:0

LA15:1

AD15:8

A1105-0A
3-23

BUS INTERFACE UNIT

s cy-
emory
Figure 3-21. Typical Write Bus Cycle

Figure 3-22 illustrates a typical 16-bit interface connection to a read/write device. Write bu
cles have many parameters that must be evaluated in determining the compatibility of a m
(or I/O) device. Table 3-5 lists some critical write bus cycle parameters.

Table 3-4. Write Bus Cycle Types

Status Bits
Bus Cycle Type

S2 S1 S0

0 1 0 Write I/O — Initiated by executing IN, OUT, INS, OUTS instructions or by the
DMA Unit. A15:0 select the desired I/O port. A19:16 are driven to zero (see
Chapter 10, “Direct Memory Access Unit”).

1 1 0 Write Memory — Initiated by any of the Byte/ Word memory instructions or the
DMA Unit. A19:0 selects the desired byte or word memory location.

ALE

S2:0

A19:16

CLKOUT

T1 T2 T3 T4

A18:16 = 0, A19=Valid Status

Valid

AD15:0
[AD7:0]

WR

DT/R

DEN

BHE
[A15:8]

Status Valid

Address Valid

Address
Valid Data Valid

A1085-0A
3-24

BUS INTERFACE UNIT

dress,

ations
it states.
Most memory and peripheral devices latch data on the rising edge of the write strobe. Ad
chip-select and data must be valid (set up) prior to the rising edge of WR. TAW, TCW and TDW de-
fine the minimum data setup requirements. The value calculated by their respective equ
must be greater than the device requirements. To increase the calculated value, insert wa

Figure 3-22. 16-Bit Bus Read/Write Device Interface

I/O1:8

A0:14

LA0

AD7:0

RD OE

WE

CS1

WR

BHE

LCS

LA15:1

A0:14

OE

WE

CS1

I/O1:8 AD15:8

A1106-0A
3-25

BUS INTERFACE UNIT

ed only

s cy-
f the
ice re-
al-

eral
t Con-
for-
cycles,
cles.

n only
ddress
The minimum device data hold time (from WR high) is defined by TDH. The calculated value
must be greater than the minimum device requirements; however, the value can be chang
by decreasing the clock rate.

TWC and TWP define the minimum time (maximum frequency) a device can process write bu
cles. TWR determines the minimum time from the end of the current write cycle to the start o
next write cycle. All three parameters require that calculated values be greater than dev
quirements. The calculated TWC and TWP values increase with the insertion of wait states. The c
culated TWR value, however, can be changed only by decreasing the clock rate.

3.5.3 Interrupt Acknowledge Bus Cycle

Interrupt expansion is accomplished by interfacing the Interrupt Control Unit with a periph
device such as the 82C59A Programmable Interrupt Controller. (See Chapter 8, “Interrup
trol Unit,” for more information.) The BIU controls the bus cycles required to fetch vector in
mation from the peripheral device, then passes the information to the CPU. These bus
collectively known as Interrupt Acknowledge bus cycles, operate similarly to read bus cy
However, instead of generating RD to enable the peripheral, the INTA signal is used. Figure 3-23
illustrates a typical Interrupt Acknowledge (or INTA) bus cycle.

An Interrupt Acknowledge bus cycle consists of two consecutive bus cycles. LOCK is generated
to indicate the sequential bus operation. The second bus cycle strobes vector informatio
from the lower half of the bus (D7:0). In a 16-bit bus system, D15:13 contain cascade a
information and D12:8 float. .

Table 3-5. Write Cycle Critical Timing Parameters

Memory Device
Parameter Description Equation

TWC Write cycle time 4T

TAW Address valid to end of write strobe (WR high) 3T – TADLTCH

TCW Chip enable (LCS) to end of write strobe (WR high) 3T

TWR Write recover time TWHLH

TDW Data valid to write strobe (WR high) 2T

TDH Data hold from write strobe (WR high) TWHDX

TWP Write pulse width TWLWH
3-26

BUS INTERFACE UNIT
Figure 3-23. Interrupt Acknowledge Bus Cycle

T1 T2 T3 T4

CLKOUT

ALE

TI TI T1 T2 T3

AD12:0
[AD7:0]

RD, WR

BHE

DEN

DT / R

LOCK

S2:0

INTA

AD15:13
[A15:13]

A19:16
[A12:8]

NOTE: Vector Type is read from AD7:0 only.

CAS (Slave ID) Valid

Note

A12:8 are unknown
A19:16 are driven low

T4
3-27

BUS INTERFACE UNIT

inate

ation.
th 8-
ledge
Figure 3-24 shows a typical 82C59A interface example. Bus ready must be provided to term
both bus cycles in the interrupt acknowledge sequence.

NOTE

Due to an internal condition, external ready is ignored if the device is
configured in Cascade mode and the Peripheral Control Block (PCB) is
located at 0000H in I/O space. In this case, wait states cannot be added to
interrupt acknowledge bus cycles. However, you can add wait states to
interrupt acknowledge cycles if the PCB is located at any other address.

3.5.3.1 System Design Considerations

Although ALE is generated for both bus cycles, the BIU does not drive valid address inform
Actually, all address bits except A19:16 float during the time ALE becomes active (on bo
and 16-bit bus devices). Address-decoding circuitry must be disabled for Interrupt Acknow
bus cycles to prevent erroneous operation.

Figure 3-24. Typical 82C59A Interface

Processor

AD7:0

LA1
D7:0

A0

WR

IR0

IR7

82C59A

CAS0:2

RD

GCS0

INTA

INT

AD15:13

INTA

INTx

WR

RD

CS

A1087-0A
3-28

BUS INTERFACE UNIT

latency

 as Ac-
tion

Power
 modes.

ents

 drives
uction
ikely be
 ad-

ive the
e next
uence.

 bus
HALT
3.5.4 HALT Bus Cycle

Suspending the CPU reduces device power consumption and potentially reduces interrupt
time. The HLT instruction initiates two events:

1. Suspends the Execution Unit.

2. Instructs the BIU to execute a HALT bus cycle.

The Idle or Powerdown power management mode (or the absence of both of them, known
tive Mode) affects the operation of the bus HALT cycle. The effects relating to BIU opera
and the HALT bus cycle are described in this chapter. Chapter 5, “Clock Generation and
Management,” discusses the concepts of Active, Idle and Powerdown power management

After executing a HALT bus cycle, the BIU suspends operation until one of the following ev
occurs:

• An interrupt is generated.

• A bus HOLD is generated (except when Powerdown mode is enabled).

• A DMA request is generated (except when Powerdown mode is enabled).

• A refresh request is generated (except when Powerdown mode is enabled).

Figure 3-25 shows the operation of a HALT bus cycle. The address/data bus either floats or
during T1, depending on the next bus cycle to be executed by the BIU. Under most instr
sequences, the BIU floats the address/data bus because the next operation would most l
an instruction prefetch. However, if the HALT occurs just after a bus write operation, the
dress/data bus drives either data or address information during T1. A19:16 continue to dr
previous bus cycle information under most instruction sequences (otherwise, they drive th
prefetch address). The BIU always operates in the same way for any given instruction seq

The Chip-Select Unit prevents a programmed chip-select from going active during a HALT
cycle. However, chip-selects generated by external decoder circuits must be disabled for
bus cycles.
3-29

BUS INTERFACE UNIT

 known
bus pins
f each
After several TI bus states, all address/data, address/status and bus control pins drive to a
state when Powerdown or Idle Mode is enabled. The address/data and address/status
force a low (0) state. Bus control pins force their inactive state. Figure 3-3 lists the state o
pin after entering the HALT bus state.

Table 3-6. HALT Bus Cycle Pin States

Pin(s)

Pin State

No Powerdown
or Idle Mode

Powerdown
or Idle Mode

AD15:0 (AD7:0 for 8-bit) Float Drive Zero

A15:8 (8-bit) Drive Address Drive Zero

A19:16 Drive 8H or Zero Drive Zero

BHE (16-bit) Drive Last Value Drive One

RD, WR, DEN, DT/R, RFSH (8-bit), S2:0 Drive One Drive One
3-30

BUS INTERFACE UNIT
Figure 3-25. HALT Bus Cycle

Note 2

011

CLKOUT

ALE

S2:0

AD15:0
[AD7:0]

[A15:8]

A19:16

Note 1

NOTES:

Note 3

Note 2 Note 3Note 2

Note 4

T1 TI TI

2. The AD15:0 bus, or AD7:0 and A15:8 buses for an 8-bit device, drive to a
zero (all low) at this time if Powerdown Mode is enabled. When Powerdown
Mode is not enabled, the AD15:0 [AD7:0] bus either floats or drives previous
write data, and A15:8 (8-bit device) continues to drive its previous value.

3. The AD15:0 bus, or AD7:0 and A15:8 buses for an 8-bit device, drive to a
zero (all low) at this time if Idle Mode is enabled. When Idle Mode is not
enabled, the AD15:0 [AD7:0] bus either floats or drives previous write data,
and A15:8 (8-bit device) continues to drive its previous value.

4. The A19:16 bus either drives zero (all low) or 8H (all low except A19/S6,
which can be high if the previous bus cycle was a DMA or refresh operation).
If either Idle or Powerdown Mode is enabled, the A19:16 bus drives zeros
(all low) at phase 1 of TI. Otherwise, the previous value remains active.

1. The AD15:0 [AD7:0] bus can be floating, driving a previous write data value,
or driving the next instruction prefetch address value. For an 8-bit device,
A15:8 either drives the previous bus address value or the next instruction
prefetch address value.

BHE
[RFSH = 1]

A1088-0A
3-31

BUS INTERFACE UNIT

 state
 BIU
IU
d).
o the
3.5.5 Temporarily Exiting the HALT Bus State

A DMA request, refresh request or bus hold request causes the BIU to exit the HALT bus
temporarily. This can occur only when in the Active or Idle power management mode. The
returns to the HALT bus state after it completes the desired bus operation. However, the B
does not execute another bus HALT cycle (i.e., ALE and bus cycle status are not regenerate
Figures 3-26, 3-27 and 3-28 illustrate how the BIU temporarily exits and then returns t
HALT bus state.

Figure 3-26. Returning to HALT After a HOLD/HLDA Bus Exchange

HOLD

A19:16

HLDA

CONTROL

AD15:0
AD7:0
A15:8

CLKOUT

Valid Valid

A1089-0A
3-32

BUS INTERFACE UNIT
Figure 3-27. Returning to HALT After a Refresh Bus Cycle

CLKOUT

AD15:0
[AD7:0]

ALE

 [A15:8]

A19:16

AddressNote 1

Note 2 Note 3

NOTE:

1. Previous bus cycle value.

2. Only occurs for BHE on the first refresh bus cycle after entering HALT.

3. BHE = 1 for 16-bit device, RFSH = 0 for 8-bit device.

S2:0

BHE
RFSH

A19 = 1, A18:16 = 0AddrNote 1

Addr

A1091-0A
3-33

BUS INTERFACE UNIT

an-
ad the
en an
Figure 3-28. Returning to HALT After a DMA Bus Cycle

3.5.6 Exiting HALT

Any NMI or maskable interrupt forces the BIU to exit the HALT bus state (in any power m
agement mode). The first bus operations to occur after exiting HALT are read cycles to relo
CS:IP registers. Figure 3-29 and Figure 3-30 show how the HALT bus state is exited wh
NMI or INTn occurs.

T1 T2 T3 T4 T1 T2 T3 TI
CLKOUT

AD15:0
[AD7:0]

TITI

ALE

[A15:8]

A19:16

Valid Status Valid Status

Note Addr8H 8H

Note Valid Valid

NOTE: Drives previous bus cycle value

TI

BHE
[RFSH=1]

S2:0

T4

AddressNote Address

Addr

Addr Valid DataAddr

A1090-0A
3-34

BUS INTERFACE UNIT
Figure 3-29. Exiting HALT (Powerdown Mode)

CLKOUT

ALE

[A15:8]

A19:16

S2:0

NMI, INTx

8 1/2 clocks to first vector fetch

Time is determined by PDTMR
(4 1/2 clocks min.)

NOTE: Previous bus cycle address value.

BHE
[RFSH = 1]

Note

AD15:0
[AD7:0]

A1092-0A
3-35

BUS INTERFACE UNIT

wever,
rd de-
ing
Figure 3-30. Exiting HALT (Active/Idle Mode)

3.6 SYSTEM DESIGN ALTERNATIVES

Most system designs require no signals other than those already provided by the BIU. Ho
heavily loaded bus conditions, slow memory or peripheral device performance and off-boa
vice interfaces may not be supported directly without modifying the BIU interface. The follow
sections deal with topics to enhance or modify the operation of the BIU.

CLKOUT

AD15:0
[AD7:0]

ALE

 [A15:8]

A19:16

Note 3

NOTE:

1. For NMI, delay = 4 1/2 clocks. For INTx, delay = 7 1/2 clocks (min).

2. If previous bus cycle was a read, bus will float. If previous bus cycle was

 a write, bus will drive data value.

3. Previous bus cycle value.

4. If previous bus cycle was a refresh or DMA bus cycle, value will be

 8H (A19 = 1), otherwise value will be 0.

S2:0

BHE
RFSH

Note 4

NMI/NTx

AddressNote 3

AddrNote 2

Note 1

Valid

A1093-0A
3-36

BUS INTERFACE UNIT

-
-

en at

ta bus.
3.6.1 Buffering the Data Bus

The BIU generates two control signals, DEN and DT/R, to control bidirectional buffers or trans
ceivers. The timing relationship of DEN and DT/R is shown in Figure 3-31. The following con
ditions require transceivers:

• The capacitive load on the address/data bus gets too large.

• The current load on the address/data bus exceeds device specifications.

• Additional VOL and VOH drive is required.

• A memory or I/O device cannot float its outputs in time to prevent bus contention, ev
reset.

Figure 3-31. DEN and DT/R Timing Relationships

The circuit shown in Figure 3-32 illustrates how to use transceivers to buffer the address/da
The connection between the processor and the transceiver is known as the local bus. A connection
between the transceiver and other memory or I/O devices is known as the buffered bus. A fully
buffered system has no devices attached to the local bus. A partially buffered system has devices
on both the local and buffered buses.

DT/R

RD,WR

CLKOUT

T1 T2 T3 T4

DEN

T1

Write Cycle Operation
Read Cycle Operation

A1094-A0
3-37

BUS INTERFACE UNIT

ed
ing
N

e po-
,

Figure 3-32. Buffered AD Bus System

In a fully buffered system, DEN directly drives the transceiver output enable. A partially buffer
system requires that DEN be qualified with another signal to prevent the transceiver from go
active for local bus accesses. Figure 3-33 illustrates how to use chip-selects to qualify DE.

DT/R always connects directly to the transceiver. However, an inverter may be required if th
larity of DT/R does not match the transceiver. DT/R goes low (0) only for memory and I/O read
instruction prefetch and interrupt acknowledge bus cycles.

LatchProcessor

Data Bus

Address

Data CS

CPU Local Bus Buffered Bus

ALE

Memory
or
I/O

Device

A19:16

AD15:0

Address Bus

DT/ R
DEN

Transceiver

A1095-0A
3-38

BUS INTERFACE UNIT

e often
gram ex-

rrupts.
ccurs.
n can

ts.
Figure 3-33. Qualifying DEN with Chip-Selects

3.6.2 Synchronizing Software and Hardware Events

The execution sequence of a program and hardware events occurring within a system ar
asynchronous to each other. In some systems there may be a requirement to suspend pro
ecution until an event (or events) occurs, then continue program execution.

One way to synchronize software execution with hardware events requires the use of inte
Executing a HALT instruction suspends program execution until an unmasked interrupt o
However, there is a delay associated with servicing the interrupt before program executio
proceed. Using the WAIT instruction removes the delay associated with servicing interrup

A

B D15:8OE

T

DEN

GCS0

Buffer

8

AD15:8
8

A

B D7:0OE

T
Buffer

8

AD7:0
8

DT / R

8

Buffered
Data
Bus

Local
Data
Bus

8

A1096-01
3-39

BUS INTERFACE UNIT

errupt

tine is
as long

til a
errupt.

ardware

refix
n of

 sys-
g in

mined
he sys-
U gains
s con-

es the

orce)
ossible
d SET
ata to
nd set

ich
 locked
t is

us re-
The WAIT instruction suspends program execution until one of two events occurs: an int
is generated, or the TEST input pin is sampled low. Unlike interrupts, the TEST input pin does
not require that program execution be transferred to a new location (i.e., an interrupt rou
not executed). In processing the WAIT instruction, program execution remains suspended
as TEST remains high (at least until an interrupt occurs). When TEST is sampled low, program
execution resumes.

The TEST input and WAIT instruction provide a mechanism to delay program execution un
hardware event occurs, without having to absorb the delay associated with servicing an int

3.6.3 Using a Locked Bus

To address the problems of controlling accesses to shared resources, the BIU provides a h
LOCK output. The execution of a LOCK prefix instruction activates the LOCK output.

LOCK goes active in phase 1 of T1 of the first bus cycle following execution of the LOCK p
instruction. It remains active until phase 1 of T1 of the first bus cycle following the executio
the instruction following the LOCK prefix. To provide bus access control in multiprocessor
tems, the LOCK signal should be incorporated into the system bus arbitration logic residin
the CPU.

During normal multiprocessor system operation, priority of the shared system bus is deter
by the arbitration circuits on a cycle by cycle basis. As each CPU requires a transfer over t
tem bus, it requests access to the bus via its resident bus arbitration logic. When the CP
priority (determined by the system bus arbitration scheme and any associated logic), it take
trol of the bus, performs its bus cycle and either maintains bus control, voluntarily releas
bus or is forced off the bus by the loss of priority.

The lock mechanism prevents the CPU from losing bus control (either voluntarily or by f
and guarantees that the CPU can execute multiple bus cycles without intervention and p
corruption of the data by another CPU. A classic use of the mechanism is the “TEST an
semaphore,” during which a CPU must read from a shared memory location and return d
the location without allowing another CPU to reference the same location during the test a
operations.

Another application of LOCK for multiprocessor systems consists of a locked block move, wh
allows high speed message transfer from one CPU’s message buffer to another. During the
instruction (i.e., while LOCK is active), a bus hold, DMA or refresh request is recorded, bu
not acknowledged until completion of the locked instruction. However, LOCK has no effect on
interrupts. As an example, a locked HALT instruction causes bus hold, DMA or refresh b
quests to be ignored, but still allows the CPU to exit the HALT state on an interrupt.
3-40

BUS INTERFACE UNIT

y pre-
fix are

ions
tring

e in-
th the
r re-
t until

er de-
 request
ls. To
 goes
trol of

d many
e hold
s not

 and
c-
In general, prefix bytes (such as LOCK) are considered extensions of the instructions the
cede. Interrupts, DMA requests and refresh requests that occur during execution of the pre
not acknowledged until the instruction following the prefix completes (except for instruct
that are servicing interrupts during their execution, such as HALT, WAIT and repeated s
primitives). Note that multiple prefix bytes can precede an instruction.

Another example is a string primitive preceded by the repetition prefix (REP), which can b
terrupted after each execution of the string primitive, even if the REP prefix is combined wi
LOCK prefix. This prevents interrupts from being locked out during a block move or othe
peated string operations. However, bus hold, DMA and refresh requests remain locked ou
LOCK is removed (either when the block operation completes or after an interrupt occurs.

3.7 MULTI-MASTER BUS SYSTEM DESIGNS

The BIU supports protocols for transferring control of the local bus between itself and oth
vices capable of acting as bus masters. To support such a protocol, the BIU uses a hold
input (HOLD) and a hold acknowledge output (HLDA) as bus transfer handshake signa
gain control of the bus, a device asserts the HOLD input, then waits until the HLDA output
active before driving the bus. After HLDA goes active, the requesting device can take con
the local bus and remains in control of the bus until HOLD is removed.

3.7.1 Entering Bus HOLD

In responding to the hold request input, the BIU floats the entire address and data bus, an
of the control signals. Figure 3-34 illustrates the timing sequence when acknowledging th
request. Table 3-7 lists the states of the BIU pins when HLDA is asserted. All device pin
mentioned in Table 3-7 or shown in Figure 3-34 remain either active (e.g., CLKOUT
T1OUT) or inactive (e.g., UCS and INTA). Refer to the data sheet for specific details of pin fun
tions during a bus hold.
3-41

BUS INTERFACE UNIT

e BIU
d
alted
Figure 3-34. Timing Sequence Entering HOLD

3.7.1.1 HOLD Bus Latency

The duration between the time that the external device asserts HOLD and the time that th
asserts HLDA is known as bus latency. In Figure 3-34, the two-clock delay between HOLD an
HLDA represents the shortest bus latency. Normally this occurs only if the bus is idle or h
or if the bus hold request occurs just before the BIU begins another bus cycle.

Table 3-7. Signal Condition Entering HOLD

Signal HOLD Condition

A19:16, S2:0, RD, WR, DT/R, BHE (RFSH), LOCK These signals float one-half clock before HLDA
is generated (i.e., phase 2).

AD15:0 (16-bit), AD7:0 (8-bit), A15:8 (8-bit), DEN These signals float during the same clock in
which HLDA is generated (i.e., phase 1).

HLDA

CLKOUT

HOLD

NOTES:
1.
2.
3.
4.

 T
T
T
T

CLIS
CHOF
CLOF
CLOV

: HOLD input to clock low
: Clock high to output float
: Clock low to output float
: Clock low to HLDA high

1

42

3

Float

Float

AD15:0
DEN

A19:16
RD,WR

DT/R
S2:0,BHE

LOCK

A1097-0A
3-42

BUS INTERFACE UNIT

 short-

not be

t be
locks.

il the
ired to
 the

r an

MA
ity than
 with a
s to

d until
 is re-
 does
 just

DA is
refresh
s hold
 HLDA
The major factors that influence bus latency are listed below (in order from longest delay to
est delay).

1. Bus Not Ready — As long as the bus remains not ready, a bus hold request can
serviced.

2. Locked Bus Cycle — As long as LOCK remains asserted, a bus hold request canno
serviced. Performing a locked move string operation can take several thousands of c

3. Completion of Current Bus Cycle — A bus hold request cannot be serviced unt
current bus cycle completes. A bus hold request will not separate bus cycles requ
move odd-aligned word data. Also, bus cycles with long wait states will delay
servicing of a bus hold request.

4. Interrupt Acknowledge Bus Cycle — A bus hold request is not serviced until afte
INTA bus cycle has completed. An INTA bus cycle drives LOCK active.

5. DMA and Refresh Bus Cycles — A bus hold request is not serviced until after the D
request or refresh bus cycle has completed. Refresh bus cycles have a higher prior
hold bus requests. A bus hold request cannot separate the bus cycles associated
DMA transfer (worst case is an odd-aligned transfer, which takes four bus cycle
complete).

3.7.1.2 Refresh Operation During a Bus HOLD

Under normal operating conditions, once HLDA has been asserted it remains asserte
HOLD is removed. However, when a refresh bus request is generated, the HLDA output
moved (driven low) to signal the need for the BIU to regain control of the local bus. The BIU
not gain control of the bus until HOLD is removed. This procedure prevents the BIU from
arbitrarily regaining control of the bus.

Figure 3-35 shows the timing associated with the occurrence of a refresh request while HL
active. Note that HLDA can be as short as one clock in duration. This happens when a
request occurs just after HLDA is granted. A refresh request has higher priority than a bu
request; therefore, when the two occur simultaneously, the refresh request occurs before
becomes active.
3-43

BUS INTERFACE UNIT

 dura-
 short
 be
Figure 3-35. Refresh Request During HOLD

The device requesting a bus hold must be able to detect a HLDA pulse that is one clock in
tion. A bus lockup (hang) condition can result if the requesting device fails to detect the
HLDA pulse and continues to wait for HLDA to be asserted while the BIU waits for HOLD to
deasserted. The circuit shown in Figure 3-36 can be used to latch HLDA.

HLDA

CLKOUT

HOLD

NOTES:
1. : HLDA is deasserted, signaling need to run refresh bus cycle
2. : External bus master terminates use of the bus
3. : HOLD deasserted
4. : Hold may be reasserted after one clock
5. : BIU runs refresh cycle

1 43

AD15:0
DEN

RD, WR,
BHE, S2:0

DT / R,
A19:16
LOCK

5

5

2

A1098-0A
3-44

BUS INTERFACE UNIT

gain
cycle is

ration
cle is
ting, if
rdown
Figure 3-36. Latching HLDA

The removal of HOLD must be detected for at least one clock cycle to allow the BIU to re
the bus and execute a refresh bus cycle. Should HOLD go active before the refresh bus
complete, the BIU will release the bus and generate HLDA.

3.7.2 Exiting HOLD

Figure 3-37 shows the timing associated with exiting the bus hold state. Normally a bus ope
(e.g., an instruction prefetch) occurs just after HOLD is released. However, if no bus cy
pending when leaving a bus hold state, the bus and associated control signals remain floa
the system is in normal operating mode. (For signal states associated with Idle and Powe
modes, see “Temporarily Exiting the HALT Bus State” on page 3-32).

D Q Latched HLDA

RESOUT

HOLD

CLR

HLDA

PRE+5

+5

A1310-0A
3-45

BUS INTERFACE UNIT

herals
below

on.
Figure 3-37. Exiting HOLD

3.8 BUS CYCLE PRIORITIES

The BIU arbitrates requests for bus cycles from the Execution Unit, the integrated perip
(e.g., Interrupt Control Unit) and external bus masters (i.e., bus hold requests). The list
summarizes the priorities for all bus cycle requests (from highest to lowest).

1. Instruction execution read/write following a non-pipelined effective address calculati

2. Refresh bus cycles.

3. Bus hold request.

4. Single step interrupt vectoring sequence.

5. Non-Maskable interrupt vectoring sequence.

HLDA

CLKOUT

HOLD

1
43

AD15:0
DEN

RD, WR, BHE,
DT / R, S2:0,

A19:16

52

NOTES:
1.
2.
3.
4.
5.

 T

T
T
T

CLIS

CLOV
CHOV
CLOV

: HOLD recognition setup to clock low
: HOLD internally synchronized
: Clock low to HLDA low
: Clock high to signal active (high or low)
: Clock low to signal active (high or low)

A1099-0A
3-46

BUS INTERFACE UNIT

ing a
s and
ution

 from

 (e.g.,

er bus

riority
6. Internal error (e.g., divide error, overflow) interrupt vectoring sequence.

7. Hardware (e.g., INT0, DMA) interrupt vectoring sequence.

8. 80C187 Math Coprocessor error interrupt vectoring sequence.

9. DMA bus cycles.

10. General instruction execution. This category includes read/write operations follow
pipelined effective address calculation, vectoring sequences for software interrupt
numerics code execution. The following points apply to sequences of related exec
cycles.

— The second read/write cycle of an odd-addressed word operation is inseparable
the first bus cycle.

— The second read/write cycle of an instruction with both load and store accesses
XCHG) can be separated from the first cycle by other bus cycles.

— Successive bus cycles of string instructions (e.g., MOVS) can be separated by oth
cycles.

— When a locked instruction begins, its associated bus cycles become the highest p
and cannot be separated (or preempted) until completed.

11. Bus cycles necessary to fill the prefetch queue.
3-47

4
Peripheral Control
Block

isters
hysi-
lock of
ated on
lso lo-

 above
gisters
ral Con-
ions for

 con-
d off-
, the

6-byte
pace
ing bit,

utlines
CHAPTER 4
PERIPHERAL CONTROL BLOCK

All integrated peripherals in the 80C186 Modular Core family are controlled by sets of reg
within an integrated Peripheral Control Block (PCB). The peripheral control registers are p
cally located in the peripheral devices they control, but they are addressed as a single b
registers. The Peripheral Control Block encompasses 256 contiguous bytes and can be loc
any 256-byte boundary of memory or I/O space. The PCB Relocation Register, which is a
cated within the Peripheral Control Block, controls the location of the PCB.

4.1 PERIPHERAL CONTROL REGISTERS

Each of the integrated peripherals’ control and status registers is located at a fixed offset
the programmed base location of the Peripheral Control Block (see Table 4-1). These re
are described in the chapters that cover the associated peripheral. “Accessing the Periphe
trol Block” on page 4-4 discusses how the registers are accessed and outlines considerat
reading and writing them.

4.2 PCB RELOCATION REGISTER

In addition to control registers for the integrated peripherals, the Peripheral Control Block
tains the PCB Relocation Register (Figure 4-1). The Relocation Register is located at a fixe
set within the Peripheral Control Block (Table 4-1). If the Peripheral Control Block is moved
Relocation Register also moves.

The PCB Relocation Register allows the Peripheral Control Block to be relocated to any 25
boundary within memory or I/O space. The Memory I/O bit (MEM) selects either memory s
or I/O space, and the R19:8 bits specify the starting (base) address of the PCB. The remain
Escape Trap (ET), controls access to the math coprocessor interface.

“Setting the PCB Base Location” on page 4-6 describes how to set the base location and o
some restrictions on the Peripheral Control Block location.
4-1

PERIPHERAL CONTROL BLOCK
Figure 4-1. PCB Relocation Register

Table 4-1. Peripheral Control Block

PCB
Offset Function PCB

Offset Function PCB
Offset Function PCB

Offset Function

00H MPICP0 40H T2CNT 80H GCS0ST C0H D0SRCL

02H MPICP1 42H T2CMPA 82H GCS0SP C2H D0SRCH

Register Name: PCB Relocation Register

Register Mnemonic: RELREG

Register Function: Relocates the PCB within memory or I/O space.

Bit
Mnemonic Bit Name Reset

State Function

ET Escape Trap 0 The ET bit controls access to the math copro-
cessor. If ET is set, the CPU will trap (resulting in
a Type 7 interrupt) when an ESC instruction is
executed.

NOTE: The 8-bit bus version of the device
automatically traps an ESC opcode to the Type 7
interrupt, regardless of the state of the ET bit.

MEM Memory I/O 0 The MEM bit specifies the PCB location. Set
MEM to locate the PCB in memory space, or
clear it to locate the PCB in I/O space.

R19:8 PCB Base
Address
Upper Bits

0FFH R19:8 define the upper address bits of the PCB
base address. All lower bits are zero. R19:16 are
ignored when the PCB is mapped to I/O space.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

M
E
M

R
1
9

R
1
8

R
1
7

R
1
6

R
1
5

R
1
4

R
1
0

R
9

R
8

R
1
1

E
T

R
1
2

R
1
3

A1263-0A
4-2

PERIPHERAL CONTROL BLOCK
04H SPICP0 44H Reserved 84H GCS1ST C4H D0DSTL

06H SPICP1 46H T2CON 86H GCS1SP C6H D0DSTH

08H Reserved 48H P3DIR 88H GCS2ST C8H D0TC

0AH SCUIRL 4AH P3PIN 8AH GCS2SP CAH D0CON

0CH DMAIRL 4CH P3CON 8CH GCS3ST CCH DMAPRI

0EH TIMIRL 4EH P3LTCH 8EH GCS3SP CEH DMAHALT

10H Reserved 50H P1DIR 90H GCS4ST D0H D1SRCL

12H Reserved 52H P1PIN 92H GCS4SP D2H D1SRCH

14H Reserved 54H P1CON 94H GCS5ST D4H D1DSTL

16H Reserved 56H P1LTCH 96H GCS5SP D6H D1DSTH

18H Reserved 58H P2DIR 98H GCS6ST D8H D1TC

1AH Reserved 5AH P2PIN 9AH GCS6SP DAH D1CON

1CH Reserved 5CH P2CON 9CH GCS7ST DCH Reserved

1EH Reserved 5EH P2LTCH 9EH GCS7SP DEH Reserved

20H WDTRLDH 60H B0CMP A0H LCSST E0H D2SRCL

22H WDTRLDL 62H B0CNT A2H LCSSP E2H D2SRCH

24H WDTCNTH 64H S0CON A4H UCSST E4H D2DSTL

26H WDTCNTL 66H S0STS A6H UCSSP E6H D2DSTH

28H WDTCLR 68H S0RBUF A8H RELREG E8H D2TC

2AH WDTDIS 6AH S0TBUF AAH Reserved EAH D2CON

2CH Reserved 6CH Reserved ACH Reserved ECH Reserved

2EH Reserved 6EH Reserved AEH Reserved EEH Reserved

30H T0CNT 70H B1CMP B0H RFBASE F0H D3SRCL

32H T0CMPA 72H B1CNT B2H RFTIME F2H D3SRCH

34H T0CMPB 74H S1CON B4H RFCON F4H D3DSTL

36H T0CON 76H S1STS B6H RFADDR F6H D3DSTH

38H T1CNT 78H S1RBUF B8H PWRCON F8H D3TC

3AH T1CMPA 7AH S1TBUF BAH Reserved FAH D3CON

3CH T1CMPB 7CH Reserved BCH STEPID FCH Reserved

3EH T1CON 7EH Reserved BEH PWRSAV FEH Reserved

Table 4-1. Peripheral Control Block

PCB
Offset Function PCB

Offset Function PCB
Offset Function PCB

Offset Function
4-3

PERIPHERAL CONTROL BLOCK

used
ed reg-

 a spe-
ike

 within
l pins
 if the
 is also
gisters

access-
 with-
ontrol
ait state.
control
cessor
4.3 RESERVED LOCATIONS

Many locations within the Peripheral Control Block are not assigned to any peripheral. Un
locations are reserved. Reading from these locations yields an undefined result. If reserv
isters are written (for example, during a block MOV instruction) they must be set to 0H.

NOTE

Failure to follow this guideline could result in incompatibilities with future
80C186 Modular Core family products.

4.4 ACCESSING THE PERIPHERAL CONTROL BLOCK

All communication between integrated peripherals and the Modular CPU Core occurs over
cial bus, called the F-Bus, which always carries 16-bit data. The Peripheral Control Block, l
all integrated peripherals, is always accessed 16 bits at a time.

4.4.1 Bus Cycles

The processor runs an external bus cycle for any memory or I/O cycle accessing a location
the Peripheral Control Block. Address, data and control information is driven on the externa
as with an ordinary bus cycle. Information returned by an external device is ignored, even
access does not correspond to the location of an integrated peripheral control register. This
true for the 80C188 Modular Core family, except that word accesses made to integrated re
are performed in two bus cycles.

4.4.2 READY Signals and Wait States

The processor generates an internal READY signal whenever an integrated peripheral is
ed. External READY is ignored. READY is also generated if an access is made to a location
in the Peripheral Control Block that does not correspond to an integrated peripheral c
register. For accesses to timer control and counting registers, the processor inserts one w
This is required to properly multiplex processor and counter element accesses to the timer
registers. For accesses to the remaining locations in the Peripheral Control Block, the pro
does not insert wait states.
4-4

PERIPHERAL CONTROL BLOCK

l write
, the in-
rol
nd
X–

 un-
ord

 AX,
d

n-

ide
 (e.g.,

d-

n

yte
4.4.3 F-Bus Operation

The F-Bus functions differently than the external data bus for byte and word accesses. Al
transfers on the F-Bus occur as words, regardless of how they are encoded. For example
struction OUT DX, AL (DX is even) will write the entire AX register to the Peripheral Cont
Block register at location [DX]. If DX were an odd location, AL would be placed in [DX] a
AH would be placed at [DX–1]. A word operation to an odd address would write [DX] and [D
1] with AL and AH, respectively. This differs from normal external bus operation where
aligned word writes modify [DX] and [DX+1]. In summary, do not use odd-aligned byte or w
writes to the PCB.

Aligned word reads work normally. Unaligned word reads work differently. For example, IN
DX (DX is odd) will transfer [DX] into AL and [DX–1] into AH. Byte reads from even or od
addresses work normally, but only a byte will be read. For example, IN AL, DX will not transfer
[DX] into AX (only AL is modified).

No problems will arise if the following recommendations are adhered to.

Word reads Aligned word reads of the PCB work normally. Access only eve
aligned words with IN AX, DX or MOV word register, even PCB
address.

Byte reads Byte reads of the PCB work normally. Beware of reading word-w
PCB registers that may change value between successive reads
timer count value).

Word writes Always write even-aligned words to the PCB. Writing an od
aligned word will give unexpected results.

For the 80C186 Modular Core, use either
– OUT DX, AX or
– OUT DX, AL or
– MOV even PCB address, word register.

For the 80C188 Modular Core, using OUT DX, AX will perform a
unnecessary bus cycle and is not recommended. Use either
– OUT DX, AL or
– MOV even-aligned byte PCB address, byte register low byte.

Byte writes Always use even-aligned byte writes to the PCB. Even-aligned b
writes will modify the entire word PCB location. Do not perform
unaligned byte writes to the PCB.
4-5

PERIPHERAL CONTROL BLOCK

am the
s
8-bit

ily
n runs
 the con-
DY

ions for

C188
pera-
 (e.g.,
sible.

ut data
d back.

st be

00FFH,
0H to
4.4.3.1 Writing the PCB Relocation Register

Whenever mapping the Peripheral Control Block to another location, the user should progr
Relocation Register with a byte write (i.e., OUT DX, AL). Internally, the Relocation Register i
written with 16 bits of the AX register, while externally the Bus Interface Unit runs a single
bus cycle. If a word instruction (i.e., OUT DX, AX) is used with an 80C188 Modular Core fam
member, the Relocation Register is written on the first bus cycle. The Bus Interface Unit the
an unnecessary second bus cycle. The address of the second bus cycle is no longer within
trol block, since the Peripheral Control Block was moved on the first cycle. External REA
must now be generated to complete the cycle. For this reason, we recommend byte operat
the Relocation Register.

4.4.3.2 Accessing the Peripheral Control Registers

Byte instructions should be used for the registers in the Peripheral Control Block of an 80
Modular Core family member. This requires half the bus cycles of word operations. Byte o
tions are valid only for even-addressed writes to the Peripheral Control Block. A word read
IN AX, DX) must be performed to read a 16-bit Peripheral Control Block register when pos

4.4.3.3 Accessing Reserved Locations

Unused locations are reserved. If a write is made to these locations, a bus cycle occurs, b
is not stored. If a subsequent read is made to the same location, the value written is not rea
If reserved registers are written (for example, during a block MOV instruction) they mu
cleared to 0H.

NOTE

Failure to follow this guideline could result in incompatibilities with future
80C186 Modular Core family products.

4.5 SETTING THE PCB BASE LOCATION

Upon reset, the PCB Relocation Register (see Figure 4-1 on page 4-2) contains the value
which causes the Peripheral Control Block to be located at the top of I/O space (0FF0
0FFFFH). Writing the PCB Relocation Register allows the user to change that location.
4-6

PERIPHERAL CONTROL BLOCK

H, the
cation
ffset.

l
rough
icates

aps an
t.
As an example, to relocate the Peripheral Control Block to the memory range 10000-100FF
user would program the PCB Relocation Register with the value 1100H. Since the Relo
Register is part of the Peripheral Control Block, it relocates to word 10000H plus its fixed o

NOTE

Due to an internal condition, external ready is ignored if the device is
configured in Cascade mode and the Peripheral Control Block (PCB) is
located at 0000H in I/O space. In this case, wait states cannot be added to
interrupt acknowledge bus cycles. However, you can add wait states to
interrupt acknowledge cycles if the PCB is located at any other address.

4.5.1 Considerations for the 80C187 Math Coprocessor Interface

Systems using the 80C187 math coprocessor interface must not relocate the Peripheral Contro
Block to location 0000H in I/O space. The 80C187 interface uses I/O locations 0F8H th
0FFH. If the Peripheral Control Block resides in these locations, the processor commun
with the Peripheral Control Block, not the 80C187 interface circuitry.

NOTE

If the PCB is located at 0000H in I/O space and access to the math coprocessor
interface is enabled (the Escape Trap bit is clear), a numerics (ESC) instruction
causes indeterminate system operation.

Since the 8-bit bus version of the device does not support the 80C187, it automatically tr
ESC instruction to the Type 7 interrupt, regardless of the state of the Escape Trap (ET) bi

For details on the math coprocessor interface, see Chapter 14, “Math Coprocessing.”
4-7

5
Clock Generation and
Power Management

tion
amily
ement

nter
sion of

mon
CHAPTER 5
CLOCK GENERATION AND POWER

MANAGEMENT

The clock generation and distribution circuits provide uniform clock signals for the Execu
Unit, the Bus Interface Unit and all integrated peripherals. The 80C186 Modular Core F
processors have additional logic that controls the clock signals to provide power manag
functions.

5.1 CLOCK GENERATION

The clock generation circuit (Figure 5-1) includes a crystal oscillator, a divide-by-two cou
and power-save and reset circuitry. See “Power-Save Mode” on page 5-19 for a discus
Power-Save mode as a power management option.

Figure 5-1. Clock Generator

5.1.1 Crystal Oscillator

The internal oscillator is a parallel resonant Pierce oscillator, a specific form of the com
phase shift oscillator.

CLKIN

OSCOUT

RESIN

÷ 2
Clock

Clock
Divider

Phase
Drivers

Schmitt Trigger
"Squares-up" CLKIN

Reset Circuitry

Power Down
Idle
Power Save

Internal
Phase
Clocks

To CLKOUT

Internal Reset

1

2

A1118-0A
5-1

CLOCK GENERATION AND POWER MANAGEMENT

d ver-
in the
ion of
er 90°

crystal
nce, the

al ven-
e only
i-

g Crys-
5.1.1.1 Oscillator Operation

A phase shift oscillator operates through positive feedback, where a non-inverted, amplifie
sion of the input connects back to the input. A 360° phase shift around the loop will susta
feedback in the oscillator. The on-chip inverter provides a 180° phase shift. The combinat
the inverter’s output impedance and the first load capacitor (see Figure 5-2) provides anoth
phase shift. At resonance, the crystal becomes primarily resistive. The combination of the
and the second load capacitor provides the final 90° phase shift. Above and below resona
crystal is reactive and forces the oscillator back toward the crystal’s nominal frequency.

Figure 5-2. Ideal Operation of Pierce Oscillator

Figure 5-3 shows the actual microprocessor crystal connections. For low frequencies, cryst
dors offer fundamental mode crystals. At higher frequencies, a third overtone crystal is th
choice. The external capacitors, CX1 at CLKIN and CX2 at OSCOUT, together with stray capac
tance, form the load. A third overtone crystal requires an additional inductor L1 and capacitor C1
to select the third overtone frequency and reject the fundamental frequency. See “Selectin
tals” on page 5-5 for a more detailed discussion of crystal vibration modes.

90˚ 180˚90˚

NOTE:
At resonance, the crystal is essentially resistive.
Above resonance, the crystal is inductive.
Below resonance, the crystal is capacitive.

Z = Inverter Output Z0

A1125-0A
5-2

CLOCK GENERATION AND POWER MANAGEMENT

ing

w the
ental
o not

about
This

oscil-

ately

ircuit
.
 series

igure
ci-
rallel
Choose C1 and L1 component values in the third overtone crystal circuit to satisfy the follow
conditions:

• The LC components form an equivalent series resonant circuit at a frequency belo
fundamental frequency. This criterion makes the circuit inductive at the fundam
frequency. The inductive circuit cannot make the 90° phase shift and oscillations d
take place.

• The LC components form an equivalent parallel resonant circuit at a frequency
halfway between the fundamental frequency and the third overtone frequency.
criterion makes the circuit capacitive at the third overtone frequency, necessary for
lation.

• The two capacitors and inductor at OSCOUT, plus some stray capacitance, approxim
equal the 20 pF load capacitor, CX2, used alone in the fundamental mode circuit.

Figure 5-3. Crystal Connections to Microprocessor

Choosing C1 as 200 pF (at least 10 times the value of the load capacitor) simplifies the c
analysis. At the series resonance, the capacitance connected to L1 is 200 pF in series with 20 pF
The equivalent capacitance is still about 20 pF and the equation in Figure 5-4(a) yields the
resonant frequency.

To examine the parallel resonant frequency, refer to Figure 5-3(c), an equivalent circuit to F
5-3(b). The capacitance connected to L1 is 200 pF in parallel with 20 pF. The equivalent capa
tance is still about 200 pF (within 10%) and the equation in Figure 5-4(a) now yields the pa
resonant frequency.

CLKIN

OSCOUT

(a)
Fundamental
Mode Circuit

CLKIN

OSCOUT

(b)
Third Overtone
Mode Circuit

C X2 C X1 C X2

C X1

L1

(c)
Third Overtone Mode
(Equivalent Circuit)

C X2 L1

C1

C
X1

= C
X2

C1 L
1= 20pF = 200pF = (See text)

A1126-0A
5-3

CLOCK GENERATION AND POWER MANAGEMENT

.
timiz-
andard
 pF.
Figure 5-4. Equations for Crystal Calculations

The equation in Figure 5-4(b) yields the equivalent capacitance Ceq at the operation frequency
The desired operation frequency is the third overtone frequency marked on the crystal. Op
ing equations for the above three criteria yields Table 5-1. This table shows suggested st
inductor values for various processor frequencies. The equivalent capacitance is about 15

Table 5-1. Suggested Values for Inductor L 1 in Third Overtone Oscillator Circuit

CLKOUT
Frequency (MHz)

Third-Overtone Crystal
Frequency (MHz)

Inductor L 1
Values (µH)

13.04 26.08 6.8, 8.2, 10.0

16 32 3.9, 4.7, 5.6

20 40 2.2, 2.7, 3.3

(a) Series or Parallel Resonant Frequency (b) Equivalent Capacitance

f
1

2π L1C1

-------------------------= Ceq

ω2C1Cx2L1 C1– Cx2–

ω2C1L1 1–
---=
5-4

CLOCK GENERATION AND POWER MANAGEMENT

specifi-
cted

pical
a load
essor,
htly

stal
stals
y, an
Below
rchase
uit at

rsely
ion is

l work

urer

ill be
l line.
l is a

t vary
essor

ture,
all for;
nce in
ave a
ually

r Core
5.1.1.2 Selecting Crystals

When specifying crystals, consider these parameters:

• Resonance and Load Capacitance — Crystals carry a parallel or series resonance
cation. The two types do not differ in construction, just in test conditions and expe
circuit application. Parallel resonant crystals carry a test load specification, with ty
load capacitance values of 15, 18 or 22 pF. Series resonant crystals do not carry
capacitance specification. You may use a series resonant crystal with the microproc
even though the circuit is parallel resonant. However, it will vibrate at a frequency slig
(on the order of 0.1%) higher than its calibration frequency.

• Vibration Mode — The vibration mode is either fundamental or third overtone. Cry
thickness varies inversely with frequency. Vendors furnish third or higher overtone cry
to avoid manufacturing very thin, fragile quartz crystal elements. At a given frequenc
overtone crystal is thicker and more rugged than its fundamental mode counterpart.
20 MHz, most crystals are fundamental mode. In the 20 to 32 MHz range, you can pu
both modes. You must know the vibration mode to know whether to add the LC circ
OSCOUT.

• Equivalent Series Resistance (ESR) — ESR is proportional to crystal thickness, inve
proportional to frequency. A lower value gives a faster startup time, but the specificat
usually not important in microprocessor applications.

• Shunt Capacitance — A lower value reduces ESR, but typical values such as 7 pF wil
fine.

• Drive Level — Specifies the maximum power dissipation for which the manufact
calibrated the crystal. It is proportional to ESR, frequency, load and VCC. Disregard this
specification unless you use a third overtone crystal whose ESR and frequency w
relatively high. Several crystal manufacturers stock a standard microprocessor crysta
Specifying a “microprocessor grade” crystal should ensure that the rated drive leve
couple of milliwatts with 5-volt operation.

• Temperature Range — Specifies an operating range over which the frequency will no
beyond a stated limit. Specify the temperature range to match the microproc
temperature range.

• Tolerance — The allowable frequency deviation at a particular calibration tempera
usually 25° C. Quartz crystals are more accurate than microprocessor applications c
do not pay for a tighter specification than you need. Vendors quote frequency tolera
percentage or parts per million (ppm). Standard microprocessor crystals typically h
frequency tolerance of 0.01% (100 ppm). If you use these crystals, you can us
disregard all the other specifications; these crystals are ideal for the 80C186 Modula
family.
5-5

CLOCK GENERATION AND POWER MANAGEMENT

oratory.
s sta-

e crys-
stals is

ystal.
ource.
ave
ctly,

uty cy-
 an ex-

k for
 exter-
IN
t dur-
-16.)

cro-
man-

 is
eset a
le
mil-
An important consideration when using crystals is that the oscillator start correctly over the volt-
age and temperature ranges expected in operation. Observe oscillator startup in the lab
Varying the load capacitors (within about ± 50%) can optimize startup characteristics versu
bility. In your experiments, consider stray capacitance and scope loading effects.

For help in selecting external oscillator components for unusual circumstances, count on th
tal manufacturer as your best resource. Using low-cost ceramic resonators in place of cry
possible if your application will tolerate less precise frequencies.

5.1.2 Using an External Oscillator

The microprocessor’s on-board clock oscillator allows the use of a relatively low cost cr
However, the designer may also use a “canned oscillator” or other external frequency s
Connect the external frequency input (EFI) signal directly to the oscillator CLKIN input. Le
OSCOUT unconnected. This oscillator input drives the internal divide-by-two counter dire
generating the CPU clock signals. The external frequency input can have practically any d
cle, provided it meets the minimum high and low times stated in the data sheet. Selecting
ternal clock oscillator is more straightforward than selecting a crystal.

5.1.3 Output from the Clock Generator

The crystal oscillator output drives a divide-by-two circuit, generating a 50% duty cycle cloc
the processor’s integrated components. All processor timings refer to this clock, available
nally at the CLKOUT pin. CLKOUT changes state on the high-to-low transition of the CLK
signal, even during reset and bus hold. CLKOUT is also available during Idle mode, but no
ing Powerdown mode. (See “Idle Mode” on page 5-11 and “Powerdown Mode” on page 5

In a CMOS circuit, significant current flows only during logic level transitions. Since the mi
processor consists mostly of clocked circuitry, the clock distribution is the basis of power
agement.

5.1.4 Reset and Clock Synchronization

The clock generator provides a system reset signal (RESOUT). The RESIN input generates RE-
SOUT and the clock generator synchronizes it to the CLKOUT signal.

A Schmitt trigger in the RESIN input ensures that the switch point for a low-to-high transition
greater than the switch point for a high-to-low transition. The processor must remain in r
minimum of 4 CLKOUT cycles after VCC and CLKOUT stabilize. The hysteresis allows a simp
RC circuit to drive the RESIN input (see Figure 5-5). Typical applications can use about 100
liseconds as an RC time constant.
5-6

CLOCK GENERATION AND POWER MANAGEMENT

 RES-
set pin

 this
tates

l
. The

ock
Reset may be either cold (power-up) or warm. Figure 5-6 illustrates a cold reset. Assert the
IN input during power supply and oscillator startup. The processor’s pins assume their re
states a maximum of 28 CLKIN periods after CLKIN and VCC stabilize. Assert RESIN 4 addi-
tional CLKIN periods after the device pins assume their reset states.

Applying RESIN when the device is running constitutes a warm reset (see Figure 5-7). In
case, assert RESIN for at least 4 CLKOUT periods. The device pins will assume their reset s
on the second falling edge of CLKIN following the assertion of RESIN.

Figure 5-5. Simple RC Circuit for Powerup Reset

The processor exits reset identically in both cases. The rising RESIN edge generates an interna
RESYNC pulse (see Figure 5-8), resynchronizing the divide-by-two internal phase clock
clock generator samples RESIN on the falling CLKIN edge. If RESIN is sampled high while
CLKOUT is high, the processor forces CLKOUT low for the next two CLKIN cycles. The cl
essentially “skips a beat” to synchronize the internal phases. If RESIN is sampled high while
CLKOUT is low, CLKOUT is already in phase.

RESET IN RESIN

1µF typical

100k typical V = Vc(t)

Vcc

1 - e

-t
RC

A1128-0A
5-7

CLOCK GENERATION AND POWER MANAGEMENT
Figure 5-6. Cold Reset Waveform

RESIN

AD15:0, S2:0
RD, WR, DEN

DT/R, LOCK

Vcc cc

ccV and CLKIN stable to
RESET high, approximately
32 CLKIN periods.

UCS, LCS
GCS7:0, NPS

T0OUT, T1OUT
TXD1:0

NOTES:
1. CLKOUT synchronization occurs on the rising edge of RESIN. If RESIN is sampled high while
CLKOUT is high (solid line), then CLKOUT will remain low for two CLKIN periods. If RESIN is
sampled high while CLKOUT is low (dashed line), the CLKOUT will not be affected.

CLKIN

CLKOUT

A19:16

RESOUT

HLDA, ALE
RXI1, TXI1

DMAI0, DMAI1

RESET high to
first bus activity,
7 CLKOUT periods.

1

V and CLKIN stable to output valid 28 CLKIN periods (max)

A1116-0A
5-8

CLOCK GENERATION AND POWER MANAGEMENT

 deas-

diately
Figure 5-7. Warm Reset Waveform

At the second falling CLKOUT edge after the internal clocks resynchronize, the processor
serts RESOUT. Bus activity starts seven CLKOUT periods after recognition of RESIN in the log-
ic high state. If an alternate bus master asserts HOLD during reset, the processor imme
asserts HLDA and will not prefetch instructions.

RESIN

AD15:0
S2:0, RD
WR, DEN

DT / R
LOCK

Minimum RESIN
low time 4 CLKOUT
periods.

UCS, LCS
GCS7:0, NPS

T0OUT
T1OUT
TXD1:0

CLKIN

CLKOUT

A19:16

RESOUT

HLDA, ALE
RXI1, TXI1

DMAI0
DMAI1

RESIN
high to
first bus
activity 7
CLKOUT
periods.

A1132-0A
5-9

CLOCK GENERATION AND POWER MANAGEMENT

citor
ecays

mation
sh dy-
imum

clock,
 likely

n
ls can
n the
ive for
ation to
Figure 5-8. Clock Synchronization at Reset

5.2 POWER MANAGEMENT

Many VLSI devices available today use dynamic circuitry. A dynamic circuit uses a capa
(usually parasitic gate or diffusion capacitance) to store information. The stored charge d
over time due to leakage currents in the silicon. If the device does not use the stored infor
before it decays, the state of the entire device may be lost. Circuits must periodically refre
namic RAMs, for example, to ensure data retention. Any microprocessor that has a min
clock frequency has dynamic logic. On a dynamic microprocessor, if you stop or slow the
the dynamic nodes within it begin discharging. With a long enough delay, the processor is
to lose its present state, needing a reset to resume normal operation.

An 80C186 Modular Core microprocessor is fully static. The CPU stores its current state i
flip-flops, not capacitive nodes. The clock signal to both the CPU core and the periphera
stop without losing any internal information, provided the design maintains power. Whe
clock restarts, the device will execute from its previous state. When the processor is inact
significant periods, special power management hardware takes advantage of static oper
achieve major power savings.

CLKIN

CLKOUT

RESIN

NOTES:
1. Setup of RESIN to falling CLKIN.
2. RESOUT goes active.
3. RESIN allowed to go inactive after minimum 4 CLKOUT cycles.
4. RESYNC pulse generated.
5. RESYNC pulse drives CLKOUT low, resynchronizing the clock generator.
6. RESOUT goes inactive on the second falling CLKOUT edge following CLKOUT resynchronization.

RESYNC
(Internal)

RESOUT

1
4

3

5

2
6

A1117-0A
5-10

CLOCK GENERATION AND POWER MANAGEMENT

ve mode
tions.
ctive
d pow-
 mode

vices.
nits)

ending

e. The
s both
e. See
-10
There are three power management modes: Idle, Powerdown and Power-Save. Power-Sa
is a clock generation function, while Idle and Powerdown modes are clock distribution func
For this discussion, Active mode is the condition of no programmed power management. A
mode operation feeds the clock signal to the CPU core and all the integrated peripherals an
er consumption reaches its maximum for the application. The processor defaults to Active
at reset.

5.2.1 Idle Mode

During Idle mode operation, the clock signal is routed only to the integrated peripheral de
CLKOUT continues toggling. The clocks to the CPU core (Execution and Bus Interface U
freeze in a logic low state. Idle mode reduces current consumption by about a third, dep
on the activity in the peripheral units.

5.2.1.1 Entering Idle Mode

Setting the appropriate bit in the Power Control Register (Figure 5-9) prepares for Idle mod
processor enters Idle mode when it executes the HLT (halt) instruction. If the program arm
Idle mode and Powerdown mode by mistake, the device halts but remains in Active mod
Chapter 3, “Bus Interface Unit,” for detailed information on HALT bus cycles. Figure 5
shows some internal and external waveforms during entry into Idle mode.
5-11

CLOCK GENERATION AND POWER MANAGEMENT
Figure 5-9. Power Control Register

Register Name: Power Control Register

Register Mnemonic: PWRCON

Register Function: Arms power management functions.

Bit
Mnemonic Bit Name Reset

State Function

IDLE Idle Mode 0 Setting the IDLE bit forces the CPU to enter the
Idle mode when the HLT instruction is executed.
The PWRDN bit must be cleared when setting
the IDLE bit, otherwise Idle mode is not armed.

PWRDN Powerdown
Mode

0 Setting the PWRDN bit forces the CPU to enter
the Powerdown mode when the next HLT
instruction is executed. The IDLE bit must be
cleared when setting the PWRDN bit, otherwise
Powerdown mode is not armed.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

I
D
L
E

P
W
R
D
N

A1129-0A
5-12

CLOCK GENERATION AND POWER MANAGEMENT

 If the
toggle
. After
eration
-state
Figure 5-10. Entering Idle Mode

5.2.1.2 Bus Operation During Idle Mode

DMA requests, refresh requests and HOLD requests temporarily turn on the core clocks.
processor needs to run a DMA cycle during Idle mode, the internal core clock begins to
on the falling CLKOUT edge three clocks after the processor samples the DMA request pin
one idle T-state, the processor runs the DMA cycle. The BIU uses the ready, wait state gen
and chip-select circuitry as necessary for DMA cycles during Idle mode. There is one idle T
after T4 before the internal core clock shuts off again.

Internal
Peripheral

Clock

CPU Core Clock

CLKOUT

S2:0

ALE

011

T4 or TI T1 TI TI TI

Halt Cycle

A1119-0A
5-13

CLOCK GENERATION AND POWER MANAGEMENT

gins to
r one
es the
ng Idle

active
mples
 core
r deas-

ore
 page
rrectly

tive
.

If the processor needs to run a refresh cycle during Idle mode, the internal core clock be
toggle on the falling CLKOUT edge immediately after the down-counter reaches zero. Afte
idle T-state, the processor runs the refresh cycle. As with all other bus cycles, the BIU us
ready, wait state generation and chip-select circuitry as necessary for refresh cycles duri
mode. There is one idle T-state after T4 before the internal core clock shuts off again.

A HOLD request from an external bus master turns on the core clock as long as HOLD is
(see Figure 5-11). The core clock restarts one CLKOUT cycle after the bus processor sa
HOLD high. The microprocessor asserts HLDA one cycle after the core clock starts. The
clock turns off and the processor deasserts HLDA one cycle after the external bus maste
serts HOLD.

Figure 5-11. HOLD/HLDA During Idle Mode

As in Active mode, refresh requests will force the BIU to drop HLDA during bus hold. (For m
information on refresh cycles during hold, see “Refresh Operation During a Bus HOLD” on
3-43 and “Refresh Operation and Bus HOLD” on page 7-13.) Refresh requests will also co
break into sequences of back-to-back DMA cycles.

5.2.1.3 Leaving Idle Mode

Any unmasked interrupt or non-maskable interrupt (NMI) will return the processor to Ac
mode. Reset also returns the processor to Active mode, but the device loses its prior state

CLKOUT

Internal
Core Clock

Internal
Peripheral

Clock

HLDA

TI TI TI TI TI TI TI TI TI TI TI TI

1 Clock
Delay

Core
Restart

Processor
In Hold

Core Clock
Shuts Off

HOLD

A1120-0A
5-14

CLOCK GENERATION AND POWER MANAGEMENT

rupt
k and
addi-

 the
the
r exit-

akes
 need
 differ-
e inter-
cation

reset
e “Re-

 upon
al port
and the
 back
Any unmasked interrupt received by the core will return the processor to Active mode. Inter
requests pass through the Interrupt Control Unit with an interrupt resolution time for mas
priority level checking. Then, after 1½ clocks, the core clock begins toggling. It takes an
tional 6 CLKOUT cycles for the core to begin the interrupt vectoring sequence.

After execution of the IRET (interrupt return) instruction in the interrupt service routine,
CS:IP will point to the instruction following the HALT. Interrupt execution does not modify
Power Control Register. Unless the programmer intentionally reprograms the register afte
ing Idle mode, the processor will re-enter Idle mode at the next HLT instruction.

Like an unmasked interrupt, an NMI will return the core to Active mode from Idle mode. It t
two CLKOUT cycles to restart the core clock after an NMI occurs. The NMI signal does not
the mask and priority checks that a maskable interrupt does. This results in a considerable
ence in clock restart time between an NMI and an unmasked interrupt. The core begins th
rupt response six cycles after the core clock restarts when it fetches the NMI vector from lo
00008H. NMI does not clear the IDLE bit in the Power Control Register.

Resetting the microprocessor will return the device to Active mode. Unlike interrupts, a
clears the Power Control Register. Execution begins as it would following a warm reset (se
set and Clock Synchronization” on page 5-6).

5.2.1.4 Example Idle Mode Initialization Code

Example 5-1 illustrates programming the Power Control Register and entering Idle mode
HLT. The interrupts from the serial port and timers are not masked. Assume that the seri
connects to a keyboard controller. At every keystroke, the keyboard sends a data byte,
processor wakes up to service the interrupt. After acting on the keystroke, the core will go
into Idle mode. The example excludes the actual keystroke processing.
5-15

CLOCK GENERATION AND POWER MANAGEMENT

les the
s long

er-
 state.
s than
Example 5-1. Initializing the Power Management Unit for Idle or Powerdown Mode

5.2.2 Powerdown Mode

Powerdown mode freezes the clock to the entire device (core and peripherals) and disab
crystal oscillator. All internal devices (registers, state machines, etc.) maintain their states a
as VCC is applied. The BIU will not honor DMA, DRAM refresh and HOLD requests in Pow
down mode because the clocks for those functions are off. CLKOUT freezes in a logic high
Current consumption in Powerdown mode consists of just transistor leakage (typically les
100 microamps).

$mod186
name example_80C186_power_management_code

;FUNCTION: This function reduces CPU power consumption.
; SYNTAX: extern void far power_mgt(int mode);
; INPUTS: mode - 00 -> Active Mode
; 01 -> Powerdown Mode
; 02 -> Idle Mode
; 03 -> Active Mode
; OUTPUTS: None
; NOTE: Parameters are passed on the stack as required
; by high-level languages

PWRCON equ xxxxH ;substitute PWRCON register
;offset

lib_80C186 segment public 'code'
assume cs:lib_80C186
public _power_mgt

_power_mgt proc far

push bp ;save caller's bp
mov bp, sp ;get current top of stack
push ax ;save registers that will
push dx ;be modified

_mode equ word ptr[bp+6] ;get parameter off the
;stack

mov dx, PWRCON ;select Power Control Reg
mov ax, _mode ;get mode
and ax, 3 ;mask off unwanted bits
out dx, ax
hlt ;enter mode
pop dx ;restore saved registers
pop ax
pop bp ;restore caller's bp
ret

_power_mgt endp
lib_80C186 ends

end
5-16

CLOCK GENERATION AND POWER MANAGEMENT

in the
 core
it,” for
ave-

rdown.
e pro-
crystal
ency
ere-
ice.
5.2.2.1 Entering Powerdown Mode

Powerdown mode is entered by executing the HLT instruction after setting the PWRDN bit
Power Control Register (see Figure 5-9 on page 5-12). The HALT cycle turns off both the
and peripheral clocks and disables the crystal oscillator. See Chapter 3, “Bus Interface Un
detailed information on HALT bus cycles. Figure 5-12 shows the internal and external w
forms during entry into Powerdown mode.

Figure 5-12. Entering Powerdown Mode

During the T2 phase of the HLT instruction, the core generates a signal called Enter_Powe
Enter_Powerdown immediately disables the internal CPU core and peripheral clocks. Th
cessor disables the oscillator inverter during the next CLKOUT cycle. If the design uses a
oscillator, the oscillator stops immediately. When CLKIN originates from an external frequ
input (EFI), Powerdown isolates the signal on the CLKIN pin from the internal circuitry. Th
fore, the circuit may drive CLKIN during Powerdown mode, although it will not clock the dev

CLKIN

Internal
Peripheral

Clock

CLKOUT

 S2:0

CPU Core
Clock

OSCOUT

 ALE

T4 or T1 T1 T2 TI

Halt Cycle

CLKIN toggles
only when
external

frequency
input is used

Indeterminate

011

A1121-0A
5-17

CLOCK GENERATION AND POWER MANAGEMENT

C186
ontrol

w the
hase

an un-
reset
uld fol-
6).

ernal
s. The
ullup
pt
wn by
r. C
tal os-

en the
tal os-
cks
 and
e CPU
5.2.2.2 Leaving Powerdown Mode

An NMI, unmasked interrupt, or reset returns the processor to Active mode. Unlike other 80
Modular Core family members, the processor does not have clocked logic in the Interrupt C
Unit.

If the device leaves Powerdown mode by an NMI or unmasked interrupt, a delay must follo
interrupt request to allow the crystal oscillator to stabilize before gating it to the internal p
clocks. An external timing pin sets this delay as described below. Leaving Powerdown by
masked interrupt or NMI does not clear the PWRDN bit in the Power Control Register. A
also takes the processor out of Powerdown mode. Since the oscillator is off, the user sho
low the oscillator cold start guidelines (see “Reset and Clock Synchronization” on page 5-

The Powerdown timer circuit (Figure 5-13) has a PDTMR pin. Connecting this pin to an ext
capacitor gives the user control over the gating of the crystal oscillator to the internal clock
strong P-channel device is always on except during exit from Powerdown mode. This p
keeps the powerdown capacitor CPD charged up to VCC. When the processor detects an interru
or NMI, the weak N-channel device turns on and the P-channel turns off. Leaving Powerdo
an unmasked interrupt or NMI does not clear the PWRDN bit in the Power Control RegistePD

discharges slowly. At the same time, the circuit turns on the feedback inverter on the crys
cillator and oscillation starts.

The Schmitt trigger connected to the PDTMR pin asserts the internal OSC_OK signal wh
voltage at the pin drops below its switching threshold. The OSC_OK signal gates the crys
cillator output to the internal clock circuitry. One CLKOUT cycle runs before the internal clo
turn back on. It takes two additional CLKOUT cycles for an NMI request to reach the CPU
another six clocks for the vector to be fetched. An unmasked interrupt request reaches th
two clocks after the Interrupt Control Unit resolution time, and the first INTA cycle starts six
clocks later.
5-18

CLOCK GENERATION AND POWER MANAGEMENT

tal
 scope
emper-
he os-
the
n

es run-
an exit

 reduc-
k gen-
-1 on
Figure 5-13. Powerdown Timer Circuit

The first step in determining the proper CPD value is startup time characterization for the crys
oscillator circuit. This step can be done with a storage oscilloscope if you compensate for
probe loading effects. Characterize startup over the full range of operating voltages and t
atures. The oscillator starts up on the order of a couple of milliseconds. After determining t
cillator startup time, refer to “PDTMR Pin Delay Calculation” in the data sheet. Multiply
startup time (in seconds) by the given constant to get the CPD value. Typical values are less tha
1µF.

If the design uses an external oscillator instead of a crystal, the external oscillator continu
ning during Powerdown mode. Leave the PDTMR pin unconnected and the processor c
Powerdown mode immediately.

5.2.3 Power-Save Mode

In addition to Idle and Powerdown modes, Power-Save mode provides another means for
ing operating current. Power-Save mode enables a programmable clock divider in the cloc
eration circuit. This divider operates in addition to the divide-by-two counter (see Figure 5
page 5-1).

NOTE

Power-Save mode can be used to stretch bus cycles as an alternative to wait
states.

PDTMR Pin

CPD Exit Powerdown

0, Except when leaving
Powerdown

OSC_OK

Weak N-Channel
Pulldown

Strong P-Channel
Pullup

A1122-0A
5-19

CLOCK GENERATION AND POWER MANAGEMENT

 feeds
 clock
ount.

of both
rogram

mpen-

o bits
er-Save
ower-
es the
Possible clock divisor settings are 1 (undivided), 4, 8, 16, 32 and 64. The divided frequency
the core, the integrated peripherals and CLKOUT. The processor operates at the divided
rate exactly as if the crystal or external oscillator frequency were lower by the same am
Since the processor is static, a lower limit clock frequency does not apply.

The advantage of Power-Save mode over Idle and Powerdown modes is that operation
the core and the integrated peripherals can continue. However, it may be necessary to rep
integrated peripherals such as the Timer Counter Unit and the Refresh Control Unit to co
sate for the overall reduced clock rate.

5.2.3.1 Entering Power-Save Mode

The Power-Save Register (Figure 5-14) controls Power-Save mode operation. The lower tw
select the divisor. When program execution sets the PSEN bit, the processor enters Pow
mode. The internal clock frequency changes at the falling edge of T3 of the write to the P
Save Register. CLKOUT changes simultaneously and does not glitch. Figure 5-15 illustrat
change at CLKOUT.
5-20

CLOCK GENERATION AND POWER MANAGEMENT
Figure 5-14. Power-Save Register

Register Name: Power Save Register

Register Mnemonic: PWRSAV

Register Function: Enables and sets clock division factor.

Bit
Mnemonic Bit Name Reset

State Function

PSEN Power Save
Enable

0H Setting this bit enables Power Save mode and
divides the internal operating clock by the value
defined by F2:0. Clearing this bit disables
Power-Save mode and forces the CPU to
operate at full speed. PSEN is automatically
cleared whenever an interrupt occurs.

F2:0 Clock
Division
Factor

0H These bits control the clock division factor used
when Power Save mode is enabled. The
allowable values are listed below:

F2 F1 F0 Divisor

0 0 0 By 1 (undivided)

0 0 1 By 4

0 1 0 By 8

0 1 1 By 16

1 0 0 By 32

1 0 1 By 64

1 1 0 Reserved

1 1 1 Reserved

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

F
1

F
0

F
2

P
S
E
N

A1123-0A
5-21

CLOCK GENERATION AND POWER MANAGEMENT

N bit in

-two)
m re-

written

upts.
 core,
tion at
 unde-

 bit
 inter-

 also
.

Figure 5-15. Power-Save Clock Transition

5.2.3.2 Leaving Power-Save Mode

Power-Save mode continues until one of three events occurs: execution clears the PSE
the Power-Save Register, an unmasked interrupt occurs or an NMI occurs.

When the PSEN bit clears, the clock returns to its undivided frequency (standard divide-by
at the falling T3 edge of the write to the Power-Save Register. The same result happens fro
programming the clock divisor to a new value. The Power-Save Register can be read or
at any time.

Unmasked interrupts include those from the Interrupt Control Unit, but not software interr
If an NMI occurs, or an unmasked interrupt request has sufficient priority to pass to the
Power-Save mode will end. The PSEN bit clears and the clock resumes full-speed opera
the falling edge of a bus cycle T3 state. However, the exact bus cycle of the transition is
fined. The Return from Interrupt instruction (IRET) does not automatically set the PSEN
again. If you still want Power-Save mode operation, you can set the PSEN bit as part of the
rupt service routine.

5.2.3.3 Example Power-Save Initialization Code

Example 5-2 illustrates programming the Power-Save Unit for a typical system. The program
includes code to change the DRAM refresh rate to compensate for the reduced clock rate

CLKOUT

WR

NOTES:
1. : Write to Power-Save Register (as viewed on the bus).
2. : Low-going edge of T3 starts new clock rate.

1

2

T2 T3 T4

A1124-0A
5-22

CLOCK GENERATION AND POWER MANAGEMENT
Example 5-2. Initializing the Power Management Unit for Power-Save Mode

$mod186
name example_PSU_code

;FUNCTION: This function reduces CPU power consumption
; by dividing the CPU operating frequency by a
; divisor.
; SYNTAX: extern void far power_save(int divisor);
; INPUTS: divisor - This variable represents F0, F1 and F2
; of PWRSAV.
; OUTPUTS: None
; NOTE: Parameters are passed on the stack as required
; by high-level languages

;substitute register offset
PWRSAV equ xxxxH ;Power-Save Register
RFTIME equ xxxxH ;Refresh Interval Count

;Register
RFCON equ xxxxH ;Refresh Control Register
PSEN equ 8000H ;Power-Save enable bit

data segment public 'data'
FreqTable dw 1, 4, 8, 16, 32, 64, 0, 0
data ends

lib_80C186 segment public 'code'
assume cs:lib_80C186, ds:data

public _power_save
_power_save proc far

push bp ;save caller's bp
mov bp, sp ;get current top of stack
push ax ;save registers that will
push dx ;be modified

_divisor equ word ptr[bp+6] ;get parameter off the
;stack

mov dx, RFTIME ;get current DRAM refresh
in ax, dx ;rate
and ax, 01ffh ;mask off unwanted bits

div FreqTable[_divisor] ;divide refresh rate
;by _divisor

out dx, ax ;set new refresh rate
mov dx, PWRSAV ;select Power-Save Register
mov ax, _divisor ;get divisor
and ax, 7 ;mask off unwanted bits
or ax, PSEN ;set enable bit
out dx, ax ;divide frequency
pop dx ;restore saved registers
pop bx
pop ax
pop bp ;restore caller's bp
ret

_power_save endp

lib_80C186 ends
end
5-23

CLOCK GENERATION AND POWER MANAGEMENT

 ways

If the
bably

ming
value.

ppli-

 mode
s that

ch as
r or not

 as well
5.2.4 Implementing a Power Management Scheme

Table 5-2 summarizes the power management options available to the user. With three
available to reduce power consumption, here are some guidelines:

• Powerdown mode reduces power consumption by several orders of magnitude.
application goes into and out of Powerdown frequently, the power reduction can pro
offset the relatively long intervals spent leaving Powerdown mode.

• If background CPU tasks are usually necessary and the overhead of reprogram
peripherals is not severe, Power-Save mode can “tune” the clock rate to the best
Remember that current varies linearly with respect to frequency.

• Idle mode fits DMA-intensive and interrupt-intensive (as opposed to CPU-intensive) a
cations perfectly.

The processor can operate in Power-Save mode and Idle mode concurrently. With Idle
alone, rated power consumption typically drops a third or more. Power-Save mode multiplie
reduction further according to the selected clock divisor.

Overall power consumption has two parts: switching power dissipated by driving loads su
the address/data bus, and device power dissipated internally by the microprocessor whethe
it is connected to external devices. A power management scheme should consider loading
as the raw specifications in the processor's data sheet.

NOTE

If an NMI or external maskable interrupt service routine is used to enter a
power management mode, the interrupt request signal should be deasserted
before entering the power management mode.

Table 5-2. Summary of Power Management Modes

Mode Relative
Power

Typical
 Power

User
 Overhead

Chief
Advantage

Active Full 250 mW at 16 MHz — Full-speed operation

Idle Low 175 mW at 16 MHz Low Peripherals are unaffected

Power-Save Adjustable 125 mW at 16/2 MHz Moderate to High Code execution continues

Powerdown Lowest 250 µW Low to Moderate Long battery life
5-24

6
Chip-Select Unit

 to ac-
ral de-

 can be
slow to

e inter-
evice
FFFH
ting at

ddress
ts. Each
-select
 circuit

e fol-

plicate
CHAPTER 6
CHIP-SELECT UNIT

Every system requires some form of component-selection mechanism to enable the CPU
cess a specific memory or peripheral device. The signal that selects the memory or periphe
vice is referred to as a chip-select. Besides selecting a specific device, each chip-select
used to control the number of wait states inserted into the bus cycle. Devices that are too
keep up with the maximum bus bandwidth can use wait states to slow the bus down.

6.1 COMMON METHODS FOR GENERATING CHIP-SELECTS

One method of generating chip-selects uses latched address signals directly. An exampl
face is shown in Figure 6-1(A). In the example, an inverted A16 is connected to an SRAM d
with an active-low chip-select. Any bus cycle with an address between 10000H and 1F
(A16 = 1) enables the SRAM device. Also note that any bus cycle with an address star
30000H, 50000H, 70000H and so on also selects the SRAM device.

Decoding more address bits solves the problem of a chip-select being active over multiple a
ranges. In Figure 6-1(B), a one-of-eight decoder is connected to the uppermost address bi
decoded output is active for one-eighth of the 1 Mbyte address space. However, each chip
has a fixed starting address and range. Future system memory changes could require
changes to accommodate the additional memory.

6.2 CHIP-SELECT UNIT FEATURES AND BENEFITS

The Chip-Select Unit overcomes limitations of the designs shown in Figure 6-1 and has th
lowing features:

• Ten chip-select outputs

• Programmable start and stop addresses

• Memory or I/O bus cycle decoder

• Programmable wait-state generator

• Provision to disable a chip-select

• Provision to override bus ready

Figure 6-2 illustrates the logic blocks that generate a chip-select. Each chip-select has a du
set of logic.
6-1

CHIP-SELECT UNIT

les the
. Note
ny delay
 for bus

apped
ct can
emory
Figure 6-1. Common Chip-Select Generation Methods

6.3 CHIP-SELECT UNIT FUNCTIONAL OVERVIEW

The Chip-Select Unit (CSU) decodes bus cycle address and status information and enab
appropriate chip-select. Figure 6-3 illustrates the timing of a chip-select during a bus cycle
that the chip-select goes active in the same bus state as address goes active, eliminating a
through address latches and decoder circuits. The Chip-Select Unit activates a chip-select
cycles initiated by the CPU, DMA Control Unit or Refresh Control Unit.

Any of the ten chip-selects can map into either memory or I/O address space. A memory-m
chip-select can start and end on any 1 Kbyte address location. An I/O-mapped chip-sele
start and end on any 64 byte address location. The chip-selects typically associate with m
and peripheral devices as follows:

27C256

A1:13

A16

A0:12

D15:8

(A)

RD

CS

Chip-Selects Using
Addresses Directly

(B)

HLDA

74AC138

E3

ALE

A19

A18

A17

A3

A2

A1

E1

E2

Selects 768K to 896K

Selects 896K to 1M

Selects 128K to 256K

Selects 0 to 128K

Chip-Selects Using
Simple Decoder

OE

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

D7:0

A1168-0A
6-2

CHIP-SELECT UNIT

evice

AM)
ratch

ory,
Figure 6-2. Chip-Select Block Diagram

UCS Mapped to the upper memory address space; selects the BOOT memory d
(EPROM or Flash memory types).

LCS Mapped to the lower memory address space; selects a static memory (SR
device that stores the interrupt vector table, local stack, local data, and sc
pad data.

GCS7:0 Mapped to memory or I/O address space; selects additional SRAM mem
DRAM memory, local peripherals, system bus, etc.

Stop
Value

Comparator

Start
Value

Comparator

Start
Value

Memory/IO
Selector

MEM

Internal
Address

Bus

Chip
Select

Peripheral Control Block
Access Indicator

Stop
Value

Ignore Stop
Address
ISTOP

Chip Select
Enable
CSEN

Address
Shifter

≥

<

A1160-0A
6-3

CHIP-SELECT UNIT

ored.

ycles.
ALT

).
Figure 6-3. Chip-Select Relative Timings

A chip-select goes active when it meets all of the following criteria:

1. The chip-select is enabled.

2. The bus cycle status matches the programmed type (memory or I/O).

3. The bus cycle address is equal to or greater than the start address value.

4. The bus cycle address is less than the stop address value or the stop address is ign

5. The bus cycle is not accessing the Peripheral Control Block.

A memory address applies to memory read, memory write and instruction prefetch bus c
An I/O address applies to I/O read and I/O write bus cycles. Interrupt acknowledge and H
bus cycles never activate a chip-select, regardless of the address generated.

After power-on or system reset, only the UCS chip-select is initialized and active (see Figure 6-4

ALE

CLKOUT

T4 T1 T2 T3

A15:0
A19:16

RD, WR

GCS7:0
LCS, UCS

T4

S2:0 Status

Address Valid

A1150-0A
6-4

CHIP-SELECT UNIT

select.
e 6-1
Figure 6-4. UCS Reset Configuration

6.4 PROGRAMMING

Two registers, START and STOP, determine the operating characteristics of each chip-
The Peripheral Control Block defines the location of the Chip-Select Unit registers. Tabl
lists the registers and their associated programming names.

Table 6-1. Chip-Select Unit Registers

START Register
Mnemonic

STOP Register
Mnemonic Chip-Select Affected

GCS0ST GCS0SP GCS0

GCS1ST GCS1SP GCS1

GCS2ST GCS2SP GCS2

GCS3ST GCS3SP GCS3

GCS4ST GCS4SP GCS4

GCS5ST GCS5SP GCS5

GCS6ST GCS6SP GCS6

GCS7ST GCS7SP GCS7

UCSST UCSSP UCS

LCSST LCSSP LCS

1MB

1023K

0

Ready

NOTE:
1. 15 Wait states automatically inserted. Bus READY must be provided.

Processor
Memory

Map

Address

Active For
Top 1 KByte

Data

UCS

UCS
1

Flash

CE

A1162-0A
6-5

CHIP-SELECT UNIT

ts. The
 enable

lines

n writ-
se a
d prior
The START register (Figure 6-5) defines the starting address and the wait state requiremen
STOP register (Figure 6-6) defines the ending address and the bus ready, bus cycle and
requirements.

6.4.1 Initialization Sequence

Chip-selects do not have to be initialized in any specific order. However, the following guide
help prevent a system failure.

1. Initialize local memory chip-selects

2. Initialize local peripheral chip-selects

3. Perform local diagnostics

4. Initialize off-board memory and peripheral chip-selects

5. Complete system diagnostics

An unmasked interrupt or NMI must not occur until the interrupt vector addresses have bee
ten to memory. Failure to prevent an interrupt from occurring during initialization will cau
system failure. Use external logic to generate the chip-select if interrupts cannot be maske
to initialization.
6-6

CHIP-SELECT UNIT
Figure 6-5. START Register Definition

Register Name: Chip-Select Start Register

Register Mnemonic: UCSST, LCSST, GCSxST (x=0-7)

Register Function: Defines chip-select start address and number of
bus wait states.

Bit
Mnemonic Bit Name Reset

State Function

CS9:0 Start
Address

3FFH Defines the starting (base) address for the chip-
select. CS9:0 are compared with the A19:10
(memory bus cycles) or A15:6 (I/O bus cycles)
address bits. An equal to or greater than result
enables the chip-select.

WS3:0 Wait State
Value

0FH WS3:0 define the minimum number of wait
states inserted into the bus cycle. A zero value
means no wait states. Additional wait states
can be inserted into the bus cycle using bus
ready.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

W
S
1

W
S
0

W
S
3

W
S
2

C
S
1

C
S
0

C
S
3

C
S
2

C
S
5

C
S
4

C
S
7

C
S
6

C
S
9

C
S
8

A1163-0A
6-7

CHIP-SELECT UNIT
Figure 6-6. STOP Register Definition

Register Name: Chip-Select Stop Register

Register Mnemonic: UCSSP, LCSSP, GCSxSP (x=0-7)

Register Function: Defines chip-select stop address and other control
functions.

Bit
Mnemonic Bit Name Reset

State Function

CS9:0 Stop
Address

3FFH Defines the ending address for the chip-select.
CS9:0 are compared with the A19:10 (memory
bus cycles) or A15:6 (I/O bus cycles) address
bits. A less than result enables the chip-select.
CS9:0 are ignored if ISTOP is set.

CSEN Chip-Select
Enable

0
(Note)

Disables the chip-select when cleared. Setting
CSEN enables the chip-select.

ISTOP Ignore Stop
Address

0
(Note)

Setting this bit disables stop address checking,
which automatically sets the ending address at
0FFFFFH (memory) or 0FFFFH (I/O). When
ISTOP is cleared, the stop address require-
ments must be met to enable the chip-select.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products. The reset state of
CSEN and ISTOP is ‘1’ for the UCSSP register.

15 0

M
E
M

R
D
Y

C
S
E
N

I
S
T
O
P

C
S
1

C
S
0

C
S
3

C
S
2

C
S
5

C
S
4

C
S
7

C
S
6

C
S
9

C
S
8

A1164-0A
6-8

CHIP-SELECT UNIT

ct is al-
ing it.)
Figure 6-6. STOP Register Definition (Continued)

The correct sequence to program a non-enabled chip-select is as follows. (If the chip-sele
ready enabled, either reverse the sequence or disable the chip-select before reprogramm

1. Program the START register

2. Program the STOP register

Register Name: Chip-Select Stop Register

Register Mnemonic: UCSSP, LCSSP, GCSxSP (x=0-7)

Register Function: Defines chip-select stop address and other control
functions.

Bit
Mnemonic Bit Name Reset

State Function

MEM Bus Cycle
Selector

1 When MEM is set, the chip-select goes active
for memory bus cycles. Clearing MEM activates
the chip-select for I/O bus cycles.

MEM defines which address bits are used by
the start and stop address comparators. When
MEM is cleared, address bits A15:6 are routed
to the comparators. When MEM is set, address
bits A19:10 are routed to the comparators.

RDY Bus Ready
Enable

1 Setting RDY requires that bus ready be active
to complete a bus cycle. Bus ready is ignored
when RDY is cleared. RDY must be set to
extend wait states beyond the number
determined by WS3:0.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products. The reset state of
CSEN and ISTOP is ‘1’ for the UCSSP register.

15 0

M
E
M

R
D
Y

C
S
E
N

I
S
T
O
P

C
S
1

C
S
0

C
S
3

C
S
2

C
S
5

C
S
4

C
S
7

C
S
6

C
S
9

C
S
8

A1164-0A
6-9

CHIP-SELECT UNIT

ss value
n most-
ip-select
alue for

onfig-
or I/O
cal start

 is com-
st-sig-

o active.
ory and

onfig-
or I/O
address
6.4.2 Start Address

The START register of each chip-select defines its starting (base) address. The start addre
is compared to the ten most-significant address bits of the bus cycle. A bus cycle whose te
significant address bits are equal to or greater than the start address value causes the ch
to go active. Table 6-2 defines the address bits that are compared with the start address v
memory and I/O bus cycles.

It is not possible to have a chip-select start on any arbitrary byte boundary. A chip-select c
ured for memory accesses can start only on multiples of 1 Kbyte. A chip-select configured f
accesses can start only on multiples of 64 bytes. The equations below calculate the physi
address for a given start address value.

For memory accesses:Start Value (Decimal) × 1024 = Physical Start Address (Decimal)

For I/O accesses:Start Value (Decimal) × 64= Physical Start Address (Decimal)

6.4.3 Stop Address

The STOP register of each chip-select defines its ending address. The stop address value
pared to the ten most-significant address bits of the bus cycle. A bus cycle whose ten mo
nificant bits of address are less than the stop address value causes the chip-select to g
Table 6-2 defines the address bits that are compared with the stop address value for mem
I/O bus cycles.

It is not possible to have a chip-select end on any arbitrary byte boundary. A chip-select c
ured for memory accesses can end only on multiples of 1 Kbyte. A chip-select configured f
accesses can end only on multiples of 64 bytes. The equations below define the ending
for the chip-select.

For memory accesses:(Stop Value (Decimal) × 1024) – 1= Physical Ending Address (Decimal)

For I/O accesses:(Stop Value (Decimal) × 64) – 1= Physical Ending Address (Decimal)

Table 6-2. Memory and I/O Compare Addresses

Address Space Address Range Number of Bits Comparator Input Resolution

Memory 1 Mbyte 20 A19:A10 1 Kbyte

I/O 64 Kbyte 16 A15:A6 64 Bytes
6-10

CHIP-SELECT UNIT

ress of
y
ace, the

or out-

share
s would

should

 address
owever,

s into
d com-
 using
 expan-
han fif-

 to in-
ready
In the previous equations, a stop value of 1023 (03FFH) results in a physical ending add
0FFBFFH (memory) or 0FFBFH (I/O). These addresses do not represent the top of the memor
or I/O address space. To have a chip-select enabled to the end of the physical address sp
ISTOP control bit must be set. The ISTOP control bit overrides the stop address comparat
put (see Figure 6-2 on page 6-3).

6.4.4 Enabling and Disabling Chip-Selects

The ability to enable or disable a chip-select is important when multiple memory devices
(or can share) the same physical address space. Examples of where two or more device
occupy the same address space include shadowed memory, bank switching and paging.

The STOP register holds the CSEN control bit, which determines whether the chip-select
go active. A chip-select never goes active if its CSEN control bit is cleared.

Chip-selects can be disabled by programming the stop address value less than the start
value or by programming the start address value greater than the stop address value. H
the ISTOP control bit cannot be set when chip-selects are disabled in this manner.

6.4.5 Bus Wait State and Ready Control

Normally, the bus ready input must be inactive at the appropriate time to insert wait state
the bus cycle. The Chip-Select Unit can ignore the state of the bus ready input to extend an
plete the bus cycle automatically. Most memory and peripheral devices operate properly
fifteen or fewer wait states. However, accessing such devices as a dual-port memory, an
sion bus interface, a system bus interface or remote peripheral devices can require more t
teen wait states to complete a bus cycle.

The START register holds a four-bit value (WS3:0) that defines the number of wait states
sert into the bus cycle. Figure 6-7 shows a simplified logic diagram of the wait state and
control functions.
6-11

CHIP-SELECT UNIT

tates.
quire
quiring
ycle.

gnores

hysical
., chip-
ons for
tion of

 Chip-
Figure 6-7. Wait State and Ready Control Functions

The STOP register defines the RDY control bit to extend bus cycles beyond fifteen wait s
The RDY control bit determines whether the bus cycle should complete normally (i.e., re
bus ready) or unconditionally (i.e., ignore bus ready). Chip-selects connected to devices re
fifteen wait states or fewer can program RDY inactive to automatically complete the bus c
Devices that may require more than fifteen wait states must program RDY active.

A bus cycle with wait states automatically inserted cannot be shortened. A bus cycle that i
bus ready cannot be lengthened.

6.4.6 Overlapping Chip-Selects

The Chip-Select Unit activates all enabled chip-selects programmed to cover the same p
address space. This is true if any portion of the chip-selects’ address ranges overlap (i.e
selects’ ranges do not need to overlap completely to all go active). There are various reas
overlapping chip-selects. For example, a system might have a need for overlapping a por
read-only memory with read/write memory or copying data to two devices simultaneously.

If overlapping chip-selects do not have identical wait state and bus ready programming, the
Select Unit will adjust itself based on the criteria shown in Figure 6-8.

Wait State Value (WS3:0)

READY

READY Control Bit

Wait
State

Counter

BUS READY

Wait
State

Ready

A1165-0A
6-12

CHIP-SELECT UNIT
Figure 6-8. Overlapping Chip-Selects

Any
READY = 1

BUS
READY

Wait
Minimum
WS3:0

Wait
Maximum

WS3:0

Complete
Bus

Cycle

Yes

No

No

Wait
State

A1166-0A
6-13

CHIP-SELECT UNIT

ts and

ming.

verify
stem

chip-
lue
many

ether a
ry or

, memory
 and I/O

Con-

/O are
 to an

s no in-
com-
Table 6-3 lists example wait state and bus ready requirements for overlapping chip-selec
the resulting requirements for accesses to the overlapped region.

Be cautious when overlapping chip-selects with different wait state or bus ready program
The following two conditions require special attention to ensure proper system operation:

1. When all overlapping chip-selects ignore bus ready but have different wait states,
that each chip-select still works properly using the highest wait state value. A sy
failure may result when too few or too many wait states occur in the bus cycle.

2. If one or more of the overlapping chip-selects requires bus ready, verify that all
selects that ignore bus ready still work properly using both the smallest wait state va
and the longest possible bus cycle. A system failure may result when too few or too
wait states occur in the bus cycle.

6.4.7 Memory or I/O Bus Cycle Decoding

The Chip-Select Unit decodes bus cycle status and address information to determine wh
chip-select goes active. The MEM control bit in the STOP register defines whether memo
I/O address space is decoded. Memory address space accesses consist of memory read
write and instruction prefetch bus cycles. I/O address space accesses consist of I/O read
write bus cycles.

Chip-selects go active for bus cycles initiated by the CPU, DMA Control Unit and Refresh
trol Unit.

6.4.8 Programming Considerations

When programming chip-selects active for I/O bus cycles, remember that eight bytes of I
reserved by Intel. These eight bytes (locations 00F8H through 00FFH) control the interface
80C187 math coprocessor. A chip-select can overlap this reserved space provided there i
tention of using the 80C187. However, to avoid possible future compatibility issues, Intel re
mends that no chip-select start at I/O address location 00C0H.

Table 6-3. Example Adjustments for Overlapping Chip-Selects

Chip-Select X Chip-Select Y Overlapped Region Access

Wait States Bus Ready Wait States Bus Ready Wait States Bus Ready

3 ignored 9 ignored 9 ignored

5 required 0 ignored 0 required

2 required 2 required 2 required
6-14

CHIP-SELECT UNIT

trols
Figure

 An ex-
emain

g bus

needs
s.

 and
s a pro-
The GCS chip-select outputs are multiplexed with output port functions. The register that con
the multiplexed outputs resides in the I/O Port Unit. (See Table 13-1 on page 13-6 and
13-4 on page 13-8.)

6.5 CHIP-SELECTS AND BUS HOLD

The Chip-Select Unit decodes only internally generated address and bus state information.
ternal bus master cannot make use of the Chip-Select Unit. During HLDA, all chip-selects r
inactive.

The circuit shown in Figure 6-9 allows an external bus master to access a device durin
HOLD.

Figure 6-9. Using Chip-Selects During HOLD

6.6 EXAMPLES

The following sections provide examples of programming the Chip-Select Unit to meet the
of a particular application. The examples do not go into hardware analysis or design issue

6.6.1 Example 1: Typical System Configuration

Figure 6-10 illustrates a block diagram of a typical system design with a 128 Kbyte EPROM
a 32 Kbyte SRAM. The peripherals are mapped to I/O address space. Example 6.1 show
gram template for initializing the Chip-Select Unit.

Device select
External Master Chip Select

CSU Chip Select

A1167-0A
6-15

CHIP-SELECT UNIT
Figure 6-10. Typical System

L
a
t
c
h

Processor

ALE

AD Bus Addr
Bus

GCS0

DRQ

CE

D
R
A
M

512K

READY

20

GCS1

UCS

GCS2

LCS

SRAM
32K

Floppy
Disk

Control

CE CE

EPROM
128K

CE

DRQ

DACK

A0

A19:16
AD15:0

A1157-0A
6-16

CHIP-SELECT UNIT
Example 6-1. Initializing the Chip-Select Unit

$ TITLE (Chip-Select Unit Initialization)
$ MOD186XREF

NAME CSU_EXAMPLE_1

; External reference from this module

$ include(PCBMAP.INC) ;File declares Register
;Locations and names.

; Module equates

; Configuration equates

TRUE EQU 0FFH
FALSE EQU NOT TRUE
READY EQU 0001H ;Bus ready control modifier
CSEN EQU 0008H ;Chip-Select enable modifier
ISTOP EQU 0004H ;Stop address modifier
MEM EQU 0002H ;Memory select modifier
IO EQU 0000H ;I/O select modifier

;Below is a list of the default system memory and I/O environment. These
;defaults configure the Chip-Select Unit for proper system operation.

;EPROM memory is located from 0E0000 to 0FFFFF (128 Kbytes).
;Wait states are calculated assuming 16MHz operation.
;UCS# controls the accesses to EPROM memory space.

EPROM_SIZEEQU 128 ;Size in Kbytes
EPROM_BASEEQU 1024 - EPROM_SIZE;Start address in Kbytes
EPROM_WAITEQU 1 ;Wait states

;The UCS# START and STOP register values are calculated using the above system
;constraints and the equations below.

UCSST_VALEQU (EPROM_BASE SHL 6) OR (EPROM_WAIT)
UCSSP_VALEQU (CSEN) OR (ISTOP) OR (MEM)

;SRAM memory starts at 0H and continues to 7FFFH (32 Kbytes).
;Wait states are calculated assuming 16MHz operation.
;LCS# controls the accesses to SRAM memory space.

SRAM_SIZEEQU 32 ;Size in Kbytes
SRAM_BASEEQU 0 ;Start address in Kbytes
SRAM_WAITEQU 0 ;Wait states

;The LCS# START and STOP register values are calculated using the above system
;constraints and the equations below

LCSST_VALEQU (SRAM_BASE SHL 6) OR (SRAM_WAIT)
LCSSP_VALEQU (((SRAM_BASE) OR (SRAM_SIZE)) SHL 6) OR

& (CSEN) OR (MEM)

;A DRAM interface is selected by the GCS1# chip-select. The BASE value defines
;the starting address of the DRAM window.The SIZE value (along with the BASE
;value) defines the ending address. Zero wait state performance is assumed. The
;Refresh Control Unit uses DRAM_BASE to properly configure refresh operation.
6-17

CHIP-SELECT UNIT
Example 6-1. Initializing the Chip-Select Unit (Continued)

DRAM_BASEEQU 128 ;Window start address in Kbytes
DRAM_SIZEEQU 512 ;Window size in Kbytes
DRAM_WAITEQU 0 ;Wait states (change to match

;system)

;The GCS1# START and STOP register values are calculated using the above system
;constraints and the equations below

GCS1ST_VALEQU (DRAM_BASE SHL 6) OR (DRAM_WAIT)
GCS1SP_VALEQU (((DRAM_BASE) OR (DRAM_SIZE)) SHL 6) OR

& (CSEN) OR (MEM)

;I/O is selected using the GCS2# chip-select. Wait states assume operation at
;16MHz. The SIZE and BASE values must be modulo 64 bytes. For this example, the
;Floppy Disk Controller is connected to GCS2# and GCS0# provides the
;DACK# signal.

IO_SIZEEQU 64 ;Size in bytes
IO_BASEEQU 256 ;Start address in bytes
IO_WAITEQU 4 ;Wait states

DACK_BASEEQU 512 ;DACK Address (used by DMA also)
DACK_WAITEQU 0 ;No need for DACK wait-states

;DACK Size assumed to be 64 bytes

;The GCS0# and GCS2# START and STOP register values are calculated using the
;above system contraints and the equations below.

GCS2ST_VALEQU ((IO_BASE/64) SHL 6) OR (IO_WAIT)
GCS2SP_VALEQU (((IO_BASE/64) OR (IO_SIZE/64)) SHL 6) OR

& (CSEN) OR (IO)

GCS0ST_VALEQU ((DACK_BASE/64) SHL 6) OR (DACK_WAIT)
GCS0SP_VALEQU (((DACK_BASE/64) + 1) SHL 6) OR (CSEN) OR (IO)

;The following statements define the default assumptions for SEGMENT locations.

ASSUMECS:CODE
ASSUMEDS:DATA
ASSUMESS:DATA
ASSUMEES:DATA

CODE SEGMENT PUBLIC ’CODE’

;ENTRY POINT ON POWER UP:
;The power-on or reset code does a jump here after the UCS register is
;programmed.

FW_STARTLABEL FAR ;Forces far jump

CLI ;Make sure interrupts are
;globally disabled

; Place register initialization code here
6-18

CHIP-SELECT UNIT
Example 6-1. Initializing the Chip-Select Unit (Continued)

;SET UP CHIP SELECTS

; UCS# - EPROM Select
; LCS# - SRAM Select
; GCS1# - DRAM Select
; GCS2# - FLOPPY Select
; GCS0# - DACK Generator (programmed during DMA init)

MOV DX, UCSSP ;Finish setting up UCS#
MOV AX, UCSSP_VAL
OUT DX, AL ;Remember, byte writes work ok

MOV DX, LCSST ;Set up LCS#
MOV AX, LCSST_VAL
OUT DX, AL
MOV DX, LCSSP
MOV AX, LCSSP_VAL
OUT DX, AL ;Remember, byte writes work ok

MOV DX, GCS1ST ;Set up GCS1#
MOV AX, GCS1ST_VAL
OUT DX, AL
MOV AX, GCS1SP_VAL
MOV DX, GCS1SP
OUT DX, AL ;Remember, byte writes work ok

MOV DX, GCS2ST ;Set up GCS2#
MOV AX, GCS2ST_VAL
OUT DX, AL
MOV DX, GCS2SP
MOV AX, GCS2SP_VAL
OUT DX, AL ;Remember, byte writes work ok

;Place remaining User Code here.

CODE ENDS

;POWER ON RESET CODE TO GET STARTED

ASSUME CS:POWER_ON

POWER_ONSEGMENT AT 0FFFFH

MOV DX, UCSST ;Point to UCS register
MOV AX, UCSST_VAL ;Reprogram UCS# for EPROM size
OUT DX, AL
JMP FW_START ;Jump to start of init code

POWER_ON ENDS
6-19

CHIP-SELECT UNIT

 region
imple
ith the

 “hang”
Example 6-1. Initializing the Chip-Select Unit (Continued)

6.6.2 Example 2: Detecting Attempts to Access Guarded Memory

A chip-select is configured to set an interrupt when the bus accesses a physical address
that does not contain a valid memory or peripheral device. Figure 6-11 illustrates how a s
circuit detects the errant bus cycle and generates an NMI. System software then deals w
error. The purpose of using the chip-select is to generate a bus ready and prevent a bus
condition.

Figure 6-11. Guarded Memory Detector

; DATA SEGMENT

DATA SEGMENT PUBLIC ’DATA’

DD 256 DUP (?) ;Reserved for Interrupt Vectors

;Place additional memory variable here

DW 500 DUP (?) ;Stack allocation

STACK_TOP LABEL WORD

DATA ENDS

;Program Ends

END

NMI GCS5

Processor

A1158-0A
6-20

7
Refresh Control Unit

at-
ce Unit
s an
CHAPTER 7
REFRESH CONTROL UNIT

The Refresh Control Unit (RCU) simplifies dynamic memory controller design with its integr
ed address and clock counters. Figure 7-1 shows the relationship between the Bus Interfa
and the Refresh Control Unit. Integrating the Refresh Control Unit into the processor allow
external DRAM controller to use chip-selects, wait state logic and status lines.

Figure 7-1. Refresh Control Unit Block Diagram

Refresh Clock
Interval Register

9-Bit Down
Counter

Refresh Control
Register

Refresh Base
Address Register

Refresh Address
Register

Refresh Request

Refresh Acknowledge

BIU
Interface

12-Bit Address Counter

F-Bus

CPU
Clock

20-Bit
Refresh Address

7 13

CLR
REQ

A1264-01
7-1

REFRESH CONTROL UNIT

ution.
s nor
mmy

es. A
in the
fresh

address-
y to de-

RAM

evices
RAM

e gen-

CLK-
n the
quest.

he Re-
e mode
r be-

the BIU
 bus

 have a
us
7.1 THE ROLE OF THE REFRESH CONTROL UNIT

Like a DMA controller, the Refresh Control Unit runs bus cycles independent of CPU exec
Unlike a DMA controller, however, the Refresh Control Unit does not run bus cycle burst
does it transfer data. The DRAM refresh process freshens individual DRAM rows in “du
read” cycles, while cycling through all necessary addresses.

The microprocessor interface to DRAMs is more complicated than other memory interfac
complete DRAM controller requires circuitry beyond that provided by the processor even
simplest configurations. This circuitry must respond correctly to reads, writes and DRAM re
cycles. The external DRAM controller generates the Row Address Strobe (RAS), Column Ad-
dress Strobe (CAS) and other DRAM control signals.

Pseudo-static RAMs use dynamic memory cells but generate address strobes and refresh
es internally. The address counters still need external timing pulses. These pulses are eas
rive from the processor’s bus control signals. Pseudo-static RAMs do not need a full D
controller.

7.2 REFRESH CONTROL UNIT CAPABILITIES

A 12-bit address counter forms the refresh addresses, supporting any dynamic memory d
with up to 12 rows of memory cells (12 refresh address bits). This includes all practical D
sizes for the processor’s 1 Mbyte address space.

7.3 REFRESH CONTROL UNIT OPERATION

Figure 7-2 illustrates Refresh Control Unit counting, address generation and BIU bus cycl
eration in flowchart form.

The nine-bit down-counter loads from the Refresh Interval Register on the falling edge of
OUT. Once loaded, it decrements every falling CLKOUT edge until it reaches one. The
down-counter reloads and starts counting again, simultaneously triggering a refresh re
Once enabled, the DRAM refresh process continues indefinitely until the user reprograms t
fresh Control Unit, a reset occurs, or the processor enters Powerdown mode. Power-Sav
divides the Refresh Control Unit clocks, so reprogramming the Refresh Interval Registe
comes necessary.

The refresh request remains active until the bus becomes available. When the bus is free,
will run its “dummy read” cycle. Refresh bus requests have higher priority than most CPU
cycles, all DMA bus cycles and all interrupt vectoring sequences. Refresh bus cycles also
higher priority than the HOLD/HLDA bus arbitration protocol (see “Refresh Operation and B
HOLD” on page 7-13).
7-2

REFRESH CONTROL UNIT

o con-
 Other-
n the
.

Figure 7-2. Refresh Control Unit Operation Flow Chart

The nine-bit refresh clock counter does not wait until the BIU services the refresh request t
tinue counting. This operation ensures that refresh requests occur at the correct interval.
wise, the time between refresh requests would be a function of varying bus activity. Whe
BIU services the refresh request, it clears the request and increments the refresh address

Counter = ?

Load Counter
From Refresh Clock

Interval Register

Set "E" Bit

Refresh Control
Unit Operation

Decrement
Counter

Generated BIU
Request

Refresh Request
Acknowledged

BIU Refresh
Bus Operation

Execute
Memory Read

Executed
Every
Clock

Remove
Request

Continue

Increment
Address

A1265-0A
7-3

REFRESH CONTROL UNIT

nother
owever,
 the BIU
hance
ining

applies
3 come
 7-8.)

. The
ycles
cells

it data
s. Ap-

 DRAM
The BIU does not queue DRAM refresh requests. If the Refresh Control Unit generates a
request before the BIU handles the present request, the BIU loses the present request. H
the address associated with the request is not lost. The refresh address changes only after
runs a refresh bus cycle. If a DRAM refresh cycle is excessively delayed, there is still a c
that the processor will successfully refresh the corresponding row of cells in the DRAM, reta
the data.

7.4 REFRESH ADDRESSES

Figure 7-3 shows the physical address generated during a refresh bus cycle. This figure
to both the 8-bit and 16-bit data bus microprocessor versions. Refresh address bits RA19:1
from the Refresh Base Address Register. (See “Refresh Base Address Register” on page

Figure 7-3. Refresh Address Formation

A linear-feedback shift counter generates address bits RA12:1 and RA0 is always one
counter does not count linearly from 0 through FFFH. However, the counting algorithm c
uniquely through all possible 12-bit values. It matters only that each row of DRAM memory
is refreshed at a specific interval. The order of the rows is unimportant.

Address bit A0 is fixed at one during all refresh operations. In applications based on a 16-b
bus processor, A0 typically selects memory devices placed on the low (even) half of the bu
plications based on an 8-bit data bus processor typically use A0 as a true address bit. The
controller must not route A0 to row address pins on the DRAMs.

20-Bit Refresh Address

019

From Refresh Base
Address Register From Refresh Address Counter Fixed

RA
19

RA
18

RA
17

RA
16

RA
15

RA
14

RA
13

RA
12

RA
11

RA
10

RA
9

RA
8

RA
7

RA
6

RA
5

RA
4

RA
3

RA
2

RA
1

1

A1266-0A
7-4

REFRESH CONTROL UNIT

ol sig-
fresh
.
it

t dis-

to gen-
us cycle
timing
, since

ires

e ma-
d that
k bus,
7.5 REFRESH BUS CYCLES

Refresh bus cycles look exactly like ordinary memory read bus cycles except for the contr
nals listed in Table 7-1. These signals can be ANDed in a DRAM controller to detect a re
bus cycle. The 16-bit bus processor drives both the BHE and A0 pins high during refresh cycles
The 8-bit bus version replaces the BHE pin with RFSH, which has the same timings. The 8-b
bus processor drives RFSH low and A0 high during refresh cycles.

7.6 GUIDELINES FOR DESIGNING DRAM CONTROLLERS

The basic DRAM access method consists of four phases:

1. The DRAM controller supplies a row address to the DRAMs.

2. The DRAM controller asserts a Row Address Strobe (RAS), which latches the row
address inside the DRAMs.

3. The DRAM controller supplies a column address to the DRAMs.

4. The DRAM controller asserts a Column Address Strobe (CAS), which latches the column
address inside the DRAMs.

Most 80C186 Modular Core family DRAM interfaces use only this method. Others are no
cussed here.

The DRAM controller’s purpose is to use the processor’s address, status and control lines
erate the multiplexed addresses and strobes. These signals must be appropriate for three b
types: read, write and refresh. They must also meet specific pulse width, setup and hold
requirements. DRAM interface designs need special attention to transmission line effects
DRAMs represent significant loads on the bus.

DRAM controllers may be either clocked or unclocked. An unclocked DRAM controller requ
a tapped digital delay line to derive the proper timings.

Clocked DRAM controllers may use either discrete or programmable logic devices. A stat
chine design is appropriate, especially if the circuit must provide wait state control (beyon
possible with the processor’s Chip-Select Unit). Because of the microprocessor’s four-cloc
clocking some logic elements on each CLKOUT phase is advantageous (see Figure 7-4).

Table 7-1. Identification of Refresh Bus Cycles

Data Bus Width BHE /RFSH A0

16-Bit Device 1 1

8-Bit Device 0 1
7-5

REFRESH CONTROL UNIT

 row

f T4.
sing),
Figure 7-4. Suggested DRAM Control Signal Timing Relationships

The cycle begins with presentation of the row address. RAS should go active on the falling edge
of T2. At the rising edge of T2, the address lines should switch to a column address. CAS goes
active on the falling edge of T3. Refresh cycles do not require CAS. When CAS is present, the
“dummy read” cycle becomes a true read cycle (the DRAM drives the bus), and the DRAM
still gets refreshed.

Both RAS and CAS stay active during any wait states. They go inactive on the falling edge o
At the rising edge of T4, the address multiplexer shifts to its original selection (row addres
preparing for the next DRAM access.

S2:0

CLKOUT

Muxed
Address

NOTES:
1. CAS is unnecessary for refresh cycles only.
2. WE is necessary for write cycles only.

CS

RAS

CAS

WE

T4 T1 T2 T3/TW T4

1

2

Row Column

A1267-0A
7-6

REFRESH CONTROL UNIT

stem,

essary
e num-
ontrol
 ex-

frequen-

deter-

ed CPU
 At fre-
nning
 activ-

e Re-
gister.
ss bits
7.7 PROGRAMMING THE REFRESH CONTROL UNIT

Given a specific processor operating frequency and information about the DRAMs in the sy
the user can program the Refresh Control Unit registers.

7.7.1 Calculating the Refresh Interval

DRAM data sheets show DRAM refresh requirements as a number of refresh cycles nec
and the maximum period to run the cycles. (The number of refresh cycles is the same as th
ber of rows.) You must compensate for bus latency — the time it takes for the Refresh C
Unit to gain control of the bus. This is typically 1–5%, but if an external bus master will be
tremely slow to release the bus, increase the overhead percentage. At standard operating
cies, DRAM refresh bus overhead totals 2–3% of the total bus bandwidth.

Given this information and the CPU operating frequency, use the formula in Figure 7-5 to
mine the correct value for the RFTIME Register value.

Figure 7-5. Formula for Calculating Refresh Interval for RFTIME Register

If the processor enters Power-Save mode, the refresh rate must increase to offset the reduc
clock rate to preserve memory. At lower frequencies, the refresh bus overhead increases.
quencies less than about 1.5 MHz, the Bus Interface Unit will spend almost all its time ru
refresh cycles. There may not be enough bandwidth left for the processor to perform other
ities, especially if the processor must share the bus with an external master.

7.7.2 Refresh Control Unit Registers

Three contiguous Peripheral Control Block registers operate the Refresh Control Unit: th
fresh Base Address Register, Refresh Clock Interval Register and the Refresh Control Re
A fourth register, the Refresh Address Register, permits examination of the refresh addre
generated by the Refresh Control Unit.

RPERIOD FCPU×

Rows Rows Overhead%×()+
--- RFTIME RegisterValue=

RPERIOD = Maximum refresh period specified by DRAM manufacturer (in µs).

FCPU = Operating frequency (in MHz).

Rows = Total number of rows to be refreshed.

Overhead % = Derating factor to compensate for missed refresh requests (typically 1 – 5 %).
7-7

REFRESH CONTROL UNIT

f the re-
thin the
see Fig-
ontrol
 address

ts. The
ery fall-
h Con-
r. Since
epro-
7.7.2.1 Refresh Base Address Register

The Refresh Base Address Register (Figure 7-6) programs the base (upper seven bits) o
fresh address. Seven-bit mapping places the refresh address at any 4 Kbyte boundary wi
1 Mbyte address space. When the partial refresh address from the 12-bit address counter (
ure 7-1 and “Refresh Control Unit Capabilities” on page 7-2) passes FFFH, the Refresh C
Unit does not increment the refresh base address. Setting the base address ensures that the
driven during a refresh bus cycle activates the DRAM chip select.

Figure 7-6. Refresh Base Address Register

7.7.2.2 Refresh Clock Interval Register

The Refresh Clock Interval Register (Figure 7-7) defines the time between refresh reques
higher the value, the longer the time between requests. The down-counter decrements ev
ing CLKOUT edge, regardless of core activity. When the counter reaches one, the Refres
trol Unit generates a refresh request, and the counter reloads the value from the registe
Power-Save mode divides the clock to the Refresh Control Unit, this register will require r
gramming if Power-Save mode is used.

Register Name: Refresh Base Address Register

Register Mnemonic: RFBASE

Register Function: Determines upper 7 bits of refresh address.

Bit
Mnemonic Bit Name Reset

State Function

RA19:13 Refresh
Base

00H Uppermost address bits for DRAM refresh
cycles.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

R
A
1
3

R
A
1
4

R
A
1
5

R
A
1
6

R
A
1
7

R
A
1
8

R
A
1
9

A1008-0A
7-8

REFRESH CONTROL UNIT

at any
e-bit
Figure 7-7. Refresh Clock Interval Register

7.7.2.3 Refresh Control Register

Figure 7-8 shows the Refresh Control Register. The user may read or write the REN bit
time to turn the Refresh Control Unit on or off. The lower nine bits contain the current nin
down-counter value. The user cannot program these bits. Disabling the Refresh Control Unit
clears both the counter and the corresponding counter bits in the control register.

Register Name: Refresh Clock Interval Register

Register Mnemonic: RFTIME

Register Function: Sets refresh rate.

Bit
Mnemonic Bit Name Reset

State Function

RC8:0 Refresh Counter
Reload Value

000H Sets the desired clock count between refresh
cycles.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to ensure compatibility with future Intel products.

15 0

R
C
0

R
C
1

R
C
2

R
C
3

R
C
4

R
C
5

R
C
6

R
C
7

R
C
8

A1288-0A
7-9

REFRESH CONTROL UNIT

ear on
d in all
Figure 7-8. Refresh Control Register

7.7.2.4 Refresh Address Register

The Refresh Address Register (Figure 7-9) contains address bits RA12:1, which will app
the bus as A12:1 on the next refresh bus cycle. Bit 0 is fixed as a one in the register an
refresh addresses.

Register Name: Refresh Control Register

Register Mnemonic: RFCON

Register Function: Controls Refresh Unit operation.

Bit
Mnemonic Bit Name Reset

State Function

REN Refresh
Control Unit
Enable

0 Setting REN enables the Refresh Unit. Clearing
REN disables the Refresh Unit.

RC8:0 Refresh
Counter

000H These bits contain the present value of the
down-counter that triggers refresh requests.
The user cannot program these bits.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

R
C
0

R
C
1

R
C
2

R
C
3

R
C
4

R
C
5

R
C
6

R
C
7

R
C
8

R
E
N

A1311-0A
7-10

REFRESH CONTROL UNIT

 page
r-Save
Figure 7-9. Refresh Address Register

7.7.3 Programming Example

Example 7-1 contains sample code to initialize the Refresh Control Unit. Example 5-2 on
5-23 shows the additional code to reprogram the Refresh Control Unit upon entering Powe
mode.

Register Name: Refresh Address Register

Register Mnemonic: RFADDR

Register Function: Contains the generated refresh address bits.

Bit
Mnemonic Bit Name Reset

State Function

RA12:1 Refresh
Address Bits

000H These bits comprise A12:1 of the refresh
address.

RA0 Refresh Bit
0

1 A0 of the refresh address. This bit is always 1
and is read-only.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

R
A
0

R
A
1

R
A
2

R
A
3

R
A
4

R
A
5

R
A
6

R
A
7

R
A
8

R
A
9

R
A
1
0

R
A
1
1

R
A
1
2

A1501-0A
7-11

REFRESH CONTROL UNIT
Example 7-1. Initializing the Refresh Control Unit

$mod186
name example_80C186_RCU_code

; FUNCTION: This function initializes the DRAM Refresh
; Control Unit to refresh the DRAM starting at dram_addr
; at clock_time intervals.

; SYNTAX:
; extern void far config_rcu(int dram_addr, int clock_time);

; INPUTS: dram_addr - Base address of DRAM to refresh
; clock_time - DRAM refresh rate

; OUTPUTS: None

; NOTE: Parameters are passed on the stack as
; required by high-level languages.

RFBASE equ xxxxh ;substitute register offset
RFTIME equ xxxxh
RFCON equ xxxxh
Enable equ 8000h ;enable bit

lib_80186 segment public 'code'
assume cs:lib_80186

public _config_rcu
_config_rcu proc far

push bp ;save caller's bp
mov bp, sp ;get current top of stack

_clock_time equ word ptr[bp+6] ;get parameters off
_dram_addr equ word ptr[bp+8] ;the stack

push ax ;save registers that
push cx ;will be modified
push dx
push di
7-12

REFRESH CONTROL UNIT

g bus
t it
ter the
r can re-
h cycle,
Example 7-1. Initializing the Refresh Control Unit (Continued)

7.8 REFRESH OPERATION AND BUS HOLD

When another bus master controls the bus, the processor keeps HLDA active as long as the
HOLD input remains active. If the Refresh Control Unit generates a refresh request durin
hold, the processor drives the HLDA signal inactive, indicating to the current bus master tha
wishes to regain bus control (see Figure 7-10). The BIU begins a refresh bus cycle only af
alternate master removes HOLD. The user must design the system so that the processo
gain bus control. If the alternate master asserts HOLD after the processor starts the refres
the CPU will relinquish control by asserting HLDA when the refresh cycle is complete.

mov dx, RFBASE ;set upper 7 address bits
mov ax, _dram_addr
out dx, al

mov dx, RFTIME ;set clock pre_scaler
mov ax, _clock_time
out dx, al

mov dx, RFCON ;Enable RCU
mov ax, Enable
out dx, al

mov cx, 8 ;8 dummy cycles are
;required by DRAMs

xor di, di ;before actual use

_exercise_ram:
mov word ptr [di], 0
loop _exercise_ram

pop di ;restore saved registers
pop dx
pop cx
pop ax
pop bp ;restore caller’s bp

ret
_config_rcu endp
lib_80186 ends

end
7-13

REFRESH CONTROL UNIT
Figure 7-10. Regaining Bus Control to Run a DRAM Refresh Bus Cycle

HLDA

CLKOUT

HOLD

NOTES:
1. HLDA is deasserted; signaling need to run DRAM refresh cycles less than TCLOV.
2. External bus master terminates use of the bus.
3. HOLD deasserted; greater than TCLIS.
4. Hold may be reasserted after one clock.
5. Lines come out of float in order to run DRAM refresh cycle.

1 43

AD15:0
DEN

RD, WR,
BHE, S2:0

DT / R,
A19:16

6

5

2

T1 T1 T1 T1 T1 T4 T1

A1269-0A
7-14

8
Interrupt Control
Unit

e and
ven in-
le con-
st. The
 offers
expand

ll im-
r with

 inte-

hitec-
zed as

pical
 atten-
g and
CHAPTER 8
INTERRUPT CONTROL UNIT

The Interrupt Control Unit (ICU) is composed of two 8259A modules connected in cascad
three Interrupt Request Latch Registers (Figure 8-1). The slave 8259A module controls se
ternal interrupt sources and one external interrupt source (INT7). The master 8259A modu
trols seven external interrupt sources (INT6–INT0) and the slave module cascade reque
8259A modules are hardwired for master and slave operation. The master 8259A module
the ability to cascade to up to seven other 8259A modules. This arrangement is used to
the interrupt handling capability of an 80C186EC/C188EC system to 57 external sources.

The 8259A modules make up the heart of the Interrupt Control Unit. These modules are fu
plementations of the industry standard 8259A architecture. Those readers already familia
the 8259A may be tempted to skip the following sections. DO NOT. There are subtle, yet ex-
tremely important, differences between the discrete implementation of the 8259A and the
grated module.

To understand the function of the Interrupt Control Unit, you must first understand the arc
ture and programming of a single 8259A module. The remainder of this chapter is organi
follows:

• Functional overview of the interrupt controller

• Interrupt priority and nesting

• Architecture and programming of a single 8259A module

• Integration of the 8259A modules into the Interrupt Control Unit

• Programming of the Interrupt Control Unit

• Hardware interfacing and examples

8.1 FUNCTIONAL OVERVIEW: THE INTERRUPT CONTROLLER

All microcomputer systems must communicate in some way with the external world. A ty
system might have a keyboard, a disk drive and a communications port, all requiring CPU
tion at different times. There are two distinct ways to process peripheral I/O requests: pollin
interrupts.
8-1

INTERRUPT CONTROL UNIT
Figure 8-1. Interrupt Control Unit Block Diagram

C
A

S
2

C
A

S
1

C
A

S
0

INT

INTA

D7:0

A0

Master 8259A

A1

A1

In
te

rn
al

 D
at

a
B

us
 (

F
-B

us
)

In
te

rn
al

 A
dd

re
ss

 B
us

In
te

rn
al

 C
on

tr
ol

 B
us

Interrupt Requests From Integrated Peripherals

CAS Bus

Internal Interrupt
Request Latch

Registers

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

C
A

S
2

C
A

S
1

C
A

S
0

INT

INTA

D7:0

A0

Slave 8259A

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

TMI0
TMI1

DMAI2
DMAI3

TMI2
RXI0
TXI0
INT7

INT0
INT1
INT2
INT3
INT4
INT5
INT6
INT7

A1217-0A
8-2

INTERRUPT CONTROL UNIT

to see
l port,
ing has
 spent

uires
ution to

e
 main

eption
single
inter-
ecides
ts that
aking

hat

 inter-
ail in

k.

 This
essor
Polling requires that the CPU check each peripheral device in the system periodically
whether it requires servicing. It would not be unusual to poll a low-speed peripheral (a seria
for instance) thousands of times before it required servicing. In most cases, the use of poll
a detrimental effect on system throughput. Any time used to check the peripherals is time
away from the main processing tasks.

Interrupts eliminate the need for polling by signalling the CPU that a peripheral device req
servicing. The CPU then stops executing the main task, saves its state and transfers exec
the peripheral-servicing code (the interrupt handler). At the end of the interrupt handler, th
CPU’s original state is restored and execution continues at the point of interruption in the
task.

The 80C186 Modular Core has a single maskable interrupt input. (See “Interrupts and Exc
Handling” on page 2-39.) Expanding the interrupt capabilities of the CPU beyond that of a
source requires an interrupt controller. The controller acts like a filter between the multiple
rupt request inputs and the single interrupt request to the CPU. The interrupt controller d
which of the interrupt requests is the most important (has the highest priority) and presen
interrupt to the CPU. Upon receipt of an interrupt, the CPU begins execution of a handsh
sequence called the interrupt acknowledge cycle.

The interrupt acknowledge (or INTA) cycle) consists of two locked back-to-back bus cycles t
the CPU initiates upon receipt of an unmasked external interrupt. The INTA cycle (Figure 8-2)
is a specialized read cycle during which the CPU fetches the interrupt vector type from the
rupt controller. Interrupt acknowledge cycle timings and waveforms are covered in det
Chapter 3, “Bus Interface Unit.”

Figure 8-2. Interrupt Acknowledge Cycle

Once the CPU has the vector type, it executes the interrupt processing sequence:

1. Saves a partial machine status by pushing the Processor Status Word onto the stac

2. Clears the Trap Flag bit and Interrupt Enable bit in the Processor Status Word.
prevents maskable interrupts or single-step exceptions from interrupting the proc
during the interrupt service routine.

3. Pushes the current CS and IP onto the stack.

INTA

Data Bus Valid
Vector Type

A1228-0A
8-3

INTERRUPT CONTROL UNIT

Table

 wish
ity of
upt

er de-
-
 your
 key-

rently
9A

d. For
ble in-
odifi-

 prior-
ge the
n in-
ns and

 8085
mented

r and
259A

the in-
4. Fetches the new CS and IP for the interrupt vector routine from the Interrupt Vector
and begins executing from that point.

8.2 INTERRUPT PRIORITY AND NESTING

The priority of certain interrupts may change during program execution, or the program may
to ignore some interrupt sources entirely. The interrupt controller must offer the capabil
modifying interrupt priorities on the fly and must allow for the masking of individual interr
sources. The priority scheme used by a particular application is known as the interrupt structure.

In many systems, it is possible that an interrupt handler may itself be interrupted by anoth
vice. This situation is known as interrupt nesting. Typically the system would want only higher
priority interrupt sources to interrupt a handler in process. For example, you would want
hard disk drive handler to be interrupted by an impending shut-down interrupt but not by a
board keystroke. Systems that allow only higher-priority interrupts to preempt handlers cur
in service are called fully nested. Fully nested is the default interrupt structure used by the 825
module.

There are times when it is appropriate to use an interrupt structure other than fully neste
example, during execution of an interrupt handler it may be necessary to temporarily ena
terrupts from a lower-priority source. The 8259A has several alternate modes that allow m
cations to the fully nested structure.

It is important to define the interrupt structure early in the system design process. Interrupt
ity is controlled by both the hardware and software design. It may not be possible to chan
interrupt structure “in software” if the hardware is incorrectly designed. When developing a
terrupt structure for your system, consider the effects of software interrupts, traps, exceptio
non-maskable hardware interrupts.

8.3 OVERVIEW OF THE 8259A ARCHITECTURE

The 8259A Programmable Interrupt Controller was first introduced as a peripheral chip for
and 8086/8088 microcomputer systems. The 8259A architecture has since been reimple
as a CMOS module for inclusion in more highly integrated devices.

The 8259A module (Figure 8-3) is divided into several functional blocks. The data bus buffe
read/write logic constitute the interface between the 8259A module and the CPU. The 8
module’s internal control registers are accessed through this interface. This block drives
terrupt vector type on the bus during an INTA cycle.
8-4

INTERRUPT CONTROL UNIT

equest
terrupt
module
terrupt
Figure 8-3. 8259A Module Block Diagram

Pending interrupt requests are posted in the Interrupt Request Register. The Interrupt R
Register contains one bit for each of the eight Interrupt Request (IR) signals. When an in
request is asserted, the corresponding Interrupt Request Register bit is set. The 8259A
can be programmed to recognize either an active high level or a positive transition on the in
request lines. (See “Edge and Level Triggering” on page 8-9.)

Data Bus
Buffer
and

Read/Write
Logic

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

Interrupt
Request
Register

Priority
Resolver

In-service
Register

Interrupt Mask Register

Control Logic

Internal Bus

INT INTA

CAS2:0

D7:0

RD
WR
A0
CS

Cascade
Buffer/

Comparator

A1239-0A
8-5

INTERRUPT CONTROL UNIT

cides
erating
olver
riority.
solu-

rrupt
 order

know
rrupt
 the

rrupt
Mask-

 cir-

ability
arator

t is be-
whether

ssume
 and
The Interrupt Request Register bits feed into the Priority Resolver. The Priority Resolver de
which of the pending interrupt requests is the highest priority based on the programmed op
mode. The Priority Resolver controls the interrupt request line to the CPU. The Priority Res
has a default priority scheme that places IR0 as the highest priority and IR7 as the lowest p
The priority can be modified through software. (See “The Priority Resolver and Priority Re
tion” on page 8-10.)

When an interrupt is acknowledged, an In-Service Register bit is set for that specific inte
source. In some operating modes, the Priority Resolver looks at the In-Service Register in
to make its decision. In Fully Nested Mode, for example, the Priority Resolver needs to
whether a higher-priority interrupt is already in service before it interrupts the CPU. An inte
handler must explicitly clear the In-Service bit for its interrupt before returning control to
main task. (See “The In-Service Register” on page 8-12.)

The Interrupt Mask Register contains one bit for each interrupt request (IR) line. The Inte
Mask Register allows the selective disabling of individual interrupt request sources. (See “
ing Interrupts” on page 8-14.)

An interrupt request line is also referred to as an interrupt level. For example, an interrupt on IR
line 7 is also called a “level 7 interrupt.” Figure 8-4 shows a simplified logic diagram for the
cuitry for one IR line (or priority cell).

Multiple 8259A modules can be connected together to expand the interrupt processing cap
beyond eight levels. (See “Cascading 8259As” on page 8-14.) The Cascade Buffer/Comp
is used only when the 8259A module is programmed for cascade mode. During an INTA cycle,
the Cascade Buffer of the master 8259A drives the address of the slave 8259A module tha
ing acknowledged. Each slave 8259A module uses the Cascade Comparator to determine
it is the addressed slave.

8.3.1 A Typical Interrupt Sequence Using the 8259A Module

The function of the 8259A module is best illustrated by an example. For this example we a
the simplest of 8259A module configurations: a single master with the default fixed priority
programmed for Fully Nested Mode. The initial conditions are as follows:

• the 8259A has just been initialized

• there are no pending interrupts

• all interrupts are unmasked

• the IR inputs are programmed as edge-sensitive lines
8-6

INTERRUPT CONTROL UNIT
Figure 8-4. Priority Cell

MASTER CLEAR
WRITE MASK

FREEZE

READ IMR
READ IRR
READ ISR

Edge
Sense
Latch

Q

SET

CLR

Q

Q

D

C

LTIM Bit
0=Edge, 1= Level

QD

C

Interrupt
Request

Latch

CLEAR ISR

SET ISR

Non-Masked
Request

Priority
Resolver

IR

Q

SET

CLR

Control
Logic

Internal Data Bus

To
Other

Priority
Cells

In-Service
Latch

FREEZE

INTA

Notes:
1. Master clear active only during ICW1.
2. FREEZE is active during INTA and POLL sequences only.
3. D flip-flops are transparent.

CLR

A1240-0A
8-7

INTERRUPT CONTROL UNIT

gister

ether
 IR4.
rs by

y to
ternal

edge

4.

e-

nterrupt

quest

eing

 End-
 In-

iority
t line
A typical sequence takes place as follows:

1. A low-to-high transition on IR4 sets bit 4 in the Interrupt Request Register.

2. The Priority Resolver checks whether any bits are set in the Interrupt Request Re
that are of a higher priority than IR4. There are none.

3. Because the 8259A module is in Fully Nested Mode, the Priority Resolver checks wh
any bits are set in the In-Service Register that have priority greater than or equal to
There are none. This step prevents the interruption of higher-priority interrupt handle
lower-priority sources.

4. At this point, the Priority Resolver has determined that IR4 has sufficient priorit
interrupt the CPU. The interrupt request line to the CPU is asserted to signal an ex
interrupt request.

5. The CPU signals acknowledgment of the interrupt by initiating an interrupt acknowl
cycle.

6. On the first falling edge of INTA, the 8259A module sets the In-Service Bit for IR
Simultaneously, the Interrupt Request Bit is reset. The 8259A module is not driving the
data bus during this phase of the cycle.

7. On the second falling edge of INTA, the 8259A module drives the interrupt type corr
sponding to IR4 on the data bus. The 8259A module floats its data bus when INTA goes
high. The interrupt request signal to the CPU is deasserted.

8. The CPU executes the interrupt processing sequence and begins to execute the i
handler for IR4.

9. During execution of the IR4 handler, IR6 goes high, setting bit 6 in the Interrupt Re
Register.

10. The Priority Resolver sees that IR6 is of lower priority than IR4, which is currently b
serviced (IR4’s In-Service bit is set). Because IR6 is of lower priority than IR4, no
interrupt request is sent to the CPU. If IR6 were set to a higher priority than IR4, the IR4
handler would be interrupted.

11. The IR4 handler completes execution. The final instructions of the handler issue an
of-Interrupt (EOI) command to the 8259A module. The EOI command clears the
Service bit IR4. This completes the servicing of IR4.

12. The Priority Resolver now sees that IR6 is still pending and that no other higher-pr
interrupts are pending or in-service. The 8259A module raises the interrupt reques
again, starting another INTA cycle.
8-8

INTERRUPT CONTROL UNIT

nal on
moves

g are
falling
pts”

IR line

cified
less an

 must
e
rrupts
mmand

 lines.
t Reg-

 the
 are
decide
, a tog-
 tog-

called

t-pri-
8.3.2 Interrupt Requests

The processing of an external interrupt begins with the assertion of an interrupt request sig
one of the IR lines. The signal first passes through the edge/level detection circuitry, then
on to the Interrupt Request Register.

8.3.2.1 Edge and Level Triggering

The IR lines are programmable for either edge or level triggering. Both types of triggerin
active high. For both types, the high state on the IR line must be maintained until after the
edge of the first INTA pulse during an interrupt acknowledge cycle. (See “Spurious Interru
on page 8-10.)

Edge triggering is defined as a zero-to-one transition on an IR line. The high state on the
must be maintained until after the falling edge of the first INTA pulse during an interrupt ac-
knowledge cycle. An edge-sensitive IR line must be returned to its low state for a spe
amount of time (refer to the data sheet for the value) to reset the edge detection circuit. Un
edge-sensitive IR line is returned to a low state after it is acknowledged, it cannot generate addi-
tional interrupts.

Level triggering is defined as a valid logic one on an IR line. The high value on the IR line
be maintained until after the falling edge of the first INTA pulse during an interrupt acknowledg
cycle. Unlike an edge-sensitive IR line, a level-sensitive IR line continues to generate inte
as long as it is asserted. A level-sensitive IR signal must be deasserted before the EOI co
is issued if continuous interrupts from the same source are not desired.

8.3.2.2 The Interrupt Request Register

The Interrupt Request Register maintains one bit for each of the eight interrupt request
When a valid interrupt request is present on an IR line, the corresponding Interrupt Reques
ister bit is set (an interrupt is pending). The Interrupt Request Register bits are transparent;
state of the IR line flows directly through the latch to the Priority Resolver until the bits
latched. The output of the Interrupt Request Register is used by the Priority Resolver to
whether a CPU interrupt is warranted. Since the Interrupt Request Register is transparent
gling IR line of sufficient priority causes the interrupt request output of the 8259A module to
gle as well.

The state of Interrupt Request bits is latched by the falling edge of an internal signal
FREEZE. FREEZE is valid between the falling edge of the first INTA pulse and the rising edge
of the last INTA pulse during an interrupt acknowledge cycle (see Figure 8-4). The highes
ority pending Interrupt Request Register bit is cleared on the first falling edge of INTA; the other
bits are left undisturbed.
8-9

INTERRUPT CONTROL UNIT

e until

 same
or IR7
rvice
t) or a

 CPU

ection
8.3.2.3 Spurious Interrupts

For both level- and edge-sensitive interrupts, a high value must be maintained on the IR lin
after the falling edge of the second INTA pulse (see Figure 8-5). A spurious interrupt request is
generated if this stipulation is not met. A spurious interrupt on any IR line generates the
vector as an IR7 request. However, a spurious interrupt does not set the In-Service bit f
when it is acknowledged by the CPU. The interrupt handler for IR7 must check the In-Se
Register to determine whether the interrupt source was a valid IR7 (the In-Service bit is se
spurious interrupt (the In-Service bit is cleared).

Figure 8-5. Spurious Interrupts

8.3.3 The Priority Resolver and Priority Resolution

The Priority Resolver uses four pieces of information when deciding whether to generate a
interrupt:

• the programmed operating mode and priority structure

• the state of the bits in the Interrupt Request Register

• the state of the bits in the In-Service Register

• the state of the bits in the Interrupt Mask Register

The priority scheme used by the Priority Resolver is programmable. The remainder of this s
describes the priority structure options.

INTA

IR (Spurious)

IR (Valid)

IR sampled on this edge.

A1241-0A
8-10

INTERRUPT CONTROL UNIT

 con-
sing
rupt
evice

n. Any
orities
 pro-
ource
 This
8.3.3.1 Default (Fixed) Priority

After initialization, the 8259A module sets the priorities of the interrupt levels to the default
dition, in which IR7 is the lowest priority and IR0 is the highest (Figure 8-6). For systems u
fixed priority, the interrupt source with the highest priority is connected to IR0, the inter
source with the second-highest priority is connected to IR1, and so on. The lowest-priority d
is connected to IR7.

Figure 8-6. Default Priority

8.3.3.2 Changing the Default Priority: Specific Rotation

In some systems, it may be necessary to alter the default priority during program executio
one of the IR lines can be reprogrammed to be the lowest-priority interrupt source. The pri
of the remaining IR lines are then redefined in a circular fashion. For example, if IR5 is
grammed to be the lowest-priority interrupt source, then IR6 becomes the highest-priority s
(see Figure 8-7). One could think of the priority pointer rotating through the IR sources.
method of redefining the priority is called specific rotation.

The priorities of the IR lines cannot be set independently.

Figure 8-7. Specific Rotation

IR7IR6IR5IR4IR3IR2IR1IR0

Highest
Priority

Lowest
Priority

Decreasing relative priority

A1242-0A

IR5IR4IR3IR2IR1IR0IR7IR6

Highest
Priority

Lowest
Priority

Decreasing relative priority

A1243-0A
8-11

INTERRUPT CONTROL UNIT

 line
com-
ring the
efault

 is cur-
 EOI
t prior-

 of the
ding
un (but
8.3.3.3 Changing the Default Priority: Automatic Rotation

In some applications, a number of interrupting devices have equal priority. Automatic rotation
ensures that devices of equal priority get equal shares of CPU resources.

When programmed for automatic rotation, the 8259A module automatically assigns an IR
the lowest priority after the service routine for that interrupt has completed (and the EOI
mand has been sent). The respective priorities of the other interrupts that were pending du
service routine are changed in the same circular fashion as described in “Changing the D
Priority: Specific Rotation” on page 8-11.

For example, assume that IR0 is programmed as highest priority and that the IR4 handler
rently being executed. At the completion of the IR4 handler, the Rotate on Non-Specific
command is sent to the 8259A module. The 8259A module then assigns IR4 as the lowes
ity. IR5 becomes the highest-priority device (see Figure 8-8).

Figure 8-8. Automatic Rotation

8.3.4 The In-Service Register

The In-Service Register contains one bit for each of the eight IR lines. On the falling edge
first INTA pulse from the CPU, the In-Service bit corresponding to the highest-priority pen
interrupt is set. The In-Service bits are flags that indicate which interrupt requests have beg
not completed) execution of their interrupt handlers.

IR7IR6IR5IR4IR3IR2IR1IR0

Highest
Priority

Lowest
Priority

IR4IR3IR2IR1IR0IR7IR6IR5

Decreasing relative priority

Before
Rotation

After
Rotation

A1244-0A
8-12

INTERRUPT CONTROL UNIT

riority
sted).
is ac-

 and
tion.
 IR4

ce bit

 either

d can
 mod-

 high-
high-
259A
I is a

ure. In
ler. If

r. Sys-
that the

rising
In-
n the
More than one In-Service bit can be set concurrently. Consider the case in which a low p
interrupt handler is interrupted by a higher-priority interrupt request (the interrupts are ne
The In-Service bits for both interrupt sources are set when the higher-priority interrupt
knowledged.

Setting the In-Service bit for an IR line inhibits (masks) further interrupts from that IR line
all IR lines of a lower priority when the 8259A module is programmed for fully nested opera
For example, if the 8259A module is programmed for default priority (IR0 highest) and the
In-Service bit is set, then no interrupts are possible from IR4 through IR7 until the In-Servi
is reset.

The default masking of interrupts by the In-Service Register can be circumvented by using
Special Fully Nested Mode or Special Mask Mode (described below).

The In-Service bits are cleared by an End-of-Interrupt (EOI) command. The EOI comman
either be sent to the 8259A module by the CPU or be generated automatically by the 8259A
ule itself.

8.3.4.1 Clearing the In-Service Bits: Non-Specific End-Of-Interrupt

The Non-Specific End-of-Interrupt (EOI) command instructs the 8259A module to reset the
est-priority In-Service bit. When the 8259A module is operating in Fully Nested Mode, the
est-priority In-Service bit always corresponds to the interrupt handler in progress; the 8
module does not need to be told explicitly which handler is ending. The Non-Specific EO
shortcut for systems that use the fully nested interrupt structure.

8.3.4.2 Clearing the In-Service Bits: Specific End-Of-Interrupt

Some operating modes of the 8259A module do not use the fully nested interrupt struct
these alternate modes, a lower-priority interrupt request can interrupt a higher-priority hand
a Non-Specific EOI is issued in this case, the highest-priority In-Service bit is reset even though
the handler for that interrupt has not completed execution. The Specific End-of-Interrupt
(EOI) command instructs the 8259A module to reset a specific bit in the In-Service Registe
tems that are not using Fully Nested Mode must issue a Specific EOI command to ensure
proper In-Service bit is cleared.

8.3.4.3 Automatic End-Of-Interrupt Mode

The 8259A module can be programmed to clear the In-Service Bit for an IR line on the
edge of the second INTA pulse of the interrupt acknowledge cycle. When Automatic End-of-
terrupt (EOI) Mode is selected, the In-Service bit for any given IR line is set only betwee
falling edge of the first INTA pulse and the rising edge of the second INTA pulse.
8-13

INTERRUPT CONTROL UNIT

 EIO
n as the

omatic

thers.
asking
till sets

he In-
l inter-
tion

 single
64 lev-

 8259A
st in-

ch slave
cal val-
e mas-
. The
s.
Use of Automatic EOI Mode precludes a fully nested interrupt structure. When Automatic
Mode is selected, the In-Service bit is cleared before the handler begins execution. As soo
In-Service bit is cleared, any unmasked source (of any priority) can interrupt the handler.

Automatic EOI Mode can be used only in a master 8259A in a cascaded system. Using Aut
EOI Mode for a slave in a cascaded system will lead to system malfunction.

8.3.5 Masking Interrupts

During program execution, the CPU may wish to ignore certain interrupts while enabling o
The Interrupt Mask Register is used to selectively enable and disable each IR line. The m
operation physically takes place after the Interrupt Request Register. A masked interrupt s
its corresponding Interrupt Request Register bit.

External maskable interrupts can be globally enabled and disabled within the CPU itself. T
terrupt Enable Flag in the Processor Status Word controls the global masking of externa
rupts. (See Chapter 2, “Overview of the 80C186 Family Architecture,” for more informa
about the Interrupt Enable Flag.)

8.3.6 Cascading 8259As

The 8259A module includes the capability to cascade up to 8 slave interrupt controllers to a
master module. In a fully cascaded system, the interrupt request capability is extended to
els. (The 80C186EC/C188EC Interrupt Control Unit uses a cascaded configuration.)

8.3.6.1 Master/Slave Connection

Figure 8-9 shows a typical master/slave connection. In a cascade configuration, each slave
module connects its interrupt output to one of the master 8259A module’s interrupt reque
puts. The master controls the actions of the slaves through the Cascade Bus (CAS2:0). Ea
device in a system has a unique Slave ID, which must be programmed to the same numeri
ue as the master IR line to which it is connected. During an interrupt acknowledge cycle, th
ter 8259A drives CAS2:0 lines with the Slave ID of the slave that is being acknowledged
Cascade Bus lines are inactive low and are active only during interrupt acknowledge cycle
8-14

INTERRUPT CONTROL UNIT
Figure 8-9. Typical Cascade Connection

C
A

S
2

C
A

S
1

C
A

S
0

INT

INTA

Master 8259A

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

C
A

S
2

C
A

S
1

C
A

S
0

INT

Slave 8259A

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

INTA

To
CPU
From
CPU

A1245-0A
8-15

INTERRUPT CONTROL UNIT

s in a

efault

 default

rupt

quest

gister

iority
n the

ule is

quest
rity

edge

7 In-

es the

8259A
8.3.6.2 The Cascaded Interrupt Acknowledge Cycle: An Example

The following example illustrates the interaction between master and slave 8259A module
cascaded configuration. We assume the following conditions:

• The master 8259A module is programmed for cascade operation, a slave on IR7, d
priority and edge-triggered mode.

• The slave 8259A module is programmed for cascade operation, a slave address of 7,
priority and edge-triggered mode.

• Both modules have just been initialized and no interrupts are pending.

• All interrupts in both modules are unmasked.

A typical cascade interrupt sequence takes place as follows:

1. A low-to-high transition on IR2 of the slave 8259A module sets bit 2 in the Inter
Request Register.

2. The slave’s Priority Resolver checks whether any bits are set in the Interrupt Re
Register that are of a higher priority than IR2. There are none.

3. The slave’s Priority Resolver checks whether any bits are set in the In-Service Re
that are of an equal or higher priority than IR2. There are none.

4. At this point, the slave’s Priority Resolver has determined that IR2 has sufficient pr
to request an interrupt. The slave interrupt request line (connected to the IR7 line o
master 8259A module) is asserted to signal an interrupt request.

5. The low-to-high transition on the IR7 line signals to the master that the slave mod
requesting an interrupt.

6. The Priority Resolver within the master 8259A module checks whether the slave re
is of sufficient priority to interrupt the CPU. (It is.) Note that, for the purposes of prio
resolution, a cascaded input looks just like any other IR line.

7. The master 8259A module asserts the interrupt request output line to the CPU.

8. The CPU signals acknowledgment of the interrupt by initiating an interrupt acknowl
(INTA) cycle.

9. On the first falling edge of INTA, the following actions occur:

— The master 8259A module clears the IR7 Interrupt Request Bit and sets the IR
Service Bit.

— The master 8259A module sees that IR7 has a slave connected to it and driv
address of the slave (seven, in this case) on the CAS2:0 lines.

— The slave 8259A module recognizes its address on the CAS2:0 bus. The slave
module clears the IR2 Interrupt Request Bit and sets the IR2 In-Service bit.
8-16

INTERRUPT CONTROL UNIT

e
 state

aster

nterrupt

ue an
EOI

pt re-
259A
er Cas-
 CAS
knowl-
est. For
en the

is con-
6 line,
s to an
match.

dule. A
for un-
is situ-
empt to
 master
ed with

nd one
10. On the second falling edge of INTA, the slave 8259A module drives the interrupt typ
corresponding to IR2 on the data bus. The CAS2:0 lines return to their inactive low
and the slave 8259A module floats its data bus when INTA goes high. The interrupt
request signal from the master 8259A module to the CPU goes inactive (low). The m
8259A module does not drive the data bus during a slave acknowledge.

11. The CPU executes the interrupt processing sequence and begins to execute the i
handler for a slave IR2.

12. The slave IR2 handler completes execution. The final instructions of the handler iss
End-of-Interrupt (EOI) command to the master 8259A module and a second
command to the slave 8259A module. This completes the servicing of slave IR2.

8.3.6.3 Master Cascade Configuration

The Master Cascade Configuration Register includes one bit for each of the eight interru
quest lines on the master 8259A module. Setting a bit for an IR line informs the master 8
module that a slave 8259A module is connected to that IR line. The master uses the Mast
cade Configuration bits during an interrupt acknowledge cycle to determine whether the
lines should be active. The CAS lines are active only when a cascaded input is being ac
edged; the value on the CAS bus is equal to the line number of the cascaded interrupt requ
example, if the master is acknowledging an interrupt from a slave cascaded on line IR4, th
CAS2:0 bus is driving 100 binary (4 decimal).

8.3.6.4 Slave ID

The slave ID must always be programmed equal to the master IR line to which the slave
nected. For example, if a slave’s interrupt request output is connected to the master’s IR
then that slave must be programmed for a slave ID of six. A slave 8259A module respond
INTA signal (and deposits a vector on the bus) only if its slave ID and the CAS2:0 address

Special precautions must be taken when connecting a slave to IR0 of a master 8259A mo
slave programmed for an ID of zero is active both for interrupts that it has requested and
cascaded master interrupts (uncascaded interrupts leave the CAS lines inactive low). If th
ation occurs, there will be contention on the data bus as both the master and the slave att
drive the interrupt type on the data bus. Never cascade a slave 8259A module to IR0 of a
module unless IR0 is the last available uncascaded input (i.e., the system is fully cascad
eight slave 8259A modules).

8.3.6.5 Issuing EOI Commands in a Cascaded System

Interrupt handlers for slave interrupts must issue two EOI commands: one for the master a
for the slave. The master EOI must be sent first, followed by the slave EOI.
8-17

INTERRUPT CONTROL UNIT

 7. The
 to IR7
master

 slave

t the

 must
8.3.6.6 Spurious Interrupts in a Cascaded System

A spurious interrupt on a master IR line that is uncascaded will generate a spurious IR type
CAS lines remain inactive when a spurious interrupt is acknowledged (a slave connected
will not be addressed). The type that is placed on the bus is that of an IR7 interrupt for the
module.

A spurious interrupt on a slave IR pin can cause one of two scenarios (Figure 8-10). If the
IR line goes inactive well before the falling edge of the first INTA, then the master will generate
a spurious IR type 7 interrupt; the slave is not involved. If the slave IR line goes inactive near the
falling edge of the first INTA, the delay through the slave module may be long enough tha
interrupt will look like a valid slave interrupt to the master and a spurious interrupt to the slave.
In this case, the slave will deposit the vector for IR7 on the bus; the handler for slave IR7
check the In-Service bit to see whether the interrupt was valid or spurious.

Figure 8-10. Spurious Interrupts in a Cascaded System

INTA

Slave IR

Master IR

IR sampled on this edge

Slave IR

Master IR

Delay through slave

Case 2: Spurious interrupt in slave only

Delay through slave

Case 1: Spurious interrupt in master and slave

A1218-0A
8-18

INTERRUPT CONTROL UNIT

cture.
s ex-
e this

sted
rently
abled.

ystem.

st to the
dged,
re set.
rvice
er-pri-

en pro-
ts from
 slave
iority

re must
e mas-
 and
, then

er slave

ed sys-
8.3.7 Alternate Modes of Operation: Special Mask Mode

Some applications require an interrupt handler to dynamically alter the system priority stru
For example, the handler may need to inhibit lower-priority interrupts during a portion of it
ecution but enable some of them during another portion of the code. In Fully Nested Mod
is impossible; the interrupt handler cannot enable lower-priority interrupts.

Special Mask Mode circumvents the default masking of lower-priority interrupts in Fully Ne
Mode. When Special Mask Mode is selected, only interrupts from the interrupt source cur
in service are masked; all other interrupt requests (of both lower and higher priority) are en
Interrupts can still be masked individually using the Interrupt Mask Register.

8.3.8 Alternate Modes of Operation: Special Fully Nested Mode

Special Fully Nested Mode allows the nesting of interrupts to be preserved in a cascaded s
An example best illustrates the need for Special Fully Nested Mode.

Assume that a slave 8259A module receives an interrupt and passes that interrupt reque
master 8259A module that is in Fully Nested Mode. When the slave interrupt is acknowle
both the In-Service bit in the slave and the In-Service bit for the slave input in the master a
If the slave receives a higher-priority interrupt, the master will ignore it because the In-Se
bit for the slave module is set. The fully nested structure has been disturbed, since a high
ority interrupt cannot interrupt a lower-priority handler.

Special Fully Nested Mode restores the fully nested structure in a cascaded system. Wh
grammed for Special Fully Nested Mode, a master 8259A module enables interrupt reques
all sources of equal or higher priority than the request currently in service. This allows a
8259A module to issue higher-priority interrupts to the master while there are lower-pr
slave interrupts in service.

Special precautions need to be taken when using Special Fully Nested Mode. The softwa
determine whether any other slave interrupts are still in service before issuing an EOI to th
ter. This is done by modifying the EOI bit in OCW2 to indicate a Specific EOI to the slave
then reading the slave’s In-Service Register. If the slave’s In-Service Register is all zeros
no other interrupts are in service for the slave and an EOI can be sent to the master. If oth
interrupts are still in service, then an EOI should not be sent to the master 8259A module.

Special Fully Nested Mode should be used only in the master 8259A module in a cascad
tem.
8-19

INTERRUPT CONTROL UNIT

ther it
ll com-
8259A

urces
ity can
odule

xternal
8259A
truc-
ead-

ments
86EC

ation
om-
liza-

 (after

ution.
 an Ini-
ange

eration
8.3.9 Alternate Modes of Operation: The Poll Command

Conventional polling requires that the CPU check each peripheral device to determine whe
needs servicing. Polling can also be accomplished with an 8259A module by using the Po
mand. This method improves polling efficiency because the CPU needs to check only the
module, not each of the devices connected to it.

The Poll command is useful in various situations. For example, if more than 64 interrupt so
are required in a system (64 is the limit for cascaded 8259A modules) the interrupt capabil
be expanded using polling. The number of interrupt request sources in a polled 8259A m
system is limited only by the number of 8259A modules that can be addressed.

The Poll command takes the place of a standard interrupt acknowledge sequence. The e
maskable interrupt request of the CPU must be disabled either by disconnecting it from the
module (when possible) or by clearing the Interrupt Enable Flag in the CPU (with a CLI ins
tion). Polling is covered in greater detail in “Special Mask Mode, Poll Mode and Register R
ing: OCW3” on page 8-34.

8.4 PROGRAMMING THE 8259A MODULE

This section describes the programming of a single 8259A module. Programming require
that are specific to the 80C186EC/C188EC are covered in “Module Integration: The 80C1
Interrupt Control Unit” on page 8-36.

8.4.1 Initialization and Operation Command Words

The command register set of the 8259A module is divided into two types of words: Initializ
Command Words (ICWs) and Operation Command Words (OCWs). The Initialization C
mand Words are usually written only once during program execution (during system initia
tion). The Operation Command Words can be written at any time during program execution
initialization is complete).

The Initialization Command Words specify information that does not change during exec
For example, the base interrupt type for the module does not change and is specified by
tialization Command Word. The Operation Command Words specify conditions that may ch
during execution. The Interrupt Mask Register, for example, is accessed through an Op
Command Word.
8-20

INTERRUPT CONTROL UNIT

ess to

medi-
an be

88EC,

t.

all the
pt En-

for the
 se-
 has a

ed cor-
tion

on pro-
8.4.2 Programming Sequence and Register Addressing

All of the 8259A module registers reside within an address window of two bytes. Write acc
individual registers is controlled by a combination of the following:

• the address of the register (state of the A0 address line on the 8259A module)

• the data written to the register

• the sequence in which the data is written

Registers are read from the 8259A module by first sending a “read command” and then im
ately reading from the module. The Interrupt Mask Register is an exception to this rule; it c
read directly.

Each 8259A module occupies two locations in the memory map. For the 80C186EC/C1
each module occupies two consecutive words in the Peripheral Control Block. These access ports
are named MPICP0, MPICP1, SPICP0 and SPICP1 (the M and S refer to master and slave). It is
through these access ports that the Initialization and Operation Command Words are sen

8.4.3 Initializing the 8259A Module

The 8259A module must be initialized before it can be used. After reset, the states of
8259A registers are undefined. The 8259A modules must be initialized before the Interru
able flag in the Processor Status Word is set (enabling interrupts).

8.4.3.1 8259A Initialization Sequence

The 8259A module initialization sequence is usually performed as a part of the boot code
system. The Initialization Command Words are written to the 8259A module following the
quence shown in Figure 8-11. The exact sequence must be followed. The 8259A module
state machine that controls access to the individual registers. If the sequence is not follow
rectly, the state machine will get “lost” and cause improper initialization. Should the initializa
sequence be interrupted, the state machine can be reinitialized by re-starting the initializati
cess.
8-21

INTERRUPT CONTROL UNIT

59A
ccur

er of
Initialization begins with the writing of ICW1. ICW1 is accessed whenever a write to the 82
module occurs with A0=0 (MPICP0 or SPICP0) and data bit D4=1. The following actions o
within the 8259A module when ICW1 is written:

• the edge detection circuit is reset

• the Interrupt Mask Register is cleared

• the IR7 line is assigned lowest priority (default)

• the slave mode address is set to 7

• Special Mask Mode is cleared

• the Status Read bits are set to select the Interrupt Request Register

Initialization continues with the successive writing of ICW2, ICW3 and ICW4. The remaind
this section describes the Initialization Command Words in detail.
8-22

INTERRUPT CONTROL UNIT
Figure 8-11. 8259A Module Initialization Sequence

8.4.3.2 ICW1: Edge/Level Mode, Single/Cascade Mode

The bit positions and definitions for ICW1 are summarized in Figure 8-12.

In
Cascade
Mode?

Initialization
Complete

Write ICW4

Begin
Initialization

Write ICW1

Write ICW3

Need
ICW4?

Write ICW2

No

Yes

No

Yes

A1219-0A
8-23

INTERRUPT CONTROL UNIT

re is

it must
terrupt

CW4
ust be
Figure 8-12. ICW1 Register

The LTIM bit controls the edge detection circuitry on the interrupt request input lines. The
no provision for setting the mode of the individual IR lines.

The SNGL bit selects either single master or cascade (master/slave) mode. The SNGL b
be cleared to select cascade mode for both 8259A modules in the 80C186EC/C188EC In
Control Unit.

The IC4 bit, when set, informs the 8259A module that an ICW4 command will be issued. I
is always needed for the 80C186EC/C188EC. The remaining bits in the ICW1 register m
programmed with the bit values specified in Figure 8-12.

Register Name: Initialization Command Word 1

Register Mnemonic: ICW1 (accessed through MPICP0 and SPICP0)

Register Function: Begins 8259A module initialization sequence.

Bit
Mnemonic Bit Name Reset

State Function

LTIM Level
Trigger
Mode

X Set to select level triggering on IR inputs. Clear
to select edge triggering.

SNGL Single
8259A in
System

X Set when 8259A module is the only one in
system. Clear to select cascade mode.

NOTE: SNGL must always be cleared for
80C186EC and 80C188EC systems.

IC4 ICW4
Needed?

X Set to indicate that an ICW4 is needed.

NOTE: IC4 must always be set for 80C186EC
and 80C188EC systems.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

I
C
4

S
N
G
L

0

L
T
I
M

1000

A1220-0A
8-24

INTERRUPT CONTROL UNIT

59A
 being
R4 is
ng an
8.4.3.3 ICW2: Base Interrupt Type

ICW2 (Figure 8-13) specifies the five most-significant bits of the interrupt type for the 82
module. The lower three bits are automatically set equal to the interrupt request line that is
acknowledged. For example, if ICW2 is programmed to 20H (for a Type 32 interrupt) and I
being acknowledged, interrupt type 24H (for a Type 36 interrupt) is driven on the bus duri
interrupt acknowledge cycle.

Figure 8-13. ICW2 Register

NOTE

Pay strict attention to reserved interrupt types (see Figure 2-25 on page 2-40)
when assigning a base interrupt type to an 8259A module. Use of the reserved
interrupt types could cause incompatibilities with future Intel products.

Register Name: Initialization Command Word 2

Register Mnemonic: ICW2 (accessed through MPICP1 and SPICP1)

Register Function: Sets the base interrupt type for the module.

Bit
Mnemonic Bit Name Reset

State Function

T7:3 Interrupt
Type

X Write the five high-order bits of the base
address for the interrupt type (from the Interrupt
Vector Table, Figure 2-25 on page 2-40) to the
T7:3 bits. For example, write 20H to these bits
to specify a Type 8 interrupt.

T2:0 IR Line X T2:0 are automatically set equal to the interrupt
request line that is being acknowledged.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

T
0

T
1

T
2

T
3

T
4

T
5

T
6

T
7

A1221-0A
8-25

INTERRUPT CONTROL UNIT

onfig-
or cas-

8-14).
st line.
s con-
ter, the

ID of
a slave
 to sev-

d to
ode.

edefine

the

n Fig-
8.4.3.4 ICW3: Cascaded Pins/Slave Address

The function of ICW3 differs between 8259A modules configured as masters and those c
ured as slaves. ICW3 is accepted by the 8259A module only if it has been programmed f
cade mode.

In a master 8259A module, ICW3 is the Master Cascade Configuration Register (Figure
Each bit in the Master Cascade Configuration Register corresponds to an interrupt reque
Setting a bit in this register informs the master 8259A module that a slave 8259A module i
nected to the corresponding input. For example, if a slave is connected to IR3 of the mas
S3 bit in the master must be set.

In a slave 8259A module, ICW3 is the Slave ID Register (Figure 8-15). The programmed
a slave must match the IR on the master to which the slave is connected. For example, if
is connected to IR7 of the master 8259A module, then the slave’s ID must be programmed
en.

8.4.3.5 ICW4: Special Fully Nested Mode, EOI Mode, Factory Test Modes

The bit positions and definitions for ICW4 are shown in Figure 8-16. The SFNM bit is use
select Special Fully Nested Mode, and the AEOI bit is used to select the Automatic EOI M
These modes can be used only in the master of a cascaded system.

The FT2:0 bits are used to select test modes during factory test. The 8259A test modes r
the 80C186EC/C188EC pinout to facilitate device testing.

CAUTION: The FT2:0 bits must be programmed with the values shown in Figure 8-16. Failure
to follow this guideline will result in system failure and possible damage to
80C186EC/C188EC system.

The remaining bits in the ICW4 register must be programmed with the bit values specified i
ure 8-16.
8-26

INTERRUPT CONTROL UNIT
Figure 8-14. ICW3 Register — Master Cascade Configuration

Register Name: Initialization Command Word 3 (Master)

Register Mnemonic: ICW3 (accessed through MPICP1)

Register Function: Selects cascaded input pins on master 8259A.

Bit
Mnemonic Bit Name Reset

State Function

S7:0 Slave IRs XXH Each S7:0 bit corresponds to the IR line of the
same number. Setting an S7:0 bit indicates that
a slave 8259A is attached to the corresponding
IR line.

NOTE: The S7 bit must be set in the master
8259A module for the 80C186EC/C188EC.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
7

A1222-0A
8-27

INTERRUPT CONTROL UNIT
Figure 8-15. ICW3 Register — Slave ID

Register Name: Initialization Command Word 3 (Slave)

Register Mnemonic: ICW3 (accessed through SPICP1)

Register Function: Sets Slave ID for slave 8259A module.

Bit
Mnemonic Bit Name Reset

State Function

ID2:0 Slave ID XXH Sets the ID for a slave 8259A module.

NOTE: The slave module in the
80C186EC/C188EC must be set to an ID of 7
(111 binary).

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

I
D
0

I
D
100000

I
D
2

A1223-0A
8-28

INTERRUPT CONTROL UNIT
Figure 8-16. ICW4 Register

Register Name: Initialization Command Word 4

Register Mnemonic: ICW4 (accessed through MPICP1 and SPICP1)

Register Function: Selects SFN Mode and AEOI Mode.

Bit
Mnemonic Bit Name Reset

State Function

SFNM Special
Fully
Nested
Mode

X Set to select Special Fully Nested Mode.

NOTE: Special Fully Nested Mode must be
used only in the master of a cascaded system.

AEOI Automatic
EOI Mode

X Set to select Automatic EOI Mode.

NOTE: Automatic EOI Mode must be used only
in the master of a cascaded system.

FT2:0 Factory
Test Mode
Select

XXX These bits select factory test modes.

CAUTION: You must write the FT2:0 bits with
the following values. Failure to do so will cause
system failure and may cause system damage.

FT2 FT1 FT0

0 0 1

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

F
T
0

A
E
O
I

000

F
T
1

F
T
2

S
F
N
M

A1224-0A
8-29

INTERRUPT CONTROL UNIT

mand
259A
re ad-
D3 and

gister
 then
les in-

gister.
asked.
is un-

ICP1

 (spe-
tion
8.4.4 The Operation Command Words

The 8259A is reprogrammed during program execution by using the Operation Com
Words. The Operation Command Words can be sent at any time after initialization of the 8
module is complete. The three Operation Command Words (OCW1, OCW2 and OCW3) a
dressed through a combination of the A1 (register address) line and the state of data bits
D4 (see Table 8-1).

8.4.4.1 Masking Interrupts: OCW1

OCW1 (Figure 8-17) is the Interrupt Mask Register. Setting a bit in the Interrupt Mask Re
inhibits further interrupts from the corresponding IR line. For example, if the M3 bit is set,
the IR3 line cannot generate interrupts. Clearing a bit in the Interrupt Mask Register enab
terrupts from the corresponding IR line.

Note that the Interrupt Mask Register operates on the output of the Interrupt Request Re
The IR lines can still set the bits in the Interrupt Request Register, even though they are m
An interrupt will be requested if a masked IR line sets its Interrupt Request bit and then
masked.

The Interrupt Mask Register is read directly by read cycles with A1=1 (the MPICP1 and SP
Peripheral Control Block registers).

8.4.4.2 EOI And Interrupt Priority: OCW2

OCW2 (Figure 8-18) is used to set priority and execute EOI commands. The R (rotate), SL
cific level) and EOI (end-of-interrupt) bits comprise a three-bit instruction field. The instruc
field is decoded as shown in Table 8-2.

Table 8-1. Operation Command Word Addressing

Access Port Register A1 D4 D3

SPICP1 OCW1 1 X X

SPICP0 OCW2 0 0 0

SPICP0 OCW3 0 0 1
8-30

INTERRUPT CONTROL UNIT
Figure 8-17. OCW1 — Interrupt Mask Register

Register Name: Operation Command Word 1

Register Mnemonic: OCW1 (accessed through MPICP1, SPICP1)

Register Function: Interrupt Mask Register.

Bit
Mnemonic Bit Name Reset

State Function

M7:0 Mask IR XXH Setting a bit in the Interrupt Mask Register
inhibits the corresponding interrupt request line
from generating an interrupt. Clearing an M7:0
bit enables interrupts from the corresponding
source.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

M
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

A1225-0A
8-31

INTERRUPT CONTROL UNIT
Figure 8-18. OCW2 Register

Table 8-2. OCW2 Instruction Field Decoding

R SL EOI Command

0 0 0 Rotate in Automatic EOI Mode (Clear)

0 0 1 Non-Specific EOI Command

0 1 0 No Operation

0 1 1 Specific EOI *

1 0 0 Rotate in Automatic EOI Mode (Set)

* These commands use the L2:0 field

Register Name: Operation Command Word 2

Register Mnemonic: OCW2 (accessed through MPICP0, SPICP0)

Register Function: Priority and EOI commands

Bit
Mnemonic Bit Name Reset

State Function

R Rotate X This bit combines with the SL and EOI bits to
create a 3-bit instruction field. See Table 8-2.

SL Specific
Level

X This bit combines with the R and EOI bits to
create a 3-bit instruction field. See Table 8-2.

EOI End-of-
Interrupt

X This bit combines with the R and SL bits to
create a 3-bit instruction field. See Table 8-2.

L2:0 IR Level XXX These bits specify the interrupt level that the
instruction (see Table 8-2) is to act upon. When
the bits are not used by an OCW2 instruction,
they are “don’t care” values.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

L
0

L
1

0

L
2

R S
L

0

E
O
I

A1225-0A
8-32

INTERRUPT CONTROL UNIT

dule
 set,
ority
I=0).

 Non-
nding

ld of
cified

cified

e pro-
ction.
The Rotate in Automatic EOI Mode commands control priority rotation when the 8259A mo
is programmed (in ICW4) for Automatic EOI Mode. When Rotate in Automatic EOI Mode is
priority rotates automatically at the end of the interrupt acknowledge cycle. Automatic pri
rotation in Automatic EOI Mode is canceled by issuing the clear command (R=0, SL=0, EO

The Non-Specific EOI Command resets the highest-priority In-Service bit. The Rotate on
Specific EOI Command resets the highest-priority In-Service bit and assigns the correspo
IR line the lowest priority.

The Specific EOI Command resets the In-Service bit for the IR line specified in the L2:0 fie
OCW2. The Rotate on Specific EOI Command resets the In-Service bit for the IR line spe
in the L2:0 field of OCW2 and assigns that line the lowest priority.

The Set Priority Command (Specific Rotation) assigns the lowest priority to the IR line spe
in L2:0 of OCW2.

Bits D4 and D3 are part of the address for the OCW2 register. D4 and D3 must always b
grammed to zero. The L2:0 bits are “don’t care” when they are not used by an OCW2 instru

1 0 1 Rotate on Non-Specific EOI Command

1 1 0 Set Priority (Specific Rotation) *

1 1 1 Rotate on Specific EOI Command *

Table 8-2. OCW2 Instruction Field Decoding (Continued)

R SL EOI Command

* These commands use the L2:0 field
8-33

INTERRUPT CONTROL UNIT

g.
8.4.4.3 Special Mask Mode, Poll Mode and Register Reading: OCW3

OCW3 (Figure 8-19) is used to control Special Mask Mode, Poll Mode, and register readin

Figure 8-19. OCW3 Register

Register Name: Operation Command Word 3

Register Mnemonic: OCW3 (accessed through MPICP0, SPICP0)

Register Function: Controls Special Mask Mode and register reading.

Bit
Mnemonic Bit Name Reset

State Function

ESMM Enable
Special
Mask Mode

X ESMM must be set to modify SMM.

SMM Special
Mask Mode

X Set SMM to select Special Mask Mode (allows
lower-priority interrupts to interrupt higher-
priority handlers).

POLL Poll
Command

X Setting this bit starts the polling sequence.
Polling always takes precedence over reading
the 8259A registers.

ERR Enable
Register
Read

X ERR must be set to modify RSEL.

RSEL Read
Register
Select

X RSEL chooses which register is read during the
next read cycle. When RSEL is set, the In-
Service Register is read; when RSEL is
cleared, the Interrupt Request Register is read.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

R
S
E
L

E
R
R0

P
O
L
L

E
S
M
M

1

S
M
M0

A1227-0A
8-34

INTERRUPT CONTROL UNIT

 place
 SMM

is read
 Reg-
EL is
dified
odule
it is

and is
s
e bit
bus (see
has re-
g ser-
tatus

rocess:
n EOI
pt han-

g and
lling as
ing
259A
d al-
The ESMM (Enable Special Mask Mode) and SMM (Special Mask Mode) bits are used to
the 8259A module into Special Mask Mode. Special Mask Mode is selected by setting the
bit. The SMM bit can be modified (set or cleared) only when the ESMM bit is set.

The ERR (Enable Read Register) and RSEL (Register Select) bits select which register
from the 8259A module during read cycles that have A0=0 (A0=1 reads the Interrupt Mask
ister). If the RSEL bit is set, read cycles with A0=0 read the In-Service Register. When RS
clear, read cycles with A0=0 read the Interrupt Request Register. The RSEL bit can be mo
only when ERR is set. RSEL does not have to be rewritten for each read cycle; the 8259A m
“remembers” which register has been selected in OCW3. After initialization the RSEL b
cleared, selecting the Interrupt Request Register.

The POLL bit is used to issue a Poll command to the 8259A module. Once the Poll comm
issued, the 8259A module treats the next RD pulse (qualified with CS; the address is ignored) a
an interrupt acknowledge. If an interrupt of sufficient priority is present, then the In-Servic
for that source is set. The 8259A module then releases the Poll Status Byte onto the data
Figure 8-20). The Poll Status Byte has bit 7 set if a device attached to the 8259A module
quested servicing; the lower three bits indicate the highest-priority IR line that is requestin
vice. If bit 7 is clear (no device is requesting service) then the lower three bits of the Poll S
Byte are indeterminate and should be ignored. The Poll Command is always a two-step p
first the Poll Command is sent to the 8259A module, then the Poll Status Byte is read. A
must be issued at the end of the code for each service request, just as with normal interru
dlers.

Figure 8-20. Poll Status Byte

The Poll command can be used with all modes of operation for the 8259A module. Pollin
standard interrupt processing can be used within the same program. Systems that use po
the only method of device servicing must still fully initialize the 8259A module. (See “Initializ
the 8259A Module” on page 8-21.) The base interrupt type must be programmed in the 8
module, even though this value is not used (i.e., it is a “dummy” value). The Poll comman
ways takes precedence over a register read command.

7 0

L
0

I
N
T

L
2

L
1

INT = 1 When an interrupt request is pending.
L2:0 = Highest pending interrrupt request level.

A1229-0A
8-35

INTERRUPT CONTROL UNIT

pport
ming

ripher-

rrupt

ne-half
d level
 inter-

e for
8.5 MODULE INTEGRATION: THE 80C186EC INTERRUPT CONTROL UNIT

The 80C186EC/C188EC Interrupt Control Unit uses two 8259A modules with additional su
circuitry. This section describes the integration of the two 8259A modules and the program
of the Interrupt Control Unit.

8.5.1 Internal Interrupt Sources

The 80C186/C188EC has a total of eleven internal interrupt requests from the on-chip pe
als.

• Timer 0 Maximum Count (TMI0)

• Timer 1 Maximum Count (TMI1)

• Timer 2 Maximum Count (TMI2)

• DMA Channel 0 Terminal Count (DMAI0) *

• DMA Channel 1 Terminal Count (DMAI1) *

• DMA Channel 2 Terminal Count (DMAI2)

• DMA Channel 3 Terminal Count (DMAI3)

• Serial Channel 0 Receive Complete (RXI0)

• Serial Channel 0 Transmit Complete (TXI0)

• Serial Channel 1 Receive Complete (RXI1) *

• Serial Channel 1 Transmit Complete (TXI1) *

* These sources are indirectly supported. See “Indirectly Supported Internal Inte
Sources” on page 8-38.

Internally, the request from each of these sources is an active-high pulse that is valid for o
clock cycle. The Interrupt Request Latch Registers convert the pulsed request into a vali
for the 8259A modules (see Figure 8-21). The Interrupt Request Latch Registers also add
rupt handler testing capability to the 80C186EC/C188EC.

There are three Interrupt Request Registers: one for the Timer/Counter Unit (TIMIRL), on
the DMA Unit (DMAIRL) and one for the Serial Communication Unit (SCUIRL).
8-36

INTERRUPT CONTROL UNIT

l Unit.
ule are

slave
ed by
Figure 8-21. Interrupt Request Latch Register Function

8.5.1.1 Directly Supported Internal Interrupt Sources

Seven of the eleven internal interrupt sources are directly supported by the Interrupt Contro
The connections between the Interrupt Request Latch Registers and the slave 8259A mod
“hardwired” and are not programmable. The default priority (see Figure 8-22) within the
8259A module is fixed due to the internal connections. The default priority can be chang
using Specific or Automatic Rotation.

Output of
Interrupt
Request

Latch

CLKOUT

Internal
Interrupt
Request

Interrupt Request
Latch Bit

Internal
Interrupt
Request

Clear Internal
Request (From

IRL Control Logic)

To 8259A Module
or Port MUX

SET

CLEAR

Q

A1230-0A
8-37

INTERRUPT CONTROL UNIT

nsmit
pt
 a sys-
s must
Figure 8-22. Default Slave 8259 Module Priority

8.5.1.2 Indirectly Supported Internal Interrupt Sources

The interrupt request lines for DMA channel 0 and DMA channel 1 and the receive and tra
interrupts for serial channel 1 are not tied internally to the Interrupt Control Unit. These interru
requests are routed to external device pins through the Port 3 multiplexer (Figure 8-23). If
tem requires interrupt support for these devices, the multiplexed interrupt request output
be externally connected to the INT input pins of the Interrupt Control Unit.

Timer 0

Timer 1

DMA Channel 2

DMA Channel 3

Timer 2

Serial Channel 0 Receive

Serial Channel 0 Transmit

INT7 Pin

Highest Priority

Lowest Priority

A1231-0A
8-38

INTERRUPT CONTROL UNIT

quest
259A
gisters
ters

ord to
ad as
Figure 8-23. Multiplexed Interrupt Requests

8.5.1.3 Using the Interrupt Request Latch Registers

An interrupt handler for an on-board peripheral must clear that peripheral’s Interrupt Re
Latch bit before issuing an EOI to the slave 8259A. Otherwise, the IR line to the slave 8
module remains high, requesting another interrupt. The three Interrupt Request Re
(DMAIRL, SCUIRL and TIMIRL) are shown in Figures 8-24, 8-25 and 8-26. All three regis
function identically.

The state of the IR (interrupt request latch) bits can be changed only when the corresponding
mask bit is set. For example, to clear an interrupt request from Timer 0, you must write a w
the TIMRL register with the T0IR bit cleared and the MSK0 bit set. The IRL bits can be re
well as written; the MSK bits always read back as zero.

Port 3
MUX

P3.3/DMAI1DMAI1

DMAI0

TXI1

RXI1

DMAI3

DMAI2

TXI0

RXI0

P3.2/DMAI0

P3.1/TXI1

P3.0/RXI1

Interrupt
Requests

From
On-Chip

Peripherals

To Slave 8259A Module

DMA
Interrupt
Request

Latch
Register

Serial
Interrupt
Request

Latch
Register

Internal Data Bus

A1232-0A
8-39

INTERRUPT CONTROL UNIT

terrupt

heral
lated
terrupt
orre-

terrupt
8.5.1.4 Using the Interrupt Request Latch Registers to Debug Interrupt Handlers

Software can set as well as clear the individual Interrupt Request Latch bits. Setting an In
Request Latch bit posts an interrupt request just as if the on-chip peripheral had requested an
interrupt. This feature allows the debugging of interrupt handlers independent of perip
function. A serial port interrupt handler, for example, could be debugged by initiating simu
interrupts rather than connecting the necessary hardware to the serial port. Setting the In
Request Latch bit for DMA channel 0, DMA channel 1 or Serial channel 1 activates the c
sponding interrupt output, but the interrupt outputs must still be tied back to a processor in
input.

Figure 8-24. DMA Interrupt Request Latch Register

Register Name: DMA Interrupt Request Latch

Register Mnemonic: DMAIRL

Register Function: Latches DMA interrupt requests.

Bit
Mnemonic Bit Name Reset

State Function

DMIR3:0 DMA
Interrupt
Request

0H The corresponding DMA channel sets a bit in
this register to post an interrupt request. These
bits must be cleared to deassert the IR signal to
the 8259A module or to the Port 3 Multiplexer.

MSK3:0 IR Latch
Clear Mask

XH This bit must be set to modify the state of the
associated DMIR3:0 bit. The MSK3:0 bits are
safeguards against accidentally clearing a
pending interrupt request. These bits are write
only.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

D
M
I
R
0

D
M
I
R
1

D
M
I
R
2

D
M
I
R
3

M
S
K
0

M
S
K
1

M
S
K
2

M
S
K
3

A1233-0A
8-40

INTERRUPT CONTROL UNIT
Figure 8-25. Serial Communications Interrupt Request Latch Register

Register Name: Serial Communications Interrupt Request Latch

Register Mnemonic: SCUIRL

Register Function: Latches serial communications interrupt requests.

Bit
Mnemonic Bit Name Reset

State Function

TXIR1:0 Serial
Transmitter
Interrupt
Request

0H These bits are set by the corresponding
transmitter in the Serial Communications Unit.
These bits must be cleared to deassert the IR
signal to the 8259A module or to the Port 3
Multiplexer.

RXIR1:0 Serial
Receiver
Interrupt
Request

0H These bits are set by the corresponding
receiver in the Serial Communications Unit.
These bits must be cleared to deassert the IR
signal to the 8259A module or to the Port 3
Multiplexer.

MSK3:0 IR Latch
Clear Mask

XH This bit must be set to modify the state of the
corresponding IR bit. The MSK3:0 bits are
safeguards against accidentally clearing a
pending interrupt request. These bits are write
only.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

A1234-0A

15 0

T
X
I
R
0

R
X
I
R
0

T
X
I
R
1

R
X
I
R
1

M
S
K
0

M
S
K
1

M
S
K
2

M
S
K
3

8-41

INTERRUPT CONTROL UNIT

ing
on of the
Figure 8-26. Timer Interrupt Request Latch Register

8.6 HARDWARE CONSIDERATIONS WITH THE INTERRUPT CONTROL UNIT

This section covers hardware interface information for the Interrupt Control Unit. Specific tim
values are not presented, as these are subject to change. Consult the most recent versi
data sheet for timing information.

Register Name: Timer Interrupt Request Latch

Register Mnemonic: TIMIRL

Register Function: Latches Timer/Counter Unit interrupt requests.

Bit
Mnemonic Bit Name Reset

State Function

TIR2:0 Timer
Interrupt
Request

0H The corresponding timer sets a bit in this
register to post an interrupt request. These bits
must be cleared to deassert the IR signal to the
8259A module.

MSK2:0 IR Latch
Clear Mask

XH This bit must be set to modify the state of the
associated TIR2:0 bit. The MSK2:0 bits are
safeguards against accidentally clearing a
pending interrupt request. These bits are write
only.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

T
I
R
0

T
I
R
1

T
I
R
2

M
S
K
0

M
S
K
1

M
S
K
2

M
S
K
3

A1235-0A
8-42

INTERRUPT CONTROL UNIT

ence

e inter-

nchro-
the In-
 IR

equest
r) and

ion cir-
ge 8-7).
r by

 time
mum
8.6.1 Interrupt Latency and Response Time

Interrupt latency is the time required for the CPU to begin the interrupt acknowledge sequ
once an unmasked external interrupt is presented. Interrupt response time is the amount of time
necessary to complete the interrupt acknowledge cycle and transfer program control to th
rupt handler.

The 8259A modules add a finite delay to the interrupt latency. The 8259A modules are asy
nous; the path through the module is modeled as a purely combinatorial delay known as
terrupt Resolution Time (TIRES). The Interrupt Resolution Time is defined as the delay from an
line being asserted to the interrupt request output going active (Figure 8-27). An interrupt r
on the slave 8259A module must travel through two 8259A units (the slave and the maste
therefore has twice the interrupt resolution delay (2 × TIRES)

Figure 8-27. Interrupt Resolution Time

8.6.2 Resetting the Edge Detector

When programmed for edge triggered mode, the 8259A module activates an edge-detect
cuit that sits between the IR lines and the Interrupt Request Register (see Figure 8-4 on pa
The edge-detection circuit is reset in one of two ways: during initialization of the module o
deasserting the IR line.

The edge-detection circuit requires that the IR line be held low for a minimum amount of
(TIRLH) in order to reset properly (see Figure 8-28). Failure to meet the specification for mini
low time prevents generation of further interrupts from an interrupt source.

IR Line

INT Output of
8259A Module

TIRES

A1236-0A
8-43

INTERRUPT CONTROL UNIT

t ac-
 prop-
rrupt
devices

odules

the on-
vailable
nal in-
IRs
y be-

l rec-
ly due
evic-

. The
he A0

d A0 to
 pin.
 are
Figure 8-28. Resetting the Edge Detection Circuit

8.6.3 Ready Generation

The on-chip 8259A modules do not supply a READY signal to the CPU during interrup
knowledge cycles. The hardware designer must ensure that a READY signal is applied to
erly terminate interrupt acknowledge cycles. Wait states are not required for inte
acknowledge cycles that access the on-chip 8259A modules. External cascaded 8259A
may require wait states.

READY is automatically asserted for read and write accesses to the on-board 8259A m
(through the Peripheral Control Block).

8.6.4 Connecting External 8259A Devices

There are several hardware concerns when cascading additional 8259 family devices to
board master 8259A module. The master 8259A module has seven direct inputs that are a
for cascading. The interrupt capability of the 80C186/C188EC can be extended to 57 exter
terrupts by connecting seven additional 8259 family devices to these seven pins (8 slave × 7
master INT6:0 + INT7 = 57 total IRs). Polling may be used to extend I/O handling capabilit
yond 57 sources.

This section covers external cascading and applies to all of the 8259A family devices. Inte
ommends the use of the 82C59A-2 device for cascading to the 80C186EC/C188EC fami
to its higher speed and lower power consumption compared with the older NMOS 8259A d
es.

A typical connection for an external cascaded 82C59A-2 device is shown in Figure 8-29
8259A device resides on the lower half of the 16-bit processor data bus in this example. T
address line is connected to latched A1 address line (8-bit systems would connect latche
the 8259A’s A0 line). The 8259A device is hardwired for slave mode by strapping the SP/EN
The CAS2:0 pins are connected to the AD15:13/CAS2:0 (for 8-bit systems, these
A15:13/CAS2:0) lines from the processor.

IR Line
TIRLH

A1237-0A
8-44

INTERRUPT CONTROL UNIT

od-
terrupt
g driv-

if one)
Figure 8-29. Typical Cascade Connection for 82C59A-2

8.6.4.1 The External INTA Cycle

Every interrupt acknowledge (INTA) cycle, including those that access the internal 8259A m
ules, is visible on the external processor pins. For an internal interrupt acknowledge, the in
type driven by the internal 8259A module does not appear on the external bus (and anythin
en on the external bus is ignored). The AD15:13/CAS2:0 lines drive the slave address (
during both internal and external interrupt acknowledge cycles. The INTA cycle is described in
greater detail in Chapter 3, “Bus Interface Unit.”

C
A

S
2

C
A

S
1

C
A

S
0

Master 8259A

AD15/CAS2
AD14/CAS1
AD13/CAS0

INTA

CPU

IR0
IR1
IR2
IR3
IR4
IR5
IR6
IR7

INT6

WR

RD

GCS

INTA

INT

SP/EN

WR

RD

CS

D7:0D7:0

A0

Note: Latched A0 is used for 80C188EC, latched A1 is used for 80C186EC

From latched
address line

(Note)

A1238-0A
8-45

INTERRUPT CONTROL UNIT

cles.
s; the

e cy-
ally.

ce. The
. The

ith

y of
rans-
ot stop

ecifica-
oblem
 wait
k cy-
ence.
The AD15:13 pins are used for CAS2:0 information only during interrupt acknowledge cy
There is no need to latch the AD15:13/CAS2:0 signals during interrupt acknowledge cycle
8259A family devices have internal CAS latches that are activated by the INTA signal. The
8259A family devices ignore the state of the CAS lines except during interrupt acknowledg
cles. The AD15:13/CAS2:0 lines begin driving the Slave ID as soon as it is available intern

8.6.4.2 Timing Constraints

There are several timing constraints to be aware of when connecting an external 8259 devi
following discussion is based on an analysis of the 82C59A-2 device specifications
82C59A-2 is the fastest 8259A family device currently available from Intel.

Minimum RD/INTA Pulse Width (TRLRH) can be met for read cycles by inserting wait states (w
the Chip-Select Unit or an external wait state generator). Minimum INTA pulse width can be met
for interrupt acknowledge cycles by inserting wait states as well.

Minimum Write Pulse Width (TWLWH) and Minimum Data Setup Time (TDVWH) can be met by in-
serting wait states into write cycles to the 82C59A-2.

Data Float After RD or INTA (TRHDZ) can be guaranteed only below a processor frequenc
11.76 MHz. Above 11.76 MHz, the 82C59A-2 device (or devices) must be buffered with a t
ceiver (a 74F245 or the equivalent). Without the transceiver, the 82C59-A2 device does n
driving the data bus in time for the next bus cycle, causing bus contention.

Back-to-Back Reads (TRHRL) and Back-to-Back Writes (TWHWL) both refer to the recovery time
required by the 82C59A-2 between two accesses of the same type. This recovery time sp
tion is violated above a processor frequency of 12.5 MHz. The simplest way to solve this pr
is to insert a “software wait state” in the programming code. The most common software
state is the “JMP $+2” instruction. “JMP $+2” ensures an uninterruptable delay of 14 cloc
cles. Figure 8-30 shows the use of the “JMP $+2” instruction in a typical programming sequ

Figure 8-30. Software Wait State for External 82C59A-2

MOV DX, EXT59_ODD;ACCESS IMR (A0=1)
MOV AL, 07FH;UNMASK IR7 ONLY
OUT DX, AL
JMP $+2 ;SOFTWARE WAIT STATE
MOV DX, EXT59_EVN ;READ ISR (A0=1, ISR

;WILL BE SELECTED)
MOV AL, 0BH;READ ISR COMMAND
OUT DX, AL
8-46

INTERRUPT CONTROL UNIT

-2

se the

and
e used

ning
 fail-

ote the
rring.
Non-Alike Access Recovery Time (TCHCL) refers to the recovery time required by the 82C59A
between accesses of different types (e.g., a RD followed by a WR or a WR followed by an INTA).
This problem is more complicated than the back-to-back read or write recovery time becau
programmer does not typically have control over the INTA signal. The only way to avoid violat-
ing this specification for INTA is to disable interrupts during reads or writes to the 82C59A-2
re-enable interrupts only after recovery time has elapsed. The “JMP $+2” method may b
for wait states between reads and writes.

8.7 MODULE EXAMPLES

Example 8.1 is a template for system initialization. Follow this template closely when desig
your system software. Failure to initialize the 8259A modules correctly will result in system
ure and potential system damage.

Example 8.2 shows the code necessary to issue an End-of-Interrupt (EOI) command. N
clearing of the Interrupt Request Register bit to prevent unrequested interrupts from occu

Example 8.3 illustrates the use of the Poll command in lieu of normal interrupt servicing.

Example 8-1. Initializing the Interrupt Control Unit

MOD186

NAME 80C186EC_ICU_INITIALIZATION_TEMPLATE

;The following code would typically be found in the boot section
;of the system software.

;It is assumed that the equates for the pcb register mnemonics
;are in the include file “pcb_equates.inc”

$INCLUDE (PCB_EQUATES.INC)

BOOT_ROM SEGMENT ;This is the boot rom code

ASSUME CS:BOOT_ROM, DS:NOTHING

;First, ensure that all external interrupts are disabled.

CLI ;Clear CPU interrupt enable
;Set up interrupt vector table. We only show the initialization of the timer 0
;vector. The timer 0 vector type is set to 28h (Type 40) in the slave 8259a
;initialization.

;Your system code needs to initialize all vectors for the 8259a modules and
;all exceptions and traps.
8-47

INTERRUPT CONTROL UNIT
Example 8-1. Initializing the Interrupt Control Unit (Continued)

;We begin with a type 28h (Type 40) interrupt.

XOR AX, AX ;Clear AX
MOV DS, AX ;Data seg points to vector table

MOV AX, OFFSET TIM0_HANDLER
MOV BX, 28H*4
MOV DS:[BX], AX ;Store the offset of the handler

MOV AX, SEG TIM0_HANDLER
MOV BX, 28H*4+2
MOV DS:[BX], AX ;Store segment of the handler

;The remainder of the vectors would be initialized similarly.
;The above code was chosen for clarity, not efficiency!

;Now we begin initialization of the 8259A modules ... ICW1 is first

MOV DX, SPICP0 ;ICW1 for the slave is
;accessed thru SPICP0

XOR AH, AH ;Clear reserved bits
MOV AL, 10001B ;Edge trigger, cascade mode,

;IC4 required
OUT DX, AL

;Now set base interrupt type at 28H for slave module in ICW2

MOV DX, SPICP1 ;ICW2 is accessed thru SPICP1
MOV AL, 28H ;Base type is 28H (Type 40)
OUT DX, AL

;Slave ID is next in ICW3. The slave id must be 7.
MOV DX, SPICP1 ;ICW3 is also thru SPICP1
MOV AL, 7 ;ID=7 always for slave module
OUT DX, AL

;ICW4 completes the initialization
MOV DX, SPICP1 ;ICW4 is also thru SPICP1
MOV AL, 1 ;No special fully nested mode

;No AEOI mode factory test codes
;set correctly

OUT DX, AL

;The initialization of the slave 8259A module is done.
8-48

INTERRUPT CONTROL UNIT
Example 8-1. Initializing the Interrupt Control Unit (Continued)

;Now start the master initialization
MOV DX, MPICP0 ;ICW1 for the slave is accessed

;thru MPICP0
XOR AH, AH ;Clear reserved bits
MOV AL, 10001B ;Edge trigger, cascade mode,

;IC4 required
OUT DX, AL

;Now set base interrupt type at 20H (Type 32) for the master module in ICW2.
;This creates a contiguous block for the interrupt control unit
;from type 20H to type 2FH.

MOV DX, MPICP1 ;ICW2 is accessed thru MPICP1
MOV AL, 20H ;Base type is 20H (Type 32)
OUT DX, AL

;Now program the master cascade configuration register in ICW3

MOV DX, MPICP1 ;ICW3 is also thru MPICP1
MOV AL, 80H ;Slave module is always on IR7
OUT DX, AL

;ICW4 completes the initialization

MOV DX, MPICP1 ;ICW4 is also thru MPICP1
MOV AL, 1B ;No special fully nested mode,

;no AEOI mode, factory test codes
;set correctly

OUT DX, AL

;Initialization is now complete. we can unmask global interrupts.
STI

BOOT_ROM ENDS
8-49

INTERRUPT CONTROL UNIT
Example 8-2. Template for a Simple Interrupt Handler

;The following is a template for an interrupt handler for the 80C186EC/C188EC:

INT_HNDLERS SEGMENT
ASSUME CS:INT_HNDLRS

TIM0_HANDLER PROC FAR

STI ;Necessary to nest interrupts

;Handler code would be inserted here.

MOV DX, TIMIRL ;Need to clear IR for
MOV AX, 0100H ;TIMER 0 (MSK0=1, TIR0=0)
OUT DX, AL ;Request is now deasserted

MOV DX, MPICP0 ;EOI command to OCW2
MOV AX, 20H ;Non-specific EOI
OUT DX, AL ;Send master EOI

MOV DX, SPICP0 ;EOI command to OCW2
MOV AX, 20H ;Non-specific EOI
OUT DX, AL ;Send slave EOI

IRET ;Return to main task

TIM0_HANDLER ENDP

INT_HNDLRS ENDS
8-50

INTERRUPT CONTROL UNIT
Example 8-3. Using the Poll Command

;The following section of code shows the polling process
;for the 8259A modules...
;
;For brevity, the Register EQUates are not shown.
;
POLL_EXAMPLE SEGMENT

ASSUME CS:POLL_EXAMPLE

MOV DX, SPICP0 ;POLL Command issued thru OCW3
MOV AX, 0CH ;POLL=1 and D5:4=01
OUT DX, AL ;Issue POLL Command

;The slave 8259A will deposit the poll status byte on the
;next RD# pulse...

IN DX, AL ;Read the slave 8259A
TEST AL, 80H ;Has there been an interrupt?
JNE INTERPT ;If D7=1 --> yes!

;If the code gets to here then there has been no interrupt.

JMP NO_INTERRUPTS

INTERPT: AND AL, 111B ;Get just the interrupt type.

;At this point the interrupt type is in AL. Your code
;would branch to the appropriate routines...

POLL_EXMPL ENDS
8-51

9
Timer/Counter Unit

lude a
ented

bles. A
s. (See
e the

he op-
 mod-
nks are
nter el-

ith an
t’s se-
states.
me re-

mers 0
 max-
t val-

timer is
at tim-

d either

as a
ally or
ed by
imum
CHAPTER 9
TIMER/COUNTER UNIT

The Timer/Counter Unit can be used in many applications. Some of these applications inc
real-time clock, a square-wave generator and a digital one-shot. All of these can be implem
in a system design. A real-time clock can be used to update time-dependent memory varia
square-wave generator can be used to provide a system clock tick for peripheral device
“Timer/Counter Unit Application Examples” on page 9-17 for code examples that configur
Timer/Counter Unit for these applications.)

9.1 FUNCTIONAL OVERVIEW

The Timer/Counter Unit is composed of three independent 16-bit timers (see Figure 9-1). T
eration of these timers is independent of the CPU. The internal Timer/Counter Unit can be
eled as a single counter element, time-multiplexed to three register banks. The register ba
dual-ported between the counter element and the CPU. During a given bus cycle, the cou
ement and CPU can both access the register banks; these accesses are synchronized.

The Timer/Counter Unit is serviced over four clock periods, one timer during each clock, w
idle clock at the end (see Figure 9-2). No connection exists between the counter elemen
quencing through timer register banks and the Bus Interface Unit’s sequencing through T-
Timer operation and bus interface operation are asynchronous. This time-multiplexed sche
sults in a delay of 2½ to 6½ CLKOUT periods from timer input to timer output.

Each timer keeps its own running count and has a user-defined maximum count value. Ti
and 1 can use one maximum count value (single maximum count mode) or two alternating
imum count values (dual maximum count mode). Timer 2 can use only one maximum coun
ue. The control register for each timer determines the counting mode to be used. When a
serviced, its present count value is incremented and compared to the maximum count for th
er. If these two values match, the count value resets to zero. The timers can be configure
to stop after a single cycle or to run continuously.

Timers 0 and 1 are functionally identical. Figure 9-3 illustrates their operation. Each h
latched, synchronized input pin and a single output pin. Each timer can be clocked intern
externally. Internally, the timer can either increment at ¼ CLKOUT frequency or be prescal
Timer 2. A timer that is prescaled by Timer 2 increments when Timer 2 reaches its max
count value.
9-1

TIMER/COUNTER UNIT
Figure 9-1. Timer/Counter Unit Block Diagram

Transition Latch/
Synchronizer

Transition Latch/
Synchronizer

Timer 0
Registers

Timer 1
Registers

Timer 2
Registers

Output Latch

Output Latch

T0
Out

T1
Out

Counter
Element

CPU

Interrupt
Latch

CPU
Clock

T0 In T1 In

A1292-0A
9-2

TIMER/COUNTER UNIT
Figure 9-2. Counter Element Multiplexing and Timer Input Synchronization

T1IN

T1OUT

NOTES:
1. T0IN resolution time (setup time met).
2. T1IN resolution time (setup time not met).
3. Modified count value written into Timer 0 count register.
4. T1IN resolution time, count value written into Timer 1 count register.
5. T1IN resolution time.

T0OUT

T0IN

Timer 0
Serviced

Timer 1
Serviced

Timer 2
Serviced Dead

Timer 0
Serviced

Timer 1
Serviced

Timer 2
Serviced Dead

Timer 0
Serviced

1

43

52

A1293-0A
9-3

TIMER/COUNTER UNIT
Figure 9-3. Timers 0 and 1 Flow Chart

Timer
Enabled
(EN = 1)

?

Clear Count
Register

Start
No

Yes

No

Yes Lo to Hi
transition on input

pin since last
service

?

Done

External
Clocking
(EXT = 1)

?

Retrigger
(RTG = 1)

?

Yes

No

No

Yes

Yes

Did Timer 2
Reach Maxcount

Last Service
State

?

Prescaler On
(P = 1)

?

Lo to Hi
transition on input

pin since last
service

?

Timer Input
at High Level

?

No

No

Yes

Done

Done

Increment
Counter

Yes

Continued
"A"

No Yes

No

A1294-0A
9-4

TIMER/COUNTER UNIT
Figure 9-3. Timers 0 and 1 Flow Chart (Continued)

No
(Use"B")

No

Counter =
Compare "A"

?

Alternating
Maxcount Regs

(ALT = 1)
?

Using
Maxcount A

(RIU = 0)
?

Yes

No

No

Yes
(Use"A")

Counter =
Compare "B"

?

Counter =
Compare "A"

?

Continuous Mode
(CONT=1)

?

Yes

No

Done

Clear RIU Bit
TOUT Pin Driven High

Continued From
"A"

No Yes

Done

Clear Enable Bit
(Stop Counting)

No

Continuous Mode
(CONT=1)

?

Yes

Pulse TOUT Pin
Low For 1 Clock

Clear Enable Bit
(Stop Counting)

Set RIU Bit
TOUT Pin Driven Low

Yes

Yes

Yes

Interrupt Bit Set
?

No

Clear Counter

Request Interrupt

A1295-0A
9-5

TIMER/COUNTER UNIT

o en-
w-to-

icating
ond to
Inter-

 mode
Timer 2
pts at

Timer
0 and
er con-
 Max-
When configured for internal clocking, the Timer/Counter Unit uses the input pins either t
able timer counting or to retrigger the associated timer. Externally, a timer increments on lo
high transitions on its input pin (up to ¼ CLKOUT frequency).

Timers 0 and 1 each have a single output pin. Timer output can be either a single pulse, ind
the end of a timing cycle, or a variable duty cycle wave. These two output options corresp
single maximum count mode and dual maximum count mode, respectively (Figure 9-4).
rupts can be generated at the end of every timing cycle.

Timer 2 has no input or output pins and can be operated only in single maximum count
(Figure 9-4). It can be used as a free-running clock and as a prescaler to Timers 0 and 1.
can be clocked only internally, at ¼ CLKOUT frequency. Timer 2 can also generate interru
the end of every timing cycle.

Figure 9-4. Timer/Counter Unit Output Modes

9.2 PROGRAMMING THE TIMER/COUNTER UNIT

Each timer has three registers: a Timer Control register (Figure 9-5 and Figure 9-6), a
Count register (Figure 9-7) and a Timer Maxcount Compare register (Figure 9-8). Timers
1 also have access to an additional Maxcount Compare register. The Timer Control regist
trols timer operation. The Timer Count register holds the current timer count value, and the
count Compare register holds the maximum timer count value.

Dual Maximum
Count Mode

Single Maximum
Count Mode

One CPU
Clock

Maxcount BMaxcount A

Maxcount A

A1296-0A
9-6

TIMER/COUNTER UNIT
Figure 9-5. Timer 0 and Timer 1 Control Registers

Register Name: Timer 0 and 1 Control Registers

Register Mnemonic: T0CON, T1CON

Register Function: Defines Timer 0 and 1 operation.

Bit
Mnemonic Bit Name Reset

State Function

EN Enable 0 Set to enable the timer. This bit can be written only
when the INH bit is set.

INH Inhibit X Set to enable writes to the EN bit. Clear to ignore
writes to the EN bit. The INH bit is not stored; it
always reads as zero.

INT Interrupt X Set to generate an interrupt request when the Count
register equals a Maximum Count register. Clear to
disable interrupt requests.

RIU Register In
Use

X Indicates which compare register is in use. When set,
the current compare register is Maxcount Compare B;
when clear, it is Maxcount Compare A.

MC Maximum
Count

X This bit is set when the counter reaches a maximum
count. The MC bit must be cleared by writing to the
Timer Control register. This is not done automati-
cally. If MC is clear, the counter has not reached a
maximum count.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to ensure compatibility with future Intel products.

15 0

C
O
N
T

A
L
T

E
X
T

R
T
G

M
C

PR
I
U

I
N
T

I
N
H

E
N

A1297-0A
9-7

TIMER/COUNTER UNIT
Figure 9-5. Timer 0 and Timer 1 Control Registers (Continued)

Register Name: Timer 0 and 1 Control Registers

Register Mnemonic: T0CON, T1CON

Register Function: Defines Timer 0 and 1 operation.

Bit
Mnemonic Bit Name Reset

State Function

RTG Retrigger X This bit specifies the action caused by a low-to-high
transition on the TMR INx input. Set RTG to reset the
count; clear RTG to enable counting. This bit is
ignored with external clocking (EXT=1).

P Prescaler X Set to increment the timer when Timer 2 reaches its
maximum count. Clear to increment the timer at ¼
CLKOUT. This bit is ignored with external clocking
(EXT=1).

EXT External
Clock

X Set to use external clock; clear to use internal clock.
The RTG and P bits are ignored with external clocking
(EXT set).

ALT Alternate
Compare
Register

X This bit controls whether the timer runs in single or
dual maximum count mode (see Figure 9-4 on page
9-6). Set to specify dual maximum count mode; clear
to specify single maximum count mode.

CONT Continuous
Mode

X Set to cause the timer to run continuously. Clear to
disable the counter (clear the EN bit) after each
counting sequence.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to ensure compatibility with future Intel products.

15 0

C
O
N
T

A
L
T

E
X
T

R
T
G

M
C

PR
I
U

I
N
T

I
N
H

E
N

A1297-0A
9-8

TIMER/COUNTER UNIT
Figure 9-6. Timer 2 Control Register

Register Name: Timer 2 Control Register

Register Mnemonic: T2CON

Register Function: Defines Timer 2 operation.

Bit
Mnemonic Bit Name Reset

State Function

EN Enable 0 Set to enable the timer. This bit can be written
only when the INH bit is set.

INH Inhibit X Set to enable writes to the EN bit. Clear to
ignore writes to the EN bit. The INH bit is not
stored; it always reads as zero.

INT Interrupt X Set to generate an interrupt request when the
Count register equals a Maximum Count
register. Clear to disable interrupt requests.

MC Maximum
Count

X This bit is set when the counter reaches a
maximum count. The MC bit must be cleared
by writing to the Timer Control register. This
is not done automatically. If MC is clear, the
counter has not reached a maximum count.

CONT Continuous
Mode

X Set to cause the timer to run continuously.
Clear to disable the counter (clear the EN bit)
after each counting sequence.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

A1298-0A

15 0

C
O
N
T

M
C

I
N
T

I
N
H

E
N

9-9

TIMER/COUNTER UNIT
Figure 9-7. Timer Count Registers

Register Name: Timer Count Register

Register Mnemonic: T0CNT, T1CNT, T2CNT

Register Function: Contains the current timer count.

Bit
Mnemonic Bit Name Reset

State Function

TC15:0 Timer
Count Value

XXXXH Contains the current count of the associated
timer.

15 0

T
C
1
3

T
C
1
4

T
C
1
5

T
C
1
2

T
C
9

T
C
1
0

T
C
1
1

T
C
8

T
C
5

T
C
6

T
C
7

T
C
4

T
C
1

T
C
2

T
C
3

T
C
0

A1299-0A
9-10

TIMER/COUNTER UNIT

ble.

use
unting

. For

scale
own
in an
Figure 9-8. Timer Maxcount Compare Registers

9.2.1 Initialization Sequence

When initializing the Timer/Counter Unit, the following sequence is suggested:

1. If timer interrupts will be used, program interrupt vectors into the Interrupt Vector Ta

2. Clear the Timer Count register. This must be done before the timer is enabled beca
the count register is undefined at reset. Clearing the count register ensures that co
begins at zero.

3. Write the desired maximum count value to the Timer Maxcount Compare register
dual maximum count mode, write a value to both Maxcount Compare A and B.

4. Program the Timer Control register to enable the timer. When using Timer 2 to pre
another timer, enable Timer 2 last. If Timer 2 is enabled first, it will be at an unkn
point in its timing cycle when the timer to be prescaled is enabled. This results
unpredictable duration of the first timing cycle for the prescaled timer.

Register Name: Timer Maxcount Compare Register

Register Mnemonic: T0CMPA, T0CMPB, T1CMPA, T1CMPB, T2CMPA

Register Function: Contains timer maximum count value.

Bit
Mnemonic Bit Name Reset

State Function

TC15:0 Timer
Compare
Value

XXXXH Contains the maximum value a timer will count
to before resetting its Count register to zero.

15 0

T
C
1
3

T
C
1
4

T
C
1
5

T
C
1
2

T
C
9

T
C
1
0

T
C
1
1

T
C
8

T
C
5

T
C
6

T
C
7

T
C
4

T
C
1

T
C
2

T
C
3

T
C
0

A1300-0A
9-11

TIMER/COUNTER UNIT

 be a
 CPU

 timer
al pin
counts

ent.
cause

timer
icing

config-
 Table
nning

1 also
 Timer
sets to
se the
e max-
an be
9.2.2 Clock Sources

The 16-bit Timer Count register increments once for each timer event. A timer event can
low-to-high transition on a timer input pin (Timers 0 and 1), a pulse generated every fourth
clock (all timers) or a timeout of Timer 2 (Timers 0 and 1). Up to 65536 (216) events can be count-
ed.

Timers 0 and 1 can be programmed to count low-to-high transitions on their input pins as
events by setting the External (EXT) bit in their control registers. Transitions on the extern
are synchronized to the CPU clock before being presented to the timer circuitry. The timer
transitions on this pin. The input signal must go low, then high, to cause the timer to increm
The maximum count-rate for the timers is ¼ the CPU clock rate (measured at CLKOUT) be
the timers are serviced only once every four clocks.

All timers can use transitions of the CPU clock as timer events. For internal clocking, the
increments every fourth CPU clock due to the counter element’s time-multiplexed serv
scheme. Timer 2 can use only the internal clock as a timer event.

Timers 0 and 1 can also use Timer 2 reaching its maximum count as a timer event. In this
uration, Timer 0 or Timer 1 increments each time Timer 2 reaches its maximum count. See
9-1 for a summary of clock sources for Timers 0 and 1. Timer 2 must be initialized and ru
in order to increment values in other timer/counters.

9.2.3 Counting Modes

All timers have a Timer Count register and a Maxcount Compare A register. Timers 0 and
have access to a second Maxcount Compare B register. Whenever the contents of the
Count register equal the contents of the Maxcount Compare register, the count register re
zero. The maximum count value will never be stored in the count register. This is becau
counter element increments, compares and resets a timer in one clock cycle. Therefore, th
imum value is never written back to the count register. The Maxcount Compare register c
written at any time during timer operation.

Table 9-1. Timer 0 and 1 Clock Sources

EXT P Clock Source

0 0 Timer clocked internally at ¼ CLKOUT frequency.

0 1 Timer clocked internally, prescaled by Timer 2.

1 X Timer clocked externally at up to ¼ CLKOUT frequency.
9-12

TIMER/COUNTER UNIT

unt
lue of
count

d. The
lue ex-
 counts
 Max-

timers
ers 0
he Al-
ers 0

. The
2 can

 A and
 Com-
 to zero
ount

imum
her a

of the
input
 the in-

e, the
t re-
r will
The timer counting from its initial count (usually zero) to its maximum count (either Maxco
Compare A or B) and resetting to zero defines one timing cycle. A Maxcount Compare va
0 implies a maximum count of 65536, a Maxcount Compare value of 1 implies a maximum
of 1, etc.

Only equivalence between the Timer Count and Maxcount Compare registers is checke
count does not reset to zero if its value is greater than the maximum count. If the count va
ceeds the Maxcount Compare value, the timer counts to 0FFFFH, increments to zero, then
to the value in the Maxcount Compare register. Upon reaching a maximum count value, the
imum Count (MC) bit in the Timer Control register sets. The MC bit must be cleared by writing
to the Timer Control register. This is not done automatically.

The Timer/Counter Unit can be configured to execute different counting sequences. The
can operate in single maximum count mode (all timers) or dual maximum count mode (Tim
and 1 only). They can also be programmed to run continuously in either of these modes. T
ternate (ALT) bit in the Timer Control register determines the counting modes used by Tim
and 1.

All timers can use single maximum count mode, where only Maxcount Compare A is used
timer will count to the value contained in Maxcount Compare A and reset to zero. Timer
operate only in this mode.

Timers 0 and 1 can also use dual maximum count mode. In this mode, Maxcount Compare
Maxcount Compare B are both used. The timer counts to the value contained in Maxcount
pare A, resets to zero, counts to the value contained in Maxcount Compare B, and resets
again. The Register In Use (RIU) bit in the Timer Control register indicates which Maxc
Compare register is currently in use.

The timers can be programmed to run continuously in single maximum count and dual max
count modes. The Continuous (CONT) bit in the Timer Control register determines whet
timer is disabled after a single counting sequence.

9.2.3.1 Retriggering

The timer input pins affect timer counting in three ways (see Table 9-2). The programming
External (EXT) and Retrigger (RTG) bits in the Timer Control register determines how the
signals are used. When the timers are clocked internally, the RTG bit determines whether
put pin enables timer counting or retriggers the current timing cycle.

When the EXT and RTG bits are clear, the timer counts internal timer events. In this mod
input is level-sensitive, not edge-sensitive. A low-to-high transition on the timer input is no
quired for operation. The input pin acts as an external enable. If the input is high, the time
count through its sequence, provided the timer remains enabled.
9-13

TIMER/COUNTER UNIT

input
ly after
fore
 In dual
sition
resets

n be a
e out-
imum
en the

g tran-
ulti-
 input

ws the
e input

e case,
ntil the

e Fig-
 value.
When the EXT bit is clear and the RTG bit is set, every low-to-high transition on the timer
pin causes the Count register to reset to zero. After the timer is enabled, counting begins on
the first low-to-high transition on the input pin. If another low-to-high transition occurs be
the end of the timer cycle, the timer count resets to zero and the timer cycle begins again.
maximum count mode, the Register In Use (RIU) bit does not clear when a low-to-high tran
occurs. For example, if the timer retriggers while Maxcount Compare B is in use, the timer
to zero and counts to maximum count B before the RIU bit clears. In dual maximum count
mode, the timer retriggering extends the use of the current Maxcount Compare register.

9.2.4 Pulsed and Variable Duty Cycle Output

Timers 0 and 1 each have an output pin that can perform two functions. First, the output ca
single pulse, indicating the end of a timing cycle (single maximum count mode). Second, th
put can be a level, indicating the Maxcount Compare register currently in use (dual max
count mode). The output occurs one clock after the counter element services the timer wh
maximum count is reached (see Figure 9-9).

With external clocking, the time between a transition on a timer input and the correspondin
sition of the timer output varies from 2½ to 6½ clocks. This delay occurs due to the time-m
plexed servicing scheme of the Timer/Counter Unit. The exact timing depends on when the
occurs relative to the counter element’s servicing of the timer. Figure 9-2 on page 9-3 sho
two extremes in timer output delay. Timer 0 demonstrates the best possible case, where th
occurs immediately before the timer is serviced. Timer 1 demonstrates the worst possibl
where the input is latched, but the setup time is not met and the input is not recognized u
counter element services the timer again.

In single maximum count mode, the timer output pin goes low for one CPU clock period (se
ure 9-4 on page 9-6). This occurs when the count value equals the Maxcount Compare A
If programmed to run continuously, the timer generates periodic pulses.

Table 9-2. Timer Retriggering

EXT RTG Timer Operation

0 0 Timer counts internal events, if input pin remains high.

0 1 Timer counts internal events; count resets to zero on every low-to-high transition on
the input pin.

1 X Timer input acts as clock source.
9-14

TIMER/COUNTER UNIT

gister
cates
 repet-
count
 cycle
 (even

. The
to use
 incre-

 them-
t pro-
unting
hed. In
 and 1
Figure 9-9. TxOUT Signal Timing

In dual maximum count mode, the timer output pin indicates which Maxcount Compare re
is currently in use. A low output indicates Maxcount Compare B, and a high output indi
Maxcount Compare A (see Figure 9-4 on page 9-6). If programmed to run continuously, a
itive waveform can be generated. For example, if Maxcount Compare A contains 10, Max
Compare B contains 20, and CLKOUT is 12.5 MHz, the timer generates a 33 percent duty
waveform at 104 KHz. The output pin always goes high at the end of the counting sequence
if the timer is not programmed to run continuously).

9.2.5 Enabling/Disabling Counters

Each timer has an Enable (EN) bit in its Control register to allow or prevent timer counting
Inhibit (INH) bit controls write accesses to the EN bit. Timers 0 and 1 can be programmed
their input pins as enable functions also. If a timer is disabled, the count register does not
ment when the counter element services the timer.

The Enable bit can be altered by programming or the timers can be programmed to disable
selves at the end of a counting sequence with the Continuous (CONT) bit. If the timer is no
grammed for continuous operation, the Enable bit automatically clears at the end of a co
sequence. In single maximum count mode, this occurs after Maxcount Compare A is reac
dual maximum count mode, this occurs after Maxcount Compare B is reached (Timers 0
only).

TxOUT Pin

1

Internal Count Value

NOTE: 1. TCLOV1

Timer 0
Serviced

Maxcount - 1 0

A1301-0A
9-15

TIMER/COUNTER UNIT

 timer
e tim-
ol reg-
 (input
cks.

 inter-
as the

ister.
l max-
r Max-
ted, but
ontrol-
services

sor ac-
d count

nable

 input

s. The
lid
ot be
The input pins for Timers 0 and 1 provide an alternate method for enabling and disabling
counting. When using internal clocking, the input pin can be programmed either to enable th
er or to reset the timer count, depending on the state of the Retrigger (RTG) bit in the contr
ister. When used as an enable function, the input pin either allows (input high) or prevents
low) timer counting. To ensure recognition of an input level, it must be valid for four CPU clo
This is due to the counter element’s time-multiplexed servicing scheme for the timers.

9.2.6 Timer Interrupts

All timers can generate internal interrupt requests. Although all three timers share a single
rupt request to the CPU, each has its own vector location and internal priority. Timer 0 h
highest interrupt priority and Timer 2 has the lowest.

Timer Interrupts are enabled or disabled by the Interrupt (INT) bit in the Timer Control reg
If enabled, an interrupt is generated every time a maximum count value is reached. In dua
imum count mode, an interrupt is generated each time the value in Maxcount Compare A o
count Compare B is reached. If the interrupt is disabled after a request has been genera
before a pending interrupt is serviced, the interrupt request remains active (the Interrupt C
ler latches the request). If a timer generates a second interrupt request before the CPU
the first interrupt request, the first request is lost.

9.2.7 Programming Considerations

Timer registers can be read or written whether the timer is operating or not. Since proces
cesses to timer registers are synchronized with counter element accesses, a half-modifie
register will never be read.

When Timer 0 and Timer 1 use an internal clock source, the input pin must be high to e
counting.

9.3 TIMING

Certain timing considerations need to be made with the Timer/Counter Unit. These include
setup and hold times, synchronization and operating frequency.

9.3.1 Input Setup and Hold Timings

To ensure recognition, setup and hold times must be met with respect to CPU clock edge
timer input signal must be valid TCHIS before the rising edge of CLKOUT and must remain va
TCHIH after the same rising edge. If these timing requirements are not met, the input will n
recognized until the next clock edge.
9-16

TIMER/COUNTER UNIT

 logic
nt, the
r fre-

 real-

very 10

es how
9.3.2 Synchronization and Maximum Frequency

All timer inputs are latched and synchronized with the CPU clock. Because of the internal
required to synchronize the external signals, and the multiplexing of the counter eleme
Timer/Counter Unit can operate only up to ¼ of the CLKOUT frequency. Clocking at greate
quencies will result in missed clocks.

9.3.2.1 Timer/Counter Unit Application Examples

The following examples are possible applications of the Timer/Counter Unit. They include a
time clock, a square wave generator and a digital one-shot.

9.3.3 Real-Time Clock

Example 9-1 contains sample code to configure Timer 2 to generate an interrupt request e
milliseconds. The CPU then increments memory-based clock variables.

9.3.4 Square-Wave Generator

A square-wave generator can be useful to act as a system clock tick. Example 9-2 illustrat
to configure Timer 1 to operate this way.

9.3.5 Digital One-Shot

Example 9-3 configures Timer 1 to act as a digital one-shot.
9-17

TIMER/COUNTER UNIT
Example 9-1. Configuring a Real-Time Clock

$mod186
name example_80186_family_timer_code

;FUNCTION: This function sets up the timer and interrupt controller
; to cause the timer to generate an interrupt every
; 10 milliseconds and to service interrupts to
; implement a real time clock.
;
; Timer 2 is used in this example because no input or
; output signals are required.
;
;SYNTAX: extern void far set_time(hour, minute, second, T2Compare)
;
;INPUTS: hour - hour to set time to.
; minute - minute to set time to.
; second - second to set time to.
; T2Compare - T2CMPA value (see note below)
;
;OUTPUTS: None

;NOTE: Parameters are passed on the stack as required by
; high-level languages
;
; For a CLKOUT of 16Mhz,
;
; f(timer2) = 16Mhz/4
; = 4Mhz
; = 0.25us for T2CMPA = 1
;
; T2CMPA(10ms) = 10ms/0.25us
; = 10e-3/0.25e-6
; = 40000

;substitute register offsets

T2CON equ xxxxh ;Timer 2 Control register
T2CMPA equ xxxxh ;Timer 2 Compare register
T2CNT equ xxxxh ;Timer 2 Counter register
TCUCON equ xxxxh ;Int. Control register
EOI equ xxxxh ;End Of Interrupt register
INTSTS equ xxxxh ;Interrupt Status register

timer_2_int equ 19 ;timer 2:vector type 19

data segment public ’data’

public _hour, _minute, _second, _msec

_hour db ?
_minute db ?
_second db ?
_msec db ?

data ends
9-18

TIMER/COUNTER UNIT
Example 9-1. Configuring a Real-Time Clock (Continued)

lib_80186 segment public ’code’
assume cs:lib_80186, ds:data

public _set_time
_set_time proc far

push bp ;save caller’s bp
mov bp, sp ;get current top of stack

hour equ word ptr[bp+6] ;get parameters off stack
minute equ word ptr[bp+8]
second equ word ptr[bp+10]
T2Compare equ word ptr[bp+12]

push ax ;save registers used
push dx
push si

push ds
xor ax, ax ;set interrupt vector
mov ds, ax
mov si, 4*timer_2_int
mov word ptr ds:[si], offset

timer_2_interrupt_routine
inc si
inc si
mov ds:[si], cs
pop ds

mov ax, hour ;set time
mov _hour, al
mov ax, minute
mov _minute, al
mov ax, second
mov _second, al
mov _msec, 0

mov dx, T2CNT ;clear Count register
xor ax, ax
out dx, al

mov dx, T2CMPA ;set maximum count value
mov ax, T2Compare ;see note in header above
out dx, al
mov dx, T2CON ;set up the control word:
mov ax, 0E001H ;enable counting,
out dx, al ;generate interrupt on MC,

;continuous counting

mov dx, TCUCON ;set up interrupt controller
xor ax, ax ;unmask highest priority interrupt
out dx, al
9-19

TIMER/COUNTER UNIT
Example 9-1. Configuring a Real-Time Clock (Continued)

sti ;enable interrupts

pop si ;restore saved registers
pop dx
pop ax
pop bp ;restore caller’s bp
ret

_set_time endp

timer_2_interrupt_routine proc far

push ax ;save registers used
push dx
cmp _msec, 99 ;has 1 sec passed?
jae bump_second ;if above or equal...
inc _msec
jmp short reset_int_ctl

bump_second:
mov _msec, 0 ;reset millisecond
cmp _minute, 59 ;has 1 minute passed?
jae bump_minute
inc _second
jmp short reset_int_ctl

bump_minute:
mov _second, 0 ;reset second
cmp _minute, 59 ;has 1 hour passed?
jae bump_hour
inc _minute
jmp short reset_int_ctl

bump_hour:
mov _minute, 0 ;reset minute
cmp _hour, 12 ;have 12 hours passed?
jae reset_hour
inc _hour
jmp reset_int_ctl

reset_hour:
mov _hour, 1 ;reset hour

reset_int_ctl:
mov dx, EOI
mov ax, 8000h ;non-specific end of interrupt
out dx, al
pop dx
pop ax
iret

timer_2_interrupt_routine endp

lib_80186 ends
end
9-20

TIMER/COUNTER UNIT
Example 9-2. Configuring a Square-Wave Generator

$mod186
name example_timer1_square_wave_code

;FUNCTION: This function generates a square wave of given
; frequency and duty cycle on Timer 1 output pin.
;
; SYNTAX: extern void far clock(int mark, int space)
;
; INPUTS: mark - This is the mark (1) time.
; space - This is the space (0) time.
;
; The register compare value for a given time can be
; easily calculated from the formula below.
;
; CompareValue = (req_pulse_width*f)/4
;
; OUTPUTS: None
;
; NOTE: Parameters are passed on the stack as required by
; high-level Languages

T1CMPA equ xxxxH ;substitute register offsets
T1CMPB equ xxxxH
T1CNT equ xxxxH
T1CON equ xxxxH

lib_80186 segment public ’code’
assume cs:lib_80186

public _clock
_clock proc far

push bp ;save caller’s bp
mov bp, sp ;get current top of stack
_space equ word ptr[bp+6] ;get parameters off the stack
_mark equ word ptr[bp+8]

push ax ;save registers that will be
push bx ;modified
push dx

mov dx, T1CMPA ;set mark time
mov ax, _mark
out dx, al

mov dx, T1CMPB ;set space time
mov ax, _space
out dx, al

mov dx, T1CNT ;Clear Timer 1 Counter
xor ax, ax
out dx, al

mov dx, T1CON ;start Timer 1
mov ax, C003H
out dx, al
9-21

TIMER/COUNTER UNIT
Example 9-2. Configuring a Square-Wave Generator (Continued)

Example 9-3. Configuring a Digital One-Shot

pop dx ;restore saved registers
pop bx
pop ax

pop bp ;restore caller’s bp
ret

_clock endp
lib_80186 ends

end

$mod186
name example_timer1_1_shot_code

; FUNCTION: This function generates an active-low one-shot pulse
; on Timer 1 output pin.
;
; SYNTAX: extern void far one_shot(int CMPB);
;
; INPUTS: CMPB - This is the T1CMPB value required to generate a
; pulse of a given pulse width. This value is calculated
; from the formula below.
;
; CMPB = (req_pulse_width*f)/4
;
; OUTPUTS: None
;
; NOTE: Parameters are passed on the stack as required by
; high-level languages

T1CNT equ xxxxH ;substitute register offsets
T1CMPA equ xxxxH
T1CMPB equ xxxxH
T1CON equ xxxxH
MaxCount equ 0020H

lib_80186 segment public ’code’
assume cs:lib_80186

public _one_shot
_one_shot proc far

push bp ;save caller’s bp
mov bp, sp ;get current top of stack
9-22

TIMER/COUNTER UNIT
Example 9-3. Configuring a Digital One-Shot (Continued)

_CMPB equ word ptr[bp+6] ;get parameter off the stack

push ax ;save registers that will be
push dx ;modified
mov dx, T1CNT ;Clear Timer 1 Counter
xor ax, ax
out dx, al
mov dx, T1CMPA ;set time before t_shot to 0
mov ax, 1
out dx, al
mov dx, T1CMPB ;set pulse time
mov ax, _CMPB
out dx, al
mov dx, T1CON
mov ax, C002H ;start Timer 1
out dx, al

CountDown: in ax, dx ;read in T1CON
test ax, MaxCount ;max count occurred?
jz CountDown ;no: then wait
and ax, not MaxCount ;clear max count bit
out dx, al ;update T1CON

pop dx ;restore saved registers
pop ax
pop bp ;restore caller’s bp
ret

_one_shot endp
lib_80186 ends

end
9-23

10
Direct Memory
Access Unit

ace. A
f bytes
uffer a
ad for

herals
 as
 mem-
rom a
es con-
ses the
re rel-

trans-

f four
 or di-
space.
nts.

nels
iew

smit (a
 be ini-
CHAPTER 10
DIRECT MEMORY ACCESS UNIT

In many applications, large blocks of data must be transferred between memory and I/O sp
disk drive, for example, usually reads and writes data in blocks that may be thousands o
long. If the CPU were required to handle each byte of the transfer, the main tasks would s
severe performance penalty. Even if the data transfers were interrupt driven, the overhe
transferring control to the interrupt handler would still decrease system throughput.

Direct Memory Access, or DMA, allows data to be transferred between memory and perip
without the intervention of the CPU. Systems that use DMA have a special device, known
the DMA controller, that takes control of the system bus and performs the transfer between
ory and the peripheral device. When the DMA controller receives a request for a transfer f
peripheral, it signals the CPU that it needs control of the system bus. The CPU then releas
trol of the bus and the DMA controller performs the transfer. In many cases, the CPU relea
bus and continues to execute instructions from the prefetch queue. If the DMA transfers a
atively infrequent, there is no degradation of software performance; the DMA transfer is
parent to the CPU.

The DMA Unit has four channels. Each channel can accept DMA requests from one o
sources: an external request pin, the Serial Communications Unit, the Timer/Counter Unit
rect programming. Data can be transferred between any combination of memory and I/O
The DMA Unit can access the entire memory and I/O space in either byte or word increme

10.1 FUNCTIONAL OVERVIEW

The DMA Unit is logically divided into two modules with two channels each. The four chan
are functionally identical. The following discussion is hierarchical, beginning with an overv
of a single channel and ending with a description of the full four-channel unit.

10.1.1 The DMA Transfer

A DMA transfer begins with a request. The requesting device may either have data to tran
source request) or it may require data (a destination request). Alternatively, transfers may
tiated by the system software without an external request.
10-1

DIRECT MEMORY ACCESS UNIT

 DMA
nation
MA

tinues
 transfer

0-1 on
d in an
 to the
arated
When the DMA request is granted, the Bus Interface Unit provides the bus signals for the
transfer, while the DMA channel provides the address information for the source and desti
devices. The DMA Unit does not provide a discrete DMA acknowledge signal, unlike other D
controller chips (an acknowledge can be synthesized, however). The DMA channel con
transferring data as long as the request is active and it has not exceeded its programmed
limit.

Every DMA transfer consists of two distinct bus cycles: a fetch and a deposit (see Figure 1
page 10-2). During the fetch cycle, the byte or word is read from the data source and place
internal temporary storage register. The data in the temporary storage register is written
destination during the deposit cycle. The two bus cycles are indivisible; they cannot be sep
by a bus hold request, a refresh request or another DMA request.

Figure 10-1. Typical DMA Transfer

TI T1 T2 T3

CLKOUT

ALE

T4 T1 T2 T3 T4

WR

RD

AD15:0

Source
Address

Destination
Data

Destination
Address

Source
Data

Fetch Deposit

A1186-0A
10-2

DIRECT MEMORY ACCESS UNIT

in either
irec-

f byte
ssor bus
uires
, “Bus

ointer
mory

 of 64
s are
ish to
emory.

ent or
es the

by two;

A re-
10.1.1.1 DMA Transfer Directions

The source and destination addresses for a DMA transfer are programmable and can be
memory or I/O space. DMA transfers can be programmed for any of the following four d
tions:

• from memory space to I/O space

• from I/O space to memory space

• from memory space to memory space

• from I/O space to I/O space

DMA transfers can access the Peripheral Control Block.

10.1.1.2 Byte and Word Transfers

DMA transfers can be programmed to handle either byte or word transfers. The handling o
and word data is the same as that for normal bus cycles and is dependent upon the proce
width. For example, odd-aligned word DMA transfers on a processor with a 16-bit bus req
two fetches and two deposits (all back-to-back). BIU bus cycles are covered in Chapter 3
Interface Unit.” Word transfers are illegal on the 8-bit bus device.

10.1.2 Source and Destination Pointers

Each DMA channel maintains a twenty-bit pointer for the source of data and a twenty-bit p
for the destination of data. The twenty-bit pointers allow access to the full 1 Mbyte of me
space. The DMA Unit views memory as a linear (unsegmented) array.

With a twenty-bit pointer, it is possible to create an I/O address that is above the CPU limit
Kbytes. The DMA Unit will run I/O DMA cycles above 64K, even though these addresse
not accessible through CPU instructions (e.g., IN and OUT). Some applications may w
make use of this by swapping pages of data from I/O space above 64K to standard CPU m

The source and destination pointers can be individually programmed to increment, decrem
remain constant after each transfer. The programmed data width (byte or word) determin
amount that a pointer is incremented or decremented. Word transfers change the pointer
byte transfers change the pointer by one.

10.1.3 DMA Requests

There are three distinct sources of DMA requests: the external DRQ pin, the internal DM
quest line and the system software. In all three cases, the system software must arm a DMA chan-
nel before it recognizes DMA requests. (See “Arming the DMA Channel” on page 10-23.)
10-3

DIRECT MEMORY ACCESS UNIT

 falling
 the
cycle

onized
 that is
ld use
ation-

 mov-
. (See
10.1.4 External Requests

External DMA requests are asserted on the DRQ pins. The DRQ pins are sampled on the
edge of CLKOUT. It takes a minimum of four clocks before the DMA cycle is initiated by
BIU (see Figure 10-2). The DMA request is cleared four clocks before the end of the DMA
(effectively re-arming the DRQ input).

Figure 10-2. DMA Request Minimum Response Time

External requests (and the resulting DMA transfer) are classified as either source-synchr
or destination-synchronized. A source-synchronized request originates from the peripheral
sending data. For example, a disk controller in the process of reading data from a disk wou
a source-synchronized request (data would be moving from the disk to memory). A destin
synchronized request originates from the peripheral that is receiving data. If a disk controller
were writing data to a disk, it would use a destination-synchronized request (data would be
ing from memory to the disk). The type of synchronization a channel uses is programmable
“Selecting Channel Synchronization” on page 10-23.)

DRQ

NOTES:
1. TCLIS : DMA request to clock low.
2. Synchronizer resolution time.
3. DMA unit priority arbitration and overhead.
4. Bus interface unit latches DMA request and decides to run DMA cycle.

4

2 3

T4
or T3
or T2
or T1

or TW
or TI

T4
or T3
or T2
or T1
or TI

T4
or T3

or TW
or TI

T4
or TI

T1
of

DMA
Cycle

1

A1187-0A
10-4

DIRECT MEMORY ACCESS UNIT

erals
 deas-
 phase)
s the
eassert

dition
 DMA

of the
sert

impor-

h

10.1.4.1 Source Synchronization

A typical source-synchronized transfer is shown in Figure 10-3. Most DMA-driven periph
deassert their DRQ line only after the DMA transfer has begun. The DRQ signal must be
serted at least four clocks before the end of the DMA transfer (at the T1 state of the deposit
to prevent another DMA cycle from occurring. A source-synchronized transfer provide
source device at least three clock cycles from the time it is accessed (acknowledged) to d
its request line if further transfers are not required.

Figure 10-3. Source-Synchronized Transfers

10.1.4.2 Destination Synchronization

A destination-synchronized transfer differs from a source-synchronized transfer by the ad
of two idle states at the end of the deposit cycle (Figure 10-4). The two idle states extend the
cycle to allow the destination device to deassert its DRQ pin four clocks before the end
cycle. If the two idle states were not inserted, the destination device would not be able to deas
its request in time to prevent another DMA cycle from occurring.

The insertion of two idle states at the end of a destination synchronization transfer has an
tant side effect. A destination-synchronized DMA channel gives up the bus during the idle
states, allowing any other bus master to gain ownership. This includes the CPU, the Refres
Control Unit, an external bus master or another DMA channel.

T1 T2 T3 T4

CLKOUT

DRQ (Case 1)

T1 T2 T3 T4

DRQ (Case 2)

Fetch Cycle Deposit Cycle

NOTES:
1. Current source synchronized transfer will not be immediately
 followed by another DMA transfer.
2. Current source synchronized transfer will be immediately
 followed by another DMA transfer.

2

1

A1188-0A
10-5

DIRECT MEMORY ACCESS UNIT

are.

or the
 Tim-
rnal

nsfer
r ser-
2 mi-

 would
ould
Figure 10-4. Destination-Synchronized Transfers

10.1.5 Internal Requests

Internal DMA requests can come from either an integrated peripheral or the system softw

10.1.5.1 Integrated Peripheral Requests

All four channels can be programmed to accept internal DMA requests from either Timer 2
Serial Communications Unit. The request signals from the Serial Communications Unit and
er 2 connect to the DMA unit through the Internal DMA Request Multiplexer. (See “The Inte
DMA Request Multiplexer” on page 10-11.)

10.1.5.2 Timer 2-Initiated Transfers

When programmed for Timer 2-initiated transfers, the DMA channel performs one DMA tra
every time that Timer 2 reaches its maximum count. Timer-initiated transfers are useful fo
vicing time-based peripherals. For example, an A/D converter would require data every 2
croseconds in order to produce an audio range waveform. In this case, the DMA source
point to the waveform data, the destination would point to the A/D converter and Timer 2 w
request a transfer every 22 microseconds. (See “Timed DMA Transfers” on page 10-37.)

T1 T2 T3 T4

CLKOUT

DRQ
(Case 1)

T1 T2 T3 T4

DRQ
(Case 2)

Fetch Cycle Deposit Cycle

NOTES:
1. Current destination synchronized transfer will not be immediately
 followed by another DMA transfer.
2. Current destination synchronized transfer will be immediately
 followed by another DMA transfer.

2

1

TI TI

A1189-0A
10-6

DIRECT MEMORY ACCESS UNIT

mitter.

 exam-
nal and

men-
. When
ansfer
nnels

nized
til the

 total
 transfer
en the

ll

l does
10.1.5.3 Serial Communications Unit Transfers

The Serial Communications Unit has two channels, each with its own receiver and trans
Each of the DMA channels is assigned a Serial Communications Unit channel as follows:

• DMA channel 0 supports the serial port 0 transmitter (TX0).

• DMA channel 1 supports the serial port 0 receiver (RX0).

• DMA channel 2 supports the serial port 1 transmitter (TX1).

• DMA channel 3 supports the serial port 1 receiver (RX1).

The DMA request and interrupt request signals from the serial channels are identical. For
ple, when serial channel 1 completes a reception, it pulses both the interrupt request sig
the DMA request signal high for one clock cycle.

Servicing the serial ports with DMA transfers (instead of interrupt requests) provides a tre
dous gain in system throughput when blocks of serial data are transmitted and received
using DMA-driven serial port transfers, it is important to note that as the baud rate of the tr
is increased, so does bus utilization by the DMA Unit. Using high baud rates or multiple cha
can degrade CPU performance. (See “DMA-Driven Serial Transfers” on page 10-34.)

10.1.5.4 Unsynchronized Transfers

DMA transfers can be initiated directly by the system software by selecting unsynchro
transfers. Unsynchronized transfers continue, back-to-back, at the full bus bandwidth, un
channel’s transfer count reaches zero or DMA transfers are suspended by an NMI.

10.1.6 DMA Transfer Counts

Each DMA Unit maintains a programmable 16-bit transfer count value that controls the
number of transfers the channel runs. The transfer count is decremented by one after each
(regardless of data size). The DMA channel can be programmed to terminate transfers wh
transfer count reaches zero (also referred to as terminal count).

10.1.7 Termination and Suspension of DMA Transfers

When DMA transfers for a channel are terminated, no further DMA requests for that channel wi
be granted until the channel is re-started by direct programming. A suspended DMA transfer tem-
porarily disables transfers in order to perform a specific task. A suspended DMA channe
not need to be re-started by direct programming.
10-7

DIRECT MEMORY ACCESS UNIT

n the
til it is

ress

vity
. Exit
bled

ns of
 in or-

r count
ontrol

and
d to ex-

as a
t runs
als
tus bit
10.1.7.1 Termination at Terminal Count

When programmed to terminate on terminal count, the DMA channel disarms itself whe
transfer count value reaches zero. No further DMA transfers take place on the channel un
re-armed by direct programming. Unsynchronized transfers always terminate when the transfer
count reaches zero, regardless of programming.

10.1.7.2 Software Termination

A DMA channel can be disarmed by direct programming. Any DMA transfer that is in prog
will complete, but no further transfers are run until the channel is re-armed.

10.1.7.3 Suspension of DMA During NMI

DMA transfers are inhibited during the service of Non-Maskable Interrupts (NMI). DMA acti
is halted in order to give the CPU full command of the system bus during the NMI service
from the NMI via an IRET instruction re-enables the DMA Unit. DMA transfers can be ena
during an NMI service routine by the system software.

10.1.7.4 Software Suspension

DMA transfers can be temporarily suspended by direct programming. In time-critical sectio
code, such as interrupt handlers, it may be necessary to shut off DMA activity temporarily
der to give the CPU total control of the bus.

10.1.8 DMA Unit Interrupts

Each DMA channel can be programmed to generate an interrupt request when its transfe
reaches zero. DMA channels 2 and 3 are supported internally by the integrated Interrupt C
Unit. DMA channels 0 and 1 are supported by the DMAI0 and DMAI1 outputs. DMAI0
DMAI1 go active when the transfer count reaches zero. These outputs can be connecte
ternal interrupt pins. (See “Indirectly Supported Internal Interrupt Sources” on page 8-38.)

10.1.9 DMA Cycles and the BIU

The DMA Unit uses the Bus Interface Unit to perform its transfers. When the DMA Unit h
pending request, it signals the BIU. If the BIU has no other higher-priority request pending, i
the DMA cycle. (BIU priority is described in Chapter 3, “Bus Interface Unit.”) The BIU sign
that it is running a bus cycle initiated by a master other than the CPU by driving the S6 sta
high.
10-8

DIRECT MEMORY ACCESS UNIT

 acti-
MA
e, then
ycles

ure

rece-
ither low
both

 other
per-
rs as

rupts)

nation-

n. For
nation
. If a
er. At
ith the

ans-
The Chip-Select Unit monitors the BIU addresses to determine which chip-select, if any, to
vate. Because the DMA Unit uses the BIU, chip-selects are active for DMA cycles. If a D
channel accesses a region of memory or I/O space within a chip-select’s programmed rang
that chip-select is asserted during the cycle. The Chip-Select Unit will not recognize DMA c
that access I/O space above 64K.

10.1.10 The Two-Channel DMA Module

Two DMA channels are combined with arbitration logic to form a DMA module (see Fig
10-5).

10.1.10.1 DMA Channel Arbitration

Within a two-channel DMA module, the arbitration logic decides which channel takes p
dence when both channels simultaneously request transfers. Each channel can be set to e
priority or high priority. If the two channels are set to the same priority (either both high or
low), then the channels rotate priority.

10.1.10.1.1 Fixed Priority

Fixed priority results when one channel in a module is programmed to high priority and the
is set to low priority. If both DMA requests occur simultaneously, the high priority channel
forms its transfer (or transfers) first. The high priority channel continues to perform transfe
long as the following conditions are met:

• the channel’s DMA request is still active

• the channel has not terminated or suspended transfers (through programming or inter

• the channel has not released the bus (through the insertion of idle states for desti
synchronized transfers)

The last point is extremely important when the two channels use different synchronizatio
example, consider the case in which channel 1 is programmed for high priority and desti
synchronization and channel 0 is programmed for low priority and source synchronization
DMA request occurs for both channels simultaneously, channel 1 performs the first transf
the end of channel 1’s deposit cycle, two idle states are inserted (thus releasing the bus). W
bus released, channel 0 is free to perform its transfer even though the higher-priority channel
has not completed all of its transfers. Channel 1 regains the bus at the end of channel 0’s tr
fer. The transfers will alternate as long as both requests remain active.
10-9

DIRECT MEMORY ACCESS UNIT

re
ation.
Figure 10-5. Two-Channel DMA Module

A higher-priority DMA channel will interrupt the transfers of a lower-priority channel. Figu
10-6 shows several transfers with different combinations of channel priority and synchroniz

Internal - DMA
Request

Multiplexer

Inter-module
Arbitration

Logic

Channel 1
Control Logic

DRQ Pin DRQ Pin

Channel 0
Control Logic

Destination Pointer

Source Pointer

Destination Pointer

Source Pointer

Module
DMA RequestTimer 2

Timer 2
Request Timer 2 Request

A1540-01
10-10

DIRECT MEMORY ACCESS UNIT

y. The
trans-
fers al-

t Mul-
f the
al re-
 select
nnel 1
uest

f in-
nal
Figure 10-6. Examples of DMA Priority

10.1.10.1.2 Rotating Priority

Channel priority rotates when the channels are programmed as both high or both low priorit
highest priority is initially assigned to channel 1 of the module. After a channel performs a
fer, it is assigned the lower priority. When requests are active for both channels, the trans
ternate between the two.

10.1.10.1.3 The Internal DMA Request Multiplexer

The source of internal DMA requests for a module is selected by the Internal DMA Reques
tiplexer. The multiplexer controls the routing of internal DMA requests to each channel o
module. When the multiplexer is programmed to select Timer 2 DMA requests, the intern
quest line of each channel is connected to Timer 2. When the multiplexer is programmed to
serial port DMA requests, channel 0 is connected to the transmitter DMA request and cha
is connected to the receiver DMA request. A simplified diagram of the Internal DMA Req
Multiplexer is shown in Figure 10-7.

It is important to note that the Internal DMA Request Multiplexer only selects the source o
ternal DMA requests; it does not control whether the channel responds to internal or exter
DMA requests.

Channel
Priority
Synch

Both Requests Asserted

0
Low
SRC

1
Low
SRC

Channel
Priority
Synch

0
High
SRC

1
Low
SRC

Channel
Priority
Synch

0
High
Dest

1
Low
SRC

Channel 1 Channel 0 Channel 1 Channel 0

Channel 0 Channel 1 Channel 1

Channel 1 Channel 0 Channel 1

Channel 0

Channel 0

Channel 0 Completes
All Transfers

Destination Synch Releases Bus

Etc.

Etc.

Etc.

A1190-0A
10-11

DIRECT MEMORY ACCESS UNIT

an-
Figure 10-7. Internal DMA Request Multiplexer

10.1.11 DMA Module Integration

The DMA Unit of the 80C186EC/C188EC consists of two DMA modules (a total of four ch
nels) and the Inter-Module Arbitration Circuitry (see Figure 10-8).

Timer 2
DMA Request Internal

DMA Request
For Channel 0

Internal
DMA Request
For Channel 1

Serial Transmitter
DMA Request

Serial Receiver
DMA Request

Select
(From Internal
DMA Request

Multiplexer Register)

A

B
S

Q

A

B
S

Q

A1183-0A
10-12

DIRECT MEMORY ACCESS UNIT

oth
n for
10.1.11.1 DMA Unit Structure

The two DMA modules within the DMA Unit are referred to as module A and module B. B
modules function identically. Table 10-1 includes naming and signal connection informatio
each channel.

Table 10-1. DMA Unit Naming Conventions and Signal Connections

Module Channel
Number

Channel
Name

Internal Request
Options External Request Pin

A
0 DMA0 TIMER2 or TX0 DRQ0

1 DMA1 TIMER2 or RX0 DRQ1

B
0 DMA2 TIMER2 or TX1 DRQ2

1 DMA3 TIMER2 or RX1 DRQ3
10-13

DIRECT MEMORY ACCESS UNIT

y be

annels.
ther),
e, the

dule
od-
Figure 10-8. 80C186EC/C188EC DMA Unit

Like inter-channel priority, DMA module priority is set on a relative basis: one module ma
set higher than or equal to the other module.

Priority arbitration between modules is subject to the same rules as arbitration between ch
When priority is fixed between modules (i.e., one module is set to a higher priority than the o
the high-priority module continues to perform transfers as long as its DMA request is activ
transfers have not been suspended or terminated and it has not released the bus.

The DMA modules rotate priority when both modules are set to the same priority. DMA mo
B is initially set to high priority and module A is set to low priority. After a channel within a m
ule performs a transfer, the module is set to low priority.

Inter-Module
Arbitration

Logic

DRQ0

Channel 0

BIU Request

R
X
0
D
R
Q

T
X
0
D
R
Q

T
2
D
R
Q

Channel 1 Channel 0 Channel 1

DRQ1

Module A

DRQ2 DRQ3

Module B

R
X
1
D
R
Q

T
X
1
D
R
Q

T
2
D
R
QModule A

Request
Module B
Request

Inter-Channel Arbitration
and

Internal Request Multiplexer

Inter-Channel Arbitration
and

Internal Request Multiplexer

A1184-0A
10-14

DIRECT MEMORY ACCESS UNIT

iori-
le Ar-

ogic
e bus.

onal
ulti-

.7 and
 10.10

 and
n pro-
Channel arbitration within the DMA Unit first begins on the module level. Each module pr
tizes its two DMA requests (if active) and then presents a module request to the Inter-Modu
bitration Logic. If both modules are requesting transfers, the Inter-Module Arbitration L
decides which of the two modules has highest priority and grants that module control of th

10.2 PROGRAMMING THE DMA UNIT

A total of six Peripheral Control Block registers configure each DMA channel. Two additi
registers are used to specify parameters for inter-module priority, internal DMA request m
plexing and DMA suspension.

10.2.1 DMA Channel Parameters

The first step in programming the DMA Unit is to set up the parameters for each channel.

10.2.1.1 Programming the Source and Destination Pointers

The following parameters are programmable for the source and destination pointers:

• pointer address

• address space (memory or I/O)

• automatic pointer indexing (increment, decrement or no change) after transfer

Two 16-bit Peripheral Control Block registers define each of the 20-bit pointers. Figures 10
10.8 show the layout of the DMA Source Pointer address registers, and Figures 10.9 and
show the layout of the DMA Destination Pointer address registers. The DSA19:16
DDA19:16 (high-order address bits) are driven on the bus even if I/O transfers have bee
grammed. When performing I/O transfers within the normal 64K I/O space only, the high-order
bits in the pointer registers must be cleared.
10-15

DIRECT MEMORY ACCESS UNIT
Figure 10-9. DMA Source Pointer (High-Order Bits)

Register Name: DMA Source Address Pointer (High)

Register Mnemonic: DxSRCH

Register Function: Contains the upper 4 bits of the DMA Source pointer.

Bit
Mnemonic Bit Name Reset

State Function

DSA19:16 DMA
Source
Address

XXXXH DSA19:16 are driven on A19:16 during the
fetch phase of a DMA transfer.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

D
S
A
1
7

D
S
A
1
8

D
S
A
1
9

D
S
A
1
6

A1185-0A
10-16

DIRECT MEMORY ACCESS UNIT

e DMA
 bits

ective-

s two
its for

rammed
 is in-
Figure 10-10. DMA Source Pointer (Low-Order Bits)

The address space referenced by the source and destination pointers is programmed in th
Control Register for the channel (see Figure 10-13 on page 10-20). The SMEM and DMEM
control the address space (memory or I/O) for source pointer and destination pointer, resp
ly.

Automatic pointer indexing is also controlled by the DMA Control Register. Each pointer ha
bits, increment and decrement, that control the indexing. If the increment and decrement b
a pointer are programmed to the same value, then the pointer remains constant. The prog
data width (byte or word) for the channel automatically controls the amount that a pointer
cremented or decremented.

Register Name: DMA Source Address Pointer (Low)

Register Mnemonic: DxSRCL

Register Function: Contains the lower 16 bits of the DMA Source pointer.

Bit
Mnemonic Bit Name Reset

State Function

DSA15:0 DMA
Source
Address

XXXXH DSA15:0 are driven on the lower 16 bits of the
address bus during the fetch phase of a DMA
transfer.

15 0

D
S
A
1

D
S
A
2

D
S
A
3

D
S
A
0

D
S
A
5

D
S
A
6

D
S
A
7

D
S
A
4

D
S
A
9

D
S
A
1
0

D
S
A
1
1

D
S
A
8

D
S
A
1
3

D
S
A
1
4

D
S
A
1
5

D
S
A
1
2

A1177-0A
10-17

DIRECT MEMORY ACCESS UNIT
Figure 10-11. DMA Destination Pointer (High-Order Bits)

Register Name: DMA Destination Address Pointer (High)

Register Mnemonic: DxDSTH

Register Function: Contains the upper 4 bits of the DMA
Destination pointer.

Bit
Mnemonic Bit Name Reset

State Function

DDA19:16 DMA
Destination
Address

XXXXH DDA19:16 are driven on A19:16 during the
deposit phase of a DMA transfer.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

D
D
A
1
7

D
D
A
1
8

D
D
A
1
9

D
D
A
1
6

A1178-0A
10-18

DIRECT MEMORY ACCESS UNIT

nnel.
ted by
nsfers
trans-
Figure 10-12. DMA Destination Pointer (Low-Order Bits)

10.2.1.2 Selecting Byte or Word Size Transfers

The WORD bit in the DMA Control Register (Figure 10-13) controls the data size for a cha
When WORD is set, the channel transfers data in 16-bit words. Byte transfers are selec
clearing the WORD bit. The data size for a channel also affects pointer indexing. Word tra
modify (increment or decrement) the pointer registers by two for each transfer, while byte
fers modify the pointer registers by one.

Register Name: DMA Destination Address Pointer (Low)

Register Mnemonic: DxDSTL

Register Function: Contains the lower 16 bits of the DMA Destination
pointer.

Bit
Mnemonic Bit Name Reset

State Function

DDA15:0 DMA
Destination
Address

XXXXH DDA15:0 are driven on the lower 16 bits of the
address bus during the deposit phase of a DMA
transfer.

15 0

D
D
A
1

D
D
A
2

D
D
A
3

D
D
A
0

D
D
A
5

D
D
A
6

D
D
A
7

D
D
A
4

D
D
A
9

D
D
A
1
0

D
D
A
1
1

D
D
A
8

D
D
A
1
3

D
D
A
1
4

D
D
A
1
5

D
D
A
1
2

A1179-0A
10-19

DIRECT MEMORY ACCESS UNIT
Figure 10-13. DMA Control Register

Register Name: DMA Control Register

Register Mnemonic: DxCON

Register Function: Controls DMA channel parameters.

Bit
Mnemonic Bit Name Reset

State Function

DMEM Destination
Address
Space
Select

X Selects memory or I/O space for the destination
pointer. Set DMEM to select memory space; clear
DMEM to select I/O space.

DDEC Destination
Decrement

X Set DDEC to automatically decrement the destination
pointer after each transfer. (See Note.)

DINC Destination
Increment

X Set DINC to automatically increment the destination
pointer after each transfer. (See Note.)

SMEM Source
Address
Space
Select

X Selects memory or I/O space for the source pointer.
Set SMEM to select memory space; clear SMEM to
select I/O space.

SDEC Source
Decrement

X Set SDEC to automatically decrement the source
pointer after each transfer. (See Note.)

SINC Source
Increment

X Set SINC to automatically increment the source
pointer after each transfer. (See Note.)

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to ensure compatibility with future Intel products. A pointer remains constant if
its increment and decrement bits are equal.

15 0

S
T
R
T

C
H
G

W
O
R
D

PS
Y
N
0

S
Y
N
1

I
D
R
Q

T
C

S
I
N
C

S
D
E
C

I
N
T

D
I
N
C

D
D
E
C

D
M
E
M

S
M
E
M

A1180-0A
10-20

DIRECT MEMORY ACCESS UNIT
Figure 10-13. DMA Control Register (Continued)

Register Name: DMA Control Register

Register Mnemonic: DxCON

Register Function: Controls DMA channel parameters.

Bit
Mnemonic Bit Name Reset

State Function

TC Terminal
Count

X Set TC to terminate transfers on Terminal Count. This
bit is ignored for unsynchronized transfers (that is, the
DMA channel behaves as if TC is set, regardless of its
condition).

INT Interrupt X Set INT to generate an interrupt request on Terminal
Count. The TC bit must be set to generate an interrupt.

SYN1:0 Synchron-
ization Type

XX Selects channel synchronization:

SYN1 SYN0 Synchronization Type

0 0 Unsynchronized

0 1 Source-synchronized

1 0 Destination-synchronized

1 1 Reserved (do not use)

P Relative
Priority

X Set P to select high priority for the channel; clear P to
select low priority for the channel.

IDRQ Internal
DMA
Request
Select

X Set IDRQ to select internal DMA requests and ignore
the external DRQ pin. Clear IDRQ to select the DRQ pin
as the source of DMA requests. When IDRQ is set, the
channel must be configured for source-synchronized
transfers (SYN1:0 = 01).

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to ensure compatibility with future Intel products.

15 0

S
T
R
T

C
H
G

W
O
R
D

PS
Y
N
0

S
Y
N
1

I
D
R
Q

T
C

S
I
N
C

S
D
E
C

I
N
T

D
I
N
C

D
D
E
C

D
M
E
M

S
M
E
M

A1180-0A
10-21

DIRECT MEMORY ACCESS UNIT

nal re-

 (see
 inter-
 (and
Figure 10-13. DMA Control Register (Continued)

10.2.1.3 Selecting the Source of DMA Requests

DMA requests can come from either an internal source or an external source. The inter
quests are further divided into Timer 2 requests and serial port requests.

Internal DMA requests are selected by setting the IDRQ bit in the DMA Control Register
Figure 10-13 on page 10-20) for the channel. The DMA channel ignores its DRQ pin when
nal requests are programmed. Similarly, the DMA channel responds only to the DRQ pin
ignores internal requests) when external requests are selected.

Register Name: DMA Control Register

Register Mnemonic: DxCON

Register Function: Controls DMA channel parameters.

Bit
Mnemonic Bit Name Reset

State Function

CHG Change
Start Bit

X Set CHG to enable modifying the STRT bit.

STRT Start DMA
Channel

0 Set STRT to arm the DMA channel. The STRT bit can
be modified only when the CHG bit is set.

WORD Word
Transfer
Select

X Set WORD to select word transfers; clear WORD to
select byte transfers. The 8-bit bus versions of the
device ignore the WORD bit.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to ensure compatibility with future Intel products.

15 0

S
T
R
T

C
H
G

W
O
R
D

PS
Y
N
0

S
Y
N
1

I
D
R
Q

T
C

S
I
N
C

S
D
E
C

I
N
T

D
I
N
C

D
D
E
C

D
M
E
M

S
M
E
M

A1180-0A
10-22

DIRECT MEMORY ACCESS UNIT

e pro-

 to the
nd one
is con-

armed
 The
 CHG
nnel

ly by

ntrol

in to
When internal DMA requests are selected, the source of the internal request must b
grammed. The Internal DMA Request Multiplexer is programmable on a module basis only. The
two channels in a module can be programmed to both respond to Timer 2 or both respond
serial port. A module cannot be programmed to have one channel respond to Timer 2 a
channel respond to the serial port. The source of internal DMA requests for each module
trolled by the IDRQA and IDRQB bits in the DMA Priority Register (see Figure 10-14).

10.2.1.4 Arming the DMA Channel

Each DMA channel must be armed before it can recognize DMA requests. A channel is
by setting its STRT (Start) bit in the DMA Control Register (Figure 10-13 on page 10-20).
STRT bit can be modified only if the CHG (Change Start) bit is set at the same time. The
bit is a safeguard to prevent accidentally arming a DMA channel while modifying other cha
parameters.

A DMA channel is disarmed by clearing its STRT bit. The STRT bit is cleared either direct
software or by the channel itself when it is programmed to terminate on terminal count.

10.2.1.5 Selecting Channel Synchronization

The synchronization method for a channel is controlled by the SYN1:0 bits in the DMA Co
Register (Figure 10-13 on page 10-20).

NOTE

The combination SYN1:0=11 is reserved and will result in unpredictable
operation. When IDRQ is set (internal requests selected) the channel must
always be programmed for source-synchronized transfers (SYN1:0=01).

When programmed for unsynchronized transfers (SYN1:0=00), the DMA channel will beg
transfer data as soon as the STRT bit is set.
10-23

DIRECT MEMORY ACCESS UNIT

igure
ber of
Figure 10-14. DMA Module Priority Register

10.2.1.6 Programming the Transfer Count Options

The Transfer Count Register (Figure 10-15) and the TC bit in the DMA Control Register (F
10-13 on page 10-20) are used to stop DMA transfers for a channel after a specified num
transfers have occurred.

Register Name: DMA Module Priority Register

Register Mnemonic: DMAPRI

Register Function: Controls inter-module priority and the Internal DMA
Request Multiplexer.

Bit
Mnemonic Bit Name Reset

State Function

IDRQB Internal
DMA
Request for
Module B

0 Clear to select Timer 2 as the source of internal
DMA requests. Set to select serial channel 1 as
the source of internal DMA requests for Module
B.

IDRQA Internal
DMA
Request for
Module A

0 Clear to select Timer 2 as the source of internal
DMA requests. Set to select serial channel 0 as
the source of internal DMA requests for Module
A.

DMAPB DMA
Module B
Priority

0 Set to place DMA Module B at a high relative
priority.

DMAPA DMA
Module A
Priority

0 Set to place DMA Module A at a high relative
priority.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

A1181-0A

15 0

D
M
A
P
B

D
M
A
P
A

I
D
R
Q
B

I
D
R
Q
A

10-24

DIRECT MEMORY ACCESS UNIT

 Reg-
for a
by one

hen
ansfers
 trans-

t reach-
page
The transfer count (the number of transfers desired) is written to the DMA Transfer Count
ister. The Transfer Count Register is 16 bits wide, limiting the total number of transfers
channel to 65,536 (without reprogramming). The Transfer Count Register is decremented
after each transfer (for both byte and word transfers).

Figure 10-15. Transfer Count Register

The TC bit, when set, instructs the DMA channel to disarm itself (by clearing the STRT bit) w
the transfer count reaches zero. If the TC bit is cleared, the channel continues to perform tr
regardless of the state of the Transfer Count Register. Unsynchronized (software-initiated)
fers always terminate when the transfer count reaches zero; the TC bit is ignored.

10.2.1.7 Generating Interrupts on Terminal Count

A channel can be programmed to generate an interrupt request whenever the transfer coun
es zero. Both the TC bit and the INT bit in the DMA Control Register (Figure 10-13 on
10-20) must be set to generate an interrupt request.

Register Name: DMA Transfer Count

Register Mnemonic: DxTC

Register Function: Contains the DMA channel’s transfer count.

Bit
Mnemonic Bit Name Reset

State Function

TC15:0 Transfer
Count

XXXXH Contains the transfer count for a DMA channel.
This value is decremented by one after each
transfer.

15 0

T
C
2

T
C
0

T
C
1

T
C
3

T
C
6

T
C
4

T
C
5

T
C
7

T
C
1
0

T
C
8

T
C
9

T
C
1
1

T
C
1
4

T
C
1
2

T
C
1
3

T
C
1
5

A1172-0A
10-25

DIRECT MEMORY ACCESS UNIT

trol
rity. If
els ro-

in
ed ei-
 rotate

d.

tches
pical-

hen

fetch-
ng an-
mory

ating
10.2.1.8 Setting the Relative Priority of a Channel

The priority of a channel within a module is controlled by the Priority bit in the DMA Con
Register (Figure 10-13 on page 10-20). A channel may be assigned either high or low prio
both channels are programmed to the same priority (i.e., both high or both low), the chann
tate priority.

10.2.2 Setting the Inter-Module Priority

The inter-module priority for the DMA Unit is controlled by the DMAPA and DMAPB bits
the DMA Module Priority Register (Figure 10-14 on page 10-24). A module may be assign
ther high or low priority. When both modules are assigned the same priority, the modules
priority.

10.2.3 Using the DMA Unit with the Serial Ports

The following setup is used for DMA-serviced serial port reception.

• The source pointer points at the receive buffer (SxRBUF) in the serial port.

• The destination pointer points to the area in memory where the message will be save

• The DMA channel is programmed for serial channel requests.

• The transfer count register holds the length of the memory buffer.

The serial port DMA request pulses high after each byte is received. The DMA unit then fe
the received byte from the receive buffer (SxRBUF) register and deposits it in memory. Ty
ly, the channel is programmed to interrupt the CPU when the memory buffer is full (i.e., w
the transfer count reaches zero).

The following setup is used for DMA-serviced serial port transmission.

• The source pointer points to the area of memory where the message resides.

• The destination pointer points to the transmit buffer (SxTBUF) for the serial channel.

• The DMA channel is programmed for serial channel requests.

• The transfer count register holds the length of the memory buffer.

The serial port DMA request pulses high after each byte is transmitted. The DMA unit then
es the next byte of the message from memory and deposits it in the transmit buffer (initiati
other transfer). Typically, the channel is programmed to interrupt the CPU when the me
buffer is empty (i.e., when the transfer count reaches zero).

DMA-driven transmissions must be “primed” by sending the first byte manually, thus gener
the first transmit interrupt.
10-26

DIRECT MEMORY ACCESS UNIT

soft-
r the
mod-
I bit
e rou-

spec-
sfers
 inter-

r-

est-
10.2.4 Suspension of DMA Transfers Using the DMA Halt Bits

The DMA Module HALT Register (Figure 10-16) contains three bits that allow the system
ware to suspend DMA transfers temporarily. The HNMI bit is set automatically wheneve
CPU receives an NMI . When the HNMI bit is set, no DMA transfers can occur from either
ule. The HNMI bit is automatically cleared when an IRET instruction is executed. The HNM
can be cleared by the system software if DMA transfers are desired during the NMI servic
tine.

Executing an INT2 instruction (NMI) does not set the HNMI bit.

The HDMA and HDMB bits are used to suspend transfers for module A and module B, re
tively. The HDMA and HDMB bits should be used instead of HNMI when suspending tran
under normal circumstances. This ensures that the system software will not inadvertently
fere with an NMI service routine.

The mask bits (HMI, HMA, HMB) allow the modification of individual halt bits without pe
forming a read-modify-write operation on the DMA Halt Register.

10.2.5 Initializing the DMA Unit

Use the following sequence when programming the DMA Unit:

1. Program the source and destination pointers for all used channels.

2. Program the inter-module priority.

3. Program the DMA Control Registers in order of highest-priority channel to low
priority channel.
10-27

DIRECT MEMORY ACCESS UNIT
Figure 10-16. DMA Module HALT Register

10.3 HARDWARE CONSIDERATIONS AND THE DMA UNIT

This section covers hardware interfacing and performance factors for the DMA Unit.

Register Name: DMA Halt Register

Register Mnemonic: DMAHALT

Register Function: Allows software suspension of DMA transfers.

Bit
Mnemonic Bit Name Reset

State Function

HMI Halt Mask
for HNMI

0 HMI must be set to modify HNMI.

HMB Halt Mask
for Module B

0 HMB must be set to modify HDMB.

HMA Halt Mask
for Module A

0 HMA must be set to modify HDMA.

HNMI Halt DMA
Unit for NMI
Service

0 HNMI is set automatically when an NMI request
is processed by the CPU. HNMI suspends DMA
transfers for both modules. HNMI is cleared
automatically when an IRET instruction is
executed by the CPU.

HDMB Halt DMA
Module B

0 Set to suspend transfers for module B.

HDMA Halt DMA
Module A

0 Set to suspend transfers for module A.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

A1504-A0

15 0

H
D
M
A

H
D
M
B

H
N
M
I

H
M
A

H
M
B

H
M
I

10-28

DIRECT MEMORY ACCESS UNIT

a min-

e only

 run.

LD

l

.

es to

hroni-
r Core
s, the

alcu-
10.3.1 DRQ Pin Timing Requirements

The DRQ pins are sampled on the falling edge of CLKOUT. The DRQ pins must be set up
imum of TCLIS before CLKOUT falling and must be held a minimum of TCLIH after CLKOUT
falls. Refer to the data sheet for specific values.

The DRQ pins have an internal synchronizer. Violating the setup and hold times can caus
a missed DMA request, not a processor malfunction.

10.3.2 DMA Latency

DMA Latency is the delay between a DMA request being asserted and the DMA cycle being
The DMA latency for a channel is controlled by many factors:

• Bus HOLD — Bus HOLD takes precedence over internal DMA requests. Using bus HO
will degrade DMA latency.

• LOCKed Instructions — Long LOCKed instructions (e.g., LOCK REP MOVS) wil
monopolize the bus, preventing access by the DMA Unit.

• Inter-channel Priority Scheme — Setting a channel at low priority will affect its latency

The minimum latency in all cases is four CLKOUT cycles. This is the amount of time it tak
synchronize and prioritize a request.

10.3.3 DMA Transfer Rates

The maximum DMA transfer rate is a function of processor operating frequency and sync
zation mode. For unsynchronized and source-synchronized transfers, the 80C186 Modula
can transfer two bytes every eight CLKOUT cycles. For destination-synchronized transfer
addition of two idle T-states reduces the bandwidth by two clocks per word.

Maximum DMA transfer rates (in Mbytes per second) for the 80C186 Modular Core are c
lated by the following equations, where FCPU is the CPU operating frequency (in megahertz).

For unsynchronized and source-synchronized transfers:

For destination-synchronized transfers:

0.25 FCPU×

0.20 FCPU×
10-29

DIRECT MEMORY ACCESS UNIT

A cy-
ulated

n be
 chip-
ine S6
be ac-

ory to
roller.

ations

rans-
Because of its 8-bit data bus, the 80C188 Modular Core can transfer only one byte per DM
cle. Therefore, the maximum transfer rates for the 80C188 Modular Core are half those calc
by the equations for the 80C186 Modular Core.

10.3.4 Generating a DMA Acknowledge

The DMA channels do not provide a distinct DMA acknowledge signal. A chip-select line ca
programmed to activate for the memory or I/O range that requires the acknowledge. The
select must be programmed to activate only when a DMA is in progress. Latched status l
can be used as a qualifier to the chip-select for situations in which the chip-select line will
tive for both DMA and normal data accesses.

10.4 DMA UNIT EXAMPLES

Example 10-1 sets up channel 0 to perform an unsynchronized burst transfer from mem
memory while channel 1 is used to service an external DMA request from a hard disk cont

Example 10-2 shows the steps necessary to use the DMA Unit with the Serial Communic
Unit. Two DMA channels are used: one for transmit and one for receive functions.

Example 10-3 shows timed DMA transfers. A sawtooth waveform is created using DMA t
fers to an A/D converter.
10-30

DIRECT MEMORY ACCESS UNIT
Example 10-1. Initializing the DMA Unit

$MOD186

name DMA_EXAMPLE_1

; This example shows code necessary to set up two DMA channels.
; One channel performs an unsynchronized transfer from memory to memory.
; The second channel is used by a hard disk controller located in
; I/O space.

; It is assumed that the constants for PCB register addresses are
; defined elsewhere with EQUates.

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG

START: MOV AX, DATA_SEG ; DATA SEGMENT POINTER
MOV DS, AX
ASSUME DS:DATA_SEG

; First we must initialize DMA channel 0. DMA0 will perform an
; unsynchronized transfer from SOURCE_DATA_1 to DEST_DATA_1.
; The first step is to calculate the proper values for the
; source and destination pointers.

MOV AX, SEG SOURCE_DATA_1

ROL AX, 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, 0FFF0H ; GET SHIFTED LOW 4 NIBBLES

ADD AX, OFFSET SOURCE_DATA_1
; NOW LOW BYTES OF POINTER ARE IN AX

ADC BX, 0 ; ADD IN THE CARRY
 ; TO THE HIGH NIBBLE

AND BX, 000FH ; GET JUST THE HIGH NIBBLE
MOV DX, D0SRCL
OUT DX, AL ; AX=LOW 4 BYTES

MOV DX, D0SRCH
MOV AX, BX ; GET HIGH NIBBLE
OUT DX, AX

; SOURCE POINTER DONE. REPEAT FOR DESTINATION.

MOV AX, SEG DEST_DATA_1

ROL AX, 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, 0FFF0H ; GET SHIFTED LOW 4 NIBBLES

ADD AX, OFFSET DEST_DATA_1

; NOW LOW BYTES OF POINTER ARE IN AX

ADC BX, 0 ; ADD IN THE CARRY
; TO THE HIGH NIBBLE

AND BX, 000FH ; GET JUST THE HIGH NIBBLE
MOV DX, D0DSTL
OUT DX, AX ; AX=LOW 4 BYTES
10-31

DIRECT MEMORY ACCESS UNIT
Example 10-1. Initializing the DMA Unit (Continued)

MOV DX, D0DSTH
MOV AX, BX ; GET HIGH NIBBLE
OUT DX, AX

; THE POINTER ADDRESSES HAVE BEEN SET UP. NOW WE SET UP THE TRANSFER COUNT.

MOV AX, 29 ; THE MESSAGE IS 29 BYTES LONG.
MOV DX, D0TC ; XFER COUNT REG
OUT DX, AX

; NOW WE NEED TO SET THE PARAMETERS FOR THE CHANNEL AS FOLLOWS:
;
; DESTINATION SOURCE
; ----------- ------
; MEMORY SPACE MEMORY SPACE
; INCREMENT PTR INCREMENT PTR
;
; TERMINATE ON TC, NO INTERRUPT, UNSYNCHRONIZED, LOW PRIORITY RELATIVE
; TO CHANNEL 1, BYTE XFERS. WE START THE CHANNEL.

MOV AX, 1011011000000110B
MOV DX, D0CON
OUT DX, AX

; THE UNSYNCHRONIZED BURST IS NOW RUNNING ON THE BUS...
; NOW SET UP CHANNEL 1 TO SERVICE THE DISK CONTROLLER.
; FOR THIS EXAMPLE WE WILL ONLY BE READING FROM THE DISK.
; THE SOURCE IS THE I/O PORT FOR THE DISK CONTROLLER.

MOV AX, DISK_IO_ADDR
MOV DX, D1SRCL
OUT DX, AX ; PROGRAM LOW ADDR

XOR AX, AX
MOV DX, D1SRCH ; HI ADDR FOR IO=0
OUT DX, AX

; THE DESTINATION IS THE DISK BUFFER IN MEMORY

MOV AX, SEG DISK_BUFF

ROL AX, 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, 0FFF0H ; GET SHIFTED LOW 4 NIBBLES

ADD AX, OFFSET DISK_BUFF

; NOW LOW BYTES OF POINTER ARE IN AX

ADC BX, 0 ; ADD IN THE CARRY
; TO THE HIGH NIBBLE

AND BX, 000FH ; GET JUST THE HIGH NIBBLE
MOV DX, D1DSTL
OUT DX, AL ; AX=LOW 4 BYTES
MOV DX, D1DSTH
MOV AX, BX ; GET HIGH NIBBLE
OUT DX, AX

; THE POINTER ADDRESSES HAVE BEEN SET UP. NOW WE SET UP THE TRANSFER COUNT.
10-32

DIRECT MEMORY ACCESS UNIT
Example 10-1. Initializing the DMA Unit (Continued)

MOV AX, 512 ; THE DISK READS IN 512 BYTE
SECTORS

MOV DX, D1TC ; XFER COUNT REG
OUT DX, AX

; NOW WE NEED TO SET THE PARAMETERS FOR THE CHANNEL AS FOLLOWS:
;
; DESTINATION SOURCE
; ----------- ------
; MEMORY SPACE I/O SPACE
; INCREMENT PTR CONSTANT PTR
;
; TERMINATE ON TC, INTERRUPT, SOURCE SYNC, HIGH PRIORITY RELATIVE TO
; CHANNEL 0, BYTE XFERS, USE DRQ PIN FOR REQUEST SOURCE. ARM CHANNEL.

MOV AX, 1010001101100110B
MOV DX, D0CON
OUT DX, AX

; REQUESTS ON DRQ1 WILL NOW RESULT IN TRANSFERS

CODE_SEG ENDS

DATA_SEG SEGMENT

SOURCE_DATA_1DB '80C186EC INTEGRATED PROCESSOR'
DEST_DATA_1DB 30 DUP('MITCH') ; JUNK DATA FOR TEST

DISK_BUFF DB 512 DUP(?)

DATA_SEG ENDS
END START
10-33

DIRECT MEMORY ACCESS UNIT
Example 10-2. DMA-Driven Serial Transfers

$mod186

name DMA_WITH_SCU

; The following example initializes the DMA unit to perform
; DMA-driven serial transfers.
;
; It is assumed that the serial port has been initialized for
; Mode 1 asynchronous transfers. Register mnemonics are assumed
; to be defined elsewhere in EQUate instructions.

DATA SEGMENT

XMIT_BUFF DB 'This is a serial message.'
RECV_BUFF DB 128 DUP('ReCv') ; JUNK DATA

DATA ENDS

CODE SEGMENT
ASSUME CS:CODE

MOV AX, DATA ; DATA SEGMENT POINTER
MOV DS, AX
ASSUME DS:DATA

 ; First we set up DMA channel 2 (Module B, channel 0) to handle
 ; transmit requests from serial port 1.
 ;
 ; The source of data is the transmit buffer in memory.
 ; The destination for data is the TBUF register for serial port 1...

MOV AX, SEG XMIT_BUFF

ROL AX, 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, 0FFF0H ; GET SHIFTED LOW 4 NIBBLES

ADD AX, OFFSET XMIT_BUFF+1

; USE XMIT_BUFF+1 BECAUSE FIRST BYTE IS SENT MANUALLY.
; NOW LOW BYTES OF POINTER ARE IN AX.

ADC BX, 0 ; ADD IN THE CARRY
; TO THE HIGH NIBBLE

AND BX, 000FH ; GET JUST THE HIGH NIBBLE
MOV DX, D2SRCL
OUT DX, AX ; AX=LOW 4 BYTES

MOV DX, D2SRCH
MOV AX, BX ; GET HIGH NIBBLE
OUT DX, AX

; SOURCE POINTER DONE. DESTINATION IS IN PCB.

MOV DX, D2DSTL
MOV AX, S1TBUF ; TRANSMIT BUFFER FOR
OUT DX, AX ; CHANNEL 1 IS DEST
10-34

DIRECT MEMORY ACCESS UNIT
Example 10-2. DMA-Driven Serial Transfers (Continued)

XOR AX, AX ; HIGH ADDRESS=0
MOV DX, D2DSTH
OUT DX, AX

; THE POINTER ADDRESSES HAVE BEEN SET UP. NOW WE SET UP THE TRANSFER COUNT.

MOV AX, 25 ; THE MESSAGE IS 25 BYTES LONG.
MOV DX, D2TC ; XFER COUNT REG
OUT DX, AX

; SELECT THE SERIAL PORTS AS THE SOURCE OF INTERNAL DMA REQUESTS
; AND SELECT MODULE B AS THE HIGHEST PRIORITY MODULE.

MOV DX, DMAPRI
MOV AX, 0404H ; IDRQB=1, DMAPB=1
OUT DX, AX

; NOW WE NEED TO SET THE PARAMETERS FOR THE CHANNEL AS FOLLOWS:
;
; DESTINATION SOURCE
; ----------- ------
; I/O SPACE MEMORY SPACE
; CONSTANT PTR INCREMENT PTR
;
; TERMINATE ON TC, INTERRUPT, SOURCE-SYNCHRONIZED, LOW PRIORITY RELATIVE
; TO CHANNEL 1, BYTE XFERS. INTERNAL DRQ. ARM CHANNEL.

MOV AX, 0001011101010110B
MOV DX, D0CON
OUT DX, AX

; THE TRANSMIT CHANNEL IS NOW ARMED. IT WILL NOT BEGIN TRANSFERS UNTIL
; IT IS "PRIMED" BY SENDING THE FIRST BYTE MANUALLY.

; NOW SET UP CHANNEL 4 TO HANDLE RECEIVE REQUESTS FROM SERIAL CHANNEL 1.

MOV AX, SEG RECV_BUFF

ROL AX, 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, 0FFF0H ; GET SHIFTED LOW 4 NIBBLES

ADD AX, OFFSET RECV_BUFF

; NOW LOW BYTES OF POINTER ARE IN AX.

ADC BX, 0 ; ADD IN THE CARRY
; TO THE HIGH NIBBLE

AND BX, 000FH ; GET JUST THE HIGH NIBBLE
MOV DX, D3DSTL
OUT DX, AX ; AX=LOW 4 BYTES

MOV DX, D3DSTH
MOV AX, BX ; GET HIGH NIBBLE
OUT DX, AX

; DESTINATION POINTER DONE. SOURCE IS IN PCB.

MOV DX, D3SRCL
MOV AX, S1RBUF ; RECEIVE BUFFER FOR
OUT DX, AX ; CHANNEL 1 IS DEST
10-35

DIRECT MEMORY ACCESS UNIT
Example 10-2. DMA-Driven Serial Transfers (Continued)

XOR AX, AX ; HIGH ADDRESS=0
MOV DX, D3SRCH
OUT DX, AX

; THE POINTER ADDRESSES HAVE BEEN SET UP. NOW WE SET UP THE TRANSFER COUNT.

MOV AX, 128 ; INTERRUPT AFTER 128 BYTES
MOV DX, D3TC ; ARE RECEIVED.
OUT DX, AX

; NOW WE NEED TO SET THE PARAMETERS FOR THE CHANNEL AS FOLLOWS:
;
; DESTINATION SOURCE
; ----------- ------
; MEMORY SPACE I/O SPACE
; INCREMENT PTR CONSTANT PTR
;
; TERMINATE ON TC, INTERRUPT, SOURCE-SYNCHRONIZED, HIGH PRIORITY
; RELATIVE TO CHANNEL 1, BYTE XFERS. INTERNAL DRQ. ARM CHANNEL.

MOV AX, 1010001101110110B
MOV DX, D3CON
OUT DX, AX

; AT THIS POINT THE DMA UNIT WILL HANDLE SERIAL RECEPTIONS,
; AS LONG AS THE SERIAL PORT HAS BEEN INITIALIZED.

; NOW START THE BURST TRANSMIT ("PRIME THE PUMP")

MOV AL, XMIT_BUFF ; GET FIRST BYTE
XOR AH, AH ; CLEAR RESERVED BITS
MOV DX, S1TBUF ; TRANSMIT IT
OUT DX, AX

; BURST TRANSMIT HAS BEGUN.

CODE ENDS
END
10-36

DIRECT MEMORY ACCESS UNIT
Example 10-3. Timed DMA Transfers

$mod186
name DMA_EXAMPLE_1

; This example sets up the DMA Unit to perform a transfer from memory to
; I/O space every 22 uS. The data is sent to an A/D converter.

; It is assumed that the constants for PCB register addresses are
; defined elsewhere with EQUates.

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG

START: MOV AX, DATA_SEG ; DATA SEGMENT POINTER
MOV DS, AX
ASSUME DS:DATA_SEG

; First, set up the pointers. The source is in memory.

MOV AX, SEG WAVEFORM_DATA

ROL AX, 4 ; GET HIGH 4 BITS
MOV BX, AX ; SAVE ROTATED VALUE
AND AX, 0FFF0H ; GET SHIFTED LOW 4 NIBBLES

ADD AX, OFFSET WAVEFORM_DATA

; NOW LOW BYTES OF POINTER ARE IN AX.

ADC BX, 0 ; ADD IN THE CARRY
; TO THE HIGH NIBBLE

AND BX, 000FH ; GET JUST THE HIGH NIBBLE
MOV DX, D0SRCL
OUT DX, AX ; AX=LOW 4 BYTES

MOV DX, D0SRCH
MOV AX, BX ; GET HIGH NIBBLE
OUT DX, AX

MOV AX, DA_CNVTR ; I/O ADDRESS OF D/A
MOV DX, D0DSTL
OUT DX, AX

MOV DX, D0DSTH
XOR AX, AX ; CLEAR HIGH NIBBLE
OUT DX, AX

; THE POINTER ADDRESSES HAVE BEEN SET UP. NOW WE SET UP THE TRANSFER COUNT.

MOV AX, 255 ; 8-BIT D/A, SO WE SEND 256 BYTES
MOV DX, D0TC ; TO GET A FULL SCALE
OUT DX, AX

; PROGRAM IDRQ MUX

MOV DX, DMAPRI
MOV AX, 00H ; TIMER2 IS IDRQ SOURCE

; MODULES HAVE EQUAL PRIORITY
OUT DX, AX
10-37

DIRECT MEMORY ACCESS UNIT
Example 10-3. Timed DMA Transfers (Continued)

; NOW WE NEED TO SET THE PARAMETERS FOR THE CHANNEL AS FOLLOWS:
;
; DESTINATION SOURCE
; ----------- ------
; I/O SPACE MEMORY SPACE
; CONSTANT PTR INCREMENT PTR
;
; TERMINATE ON TC, INTERRUPT, SOURCE SYNCHRONIZE, INTERNAL REQUESTS,
; LOW PRIORITY RELATIVE TO CHANNEL 1, BYTE XFERS.

MOV AX, 0001011101010110B
MOV DX, D0CON
OUT DX, AX

; NOW WE ASSUME THAT TIMER 2 HAS BEEN PROPERLY PROGRAMMED FOR A 22uS DELAY.
; WHEN THE TIMER IS STARTED, A DMA TRANSFER WILL OCCUR EVERY 22uS.

CODE_SEG ENDS

DATA_SEG SEGMENT

WAVEFORM_DATADB 0,1,2,3,4,5,6,7,8,9,10,11,12,13
DB 14,15,16,17,18,19,20,21,22,23,24

; ETC., UP TO 255

DATA_SEG ENDS

END START
10-38

11
Serial
Communications
Unit

ch se-
l port.

tocols,
ral pro-
protocol.
is most

 com-
d. Data
e

ta bits
ta bits.
 a typ-
CHAPTER 11
SERIAL COMMUNICATIONS UNIT

11.1 INTRODUCTION

The Serial Communications Unit is composed of two identical serial ports, or channels. Ea
rial port is independent of the other. This chapter describes the operation of a single seria

The serial port implements several industry-standard asynchronous communications pro
and it readily interfaces to many different processors over a standard serial interface. Seve
cessors and systems can be connected to a common serial bus using a multiprocessor
The serial port also implements a simple synchronous protocol. The synchronous protocol
commonly used to expand the number of I/O pins with shift registers.

Features:

• Full duplex operation

• Programmable seven, eight or nine data bits in asynchronous mode

• Independent baud rate generator

• Maximum baud rate of 1/16 the processor clock

• Double-buffered transmit and receive

• Clear-to-Send feature for transmission

• Break character transmission and detection

• Programmable even, odd or no parity

• Detects both framing and overrun errors

• Supports interrupt on transmit and receive

11.1.1 Asynchronous Communications

Asynchronous communications protocols allow different devices to communicate without a
mon reference clock. The devices communicate at a common baud rate, or bits per secon
is transmitted and received in frames. A frame is a sequence of bits shifted serially onto or off th
communications line.

Each asynchronous frame consists of a start bit (always a logic zero), followed by the da
and a terminating stop bit. The serial port can transmit and receive seven, eight or nine da
The last data bit can optionally be replaced by an even or odd parity bit. Figure 11-1 shows
ical 10-bit frame.
11-1

SERIAL COMMUNICATIONS UNIT

ive ma-
ely in-
ronous

 When
BUF)

gin-
receive
X ma-
nes the
ise

n in-
ITT ex-

top bit
 Inter-
ples

 in the
Figure 11-1. Typical 10-Bit Asynchronous Data Frame

When discussing asynchronous communications, it makes sense to talk about the rece
chine (RX machine) and the transmit machine (TX machine) separately. Each is complet
dependent. Transmission and reception can occur simultaneously, making the asynch
modes full-duplex.

11.1.1.1 RX Machine

The RX machine (Figure 11-2) shifts the received serial data into the receive shift register.
the reception has completed, the data is then moved into the Serial Receive Buffer (SxR
Register. From there, the user can read the received data byte.

The RX machine samples the RXD pin, looking for a logical low (start bit) signifying the be
ning of a reception. Once the logical low has been detected, the RX machine begins the
process. Each expected bit-time is divided into eight samples by the 8X baud clock. The R
chine takes the three middle samples and, based on a two-out-of-three majority, determi
data bit value. This oversampling is common for asynchronous serial ports and improves no
immunity. This majority value is then shifted into the receive shift register.

Using this method, the RX machine can tolerate incoming baud rates that differ from its ow
ternal baud rates by 2.5% overspeed and 5.5% underspeed. These limits exceed the CC
tended signaling rate specifications.

A stop bit is expected by the RX machine after the proper number of data bits. When the s
has been validated, the data from the shift register is copied into SxRBUF and the Receive
rupt (RI) bit is set. Note that the stop bit is actually validated right after its middle three sam
are taken. Therefore, the data is moved into SxRBUF and the RI bit is set approximately
middle of the stop bit time.

Start
Bit

Bit 0
Parity

or
Bit 7

Stop
Bit

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6

1 2 3 4 5 6 7 8 9 10

A1274-0A
11-2

SERIAL COMMUNICATIONS UNIT
Figure 11-2. RX Machine

R
S

0
R

S
1

R
S

2
R

S
3

R
S

4
R

S
5

R
S

6
R

S
7

R
S

8
R

ec
ei

ve

S
hi

ft
R

eg
is

te
r

R
X

D

S
am

pl
er

S
hi

ft
C

lo
ck

R
B

0
R

B
1

R
B

2
R

B
3

R
B

4
R

B
5

R
B

6
R

B
7

D
D

D
D

D
D

D
D

Q
Q

Q
Q

Q
Q

Q
Q

C
ha

nn
el

 S
ta

tu
s

Lo
gi

c

O
E

F
E

R
B

8/

P
E

D
B

R
K

1
D

B
R

K
0

R
I

T
o

P
C

B

S
xS

T
S

R
I R

eq
ue

st

S
ig

na
l

T
o

P
C

B

S
xR

B
U

F

R
ec

ep
tio

n
C

om
pl

et
e

8X
 B

au
d

C
lo

ck
R

X
D

P

in

A1283-0A
11-3

SERIAL COMMUNICATIONS UNIT

rect.

ine, a

d data
m an

ter is M
longer
) char-
 length

ts the

SxT-
ferred
 trans-

arity
ing the
rrupt bit

mpty,
ly and
The RX machine can detect several error conditions that may occur during reception:

1. Parity errors — A parity error flag is set when the parity of the received data is incor

2. Framing errors — If a valid stop bit is not received when expected by the RX mach
framing error flag is set.

3. Overrun errors — If SxRBUF is not read before another reception completes, the ol
in SxRBUF is overwritten and an overrun error flag is set. This indicates that data fro
earlier reception has been lost.

The RX machine also recognizes two different break characters. The shorter break charac
bit times, where M is equal to the total number of bits (start + data + stop) in a frame. The
break character is 2M + 3 bit times. A break character results in at least one null (all zero
acter with a framing error being received. Other error flags could be set depending on the
of the break character and the mode of the serial port.

11.1.1.2 TX Machine

A block diagram of the TX machine is shown in Figure 11-3. The TX machine logic suppor
following features:

• parity generation (even, odd or none)

• Clear-to-Send

• break character transmission

• double-buffered operation

A transmission begins by writing a byte to the Serial Transmit Buffer (SxTBUF) Register.
BUF is a holding register for the transmit shift register. The contents of SxTBUF are trans
to the transmit shift register as soon as it is empty. If no transmission is in progress (i.e., the
mit shift register is empty), SxTBUF is copied immediately to the transmit shift register. If p
is enabled, the parity bits are calculated and appended to the transmit shift register dur
transfer. The start and stop bits are added when the data is transmitted. The Transmit Inte
(TI) is set at the beginning of the stop bit time.

Double buffering is a useful feature of the TX machine. When the transmit shift register is e
the user can write two sequential bytes to SxTBUF. The first byte is transmitted immediate
the second byte is held in SxTBUF until the first byte has been transmitted.
11-4

SERIAL COMMUNICATIONS UNIT
Figure 11-3. TX Machine

T
S

8
T

S
7

T
S

6
T

S
5

T
S

4
T

S
3

T
S

2
T

S
1

T
S

0

S
ta

rt
/S

to
p

B
it

G
en

er
at

io
n

an
d

S
hi

ft
C

on
tr

ol

Lo
gi

c

T
X

D

F
ro

m
 P

C
B

S
xT

B
U

F

F
ro

m

T
B

8
B

it
In

S

xC
N

T

C
T

S

P
ar

ity

C
on

tr
ol

Lo

gi
c

P

a r i t y

B
au

d
C

lo
ck C

E
N

B

it

S
hi

ft
C

lo
ck

E

na
bl

e

S
B

R
K

B

it

T
X

 S
hi

ft
C

lo
ck

T
ra

ns
m

it
S

hi
ft

R
eg

is
te

r

G

e n

T
X

E

B
it

T
B

7
T

B
6

T
B

5
T

B
4

T
B

3
T

B
2

T
B

1
T

B
0

S
xT

B
U

F

E
m

pt
y

T
X

 S
hi

ft
E

m
pt

y

E
V

N

B
it

P
E

N

B
it

A1284-0A
11-5

SERIAL COMMUNICATIONS UNIT

feature.
S
n

D pin
will

tely the
sists of
 eighth
ith no

 same
arity bit
by the
an be

mes.

, seven
e RX
The Transmit machine can be disabled by an external source by using the Clear-to-Send
When the Clear-to-Send feature is enabled, the TX machine will not transmit until the CT pin
is asserted. The CTS pin is level sensitive. Asserting the CTS pin before a pending transmissio
for at least 1½ clock cycles ensures that the entire frame will be transmitted. See “CTS Pin Tim-
ings” on page 11-18 for details.

The TX machine can also transmit a break character. Setting the SBRK bit forces the TX
immediately low. The TXD pin remains low until the user clears SBRK. The TX machine
continue the transmission sequence even if SBRK is set. Use caution when setting SBRK or char-
acters will be lost.

11.1.1.3 Modes 1, 3 and 4

The three asynchronous modes of the serial ports, Modes 1, 3 and 4, operate in approxima
same manner. Mode 1 is the 8-bit asynchronous communications mode. Each frame con
a start bit, eight data bits and a stop bit, as shown in Figure 11-4. When parity is used, the
data bit becomes the parity bit. Both the RX and TX machines use this frame in Mode 1 w
exceptions.

Mode 3 is the 9-bit asynchronous communications mode (see Figure 11-5). Mode 3 is the
as Mode 1 except that a frame contains nine data bits. The ninth data bit becomes the p
when the parity feature is enabled. When parity is disabled, the ninth data bit is controlled
user. (See “Modes 2 and 3 for Multiprocessor Communications” on page 11-14.) Mode 3 c
used with Mode 2 for multiprocessor communications or alone for “8 data bits + parity” fra

Mode 4 is the 7-bit asynchronous communications mode. Each frame consists of a start bit
data bits and a stop bit, as shown in Figure 11-6. Parity is not available in Mode 4. Both th
and TX machines use this frame in Mode 4 with no exceptions.

Figure 11-4. Mode 1 Waveform

Start
Bit Bit 0

Parity
or

Bit 7

Stop
BitBit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6

1 2 3 4 5 6 7 8 9 10

TXD/
RXD

A1285-0A
11-6

SERIAL COMMUNICATIONS UNIT

gether

. Any
 occur

he state
lave

 slaves
h one
and the

 serial

 equal
Figure 11-5. Mode 3 Waveform

Figure 11-6. Mode 4 Waveform

11.1.1.4 Mode 2

Asynchronous Mode 2 is referred to as the “address recognition mode.” Mode 2 is used to
with Mode 3 for multiprocessor communications over a common serial link.

In Mode 2, the RX machine will not complete a reception unless the ninth data bit is a one
character received with the ninth bit equal to zero is ignored. No flags are set, no interrupts
and no data is transferred to SxRBUF. In Mode 3, characters are received regardless of t
of the ninth data bit. The following is brief example of using Modes 2 and 3. See “Master/S
Example” on page 11-24 for more information.

Assume one master serial port connects to multiple slave serial ports over a serial link. The
are initially in Mode 2, and the master is always in Mode 3. The master communicates wit
slave at a time. The CPU overhead of the serial communications burdens only the master
target slave device.

1. The master transmits the “address” of the target slave, with the ninth bit set, over the
link.

2. All slaves receive the character and check whether that address is theirs.

3. The target slave switches to Mode 3; all other slaves remain in Mode 2.

4. The master and the target slave continue the communication with all ninth data bits
to zero. The other slave devices ignore the activity on the serial link.

Start
Bit Bit 0

Parity
or

Bit 8

Stop
BitBit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 7

1 2 3 4 5 6 7 8 9 10

TXD/
RXD Bit 6

11

A1286-0A

Start
Bit Bit 0 Stop

BitBit 1 Bit 2 Bit 3 Bit 4 Bit 5

1 2 3 4 5 6 7 8 9

TXD/
RXD Bit 6

A1287-0A
11-7

SERIAL COMMUNICATIONS UNIT

its for

 with

vices.
 in 8-

never
plex.

 always
 port. In
5. At the end of the communication, the target slave switches back to Mode 2 and wa
another address.

The parity feature cannot be used when implementing multiprocessor communications
Modes 2 and 3, as the ninth data bit is a control bit and cannot be used as the parity bit.

11.1.2 Synchronous Communications

The synchronous mode (Mode 0) is useful primarily with shift register-based peripheral de
The device outputs a synchronizing clock on TXD and transmits and receives data on RXD
bit frames (Figure 11-7). The serial port always provides the synchronizing clock; it can
receive a synchronous clock on TXD. Communication in the synchronous mode is half-du
The RXD pin cannot transmit and receive data at the same time. Because the serial port
acts as the master in Mode 0, all transmissions and receptions are controlled by the serial
Mode 0, the parity functions and break character detection functions are not available.

Figure 11-7. Mode 0 Waveforms

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5RXD Bit 6 Bit 7

TXD

Bit 0RXD

TXD

Mode 0 Transmit

Mode 0 Receive

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

A1289-0A
11-8

SERIAL COMMUNICATIONS UNIT

 Serial
 Reg-
 serial
11.2 PROGRAMMING

This section describes how to program the serial port using the appropriate registers. The
Receive Buffer Register (SxRBUF) is shown in Figure 11-8 and the Serial Transmit Buffer
ister (SxTBUF) is shown in Figure 11-9. These registers have the same functions in any
port mode.

Figure 11-8. Serial Receive Buffer Register (SxRBUF)

Register Name: Serial Receive Buffer Register

Register Mnemonic: SxRBUF

Register Function: Received data bytes are stored in SxRBUF.

Bit
Mnemonic Bit Name Reset

State Function

RB7:0 Received
Data

0 Received data byte.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

R
B
2

R
B
0

R
B
1

R
B
3

R
B
6

R
B
4

R
B
5

R
B
7

A1290-0A
11-9

SERIAL COMMUNICATIONS UNIT

mpare
y the
xternal
mine
 baud

T and
 train is
e baud
uals the
Figure 11-9. Serial Transmit Buffer Register (SxTBUF)

11.2.1 Baud Rates

The baud rate generator is composed of a 15-bit counter register (BxCNT) and a 15-bit co
register (BxCMP). BxCNT (Figure 11-10) is a free-running counter that is incremented b
baud timebase clock. The baud timebase clock can be either the internal CPU clock or an e
clock applied to the BCLK pin. BxCMP (Figure 11-11) is programmed by the user to deter
the baud rate. The most-significant bit of BxCMP (ICLK) selects which source is used as the
timebase clock.

BxCNT is incremented by the baud timebase clock and compared to BxCMP. When BxCN
BxCMP are equal, the baud rate generator outputs a pulse and resets BxCNT. This pulse
the actual baud clock used by the RX and TX machines. The baud clock is eight times th
rate in the asynchronous modes because of the sampling requirements. The baud clock eq
baud rate in the synchronous mode.

Register Name: Serial Transmit Buffer Register

Register Mnemonic: SxTBUF

Register Function: Bytes are written to SxTBUF to be transmitted.

Bit
Mnemonic Bit Name Reset

State Function

TB7:0 Transmit
Data Field

0 Data byte to be transmitted.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

T
B
2

T
B
0

T
B
1

T
B
3

T
B
6

T
B
4

T
B
5

T
B
7

A1291-0A
11-10

SERIAL COMMUNICATIONS UNIT
Figure 11-10. Baud Rate Counter Register (BxCNT)

Register Name: Baud Rate Counter Register

Register Mnemonic: BxCNT

Register Function: 15-bit baud rate counter value.

Bit
Mnemonic Bit Name Reset

State Function

BC14:0 Baud rate
counter field

0 Reflects current value of the baud rate counter.

NOTE: Writing to this register while the serial
port is transmitting causes indeterminate
operation.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

B
C
0

B
C
1

B
C
2

B
C
3

B
C
4

B
C
5

B
C
6

B
C
7

B
C
8

B
C
9

B
C
1
0

B
C
1
1

B
C
1
2

B
C
1
3

B
C
1
4

A1275-0A
11-11

SERIAL COMMUNICATIONS UNIT

 baud
Figure 11-11. Baud Rate Compare Register (BxCMP)

The equations in Figure 11-12 show how to calculate the proper BxCMP value for a specific
rate (where FCPU = CPU operating frequency = ½ CLKIN frequency).

Figure 11-12. Calculating the BxCMP Value for a Specific Baud Rate

Mode 0 Mode 1–4

If CPU clock is baud timebase clock:

If BCLK is baud timebase clock:

Register Name: Baud Rate Compare Register

Register Mnemonic: BxCMP

Register Function: Determines baud rate for the serial port.

Bit
Mnemonic Bit Name Reset

State Function

ICLK Internal
Clocking

0 Selects the input clock:

0 = BCLK is input to baud clock.
1 = CPU clock is input to baud clock.

BR14:0 Baud Rate
Compare
Field

0 Sets the compare value for the baud rate clock.

15 0

B
R
2

B
R
0

B
R
1

B
R
3

B
R
6

B
R
4

B
R
5

B
R
7

B
R
1
0

B
R
8

B
R
9

B
R
1
1

B
R
1
4

B
R
1
2

B
R
1
3

I
C
L
K

A1276-0A

BxCMP
FCPU

baudrate
-------------------------- 1–= BxCMP

FCPU

baudrate 8×
------------------------------------ 1–=

BxCMP
BCLK

baudrate
--------------------------= BxCMP

BCLK

baudrate 8×
------------------------------------=
11-12

SERIAL COMMUNICATIONS UNIT

-half
. Ta-

gister
Status
nd TX

e differ-
d op-

 is fair-
STS

 pro-

th the
Due to internal synchronization requirements, the maximum input frequency to BCLK is one
the CPU operating frequency. See “BCLK Pin Timings” on page 11-18 for more information
ble 11-1 shows the correct BxCMP values for common baud rates.

NOTE

A zero or one value for BxCMP is illegal and results in unpredictable
operation. Programming BxCMP during a transmission or reception causes
indeterminate operation.

11.2.2 Asynchronous Mode Programming

The serial port operation is controlled by two registers. The Serial Port Control (SxCON) Re
controls the mode of operation of the serial port (see Figure 11-13). The Serial Port
(SxSTS) Register acts as the flags register, reporting on errors and the state of the RX a
machines (see Figure 11-14). Depending on the serial port mode, these registers can hav
ent functionality. This section outlines how to use SxCON and SxSTS to obtain the desire
eration from the serial port.

11.2.2.1 Modes 1, 3 and 4 for Stand-alone Serial Communications

When using these modes for their respective seven, eight or nine bit data modes, operation
ly straightforward. The serial port must be initialized correctly (through SxCON), then Sx
needs to be interpreted.

To configure the serial port, first program the baud rate through the BxCMP register, then
gram SxCON (Figure 11-13 on page 11-15) as follows.

1. Determine the values for M2:0 for the desired serial port mode.

2. If parity is used, enable it with the PEN bit. Set the sense of parity (even or odd) wi
EVN bit. Note that parity is not available in Mode 4 (seven bit data).

Table 11-1. BxCMP Values for Typical Baud Rates and CPU Frequencies

Baud
Rate

CPU Frequency

25 MHz 20 MHz 16 MHz 8 MHz

BxCMP
Value

%
Error

BxCMP
Value

%
Error

BxCMP
Value

%
Error

BxCMP
Value

%
Error

19,200 80A2H –0.14 8081H 0.16 8067H 0.16 8033H 0.16

9,600 8145H –0.14 8103H 0.16 80CFH 0.16 8067H 0.16

4,800 828AH 0.00 8208H –0.03 81A0H –0.08 80CFH 0.16

2,400 8515H 0.00 8411H –0.03 8340H 0.04 81A0H –0.08

1,200 8A2BH 0.00 8822H 0.01 8682H –0.02 8340H 0.04
11-13

SERIAL COMMUNICATIONS UNIT

chine

serial
S reg-
all bits
can be

I are
 and
riate bit
ity error
read be-

eration.
rectly.

 after
bytes
r bits

. RB8
func-
r RB8.

 long
 TXD
gth of
hen
3. If the Clear-to-Send feature is used, set the CEN bit to enable it.

4. If receptions are desired, set the REN bit to enable the RX machine. Note the TX ma
need not be explicitly enabled.

At this point, you will be able to transmit and receive in the mode specified. Now that the
port is operating, you must correctly interpret its status. This is done by reading the SxST
ister (Figure 11-14 on page 11-16) and interpreting its contents. Reading SxSTS clears
except the CTS and TXE bits. SxSTS must first be saved in memory and then each bit
interpreted individually.

The RI, TI and TXE bits indicate the condition of the transmit and receive buffers. RI and T
also used with the Interrupt Control Unit for interrupt-based communications. The OE, FE
PE bits indicate any errors when a character is received. Once an error occurs, the approp
remains set until SxSTS is read. For example, assume a character is received with a par
(PE set) and a subsequent error-free character is received. If the SxSTS register was not
tween the two receptions, the PE bit remains set.

11.2.2.2 Modes 2 and 3 for Multiprocessor Communications

Programming for multiprocessor communications is much the same as the stand-alone op
The only added complexity is that the ninth data bit must be controlled and interpreted cor

The ninth data bit is set for transmissions by setting the TB8 bit in SxCON. TB8 is cleared
every transmission. TB8 is not double-buffered. This is usually not a problem, as very few
are actually transmitted with TB8 equal to one. When writing TB8, make sure that the othe
in SxCON are written with their appropriate value.

In Modes 2 and 3, the state of the ninth data bit can be determined by the RB8 bit in SxSTS
reflects the ninth bit for the character currently in SxRBUF. Note that the RB8 bit shares
tionality with the PE bit in SxSTS. When parity is enabled, the PE bit has precedence ove

11.2.2.3 Sending and Receiving a Break Character

The serial port can send as well as receive BREAK characters. A BREAK character is a
string of zeros. To send a BREAK character, set the SBRK bit in SxCON. SBRK drives the
pin immediately low, regardless of the current serial port mode. The user controls the len
the BREAK character in software by controlling the length of time that SBRK remains set. W
writing SBRK, make sure the other bits in SxCON retain their current states.
11-14

SERIAL COMMUNICATIONS UNIT
Figure 11-13. Serial Port Control Register (SxCON)

Register Name: Serial Port Control Register

Register Mnemonic: SxCON

Register Function: Controls serial port operating modes.

Bit
Mnemonic Bit Name Reset

State Function

SBRK Send Break 0 Setting SBRK drives TXD low. TXD remains low
until SBRK is cleared.

TB8 Transmitted
Bit 8

0 TB8 is the eighth data bit transmitted in modes 2
and 3.

CEN Clear-to-
Send Enable

0 When CEN is set, no transmissions will occur until
the CTS pin is asserted.

REN Receive
Enable

0 Set to enable the receive machine.

EVN Even Parity
Select

0 When parity is enabled, EVN selects between even
and odd parity. Set for even, clear for odd parity.

PEN Parity
Enable

0 Setting PEN enables the parity generation/checking
for all transmissions/receptions.

M2:0 Serial Port
Mode Field

0 Operating mode for the serial port channel.

M2 M1 M0 Mode

 0 0 0 Synchronous Mode0
 0 0 1 10-Bit Asynch Mode1
 0 1 0 11-Bit Asynch Mode2
 0 1 1 11-Bit Asynch Mode3
 1 0 0 9-Bit Asynch Mode4
 1 0 1 Reserved
 1 1 0 Reserved
 1 1 1 Reserved

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to
a logic zero to ensure compatibility with future Intel products.

15 0

M
2

M
0

M
1

P
E
N

T
B
8

R
E
N

C
E
N

S
B
R
K

E
V
N

A1277-0A
11-15

SERIAL COMMUNICATIONS UNIT

nger
nger
ame.
The serial port receives BREAK characters of two different lengths. If a BREAK character lo
than M bit-times is detected, the DBRK0 bit in SxSTS is set. If the BREAK character is lo
than 2M+3 bit-times, DBRK1 in SxSTS is set. M is equal to the total number of bits in a fr
For example, M is equal to 11 (decimal) in Mode 3.

Figure 11-14. Serial Port Status Register (SxSTS)

Register Name: Serial Status Register

Register Mnemonic: SxSTS

Register Function: Indicates the status of the serial port.

Bit
Mnemonic Bit Name Reset

State Function

DBRK1 Detect Break 1 0 Set when a break longer than 2M+3 bits occurs.

DBRK0 Detect Break 0 0 Set when a break longer than M bits occurs.

RB8/PE Received
Bit8/Parity
Error

0 Contains the 9th received data bit in modes 2
and 3. PE is set when a parity error occurs. PE
is valid only when parity is enabled in Mode 1,
2 or 3.

RI Receive
Interrupt

0 RI is set when a character has been received
and placed in SxRBUF. Note that RI need not
be explicitly cleared to receive more characters.
Writing a one to this bit will not cause an
interrupt.

TI Transmit
Interrupt

0 TI is set when a character has finished trans-
mitting. TI determines when one more
character can be transmitted. Writing a one to
this bit will not cause an interrupt.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

C
T
S

O
E

T
X
E

F
E

T
I

R
I

R
B
8/
P
E

D
B
R
K
1

D
B
R
K
0

A1278-0A
11-16

SERIAL COMMUNICATIONS UNIT

ll con-
Figure 11-14. Serial Port Status Register (Continued)

When either BREAK character is detected, an overrun error occurs (OE is set). SxRBUF wi
tain at least one null character.

Register Name: Serial Status Register

Register Mnemonic: SxSTS

Register Function: Indicates the status of the serial port.

Bit
Mnemonic Bit Name Reset

State Function

FE Framing Error 0 FE is set when a framing error occurs. A
framing error occurs when a valid stop bit is not
detected.

TXE Transmitter
Empty

1 TXE is set when both SxTBUF and the transmit
shift register are empty. TXE determines when
two consecutive bytes can be written to
SxTBUF for transmission. Accessing SxSTS
does not clear TXE.

OE Overrun Error 0 OE is set when an overrun error occurs. An
overrun error occurs when the character in
SxRBUF is not read before another complete
character is received. SxRBUF always contains
the most recent reception.

CTS Clear To Send 0 CTS is the complement of the value on the CTF
pin. Accessing SxSTS does not clear CTS.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

C
T
S

O
E

T
X
E

F
E

T
I

R
I

R
B
8/
P
E

D
B
R
K
1

D
B
R
K
0

A1278-0A
11-17

SERIAL COMMUNICATIONS UNIT

xCON

e TI
K bit

in Sx-
D as
K0 and

zes

re rec-
ast

rans-

ebase
 the

ernal
ebase
 sam-
11.2.3 Programming in Mode 0

Programming is much easier in Mode 0 than in the asynchronous modes. Configuring S
(Figure 11-13 on page 11-15) for Mode 0 requires only two steps:

1. Program M2:0 with the correct combination for Mode 0.

2. If the Clear-to-Send feature is desired, set the CEN bit.

The serial port is now configured for Mode 0. To transmit, write a character to SxTBUF. Th
and TXE bits reflect the status of SxTBUF and the transmit shift register. Note that the SBR
is independent of serial port mode functions in Mode 0.

Receptions in Mode 0 are controlled by software. To begin a reception, set the REN bit
CON. The RI bit must be zero or the reception will not begin. Data begins shifting in on RX
soon as REN is set. The asynchronous error flags (OE, FE and PE) and break flags (DBR
DBRK1) are invalid in Mode 0.

11.3 HARDWARE CONSIDERATIONS FOR THE SERIAL PORT

There are several interface considerations when using the serial port.

11.3.1 CTS Pin Timings

When the Clear-to-Send feature is enabled, transmissions will not begin until the CTS pin is as-
serted while a transmission is pending. Figure 11-15 shows the recognition of a valid CTS.

The CTS pin is sampled by the rising edge of CLKOUT. The CLKOUT high time synchroni
the CTS signal. On the falling edge of CLKOUT, the synchronized CTS signal is presented to the
serial port. CTS is an asynchronous signal. The setup and hold times are given only to ensu
ognition at a specific clock edge. When CTS is asynchronously, it should be asserted for at le
1½ clock cycles to guarantee that the signal is recognized.

CTS is not latched internally. If CTS is asserted before a transmission starts, the subsequent t
mission will not begin. A write to SxTBUF “arms” the CTS sense circuitry.

11.3.2 BCLK Pin Timings

The BCLK pin can be configured as the input to the baud timebase clock. The baud tim
clock increments the BxCNT register. However, the BCLK signal does not run directly into
baud timebase clock. BCLK is first synchronized to the CPU clock (Figure 11-16.) The int
synchronization logic uses a low-to-high level transition on BCLK to generate the baud tim
clock that increments the BxCNT register. The CPU recognizes a low-to-high transition by
pling the BCLK pin low, then high.
11-18

SERIAL COMMUNICATIONS UNIT

izes
nted
The CPU samples BCLK on the rising edge of CLKOUT. The CLKOUT high time synchron
the BCLK signal. On the falling edge of CLKOUT, the synchronized BCLK signal is prese
to the baud timebase clock.

Figure 11-15. CTS Recognition Sequence

Figure 11-16. BCLK Synchronization

CTS
(Internal)

CLKOUT

CTS

CTS Resolved
During CLKOUT
High Time

TCHIS
TCHIH

A1279-0A

Increment BCNT
(Internal)

CLKOUT

BCLK

TCHIS
TCHIH TCHIS

TCHIH

A1280-0A
11-19

SERIAL COMMUNICATIONS UNIT

 guar-
 that
How-
eting

 max-
en-

ever
ng a

hen

l to a

-to-
 rising
com-
 These
BCLK is an asynchronous input. However, the pin does have setup and hold times, which
antee recognition at a specific CLKOUT. If the BCLK input signal has high and low times
are both at least 1½ CLKOUT periods, than synchronization to CLKOUT is not necessary.
ever, when the BCLK signal has a high or a low time of less than 1½ CLKOUT periods, me
the setup and hold times to CLKOUT is necessary to avoid missing BCLK transitions. The
imum input frequency to BCLK is one-half the frequency of CLKOUT (CPU operating frequ
cy).

11.3.3 Mode 0 Timings

This section shows the timings of the TXD and RXD pins in Mode 0. In Mode 0, TXD n
floats. When not transmitting or receiving, TXD is high. RXD floats except when transmitti
character.

11.3.3.1 CLKOUT as Baud Timebase Clock

The behavior of the transmit/receive clock (on TXD) is governed by the value of BxCMP. W
the BxCMP value is greater than or equal to two. The TXD pin is low for two CLKOUT periods
and is high for (BxCMP – 1) CLKOUT periods (see Figure 11-17). BxCMP cannot be equa
one, otherwise the serial port buffer registers (SxRBUF) will not receive the correct data.

Figure 11-17. Mode 0, BxCMP > 2

For transmissions, the RXD pin changes on the next CLKOUT falling edge following a low
high transition on TXD. Therefore, the data on the RXD pin is guaranteed to be valid on the
edges of TXD. Use the rising edge of TXD to latch the value on RXD. For receptions, the in
ing serial data must meet the setup and hold timings with respect to the rising edge of TXD.
timings can be found in the AC timings section of the data sheet.

A1282-A

TXD

RXD

CLKOUT

BIT 0

Low For
2 Clocks

High For
N-1 Clocks

BIT 1
11-20

SERIAL COMMUNICATIONS UNIT

 CPU
D (for

es
ds
ore,
 Bx-
e of

ption
 11-14

r chan-
ed In-
TXI1
uts can

 asyn-
11.3.3.2 BCLK as Baud Timebase Clock

BCLK does not run directly into the baud timebase clock, but is first synchronized to the
clock. BCLK causes the baud timebase clock to increment, but transitions on TXD and RX
transmissions) still occur relative to CLKOUT.

A low-to-high transition on BCLK increments BxCNT. If BxCNT is equal to BxCMP, TXD go
low approximately 4½ CLKOUTs later. TXD will always remain low for two CLKOUT perio
and then go high. TXD will go low again 4½ CLKOUTs after BxCNT equals BxCMP. Theref
the output frequency on TXD is roughly equal to the input frequency on BCLK multiplied by
CMP. There will be some clock jitter, as the output on TXD will always be some multipl
CLKOUTs. This is due to the internal synchronization.

11.4 SERIAL COMMUNICATIONS UNIT INTERRUPTS

Serial communication is usually interrupt-driven. An interrupt needs to occur on each rece
and on each transmission of a character. The RI and TI flags in the SxSTS register (Figure
on page 11-16) provide the interrupt mechanism for the serial ports. The two serial ports, o
nels, have different interrupt circuitry. Serial channel 0 is directly supported by the integrat
terrupt Control Unit. Serial channel 1 is supported by the RXI1 and TXI1 outputs. RXI1 and
go active during the stop bit of receive and transmit sequences, respectively. These outp
be connected to external interrupt pins. .

11.5 SERIAL PORT EXAMPLES

This section contains examples that show ways to use the serial port.

NOTE

The examples assume that the Peripheral Control Block is located in I/O space.

11.5.1 Asynchronous Mode Example

Example 11-1 contains sample code to initialize Serial Port 0 for 9600-baud operation in
chronous Mode 4.
11-21

SERIAL COMMUNICATIONS UNIT
Example 11-1. Asynchronous Mode 4 Example

$mod186
name scu_async_example
;
; Example initialization code for the Serial Communications Unit.
;
; ASYNC_CHANNEL_SETUP sets up channel 0 as 9600 baud, full duplex, 7 data bits
; plus parity, with CTS# control.
;
; We assume serial port registers have been correctly defined and
; the PCB is located in I/O space.
B0CMP EQU 0xxxx ; Channel 0 Baud Rate Compare
S0CON EQU 0xxxx ; Channel 0 Control
S0STS EQU 0xxxx ; Channel 0 Status
S0RBUF EQU 0xxxx ; Channel 0 Receive Buffer
S0TBUF EQU 0xxxx ; Channel 0 Transmit Buffer
code_seg segment public
assume cs:code_seg

ASYNC_CHANNEL_SETUP proc near

; Now set up channel 0 options

mov ax, 8067H ; for 9600 baud from 16MHz CPU clock
mov dx, B0CMP
out dx, al ; set baud rate
mov ax, 0059H ; CEN=1 (CTS enabled)

; REN=0 (receiver not enabled yet)
; EVN=1 (even parity)
; PEN=1 (parity turned ON)
; MODE=1 (10 bit frame)

mov dx, S0CON
out dx, al ; write to Serial Control Reg.

; Clear any old pending RI or TI, just for safety's sake.
mov dx, S0STS
in ax, dx ; clear any old RI or TI

; Turn on the receiver
mov dx, S0CON
in ax, dx ; Read S0CON
or ax, 0020H ; Set REN bit
out dx, al ; Write S0CON

; Now receiver is enabled and sampling of the RXD line begins.
; Any write to SxTBUF will initiate a transmission.

ret

ASYNC_CHANNEL_SETUP endp

code_seg ends
end
11-22

SERIAL COMMUNICATIONS UNIT
11.5.2 Mode 0 Example

Example 11-2 shows a sample Mode 0 application.

Example 11-2. Mode 0 Example

$mod186
name example_SCU_mode_0

;**
; FUNCTION: This function transmits the user's data, user_data, serially
; over RXD1. TXD1 provides the transmit clock. The transmission frequency
; is calculated as follows:
;
; tran_freq = (0.5*CLKIN/BAUDRATE)-1
;
; A 0-1-0 pulse on P1.0 indicates the end of transmission.
;
; SYNTAX: extern void far parallel_serial(char user_data,int tran_freq)
;
; INPUTS: user_data - byte to send out serially
; tran_freq - baud rate compare value
; OUTPUTS: None
; NOTE: Parameters are passed on the stack as required by high-level
; languages.
;**

B1CMP equ xxxxH ;Channel 1 Baud Rate Compare
S1CON equ xxxxH ;Channel 1 Control
S1STS equ xxxxH ;Channel 1 Status
S1TBUF equ xxxxH ;Channel 1 Receive Buffer

;xxxx - substitute register offset

;Example assumes that all the port pins are configured correctly and
;PCB is located in I/O space.
lib_80186 segment public 'code'

assume cs:lib_80186

public _parallel_serial
_parallel_serialproc far

push bp ;save caller's bp
mov bp, sp ;get current top of stack

user_data equ word ptr [bp+6];get parameters off the stack
tran_freq equ word ptr [bp+8]

push ax ;save registers that
push dx ;will be modified

mov dx, S1STS ;clear any pending exceptions
11-23

SERIAL COMMUNICATIONS UNIT

ws the
 on the
could
Example 11-2. Mode 0 Example (Continued)

11.5.3 Master/Slave Example

This section shows an example of a Mode 2 and 3 master/slave network. Figure 11-18 sho
proper connection of the master to the slaves. The buffer is necessary to avoid contention
receive line. Alternatively, an open-collector buffer could be used and the port pin function
be deleted.

mov dx, P1CON ;Get state of port 1 controls
in ax, dx
and ax, 0feh ;make sure P1.0 is port
out dx, al
mov dx, B1CMP
mov ax, tran_freq
or ax, 8000h ;set internal clocking bit
out dx, ax ;Mode 0, 1 million bps

mov dx, P2CON ;set Port 2.1 for TXD
mov ax, 0ffh
out dx, al

mov dx, S1TBUF ;send user's data
mov ax, user_data
out dx, al
mov dx, S1CON ;Mode 0, No CTS, Transmit
xor ax, ax
out dx, ax
mov dx, S1STS

Check_4_TI: in ax, dx
test ax, 0020h ;check for TI bit
jz Check_4_TI

mov dx, P1LTCH ;pulse P1.0
xor ax, ax
out dx, al

not ax ;set P1.0 high
out dx, al

not ax ;set P1.0 low
out dx, al

pop dx ;restore saved registers
pop ax
pop bp ;restore user's bp
ret

_parallel_serial endp
lib_80186 ends

end
11-24

SERIAL COMMUNICATIONS UNIT

. The
 a mas-
ine that
ds com-
Figure 11-18. Master/Slave Example

Example 11-3 demonstrates how to implement a master/slave network in a typical system
remaining three examples show the routines used in the implementation. Example 11-4 is
ter routine that addresses a slave and waits for it to respond. Example 11-5 is a slave rout
responds to commands sent by the master. Equation 11-6 is the master routine that sen
mands to the slave.

186 Core
Device

TXD

RXD

MASTER

Port
Pin

SLAVES

Master Transmit Line

Master Receive Line

TXD RXD TXD TXDRXD

80C19680C51
186 Core

Device

RXD

Port
Pin

Port
Pin

A1273-0A
11-25

SERIAL COMMUNICATIONS UNIT
Example 11-3. Master/Slave — Implementing the Master/Slave Routines

$mod186
name example_master_slave

;***
; FUNCTION: This function demonstrates how to implement the three
; master/slave routines (_slave_1, _select_slave, and _send_slave_command)
; in a typical setup.
;
; NOTE: It is assumed that the network is set up as shown in
; Figure 11-18, that the slave unit is running the
; _slave_1 code, and that the PCB is located in I/O space.
;
;***
Slave1 equ 01h ;address assigned to slave unit 1
Flash equ 01h ;command to flash EVAL board LEDs
Disc equ 0fh ;command to disconnect from network
False equ 00h

lib_80186 segment public 'code' ;declare external routines
extrn _select_slave:far
extrn _send_slave_cmd:far
lib_80186 ends

code segment public 'code'
assume cs:code

public _main
_main proc near

push Slave1 ;get slave unit 1 address
;send the address over the network

call far ptr _select_slave
add sp, 2 ;adjust sp
cmp ax, false ;was slave 1 properly selected ?
je SlaveExit ;no: then exit

push Flash ;yes: then send Flash command

;send it
call far ptr _send_slave_cmd
add sp, 2 ;adjust sp

;insert a delay routine to allow completion of last command

push Disc ;prepare to disconnect slave
;send it

call far ptr _send_slave_cmd
add sp, 2 ;adjust sp

SlaveExit: ret
_main endp
code ends

end _main
11-26

SERIAL COMMUNICATIONS UNIT
Example 11-4. Master/Slave — The _select_slave Routine

$mod186
name example_master_select_slave
;**;
; select_slave
;
; FUNCTION: This function transmits a slave address, _slave_addr, over the
; serial network, with data bit 9 set to one. It then waits for the addressed
; slave to respond with its (slave) address. If this address does not match
; the originally transmitted slave address, or if there is no response within
; a set time, the function will return false (ax = 0). Otherwise, the function
; will return true (ax <> 0).
;
; SYNTAX: extern int far select_slave(int slave_addr);
;
; INPUTS: _slave_addr - address of the slave on the network
;
; OUTPUTS: True/False
;
; NOTE: Parameters are passed on the stack as required by high-level
; languages. Example assumes that PCB is located in I/O space.
;**
; substitute register offset in place of xxxxh

P1CON equ xxxxh ;Port 1 Control register
P2CON equ xxxxh ;Port 2 Control register
S1CON equ xxxxh ;Serial Port 1 Control register
S1STS equ xxxxh ;Serial Port 1 Status register
S1TBUF equ xxxxh ;Serial Port 1 Transmit Buffer
S1RBUF equ xxxxh ;Serial Port 1 Receive Buffer

lib_80186 segment public 'code'
assume cs:lib_80186

public _select_slave
_select_slave proc far

push bp ;save caller's bp
mov bp, sp ;get current top of stack

;get slave address off the stack
_slave_addr equ word ptr [bp+6]

push cx ;save registers that will be
push dx ;modified

mov dx, P1CON ;Get state of port 1 controls
in ax, dx
and ax, 0f0h ;make sure P1.0:3 is port
out dx, al
mov dx, P2CON ;set Port 2.1 for TXD1, P2.0 RXD1
mov ax, 0ffh
out dx, al
11-27

SERIAL COMMUNICATIONS UNIT
Example 11-4. Master/Slave — The _select_slave Routine (Continued)

mov dx, S1STS ;clear any pending exceptions
in ax, dx
mov dx, S1CON ;prepare to send address
mov ax, 0083h ;d9=1, mode 3
out dx, ax
mov dx, S1TBUF ;select slave
mov ax, _slave_addr

;get slave address
out dx, al ;send it

mov dx, S1CON
mov ax, 0023h ;set REN
out dx, ax ;enable receiver

xor cx, cx ;reset time-out counter

mov dx, S1STS ;check to see if data is waiting

Check_4_RI: dec cx ;decrement time-out counter
jnz NoTimeOut ;time-out=false:then continue

xor ax, ax ;time-out=true:set return
;value false (0)

jmp short SlaveExit

NoTimeOut: in ax, dx
test ax, 0040h ;test for RI bit

jz Check_4_RI ;keep checking till data received

mov dx, S1RBUF ;get slave response
in ax, dx
and ax, 0ffh ;mask off unwanted bits

xor ax, _slave_addr;did addressed slave respond?
;ax=0:true else false

not ax ;invert state of ax to be consistent
;with false(0) and true(non zero)

SlaveExit: pop dx ;restore saved registers
pop cx
pop bp ;restore caller's bp
ret

_select_slave endp

lib_80186 ends
end
11-28

SERIAL COMMUNICATIONS UNIT
Example 11-5. Master/Slave — The slave_1 Routine

$mod186
name example_slave_1_routine

;**;
; slave_1
;
; FUNCTION: This function represents a slave unit connected to a multi-
; processor master/slave network. This slave responds to two
; commands:
; Flash the LEDs on the EVAL Board, and
; Disconnect from the Network.
; Other commands are easily added.
;
; SYNTAX: extern void far slave_1(void);
;
; INPUTS: None
;
; OUTPUTS: None
;
; NOTE: Parameters are passed on the stack as required by high-level
; languages. The slave should be running this code before the
; master calls the slave. Example assumes PCB is in I/O space.
;**
;substitute register offsets in place of xxxxh

P1CON equ xxxxh ;Port 1 Control register
P1LTCH equ xxxxh ;Port 1 Latch register
P2CON equ xxxxh ;Port 2 Control register
S1CON equ xxxxh ;Serial Port 1 Control register
S1STS equ xxxxh ;Serial Port 1 Status register
S1TBUF equ xxxxh ;Serial Port 1 Transmit Buffer
S1RBUF equ xxxxh ;Serial Port 1 Receive Buffer

lib_80186 segment public 'code'
assume cs:lib_80186

My_Address equ 01h ;slave 1 network address
TriStateEna equ 08h ;Tri-state buffer enable
TriStateDis equ 00h ;Tri-state buffer disable
FlashLEDs equ 01h ;list of commands unit 1 responds to
Disconnect equ 0fh
public _slave_1
_slave_1 proc far

push ax ;save registers that will be modified
push bx
push cx
push dx
11-29

SERIAL COMMUNICATIONS UNIT
Example 11-5. Master/Slave — The slave_1 Routine (Continued)

DisconnectMode:
mov dx, S1STS ; clear any pending exceptions
in ax,dx
mov dx, P1CON ; get state of port 1 controls
in ax, dx
and ax, 0f0h ; make sure P1.0:P1.3 is port
out dx, ax
mov dx, P2CON ; set P2.1 for TXD1, P2.0for RXD1
mov ax, 0ffh
out dx, ax
mov dx, P1LTCH ; make sure TXD latch is tristated
mov ax, TriStateDis
out dx, ax ; set P1.7 to zero

mov dx, S1CON ; select control register
mov ax, 0022h ; receive, Mode 2
out dx, ax

SelStatus: mov dx, S1STS ; select status register
Check_4_RI: in ax, dx ; get status

test ax, 0040h ; data waiting?
jz Check_4_RI ; no: then keep checking

mov dx, S1SRUF ; yes: then get data
in ax, dx
cmp al, My_Address ; is slave_1 being addressed?
jne SelStatus ; no: then ignore

mov dx, S1CON ; yes: then switch to Mode 3, transmit
mov ax, 0003h ; Mode 3
out dx, ax

mov dx, P1LTCH ; enable tristate buffer
mov ax, TriStateEna
out dx, ax ; gate TXD onto master’s RXD
mov dx, S1TBUF ; echo My_Address to the master
mov ax, My_Address
out dx, ax

mov dx, S1CON ; switch to receive mode
mov ax, 0023h ; Mode 3, receive
out dx, ax

Wait_4_Cmd: mov dx, S1STS ; select status register
in ax, dx ; get status
test ax, 0040h ; command waiting?
jz Wait_4_Cmd ; no: then keep checking

mov dx, S1RBUF ; yes: then get command
in ax, dx

cmp al, Disconnect ; Disconnect command?
je DisconnectMode ; yes: then disconnect RXD from network
11-30

SERIAL COMMUNICATIONS UNIT
Example 11-5. Master/Slave — The slave_1 Routine (Continued)

cmp al, FlashLEDs ; Flash LEDs command
jne Wait_4_Cmd ; no: then ignore

mov dx, P1LTCH ; yes: then flash LEDs 10 times
mov cx, 20
xor ax, ax

Send: not ax
out dx, ax
mov bx, 0ffffh

Dly1: dec bx
jnz Dly1

dec cx
jnz Send

jmp short Wait_4_Cmd

pop dx
pop cx
pop bx
pop ax

ret
_slave_1 endp

lib_80186 ends
end
11-31

SERIAL COMMUNICATIONS UNIT
Example 11-6. Master/Slave — The _send_slave_command Routine

$mod186
name example_master_send_slave_command
;**
;
; send_slave_cmd
; FUNCTION: This function transmits a slave command, _slave_cmd, over
; the serial network to a previously addressed slave.
; SYNTAX: extern void far send_slave_cmd (int slave_cmd)
;
; INPUTS: _slave_cmd (command to send to addressed slave)
;
; OUTPUTS: None
;
; NOTE: Parameters are passed on the stack as required by
; high-level languages. Example assumes PCB is in I/O space.
;**;
; substitute register offsets in place of xxxxh

S1STS equ xxxxh ; Serial Port 1 Status register
S1CON equ xxxxh ; Serial Port 1 Control register
S1TBUF equ xxxxh ; Serial Port 1 Transmit Buffer register
;
lib_80186 segment public ‘code’

assume cs:lib_80186

public _send_slave_cmd
_send_slave_cmd proc far
push bp ; save caller’s bp
mov bp, sp ; get current top of stack

; get slave command off the stack
_slave_cmd equ word ptr [bp+6]

push ax ; save registers that are modified
push dx

mov dx, S1STS ; clear any pending exceptions
in ax, dx
mov dx, S1CON ; prepare to send command
mov ax, 0003h ; Mode 3
out dx, ax

mov dx, S1TBUF ; select slave
mov ax, _slave_cmd ; get command to send to slave
out dx, al ; send it

pop dx ; restore saved registers
pop ax
pop bx ; restore caller’s bp
ret

_send_slave_cmdendp

lib_80186 ends
end
11-32

12
Watchdog Timer Unit

n end-
couple
guard-
ected

 with a
le for
nt the

uence,
e tim-

l-pur-

nter

t

ontrol

hdog

errupt
CHAPTER 12
WATCHDOG TIMER UNIT

System upsets can come from a variety of sources. Errant software can work its way into a
less loop, waiting for an event that never occurs. An unanticipated radiation source can
into improperly shielded circuitry. Not all sources of system upsets can be anticipated and
ed against. The Watchdog Timer Unit provides a graceful method for recovery from unexp
hardware and software upsets.

Watchdog timers are designed to reset the system unless the timer is periodically reloaded
new value (this is also known as “kicking the watchdog”). The system software is responsib
reloading the watchdog timer. It is assumed that errant code or a system lockup will preve
watchdog timer from being reloaded, resulting in a system reset. A special instruction seq
a sequence that errant code would be very unlikely to produce, is typically used to reload th
er.

The Watchdog Timer Unit (WDT) can function either as a system watchdog or as a genera
pose timer, or it can be disabled for systems that do not wish to use it.

12.1 FUNCTIONAL OVERVIEW

A block diagram of the Watchdog Timer Unit is shown in Figure 12-1. The 32-bit down cou
decrements every CLKOUT cycle. The WDTOUT pin is driven low for four CLKOUT cycles
when the down counter reaches zero (a WDT timeout). The WDTOUT signal may be used to rese
the device or as an interrupt request.

The down counter is reloaded with the 32-bit reload value under two conditions:

• when a special LOCKed instruction sequence is issued to the Protection and C
Circuitry

• when the down counter reaches zero

The Protection and Control Circuitry is responsible for enabling and disabling the Watc
Timer as well as preventing unauthorized modification of count values.

12.2 USING THE WATCHDOG TIMER AS A SYSTEM WATCHDOG

There are two methods for recovery following a software upset: a full system reset or an int
request. Both methods can be implemented with the Watchdog Timer Unit.
12-1

WATCHDOG TIMER UNIT

rs. The

 Since
Figure 12-2 shows the circuit necessary to reset the processor when a WDT timeout occu
power-on reset signal and the WDTOUT signals are ANDed together to produce the RESIN sig-
nal for the processor.

Figure 12-1. Block Diagram of the Watchdog Timer Unit

Figure 12-2. Watchdog Timer Reset Circuit

The circuit in Figure 12-3(a) is used to interrupt the processor when a WDT timeout occurs.
WDTOUT is normally high, the Interrupt Control Unit must be programmed for edge sensitivity
to prevent continuous interrupts from occurring.

32-BIT Down Counter

32-BIT Reload Value
Protection

And Control
Circuitry WDTOUT

Internal Data Bus (F-BUS)

CLKOUT
A1302-0A

Processor

WDTOUT

RESIN Power-On-Reset
(Active Low)

A1303-0A
12-2

WATCHDOG TIMER UNIT

.

atch-

ware is
ically

LR)
 bytes,
 and
struc-
 to re-
pace,

ontrol
sually
Figure 12-3(b) shows the circuit necessary to generate an NMI from WDTOUT. NMI is edge sen-
sitive and level latched. The inverter is needed to prevent an NMI immediately upon reset

When using interrupts to recover from a system upset, pay close attention to “Using the W
dog Timer as a General-Purpose Timer” on page 12-6.

Figure 12-3. Generating Interrupts with the Watchdog Timer

When the Watchdog Timer Unit is used as a system watchdog, the goal of the system soft
to prevent the 32-bit down counter from ever reaching zero. This is accomplished by period
reloading the down counter with the Watchdog Timer Reload Value.

12.2.1 Reloading the Watchdog Timer Down Counter

A special LOCKed byte write instruction sequence to the Watchdog Timer Clear (WDTC
Register reloads the down counter. The WDTCLR Register expects a sequence of two
which must be written within the same LOCKed instruction. The first byte must be 0AAH
the second must be 55H. Writing any other data values or using two separate LOCKed in
tions will not reload the down counter. Examples 12-1 and 12-2 show the code necessary
load the down counter when the Peripheral Control Block is located in I/O and memory s
respectively.

In embedded control systems, the Watchdog Timer is typically reloaded at the end of the c
loop. For systems that do not execute a single looped program, the Watchdog Timer is u
reloaded during the system timer “tick” service.

Processor

WDTOUT

INTx

Processor

WDTOUT

NMI

(a) (b)

A1304-0A
12-3

WATCHDOG TIMER UNIT

ters

ed us-
 from

. If the
n the

rvice,
ining
tation.
12.2.2 Watchdog Timer Reload Value

The Watchdog Timer Reload Value is controlled by the WDTRLDL and WDTRLDH regis
in the Peripheral Control Block. These two registers make up the 32-bit reload value.

The Watchdog Timer Reload Value cannot be modified after the Watchdog Timer is reload
ing the reload instruction sequence. Locking the WDT Reload Value prevents errant code
affecting Watchdog Timer operation.

The WDT Reload Value should be calculated based on the design of the system software
system is executing a simple control loop, the Reload Value should be slightly longer tha
longest path through the loop. If the Watchdog Timer is reloaded during the timer tick se
the Reload Value should be slightly longer than the timer tick interval. In general, determ
the Reload Value involves analysis of the system software and some amount of experimen

Example 12-1. Reload Sequence (Peripheral Control Block Located in I/O Space)

wdt_data segment

wdt_key DB 0AAH, 055H

wdt_data ends

wdt_code segment
assume cs:wdt_code

mov ax, wdt_key
mov ds, ax
mov si, offset wdt_key

;ES:SI points to reset value for
;WDTCLR

mov dx, WDTCLR ;I/O address of WDTCLR
cld ;clear direction flag (autoincrement)
mov cx, 2 ;2 bytes will be written

lock rep outsb es:[si] ;LOCKed reload sequence
;The WDT down counter
;has been reloaded.

wdt_code ends
12-4

WATCHDOG TIMER UNIT

is
 clock

r and
Example 12-2. Reload Sequence (Peripheral Control Block Located in Memory Space)

12.2.3 Initialization

The Watchdog Timer Unit is enabled following a reset. The initial value in the down counter
0FFFFH. The system software must program or reload the Watchdog Timer within 65,535
cycles of a reset to prevent the WDTOUT signal from being asserted.

Use the following sequence to initialize the Watchdog Timer:

1. Program the upper 16 bits of the WDT Reload Value (in the WDTRLDH register).

2. Program the lower 16 bits of the WDT Reload Value (in the WDTRLDL register).

3. Execute the appropriate LOCKed instruction sequence to reload the down counte
lock accesses to the WDT Reload Value.

wdt_data segment

wdt_key DB 0AAH, 055H

wdt_data ends

pcb_image segment ;image of PCB

WDTCLR EQU XXXXH ;replace “XXXX” with appropriate
;offset from PCB+0.

WDTCLR DW ?

pcb_image ends

wdt_code segment
assume cs:wdt_code

mov ax, seg wdt_key
mov ds, ax
mov si, offset wdt_key

;DS:SI = address of WDT reset value
mov ax, seg WDTCLR
mov es, ax
mov di, offset WDTCLR

;ES:DI = address of WDTCLR register
cld ;clear direction flag (autoincrement)
mov cx, 2 ;2 bytes in key

lock rep movsb ;LOCKed reload sequence
;The WDT down counter
;has been reloaded.

wdt_code ends
12-5

WATCHDOG TIMER UNIT

nction
r

load
Value is
Ked re-

gured

 during
OUT

that it
ts as a

n the
le with

initial-
ircuit
12.3 USING THE WATCHDOG TIMER AS A GENERAL-PURPOSE TIMER

Systems that do not require a watchdog timer can program the Watchdog Timer Unit to fu
as a general-purpose timer. In reality, it is a lack of programming that allows the Watchdog Time
Unit to perform general-purpose timer tasks.

Recall that write access to the WDT Reload Value is prohibited only after the LOCKed re
sequence is executed. If this sequence is not performed, then access to the WDT Reload
unrestrained. Systems that require a general-purpose timer simply never execute the LOC
load sequence, thus allowing reprogramming of the WDT Reload Register.

Arbitrary duty cycle pulse trains can be generated by the Watchdog Timer when it is confi
as a general-purpose timer. The WDTOUT signal is driven low for four CLKOUT cycles when
the down counter reaches zero. The down counter is reloaded with the WDT Reload Value
the CLKOUT cycle immediately after the counter reaches zero. Figure 12-4 shows the WDT
signal waveforms when the Watchdog Timer is configured as a general-purpose timer.

The WDTOUT signal can be used to generate interrupts like any of the timers (remember
must be edge triggered). Because the WDT reloads itself (five cycles after time-out), it ac
timer in continuous mode. Unlike the timers, however, the WDT count is decremented every
clock cycle (rather than every four clock cycles, as with the timers). For this reason, whe
WDT is used as a general-purpose timer, it can achieve a higher resolution than is possib
the timers.

Figure 12-4. WDTOUT Waveforms

12.4 DISABLING THE WATCHDOG TIMER

Systems that do not use the Watchdog Timer can disable the entire circuit during system
ization. When the Watchdog Timer is disabled, all clocks to the unit are shut off and the c
consumes no power.

Four CLKOUT Cycles

01 N N-1 N-2 N-3 N-4

CLKOUT

WDTOUT

WDT COUNT

A1305-0A
12-6

WATCHDOG TIMER UNIT

tchdog
ytes,

econd
ng two
is-
once it

hen the
A LOCKed instruction sequence that is similar to the reload sequence disables the Wa
Timer. The Watchdog Timer Disable (WDTDIS) Register expects a sequence of two b
which must be written by a single LOCKed instruction. The first byte must be 55H and the s
must be 0AAH (the reverse of the reload sequence). Writing any other data values or usi
separate LOCKed instructions will not disable the WDT. The Watchdog Timer cannot be d
abled once it has been reloaded by the system software. Similarly, it cannot be enabled
has been disabled.

Examples 12-3 and 12-4 show the code necessary to disable the Watchdog Timer Unit w
Peripheral Control Block is located in I/O and memory space, respectively.

Example 12-3. Disabling the Watchdog Timer (Peripheral Control Block in I/O Space)

wdt_data segment

wdt_off DB 055H, 0AAH

wdt_data ends

wdt_code segment
assume cs:wdt_code

mov ax, seg wdt_off
mov es, ax
mov si, offset wdt_off
mov dx, WDTDIS ;ES:SI points to wdt_key

;disable value of WDT

cld ;clear direction flag (autoincrement)
mov cx, 2 ;2 bytes will be written

lock rep outsb es:[si], dx ;LOCKed disable sequence.
;The WDT is disabled

wdt_code ends
12-7

WATCHDOG TIMER UNIT

imer
ure
NTH

unc-
chdog
 the
Example 12-4. Disabling the Watchdog Timer (Peripheral Control Block in Memory Space)

12.5 WATCHDOG TIMER REGISTERS

Six Peripheral Control Block Registers control the Watchdog Timer Unit. The Watchdog T
Reload Value is held in two 16-bit registers: WDTRLDH (Figure 12-5) and WDTRLDL (Fig
12-6). The value in the 32-bit down counter can be read from the count registers, WDTC
(Figure 12-7) and WDTCNTL (Figure 12-8). The count registers are read only.

The WDT Clear (WDTCLR) and WDT Disable (WDTDIS) registers are not shown, as their f
tions are described in the text and are not tied to specific bit positions. “Reloading the Wat
Timer Down Counter” on page 12-3 describes the WDT Clear register, and “Disabling
Watchdog Timer” on page 12-6 discusses the WDT Disable register.

wdt_data segment

wdt_off DB 055H, 0AAH

wdt_data ends

pcb_image segment;image of PCB

WDTDIS EQU XXXXH ;replace “XXXX” with appropriate
;offset from PCB+0.

WDTDIS DW ?

pcb_image ends

wdt_code segment
assume cs:wdt_code

mov ax, seg wdt_off
mov ds, ax
mov si, offset wdt_off

;DS:SI = address of disable
;value for the WDT

mov ax, seg WDTDIS
mov es, ax
mov di, offset WDTDIS

;ES:DI = address of WDTDIS register
cld ;clear direction flag(autoincrement)
mov cx, 2 ;2 bytes in sequence

lock rep movsb ;LOCKed disable sequence
;The WDT down counter
;has been disabled.

wdt_code ends
12-8

WATCHDOG TIMER UNIT
Figure 12-5. WDT Reload Value (High)

Register Name: Watchdog Timer Reload Value (High)

Register Mnemonic: WDTRLDH

Register Function: Contains the upper 16 bits of the Watchdog Timer
Reload Value.

Bit
Mnemonic Bit Name Reset

State Function

WR31:16 Watchdog
Timer Reload
Value

0000H WR31:16 are the high-order bits of the
Watchdog Timer Reload Value.

A1308-0A

15 0
W
R
3
1

W
R
3
0

W
R
2
9

W
R
2
8

W
R
2
7

W
R
2
6

W
R
2
5

W
R
2
4

W
R
2
3

W
R
2
2

W
R
2
1

W
R
2
0

W
R
1
9

W
R
1
8

W
R
1
7

W
R
1
6

12-9

WATCHDOG TIMER UNIT
Figure 12-6. WDT Reload Value (Low)

Register Name: Watchdog Timer Reload Value (Low)

Register Mnemonic: WDTRLDL

Register Function: Contains the lower 16 bits of the Watchdog Timer
Reload Value.

Bit
Mnemonic Bit Name Reset

State Function

WR15:0 Watchdog
Timer Reload
Value

FFFFH WR15:0 are the low-order bits of the Watchdog
Timer Reload Value.

A1309-0A

15 0
W
R
1
5

W
R
1
4

W
R
1
3

W
R
1
2

W
R
1
1

W
R
1
0

W
R
9

W
R
8

W
R
7

W
R
6

W
R
5

W
R
4

W
R
3

W
R
2

W
R
1

W
R
0

12-10

WATCHDOG TIMER UNIT
Figure 12-7. WDT Count Value (High)

Register Name: Watchdog Timer Count Value (High)

Register Mnemonic: WDTCNTH

Register Function: Contains the upper 16 bits of the Watchdog Timer
Count Value.

Bit
Mnemonic Bit Name Reset

State Function

WC31:16 Watchdog
Timer Reload
Value

0000H WC31:16 are the high-order bits of the
Watchdog Timer Counter Value.

15 0

W
C
3
1

W
C
3
0

W
C
2
9

W
C
2
8

W
C
2
7

W
C
2
6

W
C
2
5

W
C
2
4

W
C
2
3

W
C
2
2

W
C
2
1

W
C
2
0

W
C
1
9

W
C
1
8

W
C
1
7

W
C
1
6

A1306-0A
12-11

WATCHDOG TIMER UNIT

 must
Figure 12-8. WDT Count Value (Low)

12.6 INITIALIZATION EXAMPLE

Example 12-5 shows example code for Watchdog Timer initialization. Note that this code
be executed within the first 65,535 clock cycles of a reset.

Register Name: Watchdog Timer Count Value (Low)

Register Mnemonic: WDTCNTL

Register Function: Contains the lower 16 bits of the Watchdog Timer
Count Value.

Bit
Mnemonic Bit Name Reset

State Function

WC15:0 Watchdog
Timer Reload
Value

FFFFH WC15:0 are the low-order bits of the Watchdog
Timer Counter Value.

15 0
W
C
1
5

W
C
1
4

W
C
1
3

W
C
1
2

W
C
1
1

W
C
1
0

W
C
9

W
C
8

W
C
7

W
C
6

W
C
5

W
C
4

W
C
3

W
C
2

W
C
1

W
C
0

A1307-0A
12-12

WATCHDOG TIMER UNIT
Example 12-5. Initializing the Watchdog Timer
(Peripheral Control Block Located in I/O Space)

wdt_data segment

wdt_key DB 0AAH, 055H

wdt_data ends

; The following code must be executed within the first 64K clock cycles.

boot_code segment
assume cs:boot_code

; For this example, we want a delay of 2 seconds for the Watchdog
; Timer. The following calculation is for a 16 Mhz processor.
;
; (2 seconds) / (62.5E-9 seconds per clock) = 32,000,000 cycles
; 32,000,000 decimal = 1E847FF Hex
;

mov ax, 47FFH ;Low order bits
mov dx, WDTRLDL
out dx, ax

mov ax, 01E8H ;High order bits
mov dx, WDTRLDH
out dx, ax

; Now we have to reload the WDT

mov ax, seg wdt_key
mov es, ax
mov si, offset wdt_key
mov dx, WDTCLR ;DS:SI points to wdt_key

;I/O address of WDTCLR register

cld ;clear direction flag (autoincrement)
mov cx, 2 ;2 bytes will be written

lock rep outsb es:[si],dx ;LOCKed reload sequence.
;The WDT down counter
;has been reloaded.

boot_code ends
12-13

13
Input/Output Ports

e, the
re all
ted.

ed pe-
s are
lica-
ction-

 and
e each
r port
ecific

 of a
 Port
 three-
 for the
heral.
r soft-

en the
e Port
g the

tch that
f wheth-
CHAPTER 13
INPUT/OUTPUT PORTS

Many applications do not require full use of all the on-chip peripheral functions. For exampl
Chip-Select Unit provides a total of ten chip-select lines; only a large design would requi
ten. For smaller designs that require fewer than ten chip-selects, these pins would be was

The input/output ports give system designers the flexibility to replace the functions of unus
ripheral pins with general-purpose I/O ports. Many of the on-chip peripheral pin function
multiplexed with an I/O port. If a particular peripheral pin function is unnecessary in an app
tion, that pin can be used for I/O. The 80C186EC/80C188EC has three types of ports: bidire
al, output-only and open-drain bidirectional.

13.1 FUNCTIONAL OVERVIEW

All port pin types are derived from a common bidirectional port logic module. Unidirectional
open-drain ports are a subset of the bidirectional module. The following sections describ
port type. The bidirectional port is described in detail, as it is the basis for all of the othe
types. The descriptions for the unidirectional and open-drain ports only highlight their sp
differences from the common bidirectional module.

13.1.1 Bidirectional Port

Figure 13-1 shows a simplified schematic of a bidirectional port pin. The overall function
bidirectional port pin is controlled by the state of the Port Control Latch. The output of the
Control Latch selects the source of output data and the source of the control signal for the
state output driver. When the port is programmed to act as a peripheral pin, both the data
pin and the directional control signal for the pin come from the associated integrated perip
When a bidirectional port pin is programmed as an I/O port, all port parameters are unde
ware control.

The output of the Port Direction latch enables (or disables) the three-state output driver wh
pin is programmed as an I/O port. The three-state output driver is enabled by clearing th
Direction latch. The data driven on an output port pin is held in the Port Data latch. Settin
Port Direction latch disables the three-state output driver, making the pin an input.

The signal present on the device pin is routed through a synchronizer to a three-state la
connects to the internal data bus. The state of the pin can be read at any time, regardless o
er the pin is used as an I/O port or for a peripheral function.
13-1

INPUT/OUTPUT PORTS
Figure 13-1. Simplified Logic Diagram of a Bidirectional Port Pin

A1247-0A

Q

I0

I1
S

Q

D

Q

From Integrated
Peripheral

Read Port
Data latch

Write Port
Data Latch

Read Port
Pin State

Read Port
Direction Control

Write Port
Direction

Read Port
Direction

Write Port
Control

To Integrated
Peripheral

Internal Data
Bus (F-Bus)

Port Data Latch

Port Direction Latch

Output Driver

SYNC

Port Control Latch

Pin

Q

D

Q

Q

D

Q

Q

I0

I1
S

Port/Peripheral
Data Multiplexer

Peripheral
Direction Control
13-2

INPUT/OUTPUT PORTS

erma-
ata for
on bit

logic
ured
 zero”

 a high
s Port

l data
l func-
 non-

e port
13.1.2 Output Port

Figure 13-2 shows the internal construction of an output port pin. An internal connection p
nently enables the three-state output driver. The Port Control latch selects the source of d
the pin, which can be either the on-chip peripheral or the Port Data latch. The Port Directi
has no effect on an output-only pin; it can be used for storage.

13.1.3 Open-Drain Bidirectional Port

Figure 13-3 shows the internal control logic for the open-drain bidirectional port pin. The
is slightly different from that for the other port types. When the open-drain port pin is config
as an output, clearing the Port Data latch turns on the N-channel driver, resulting in a “hard
being present at the pin. A one value in the Port Data Latch shuts off the driver, resulting in
impedance (input) state at the pin. The open-drain pin can be floated directly by setting it
Direction bit.

The open-drain ports are not multiplexed with on-board peripherals. The port/periphera
multiplexer exists for open-drain ports, even though the pins are not shared with periphera
tions. The open-drain port pin floats if the Port Control latch is programmed to select the
existent peripheral function.

13.1.4 Port Pin Organization

The port pins are divided into three functional groups: Port 1, Port 2 and Port 3. Most of th
pins are multiplexed with peripheral functions.
13-3

INPUT/OUTPUT PORTS
Figure 13-2. Simplified Logic Diagram of an Output Port Pin

Q

I0

I1
S

Q

D

Q

From Integrated
Peripheral

Read Port
Data latch

Write Port
Data Latch

Read Port
Pin State

Read Port
Direction Control

Write Port
Direction

Read Port
Direction

Write Port
Control

To Integrated
Peripheral

Internal Data
Bus (F-Bus)

Port Data Latch

Port Direction Latch

Output Driver
(Permenantly Disabled)

SYNC

Port Control Latch

Pin

Q

D

Q

Q

D

Q

A1248-0A
13-4

INPUT/OUTPUT PORTS
Figure 13-3. Simplified Logic Diagram of an Open-Drain Bidirectional Port

Q

I0

I1

S

D Q

From Port
Direction
Latch

Read Port
Data Latch

Internal
Data Bus

Write Port
Data Latch

Read Port
Pin State

From Port
Control
Latch

Port Data
Latch

 Pin

SYNC

A1249-0A
13-5

INPUT/OUTPUT PORTS

al-

ls.
13.1.4.1 Port 1 Organization

Port 1 consists of eight output-only port pins. The Port 1 pins are multiplexed with the gener
purpose chip-selects (GCS7:0). Table 13-1 shows the multiplexing options for Port 1.

13.1.4.2 Port 2 Organization

Port 2 consists of eight bidirectional port pins. Port 2 is multiplexed with the two serial channe
Table 13-2 shows the multiplexing options for Port 2.

Table 13-1. Port 1 Multiplexing Options

Pin Name Peripheral Function Port Function

P1.7/GCS7 GCS7 P1.7

P1.6/GCS6 GCS6 P1.6

P1.5/GCS5 GCS5 P1.5

P1.4/GCS4 GCS4 P1.4

P1.3/GCS3 GCS3 P1.3

P1.2/GCS2 GCS2 P1.2

P1.1/GCS1 GCS1 P1.1

P1.0/GCS0 GCS0 P1.0

Table 13-2. Port 2 Multiplexing Options

Pin Name Peripheral Function Port Function

P2.7/CTS1 CTS1 (Input) P2.7

P2.6/BCLK1 BCLK1 (Input) P2.6

P2.5/TXD1 TXD1 (Output) P2.5

P2.4/RXD1 RXD1 (I/O) P2.4

P2.3/CTS0 CTS0 (Input) P2.3

P2.2/BCLK0 BCLK0 (Input) P2.2

P2.1/TXD0 TXD0 (Output) P2.1

P2.0/RXD0 RXD (I/O) P2.0
13-6

INPUT/OUTPUT PORTS

 four
ests.
ulti-

 Reg-
) and

ral
ociated
l Reg-
tch.
13.1.4.3 Port 3 Organization

Port 3 consists of six pins: four output-only pins and two open-drain bidirectional pins. The
output-only port pins are multiplexed with DMA and serial communications interrupt requ
The two open-drain bidirectional pins are not multiplexed with a peripheral function. The m
plexing options for Port 3 are shown in Table 13-3.

13.2 PROGRAMMING THE I/O PORT UNIT

Each port is controlled by a set of four Peripheral Control Block registers: the Port Control
ister (PxCON), the Port Direction Register (PxDIR), the Port Data Latch Register (PxLTCH
the Port Pin State Register (PxPIN).

13.2.1 Port Control Register

The Port Control Register (Figure 13-4) selects the overall function for each port pin: periphe
or port. For I/O ports, the Port Control Register is used to assign the pin to either the ass
on-chip peripheral or to a general-purpose I/O port. For output-only ports, the Port Contro
ister selects the source of data for the pin: either an on-chip peripheral or the Port Data la

Table 13-3. Port 3 Multiplexing Options

Pin Name Peripheral Function Port Function

P3.5 None (Note) P3.5 (Open-drain)

P3.4 None (Note) P3.4 (Open-drain)

P3.3/DMAI1 DMAI1 P3.3

P3.2/DMAI0 DMAI0 P3.2

P3.1/TXI1 TXI1 P3.1

P3.0/RXI1 RXI1 P3.0

NOTE: P3.5 and P3.4 float when configured as peripheral
pins.
13-7

INPUT/OUTPUT PORTS

ro-
ly port

n to it

ed by
Figure 13-4. Port Control Register (PxCON)

13.2.2 Port Direction Register

The Port Direction Register (Figure 13-5) controls the direction (input or output) for each pin p
grammed as a general-purpose I/O port. The Port Direction bit has no effect on output-on
pins. These unused direction control bits can be used for bit storage.

The Port Direction Register is read/write. When read, the register returns the value writte
previously. Pins with their direction fixed return the value in this register, not a value indicating
their true direction. The direction of a port pin assigned to a peripheral function is controll
the peripheral; the Port Direction value is ignored.

Register Name: Port Control Register

Register Mnemonic: PxCON (P1CON, P2CON, P3CON)

Register Function: Selects port or peripheral function for a port pin.

Bit
Mnemonic Bit Name Reset

State Function

PC7:0 Port Control
7:0

FFH When the PC bit for a specific pin is set, the
associated integrated peripheral controls both
pin direction and pin data. Clearing the PC bit
makes the pin a general-purpose I/O port.

NOTE: PC7 and PC6 do not exist for Port 3.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

P
C
7

P
C
6

P
C
5

P
C
4

P
C
3

P
C
2

P
C
1

P
C
0

A1312-0A
13-8

INPUT/OUTPUT PORTS

idirec-

e value
Figure 13-5. Port Direction Register (PxDIR)

13.2.3 Port Data Latch Register

The Port Data Latch Register (Figure 13-6) holds the value to be driven on an output or b
tional pin. This value appears at the pin only if it is programmed as a port.

The Port Data Latch Register is read/write. Reading a Port Data Latch Register returns th
of the latch itself and not that of the associated port pin.

Register Name: Port Direction Register

Register Mnemonic: PxDIR (P1DIR, P2DIR, P3DIR)

Register Function: Controls the direction of pins programmed as I/O
ports.

Bit
Mnemonic Bit Name Reset

State Function

PD7:0 Port
Direction 7:0

FFH Setting the PD bit for a pin programmed as a
general-purpose I/O port selects the pin as an
input. Clearing the PD bit selects the pin as an
output.

NOTES:

1) PD7 and PD6 do not exist for Port 3.

2) The PD bits for Port 1 and P3.0 through P3.3
are ignored and can be used as storage.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

P
D
7

P
D
6

P
D
5

P
D
4

P
D
3

P
D
2

P
D
1

P
D
0

A1313-0A
13-9

INPUT/OUTPUT PORTS

state
s gated
Figure 13-6. Port Data Latch Register (PxLTCH)

13.2.4 Port Pin State Register

The Port Pin State Register (Figure 13-7) is a read-only register that is used to determine the
of a port pin. When the Port Pin State Register is read, the current state of the port pins i
to the internal data bus.

Register Name: Port Data Latch Register

Register Mnemonic: PxLTCH (P1LTCH, P2LTCH, P3LTCH)

Register Function: Contains the data driven on pins programmed as
output ports.

Bit
Mnemonic Bit Name Reset

State Function

PL7:0 Port Data
Latch 7:0

FFH The data written to a PL bit appears on pins
programmed as general-purpose output ports.

NOTE: PL7 and PL6 do not exist for Port 3.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be writ-
ten to a logic zero to ensure compatibility with future Intel products.

15 0

P
L
7

P
L
6

P
L
5

P
L
4

P
L
3

P
L
2

P
L
1

P
L
0

A1314-0A
13-10

INPUT/OUTPUT PORTS

ction
See

Ports
3-7 for

med
aching
Figure 13-7. Port Pin State Register (PxPIN)

13.2.5 Initializing the I/O Ports

The state of the I/O ports following a reset is as follows:

• Port 1 is configured for peripheral function (general-purpose chip-selects, GCS7:0).

• Port 2 is configured for peripheral function. The direction of each pin is the default dire
for the peripheral function (e.g., P2.5/TXD1 is an output, P2.2/BCLK0 is an input).
Table 13-2 on page 13-6 for details.

• Ports P3.0 through P3.3 are configured for peripheral function (interrupt requests).
P3.4 and P3.5 are configured as inputs (they are floating). See Table 13-3 on page 1
details.

There are no set rules for initializing the I/O ports. The Port Data Latch should be program
before selecting a pin as an output port (to prevent unknown Port Data Latch values from re
the pins).

Register Name: Port Pin State Register

Register Mnemonic: PxPIN (P1PIN, P2PIN, P3PIN)

Register Function: Reads the logic state at a port pin.

Bit
Mnemonic Bit Name Reset

State Function

PP7:0 Port Pin
State 7:0

XXXXH Reading the Port Pin State register returns the
logic state present on the associated pin.

NOTE: PP7 and PP6 do not exist for Port 3.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15 0

P
P
7

P
P
6

P
P
5

P
P
4

P
P
3

P
P
2

P
P
1

P
P
0

A1315-0A
13-11

INPUT/OUTPUT PORTS

 0101 is
AL reg-
13.3 PROGRAMMING EXAMPLE

Example 13-1 shows a typical ASM86 routine to configure the I/O ports. GCS7 through GCS4
are routed to the pins, while P1.0 through P1.4 are used as output ports. The binary value
written to P1.0 through P1.3. The states of pins P3.5 and P3.4 are read and stored in the
ister.

Example 13-1. I/O Port Programming Example

$MOD186
NAME IO_PORT_UNIT_EXAMPLE

;This file contains an example of programming code for
;the I/O Port Unit on the 80C186EC.
;
;PCB EQUates in an include file.

#INCLUDE PCBMAP.INC

CODE_SEG SEGMENT PUBLIC
ASSUME CS:CODE_SEG

IO_UNIT_EXMPL PROC NEAR

;Write 0101B to data latch for pins P1.3 through P1.0

MOV DX, P1LTCH
MOV AL, 0101B
OUT DX, AL

;Gate latch data to output pins.
;P1.3 to P1.0 are port pins

MOV DX, P1CON
MOV AL, OF0H
OUT DX, AL

;Route DMA interrupts to package pin...

MOV DX, P3CON
MOV AX, 001100B
OUT DX, AL

;Read P3.4, P3.5. We assume they have not been changed to output
;pins since reset.

MOV DX, P3PIN
IN AX, DX
AND AX, 3H ;Strip unused bits

;AL now holds the state of the P3.5 and P3.4 pins

IO_UNIT_EXMPL ENDP

CODE_SEG ENDS
END
13-12

14
Math Coprocessing

proces-
 fore-
equire
by the

s.

or and

r pow-
 system

e con-
ficient
he pro-
se refer

 4-2) to
cution
essor
ps ESC
g.
CHAPTER 14
MATH COPROCESSING

The 80C186 Modular Core Family meets the need for a general-purpose embedded micro
sor. In most data control applications, efficient data movement and control instructions are
most and arithmetic performed on the data is simple. However, some applications do r
more powerful arithmetic instructions and more complex data types than those provided
80C186 Modular Core.

14.1 OVERVIEW OF MATH COPROCESSING

Applications needing advanced mathematics capabilities have the following characteristic

• Numeric data values are non-integral or vary over a wide range

• Algorithms produce very large or very small intermediate results

• Computations must be precise (i.e., calculations must retain several significant digits)

• Computations must be reliable without dependence on programmed algorithms

• Overall math performance exceeds that afforded by a general-purpose process
software alone

For the 80C186 Modular Core family, the 80C187 math coprocessor satisfies the need fo
erful mathematics. The 80C187 can increase the math performance of the microprocessor
by 50 to 100 times.

14.2 AVAILABILITY OF MATH COPROCESSING

The 80C186 Modular Core supports the 80C187 with a hardware interface under microcod
trol. However, not all proliferations support the 80C187. Some package types have insuf
leads to support the required external handshaking requirements. The 3-volt versions of t
cessor do not specify math coprocessing because the 80C187 has only a 5-volt rating. Plea
to the current data sheets for details.

The core has an Escape Trap (ET) bit in the PCB Relocation Register (Figure 4-1 on page
control the availability of math coprocessing. If the ET bit is set, an attempted numerics exe
results in a Type 7 interrupt. The 80C187 will not work with the 8-bit bus version of the proc
because all 80C187 accesses must be 16-bit. The 80C188 Modular Core automatically tra
(numerics) opcodes to the Type 7 interrupt, regardless of Relocation Register programmin
14-1

MATH COPROCESSING

units:
oun-
 indi-
ge of
ion of
 and
g.

ssors.

 tran-
o oper-
7 stack.
number
 oper-
plicit

cessor
d. Even
 real to
perand.
register
or usu-
14.3 THE 80C187 MATH COPROCESSOR

The 80C187’s high performance is due to its 80-bit internal architecture. It contains three
a Floating Point Unit, a Data Interface and Control Unit and a Bus Control Logic Unit. The f
dation of the Floating Point Unit is an 8-element register file, which can be used either as
vidually addressable registers or as a register stack. The register file allows stora
intermediate results in the 80-bit format. The Floating Point Unit operates under supervis
the Data Interface and Control Unit. The Bus Control Logic Unit maintains handshaking
communications with the host microprocessor. The 80C187 has built-in exception handlin

The 80C187 executes code written for the Intel387™ DX and Intel387 SX math coproce
The 80C187 conforms to ANSI/IEEE Standard 754-1985.

14.3.1 80C187 Instruction Set

80C187 instructions fall into six functional groups: data transfer, arithmetic, comparison,
scendental, constant and processor control. Typical 80C187 instructions accept one or tw
ands and produce a single result. Operands are usually located in memory or the 80C18
Some operands are predefined; for example, FSQRT always takes the square root of the
in the top stack element. Other instructions allow or require the programmer to specify the
and(s) explicitly along with the instruction mnemonic. Still other instructions accept one ex
operand and one implicit operand (usually the top stack element).

As with the basic (non-numerics) instruction set, there are two types of operands for copro
instructions, source and destination. Instruction execution does not alter a source operan
when an instruction converts the source operand from one format to another (for example,
integer), the coprocessor performs the conversion in a work area to preserve the source o
A destination operand differs from a source operand because the 80C187 can alter the
when it receives the result of the operation. For most destination operands, the coprocess
ally replaces the destinations with results.
14-2

MATH COPROCESSING

k or be-
 load it
l oper-
1 sum-

, and
 value
struc-
owers

 addi-
sym-
hly
14.3.1.1 Data Transfer Instructions

Data transfer instructions move operands between elements of the 80C187 register stac
tween stack top and memory. Instructions can convert any data type to temporary real and
onto the stack in a single operation. Conversely, instructions can convert a temporary rea
and on the stack to any data type and store it to memory in a single operation. Table 14-
marizes the data transfer instructions.

14.3.1.2 Arithmetic Instructions

The 80C187’s arithmetic instruction set includes many variations of add, subtract, multiply
divide operations and several other useful functions. Examples include a simple absolute
and a square root instruction that executes faster than ordinary division. Other arithmetic in
tions perform exact modulo division, round real numbers to integers and scale values by p
of two.

Table 14-2 summarizes the available operation and operand forms for basic arithmetic. In
tion to the four normal operations, “reversed” instructions make subtraction and division “
metrical” like addition and multiplication. In summary, the arithmetic instructions are hig
flexible for these reasons:

• the 80C187 uses register or memory operands

• the 80C187 can save results in a choice of registers

Table 14-1. 80C187 Data Transfer Instructions

Real Transfers

FLD Load real

FST Store real

FSTP Store real and pop

FXCH Exchange registers

Integer Transfers

FILD Integer load

FIST Integer store

FISTP Integer store and pop

Packed Decimal Transfers

FBLD Packed decimal (BCD) load

FBSTP Packed decimal (BCD) store and pop
14-3

MATH COPROCESSING

teger.
Available data types include temporary real, long real, short real, short integer and word in
The 80C187 performs automatic type conversion to temporary real.

Table 14-2. 80C187 Arithmetic Instructions

Addition Division

FADD Add real FDIV Divide real

FADDP Add real and pop FDIVP Divide real and pop

FIADD Integer add FIDIV Integer divide

Subtraction FDIVR Divide real reversed

FSUB Subtract real FDIVRP Divide real reversed and pop

FSUBP Subtract real and pop FIDIVR Integer divide reversed

FISUB Integer subtract Other Operations

FSUBR Subtract real reversed FSQRT Square root

FSUBRP Subtract real reversed and pop FSCALE Scale

FISUBR Integer subtract reversed FPREM Partial remainder

Multiplication FRNDINT Round to integer

FMUL Multiply real FXTRACT Extract exponent and significand

FMULP Multiply real and pop FABS Absolute value

FIMUL Integer multiply FCHS Change sign

FPREMI Partial remainder (IEEE)
14-4

MATH COPROCESSING

ionship
c oper-
tion).

igono-
 code
e result
o stack
14.3.1.3 Comparison Instructions

Each comparison instruction (see Table 14-3) analyzes the stack top element, often in relat
to another operand. Then it reports the result in the Status Word condition code. The basi
ations are compare, test (compare with zero) and examine (report tag, sign and normaliza

14.3.1.4 Transcendental Instructions

Transcendental instructions (see Table 14-4) perform the core calculations for common tr
metric, hyperbolic, inverse hyperbolic, logarithmic and exponential functions. Use prologue
to reduce arguments to a range accepted by the instruction. Use epilogue code to adjust th
to the range of the original arguments. The transcendentals operate on the top one or tw
elements and return their results to the stack.

Table 14-3. 80C187 Comparison Instructions

FCOM Compare real

FCOMP Compare real and pop

FCOMPP Compare real and pop twice

FICOM Integer compare

FICOMP Integer compare and pop

FTST Test

FXAM Examine

FUCOM Unordered compare

FUCOMP Unordered compare and pop

FUCOMPP Unordered compare and pop twice

Table 14-4. 80C187 Transcendental Instructions

FPTAN Partial tangent

FPATAN Partial arctangent

F2XM1 2X – 1

FYL2X Y log2 X

FYL2XP1 Y log2 (X+1)

FCOS Cosine

FSIN Sine

FSINCOS Sine and Cosine
14-5

MATH COPROCESSING

ck. The
porary
e mem-

ble for
xcep-
14.3.1.5 Constant Instructions

Each constant instruction (see Table 14-5) loads a commonly used constant onto the sta
values have full 80-bit precision and are accurate to about 19 decimal digits. Since a tem
real constant occupies 10 memory bytes, the constant instructions, only 2 bytes long, sav
ory space.

14.3.1.6 Processor Control Instructions

Computations do not use the processor control instructions; these instructions are availa
activities at the operating system level. This group (see Table 14-6) includes initialization, e
tion handling and task switching instructions.

Table 14-5. 80C187 Constant Instructions

FLDZ Load + 0.1

FLD1 Load +1.0

FLDPI Load

FLDL2T Load log2 10

FLDL2E Load log2 e

FLDLG2 Load log10 2

FLDLN2 Load loge 2

Table 14-6. 80C187 Processor Control Instructions

FINIT/FNINIT Initialize processor FLDENV Load environment

FDISI/FNDISI Disable interrupts FSAVE/FNSAVE Save state

FENI/FNENI Enable interrupts FRSTOR Restore state

FLDCW Load control word FINCSTP Increment stack pointer

FSTCW/FNSTCW Store control word FDECSTP Decrement stack pointer

FSTSW/FNSTSW Store status word FFREE Free register

FCLEX/FNCLEX Clear exceptions FNOP No operation

FSTENV/FNSTENV Store environment FWAIT CPU wait
14-6

MATH COPROCESSING

ment

a 2’s

a 2’s

 the

ates as
een the
14.3.2 80C187 Data Types

The microprocessor/math coprocessor combination supports seven data types:

• Word Integer — A signed 16-bit numeric value. All operations assume a 2’s comple
representation.

• Short Integer — A signed 32-bit numeric value (double word). All operations assume
complement representation.

• Long Integer — A signed 64-bit numeric value (quad word). All operations assume
complement representation.

• Packed Decimal — A signed numeric value contained in an 80-bit BCD format.

• Short Real — A signed 32-bit floating point numeric value.

• Long Real — A signed 64-bit floating point numeric value.

• Temporary Real — A signed 80-bit floating point numeric value. Temporary real is
native 80C187 format.

Figure 14-1 graphically represents these data types.

14.4 MICROPROCESSOR AND COPROCESSOR OPERATION

The 80C187 interfaces directly to the microprocessor (as shown in Figure 14-2) and oper
an I/O-mapped slave peripheral device. Hardware handshaking requires connections betw
80C187 and four special pins on the processor: NCS, BUSY, PEREQ and ERROR.
14-7

MATH COPROCESSING
Figure 14-1. 80C187-Supported Data Types

Increasing Significance

Word
Integer

Packed
Decimal

Short
Real

Temporary
Real

(Two's Complement)

Short
Integer

Long
Integer

Long
Real

S

0

Magnitude

15

S

031

Magnitude (Two's Complement)

(Two's
Complement)S

063

Magnitude

7279

Magnitude

S

0

Biased
Exponent Significand

I31 23

S

063 52 I

Biased
Exponent Significand

S I

79 64 63 0

Biased
Exponent Significand

S X d17 d16
d15 d14 d13 d12

d11
d10 d9 d8

d7 d6 d5 d4
d3 d2 d1 d0

NOTES:
S = Sign bit (0 = positive, 1 = negative)
dn = Decimal digit (two per byte)
X = Bits have no significance; 80C187 ignores when loading, zeros when storing.
 = Position of implicit binary point
I = Integer bit of significand; stored in temporary real, implicit in short and long real
Exponent Bias (normalized values):
	 Short Real: 127 (7FH)
 Long Real: 1023 (3FFH)
 Temporary Real: 16383 (FFFH)

A1257-0A
14-8

MATH COPROCESSING
Figure 14-2. 80C186 Modular Core Family/80C187 System Configuration

ALE

PEREQ

RESET

PEREQ

EN

80C187

CKM

NPS2

80C186
Modular

Core

Latch

D15:0

External
Oscillator

CLKOUT

RESOUT

WR

RD

 NCS

ERROR

NPS1

CLK

NPWR

NPRD

BUSY BUSY

ERROR

 1

 2

A2A1

C
M

D
0

C
M

D
1

A1254-01

AD15:0
14-9

MATH COPROCESSING

ay dif-
ivided
input
iply-
essor

, 16-bit
 writes
truction
cessor,
ead in
 the mi-

unters a
nd the
 in-

7. If an
ys:

 of the

m can
when

. The
o the

ledge
14.4.1 Clocking the 80C187

The microprocessor and math coprocessor operate asynchronously, and their clock rates m
fer. The 80C187 has a CKM pin that determines whether it uses the input clock directly or d
by two. Direct clocking works up to 12.5 MHz, which makes it convenient to feed the clock
from the microprocessor’s CLKOUT pin. Beyond 12.5 MHz, the 80C187 must use a mult
by-two clock input up to a maximum of 32 MHz. The microprocessor and the math coproc
have correct timing relationships, even with operation at different frequencies.

14.4.2 Processor Bus Cycles Accessing the 80C187

Data transfers between the microprocessor and the 80C187 occur through the dedicated
I/O ports shown in Table 14-7. When the processor encounters a numerics opcode, it first
the opcode to the 80C187. The 80C187 decodes the instruction and passes elementary ins
information (Opcode Status Word) back to the processor. Since the 80C187 is a slave pro
the Modular Core processor performs all loads and stores to memory. Including the overh
the microprocessor’s microcode, each data transfer between memory and the 80C187 (via
croprocessor) takes at least 17 processor clocks.

The microprocessor cannot process any numerics (ESC) opcodes alone. If the CPU enco
numerics opcode when the Escape Trap (ET) bit in the Relocation Register is a zero a
80C187 is not present, its operation is indeterminate. Even the FINIT/FNINIT initialization
struction (used in the past to test the presence of a coprocessor) fails without the 80C18
application offers the 80C187 as an option, problems can be prevented in one of three wa

• Remove all numerics (ESC) instructions, including code that checks for the presence
80C187.

• Use a jumper or switch setting to indicate the presence of the 80C187. The progra
interrogate the jumper or switch setting and branch away from numerics instructions
the 80C187 socket is empty.

• Trick the microprocessor into predictable operation when the 80C187 socket is empty
fix is placing pull-up or pull-down resistors on certain data and handshaking lines s
CPU reads a recognizable Opcode Status Word. This solution requires a detailed know
of the interface.

Table 14-7. 80C187 I/O Port Assignments

I/O Address Read Definition Write Definition

00F8H Status/Control Opcode

00FAH Data Data

00FCH Reserved CS:IP, DS:EA

00FEH Opcode Status Reserved
14-10

MATH COPROCESSING

s with
rating

 ready
ram a

rce and
onflicts

e math

 to the

execu-
cessor

merics
ia the
Bus cycles involving the 80C187 Math Coprocessor behave exactly like other I/O bus cycle
respect to the processor’s control pins. See “System Design Tips” for information on integ
the 80C187 into the overall system.

14.4.3 System Design Tips

All 80C187 operations require that bus ready be asserted. The simplest way to return the
indication is through hardware connected to the processor’s external ready pin. If you prog
chip-select to cover the math coprocessor port addresses, its ready programming is in fo
can provide bus ready for coprocessor accesses. The user must verify that there are no c
from other hardware connected to that chip-select pin.

A chip-select pin goes active on 80C187 accesses if you program it for a range including th
coprocessor I/O ports. The converse is not true — a non-80C187 access cannot activate NCS (nu-
merics coprocessor select), regardless of programming.

In a buffered system, it is customary to place the 80C187 on the local bus. Since DTR and DEN
function normally during 80C187 transfers, you must qualify DEN with NCS (see Figure 14-3).
Otherwise, contention between the 80C187 and the transceivers occurs on read cycles
80C187.

The microprocessor’s local bus is available to the integrated peripherals during numerics
tion whenever the CPU is not communicating with the 80C187. The idle bus allows the pro
to intersperse DRAM refresh cycles and DMA cycles with accesses to the 80C187.

The microprocessor’s local bus is available to alternate bus masters during execution of nu
instructions when the CPU does not need it. Bus cycles driven by alternate masters (v
HOLD/HLDA protocol) can suspend coprocessor bus cycles for an indefinite period.

The programmer can lock 80C187 instructions. The CPU asserts the LOCK pin for the entire du-
ration of a numerics instruction, monopolizing the bus for a very long time.
14-11

MATH COPROCESSING
Figure 14-3. 80C187 Configuration with a Partially Buffered Bus

ALE

PEREQ

RESET

PEREQ

EN

80C187

CKM

NPS2

80C186
Modular

Core

Latch

D15:0

External
Oscillator

CLKOUT

RESOUT

WR

RD

CLK

NPRD

BUSY BUSY

ERROR

T OE

D15:8

TOE

Buffer

Buffer

A15:0

D7:0

ERROR

 2

 1

NPS1

NPWR

NCS

CS

DEN

DT/R

A1 A2

C
M

D
0

C
M

D
1AD15:0

A1255-01
14-12

MATH COPROCESSING

0C187

 a

e last
ctions
P in-

rough
ment,
p-
and-

ple of
osine
14.4.4 Exception Trapping

The 80C187 detects six error conditions that can occur during instruction execution. The 8
can apply default fix-ups or signal exceptions to the microprocessor’s ERROR pin. The processor
tests ERROR at the beginning of numerics instructions, so it traps an exception on the next at-
tempted numerics instruction after it occurs. When ERROR tests active, the processor executes
Type 16 interrupt.

There is no automatic exception-trapping on the last numerics instruction of a series. If th
numerics instruction writes an invalid result to memory, subsequent non-numerics instru
can use that result as if it is valid, further compounding the original error. Insert the FNO
struction at the end of the 80C187 routine to force an ERROR check. If the program is written in
a high-level language, it is impossible to insert FNOP. In this case, route the error signal th
an inverter to an interrupt pin on the microprocessor (see Figure 14-4). With this arrange
use a flip-flop to latch BUSY upon assertion of ERROR. The latch gets cleared during the exce
tion-handler routine. Use an additional flip-flop to latch PEREQ to maintain the correct h
shaking sequence with the microprocessor.

14.5 EXAMPLE MATH COPROCESSOR ROUTINES

Example 14-1 shows the initialization sequence for the 80C187. Example 14-2 is an exam
a floating point routine using the 80C187. The FSINCOS instruction yields both sine and c
in one operation.
14-13

MATH COPROCESSING
Figure 14-4. 80C187 Exception Trapping via Processor Interrupt Pin

INTx

CLKOUT

D15:0

CMD1

CMD0

PEREQ

BUSY

ALE

A19:A16
AD15:0

RESET

CKM

NPS2

QD

QD

EN

D15:0

A
D
D
R
E
S
S

A19:0

A2

A1

80C187

RESOUT

80C186
Modular Core

BUSY

PEREQ

'74

'74

 CLK

Latch

ERROR

NPWR

WR

RD

NCS

CSx

C

Q
S

ERROR

NPS1

NPRD

C

S

A1256-01
14-14

MATH COPROCESSING
Example 14-1. Initialization Sequence for 80C187 Math Coprocessor

$mod186
name example_80C187_init
;
;FUNCTION: This function initializes the 80C187 numerics coprocessor.
;
;SYNTAX: extern unsigned char far 187_init(void);
;
;INPUTS: None
;
;OUTPUTS: unsigned char - 0000h -> False -> coprocessor not initialized
; ffffh -> True -> coprocessor initialized
;
;NOTE: Parameters are passed on the stack as required by
; high-level languages.
;
lib_80186 segment public ’code’

assume cs:lib_80186

public _187_init

_187_initproc far

push bp ;save caller’s bp
mov bp, sp ;get current top of stack

cli ;disable maskable interrupts

fninit ;init 80C187 processor
fnstcw [bp-2] ;get current control word

sti ;enable interrupts

mov ax, [bp-2]
and ax, 0300h ;mask off unwanted control bits
cmp ax, 0300h ;PC bits = 11
je Ok ;yes: processor ok
xor ax, ax ;return false (80C187 not ok)
pop bp ;restore caller’s bp
ret

Ok: and [bp-2], 0fffeh ;unmask possible exceptions
fldcw [bp-2]

mov ax,0ffffh ;return true (80C187 ok)
pop bp ;restore caller’s bp
ret

_187_initendp

lib_80186ends
end
14-15

MATH COPROCESSING
Example 14-2. Floating Point Math Routine Using FSINCOS

$mod186
$modc187

name example_80C187_proc

;DESCRIPTION: This code section uses the 80C187 FSINCOS transcendental
; instruction to convert the locus of a point from polar
; to Cartesian coordinates.
;
;VARIABLES: The variables consist of the radius, r, and the angle, theta.
; Both are expressed as 32-bit reals and 0 <= theta <= pi/4.
;
;RESULTS: The results of the computation are the coordinates x and y
; expressed as 32-bit reals.
;
;NOTES: This routine is coded for Intel ASM86. It is not set up as an
; HLL-callable routine.
;
; This code assumes that the 80C187 has already been initialized.
;

assume cs:code, ds:data

data segment at 0100h
r dd x.xxxx ;substitute real operand
theta dd x.xxxx ;substitute real operand
x dd ?
y dd ?

data ends

code segment at 0080h

convert proc far
mov ax, data
mov ds, ax

fld r ;load radius
fld theta ;load angle
fsincos ;st=cos, st(1)=sin
fmul st, st(2) ;compute x
fstp x ;store to memory and pop
fmul ;compute y
fstp y ;store to memory and pop

convert endp

code ends
end
14-16

15
ONCE Mode

al, or
ork,

llows
g. An

rd log-
 from

-1).
g

CHAPTER 15
ONCE MODE

ONCE (pronounced “ahnce”) Mode provides the ability to three-state all output, bidirection
weakly held high/low pins except OSCOUT. To allow device operation with a crystal netw
OSCOUT does not three-state.

ONCE Mode electrically isolates the device from the rest of the board logic. This isolation a
a bed-of-nails tester to drive the device pins directly for more accurate and thorough testin
in-circuit emulation probe uses ONCE Mode to isolate a surface-mounted device from boa
ic and essentially “take over” operation of the board (without removing the soldered device
the board).

15.1 ENTERING/LEAVING ONCE MODE

Forcing A19/ONCE low while RESIN is asserted (low) enables ONCE Mode (see Figure 15
Maintaining A19/ONCE and RESIN low continues to keep ONCE Mode active. Returnin
A19/ONCE high exits ONCE Mode.

However, it is possible to keep ONCE Mode always active by deasserting RESIN while keeping
A19/ONCE low. Removing RESIN “latches” ONCE Mode and allows A19/ONCE to be driven
to any level. A19/ONCE must remain low for at least one clock beyond the time RESIN is driven
high. Asserting RESIN exits ONCE Mode, assuming A19/ONCE does not also remain low (see
Figure 15-1).

Figure 15-1. Entering/Leaving ONCE Mode

A19/ONCE

All output,
bidirectional,
weakly held
pins except

OSCOUT

NOTES: 1. Entering ONCE Mode.
2. Latching ONCE Mode.
3. Leaving ONCE Mode (assuming 2 occurred).

3
1

2RESIN

A1260-0A
15-1

A
80C186 Instruction
Set Additions and
Extensions

tion
ion set
 80C186

truction
id not

nd un-
 stack.

rs are
inter
OPA is
ot save
ord or
APPENDIX A
80C186 INSTRUCTION SET

ADDITIONS AND EXTENSIONS

The 80C186 Modular Core family instruction set differs from the original 8086/8088 instruc
set in two ways. First, several instructions that were not available in the 8086/8088 instruct
have been added. Second, several 8086/8088 instructions have been enhanced for the
Modular Core family instruction set.

A.1 80C186 INSTRUCTION SET ADDITIONS

This section describes the seven instructions that were added to the base 8086/8088 ins
set to make the instruction set for the 80C186 Modular Core family. These instructions d
exist in the 8086/8088 instruction set.

• Data transfer instructions

— PUSHA

— POPA

• String instructions

— INS

— OUTS

• High-level instructions

— ENTER

— LEAVE

— BOUND

A.1.1 Data Transfer Instructions

PUSHA/POPA

PUSHA (push all) and POPA (pop all) allow all general-purpose registers to be stacked a
stacked. The PUSHA instruction pushes all CPU registers (except as noted below) onto the
The POPA instruction pops all registers pushed by PUSHA off of the stack. The registe
pushed onto the stack in the following order: AX, CX, DX, BX, SP, BP, SI, DI. The Stack Po
(SP) value pushed is the Stack Pointer value before the AX register was pushed. When P
executed, the Stack Pointer value is popped, but ignored. Note that this instruction does n
segment registers (CS, DS, SS, ES), the Instruction Pointer (IP), the Processor Status W
any integrated peripheral registers.
A-1

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

ed in
he ES
ter reg-
. The

laced
the DS
e data
e value
o for

he first
edure
-
e is in

opied

(lower

e. The

 non-
rement-
 used.
A.1.2 String Instructions

INS source_string, port

INS (in string) performs block input from an I/O port to memory. The port address is plac
the DX register. The memory address is placed in the DI register. This instruction uses t
segment register (which cannot be overridden). After the data transfer takes place, the poin
ister (DI) increments or decrements, depending on the value of the Direction Flag (DF)
pointer register changes by one for byte transfers or by two for word transfers.

OUTS port, destination_string

OUTS (out string) performs block output from memory to an I/O port. The port address is p
in the DX register. The memory address is placed in the SI register. This instruction uses
segment register, but this may be changed with a segment override instruction. After th
transfer takes place, the pointer register (SI) increments or decrements, depending on th
of the Direction Flag (DF). The pointer register changes by one for byte transfers or by tw
word transfers.

A.1.3 High-Level Instructions

ENTER size, level

ENTER creates the stack frame required by most block-structured high-level languages. T
parameter, size, specifies the number of bytes of dynamic storage to be allocated for the proc
being entered (16-bit value). The second parameter, level, is the lexical nesting level of the pro
cedure (8-bit value). Note that the higher the lexical nesting level, the lower the procedur
the nesting hierarchy.

The lexical nesting level determines the number of pointers to higher level stack frames c
into the current stack frame. This list of pointers is called the display. The first word of the display
points to the previous stack frame. The display allows access to variables of higher level
lexical nesting level) procedures.

After ENTER creates a display for the current procedure, it allocates dynamic storage spac
Stack Pointer decrements by the number of bytes specified by size. All PUSH and POP operations
in the procedure use this value of the Stack Pointer as a base.

Two forms of ENTER exist: non-nested and nested. A lexical nesting level of 0 specifies the
nested form. In this situation, BP is pushed, then the Stack Pointer is copied to BP and dec
ed by the size of the frame. If the lexical nesting level is greater than 0, the nested form is
Figure A-1 gives the formal definition of ENTER.
A-2

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

e lexical
el call-
l pro-

bles of
 Proce-
 to the
 and B
Figure A-1. Formal Definition of ENTER

ENTER treats a reentrant procedure as a procedure calling another procedure at the sam
level. A reentrant procedure can address only its own variables and variables of higher-lev
ing procedures. ENTER ensures this by copying only stack frame pointers from higher-leve
cedures.

Block-structured high-level languages use lexical nesting levels to control access to varia
previously nested procedures. For example, assume for Figure A-2 that Procedure A calls
dure B, which calls Procedure C, which calls Procedure D. Procedure C will have access
variables of Main and Procedure A, but not to those of Procedure B because Procedures C
operate at the same lexical nesting level.

The following is a summary of the variable access for Figure A-2.

1. Main has variables at fixed locations.

2. Procedure A can access only the fixed variables of Main.

3. Procedure B can access only the variables of Procedure A and Main.
Procedure B cannot access the variables of Procedure C or Procedure D.

4. Procedure C can access only the variables of Procedure A and Main.
Procedure C cannot access the variables of Procedure B or Procedure D.

5. Procedure D can access the variables of Procedure C, Procedure A and Main.
Procedure D cannot access the variables of Procedure B.

The following listing gives the formal definition of the

ENTER instruction for all cases.

LEVEL denotes the value of the second operand.

Push BP

Set a temporary value FRAME_PTR: = SP

If LEVEL > 0 then

Repeat (LEVEL - 1) times:

BP:=BP - 2

Push the word pointed to by BP

End Repeat

Push FRAME_PTR

End if

BP:=FRAME_PTR

SP:=SP - first operand
A-3

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

in, but
 value

word
of BP
 will
Figure A-2. Variable Access in Nested Procedures

The first ENTER, executed in the Main Program, allocates dynamic storage space for Ma
no pointers are copied. The only word in the display points to itself because no previous
exists to return to after LEAVE is executed (see Figure A-3).

Figure A-3. Stack Frame for Main at Level 1

After Main calls Procedure A, ENTER creates a new display for Procedure A. The first
points to the previous value of BP (BPM). The second word points to the current value
(BPA). BPM contains the base for dynamic storage in Main. All dynamic variables for Main
be at a fixed offset from this value (see Figure A-4).

Main Program (Lexical Level 1)

Procedure A (Lexical Level 2)

Procedure B (Lexical Level 3)

Procedure C (Lexical Level 3)

Procedure D (Lexical Level 4)

A1001-0A

BP

SP

Dynamic
Storage

Main

Old BP

15 0

BPM
Display Main

*BPM = BP Value for MAIN

a1002 0a pc
A1002-0A
A-4

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

t word
lue of
ord
via the

t word
lue of
he
e same

nter to
e the
Figure A-4. Stack Frame for Procedure A at Level 2

After Procedure A calls Procedure B, ENTER creates the display for Procedure B. The firs
of the display points to the previous value of BP (BPA). The second word points to the va
BP for MAIN (BPM). The third word points to the BP for Procedure A (BPA). The last w
points to the current BP (BPB). Procedure B can access variables in Procedure A or Main
appropriate BP in the display (see Figure A-5).

After Procedure B calls Procedure C, ENTER creates the display for Procedure C. The firs
of the display points to the previous value of BP (BPB). The second word points to the va
BP for MAIN (BPM). The third word points to the value of BP for Procedure A (BPA). T
fourth word points to the current BP (BPC). Because Procedure B and Procedure C have th
lexical nesting level, Procedure C cannot access variables in Procedure B. The only poi
Procedure B in the display of Procedure C exists to allow the LEAVE instruction to collaps
Procedure C stack frame (see Figure A-6).

Old BP

BP

SP

15 0

BPM

BPM

BPM
BPA*

Display A

Dynamic
Storage A

*BPA = BP Value for Procedure A
A1003-0A
A-5

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS
Figure A-5. Stack Frame for Procedure B at Level 3 Called from A

A1004-0A

Old BP

BP

SP

15 0

BPM

BPM

BPM

Display B

Dynamic
Storage B

BPA

BPM

BPA

BPA

BPB
A-6

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

stack
 space
ck, to

acked
Figure A-6. Stack Frame for Procedure C at Level 3 Called from B

LEAVE

LEAVE reverses the action of the most recent ENTER instruction. It collapses the last
frame created. First, LEAVE copies the current BP to the Stack Pointer, releasing the stack
allocated to the current procedure. Second, LEAVE pops the old value of BP from the sta
return to the calling procedure's stack frame. A RET instruction will remove arguments st
by the calling procedure for use by the called procedure.

Old BP

BP

SP

15 0

BPM

BPM
BPM
BPA

BPM
BPA

BPA

BPB

BPB
BPM

BPA

BPC

Display C

Dynamic
Storage C

A1005-0A
A-7

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

f the
 useful
he pro-

r limit
ot be

en en-

e
 being
BOUND register, address

BOUND verifies that the signed value in the specified register lies within specified limits. I
value does not lie within the bounds, an array bounds exception (type 5) occurs. BOUND is
for checking array bounds before attempting to access an array element. This prevents t
gram from overwriting information outside the limits of the array.

BOUND has two operands. The first, register, specifies the register being tested. The second, ad-
dress, contains the effective relative address of the two signed boundary values. The lowe
word is at this address and the upper limit word immediately follows. The limit values cann
register operands (if they are, an invalid opcode exception occurs).

A.2 80C186 INSTRUCTION SET ENHANCEMENTS

This section describes ten instructions that were available with the 8086/8088 but have be
hanced for the 80C186 Modular Core family.

• Data transfer instructions

— PUSH

• Arithmetic instructions

— IMUL

• Bit manipulation instructions (shifts and rotates)

— SAL

— SHL

— SAR

— SHR

— ROL

— ROR

— RCL

— RCR

A.2.1 Data Transfer Instructions

PUSH data

PUSH (push immediate) allows an immediate argument, data, to be pushed onto the stack. Th
value can be either a byte or a word. Byte values are sign extended to word size before
pushed.
A-8

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

 op-
l
 the

ust be

alue.
nd,
U will
ght.

hift

 val-
c-
 CPU
rig-

shift
A.2.2 Arithmetic Instructions

IMUL destination, source, data

IMUL (integer immediate multiply, signed) allows a value to be multiplied by an immediate
erand. IMUL requires three operands. The first, destination, is the register where the result wil
be placed. The second, source, is the effective address of the multiplier. The source may be
same register as the destination, another register or a memory location. The third, data, is an im-
mediate value used as the multiplicand. The data operand may be a byte or word. If data is a byte,
it is sign extended to 16 bits. Only the lower 16 bits of the result are saved. The result m
placed in a general-purpose register.

A.2.3 Bit Manipulation Instructions

This section describes the eight enhanced bit-manipulation instructions.

A.2.3.1 Shift Instructions

SAL destination, count

SAL (immediate shift arithmetic left) shifts the destination operand left by an immediate v
SAL has two operands. The first, destination, is the effective address to be shifted. The seco
count, is an immediate byte value representing the number of shifts to be made. The CP
AND count with 1FH before shifting, to allow no more than 32 shifts. Zeros shift in on the ri

SHL destination, count

SHL (immediate shift logical left) is physically the same instruction as SAL (immediate s
arithmetic left).

SAR destination, count

SAR (immediate shift arithmetic right) shifts the destination operand right by an immediate
ue. SAL has two operands. The first, destination, is the effective address to be shifted. The se
ond, count, is an immediate byte value representing the number of shifts to be made. The
will AND count with 1FH before shifting, to allow no more than 32 shifts. The value of the o
inal sign bit shifts into the most-significant bit to preserve the initial sign.

SHR destination, count

SHR (immediate shift logical right) is physically the same instruction as SAR (immediate
arithmetic right).
A-9

80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

 ROL

nificant

alue.
nd,
st-sig-

me-
d.
ade.

n im-
d.
ade.
A.2.3.2 Rotate Instructions

ROL destination, count

ROL (immediate rotate left) rotates the destination byte or word left by an immediate value.
has two operands. The first, destination, is the effective address to be rotated. The second, count,
is an immediate byte value representing the number of rotations to be made. The most-sig
bit of destination rotates into the least-significant bit.

ROR destination, count

ROR (immediate rotate right) rotates the destination byte or word right by an immediate v
ROR has two operands. The first, destination, is the effective address to be rotated. The seco
count, is an immediate byte value representing the number of rotations to be made. The lea
nificant bit of destination rotates into the most-significant bit.

RCL destination, count

RCL (immediate rotate through carry left) rotates the destination byte or word left by an im
diate value. RCL has two operands. The first, destination, is the effective address to be rotate
The second, count, is an immediate byte value representing the number of rotations to be m
The Carry Flag (CF) rotates into the least-significant bit of destination. The most-significant bit
of destination rotates into the Carry Flag.

RCR destination, count

RCR (immediate rotate through carry right) rotates the destination byte or word right by a
mediate value. RCR has two operands. The first, destination, is the effective address to be rotate
The second, count, is an immediate byte value representing the number of rotations to be m
The Carry Flag (CF) rotates into the most-significant bit of destination. The least-significant bit
of destination rotates into the Carry Flag.
A-10

B
Input
Synchronization

 not
, asyn-

nchro-
nizing

 of the
he
 data

ions in
 cover

e out-
the sec-
al, the

 sam-
s way,
APPENDIX B
INPUT SYNCHRONIZATION

Many input signals to an embedded processor are asynchronous. Asynchronous signals dore-
quire a specified setup or hold time to ensure the device does not incur a failure. However
chronous setup and hold times are specified in the data sheet to ensure recognition. Associated
with each of these inputs is a synchronizing circuit (see Figure B-1) that samples the asy
nous signal and synchronizes it to the internal operating clock. The output of the synchro
circuit is then safely routed to the logic units.

Figure B-1. Input Synchronization Circuit

B.1 WHY SYNCHRONIZERS ARE REQUIRED

Every data latch requires a specific setup and hold time to operate properly. The duration
setup and hold time defines a window during which the device attempts to latch the data. If t
input makes a transition within this window, the output may not attain a stable state. The
sheet specifies a setup and hold window larger than is actually required. However, variat
device operation (e.g., temperature, voltage) require that a larger window be specified to
all conditions.

Should the input to the data latch make a transition during the sample and hold window, th
put of the latch eventually attains a stable state. This stable state must be attained before
ond stage of synchronization requires a valid input. To synchronize an asynchronous sign
circuit in Figure B-1 samples the input into the first latch, allows the output to stabilize, then
ples the stabilized value into a second latch. With the asynchronous signal resolved in thi
the input signal cannot cause an internal device failure.

D Q D Q
Synchronized

Output
Asynchronous

Input

1. First latch sample clock, can be phase 1 or phase 2 depending on pin function.

2. Second latch sample clock, opposite phase of first latch sample clock
 (e.g., if first latch is sampled with phase 1, the second latch is sampled with phase 2).

First
Latch

Second
Latch

NOTES:

21

A1007-0A
B-1

INPUT SYNCHRONIZATION

up and
 actual
be sig-
nchro-

T1IN,
A synchronization failure can occur when the output of the first latch does not meet the set
hold requirements of the input of the second latch. The rate of failure is determined by the
size of the sampling window of the data latch and by the amount of time between the stro
nals of the two latches. As the sampling window gets smaller, the number of times an asy
nous transition occurs during the sampling window drops.

B.2 ASYNCHRONOUS PINS

The 80C186EC/80C188EC inputs that use the two-stage synchronization circuit are T0IN,
NMI, TEST/BUSY, INT7:0, HOLD, all port pins used as inputs, and DRQ3:0.
B-2

C
Instruction Set
Descriptions

tion
ctions
APPENDIX C
INSTRUCTION SET DESCRIPTIONS

This appendix provides reference information for the 80C186 Modular Core family instruc
set. Tables C-1 through C-3 define the variables used in Table C-4, which lists the instru
with their descriptions and operations.

Table C-1. Instruction Format Variables

Variable Description

dest A register or memory location that may contain data operated on by the instruction,
and which receives (is replaced by) the result of the operation.

src A register, memory location or immediate value that is used in the operation, but is not
altered by the instruction

target A label to which control is to be transferred directly, or a register or memory location
whose content is the address of the location to which control is to be transferred
indirectly.

disp8 A label to which control is to be conditionally transferred; must lie within –128 to +127
bytes of the first byte of the next instruction.

accum Register AX for word transfers, AL for bytes.

port An I/O port number; specified as an immediate value of 0–255, or register DX (which
contains port number in range 0–64K).

src-string Name of a string in memory that is addressed by register SI; used only to identify
string as byte or word and specify segment override, if any. This string is used in the
operation, but is not altered.

dest-string Name of string in memory that is addressed by register DI; used only to identify string
as byte or word. This string receives (is replaced by) the result of the operation.

count Specifies number of bits to shift or rotate; written as immediate value 1 or register CL
(which contains the count in the range 0–255).

interrupt-type Immediate value of 0–255 identifying interrupt pointer number.

optional-pop-value Number of bytes (0–64K, ordinarily an even number) to discard from the stack.

external-opcode Immediate value (0–63) that is encoded in the instruction for use by an external
processor.
C-1

INSTRUCTION SET DESCRIPTIONS
Table C-2. Instruction Operands

Operand Description

reg An 8- or 16-bit general register.

reg16 An 16-bit general register.

seg-reg A segment register.

accum Register AX or AL

immed A constant in the range 0–FFFFH.

immed8 A constant in the range 0–FFH.

mem An 8- or 16-bit memory location.

mem16 A 16-bit memory location.

mem32 A 32-bit memory location.

src-table Name of 256-byte translate table.

src-string Name of string addressed by register SI.

dest-string Name of string addressed by register DI.

short-label A label within the –128 to +127 bytes of the end of the instruction.

near-label A label in current code segment.

far-label A label in another code segment.

near-proc A procedure in current code segment.

far-proc A procedure in another code segment.

memptr16 A word containing the offset of the location in the current code segment to which
control is to be transferred.

memptr32 A doubleword containing the offset and the segment base address of the location in
another code segment to which control is to be transferred.

regptr16 A 16-bit general register containing the offset of the location in the current code
segment to which control is to be transferred.

repeat A string instruction repeat prefix.
C-2

INSTRUCTION SET DESCRIPTIONS
Table C-3. Flag Bit Functions

Name Function

AF Auxiliary Flag:

Set on carry from or borrow to the low order four bits of AL; cleared otherwise.

CF Carry Flag:

Set on high-order bit carry or borrow; cleared otherwise.

DF Direction Flag:

Causes string instructions to auto decrement the appropriate index register
when set. Clearing DF causes auto increment.

IF Interrupt-enable Flag:

When set, maskable interrupts will cause the CPU to transfer control to an
interrupt vector specified location.

OF Overflow Flag:

Set if the signed result cannot be expressed within the number of bits in the
destination operand; cleared otherwise.

PF Parity Flag:

Set if low-order 8 bits of result contain an even number of 1 bits; cleared
otherwise.

SF Sign Flag:

Set equal to high-order bit of result (0 if positive, 1 if negative).

TF Single Step Flag:

Once set, a single step interrupt occurs after the next instruction executes. TF
is cleared by the single step interrupt.

ZF Zero Flag:

Set if result is zero; cleared otherwise.
C-3

INSTRUCTION SET DESCRIPTIONS
Table C-4. Instruction Set

Name Description Operation
Flags

Affected

AAA ASCII Adjust for Addition :

AAA

Changes the contents of register AL to
a valid unpacked decimal number; the
high-order half-byte is zeroed.

Instruction Operands :

none

if
((AL) and 0FH) > 9 or (AF) = 1

then
(AL) ← (AL) + 6
(AH) ← (AH) + 1
(AF) ← 1
(CF) ← (AF)
(AL) ← (AL) and 0FH

AF ü
CF ü
DF –
IF –
OF ?
PF ?
SF ?
TF –
ZF ?

AAD ASCII Adjust for Division :

AAD

Modifies the numerator in AL before
dividing two valid unpacked decimal
operands so that the quotient
produced by the division will be a valid
unpacked decimal number. AH must
be zero for the subsequent DIV to
produce the correct result. The
quotient is returned in AL, and the
remainder is returned in AH; both high-
order half-bytes are zeroed.

Instruction Operands :

none

(AL) ← (AH) × 0AH + (AL)
(AH) ← 0

AF ?
CF ?
DF –
IF –
OF ?
PF ü
SF ü
TF –
ZF ü

AAM ASCII Adjust for Multiply :

AAM

Corrects the result of a previous multi-
plication of two valid unpacked
decimal operands. A valid 2-digit
unpacked decimal number is derived
from the content of AH and AL and is
returned to AH and AL. The high-order
half-bytes of the multiplied operands
must have been 0H for AAM to
produce a correct result.

Instruction Operands :

none

(AH) ← (AL) / 0AH
(AL) ← (AL) % 0AH

AF ?
CF ?
DF –
IF –
OF ?
PF ü
SF ü
TF –
ZF ü

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-4

INSTRUCTION SET DESCRIPTIONS
AAS ASCII Adjust for Subtraction :

AAS

Corrects the result of a previous
subtraction of two valid unpacked
decimal operands (the destination
operand must have been specified as
register AL). Changes the content of
AL to a valid unpacked decimal
number; the high-order half-byte is
zeroed.

Instruction Operands :

none

if
((AL) and 0FH) > 9 or (AF) = 1

then
(AL) ← (AL) – 6
(AH) ← (AH) – 1
(AF) ← 1
(CF) ← (AF)
(AL) ← (AL) and 0FH

AF ü
CF ü
DF –
IF –
OF ?
PF ?
SF ?
TF –
ZF ?

ADC Add with Carry :

ADC dest, src

Sums the operands, which may be
bytes or words, adds one if CF is set
and replaces the destination operand
with the result. Both operands may be
signed or unsigned binary numbers
(see AAA and DAA). Since ADC incor-
porates a carry from a previous
operation, it can be used to write
routines to add numbers longer than
16 bits.

Instruction Operands :

ADC reg, reg
ADC reg, mem
ADC mem, reg
ADC reg, immed
ADC mem, immed
ADC accum, immed

if
(CF) = 1

then
(dest) ← (dest) + (src) + 1

else
(dest) ← (dest) + (src)

AF ü
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-5

INSTRUCTION SET DESCRIPTIONS
ADD Addition :

ADD dest, src

Sums two operands, which may be
bytes or words, replaces the
destination operand. Both operands
may be signed or unsigned binary
numbers (see AAA and DAA).

Instruction Operands :

ADD reg, reg
ADD reg, mem
ADD mem, reg
ADD reg, immed
ADD mem, immed
ADD accum, immed

(dest) ← (dest) + (src) AF ü
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

AND And Logical :

AND dest, src

Performs the logical "and" of the two
operands (byte or word) and returns
the result to the destination operand. A
bit in the result is set if both corre-
sponding bits of the original operands
are set; otherwise the bit is cleared.

Instruction Operands :

AND reg, reg
AND reg, mem
AND mem, reg
AND reg, immed
AND mem, immed
AND accum, immed

(dest) ← (dest) and (src)
(CF) ← 0
(OF) ← 0

AF ?
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-6

INSTRUCTION SET DESCRIPTIONS
BOUND Detect Value Out of Range :

BOUND dest, src

Provides array bounds checking in
hardware. The calculated array index
is placed in one of the general purpose
registers, and the upper and lower
bounds of the array are placed in two
consecutive memory locations. The
contents of the register are compared
with the memory location values, and if
the register value is less than the first
location or greater than the second
memory location, a trap type 5 is
generated.

Instruction Operands :

BOUND reg, mem

if
((dest) < (src) or (dest) > ((src) + 2)
then

(SP) ← (SP) – 2
((SP) + 1 : (SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1 : (SP)) ← (CS)
(CS) ← (1EH)
(SP) ← (SP) – 2
((SP) + 1 : (SP)) ← (IP)
(IP) ← (1CH)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

CALL Call Procedure :

CALL procedure-name

Activates an out-of-line procedure,
saving information on the stack to
permit a RET (return) instruction in the
procedure to transfer control back to
the instruction following the CALL. The
assembler generates a different type
of CALL instruction depending on
whether the programmer has defined
the procedure name as NEAR or FAR.

Instruction Operands :

CALL near-proc
CALL far-proc
CALL memptr16
CALL regptr16
CALL memptr32

if
Inter-segment

then
(SP) ← (SP) – 2
((SP) +1:(SP)) ← (CS)
(CS) ← SEG
(SP) ← (SP) – 2
((SP) +1:(SP)) ← (IP)
(IP) ← dest

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-7

INSTRUCTION SET DESCRIPTIONS
CBW Convert Byte to Word :

CBW

Extends the sign of the byte in register
AL throughout register AH. Use to
produce a double-length (word)
dividend from a byte prior to
performing byte division.

Instruction Operands :

none

if
(AL) < 80H

then
(AH) ← 0

else
(AH) ← FFH

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

CLC Clear Carry flag :

CLC

Zeroes the carry flag (CF) and affects
no other flags. Useful in conjunction
with the rotate through carry left (RCL)
and the rotate through carry right
(RCR) instructions.

Instruction Operands :

none

(CF) ← 0 AF –
CF ü
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

CLD Clear Direction flag :

CLD

Zeroes the direction flag (DF) causing
the string instructions to auto-
increment the source index (SI) and/or
destination index (DI) registers.

Instruction Operands :

none

(DF) ← 0 AF –
CF –
DF ü
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-8

INSTRUCTION SET DESCRIPTIONS
CLI Clear Interrupt-enable Flag :

CLI

Zeroes the interrupt-enable flag (IF).
When the interrupt-enable flag is
cleared, the 8086 and 8088 do not
recognize an external interrupt request
that appears on the INTR line; in other
words maskable interrupts are
disabled. A non-maskable interrupt
appearing on NMI line, however, is
honored, as is a software interrupt.

Instruction Operands :

none

(IF) ← 0 AF –
CF –
DF –
IF ü

OF –
PF –
SF –
TF –
ZF –

CMC Complement Carry Flag :

CMC

Toggles complement carry flag (CF) to
its opposite state and affects no other
flags.

Instruction Operands :

none

if
(CF) = 0

then
(CF) ← 1

else
(CF) ← 0

AF –
CF ü
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-9

INSTRUCTION SET DESCRIPTIONS
CMP Compare :

CMP dest, src

Subtracts the source from the desti-
nation, which may be bytes or words,
but does not return the result. The
operands are unchanged, but the flags
are updated and can be tested by a
subsequent conditional jump
instruction. The comparison reflected
in the flags is that of the destination to
the source. If a CMP instruction is
followed by a JG (jump if greater)
instruction, for example, the jump is
taken if the destination operand is
greater than the source operand.

Instruction Operands :

CMP reg, reg
CMP reg, mem
CMP mem, reg
CMP reg, immed
CMP mem, immed
CMP accum, immed

(dest) – (src) AF ü
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

CMPS Compare String :

CMPS dest-string, src-string

Subtracts the destination byte or word
from the source byte or word. The
destination byte or word is addressed
by the destination index (DI) register
and the source byte or word is
addresses by the source index (SI)
register. CMPS updates the flags to
reflect the relationship of the
destination element to the source
element but does not alter either
operand and updates SI and DI to
point to the next string element.

Instruction Operands :

CMP dest-string, src-string
CMP (repeat) dest-string, src-string

(dest-string) – (src-string)
if

(DF) = 0
then

(SI) ← (SI) + DELTA
(DI) ← (DI) + DELTA

else
(SI) ← (SI) – DELTA
(DI) ← (DI) – DELTA

AF ü
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-10

INSTRUCTION SET DESCRIPTIONS
CWD Convert Word to Doubleword :

CWD

Extends the sign of the word in register
AX throughout register DX. Use to
produce a double-length (doubleword)
dividend from a word prior to
performing word division.

Instruction Operands :

none

if
(AX) < 8000H

then
(DX) ← 0

else
(DX) ← FFFFH

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

DAA Decimal Adjust for Addition :

DAA

Corrects the result of previously
adding two valid packed decimal
operands (the destination operand
must have been register AL). Changes
the content of AL to a pair of valid
packed decimal digits.

Instruction Operands :

none

if
((AL) and 0FH) > 9 or (AF) = 1

then
(AL) ← (AL) + 6
(AF) ← 1

if
(AL) > 9FH or (CF) = 1

then
(AL) ← (AL) + 60H
(CF) ← 1

AF ü
CF ü
DF –
IF –
OF ?
PF ü
SF ü
TF –
ZF ü

DAS Decimal Adjust for Subtraction :

DAS

Corrects the result of a previous
subtraction of two valid packed
decimal operands (the destination
operand must have been specified as
register AL). Changes the content of
AL to a pair of valid packed decimal
digits.

Instruction Operands :

none

if
((AL) and 0FH) > 9 or (AF) = 1

then
(AL) ← (AL) – 6
(AF) ← 1

if
(AL) > 9FH or (CF) = 1

then
(AL) ← (AL) – 60H
(CF) ← 1

AF ü
CF ü
DF –
IF –
OF ?
PF ü
SF ü
TF –
ZF ü

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-11

INSTRUCTION SET DESCRIPTIONS
DEC Decrement :

DEC dest

Subtracts one from the destination
operand. The operand may be a byte
or a word and is treated as an
unsigned binary number (see AAA and
DAA).

Instruction Operands:

DEC reg
DEC mem

(dest) ← (dest) – 1 AF ü
CF –
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-12

INSTRUCTION SET DESCRIPTIONS
DIV Divide :

DIV src

Performs an unsigned division of the
accumulator (and its extension) by the
source operand.

If the source operand is a byte, it is
divided into the two-byte dividend
assumed to be in registers AL and AH.
The byte quotient is returned in AL,
and the byte remainder is returned in
AH.

If the source operand is a word, it is
divided into the two-word dividend in
registers AX and DX. The word
quotient is returned in AX, and the
word remainder is returned in DX.

If the quotient exceeds the capacity of
its destination register (FFH for byte
source, FFFFH for word source), as
when division by zero is attempted, a
type 0 interrupt is generated, and the
quotient and remainder are undefined.
Nonintegral quotients are truncated to
integers.

Instruction Operands :

DIV reg
DIV mem

When Source Operand is a Byte :

(temp) ← (byte-src)
if

(temp) / (AX) > FFH
then (type 0 interrupt is generated)

(SP) ← (SP) – 2
((SP) + 1:(SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CS)
(CS) ← (2)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (IP)
(IP) ← (0)

else
(AL) ← (temp) / (AX)
(AH) ← (temp) % (AX)

When Source Operand is a Word :

(temp) ← (word-src)
if

(temp) / (DX:AX) > FFFFH
then (type 0 interrupt is generated)

(SP) ← (SP) – 2
((SP) + 1:(SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CS)
(CS) ← (2)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (IP)
(IP) ← (0)

else
(AX) ← (temp) / (DX:AX)
(DX) ← (temp) % (DX:AX)

AF ?
CF ?
DF –
IF –
OF ?
PF ?
SF ?
TF –
ZF ?

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-13

INSTRUCTION SET DESCRIPTIONS
ENTER Procedure Entry :

ENTER locals, levels

Executes the calling sequence for a
high-level language. It saves the
current frame pointer in BP, copies the
frame pointers from procedures below
the current call (to allow access to
local variables in these procedures)
and allocates space on the stack for
the local variables of the current
procedure invocation.

Instruction Operands :

ENTER locals, level

(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (BP)
(FP) ← (SP)
if

level > 0
then

repeat (level – 1) times
(BP) ← (BP) – 2
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (BP)

end repeat
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (FP)

end if
(BP) ← (FP)
(SP) ← (SP) – (locals)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

ESC Escape :

ESC

Provides a mechanism by which other
processors (coprocessors) may
receive their instructions from the 8086
or 8088 instruction stream and make
use of the 8086 or 8088 addressing
modes. The CPU (8086 or 8088) does
a no operation (NOP) for the ESC
instruction other than to access a
memory operand and place it on the
bus.

Instruction Operands :

ESC immed, mem
ESC immed, reg

if
mod ≠ 11

then
data bus ← (EA)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-14

INSTRUCTION SET DESCRIPTIONS
HLT Halt :

HLT

Causes the CPU to enter the halt
state. The processor leaves the halt
state upon activation of the RESET
line, upon receipt of a non-maskable
interrupt request on NMI, or upon
receipt of a maskable interrupt request
on INTR (if interrupts are enabled).

Instruction Operands :

none

None AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-15

INSTRUCTION SET DESCRIPTIONS
IDIV Integer Divide :

IDIV src

Performs a signed division of the
accumulator (and its extension) by the
source operand. If the source operand
is a byte, it is divided into the double-
length dividend assumed to be in
registers AL and AH; the single-length
quotient is returned in AL, and the
single-length remainder is returned in
AH. For byte integer division, the
maximum positive quotient is +127
(7FH) and the minimum negative
quotient is –127 (81H).

If the source operand is a word, it is
divided into the double-length dividend
in registers AX and DX; the single-
length quotient is returned in AX, and
the single-length remainder is returned
in DX. For word integer division, the
maximum positive quotient is +32,767
(7FFFH) and the minimum negative
quotient is –32,767 (8001H).

If the quotient is positive and exceeds
the maximum, or is negative and is
less than the minimum, the quotient
and remainder are undefined, and a
type 0 interrupt is generated. In
particular, this occurs if division by 0 is
attempted. Nonintegral quotients are
truncated (toward 0) to integers, and
the remainder has the same sign as
the dividend.

Instruction Operands:

IDIV reg
IDIV mem

When Source Operand is a Byte :

(temp) ← (byte-src)
if

(temp) / (AX) > 0 and
(temp) / (AX) > 7FH or
(temp) / (AX) < 0 and
(temp) / (AX) < 0 – 7FH – 1

then (type 0 interrupt is generated)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CS)
(CS) ← (2)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (IP)
(IP) ← (0)

else
(AL) ← (temp) / (AX)
(AH) ← (temp) % (AX)

When Source Operand is a Word :

(temp) ← (word-src)
if

(temp) / (DX:AX) > 0 and
(temp) / (DX:AX) > 7FFFH or
(temp) / (DX:AX) < 0 and
(temp) / (DX:AX) < 0 – 7FFFH – 1

then (type 0 interrupt is generated)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CS)
(CS) ← (2)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (IP)
(IP) ← (0)

else
(AX) ← (temp) / (DX:AX)
(DX) ← (temp) % (DX:AX)

AF ?
CF ?
DF –
IF –
OF ?
PF ?
SF ?
TF –
ZF ?

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-16

INSTRUCTION SET DESCRIPTIONS
IMUL Integer Multiply :

IMUL src

Performs a signed multiplication of the
source operand and the accumulator.
If the source is a byte, then it is
multiplied by register AL, and the
double-length result is returned in AH
and AL. If the source is a word, then it
is multiplied by register AX, and the
double-length result is returned in
registers DX and AX. If the upper half
of the result (AH for byte source, DX
for word source) is not the sign
extension of the lower half of the
result, CF and OF are set; otherwise
they are cleared. When CF and OF are
set, they indicate that AH or DX
contains significant digits of the result.

Instruction Operands :

IMUL reg
IMUL mem
IMUL immed

When Source Operand is a Byte :

(AX) ← (byte-src) × (AL)
if

(AH) = sign-extension of (AL)
then

(CF) ← 0
else

(CF) ← 1
(OF) ← (CF)

When Source Operand is a Word :

(DX:AX) ← (word-src) × (AX)
if

(DX) = sign-extension of (AX)
then

(CF) ← 0
else

(CF) ← 1
(OF) ← (CF)

AF ?
CF ü
DF –
IF –
OF ü
PF ?
SF ?
TF –
ZF ?

IN Input Byte or Word :

IN accum, port

Transfers a byte or a word from an
input port to the AL register or the AX
register, respectively. The port number
may be specified either with an
immediate byte constant, allowing
access to ports numbered 0 through
255, or with a number previously
placed in the DX register, allowing
variable access (by changing the value
in DX) to ports numbered from 0
through 65,535.

Instruction Operands :

IN AL, immed8
IN AX, DX

When Source Operand is a Byte :

(AL) ← (port)

When Source Operand is a Word :

(AX) ← (port)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-17

INSTRUCTION SET DESCRIPTIONS
INC Increment :

INC dest

Adds one to the destination operand.
The operand may be byte or a word
and is treated as an unsigned binary
number (see AAA and DAA).

Instruction Operands :

INC reg
INC mem

(dest) ← (dest) + 1 AF ü
CF –
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

INS In String :

INS dest-string, port

Performs block input from an I/O port
to memory. The port address is placed
in the DX register. The memory
address is placed in the DI register.
This instruction uses the ES register
(which cannot be overridden). After the
data transfer takes place, the DI
register increments or decrements,
depending on the value of the direction
flag (DF). The DI register changes by 1
for byte transfers or 2 for word
transfers.

Instruction Operands :

INS dest-string, port
INS (repeat) dest-string, port

(dest) ← (src) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-18

INSTRUCTION SET DESCRIPTIONS
INT Interrupt :

INT interrupt-type

Activates the interrupt procedure
specified by the interrupt-type
operand. Decrements the stack pointer
by two, pushes the flags onto the
stack, and clears the trap (TF) and
interrupt-enable (IF) flags to disable
single-step and maskable interrupts.
The flags are stored in the format used
by the PUSHF instruction. SP is
decremented again by two, and the CS
register is pushed onto the stack.

The address of the interrupt pointer is
calculated by multiplying interrupt-
type by four; the second word of the
interrupt pointer replaces CS. SP
again is decremented by two, and IP is
pushed onto the stack and is replaced
by the first word of the interrupt
pointer. If interrupt-type = 3, the
assembler generates a short (1 byte)
form of the instruction, known as the
breakpoint interrupt.

Instruction Operands :

INT immed8

(SP) ← (SP) – 2
((SP) + 1:(SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CS)
(CS) ← (interrupt-type × 4 + 2)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (IP)
(IP) ← (interrupt-type × 4)

AF –
CF –
DF –
IF ü

OF –
PF –
SF –
TF ü

ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-19

INSTRUCTION SET DESCRIPTIONS
INTO Interrupt on Overflow :

INTO

Generates a software interrupt if the
overflow flag (OF) is set; otherwise
control proceeds to the following
instruction without activating an
interrupt procedure. INTO addresses
the target interrupt procedure (its type
is 4) through the interrupt pointer at
location 10H; it clears the TF and IF
flags and otherwise operates like INT.
INTO may be written following an
arithmetic or logical operation to
activate an interrupt procedure if
overflow occurs.

Instruction Operands :

none

if
(OF) = 1

then
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← FLAGS
(IF) ← 0
(TF) ← 0
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CS)
(CS) ← (12H)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (IP)
(IP) ← (10H)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

IRET Interrupt Return :

IRET

Transfers control back to the point of
interruption by popping IP, CS, and the
flags from the stack. IRET thus affects
all flags by restoring them to previously
saved values. IRET is used to exit any
interrupt procedure, whether activated
by hardware or software.

Instruction Operands :

none

(IP) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(CS) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
FLAGS ← ((SP) + 1:(SP))
(SP) ← (SP) + 2

AF ü
CF ü
DF ü
IF ü

OF ü
PF ü
SF ü
TF ü

ZF ü

JA
JNBE

Jump on Above :
Jump on Not Below or Equal :

JA disp8
JNBE disp8

Transfers control to the target location
if the tested condition ((CF=0) or
(ZF=0)) is true.

Instruction Operands :

JA short-label
JNBE short-label

if
((CF) = 0) or ((ZF) = 0)

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-20

INSTRUCTION SET DESCRIPTIONS
JAE
JNB

Jump on Above or Equal :
Jump on Not Below :

JAE disp8
JNB disp8

Transfers control to the target location
if the tested condition (CF = 0) is true.

Instruction Operands :

JAE short-label
JNB short-label

if
(CF) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JB
JNAE

Jump on Below :
Jump on Not Above or Equal :

JB disp8
JNAE disp8

Transfers control to the target location
if the tested condition (CF = 1) is true.

Instruction Operands :

JB short-label
JNAE short-label

if
(CF) = 1

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JBE
JNA

Jump on Below or Equa l:
Jump on Not Above :

JBE disp8
JNA disp8

Transfers control to the target location
if the tested condition ((C =1) or
(ZF=1)) is true.

Instruction Operands :

JBE short-label
JNA short-label

if
((CF) = 1) or ((ZF) = 1)

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JC Jump on Carry :

JC disp8

Transfers control to the target location
if the tested condition (CF=1) is true.

Instruction Operands :

JC short-label

if
(CF) = 1

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-21

INSTRUCTION SET DESCRIPTIONS
JCXZ Jump if CX Zero :

JCXZ disp8

Transfers control to the target location
if CX is 0. Useful at the beginning of a
loop to bypass the loop if CX has a
zero value, i.e., to execute the loop
zero times.

Instruction Operands :

JCXZ short-label

if
(CX) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JE
JZ

Jump on Equal :
Jump on Zero :

JE disp8
JZ disp8

Transfers control to the target location
if the condition tested (ZF = 1) is true.

Instruction Operands :

JE short-label
JZ short-label

if
(ZF) = 1

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JG
JNLE

Jump on Greater Than :
Jump on Not Less Than or Equal :

JG disp8
JNLE disp8

Transfers control to the target location
if the condition tested (SF = OF) and
(ZF=0) is true.

Instruction Operands :

JG short-label
JNLE short-label

if
((SF) = (OF)) and ((ZF) = 0)

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JGE
JNL

Jump on Greater Than or Equal :
Jump on Not Less Than :

JGE disp8
JNL disp8

Transfers control to the target location
if the condition tested (SF=OF) is true.

Instruction Operands :

JGE short-label
JNL short-label

if
(SF) = (OF)

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-22

INSTRUCTION SET DESCRIPTIONS
JL
JNGE

Jump on Less Than :
Jump on Not Greater Than or Equal :

JL disp8
JNGE disp8

Transfers control to the target location
if the condition tested (SF≠OF) is true.

Instruction Operands :

JL short-label
JNGE short-label

if
(SF) ≠ (OF)

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JLE
JNG

Jump on Less Than or Equal :
Jump on Not Greater Than :

JGE disp8
JNL disp8

Transfers control to the target location
If the condition tested ((SF≠OF) or
(ZF=0)) is true.

Instruction Operands :

JGE short-label
JNL short-label

if
((SF) ≠ (OF)) or ((ZF) = 1)

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JMP Jump Unconditionally :

JMP target

Transfers control to the target location.

Instruction Operands :

JMP short-label
JMP near-label
JMP far-label
JMP memptr
JMP regptr

if
Inter-segment

then
(CS) ← SEG
(IP) ← dest

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JNC Jump on Not Carry :

JNC disp8

Transfers control to the target location
if the tested condition (CF=0) is true.

Instruction Operands :

JNC short-label

if
(CF) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-23

INSTRUCTION SET DESCRIPTIONS
JNE
JNZ

Jump on Not Equal :
Jump on Not Zero :

JNE disp8
JNZ disp8

Transfers control to the target location
if the tested condition (ZF = 0) is true.

Instruction Operands :

JNE short-label
JNZ short-label

if
(ZF) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JNO Jump on Not Overflow :

JNO disp8

Transfers control to the target location
if the tested condition (OF = 0) is true.

Instruction Operands :

JNO short-label

if
(OF) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JNS Jump on Not Sign :

JNS disp8

Transfers control to the target location
if the tested condition (SF = 0) is true.

Instruction Operands :

JNS short-label

if
(SF) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JNP
JPO

Jump on Not Parity:
Jump on Parity Odd :

JNO disp8
JPO disp8

Transfers control to the target location
if the tested condition (PF=0) is true.

Instruction Operands :

JNO short-label
JPO short-label

if
(PF) = 0

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-24

INSTRUCTION SET DESCRIPTIONS
JO Jump on Overflow :

JO disp8

Transfers control to the target location
if the tested condition (OF = 1) is true.

Instruction Operands :

JO short-label

if
(OF) = 1

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JP
JPE

Jump on Parity :
Jump on Parity Equal :

JP disp8
JPE disp8

Transfers control to the target location
if the tested condition (PF = 1) is true.

Instruction Format :

JP short-label
JPE short-label

if
(PF) = 1

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

JS Jump on Sign :

JS disp8

Transfers control to the target location
if the tested condition (SF = 1) is true.

Instruction Format :

JS short-label

if
(SF) = 1

then
(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

LAHF Load Register AH From Flags :

LAHF

Copies SF, ZF, AF, PF and CF (the
8080/8085 flags) into bits 7, 6, 4, 2 and
0, respectively, of register AH. The
content of bits 5, 3, and 1 are
undefined. LAHF is provided primarily
for converting 8080/8085 assembly
language programs to run on an 8086
or 8088.

Instruction Operands :

none

(AH) ← (SF):(ZF):X:(AF):X:(PF):X:(CF) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-25

INSTRUCTION SET DESCRIPTIONS
LDS Load Pointer Using DS :

LDS dest, src

Transfers a 32-bit pointer variable from
the source operand, which must be a
memory operand, to the destination
operand and register DS. The offset
word of the pointer is transferred to the
destination operand, which may be
any 16-bit general register. The
segment word of the pointer is
transferred to register DS.

Instruction Operands :

LDS reg16, mem32

(dest) ← (EA)
(DS) ← (EA + 2)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

LEA Load Effective Address :

LEA dest, src

Transfers the offset of the source
operand (rather than its value) to the
destination operand.

Instruction Operands :

LEA reg16, mem16

(dest) ← EA AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

LEAVE Leave :

LEAVE

Reverses the action of the most recent
ENTER instruction. Collapses the last
stack frame created. First, LEAVE
copies the current BP to the stack
pointer releasing the stack space
allocated to the current procedure.
Second, LEAVE pops the old value of
BP from the stack, to return to the
calling procedure's stack frame. A
return (RET) instruction will remove
arguments stacked by the calling
procedure for use by the called
procedure.

Instruction Operands :

none

(SP) ← (BP)
(BP) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-26

INSTRUCTION SET DESCRIPTIONS
LES Load Pointer Using ES :

LES dest, src

Transfers a 32-bit pointer variable from
the source operand to the destination
operand and register ES. The offset
word of the pointer is transferred to the
destination operand. The segment
word of the pointer is transferred to
register ES.

Instruction Operands :

LES reg16, mem32

(dest) ← (EA)
(ES) ← (EA + 2)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

LOCK Lock the Bus :

LOCK

Causes the 8088 (configured in
maximum mode) to assert its bus
LOCK signal while the following
instruction executes. The instruction
most useful in this context is an
exchange register with memory.

The LOCK prefix may be combined
with the segment override and/or REP
prefixes.

Instruction Operands :

none

none AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-27

INSTRUCTION SET DESCRIPTIONS
LODS Load String (Byte or Word) :

LODS src-string

Transfers the byte or word string
element addressed by SI to register AL
or AX and updates SI to point to the
next element in the string. This
instruction is not ordinarily repeated
since the accumulator would be
overwritten by each repetition, and
only the last element would be
retained.

Instruction Operands :

LODS src-string
LODS (repeat) src-string

When Source Operand is a Byte :

(AL) ← (src-string)
if

(DF) = 0
then

(SI) ← (SI) + DELTA
else

(SI) ← (SI) – DELTA

When Source Operand is a Word :

(AX) ← (src-string)
if

(DF) = 0
then

(SI) ← (SI) + DELTA
else

(SI) ← (SI) – DELTA

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

LOOP Loop :

LOOP disp8

Decrements CX by 1 and transfers
control to the target location if CX is
not 0; otherwise the instruction
following LOOP is executed.

Instruction Operands :

LOOP short-label

(CX) ← (CX) – 1
if

(CX) ≠ 0
then

(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

LOOPE
LOOPZ

Loop While Equal :
Loop While Zero :

LOOPE disp8
LOOPZ disp8

Decrements CX by 1 and transfers
control is to the target location if CX is
not 0 and if ZF is set; otherwise the
next sequential instruction is executed.

Instruction Operands :

LOOPE short-label
LOOPZ short-label

(CX) ← (CX) – 1
if

(ZF) = 1 and (CX) ≠ 0
then

(IP)←(IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-28

INSTRUCTION SET DESCRIPTIONS
LOOPNE
LOOPNZ

Loop While Not Equal :
Loop While Not Zero :

LOOPNE disp8
LOOPNZ disp8

Decrements CX by 1 and transfers
control to the target location if CX is
not 0 and if ZF is clear; otherwise the
next sequential instruction is executed.

Instruction Operands :

LOOPNE short-label
LOOPNZ short-label

(CX) ← (CX) – 1
if

(ZF) = 0 and (CX) ≠ 0
then

(IP) ← (IP) + disp8 (sign-ext to 16 bits)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

MOV Move (Byte or Word) :

MOV dest, src

Transfers a byte or a word from the
source operand to the destination
operand.

Instruction Operands :

MOV mem, accum
MOV accum, mem
MOV reg, reg
MOV reg, mem
MOV mem, reg
MOV reg, immed
MOV mem, immed
MOV seg-reg, reg16
MOV seg-reg, mem16
MOV reg16, seg-reg
MOV mem16, seg-reg

(dest)←(src) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-29

INSTRUCTION SET DESCRIPTIONS
MOVS Move String :

MOVS dest-string, src-string

Transfers a byte or a word from the
source string (addressed by SI) to the
destination string (addressed by DI)
and updates SI and DI to point to the
next string element. When used in
conjunction with REP, MOVS performs
a memory-to-memory block transfer.

Instruction Operands :

MOVS dest-string, src-string
MOVS (repeat) dest-string, src-string

(dest-string) ← (src-string) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

MUL Multiply :

MUL src

Performs an unsigned multiplication of
the source operand and the accumu-
lator. If the source is a byte, then it is
multiplied by register AL, and the
double-length result is returned in AH
and AL. If the source operand is a
word, then it is multiplied by register
AX, and the double-length result is
returned in registers DX and AX. The
operands are treated as unsigned
binary numbers (see AAM). If the
upper half of the result (AH for byte
source, DX for word source) is non-
zero, CF and OF are set; otherwise
they are cleared.

Instruction Operands :

MUL reg
MUL mem

When Source Operand is a Byte :

(AX) ← (AL) × (src)
if

(AH) = 0
then

(CF) ← 0
else

(CF) ← 1
(OF) ← (CF)

When Source Operand is a Word :

(DX:AX) ← (AX) × (src)
if

(DX) = 0
then

(CF) ← 0
else

(CF) ← 1
(OF) ← (CF)

AF ?
CF ü
DF –
IF –
OF ü
PF ?
SF ?
TF –
ZF ?

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-30

INSTRUCTION SET DESCRIPTIONS
NEG Negate :

NEG dest

Subtracts the destination operand,
which may be a byte or a word, from 0
and returns the result to the desti-
nation. This forms the two's
complement of the number, effectively
reversing the sign of an integer. If the
operand is zero, its sign is not
changed. Attempting to negate a byte
containing –128 or a word containing –
32,768 causes no change to the
operand and sets OF.

Instruction Operands :

NEG reg
NEG mem

When Source Operand is a Byte :

(dest) ← FFH – (dest)
(dest) ← (dest) + 1 (affecting flags)

When Source Operand is a Word :

(dest) ← FFFFH – (dest)
(dest) ← (dest) + 1 (affecting flags)

AF ü
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

NOP No Operation :

NOP

Causes the CPU to do nothing.

Instruction Operands :

none

None AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

NOT Logical Not :

NOT dest

Inverts the bits (forms the one's
complement) of the byte or word
operand.

Instruction Operands :

NOT reg
NOT mem

When Source Operand is a Byte :

(dest) ← FFH – (dest)

When Source Operand is a Word :

(dest) ← FFFFH – (dest)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-31

INSTRUCTION SET DESCRIPTIONS
OR Logical OR :

OR dest,src

Performs the logical "inclusive or" of
the two operands (bytes or words) and
returns the result to the destination
operand. A bit in the result is set if
either or both corresponding bits in the
original operands are set; otherwise
the result bit is cleared.

Instruction Operands :

OR reg, reg
OR reg, mem
OR mem, reg
OR accum, immed
OR reg, immed
OR mem, immed

(dest) ← (dest) or (src)
(CF) ← 0
(OF) ← 0

AF ?
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

OUT Output :

OUT port, accumulator

Transfers a byte or a word from the AL
register or the AX register, respec-
tively, to an output port. The port
number may be specified either with
an immediate byte constant, allowing
access to ports numbered 0 through
255, or with a number previously
placed in register DX, allowing variable
access (by changing the value in DX)
to ports numbered from 0 through
65,535.

Instruction Operands :

OUT immed8, AL
OUT DX, AX

(dest) ← (src) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-32

INSTRUCTION SET DESCRIPTIONS
OUTS Out String :

OUTS port, src_string

Performs block output from memory to
an I/O port. The port address is placed
in the DX register. The memory
address is placed in the SI register.
This instruction uses the DS segment
register, but this may be changed with
a segment override instruction. After
the data transfer takes place, the
pointer register (SI) increments or
decrements, depending on the value
of the direction flag (DF). The pointer
register changes by 1 for byte
transfers or 2 for word transfers.

Instruction Operands :

OUTS port, src_string
OUTS (repeat) port, src_string

(dst) ← (src) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

POP Pop :

POP dest

Transfers the word at the current top of
stack (pointed to by SP) to the
destination operand and then
increments SP by two to point to the
new top of stack.

Instruction Operands :

POP reg
POP seg-reg (CS illegal)
POP mem

(dest) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-33

INSTRUCTION SET DESCRIPTIONS
POPA Pop All :

POPA

Pops all data, pointer, and index
registers off of the stack. The SP value
popped is discarded.

Instruction Operands :

none

(DI) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(SI) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(BP) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(BX) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(DX) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(CX) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2
(AX) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

POPF Pop Flags :

POPF

Transfers specific bits from the word at
the current top of stack (pointed to by
register SP) into the 8086/8088 flags,
replacing whatever values the flags
previously contained. SP is then
incremented by two to point to the new
top of stack.

Instruction Operands :

none

Flags ← ((SP) + 1:(SP))
(SP) ← (SP) + 2

AF ü
CF ü
DF ü
IF ü

OF ü
PF ü
SF ü
TF ü

ZF ü

PUSH Push :

PUSH src

Decrements SP by two and then
transfers a word from the source
operand to the top of stack now
pointed to by SP.

Instruction Operands :

PUSH reg
PUSH seg-reg (CS legal)
PUSH mem

(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (src)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-34

INSTRUCTION SET DESCRIPTIONS
PUSHA Push All :

PUSHA

Pushes all data, pointer, and index
registers onto the stack . The order in
which the registers are saved is: AX,
CX, DX, BX, SP, BP, SI, and DI. The
SP value pushed is the SP value
before the first register (AX) is pushed.

Instruction Operands :

none

temp ← (SP)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (AX)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (CX)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (DX)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (BX)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (temp)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (BP)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (SI)
(SP) ← (SP) – 2
((SP) + 1:(SP)) ← (DI)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

PUSHF Push Flags :

PUSHF

Decrements SP by two and then
transfers all flags to the word at the top
of stack pointed to by SP.

Instruction Operands :

none

(SP) ← (SP) – 2
((SP) + 1:(SP)) ← Flags

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-35

INSTRUCTION SET DESCRIPTIONS
RCL Rotate Through Carry Left :

RCL dest, count

Rotates the bits in the byte or word
destination operand to the left by the
number of bits specified in the count
operand. The carry flag (CF) is treated
as "part of" the destination operand;
that is, its value is rotated into the low-
order bit of the destination, and itself is
replaced by the high-order bit of the
destination.

Instruction Operands :

RCL reg, n
RCL mem, n
RCL reg, CL
RCL mem, CL

(temp) ← count
do while (temp) ≠ 0

(tmpcf) ← (CF)
(CF) ← high-order bit of (dest)
(dest) ← (dest) × 2 + (tmpcf)
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠ (CF)
then

(OF) ← 1
else

(OF) ← 0
else

(OF) undefined

AF –
CF ü
DF –
IF –
OF ü
PF –
SF –
TF –
ZF –

RCR Rotate Through Carry Right :

RCR dest, count

Operates exactly like RCL except that
the bits are rotated right instead of left.

Instruction Operands :

RCR reg, n
RCR mem, n
RCR reg, CL
RCR mem, CL

(temp) ← count
do while (temp) ≠ 0

(tmpcf) ← (CF)
(CF) ← low-order bit of (dest)
(dest) ← (dest) / 2
high-order bit of (dest) ← (tmpcf)
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠
next-to-high-order bit of (dest)

then
(OF) ← 1

else
(OF) ← 0

else
(OF) undefined

AF –
CF ü
DF –
IF –
OF ü
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-36

INSTRUCTION SET DESCRIPTIONS
REP
REPE
REPZ
REPNE
REPNZ

Repeat :
Repeat While Equal :
Repeat While Zero :
Repeat While Not Equal :
Repeat While Not Zero :

Controls subsequent string instruction
repetition. The different mnemonics
are provided to improve program
clarity.

REP is used in conjunction with the
MOVS (Move String) and STOS (Store
String) instructions and is interpreted
as "repeat while not end-of-string" (CX
not 0).

REPE and REPZ operate identically
and are physically the same prefix byte
as REP. These instructions are used
with the CMPS (Compare String) and
SCAS (Scan String) instructions and
require ZF (posted by these instruc-
tions) to be set before initiating the
next repetition.

REPNE and REPNZ are mnemonics
for the same prefix byte. These
instructions function the same as
REPE and REPZ except that the zero
flag must be cleared or the repetition is
terminated. ZF does not need to be
initialized before executing the
repeated string instruction.

Instruction Operands :

none

do while (CX) ≠ 0
service pending interrupts (if any)
execute primitive string
Operation in succeeding byte
(CX) ← (CX) – 1
if

primitive operation is CMPB,
CMPW, SCAB, or SCAW and
(ZF) ≠ 0

then
exit from while loop

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-37

INSTRUCTION SET DESCRIPTIONS
RET Return :

RET optional-pop-value

Transfers control from a procedure
back to the instruction following the
CALL that activated the procedure.
The assembler generates an intra-
segment RET if the programmer has
defined the procedure near, or an
intersegment RET if the procedure has
been defined as far. RET pops the
word at the top of the stack (pointed to
by register SP) into the instruction
pointer and increments SP by two. If
RET is intersegment, the word at the
new top of stack is popped into the CS
register, and SP is again incremented
by two. If an optional pop value has
been specified, RET adds that value to
SP.

Instruction Operands :

RET immed8

(IP) ← ((SP) = 1:(SP))
(SP) ← (SP) + 2
if

inter-segment
then

(CS) ← ((SP) + 1:(SP))
(SP) ← (SP) + 2

if
add immed8 to SP

then
(SP) ← (SP) + data

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

ROL Rotate Left :

ROL dest, count

Rotates the destination byte or word
left by the number of bits specified in
the count operand.

Instruction Operands :

ROL reg, n
ROL mem, n
ROL reg, CL
ROL mem CL

(temp) ← count
do while (temp) ≠ 0

(CF) ← high-order bit of (dest)
(dest) ← (dest) × 2 + (CF)
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠ (CF)
then

(OF) ← 1
else

(OF) ← 0
else

(OF) undefined

AF –
CF ü
DF –
IF –
OF ü
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-38

INSTRUCTION SET DESCRIPTIONS
ROR Rotate Right :

ROR dest, count

Operates similar to ROL except that
the bits in the destination byte or word
are rotated right instead of left.

Instruction Operands :

ROR reg, n
ROR mem, n
ROR reg, CL
ROR mem, CL

(temp) ← count
do while (temp) ≠ 0

(CF) ← low-order bit of (dest)
(dest) ← (dest) / 2
high-order bit of (dest) ← (CF)
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠
next-to-high-order bit of (dest)

then
(OF) ← 1

else
(OF) ← 0

else
(OF) undefined

AF –
CF ü
DF –
IF –
OF ü
PF –
SF –
TF –
ZF –

SAHF Store Register AH Into Flags :

SAHF

Transfers bits 7, 6, 4, 2, and 0 from
register AH into SF, ZF, AF, PF, and
CF, respectively, replacing whatever
values these flags previously had.

Instruction Operands :

none

(SF):(ZF):X:(AF):X:(PF):X:(CF) ← (AH) AF ü
CF ü
DF –
IF –
OF –
PF ü
SF ü
TF –
ZF ü

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-39

INSTRUCTION SET DESCRIPTIONS
SHL
SAL

Shift Logical Left :
Shift Arithmetic Left :

SHL dest, count
SAL dest, count

Shifts the destination byte or word left
by the number of bits specified in the
count operand. Zeros are shifted in on
the right. If the sign bit retains its
original value, then OF is cleared.

Instruction Operands :

SHL reg, n SAL reg, n
SHL mem, n SAL mem, n
SHL reg, CL SAL reg, CL
SHL mem, CL SAL mem, CL

(temp) ← count
do while (temp) ≠ 0

(CF) ← high-order bit of (dest)
(dest) ← (dest) × 2
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠ (CE)
then

(OF) ← 1
else

(OF) ← 0
else

(OF) undefined

AF ?
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

SAR Shift Arithmetic Right :

SAR dest, count

Shifts the bits in the destination
operand (byte or word) to the right by
the number of bits specified in the
count operand. Bits equal to the
original high-order (sign) bit are shifted
in on the left, preserving the sign of the
original value. Note that SAR does not
produce the same result as the
dividend of an "equivalent" IDIV
instruction if the destination operand is
negative and 1 bits are shifted out. For
example, shifting –5 right by one bit
yields –3, while integer division –5 by 2
yields –2. The difference in the instruc-
tions is that IDIV truncates all numbers
toward zero, while SAR truncates
positive numbers toward zero and
negative numbers toward negative
infinity.

Instruction Operands :

SAR reg, n
SAR mem, n
SAR reg, CL
SAR mem, CL

(temp) ← count
do while (temp) ≠ 0

(CF) ← low-order bit of (dest)
(dest) ← (dest) / 2
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠
next-to-high-order bit of (dest)

 then
(OF) ← 1

else
(OF) ← 0

else
(OF) ← 0

AF ?
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-40

INSTRUCTION SET DESCRIPTIONS
SBB Subtract With Borrow :

SBB dest, src

Subtracts the source from the desti-
nation, subtracts one if CF is set, and
returns the result to the destination
operand. Both operands may be bytes
or words. Both operands may be
signed or unsigned binary numbers
(see AAS and DAS)

Instruction Operands :

SBB reg, reg
SBB reg, mem
SBB mem, reg
SBB accum, immed
SBB reg, immed
SBB mem, immed

if
(CF) = 1

then
(dest) = (dest) – (src) – 1

else
(dest) ← (dest) – (src)

AF ü
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-41

INSTRUCTION SET DESCRIPTIONS
SCAS Scan String :

SCAS dest-string

Subtracts the destination string
element (byte or word) addressed by
DI from the content of AL (byte string)
or AX (word string) and updates the
flags, but does not alter the destination
string or the accumulator. SCAS also
updates DI to point to the next string
element and AF, CF, OF, PF, SF and
ZF to reflect the relationship of the
scan value in AL/AX to the string
element. If SCAS is prefixed with
REPE or REPZ, the operation is
interpreted as "scan while not end-of-
string (CX not 0) and string-element =
scan-value (ZF = 1)." This form may be
used to scan for departure from a
given value. If SCAS is prefixed with
REPNE or REPNZ, the operation is
interpreted as "scan while not end-of-
string (CX not 0) and string-element is
not equal to scan-value (ZF = 0)."

Instruction Operands :

SCAS dest-string
SCAS (repeat) dest-string

When Source Operand is a Byte :

(AL) – (byte-string)
if

(DF) = 0
then

(DI) ← (DI) + DELTA
else

(DI) ← (DI) – DELTA

When Source Operand is a Word :

(AX) – (word-string)
if

(DF) = 0
then

(DI) ← (DI) + DELTA
else

(DI) ← (DI) – DELTA

AF ü
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-42

INSTRUCTION SET DESCRIPTIONS
SHR Shift Logical Right :

SHR dest, src

Shifts the bits in the destination
operand (byte or word) to the right by
the number of bits specified in the
count operand. Zeros are shifted in on
the left. If the sign bit retains its original
value, then OF is cleared.

Instruction Operands :

SHR reg, n
SHR mem, n
SHR reg, CL
SHR mem, CL

(temp) ← count
do while (temp) ≠ 0

(CF) ← low-order bit of (dest)
(dest) ← (dest) / 2
(temp) ← (temp) – 1

if
count = 1

then
if

high-order bit of (dest) ≠
next-to-high-order bit of (dest)

 then
(OF) ← 1

else
(OF) ← 0

else
(OF) undefined

AF ?
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

STC Set Carry Flag :

STC

Sets CF to 1.

Instruction Operands :

none

(CF) ← 1 AF –
CF ü
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

STD Set Direction Flag :

STD

Sets DF to 1 causing the string instruc-
tions to auto-decrement the SI and/or
DI index registers.

Instruction Operands :

none

(DF) ← 1 AF –
CF –
DF ü
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-43

INSTRUCTION SET DESCRIPTIONS
STI Set Interrupt-enable Flag :

STI

Sets IF to 1, enabling processor
recognition of maskable interrupt
requests appearing on the INTR line.
Note however, that a pending interrupt
will not actually be recognized until the
instruction following STI has executed.

Instruction Operands :

none

(IF) ← 1 AF –
CF –
DF –
IF ü

OF –
PF –
SF –
TF –
ZF –

STOS Store (Byte or Word) String :

STOS dest-string

Transfers a byte or word from register
AL or AX to the string element
addressed by DI and updates DI to
point to the next location in the string.
As a repeated operation.

Instruction Operands :

STOS dest-string
STOS (repeat) dest-string

When Source Operand is a Byte :

(DEST) ← (AL)
if

(DF) = 0
then

(DI) ← (DI) + DELTA
else

(DI) ← (DI) – DELTA

When Source Operand is a Word :

(DEST) ← (AX)
if

(DF) = 0
then

(DI) ← (DI) + DELTA
else

(DI) ← (DI) – DELTA

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-44

INSTRUCTION SET DESCRIPTIONS
SUB Subtract :

SUB dest, src

The source operand is subtracted from
the destination operand, and the result
replaces the destination operand. The
operands may be bytes or words. Both
operands may be signed or unsigned
binary numbers (see AAS and DAS).

Instruction Operands :

SUB reg, reg
SUB reg, mem
SUB mem, reg
SUB accum, immed
SUB reg, immed
SUB mem, immed

(dest) ← (dest) – (src) AF ü
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

TEST Test :

TEST dest, src

Performs the logical "and" of the two
operands (bytes or words), updates
the flags, but does not return the
result, i.e., neither operand is
changed. If a TEST instruction is
followed by a JNZ (jump if not zero)
instruction, the jump will be taken if
there are any corresponding one bits
in both operands.

Instruction Operands :

TEST reg, reg
TEST reg, mem
TEST accum, immed
TEST reg, immed
TEST mem, immed

(dest) and (src)
(CF) ← 0
(OF) ← 0

AF ?
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-45

INSTRUCTION SET DESCRIPTIONS
WAIT Wait :

WAIT

Causes the CPU to enter the wait state
while its test line is not active.

Instruction Operands :

none

None AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

XCHG Exchange :

XCHG dest, src

Switches the contents of the source
and destination operands (bytes or
words). When used in conjunction with
the LOCK prefix, XCHG can test and
set a semaphore that controls access
to a resource shared by multiple
processors.

Instruction Operands :

XCHG accum, reg
XCHG mem, reg
XCHG reg, reg

(temp) ← (dest)
(dest) ← (src)
(src) ← (temp)

AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-46

INSTRUCTION SET DESCRIPTIONS
XLAT Translate :

XLAT translate-table

Replaces a byte in the AL register with
a byte from a 256-byte, user-coded
translation table. Register BX is
assumed to point to the beginning of
the table. The byte in AL is used as an
index into the table and is replaced by
the byte at the offset in the table corre-
sponding to AL's binary value. The first
byte in the table has an offset of 0. For
example, if AL contains 5H, and the
sixth element of the translation table
contains 33H, then AL will contain 33H
following the instruction. XLAT is
useful for translating characters from
one code to another, the classic
example being ASCII to EBCDIC or
the reverse.

Instruction Operands :

XLAT src-table

AL ← ((BX) + (AL)) AF –
CF –
DF –
IF –
OF –
PF –
SF –
TF –
ZF –

XOR Exclusive Or :

XOR dest, src

Performs the logical "exclusive or" of
the two operands and returns the
result to the destination operand. A bit
in the result is set if the corresponding
bits of the original operands contain
opposite values (one is set, the other
is cleared); otherwise the result bit is
cleared.

Instruction Operands :

XOR reg, reg
XOR reg, mem
XOR mem, reg
XOR accum, immed
XOR reg, immed
XOR mem, immed

(dest) ← (dest) xor (src)
(CF) ← 0
(OF) ← 0

AF ?
CF ü
DF –
IF –
OF ü
PF ü
SF ü
TF –
ZF ü

Table C-4. Instruction Set (Continued)

Name Description Operation
Flags

Affected

NOTE: The three symbols used in the Flags Affected column are defined as follows:
– the contents of the flag remain unchanged after the instruction is executed
? the contents of the flag is undefined after the instruction is executed
üthe flag is updated after the instruction is executed
C-47

D
Instruction Set
Opcodes and Clock
Cycles

ction
ir for-
D-4 is
ns.
APPENDIX D
INSTRUCTION SET OPCODES

AND CLOCK CYCLES

This appendix provides reference information for the 80C186 Modular Core family instru
set. Table D-1 defines the variables used in Table D-2, which lists the instructions with the
mats and execution times. Table D-3 is a guide for decoding machine instructions. Table
a guide for encoding instruction mnemonics, and Table D-5 defines Table D-4 abbreviatio

Table D-1. Operand Variables

Variable Description

mod mod and r/m determine the Effective Address (EA).

r/m r/m and mod determine the Effective Address (EA).

reg reg represents a register.

MMM MMM and PPP are opcodes to the math coprocessor.

PPP PPP and MMM are opcodes to the math coprocessor.

TTT TTT defines which shift or rotate instruction is executed.

r/m EA Calculation mod Effect on EA Calculation

0 0 0 (BX) + (SI) + DISP 0 0 if r/m €≠ 110, DISP = 0; disp-low and disp-high are absent

0 0 1 (BX) + (DI) + DISP 0 0 if r/m = 110, EA = disp-high:disp-low

0 1 0 (BP) + (SI) + DISP 0 1 DISP = disp-low, sign-extended to 16 bits; disp-high is absent

0 1 1 (BP) + (DI) + DISP 1 0 DISP = disp-high:disp-low

1 0 0 (SI) + DISP 1 1 r/m is treated as a reg field

1 0 1 (DI) + DISP DISP follows the second byte of the instruction (before any required data).

Physical addresses of operands addressed by the BP register are computed
using the SS segment register. Physical addresses of destination operands of
string primitives (addressed by the DI register) are computed using the ES seg-
ment register, which cannot be overridden.

1 1 0 (BP) + DISP, if mod €≠ 00

disp-high:disp-low, if mod =00

1 1 1 (BX) + DISP

reg 16-bit (w=1) 8-bit (w=0) TTT Instruction

0 0 0 AX AL 0 0 0 ROL

0 0 1 CX CL 0 0 1 ROR

0 1 0 DX DL 0 1 0 RCL

0 1 1 BP BL 0 1 1 RCR

1 0 0 SP AH 1 0 0 SHL/SAL

1 0 1 BP CH 1 0 1 SHR

1 1 0 SI DH 1 1 0 —

1 1 1 DI BH 1 1 1 SAR
D-1

INSTRUCTION SET OPCODES AND CLOCK CYCLES
Table D-2. Instruction Set Summary

Function Format Clocks Notes

DATA TRANSFER INSTRUCTIONS

MOV = Move

register to register/memory 1 0 0 0 1 0 0 w mod reg r/m 2/12

register/memory to register 1 0 0 0 1 0 1 w mod reg r/m 2/9

immediate to register/memory 1 1 0 0 0 1 1 w mod 000 r/m data data if w=1 12/13 (1)

immediate to register 1 0 1 1 w reg data data if w=1 3/4 (1)

memory to accumulator 1 0 1 0 0 0 0 w addr-low addr-high 9

accumulator to memory 1 0 1 0 0 0 1 w addr-low addr-high 8

register/memory to segment register 1 0 0 0 1 1 1 0 mod 0 reg r/m 2/9

segment register to register/memory 1 0 0 0 1 1 0 0 mod 0 reg r/m 2/11

PUSH = Push

memory 1 1 1 1 1 1 1 1 mod 110 r/m 16

register 0 1 0 1 0 reg 10

segment register 0 0 0 reg 1 1 0 9

immediate 0 1 1 0 1 0 s 0 data data if s=0 10

POP = Pop

memory 1 0 0 0 1 1 1 1 mod 000 r/m 20

register 0 1 0 1 1 reg 10

segment register 0 0 0 reg 1 1 1 (reg ?01) 8

PUSHA = Push all 0 1 1 0 0 0 0 0 36

POPA = Pop all 0 1 1 0 0 0 0 1 51

XCHG = Exchange

register/memory with register 1 0 0 0 0 1 1 w mod reg r/m 4/17

register with accumulator 1 0 0 1 0 reg 3

XLAT = Translate byte to AL 1 1 0 1 0 1 1 1 11

IN = Input from

fixed port 1 1 1 0 0 1 0 w port 10

variable port 1 1 1 0 1 1 0 w 8

OUT = Output from

fixed port 1 1 1 0 0 1 0 w port 9

variable port 1 1 1 0 1 1 0 w 7

NOTES:
1. Clock cycles are given for 8-bit/16-bit operations.
2. Clock cycles are given for jump not taken/jump taken.
3. Clock cycles are given for interrupt taken/interrupt not taken.
4. If TEST = 0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.
D-2

INSTRUCTION SET OPCODES AND CLOCK CYCLES
DATA TRANSFER INSTRUCTIONS (Continued)

LEA = Load EA to register 1 0 0 0 1 1 0 1 mod reg r/m 6

LDS = Load pointer to DS 1 1 0 0 0 1 0 1 mod reg r/m (mod ?11) 18

LES = Load pointer to ES 1 1 0 0 0 1 0 0 mod reg r/m (mod ?11) 18

ENTER = Build stack frame 1 1 0 0 1 0 0 0 data-low data-high L

L = 0 15

L = 1 25

L > 1 22+16(n-1)

LEAVE = Tear down stack frame 1 1 0 0 1 0 0 1 8

LAHF = Load AH with flags 1 0 0 1 1 1 1 1 2

SAHF = Store AH into flags 1 0 0 1 1 1 1 0 3

PUSHF = Push flags 1 0 0 1 1 1 0 0 9

POPF = Pop flags 1 0 0 1 1 1 0 1 8

ARITHMETIC INSTRUCTIONS

ADD = Add

reg/memory with register to either 0 0 0 0 0 0 d w mod reg r/m 3/10

immediate to register/memory 1 0 0 0 0 0 s w mod 000 r/m data data if sw=01 4/16

immediate to accumulator 0 0 0 0 0 1 0 w data data if w=1 3/4 (1)

ADC = Add with carry

reg/memory with register to either 0 0 0 1 0 0 d w mod reg r/m 3/10

immediate to register/memory 1 0 0 0 0 0 s w mod 010 r/m data data if sw=01 4/16

immediate to accumulator 0 0 0 1 0 1 0 w data data if w=1 3/4 (1)

INC = Increment

register/memory 1 1 1 1 1 1 1 w mod 000 r/m 3/15

register 0 1 0 0 0 reg 3

AAA = ASCII adjust for addition 0 0 1 1 0 1 1 1 8

DAA = Decimal adjust for addition 0 0 1 0 0 1 1 1 4

Table D-2. Instruction Set Summary (Continued)

Function Format Clocks Notes

NOTES:
1. Clock cycles are given for 8-bit/16-bit operations.
2. Clock cycles are given for jump not taken/jump taken.
3. Clock cycles are given for interrupt taken/interrupt not taken.
4. If TEST = 0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.
D-3

INSTRUCTION SET OPCODES AND CLOCK CYCLES
ARITHMETIC INSTRUCTIONS (Continued)

SUB = Subtract

reg/memory with register to either 0 0 1 0 1 0 d w mod reg r/m 3/10

immediate from register/memory 1 0 0 0 0 0 s w mod 101 r/m data data if sw=01 4/16

immediate from accumulator 0 0 0 1 1 1 0 w data data if w=1 3/4 (1)

SBB = Subtract with borrow

reg/memory with register to either 0 0 0 1 1 0 d w mod reg r/m 3/10

immediate from register/memory 1 0 0 0 0 0 s w mod 011 r/m data data if sw=01 4/16

immediate from accumulator 0 0 0 1 1 1 0 w data data if w=1 3/4 (1)

DEC = Decrement

register/memory 1 1 1 1 1 1 1 w mod 001 r/m 3/15

register 0 1 0 0 1 reg 3

NEG = Change sign 1 1 1 1 0 1 1 w mod reg r/m 3

CMP = Compare

register/memory with register 0 0 1 1 1 0 1 w mod reg r/m 3/10

register with register/memory 0 0 1 1 1 0 0 w mod reg r/m 3/10

immediate with register/memory 1 0 0 0 0 0 s w mod 111 r/m data data if sw=01 3/10

immediate with accumulator 0 0 1 1 1 1 0 w data data if w=1 3/4 (1)

AAS = ASCII adjust for subtraction 0 0 1 1 1 1 1 1 7

DAS = Decimal adjust for subtraction 0 0 1 0 1 1 1 1 4

MUL = multiply (unsigned) 1 1 1 1 0 1 1 w mod 100 r/m

register-byte 26-28

register-word 35-37

memory-byte 32-34

memory-word 41-43

IMUL = Integer multiply (signed) 1 1 1 1 0 1 1 w mod 101 r/m

register-byte 25-28

register-word 34-37

memory-byte 31-34

memory-word 40-43

integer immediate multiply (signed) 0 1 1 0 1 0 s 1 mod reg r/m data data if s=0 22-25/

29-32

Table D-2. Instruction Set Summary (Continued)

Function Format Clocks Notes

NOTES:
1. Clock cycles are given for 8-bit/16-bit operations.
2. Clock cycles are given for jump not taken/jump taken.
3. Clock cycles are given for interrupt taken/interrupt not taken.
4. If TEST = 0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.
D-4

INSTRUCTION SET OPCODES AND CLOCK CYCLES
ARITHMETIC INSTRUCTIONS (Continued)

AAM = ASCII adjust for multiply 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 19

DIV = Divide (unsigned) 1 1 1 1 0 1 1 w mod 110 r/m

register-byte 29

register-word 38

memory-byte 35

memory-word 44

IDIV = Integer divide (signed) 1 1 1 1 0 1 1 w mod 111 r/m

register-byte 29

register-word 38

memory-byte 35

memory-word 44

AAD = ASCII adjust for divide 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 15

CBW = Convert byte to word 1 0 0 1 1 0 0 0 2

CWD = Convert word to double-word 1 0 0 1 1 0 0 1 4

BIT MANIPULATION INSTRUCTIONS

NOT= Invert register/memory 1 1 1 1 0 1 1 w mod 010 r/m 3

AND = And

reg/memory and register to either 0 0 1 0 0 0 d w mod reg r/m 3/10

immediate to register/memory 1 0 0 0 0 0 0 w mod 100 r/m data data if w=1 4/16

immediate to accumulator 0 0 1 0 0 1 0 w data data if w=1 3/4 (1)

OR = Or

reg/memory and register to either 0 0 0 0 1 0 d w mod reg r/m 3/10

immediate to register/memory 1 0 0 0 0 0 0 w mod 001 r/m data data if w=1 4/10

immediate to accumulator 0 0 0 0 1 1 0 w data data if w=1 3/4 (1)

XOR = Exclusive or

reg/memory and register to either 0 0 1 1 0 0 d w mod reg r/m 3/10

immediate to register/memory 1 0 0 0 0 0 0 w mod 110 r/m data data if w=1 4/10

immediate to accumulator 0 0 1 1 0 1 0 w data data if w=1 3/4 (1)

Table D-2. Instruction Set Summary (Continued)

Function Format Clocks Notes

NOTES:
1. Clock cycles are given for 8-bit/16-bit operations.
2. Clock cycles are given for jump not taken/jump taken.
3. Clock cycles are given for interrupt taken/interrupt not taken.
4. If TEST = 0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.
D-5

INSTRUCTION SET OPCODES AND CLOCK CYCLES
BIT MANIPULATION INSTRUCTIONS (Continued)

TEST= And function to flags, no result

register/memory and register 1 0 0 0 0 1 0 w mod reg r/m 3/10

immediate data and register/memory 1 1 1 1 0 1 1 w mod 000 r/m data data if w=1 4/10

immediate data and accumulator 1 0 1 0 1 0 0 w data data if w=1 3/4 (1)

Shifts/Rotates

register/memory by 1 1 1 0 1 0 0 0 w mod TTT r/m 2/15

register/memory by CL 1 1 0 1 0 0 1 w mod TTT r/m 5+n/17+n

register/memory by Count 1 1 0 0 0 0 0 w mod TTT r/m count 5+n/17+n

STRING MANIPULATION INSTRUCTIONS

MOVS = Move byte/word 1 0 1 0 0 1 0 w 14

INS = Input byte/word from DX port 0 1 1 0 1 1 0 w 14

OUTS = Output byte/word to DX port 0 1 1 0 1 1 1 w 14

CMPS = Compare byte/word 1 0 1 0 0 1 1 w 22

SCAS = Scan byte/word 1 0 1 0 1 1 1 w 15

STRING MANIPULATION INSTRUCTIONS (Continued)

LODS = Load byte/word to AL/AX 1 0 1 0 1 1 0 w 12

STOS = Store byte/word from AL/AX 1 0 1 0 1 0 1 w 10

Repeated by count in CX:

MOVS = Move byte/word 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 w 8+8n

INS = Input byte/word from DX port 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 w 8-8n

OUTS = Output byte/word to DX port 1 1 1 1 0 0 1 0 0 1 1 0 1 1 1 w 8+8n

CMPS = Compare byte/word 1 1 1 1 0 0 1 z 1 0 1 0 0 1 1 w 5+22n

SCAS = Scan byte/word 1 1 1 1 0 0 1 z 1 0 1 0 1 1 1 w 5+15n

LODS = Load byte/word to AL/AX 1 1 1 1 0 0 1 0 0 1 0 1 0 0 1 w 6+11n

STOS = Store byte/word from AL/AX 1 1 1 1 0 1 0 0 0 1 0 1 0 0 1 w 6+9n

Table D-2. Instruction Set Summary (Continued)

Function Format Clocks Notes

NOTES:
1. Clock cycles are given for 8-bit/16-bit operations.
2. Clock cycles are given for jump not taken/jump taken.
3. Clock cycles are given for interrupt taken/interrupt not taken.
4. If TEST = 0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.
D-6

INSTRUCTION SET OPCODES AND CLOCK CYCLES
PROGRAM TRANSFER INSTRUCTIONS

Conditional Transfers — jump if:

JE/JZ= equal/zero 0 1 1 1 0 1 0 0 disp 4/13 (2)

JL/JNGE = less/not greater or equal 0 1 1 1 1 1 0 0 disp 4/13 (2)

JLE/JNG = less or equal/not greater 0 1 1 1 1 1 1 0 disp 4/13 (2)

JB/JNAE = below/not above or equal 0 1 1 1 0 0 1 0 disp 4/13 (2)

JC = carry 0 1 1 1 0 0 1 0 disp 4/13 (2)

JBE/JNA = below or equal/not above 0 1 1 1 0 1 1 0 disp 4/13 (2)

JP/JPE = parity/parity even 0 1 1 1 1 0 1 0 disp 4/13 (2)

JO = overflow 0 1 1 1 0 0 0 0 disp 4/13 (2)

JS = sign 0 1 1 1 1 0 0 0 disp 4/13 (2)

JNE/JNZ = not equal/not zero 0 1 1 1 0 1 0 1 disp 4/13 (2)

JNL/JGE = not less/greater or equal 0 1 1 1 1 1 0 1 disp 4/13 (2)

JNLE/JG = not less or equal/greater 0 1 1 1 1 1 1 1 disp 4/13 (2)

JNB/JAE = not below/above or equal 0 1 1 1 0 0 1 1 disp 4/13 (2)

JNC = not carry 0 1 1 1 0 0 1 1 disp 4/13 (2)

JNBE/JA = not below or equal/above 0 1 1 1 0 1 1 1 disp 4/13 (2)

JNP/JPO = not parity/parity odd 0 1 1 1 1 0 1 1 disp 4/13 (2)

JNO = not overflow 0 1 1 1 0 0 0 1 disp 4/13 (2)

JNS = not sign 0 1 1 1 1 0 0 1 disp 5/15 (2)

Unconditional Transfers

CALL = Call procedure

direct within segment 1 1 1 0 1 0 0 0 disp-low disp-high 15

reg/memory indirect within segment 1 1 1 1 1 1 1 1 mod 010 r/m 13/19

indirect intersegment 1 1 1 1 1 1 1 1 mod 011 r/m (mod ?11) 38

direct intersegment 1 0 0 1 1 0 1 0 segment offset 23

selector

Table D-2. Instruction Set Summary (Continued)

Function Format Clocks Notes

NOTES:
1. Clock cycles are given for 8-bit/16-bit operations.
2. Clock cycles are given for jump not taken/jump taken.
3. Clock cycles are given for interrupt taken/interrupt not taken.
4. If TEST = 0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.
D-7

INSTRUCTION SET OPCODES AND CLOCK CYCLES
PROGRAM TRANSFER INSTRUCTIONS (Continued)

RET = Return from procedure

within segment 1 1 0 0 0 0 1 1 16

within segment adding immed to SP 1 1 0 0 0 0 1 0 data-low data-high 18

intersegment 1 1 0 0 1 0 1 1 22

intersegment adding immed to SP 1 1 0 0 1 0 1 0 data-low data-high 25

JMP = Unconditional jump

short/long 1 1 1 0 1 0 1 1 disp-low 14

direct within segment 1 1 1 0 1 0 0 1 disp-low disp-high 14

reg/memory indirect within segment 1 1 1 1 1 1 1 1 mod 100 r/m 26

indirect intersegment 1 1 1 1 1 1 1 1 mod 101 r/m (mod ?11) 11/17

direct intersegment 1 1 1 0 1 0 1 0 segment offset 14

selector

Iteration Control

LOOP = Loop CX times 1 1 1 0 0 0 1 0 disp 6/16 (2)

LOOPZ/LOOPE =Loop while zero/equal 1 1 1 0 0 0 0 1 disp 5/16 (2)

LOOPNZ/LOOPNE =
Loop while not zero/not equal

1 1 1 0 0 0 0 0 disp 5/16 (2)

JCXZ = Jump if CX = zero 1 1 1 0 0 0 1 1 disp 6/16 (2)

Interrupts

INT = Interrupt

Type specified 1 1 0 0 1 1 0 1 type 47

Type 3 1 1 0 0 1 1 0 0 45

INTO = Interrupt on overflow 1 1 0 0 1 1 1 0 48/4 (3)

BOUND = Detect value out of range 0 1 1 0 0 0 1 0 mod reg r/m 33-35

IRET = Interrupt return 1 1 0 0 1 1 1 1 28

Table D-2. Instruction Set Summary (Continued)

Function Format Clocks Notes

NOTES:
1. Clock cycles are given for 8-bit/16-bit operations.
2. Clock cycles are given for jump not taken/jump taken.
3. Clock cycles are given for interrupt taken/interrupt not taken.
4. If TEST = 0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.
D-8

INSTRUCTION SET OPCODES AND CLOCK CYCLES
PROCESSOR CONTROL INSTRUCTIONS

CLC = Clear carry 1 1 1 1 1 0 0 0 2

CMC = Complement carry 1 1 1 1 0 1 0 1 2

STC = Set carry 1 1 1 1 1 0 0 1 2

CLD = Clear direction 1 1 1 1 1 1 0 0 2

STD = Set direction 1 1 1 1 1 1 0 1 2

CLI = Clear interrupt 1 1 1 1 1 0 1 0 2

STI = Set interrupt 1 1 1 1 1 0 1 1 2

HLT = Halt 1 1 1 1 0 1 0 0 2

WAIT = Wait 1 0 0 1 1 0 1 1 6 (4)

LOCK = Bus lock prefix 1 1 1 1 0 0 0 0 2

ESC = Math coprocessor escape 1 1 0 1 1 M M M mod PPP r/m 6

NOP = No operation 1 0 0 1 0 0 0 0 3

SEGMENT OVERRIDE PREFIX

CS 0 0 1 0 1 1 1 0 2

SS 0 0 1 1 0 1 1 0 2

DS 0 0 1 1 1 1 1 0 2

ES 0 0 1 0 0 1 1 0 2

Table D-3. Machine Instruction Decoding Guide

Byte 1
Byte 2 Bytes 3–6 ASM-86 Instruction Format

Hex Binary

00 0000 0000 mod reg r/m (disp-lo),(disp-hi) add reg8/mem8, reg8

01 0000 0001 mod reg r/m (disp-lo),(disp-hi) add reg16/mem16,reg16

02 0000 0010 mod reg r/m (disp-lo),(disp-hi) add reg8,reg8/mem8

03 0000 0011 mod reg r/m (disp-lo),(disp-hi) add reg16,reg16/mem16

04 0000 0100 data-8 add AL,immed8

05 0000 0101 data-lo data-hi add AX,immed16

06 0000 0110 push ES

07 0000 0111 pop ES

08 0000 0100 mod reg r/m (disp-lo),(disp-hi) or reg8/mem8,reg8

Table D-2. Instruction Set Summary (Continued)

Function Format Clocks Notes

NOTES:
1. Clock cycles are given for 8-bit/16-bit operations.
2. Clock cycles are given for jump not taken/jump taken.
3. Clock cycles are given for interrupt taken/interrupt not taken.
4. If TEST = 0

Shading indicates additions and enhancements to the 8086/8088 instruction set. See Appendix A, “80C186
Instruction Set Additions and Extensions,” for details.
D-9

INSTRUCTION SET OPCODES AND CLOCK CYCLES
09 0000 1001 mod reg r/m (disp-lo),(disp-hi) or reg16/mem16,reg16

0A 0000 1010 mod reg r/m (disp-lo),(disp-hi) or reg8,reg8/mem8

0B 0000 1011 mod reg r/m (disp-lo),(disp-hi) or reg16,reg16/mem16

0C 0000 1100 data-8 or AL, immed8

0D 0000 1101 data-lo data-hi or AX,immed16

0E 0000 1110 push CS

0F 0000 1111 —

10 0001 0000 mod reg r/m (disp-lo),(disp-hi) adc reg8/mem8,reg8

11 0001 0001 mod reg r/m (disp-lo),(disp-hi) adc reg16/mem16,reg16

12 0001 0010 mod reg r/m (disp-lo),(disp-hi) adc reg8,reg8/mem8

13 0001 0011 mod reg r/m (disp-lo),(disp-hi) adc reg16,reg16/mem16

14 0001 0100 data-8 adc AL,immed8

15 0001 0101 data-lo data-hi adc AX,immed16

16 0001 0110 push SS

17 0001 0111 pop SS

18 0001 1000 mod reg r/m (disp-lo),(disp-hi) sbb reg8/mem8,reg8

19 0001 1001 mod reg r/m (disp-lo),(disp-hi) sbb reg16/mem16,reg16

1A 0001 1010 mod reg r/m (disp-lo),(disp-hi) sbb reg8,reg8/mem8

1B 0001 1011 mod reg r/m (disp-lo),(disp-hi) sbb reg16,reg16/mem16

1C 0001 1100 data-8 sbb AL,immed8

1D 0001 1101 data-lo data-hi sbb AX,immed16

1E 0001 1110 push DS

1F 0001 1111 pop DS

20 0010 0000 mod reg r/m (disp-lo),(disp-hi) and reg8/mem8,reg8

21 0010 0001 mod reg r/m (disp-lo),(disp-hi) and reg16/mem16,reg16

22 0010 0010 mod reg r/m (disp-lo),(disp-hi) and reg8,reg8/mem8

23 0010 0011 mod reg r/m (disp-lo),(disp-hi) and reg16,reg16/mem16

24 0010 0100 data-8 and AL,immed8

25 0010 0101 data-lo data-hi and AX,immed16

26 0010 0110 ES: (segment override prefix)

27 0010 0111 daa

28 0010 1000 mod reg r/m (disp-lo),(disp-hi) sub reg8/mem8,reg8

29 0010 1001 mod reg r/m (disp-lo),(disp-hi) sub reg16/mem16,reg16

2A 0010 1010 mod reg r/m (disp-lo),(disp-hi) sub reg8,reg8/mem8

2B 0010 1011 mod reg r/m (disp-lo),(disp-hi) sub reg16,reg16/mem16

2C 0010 1100 data-8 sub AL,immed8

2D 0010 1101 data-lo data-hi sub AX,immed16

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3–6 ASM-86 Instruction Format

Hex Binary
D-10

INSTRUCTION SET OPCODES AND CLOCK CYCLES
2E 0010 1110 DS: (segment override prefix)

2F 0010 1111 das

30 0011 0000 mod reg r/m (disp-lo),(disp-hi) xor reg8/mem8,reg8

31 0011 0001 mod reg r/m (disp-lo),(disp-hi) xor reg16/mem16,reg16

32 0011 0010 mod reg r/m (disp-lo),(disp-hi) xor reg8,reg8/mem8

33 0011 0011 mod reg r/m (disp-lo),(disp-hi) xor reg16,reg16/mem16

34 0011 0100 data-8 xor AL,immed8

35 0011 0101 data-lo data-hi xor AX,immed16

36 0011 0110 SS: (segment override prefix)

37 0011 0111 aaa

38 0011 1000 mod reg r/m (disp-lo),(disp-hi) xor reg8/mem8,reg8

39 0011 1001 mod reg r/m (disp-lo),(disp-hi) xor reg16/mem16,reg16

3A 0011 1010 mod reg r/m (disp-lo),(disp-hi) xor reg8,reg8/mem8

3B 0011 1011 mod reg r/m (disp-lo),(disp-hi) xor reg16,reg16/mem16

3C 0011 1100 data-8 xor AL,immed8

3D 0011 1101 data-lo data-hi xor AX,immed16

3E 0011 1110 DS: (segment override prefix)

3F 0011 1111 aas

40 0100 0000 inc AX

41 0100 0001 inc CX

42 0100 0010 inc DX

43 0100 0011 inc BX

44 0100 0100 inc SP

45 0100 0101 inc BP

46 0100 0110 inc SI

47 0100 0111 inc DI

48 0100 1000 dec AX

49 0100 1001 dec CX

4A 0100 1010 dec DX

4B 0100 1011 dec BX

4C 0100 1100 dec SP

4D 0100 1101 dec BP

4E 0100 1110 dec SI

4F 0100 1111 dec DI

50 0101 0000 push AX

51 0101 0001 push CX

52 0101 0010 push DX

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3–6 ASM-86 Instruction Format

Hex Binary
D-11

INSTRUCTION SET OPCODES AND CLOCK CYCLES
53 0101 0011 push BX

54 0101 0100 push SP

55 0101 0101 push BP

56 0101 0110 push SI

57 0101 0111 push DI

58 0101 1000 pop AX

59 0101 1001 pop CX

5A 0101 1010 pop DX

5B 0101 1011 pop BX

5C 0101 1100 pop SP

5D 0101 1101 pop BP

5E 0101 1110 pop SI

5F 0101 1111 pop DI

60 0110 0000 pusha

61 0110 0001 popa

62 0110 0010 mod reg r/m bound reg16,mem16

63 0110 0011 —

64 0110 0100 —

65 0110 0101 —

66 0110 0110 —

67 0110 0111 —

68 0110 1000 data-lo data-hi push immed16

69 0110 1001 mod reg r/m data-lo, data-hi imul immed16

70 0111 0000 IP-inc-8 jo short-label

71 0111 0001 IP-inc-8 jno short-label

72 0111 0010 IP-inc-8 jb/jnae/jc short-label

73 0111 0011 IP-inc-8 jnb/jae/jnc short-label

74 0111 0100 IP-inc-8 je/jz short-label

75 0111 0101 IP-inc-8 jne/jnz short-label

76 0111 0110 IP-inc-8 jbe/jna short-label

77 0111 0111 IP-inc-8 jnbe/ja short-label

78 0111 1000 IP-inc-8 js short-label

79 0111 1001 IP-inc-8 jns short-label

7A 0111 1010 IP-inc-8 jp/jpe short-label

7B 0111 1011 IP-inc-8 jnp/jpo short-label

7C 0111 1100 IP-inc-8 jl/jnge short-label

7D 0111 1101 IP-inc-8 jnl/jge short-label

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3–6 ASM-86 Instruction Format

Hex Binary
D-12

INSTRUCTION SET OPCODES AND CLOCK CYCLES
7E 0111 1110 IP-inc-8 jle/jng short-label

7F 0111 1111 IP-inc-8 jnle/jg short-label

80 1000 0000 mod 000 r/m (disp-lo),(disp-hi), data-8 add reg8/mem8,immed8

mod 001 r/m (disp-lo),(disp-hi), data-8 or reg8/mem8,immed8

mod 010 r/m (disp-lo),(disp-hi), data-8 adc reg8/mem8,immed8

mod 011 r/m (disp-lo),(disp-hi), data-8 sbb reg8/mem8,immed8

mod 100 r/m (disp-lo),(disp-hi), data-8 and reg8/mem8,immed8

mod 101 r/m (disp-lo),(disp-hi), data-8 sub reg8/mem8,immed8

mod 110 r/m (disp-lo),(disp-hi), data-8 xor reg8/mem8,immed8

mod 111 r/m (disp-lo),(disp-hi), data-8 cmp reg8/mem8,immed8

81 1000 0001 mod 000 r/m (disp-lo),(disp-hi), data-lo,data-hi add reg16/mem16,immed16

mod 001 r/m (disp-lo),(disp-hi), data-lo,data-hi or reg16/mem16,immed16

mod 010 r/m (disp-lo),(disp-hi), data-lo,data-hi adc reg16/mem16,immed16

mod 011 r/m (disp-lo),(disp-hi), data-lo,data-hi sbb reg16/mem16,immed16

mod 100 r/m (disp-lo),(disp-hi), data-lo,data-hi and reg16/mem16,immed16

81 1000 0001 mod 101 r/m (disp-lo),(disp-hi), data-lo,data-hi sub reg16/mem16,immed16

mod 110 r/m (disp-lo),(disp-hi), data-lo,data-hi xor reg16/mem16,immed16

mod 111 r/m (disp-lo),(disp-hi), data-lo,data-hi cmp reg16/mem16,immed16

82 1000 0010 mod 000 r/m (disp-lo),(disp-hi), data-8 add reg8/mem8,immed8

mod 001 r/m —

mod 010 r/m (disp-lo),(disp-hi), data-8 adc reg8/mem8,immed8

mod 011 r/m (disp-lo),(disp-hi), data-8 sbb reg8/mem8,immed8

mod 100 r/m —

mod 101 r/m (disp-lo),(disp-hi), data-8 sub reg8/mem8,immed8

mod 110 r/m —

mod 111 r/m (disp-lo),(disp-hi), data-8 cmp reg8/mem8,immed8

83 1000 0011 mod 000 r/m (disp-lo),(disp-hi), data-SX add reg16/mem16,immed8

mod 001 r/m —

mod 010 r/m (disp-lo),(disp-hi), data-SX adc reg16/mem16,immed8

mod 011 r/m (disp-lo),(disp-hi), data-SX sbb reg16/mem16,immed8

mod 100 r/m —

mod 101 r/m (disp-lo),(disp-hi), data-SX sub reg16/mem16,immed8

mod 110 r/m —

mod 111 r/m (disp-lo),(disp-hi), data-SX cmp reg16/mem16,immed8

84 1000 0100 mod reg r/m (disp-lo),(disp-hi) test reg8/mem8,reg8

85 1000 0101 mod reg r/m (disp-lo),(disp-hi) test reg16/mem16,reg16

86 1000 0110 mod reg r/m (disp-lo),(disp-hi) xchg reg8,reg8/mem8

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3–6 ASM-86 Instruction Format

Hex Binary
D-13

INSTRUCTION SET OPCODES AND CLOCK CYCLES
87 1000 0111 mod reg r/m (disp-lo),(disp-hi) xchg reg16,reg16/mem16

88 1000 0100 mod reg r/m (disp-lo),(disp-hi) mov reg8/mem8,reg8

89 1000 1001 mod reg r/m (disp-lo),(disp-hi) mov reg16/mem16,reg16

8A 1000 1010 mod reg r/m (disp-lo),(disp-hi) mov reg8,reg8/mem8

8B 1000 1011 mod reg r/m (disp-lo),(disp-hi) mov reg16,reg16/mem16

8C 1000 1100 mod OSR r/m (disp-lo),(disp-hi) mov reg16/mem16,SEGREG

mod 1 - r/m —

8D 1000 1101 mod reg r/m (disp-lo),(disp-hi) lea reg16,mem16

8E 1000 1110 mod OSR r/m (disp-lo),(disp-hi) mov SEGREG,reg16/mem16

mod 1 - r/m —

8F 1000 1111 pop mem16

90 1001 0000 nop (xchg AX,AX)

91 1001 0001 xchg AX,CX

92 1001 0010 xchg AX,DX

93 1001 0011 xchg AX,BX

94 1001 0100 xchg AX,SP

95 1001 0101 xchg AX,BP

96 1001 0110 xchg AX,SI

97 1001 0111 xchg AX,DI

98 1001 1000 cbw

99 1001 1001 cwd

9A 1001 1010 disp-lo disp-hi,seg-lo,seg-hi call far-proc

9B 1001 1011 wait

9C 1001 1100 pushf

9D 1001 1101 popf

9E 1001 1110 sahf

9F 1001 1111 lahf

A0 1010 0000 addr-lo addr-hi mov AL,mem8

A1 1010 0001 addr-lo addr-hi mov AX,mem16

A2 1010 0010 addr-lo addr-hi mov mem8,AL

A3 1010 0011 addr-lo addr-hi mov mem16,AL

A4 1010 0100 movs dest-str8,src-str8

A5 1010 0101 movs dest-str16,src-str16

A6 1010 0110 cmps dest-str8,src-str8

A7 1010 0111 cmps dest-str16,src-str16

A8 1010 1000 data-8 test AL,immed8

A9 1010 1001 data-lo data-hi test AX,immed16

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3–6 ASM-86 Instruction Format

Hex Binary
D-14

INSTRUCTION SET OPCODES AND CLOCK CYCLES
AA 1010 1010 stos dest-str8

AB 1010 1011 stos dest-str16

AC 1010 1100 lods src-str8

AD 1010 1101 lods src-str16

AE 1010 1110 scas dest-str8

AF 1010 1111 scas dest-str16

B0 1011 0000 data-8 mov AL,immed8

B1 1011 0001 data-8 mov CL,immed8

B2 1011 0010 data-8 mov DL,immed8

B3 1011 0011 data-8 mov BL,immed8

B4 1011 0100 data-8 mov AH,immed8

B5 1011 0101 data-8 mov CH,immed8

B6 1011 0110 data-8 mov DH,immed8

B7 1011 0111 data-8 mov BH,immed8

B8 1011 1000 data-lo data-hi mov AX,immed16

B9 1011 1001 data-lo data-hi mov CX,immed16

BA 1011 1010 data-lo data-hi mov DX,immed16

BB 1011 1011 data-lo data-hi mov BX,immed16

BC 1011 1100 data-lo data-hi mov SP,immed16

BD 1011 1101 data-lo data-hi mov BP,immed16

BE 1011 1110 data-lo data-hi mov SI,immed16

BF 1011 1111 data-lo data-hi mov DI,immed16

C0 1100 0000 mod 000 r/m data-8 rol reg8/mem8, immed8

mod 001 r/m data-8 ror reg8/mem8, immed8

mod 010 r/m data-8 rcl reg8/mem8, immed8

mod 011 r/m data-8 rcr reg8/mem8, immed8

mod 100 r/m data-8 shl/sal reg8/mem8, immed8

mod 101 r/m data-8 shr reg8/mem8, immed8

mod 110 r/m —

mod 111 r/m data-8 sar reg8/mem8, immed8

C1 1100 0001 mod 000 r/m data-8 rol reg16/mem16, immed8

mod 001 r/m data-8 ror reg16/mem16, immed8

mod 010 r/m data-8 rcl reg16/mem16, immed8

mod 011 r/m data-8 rcr reg16/mem16, immed8

mod 100 r/m data-8 shl/sal reg16/mem16, immed8

mod 101 r/m data-8 shr reg16/mem16, immed8

mod 110 r/m —

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3–6 ASM-86 Instruction Format

Hex Binary
D-15

INSTRUCTION SET OPCODES AND CLOCK CYCLES
mod 111 r/m data-8 sar reg16/mem16, immed8

C2 1100 0010 data-lo data-hi ret immed16 (intrasegment)

C3 1100 0011 ret (intrasegment)

C4 1100 0100 mod reg r/m (disp-lo),(disp-hi) les reg16,mem16

C5 1100 0101 mod reg r/m (disp-lo),(disp-hi) lds reg16,mem16

C6 1100 0110 mod 000 r/m (disp-lo),(disp-hi),data-8 mov mem8,immed8

mod 001 r/m —

mod 010 r/m —

mod 011 r/m —

mod 100 r/m —

mod 101 r/m —

mod 110 r/m —

C6 1100 0110 mod 111 r/m —

C7 1100 0111 mod 000 r/m (disp-lo),(disp-hi),data-lo,data-hi mov mem16,immed16

mod 001 r/m —

mod 010 r/m —

mod 011 r/m —

mod 100 r/m —

mod 101 r/m —

mod 110 r/m —

mod 111 r/m —

C8 1100 1000 data-lo data-hi, level enter immed16, immed8

C9 1100 1001 leave

CA 1100 1010 data-lo data-hi ret immed16 (intersegment)

CB 1100 1011 ret (intersegment)

CC 1100 1100 int 3

CD 1100 1101 data-8 int immed8

CE 1100 1110 into

CF 1100 1111 iret

D0 1101 0000 mod 000 r/m (disp-lo),(disp-hi) rol reg8/mem8,1

mod 001 r/m (disp-lo),(disp-hi) ror reg8/mem8,1

mod 010 r/m (disp-lo),(disp-hi) rcl reg8/mem8,1

mod 011 r/m (disp-lo),(disp-hi) rcr reg8/mem8,1

mod 100 r/m (disp-lo),(disp-hi) sal/shl reg8/mem8,1

mod 101 r/m (disp-lo),(disp-hi) shr reg8/mem8,1

mod 110 r/m —

mod 111 r/m (disp-lo),(disp-hi) sar reg8/mem8,1

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3–6 ASM-86 Instruction Format

Hex Binary
D-16

INSTRUCTION SET OPCODES AND CLOCK CYCLES
D1 1101 0001 mod 000 r/m (disp-lo),(disp-hi) rol reg16/mem16,1

mod 001 r/m (disp-lo),(disp-hi) ror reg16/mem16,1

D1 1101 0001 mod 010 r/m (disp-lo),(disp-hi) rcl reg16/mem16,1

mod 011 r/m (disp-lo),(disp-hi) rcr reg16/mem16,1

mod 100 r/m (disp-lo),(disp-hi) sal/shl reg16/mem16,1

mod 101 r/m (disp-lo),(disp-hi) shr reg16/mem16,1

mod 110 r/m —

mod 111 r/m (disp-lo),(disp-hi) sar reg16/mem16,1

D2 1101 0010 mod 000 r/m (disp-lo),(disp-hi) rol reg8/mem8,CL

mod 001 r/m (disp-lo),(disp-hi) ror reg8/mem8,CL

mod 010 r/m (disp-lo),(disp-hi) rcl reg8/mem8,CL

mod 011 r/m (disp-lo),(disp-hi) rcr reg8/mem8,CL

mod 100 r/m (disp-lo),(disp-hi) sal/shl reg8/mem8,CL

mod 101 r/m (disp-lo),(disp-hi) shr reg8/mem8,CL

mod 110 r/m —

mod 111 r/m (disp-lo),(disp-hi) sar reg8/mem8,CL

D3 1101 0011 mod 000 r/m (disp-lo),(disp-hi) rol reg16/mem16,CL

mod 001 r/m (disp-lo),(disp-hi) ror reg16/mem16,CL

mod 010 r/m (disp-lo),(disp-hi) rcl reg16/mem16,CL

mod 011 r/m (disp-lo),(disp-hi) rcr reg16/mem16,CL

mod 100 r/m (disp-lo),(disp-hi) sal/shl reg16/mem16,CL

mod 101 r/m (disp-lo),(disp-hi) shr reg16/mem16,CL

mod 110 r/m —

mod 111 r/m (disp-lo),(disp-hi) sar reg16/mem16,CL

D4 1101 0100 0000 1010 aam

D5 1101 0101 0000 1010 aad

D6 1101 0110 —

D7 1101 0111 xlat source-table

D8 1101 1000 mod 000 r/m (disp-lo),(disp-hi) esc opcode,source

D9 1101 1001 mod 001 r/m (disp-lo),(disp-hi) esc opcode,source

DA 1101 1010 mod 010 r/m (disp-lo),(disp-hi) esc opcode,source

DB 1101 1011 mod 011 r/m (disp-lo),(disp-hi) esc opcode,source

DC 1101 1100 mod 100 r/m (disp-lo),(disp-hi) esc opcode,source

DD 1101 1101 mod 101 r/m (disp-lo),(disp-hi) esc opcode,source

DE 1101 1110 mod 110 r/m (disp-lo),(disp-hi) esc opcode,source

DF 1101 1111 mod 111 r/m (disp-lo),(disp-hi) esc opcode,source

E0 1110 0000 IP-inc-8 loopne/loopnz short-label

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3–6 ASM-86 Instruction Format

Hex Binary
D-17

INSTRUCTION SET OPCODES AND CLOCK CYCLES
E1 1110 0001 IP-inc-8 loope/loopz short-label

E2 1110 0010 IP-inc-8 loop short-label

E3 1110 0011 IP-inc-8 jcxz short-label

E4 1110 0100 data-8 in AL,immed8

E5 1110 0101 data-8 in AX,immed8

E6 1110 0110 data-8 out AL,immed8

E7 1110 0111 data-8 out AX,immed8

E8 1110 1000 IP-inc-lo IP-inc-hi call near-proc

E9 1110 1001 IP-inc-lo IP-inc-hi jmp near-label

EA 1110 1010 IP-lo IP-hi,CS-lo,CS-hi jmp far-label

EB 1110 1011 IP-inc-8 jmp short-label

EC 1110 1100 in AL,DX

ED 1110 1101 in AX,DX

EE 1110 1110 out AL,DX

EF 1110 1111 out AX,DX

F0 1111 0000 lock (prefix)

F1 1111 0001 —

F2 1111 0010 repne/repnz

F3 1111 0011 rep/repe/repz

F4 1111 0100 hlt

F5 1111 0101 cmc

F6 1111 0110 mod 000 r/m (disp-lo),(disp-hi),data-8 test reg8/mem8,immed8

mod 001 r/m —

mod 010 r/m (disp-lo),(disp-hi) not reg8/mem8

mod 011 r/m (disp-lo),(disp-hi) neg reg8/mem8

mod 100 r/m (disp-lo),(disp-hi) mul reg8/mem8

mod 101 r/m (disp-lo),(disp-hi) imul reg8/mem8

mod 110 r/m (disp-lo),(disp-hi) div reg8/mem8

mod 111 r/m (disp-lo),(disp-hi) idiv reg8/mem8

F7 1111 0111 mod 000 r/m (disp-lo),(disp-hi),data-lo,data-hi test reg16/mem16,immed16

mod 001 r/m —

mod 010 r/m (disp-lo),(disp-hi) not reg16/mem16

mod 011 r/m (disp-lo),(disp-hi) neg reg16/mem16

mod 100 r/m (disp-lo),(disp-hi) mul reg16/mem16

mod 101 r/m (disp-lo),(disp-hi) imul reg16/mem16

mod 110 r/m (disp-lo),(disp-hi) div reg16/mem16

mod 111 r/m (disp-lo),(disp-hi) idiv reg16/mem16

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3–6 ASM-86 Instruction Format

Hex Binary
D-18

INSTRUCTION SET OPCODES AND CLOCK CYCLES
F8 1111 1000 clc

F9 1111 1001 stc

FA 1111 1010 cli

FB 1111 1011 sti

FC 1111 1100 cld

FD 1111 1101 std

FE 1111 1110 mod 000 r/m (disp-lo),(disp-hi) inc mem16

mod 001 r/m (disp-lo),(disp-hi) dec mem16

mod 010 r/m —

FE 1111 1110 mod 011 r/m —

mod 100 r/m —

mod 101 r/m —

mod 110 r/m —

mod 111 r/m —

FF 1111 1111 mod 000 r/m (disp-lo),(disp-hi) inc mem16

mod 001 r/m (disp-lo),(disp-hi) dec mem16

mod 010 r/m (disp-lo),(disp-hi) call reg16/mem16 (intrasegment)

mod 011 r/m (disp-lo),(disp-hi) call mem16 (intersegment)

mod 100 r/m (disp-lo),(disp-hi) jmp reg16/mem16 (intrasegment)

mod 101 r/m (disp-lo),(disp-hi) jmp mem16 (intersegment)

mod 110 r/m (disp-lo),(disp-hi) push mem16

mod 111 r/m —

Table D-3. Machine Instruction Decoding Guide (Continued)

Byte 1
Byte 2 Bytes 3–6 ASM-86 Instruction Format

Hex Binary
D-19

INSTRUCTION SET OPCODES AND CLOCK CYCLES
Table D-4. Mnemonic Encoding Matrix (Left Half)

x0 x1 x2 x3 x4 x5 x6 x7

0x
ADD

b,f,r/m

ADD

w,f,r/m

ADD

b,t,r/m

ADD

w,t,r/m

ADD

b,ia

ADD

w,ia

PUSH

ES

POP

ES

1x
ADC

b,f,r/m

ADC

w,f,r/m

ADC

b,t,r/m

ADC

w,t,r/m

ADC

b,i

ADC

w,i

PUSH

SS

POP

SS

2x
AND

b,f,r/m

AND

w,f,r/m

AND

b,t,r/m

AND

w,t,r/m

AND

b,i

AND

w,i

SEG

=ES

DAA

3x
XOR

b,f,r/m

XOR

w,f,r/m

XOR

b,t,r/m

XOR

w,t,r/m

XOR

b,i

XOR

w,i

SEG

=SS

AAA

4x
INC

AX

INC

CX

INC

DX

INC

BX

INC

SP

INC

BP

INC

SI

INC

DI

5x
PUSH

AX

PUSH

CX

PUSH

DX

PUSH

BX

PUSH

SP

PUSH

BP

PUSH

SI

PUSH

DI

6x
PUSHA POPA BOUND

w,f,r/m

7x
JO JNO JB/

JNAE/
JC

JNB/
JAE/
JNC

JE/
JZ

JNE/
JNZ

JBE/
JNA

JNBE/
JA

8x
Immed

b,r/m

Immed

w,r/m

Immed

b,r/m

Immed

is,r/m

TEST

b,r/m

TEST

w,r/m

XCHG

b,r/m

XCHG

w,r/m

9x
NOP

(XCHG)
AX

XCHG

CX

XCHG

DX

XCHG

BX

XCHG

SP

XCHG

BP

XCHG

SI

XCHG

DI

Ax
MOV

m→AL

MOV

m→AX

MOV

AL→m

MOV

AX→m

MOVS MOVS CMPS CMPS

Bx
MOV

i→AL

MOV

i→CL

MOV

i→DL

MOV

i→BL

MOV

i→AH

MOV

i→CH

MOV

i→DH

MOV

i→BH

Cx
Shift

b,i

Shift

w,i

RET

(i+SP)

RET LES LDS MOV

b,i,r/m

MOV

w,i,r/m

Dx
Shift

b

Shift

w

Shift

b,v

Shift

w,v

AAM AAD XLAT

Ex
LOOPNZ/
LOOPNE

LOOPZ/
LOOPE

LOOP JCXZ IN IN OUT OUT

Fx
LOCK REP REP

z

HLT CMC Grp1

b,r/m

Grp1

w,r/m

NOTE: Table D-5 defines abbreviations used in this matrix. Shading indicates reserved opcodes.
D-20

INSTRUCTION SET OPCODES AND CLOCK CYCLES
Table D-4. Mnemonic Encoding Matrix (Right Half)

x8 x9 xA xB xC xD xE xF

OR

b,f,r/m

OR

w,f,r/m

OR

b,t,r/m

OR

w,t,r/m

OR

b,i

OR

w,i

PUSH

CS
0x

SBB

b,f,r/m

SBB

w,f,r/m

SBB

b,t,r/m

SBB

w,t,r/m

SBB

b,i

SBB

w,i

PUSH

DS

POP

DS
1x

SUB

b,f,r/m

SUB

w,f,r/m

SUB

b,t,r/m

SUB

w,t,r/m

SUB

b,i

SUB

w,i

SEG

=CS

DAS

2x

CMP

b,f,r/m

CMP

w,f,r/m

CMP

b,t,r/m

CMP

w,t,r/m

CMP

b,i

CMP

w,i

SEG

=DS

AAS

3x

DEC

AX

DEC

CX

DEC

DX

DEC

BX

DEC

SP

DEC

BP

DEC

SI

DEC

DI
4x

POP

AX

POP

CX

POP

DX

POP

BX

POP

SP

POP

BP

POP

SI

POP

DI
5x

PUSH

w,i

IMUL

w,i

PUSH

b,i

IMUL

w,i

INS

b

INS

w

OUTS

b

OUTS

w
6x

JS JNS JP/
JPE

JNP/
JPO

JL/
JNGE

JNL/
JGE

JLE/
JNG

JNLE/
JG 7x

MOV

b,f,r/m

MOV

w,f,r/m

MOV

b,t,r/m

MOV

w,t,r/m

MOV

sr,f,r/m

LEA MOV

sr,t,r/m

POP

r/m
8x

CBW CWD CALL

L,D

WAIT PUSHF POPF SAHF LAHF

9x

TEST

b,ia

TEST

w,ia

STOS STOS LODS LODS SCAS SCAS

Ax

MOV

i→AX

MOV

i→CX

MOV

i→DX

MOV

i→BX

MOV

i→SP

MOV

i→BP

MOV

i→SI

MOV

i→DI
Bx

ENTER LEAVE RET

l(i+SP)

RET

l

INT

type 3

INT

(any)

INTO IRET

Cx

ESC

0

ESC

1

ESC

2

ESC

3

ESC

4

ESC

5

ESC

6

ESC

7
Dx

CALL JMP JMP JMP IN IN OUT OUT

Ex

CLC STC CLI STI CLS STD Grp2

b,r/m

Grp2

w,r/m
Fx

NOTE: Table D-5 defines abbreviations used in this matrix. Shading indicates reserved opcodes.
D-21

INSTRUCTION SET OPCODES AND CLOCK CYCLES
Table D-5. Abbreviations for Mnemonic Encoding Matrix

Abbr Definition Abbr Definition Abbr Definition Abbr Definition

b byte operation ia immediate to accumulator m memory t to CPU register

d direct id indirect r/m EA is second byte v variable

f from CPU register is immediate byte, sign extended si short intrasegment w word operation

i immediate l long (intersegment) sr segment register z zero

Byte 2 Immed Shift Grp1 Grp2

mod 000 r/m ADD ROL TEST INC

mod 001 r/m OR ROR — DEC

mod 010 r/m ADC RCL NOT CALL id

mod 011 r/m SBB RCR NEG CALL l, id

mod 100 r/m AND SHL/SAL MUL JMP id

mod 101 r/m SUB SHR IMUL JMP i, id

mod 110 r/m XOR — DIV PUSH

mod 111 r/m CMP SAR IDIV —

mod and r/m determine the Effective Address (EA) calculation. See Table D-1 for definitions.
D-22

Index

INDEX
80C187 Math Coprocessor, 14-2–14-8
accessing, 14-10–14-11
arithmetic instructions, 14-3–14-4
bus cycles, 14-11
clocking, 14-10
code examples, 14-13–14-16
comparison instructions, 14-5
constant instructions, 14-6
data transfer instructions, 14-3
data types, 14-7–14-8
design considerations, 14-10–14-11
example floating point routine, 14-16
exceptions, 14-13
I/O port assignments, 14-10
initialization example, 14-13–14-16
instruction set, 14-2
interface, 14-7–14-13

and chip-selects, 6-14, 14-11
and PCB location, 4-7
exception trapping, 14-13
generating READY, 14-11

processor control instructions, 14-6
testing for presence, 14-10
transcendental instructions, 14-5

8259A Programmable Interrupt Controllers, 8-1–
8-51

and factory test modes, 8-26
architectural overview, 8-4–8-20
assigning lowest priority, 8-30–8-33
block diagram, 8-5
cascading, 8-14–8-18

and EOI commands, 8-17
and spurious interrupts, 8-18
configuring the master, 8-17
configuring the slave, 8-17
IR0 precautions, 8-17

connecting external devices, 8-44–8-47
executing EOI commands, 8-30–8-33
initializing, 8-21–8-29

sequence, 8-21–8-23
masking interrupts, 8-30–8-31
master, 8-1
master/slave connection, 8-14

programming, 8-20–8-35
sequence, 8-21–8-23

registers
addressing, 8-21
reading, 8-34

selecting Automatic EOI Mode, 8-26
selecting cascade mode, 8-24
selecting edge- or level-triggered interrupts,

8-24
selecting Poll Mode, 8-34–8-35
selecting Special Fully Nested Mode, 8-26–

8-29
selecting Special Mask Mode, 8-34–8-35
slave, 8-1
specifying base interrupt type, 8-25
specifying ICW4 requirement, 8-24
specifying slave connections, 8-26
specifying slave IDs, 8-26
See also Interrupt Control Unit

82C59A Programmable Interrupt Controller
interfacing with, 3-26–3-28, 8-44–8-47
timing constraints, 8-46–8-47

A
Address and data bus, 3-1–3-6

16-bit, 3-1–3-5
considerations, 3-7

8-bit, 3-5–3-6
considerations, 3-7

See also Bus cycles‚ Data transfers
Address bus, See Address and data bus
Address space, See Memory space‚ I/O space
Addressing modes, 2-27–2-36

and string instructions, 2-34
based, 2-30, 2-31, 2-32
based index, 2-34, 2-35
direct, 2-29
immediate operands, 2-28
indexed, 2-32, 2-33
indirect, 2-36
memory operands, 2-28
register indirect, 2-30, 2-31
register operands, 2-27
Index-1

INDEX

,
AH register, 2-5
AL register, 2-5, 2-18, 2-23
ApBUILDER files, obtaining from BBS, 1-6
Application BBS, 1-5
Architecture

CPU block diagram, 2-2
device feature comparisons, 1-2
family introduction, 1-1
overview, 1-1, 2-1

Arithmetic
instructions, 2-19–2-20
interpretation of 8-bit numbers, 2-20

Arithmetic Logic Unit (ALU), 2-1
Array bounds trap (Type 5 exception), 2-43
ASCII, defined, 2-37
Automatic EOI mode‚ See Interrupts
Auxiliary Flag (AF), 2-7, 2-9
AX register, 2-1, 2-5, 2-18, 2-23, 3-6

B
Base Pointer (BP)‚ See BP register
Baud Rate Compare Register (BxCMP), 11-12
Baud Rate Counter Register (BxCNT), 11-11
BBS, 1-5
BCD, defined, 2-37
Bit manipulation instructions, 2-21–2-22
BOUND instruction, 2-43, A-8
BP register, 2-1, 2-13, 2-30, 2-34
Breakpoint interrupt (Type 3 exception), 2-43
Bulletin board system (BBS), 1-5
Bus cycles, 3-20–3-47

address/status phase, 3-10–3-12
and 80C187, 14-11
and CSU, 6-14
and Idle mode, 5-13
and PCB accesses, 4-4
and Powerdown mode, 5-16
and T-states, 3-9
data phase, 3-13
HALT cycle, 3-29–3-36

and chip-selects, 6-4
HALT state, exiting, 3-32–3-36
idle states, 3-18
instruction prefetch, 3-20
interrupt acknowledge (INTA) cycles, 3-6,

3-26–3-27, 8-3
and cascaded 8259As, 8-16–8-17

and chip-selects, 6-4
and external 8259A devices, 8-45
and ICU, 8-44

operation, 3-7–3-20
priorities, 3-46–3-47, 7-2
read cycles, 3-20–3-22
refresh cycles, 3-22–3-23, 7-4, 7-5

control signals, 7-5, 7-6
during HOLD, 3-43–3-45, 7-13–7-14

wait states, 3-13–3-18
write cycles, 3-23–3-26
See also Data transfers

Bus hold protocol, 3-41–3-46
and CLKOUT, 5-6
and CSU, 6-15
and Idle mode, 5-14
and refresh cycles, 3-43–3-45, 7-13–7-14
and reset, 5-9
latency, 3-42–3-43

Bus Interface Unit (BIU), 2-1, 2-3, 2-11, 3-1–3-47
and DMA, 10-8
and DRAM refresh requests, 7-4
and TCU, 9-1
buffering the data bus, 3-37–3-39
modifying interface, 3-36–3-39, 3-39
relationship to RCU, 7-1
synchronizing software and hardware events

3-39–3-40
using a locked bus, 3-40–3-41
using multiple bus masters, 3-41–3-46

BX register, 2-1, 2-5, 2-30

C
Carry Flag (CF), 2-7, 2-9
Cascade bus, 8-14
Chip-Select Unit (CSU), 6-1

and DMA, 10-9
and DMA acknowledge signal, 10-30
and HALT bus cycles, 3-29
and READY, 6-11–6-12
and wait states, 6-11–6-12
block diagram, 6-3
bus cycle decoding, 6-14
examples, 6-15–6-20
features and benefits, 6-1
functional overview, 6-2–6-5
programming, 6-5–6-15
Index-2

INDEX

,

registers, 6-5–6-15
system diagram, 6-16
See also Chip selects

Chip-selects
activating, 6-4
and 80C187 interface, 6-14, 14-11
and bus hold protocol, 6-15
and DMA acknowledge signal, 10-30
and DRAM controllers, 7-1
and guarded memory locations, 6-20
and reserved I/O locations, 6-14
enabling and disabling, 6-11
initializing, 6-6–6-15
methods for generating, 6-1
multiplexed I/O port pins, 13-6
overlapping, 6-12–6-14
programming considerations, 6-14
start address, 6-10, 6-14
stop address, 6-10
timing, 6-4

CL register, 2-5, 2-21, 2-22
CLKOUT

and bus hold, 5-6
and power management modes, 5-6
and reset, 5-6

Clock divider, 5-19
control register, 5-21

Clock generator, 5-6–5-10
and system reset, 5-6–5-7
output, 5-6
synchronizing CLKOUT and RESOUT, 5-6–

5-7
Clock sources, TCU, 9-12
Code (programs)‚ See Software
Code segment, 2-5
CompuServe forums, 1-6
Counters‚ See Timer Counter Unit (TCU)
CPU, block diagram, 2-2
Crystal‚ See Oscillator
CS register, 2-1, 2-5, 2-6, 2-13, 2-23, 2-39, 2-40,

2-41
Customer service, 1-4
CX register, 2-1, 2-5, 2-23, 2-25, 2-26

D
Data, 3-6
Data bus, See Address and data bus

Data segment, 2-5
Data sheets, obtaining from BBS, 1-6
Data transfers, 3-1–3-6

instructions, 2-18
PCB considerations, 4-5
PSW flag storage formats, 2-19
See also Bus cycles

Data types, 2-37–2-38
DI register, 2-1, 2-5, 2-13, 2-22, 2-23, 2-30, 2-32

2-34
Digital one-shot, code example, 9-17–9-23
Direct Memory Access (DMA) Unit, 10-1–10-38

and BIU, 10-8
and CSU, 10-9
and PCB, 10-3
and SCU, 10-26, 10-30
arming channel, 10-23
DMA acknowledge signal, 10-2, 10-30
DRQ timing, 10-29
examples, 10-30–10-38
HALT bit, 10-27
HALT bits, 10-27
hardware considerations, 10-28–10-30
initialization code, 10-30–10-38
initializing, 10-27
Interrupt Request Latch Register (DMAIRL),

8-40
interrupts, 10-8

generating on terminal count, 10-25
introduction, 10-1
latency, 10-29
modules, 10-9–10-10, 10-12–10-14
multiplexed I/O port pins, 13-7
overview, 10-1–10-15
pointers, programming, 10-15–10-19
priority

channel, 10-9–10-10, 10-26
fixed, 10-9–10-11
module, 10-26–10-28
rotating, 10-11

programming, 10-22–10-27
arming channel, 10-23
channel priority, 10-26
initializing, 10-27
interrupts, 10-25
module priority, 10-26
source, 10-24
suspending transfers, 10-27
Index-3

INDEX

-1
synchronization, 10-23
transfer count, 10-24–10-25

programming, pointers, 10-15–10-19
requests, 10-3

external, 10-4
internal, 10-6–10-7

multiplexer, 10-11
SCU, 10-7
software, 10-7
Timer 2, 10-6

selecting source, 10-11, 10-22
serial transfer example, 10-30–10-38
synchronization

destination-synchronized, 10-5
selecting, 10-23
source-synchronized, 10-5
unsynchronized, 10-7

timed DMA transfer example, 10-30–10-38
transfers, 10-1–10-15

count, 10-7
programming, 10-24–10-25

direction, 10-3
rates, 10-29
size, 10-3

selecting, 10-19
suspending, 10-7, 10-8, 10-27
terminating, 10-7, 10-8

Direction Flag (DF), 2-7, 2-9, 2-23
Display, defined, A-2
Divide Error trap (Type 0 exception), 2-42
DMA Control Register (DxCON), 10-20
DMA Destination Pointer Register, 10-18, 10-19
DMA HALT Register (DMAHALT), 10-28
DMA Source Pointer Register, 10-16, 10-17
Documents, related, 1-3
DRAM controllers

and wait state control, 7-5
clocked, 7-5
design guidelines, 7-5
unclocked, 7-5
See also Refresh Control Unit

DS register, 2-1, 2-5, 2-6, 2-13, 2-30, 2-34, 2-43
DX register, 2-1, 2-5, 2-36, 3-6

E
Effective Address (EA), 2-13

calculation, 2-28

Emulation mode, 15-1
End-of-Interrupt (EOI) command, 8-32

and polling, 8-35
automatic EOI, 8-13
issuing in a cascaded system, 8-17
non-specific EOI, 8-13, 8-33
rotate in automatic EOI mode, 8-33
rotate on specific EOI, 8-33
set priority, 8-33
specific EOI, 8-13, 8-33

ENTER instruction, A-2
ES register, 2-1, 2-5, 2-6, 2-13, 2-30, 2-34
Escape opcode fault (Type 7 exception), 2-43, 14
Examples, code‚ See Software
Exceptions, 2-42–2-44

priority, 2-46–2-49
Execution Unit (EU), 2-1, 2-2
Extra segment, 2-5

F
Fault exceptions, 2-42
FaxBack service, 1-4
F-Bus

and PCB, 4-5
operation, 4-5

Flags‚ See Processor Status Word (PSW)
Floating Point, defined, 2-37
Fully nested mode‚ See Interrupts

H
HALT bus cycle‚ See Bus cycles
HOLD/HLDA protocol‚ See Bus hold protocol
Hypertext manuals, obtaining from BBS, 1-6

I
I/O devices

interfacing with, 3-6–3-7
memory-mapped, 3-6

I/O ports, 13-1–13-12
addressing, 2-36
bidirectional, 13-1, 13-7
configuration example, 13-12
initializing, 13-11
open-drain bidirectional, 13-3
output-only, 13-3
overview, 13-1
port 1, 13-6
Index-4

INDEX

,
port 2, 13-6
port 3, 13-7
programming, 13-7–13-12
registers, 13-7–13-11
reset status, 13-11

I/O space, 3-1–3-7
accessing, 3-6
reserved locations, 2-15, 6-14

Idle mode, 5-11–5-16, 5-16
bus operation, 5-13
control register, 5-12
entering, 5-11, 5-13
exiting, 5-14–5-15
exiting HALT bus cycle, 3-36
initialization code, 5-15–5-16

Idle states
and bus cycles, 3-18

Immediate operands, 2-28
IMUL instruction, A-9
Initialization Command Words (ICWs), 8-20

accessing, 8-21
ICW1, 8-22–8-24
ICW2, 8-25
ICW3, 8-26–8-28
ICW4, 8-26
initialization sequence, 8-21–8-22

Input/output ports, 13-1
Inputs, asynchronous, synchronizing, B-1
INS instruction, A-2
In-Service Register, 8-12–8-14

reading, 8-35
Instruction Pointer (IP), 2-1, 2-6, 2-13, 2-23, 2-39,

2-40, 2-41
reset status, 2-6

Instruction prefetch bus cycle‚ See Bus cycles
Instruction set, 2-17, A-1, D-1

additions, A-1
arithmetic instructions, 2-19–2-20, A-9
bit manipulation instructions, 2-21–2-22, A-9
data transfer instructions, 2-18–2-20, A-1,

A-8
data types, 2-37–2-38
enhancements, A-8
high-level instructions, A-2
nesting, A-2
processor control instructions, 2-27
program transfer instructions, 2-23–2-24
reentrant procedures, A-2

rotate instructions, A-10
shift instructions, A-9
string instructions, 2-22–2-23, A-2

INT instruction, single-byte‚ See Breakpoint
interrupt

INT0 instruction, 2-43
INTA bus cycle‚ See Bus cycles
Integer, defined, 2-37, 14-7
Interrupt Control Unit (ICU), 8-1–8-51

and wait states, 8-44
and Watchdog Timer, 12-2
block diagram, 8-2
connecting external 8259A devices, 8-44
generating READY, 8-44
hardware considerations, 8-42–8-47
initialization code, 8-47–8-49
integrated 8259A modules, 8-36–8-40
interfacing with an 82C59A Programmable

Interrupt Controller, 3-26–3-28
resetting edge-detection circuit, 8-43

Interrupt controller, 8-1
Interrupt Enable Flag (IF), 2-7, 2-9, 2-41
Interrupt Mask Register (OCW1), 8-30, 8-31

reading, 8-35
Interrupt Request Register, 8-9, 8-30, 8-36, 8-40

8-41, 8-42
and debugging interrupt handlers, 8-40
clearing latch bit, 8-39
reading, 8-35
setting latch bit, 8-40

Interrupt Vector Table, 2-39, 2-40
Interrupt-on-overflow trap (Type 4 exception),

2-43
Interrupts, 2-39–2-42

and CSU initialization, 6-6
automatic EOI mode, 8-14
edge-sensitive, 8-9–8-10
fully nested mode, 8-4
internal sources, 8-36–8-39

with direct support, 8-37–8-38
with indirect support, 8-36, 8-38, 8-39

latency, 2-44–2-45, 8-43
reducing, 3-29

level-sensitive, 8-9–8-10
maskable, 2-42
masking, 8-14
multiplexed requests, 8-39
nesting, 8-4
Index-5

INDEX

NMI, 2-42
generating with WDT, 12-3

nonmaskable, 2-44
overview, 8-3
priority, 2-46–2-49, 8-4, 8-10–8-12

automatic rotation, 8-12
fixed, 8-11
specific rotation, 8-11

priority cell, 8-6
processing, 2-39–2-41, 8-3–8-4, 8-6
requests, 8-9
reserved, 2-39, 8-25
resetting edge-detection circuit, 8-9, 8-43
resolution time, 8-43
response time, 2-45, 8-43
software, 2-44
spurious, 8-10

and cascaded 8259As, 8-18
structure, 8-4

alternate modes, 8-13, 8-19–8-20
timer interrupts, 9-16
See also Exceptions, Interrupt Control Unit

INTn instruction, 2-44
Invalid opcode trap (Type 6 exception), 2-43
IRET instruction, 2-41

J
JMP $+2 instruction, 8-46, 8-47

L
Latency‚ See Bus hold protocol‚ Direct Memory

Access (DMA) Unit‚ Interrupts
LEAVE instruction, A-7
Local bus, 3-1, 3-41, 14-11
Long integer, defined, 14-7
Long real, defined, 14-7

M
Manuals, online, 1-6
Master Cascade Configuration Register (ICW3),

8-17, 8-26, 8-27
Math coprocessing, 14-1

hardware support, 14-1
overview, 14-1

Memory
addressing, 2-28–2-36
operands, 2-28

reserved locations, 2-15
Memory devices‚ interfacing with, 3-6–3-7
Memory segments, 2-8

accessing, 2-5, 2-10, 2-11, 2-13
address

base value, 2-10, 2-11, 2-12
Effective Address (EA), 2-13
logical, 2-10, 2-12
offset value, 2-10, 2-13
overriding, 2-11, 2-13
physical, 2-3, 2-10, 2-12

and dynamic code relocation, 2-13
Memory space, 3-1–3-6
MPICP0, 8-21, 8-24, 8-32, 8-34
MPICP1, 8-21, 8-25, 8-27, 8-29, 8-31

N
Normally not-ready signal‚ See READY
Normally ready signal‚ See READY
Numerics coprocessor fault (Type 16 exception),

2-44, 14-13

O
ONCE mode, 15-1
One-shot, code example, 9-17–9-23
Operation Command Words (OCWs), 8-20, 8-30

accessing, 8-21
addressing, 8-30
OCW1, 8-30–8-31
OCW2, 8-30–8-33
OCW3, 8-34–8-35

Ordinal, defined, 2-37
Oscillator

external
and powerdown, 5-19
selecting crystal, 5-5
using canned, 5-6

internal crystal, 5-1–5-10
controlling gating to internal clocks,

5-18
operation, 5-2–5-3
selecting C1 and L1 components, 5-3–

5-6
OUTS instruction, A-2
Overflow Flag (OF), 2-7, 2-9, 2-43
Index-6

INDEX
P
Packed BCD, defined, 2-37
Packed decimal, defined, 14-7
Parity Flag (PF), 2-7, 2-9
PCB Relocation Register, 4-1, 4-3, 4-6

and math coprocessing, 14-1
PDTMR pin, 5-18
Peripheral Control Block (PCB), 4-1

8259A register access ports, 8-21
accessing, 4-4
and DMA Unit, 10-3
and F-Bus operation, 4-5
base address, 4-6–4-7
bus cycles, 4-4
READY signals, 4-4
reserved locations, 4-6
wait states, 4-4

Peripheral control registers, 4-1, 4-6
Pointer, defined, 2-37
Poll Status Byte, 8-35
Polling

and 8259A initialization, 8-35
overview, 8-3
with the Poll command, 8-20, 8-34

POPA instruction, A-1
Port Control Register (PxCON), 13-8
Port Data Latch Register (PxLTCH), 13-10
Port Direction Register (PxDIR), 13-9
Port Pin State Register (PxPIN), 13-11
Power consumption‚ reducing, 3-29, 5-24
Power Control Register, 5-12
Power management, 5-10–5-24
Power management modes

and HALT bus cycles, 3-29, 3-32, 3-34
compared, 5-24

Powerdown mode, 5-16–5-19, 7-2
and bus cycles, 5-16
control register, 5-12
entering, 5-17
exiting, 5-18–5-19
exiting HALT bus cycle, 3-35
initialization code, 5-15–5-19

Power-Save mode, 5-19–5-23, 7-2
and DRAM refresh rate, 5-22
and refresh interval, 7-7
control register, 5-21
entering, 5-20

exiting, 5-22
initialization code, 5-22–5-23

Power-Save Register, 5-21
Priority cell‚ See Interrupts
Priority Resolver, 8-10
Processor control instructions, 2-27
Processor Status Word (PSW), 2-1, 2-7, 2-41

bits defined, 2-7, 2-9
flag storage formats, 2-19
reset status, 2-7

Program transfer instructions, 2-23–2-24
conditional transfers, 2-24, 2-26
interrupts, 2-26
iteration control, 2-25
unconditional transfers, 2-24

Programming examples‚ See Software
PUSH instruction, A-8
PUSHA instruction, A-1

R
RCL instruction, A-10
RCR instruction, A-10
Read bus cycles‚ See Bus cycles
READY

and chip-selects, 6-11
and internal 8259A modules, 8-44
and normally not-ready signal, 3-16–3-18
and normally ready signal, 3-16–3-17
and PCB accesses, 4-4
and wait states, 3-13–3-18
block diagram, 3-15
implementation approaches, 3-13
timing concerns, 3-17

Real, defined, 14-7
Real-time clock, code example, 9-17–9-20
Refresh address, 7-4
Refresh Address Register (RFADDR), 7-10
Refresh Base Address Register (RFBASE), 7-8
Refresh bus cycle‚ See Bus cycles
Refresh Clock Interval Register (RFTIME), 7-7,

7-8
Refresh Control Register (RFCON), 7-9, 7-10
Refresh Control Unit (RCU), 7-1–7-14

and bus hold protocol, 7-13–7-14
and Powerdown mode, 7-2
and Power-Save mode, 5-20, 7-2, 7-7
block diagram, 7-1
Index-7

INDEX

7

,
bus latency, 7-7
calculating refresh interval, 7-7
control registers, 7-7–7-10
initialization code, 7-11
operation, 7-2
overview, 7-2–7-4
programming, 7-7–7-12
relationship to BIU, 7-1

Register operands, 2-27
Registers, 2-1

control, 2-1
data, 2-4, 2-5
general, 2-1, 2-4, 2-5
H & L group, 2-4
index, 2-5, 2-13, 2-34
P & I group, 2-4
pointer, 2-1, 2-5, 2-13
pointer and index, 2-4
segment, 2-1, 2-5, 2-11, 2-12
status, 2-1

Relocation Register‚ See PCB Relocation Register
Reset

and bus hold protocol, 5-6
and clock synchronization, 5-6–5-10
cold, 5-7, 5-8
RC circuit for reset input, 5-7
warm, 5-7, 5-9
with Watchdog Timer, 12-1

ROL instruction, A-10
ROR instruction, A-10

S
SAL instruction, A-9
SAR instruction, A-9
Serial Communications Unit (SCU)

and DMA, 10-26
asynchronous communications, 11-1–11-8,

11-13–11-17
example, 11-21–11-24
mode 1, 11-6
mode 2, 11-7
mode 3, 11-6
mode 4, 11-6

baud rates, 11-10–11-13
baud timebase clock, 11-20, 11-21
BCLK pin timings, 11-18–11-20
break characters, 11-4, 11-14

CTS# pin timings, 11-18
examples, 11-21–11-32
features, 11-1
framing errors, 11-4
hardware considerations, 11-18–11-21
Interrupt Request Latch Register (SCUIRL),

8-41
interrupts, 11-21
master/slave example, 11-24–11-32
multiplexed I/O port pins, 13-6–13-7
multiprocessor communications, 11-14
overrun errors, 11-4
overview, 11-1–11-8
parity errors, 11-4
programming, 11-9–11-18
receiver, 11-2
RX machine, 11-2
stand-alone communications, 11-13
synchronous communications, 11-8, 11-18

example, 11-23
timings, 11-20

transmitter, 11-4
TX machine, 11-4

Serial Port Control Register (SxCON), 11-15
Serial Port Status Register (SxSTS), 11-16, 11-1
Serial ports‚ See Serial Communications Unit

(SCU)
Serial Receive Buffer Register (SxRBUF), 11-9
Serial Transmit Buffer Register (SxTBUF), 11-10
SHL instruction, A-9
Short integer, defined, 14-7
Short real, defined, 14-7
SHR instruction, A-9
SI register, 2-1, 2-5, 2-13, 2-22, 2-23, 2-30, 2-32

2-34
Sign Flag (SF), 2-7, 2-9
Single-step trap (Type 1 exception), 2-43
Slave ID, 8-17

register (ICW3), 8-26, 8-28
Software

code example
80C187 floating-point routine, 14-16
80C187 initialization, 14-13–14-15
digital one-shot, 9-17–9-23
DMA initialization, 10-30–10-38
DMA-driven serial transfers, 10-30
I/O port configuration, 13-12
real-time clock, 9-17–9-19
Index-8

INDEX

SCU asynchronous mode, 11-21–11-22
SCU master/slave network, 11-24–

11-32
initialization code, 11-26–11-28
_select_slave routine, 11-27–11-28
_send_slave_command routine,

11-32
_slave_1 routine, 11-29–11-31

SCU synchronous mode, 11-23
square-wave generator, 9-17–9-22
TCU configurations, 9-17–9-23
timed DMA transfers, 10-30–10-38
using the Poll command, 8-51
WDT disable, 12-7, 12-8
WDT initialization, 12-13
WDT reload sequence, 12-4, 12-5

data types, 2-37, 2-38
dynamic code relocation, 2-13, 2-14
interrupts, 2-44
overview, 2-17
See also Addressing modes, Instruction set

Special fully nested mode, 8-19
Special mask mode, 8-19, 8-34–8-35

selecting, 8-35
SPICP0, 8-21, 8-24, 8-32, 8-34
SPICP1, 8-21, 8-25, 8-28, 8-29, 8-31
Square-wave generator, code example, 9-17–9-22
SS register, 2-1, 2-5, 2-6, 2-13, 2-15, 2-30, 2-45
Stack frame pointers, A-2
Stack Pointer, 2-1, 2-5, 2-13, 2-15, 2-45
Stack segment, 2-5
Stacks, 2-15
START registers, CSU, 6-5, 6-7, 6-11
STOP registers, CSU, 6-5, 6-8, 6-12
String instructions, 2-22–2-23

and addressing modes, 2-34
and memory-mapped I/O ports, 2-36
operand locations, 2-13
operands, 2-36

Strings
accessing, 2-13, 2-34
defined, 2-37

Synchronizing asynchronous inputs, B-1

T
Technical support, 1-6
Temporary real, defined, 14-7
Terminology

"above" vs. "greater", 2-26
"below" vs. "less", 2-26
device names, 1-2

Timer Control Registers (TxCON), 9-7, 9-8
Timer Count Registers (TxCNT), 9-10
Timer Counter Unit (TCU), 9-1–9-23

and Power-Save mode, 5-20
application examples, 9-17–9-23
block diagram, 9-2
clock sources, 9-12
configuring a digital one-shot, 9-17–9-23
configuring a real-time clock, 9-17–9-19
configuring a square-wave generator, 9-17–

9-22
counting sequence, 9-12–9-13
dual maxcount mode, 9-13–9-14
enabling and disabling counters, 9-15–9-16
frequency, maximum, 9-17
initializing, 9-11
input synchronization, 9-17
Interrupt Request Latch Register (TIMIRL),

8-42
interrupts, 9-16
overview, 9-1–9-6
programming, 9-6–9-16

considerations, 9-16
pulsed output, 9-14–9-15
retriggering, 9-13–9-14
setup and hold times, 9-16
single maxcount mode, 9-13, 9-14–9-16
timer delay, 9-1
timing, 9-1

and BIU, 9-1
considerations, 9-16
TxOUT signal, 9-15

variable duty cycle output, 9-14–9-15
Timer Maxcount Compare Registers (TxCMPA,

TxCMPB), 9-11
Timers‚ See Timer Counter Unit (TCU), Watchdog

Timer Unit
Training, 7
Index-9

INDEX
Trap exceptions, 2-42
Trap Flag (TF), 2-7, 2-9, 2-43, 2-48
T-state

and bus cycles, 3-9
and CLKOUT, 3-8
defined, 3-7

W
Wait states

and bus cycles, 3-13
and chip-selects, 6-11–6-14
and DRAM controllers, 7-1
and external 82C59A device, 8-46
and ICU, 8-44
and PCB accesses, 4-4
and READY input, 3-13

Watchdog Timer (WDT) Unit, 12-1–12-13
and Interrupt Control Unit, 12-2
block diagram, 12-2
disabling, 12-6–12-8
down counter, reloading, 12-1, 12-3, 12-4
generating interrupts, 12-3
initializing, 12-5
output waveforms, 12-6
overview, 12-1–12-2
registers, 12-8–12-13
reset circuit, 12-2
using as general-purpose timer, 12-6
using as watchdog, 12-1–12-5

WDT Count Value Register, 12-11, 12-12
WDT Reload Value Register, 12-9, 12-10
Word integer, defined, 14-7
World Wide Web, 1-6
Write bus cycle, 3-23

Z
Zero Flag (ZF), 2-7, 2-9, 2-23
Index-10

	Title Page
	Copyright Page
	Contents
	CHAPTER 1 Introduction
	1.1 How to Use This Manual
	1.2 Related Documents
	1.3 Electronic Support Systems
	1.3.1 FaxBack Service
	1.3.2 Bulletin Board System (BBS)
	1.3.2.1 How to Find ApBUILDER Software and Hyperte...

	1.3.3 CompuServe Forums
	1.3.4 World Wide Web

	1.4 Technical Support
	1.6 Training Classes
	1.5 Product Literature

	CHAPTER 2 Overview of the 80C186 Family Architectu...
	2.1 Architectural Overview
	2.1.1 Execution Unit
	2.1.2 Bus Interface Unit
	2.1.3 General Registers
	2.1.4 Segment Registers
	2.1.5 Instruction Pointer
	2.1.6 Flags
	2.1.7 Memory Segmentation
	2.1.8 Logical Addresses
	2.1.9 Dynamically Relocatable Code
	2.1.10 Stack Implementation
	2.1.11 Reserved Memory and I/O Space

	2.2 Software Overview
	2.2.1 Instruction Set
	2.2.1.1 Data Transfer Instructions
	2.2.1.2 Arithmetic Instructions
	2.2.1.3 Bit Manipulation Instructions
	2.2.1.4 String Instructions
	2.2.1.5 Program Transfer Instructions
	2.2.1.6 Processor Control Instructions

	2.2.2 Addressing Modes
	2.2.2.1 Register and Immediate Operand Addressing ...
	2.2.2.2 Memory Addressing Modes
	2.2.2.3 I/O Port Addressing
	2.2.2.4 Data Types Used in the 80C186 Modular Core...

	2.3 Interrupts and Exception Handling
	2.3.1 Interrupt/Exception Processing
	2.3.1.1 Non-Maskable Interrupts
	2.3.1.2 Maskable Interrupts
	2.3.1.3 Exceptions

	2.3.2 Software Interrupts
	2.3.3 Interrupt Latency
	2.3.4 Interrupt Response Time
	2.3.5 Interrupt and Exception Priority

	CHAPTER 3 Bus Interface Unit
	3.1 Multiplexed Address and Data Bus
	3.2 Address and Data Bus Concepts
	3.2.1 16-Bit Data Bus
	3.2.2 8-Bit Data Bus

	3.3 Memory and I/O Interfaces
	3.3.1 16-Bit Bus Memory and I/O Requirements
	3.3.2 8-Bit Bus Memory and I/O Requirements

	3.4 Bus Cycle Operation
	3.4.1 Address/Status Phase
	3.4.2 Data Phase
	3.4.3 Wait States
	3.4.4 Idle States

	3.5 Bus Cycles
	3.5.1 Read Bus Cycles
	3.5.1.1 Refresh Bus Cycles

	3.5.2 Write Bus Cycles
	3.5.3 Interrupt Acknowledge Bus Cycle
	3.5.3.1 System Design Considerations

	3.5.4 HALT Bus Cycle
	3.5.5 Temporarily Exiting the HALT Bus State
	3.5.6 Exiting HALT

	3.6 System Design Alternatives
	3.6.1 Buffering the Data Bus
	3.6.2 Synchronizing Software and Hardware Events
	3.6.3 Using a Locked Bus

	3.7 Multi-master Bus System Designs
	3.7.1 Entering Bus HOLD
	3.7.1.1 HOLD Bus Latency
	3.7.1.2 Refresh Operation During a Bus HOLD

	3.7.2 Exiting HOLD

	3.8 Bus Cycle Priorities

	CHAPTER 4 Peripheral Control Block
	4.1 Peripheral Control Registers
	4.2 PCB Relocation Register
	4.3 Reserved Locations
	4.4 Accessing the Peripheral Control Block
	4.4.1 Bus Cycles
	4.4.2 READY Signals and Wait States
	4.4.3 F-Bus Operation

	4.5 Setting the PCB Base Location
	4.5.1 Considerations for the 80C187 Math Coprocess...
	4.4.3.1 Writing the PCB Relocation Register
	4.4.3.2 Accessing the Peripheral Control Registers...
	4.4.3.3 Accessing Reserved Locations

	CHAPTER 5 Clock Generation and Power Management
	5.1 Clock Generation
	5.1.1 Crystal Oscillator
	5.1.1.1 Oscillator Operation
	5.1.1.2 Selecting Crystals

	5.1.2 Using an External Oscillator
	5.1.3 Output from the Clock Generator
	5.1.4 Reset and Clock Synchronization

	5.2 Power Management
	5.2.1 Idle Mode
	5.2.1.1 Entering Idle Mode
	5.2.1.2 Bus Operation During Idle Mode
	5.2.1.3 Leaving Idle Mode
	5.2.1.4 Example Idle Mode Initialization Code
	Example 5�1. Initializing the Power Management Uni...

	5.2.2 Powerdown Mode
	5.2.2.1 Entering Powerdown Mode
	5.2.2.2 Leaving Powerdown Mode

	5.2.3 Power-Save Mode
	5.2.3.1 Entering Power-Save Mode
	5.2.3.2 Leaving Power-Save Mode
	5.2.3.3 Example Power-Save Initialization Code
	Example 5�2. Initializing the Power Management Uni...

	5.2.4 Implementing a Power Management Scheme

	CHAPTER 6 Chip-Select Unit
	6.1 Common Methods for Generating Chip-Selects
	6.2 Chip-Select Unit Features and Benefits
	6.3 Chip-Select Unit Functional Overview
	6.4 Programming
	6.4.1 Initialization Sequence
	6.4.2 Start Address
	6.4.3 Stop Address
	6.4.4 Enabling and Disabling Chip-Selects
	6.4.5 Bus Wait State and Ready Control
	6.4.6 Overlapping Chip-Selects
	6.4.7 Memory or I/O Bus Cycle Decoding
	6.4.8 Programming Considerations

	6.5 Chip-Selects And Bus Hold
	6.6 Examples
	6.6.1 Example 1: Typical System Configuration
	Example 6�1. Initializing the Chip-Select Unit
	6.6.2 Example 2: Detecting Attempts to Access Guar...

	CHAPTER 7 Refresh Control Unit
	7.1 The Role of the Refresh Control Unit
	7.2 Refresh Control Unit Capabilities
	7.3 Refresh Control Unit Operation
	7.4 Refresh Addresses
	7.5 Refresh Bus Cycles
	7.6 Guidelines for Designing DRAM Controllers
	7.7 Programming the Refresh Control Unit
	7.7.1 Calculating the Refresh Interval
	7.7.2 Refresh Control Unit Registers
	7.7.2.1 Refresh Base Address Register
	7.7.2.2 Refresh Clock Interval Register
	7.7.2.3 Refresh Control Register
	7.7.2.4 Refresh Address Register

	7.7.3 Programming Example
	Example 7�1. Initializing the Refresh Control Unit...

	7.8 Refresh Operation and Bus HOLD

	CHAPTER 8 Interrupt Control Unit
	8.1 Functional Overview: the Interrupt Controller
	8.2 Interrupt Priority and Nesting
	8.3 OVERVIEW of the 8259A ARCHITECTURE
	8.3.1 A Typical Interrupt Sequence Using the 8259A...
	8.3.2 Interrupt Requests
	8.3.2.1 Edge and Level Triggering
	8.3.2.2 The Interrupt Request Register
	8.3.2.3 Spurious Interrupts

	8.3.3 The Priority Resolver and Priority Resolutio...
	8.3.3.1 Default (Fixed) Priority
	8.3.3.2 Changing the Default Priority: Specific Ro...
	8.3.3.3 Changing the Default Priority: Automatic R...

	8.3.4 The In-Service Register
	8.3.4.1 Clearing the In-Service Bits: Non-Specific...
	8.3.4.2 Clearing the In-Service Bits: Specific End...
	8.3.4.3 Automatic End-Of-Interrupt Mode

	8.3.5 Masking Interrupts
	8.3.6 Cascading 8259As
	8.3.6.1 Master/Slave Connection
	8.3.6.2 The Cascaded Interrupt Acknowledge Cycle: ...
	8.3.6.3 Master Cascade Configuration
	8.3.6.4 Slave ID
	8.3.6.5 Issuing EOI Commands in a Cascaded System
	8.3.6.6 Spurious Interrupts in a Cascaded System

	8.3.7 Alternate Modes of Operation: Special Mask M...
	8.3.8 Alternate Modes of Operation: Special Fully ...
	8.3.9 Alternate Modes of Operation: The Poll Comma...

	8.4 Programming the 8259A Module
	8.4.1 Initialization and Operation Command Words
	8.4.2 Programming Sequence and Register Addressing...
	8.4.3 Initializing the 8259A Module
	8.4.3.1 8259A Initialization Sequence
	8.4.3.2 ICW1: Edge/Level Mode, Single/Cascade Mode...
	8.4.3.3 ICW2: Base Interrupt Type
	8.4.3.4 ICW3: Cascaded Pins/Slave Address
	8.4.3.5 ICW4: Special Fully Nested Mode, EOI Mode,...

	8.4.4 The Operation Command Words
	8.4.4.1 Masking Interrupts: OCW1
	8.4.4.2 EOI And Interrupt Priority: OCW2
	8.4.4.3 Special Mask Mode, Poll Mode and Register ...

	8.5 Module Integration: The 80C186EC Interrupt Con...
	8.5.1 Internal Interrupt Sources
	8.5.1.1 Directly Supported Internal Interrupt Sour...
	8.5.1.2 Indirectly Supported Internal Interrupt So...
	8.5.1.3 Using the Interrupt Request Latch Register...
	8.5.1.4 Using the Interrupt Request Latch Register...

	8.6 Hardware Considerations With the Interrupt Con...
	8.6.1 Interrupt Latency and Response Time
	8.6.2 Resetting the Edge Detector
	8.6.3 Ready Generation
	8.6.4 Connecting External 8259A Devices
	8.6.4.1 The External INTA Cycle
	8.6.4.2 Timing Constraints

	8.7 Module Examples
	Example 8�1. Initializing the Interrupt Control Un...
	Example 8�2. Template for a Simple Interrupt Handl...
	Example 8�3. Using the Poll Command

	CHAPTER 9 Timer/Counter Unit
	9.1 Functional Overview
	9.2 Programming the Timer/Counter Unit
	9.2.1 Initialization Sequence
	9.2.2 Clock Sources
	9.2.3 Counting Modes
	9.2.3.1 Retriggering

	9.2.4 Pulsed and Variable Duty Cycle Output
	9.2.5 Enabling/Disabling Counters
	9.2.6 Timer Interrupts
	9.2.7 Programming Considerations

	9.3 Timing
	9.3.1 Input Setup and Hold Timings
	9.3.2 Synchronization and Maximum Frequency
	9.3.2.1 Timer/Counter Unit Application Examples

	9.3.3 Real-Time Clock
	9.3.4 Square-Wave Generator
	9.3.5 Digital One-Shot

	Example 9�1. Configuring a Real-Time Clock
	Example 9�2. Configuring a Square-Wave Generator
	Example 9�3. Configuring a Digital One-Shot

	CHAPTER 10 Direct Memory Access Unit
	10.1 Functional Overview
	10.1.1 The DMA Transfer
	10.1.1.1 DMA Transfer Directions
	10.1.1.2 Byte and Word Transfers

	10.1.2 Source and Destination Pointers
	10.1.3 DMA Requests
	10.1.4 External Requests
	10.1.4.1 Source Synchronization
	10.1.4.2 Destination Synchronization

	10.1.5 Internal Requests
	10.1.5.1 Integrated Peripheral Requests
	10.1.5.2 Timer 2-Initiated Transfers
	10.1.5.3 Serial Communications Unit Transfers
	10.1.5.4 Unsynchronized Transfers

	10.1.6 DMA Transfer Counts
	10.1.7 Termination and Suspension of DMA Transfers...
	10.1.7.1 Termination at Terminal Count
	10.1.7.2 Software Termination
	10.1.7.3 Suspension of DMA During NMI
	10.1.7.4 Software Suspension

	10.1.8 DMA Unit Interrupts
	10.1.9 DMA Cycles and the BIU
	10.1.10 The Two-Channel DMA Module
	10.1.10.1 DMA Channel Arbitration
	10.1.10.1.1 Fixed Priority

	10.1.10.1.2 Rotating Priority
	10.1.10.1.3 The Internal DMA Request Multiplexer

	10.1.11 DMA Module Integration
	10.1.11.1 DMA Unit Structure

	10.2 Programming the DMA Unit
	10.2.1 DMA Channel Parameters
	10.2.1.1 Programming the Source and Destination Po...
	10.2.1.2 Selecting Byte or Word Size Transfers
	10.2.1.3 Selecting the Source of DMA Requests
	10.2.1.4 Arming the DMA Channel
	10.2.1.5 Selecting Channel Synchronization
	10.2.1.6 Programming the Transfer Count Options
	10.2.1.7 Generating Interrupts on Terminal Count
	10.2.1.8 Setting the Relative Priority of a Channe...

	10.2.2 Setting the Inter-Module Priority
	10.2.3 Using the DMA Unit with the Serial Ports
	10.2.4 Suspension of DMA Transfers Using the DMA H...
	10.2.5 Initializing the DMA Unit

	10.3 Hardware Considerations and the DMA Unit
	10.3.1 DRQ Pin Timing Requirements
	10.3.2 DMA Latency
	10.3.3 DMA Transfer Rates
	10.3.4 Generating a DMA Acknowledge

	10.4 DMA Unit Examples
	Example 10�1. Initializing the DMA Unit
	Example 10�2. DMA-Driven Serial Transfers
	Example 10�3. Timed DMA Transfers

	CHAPTER 11 Serial Communications Unit
	11.1 Introduction
	11.1.1 Asynchronous Communications
	11.1.1.1 RX Machine
	11.1.1.2 TX Machine
	11.1.1.3 Modes 1, 3 and 4
	11.1.1.4 Mode 2

	11.1.2 Synchronous Communications

	11.2 Programming
	11.2.1 Baud Rates
	11.2.2 Asynchronous Mode Programming
	11.2.2.1 Modes 1, 3 and 4 for Stand-alone Serial C...
	11.2.2.2 Modes 2 and 3 for Multiprocessor Communic...
	11.2.2.3 Sending and Receiving a Break Character

	11.2.3 Programming in Mode 0

	11.3 Hardware Considerations for the Serial Port
	11.3.1 CTS Pin Timings
	11.3.2 BCLK Pin Timings
	11.3.3 Mode 0 Timings
	11.3.3.1 CLKOUT as Baud Timebase Clock
	11.3.3.2 BCLK as Baud Timebase Clock

	11.4 Serial Communications Unit Interrupts
	11.5 Serial Port Examples
	11.5.1 Asynchronous Mode Example
	Example 11�1. Asynchronous Mode 4 Example

	11.5.2 Mode 0 Example
	Example 11�2. Mode 0 Example

	11.5.3 Master/Slave Example
	Example 11�3. Master/Slave — Implementing the Mast...
	Example 11�4. Master/Slave — The _select_slave Rou...
	Example 11�5. Master/Slave — The slave_1 Routine
	Example 11�6. Master/Slave — The _send_slave_comma...

	CHAPTER 12 Watchdog Timer Unit
	12.1 Functional Overview
	12.2 Using the Watchdog Timer as a System Watchdog...
	12.2.1 Reloading the Watchdog Timer Down Counter
	12.2.2 Watchdog Timer Reload Value
	Example 12�1. Reload Sequence (Peripheral Control ...
	Example 12�2. Reload Sequence (Peripheral Control ...

	12.2.3 Initialization

	12.3 Using the Watchdog Timer as a General-Purpose...
	12.4 Disabling the Watchdog Timer
	Example 12�3. Disabling the Watchdog Timer (Periph...
	Example 12�4. Disabling the Watchdog Timer (Periph...

	12.5 Watchdog Timer Registers
	12.6 Initialization Example
	Example 12�5. Initializing the Watchdog Timer (Per...

	CHAPTER 13 Input/Output Ports
	13.1 Functional Overview
	13.1.1 Bidirectional Port
	13.1.2 Output Port
	13.1.3 Open-Drain Bidirectional Port
	13.1.4 Port Pin Organization
	13.1.4.1 Port 1 Organization
	13.1.4.2 Port 2 Organization
	13.1.4.3 Port 3 Organization

	13.2 Programming the I/O Port Unit
	13.2.1 Port Control Register
	13.2.2 Port Direction Register
	13.2.3 Port Data Latch Register
	13.2.4 Port Pin State Register
	13.2.5 Initializing the I/O Ports

	13.3 Programming Example
	Example 13�1. I/O Port Programming Example

	CHAPTER 14 Math Coprocessing
	14.1 Overview of Math Coprocessing
	14.2 Availability of Math Coprocessing
	14.3 The 80c187 Math Coprocessor
	14.3.1 80C187 Instruction Set
	14.3.1.1 Data Transfer Instructions
	14.3.1.2 Arithmetic Instructions
	14.3.1.3 Comparison Instructions
	14.3.1.4 Transcendental Instructions
	14.3.1.5 Constant Instructions
	14.3.1.6 Processor Control Instructions

	14.3.2 80C187 Data Types

	14.4 Microprocessor and Coprocessor Operation
	14.4.1 Clocking the 80C187
	14.4.2 Processor Bus Cycles Accessing the 80C187
	14.4.3 System Design Tips
	14.4.4 Exception Trapping

	14.5 Example Math Coprocessor Routines
	Example 14�1. Initialization Sequence for 80C187 M...
	Example 14�2. Floating Point Math Routine Using FS...

	CHAPTER 15 Once Mode
	15.1 Entering/Leaving Once Mode

	APPENDIX A 80C186 Instruction Set Additions and Ex...
	A.1 80C186 Instruction Set Additions
	A.1.1 Data Transfer Instructions
	A.1.2 String Instructions
	A.1.3 High-Level Instructions

	A.2 80C186 Instruction Set Enhancements
	A.2.1 Data Transfer Instructions
	A.2.2 Arithmetic Instructions
	A.2.3 Bit Manipulation Instructions
	A.2.3.1 Shift Instructions
	A.2.3.2 Rotate Instructions

	APPENDIX B Input Synchronization
	B.1 Why Synchronizers are Required
	B.2 Asynchronous Pins

	APPENDIX C Instruction Set Descriptions
	APPENDIX D Instruction Set Opcodes and Clock Cycle...
	Tables
	Table 1�1. Comparison of 80C186 Modular Core Famil...
	Table 1�2. Related Documents and Software�(Continu...
	Table 2�1. Implicit Use of General Registers
	Table 2�2. Logical Address Sources �
	Table 2�3. Data Transfer Instructions �
	Table 2�4. Arithmetic Instructions �
	Table 2�5. Arithmetic Interpretation of 8-Bit Numb...
	Table 2�6. Bit Manipulation Instructions �
	Table 2�7. String Instructions �
	Table 2�8. String Instruction Register and Flag Us...
	Table 2�9. Program Transfer Instructions �
	Table 2�10. Interpretation of Conditional Transfer...
	Table 2�11. Processor Control Instructions
	Table 2�12. Supported Data Types �
	Table 3�1. Bus Cycle Types �
	Table 3�2. Read Bus Cycle Types �
	Table 3�3. Read Cycle Critical Timing Parameters �...
	Table 3�4. Write Bus Cycle Types
	Table 3�5. Write Cycle Critical Timing Parameters ...
	Table 3�6. HALT Bus Cycle Pin States
	Table 3�7. Signal Condition Entering HOLD �
	Table 4�1. Peripheral Control Block
	Table 4�2.
	Table 4�3.
	Table 5�1. Suggested Values for Inductor L1 in Thi...
	Table 5�2. Summary of Power Management Modes �
	Table 6�1. Chip-Select Unit Registers �
	Table 6�2. Memory and I/O Compare Addresses �
	Table 6�3. Example Adjustments for Overlapping Chi...
	Table 7�1. Identification of Refresh Bus Cycles �
	Table 8�1. Operation Command Word Addressing
	Table 8�2. OCW2 Instruction Field Decoding (Contin...
	Table 9�1. Timer 0 and 1 Clock Sources
	Table 9�2. Timer Retriggering
	Table 10�1. DMA Unit Naming Conventions and Signal...
	Table 11�1. BxCMP Values for Typical Baud Rates an...
	Table 13�1. Port 1 Multiplexing Options
	Table 13�2. Port 2 Multiplexing Options �
	Table 13�3. Port 3 Multiplexing Options
	Table 14�1. 80C187 Data Transfer Instructions
	Table 14�2. 80C187 Arithmetic Instructions �
	Table 14�3. 80C187 Comparison Instructions �
	Table 14�4. 80C187 Transcendental Instructions �
	Table 14�5. 80C187 Constant Instructions
	Table 14�6. 80C187 Processor Control Instructions ...
	Table 14�7. 80C187 I/O Port Assignments
	Table C�1. Instruction Format Variables
	Table C�2. Instruction Operands
	Table C�3. Flag Bit Functions
	Table C�4. Instruction Set (Continued)
	Table D�1. Operand Variables
	Table D�2. Instruction Set Summary (Continued)
	Table D�3. Machine Instruction Decoding Guide (Con...
	Table D�4. Mnemonic Encoding Matrix (Left Half)�
	Table D�4. Mnemonic Encoding Matrix (Right Half)
	Table D�5. Abbreviations for Mnemonic Encoding Mat...

	Figures
	Figure 2�1. Simplified Functional Block Diagram of...
	Figure 2�2. Physical Address Generation
	Figure 2�3. General Registers
	Figure 2�4. Segment Registers
	Figure 2�5. Processor Status Word
	Figure 2�6. Segment Locations in Physical Memory
	Figure 2�7. Currently Addressable Segments
	Figure 2�8. Logical and Physical Address
	Figure 2�9. Dynamic Code Relocation
	Figure 2�10. Stack Operation
	Figure 2�11. Flag Storage Format
	Figure 2�12. Memory Address Computation
	Figure 2�13. Direct Addressing
	Figure 2�14. Register Indirect Addressing
	Figure 2�15. Based Addressing
	Figure 2�16. Accessing a Structure with Based Addr...
	Figure 2�17. Indexed Addressing
	Figure 2�18. Accessing an Array with Indexed Addre...
	Figure 2�19. Based Index Addressing
	Figure 2�20. Accessing a Stacked Array with Based ...
	Figure 2�21. String Operand
	Figure 2�22. I/O Port Addressing
	Figure 2�23. 80C186 Modular Core Family Supported ...
	Figure 2�24. Interrupt Control Unit
	Figure 2�25. Interrupt Vector Table
	Figure 2�26. Interrupt Sequence
	Figure 2�27. Interrupt Response Factors
	Figure 2�28. Simultaneous NMI and Exception
	Figure 2�29. Simultaneous NMI and Single Step Inte...
	Figure 2�30. Simultaneous NMI, Single Step and Mas...
	Figure 3�1. Physical Data Bus Models
	Figure 3�2. 16-Bit Data Bus Byte Transfers
	Figure 3�3. 16-Bit Data Bus Even Word Transfers
	Figure 3�4. 16-Bit Data Bus Odd Word Transfers
	Figure 3�5. 8-Bit Data Bus Word Transfers
	Figure 3�6. Typical Bus Cycle
	Figure 3�7. T-State Relation to CLKOUT
	Figure 3�8. BIU State Diagram
	Figure 3�9. T-State and Bus Phases
	Figure 3�10. Address/Status Phase Signal Relations...
	Figure 3�11. Demultiplexing Address Information
	Figure 3�12. Data Phase Signal Relationships
	Figure 3�13. Typical Bus Cycle with Wait States
	Figure 3�14. READY Pin Block Diagram
	Figure 3�15. Generating a Normally Not-Ready Bus S...
	Figure 3�16. Generating a Normally Ready Bus Signa...
	Figure 3�17. Normally Not-Ready System Timing
	Figure 3�18. Normally Ready System Timings
	Figure 3�19. Typical Read Bus Cycle
	Figure 3�20. Read-Only Device Interface
	Figure 3�21. Typical Write Bus Cycle
	Figure 3�22. 16-Bit Bus Read/Write Device Interfac...
	Figure 3�23. Interrupt Acknowledge Bus Cycle
	Figure 3�24. Typical 82C59A Interface
	Figure 3�25. HALT Bus Cycle
	Figure 3�26. Returning to HALT After a HOLD/HLDA B...
	Figure 3�27. Returning to HALT After a Refresh Bus...
	Figure 3�28. Returning to HALT After a DMA Bus Cyc...
	Figure 3�29. Exiting HALT (Powerdown Mode)
	Figure 3�30. Exiting HALT (Active/Idle Mode)
	Figure 3�31. DEN and DT/R Timing Relationships
	Figure 3�32. Buffered AD Bus System
	Figure 3�33. Qualifying DEN with Chip-Selects
	Figure 3�34. Timing Sequence Entering HOLD
	Figure 3�35. Refresh Request During HOLD
	Figure 3�36. Latching HLDA
	Figure 3�37. Exiting HOLD
	Figure 4�1. PCB Relocation Register
	Figure 5�1. Clock Generator
	Figure 5�2. Ideal Operation of Pierce Oscillator
	Figure 5�3. Crystal Connections to Microprocessor
	Figure 5�4. Equations for Crystal Calculations
	Figure 5�5. Simple RC Circuit for Powerup Reset
	Figure 5�6. Cold Reset Waveform
	Figure 5�7. Warm Reset Waveform
	Figure 5�8. Clock Synchronization at Reset
	Figure 5�9. Power Control Register
	Figure 5�10. Entering Idle Mode
	Figure 5�11. HOLD/HLDA During Idle Mode
	Figure 5�12. Entering Powerdown Mode
	Figure 5�13. Powerdown Timer Circuit
	Figure 5�14. Power-Save Register
	Figure 5�15. Power-Save Clock Transition
	Figure 6�1. Common Chip-Select Generation Methods
	Figure 6�2. Chip-Select Block Diagram
	Figure 6�3. Chip-Select Relative Timings
	Figure 6�4. UCS Reset Configuration
	Figure 6�5. START Register Definition
	Figure 6�6. STOP Register Definition
	Figure 6�6. STOP Register Definition (Continued)
	Figure 6�7. Wait State and Ready Control Functions...
	Figure 6�8. Overlapping Chip-Selects
	Figure 6�9. Using Chip-Selects During HOLD
	Figure 6�10. Typical System
	Figure 6�11. Guarded Memory Detector
	Figure 7�1. Refresh Control Unit Block Diagram
	Figure 7�2. Refresh Control Unit Operation Flow Ch...
	Figure 7�3. Refresh Address Formation
	Figure 7�4. Suggested DRAM Control Signal Timing R...
	Figure 7�5. Formula for Calculating Refresh Interv...
	Figure 7�6. Refresh Base Address Register
	Figure 7�7. Refresh Clock Interval Register
	Figure 7�8. Refresh Control Register
	Figure 7�9. Refresh Address Register
	Figure 7�10. Regaining Bus Control to Run a DRAM R...
	Figure 8�1. Interrupt Control Unit Block Diagram
	Figure 8�2. Interrupt Acknowledge Cycle
	Figure 8�3. 8259A Module Block Diagram
	Figure 8�4. Priority Cell
	Figure 8�5. Spurious Interrupts
	Figure 8�6. Default Priority
	Figure 8�7. Specific Rotation
	Figure 8�8. Automatic Rotation
	Figure 8�9. Typical Cascade Connection
	Figure 8�10. Spurious Interrupts in a Cascaded Sys...
	Figure 8�11. 8259A Module Initialization Sequence
	Figure 8�12. ICW1 Register
	Figure 8�13. ICW2 Register
	Figure 8�14. ICW3 Register — Master Cascade Config...
	Figure 8�15. ICW3 Register — Slave ID
	Figure 8�16. ICW4 Register
	Figure 8�17. OCW1 — Interrupt Mask Register
	Figure 8�18. OCW2 Register
	Figure 8�19. OCW3 Register
	Figure 8�20. Poll Status Byte
	Figure 8�21. Interrupt Request Latch Register Func...
	Figure 8�22. Default Slave 8259 Module Priority
	Figure 8�23. Multiplexed Interrupt Requests
	Figure 8�24. DMA Interrupt Request Latch Register
	Figure 8�25. Serial Communications Interrupt Reque...
	Figure 8�26. Timer Interrupt Request Latch Registe...
	Figure 8�27. Interrupt Resolution Time
	Figure 8�28. Resetting the Edge Detection Circuit
	Figure 8�29. Typical Cascade Connection for 82C59A...
	Figure 8�30. Software Wait State for External 82C5...
	Figure 9�1. Timer/Counter Unit Block Diagram
	Figure 9�2. Counter Element Multiplexing and Timer...
	Figure 9�3. Timers 0 and 1 Flow Chart
	Figure 9�3. Timers 0 and 1 Flow Chart (Continued)
	Figure 9�4. Timer/Counter Unit Output Modes
	Figure 9�5. Timer 0 and Timer 1 Control Registers
	Figure 9�5. Timer 0 and Timer 1 Control Registers ...
	Figure 9�6. Timer 2 Control Register
	Figure 9�7. Timer Count Registers
	Figure 9�8. Timer Maxcount Compare Registers
	Figure 9�9. TxOUT Signal Timing
	Figure 10�1. Typical DMA Transfer
	Figure 10�2. DMA Request Minimum Response Time
	Figure 10�3. Source-Synchronized Transfers
	Figure 10�4. Destination-Synchronized Transfers
	Figure 10�5. Two-Channel DMA Module
	Figure 10�6. Examples of DMA Priority
	Figure 10�7. Internal DMA Request Multiplexer
	Figure 10�8. 80C186EC/C188EC DMA Unit
	Figure 10�9. DMA Source Pointer (High-Order Bits)
	Figure 10�10. DMA Source Pointer (Low-Order Bits)
	Figure 10�11. DMA Destination Pointer (High-Order ...
	Figure 10�12. DMA Destination Pointer (Low-Order B...
	Figure 10�13. DMA Control Register
	Figure 10�13. DMA Control Register (Continued)
	Figure 10�13. DMA Control Register (Continued)
	Figure 10�14. DMA Module Priority Register
	Figure 10�15. Transfer Count Register
	Figure 10�16. DMA Module HALT Register
	Figure 11�1. Typical 10-Bit Asynchronous Data Fram...
	Figure 11�2. RX Machine
	Figure 11�3. TX Machine
	Figure 11�4. Mode 1 Waveform
	Figure 11�5. Mode 3 Waveform
	Figure 11�6. Mode 4 Waveform
	Figure 11�7. Mode 0 Waveforms
	Figure 11�8. Serial Receive Buffer Register (SxRBU...
	Figure 11�9. Serial Transmit Buffer Register (SxTB...
	Figure 11�10. Baud Rate Counter Register (BxCNT)
	Figure 11�11. Baud Rate Compare Register (BxCMP)
	Figure 11�12. Calculating the BxCMP Value for a Sp...
	Figure 11�13. Serial Port Control Register (SxCON)...
	Figure 11�14. Serial Port Status Register (SxSTS)
	Figure 11�14. Serial Port Status Register (Continu...
	Figure 11�15. CTS Recognition Sequence
	Figure 11�16. BCLK Synchronization
	Figure 11�17. Mode 0, BxCMP > 2
	Figure 11�18. Master/Slave Example
	Figure 12�1. Block Diagram of the Watchdog Timer U...
	Figure 12�2. Watchdog Timer Reset Circuit
	Figure 12�3. Generating Interrupts with the Watchd...
	Figure 12�4. WDTOUT Waveforms
	Figure 12�5. WDT Reload Value (High)
	Figure 12�6. WDT Reload Value (Low)
	Figure 12�7. WDT Count Value (High)
	Figure 12�8. WDT Count Value (Low)
	Figure 13�1. Simplified Logic Diagram of a Bidirec...
	Figure 13�2. Simplified Logic Diagram of an Output...
	Figure 13�3. Simplified Logic Diagram of an Open-D...
	Figure 13�4. Port Control Register (PxCON)
	Figure 13�5. Port Direction Register (PxDIR)
	Figure 13�6. Port Data Latch Register (PxLTCH)
	Figure 13�7. Port Pin State Register (PxPIN)
	Figure 14�1. 80C187-Supported Data Types
	Figure 14�2. 80C186 Modular Core Family/80C187 Sys...
	Figure 14�3. 80C187 Configuration with a Partially...
	Figure 14�4. 80C187 Exception Trapping via Process...
	Figure 15�1. Entering/Leaving ONCE Mode
	Figure A�1. Formal Definition of ENTER
	Figure A�2. Variable Access in Nested Procedures
	Figure A�3. Stack Frame for Main at Level 1
	Figure A�4. Stack Frame for Procedure A at Level 2...
	Figure A�5. Stack Frame for Procedure B at Level 3...
	Figure A�6. Stack Frame for Procedure C at Level 3...
	Figure B�1. Input Synchronization Circuit

