
Gorry Fairhurst

EG2069: Part 1

Introduction to Computers

Gorry Fairhurst

Dept of Engineering
University of Aberdeen
(c) 2000.

Gorry Fairhurst

Gorry Fairhurst

No fixed definition...

“A computer is a machine which can accept data, process
the data and supply the results. The term is used for any
computing device that operates according to a stored
program.”

Gorry Fairhurst

Input
Peripherals

Output
Peripherals

Storage
Peripherals

Memory

Central
Processing

Unit

A Computer

Logic Board

Gorry Fairhurst

Peripheral Devices

Magnetic Tape
Magnetic Disks
Magneto-Optical
Discs
CD-RW
DVD-RAM
Flash Card

Printer
Plotter
Punched Paper Tape
CD-R
DVD-ROM
EPROM
Modem

Output Devices

Storage Devices
Scanner
Optical Character Recognition
Mouse
Keyboard
Microphone
Bar Code Reader
CD /CD-R
DVD/DVD-ROM
EPROM
Modem

Input Devices

Input
Peripherals

Output
Peripherals

Storage
Peripherals

Memory

Central
Processing

Unit

Gorry Fairhurst

Input
Peripherals

CPU

Storage
Peripherals

Output
Peripherals

ControllersMemory

Peripheral Bus (e.g. SCSI, USB, Firewire)

Memory Bus (Data, Address, Control)

Computer Busses

Gorry Fairhurst

0
00

2
1

Binary Numbers

Gorry Fairhurst

One “BIT”
or BInary digiT

A bit can take only one of two values:

It is always either 0 or 1

Definition of a BIT

Gorry Fairhurst

0
00

2
1

A single bit is not very useful

Bits are grouped together to form groups

Nybbles, Bytes and Words

Gorry Fairhurst

Dec. Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Binary to Decimal

Convert by adding weights of digits

e.g. consider the binary number 1010
1010 = 1x23+0x22+1x21+0x20

= 8+2
= 10.

The same process as in decimal

e.g. 305 = 3x102+0x101+5x100

N.B. 100 in decimal = one hundred
100 in binary = four

Gorry Fairhurst

Dec. Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Decimal to Binary

Use repeated division by 2,
and record the remainders

e.g. convert 12 in decimal to binary

12 /2 = 6 rem 0
 6/2 = 3 rem 0
 3/2 = 1 rem 1
 1/2 = 0 rem 1

Reading the remainders upwards:
12 is 1100 in binary

You can check by converting it back:
1100 = 1x23+1x22+0x21+0x20

= 8+4 =12

Gorry Fairhurst

0 1
00

1

Binary Digit (BIT)

Carry

 Value in hexadecimal

Model of a Register

Computers hold binary values in a “register”

Consider the process of incrementing a register
(adding one to the value stored in the register)

Gorry Fairhurst

0
00

2
1

most significant bit (msb)

least significant bit (lsb)

register ++

Incrementing the Model Register

Gorry Fairhurst

00
31 1

20 = 1
21 = 2

22 = 4
23 = 8

register ++

Incrementing the Model Register

Gorry Fairhurst

00
3

1 1
0

4
1

00

To add n, turn handle “n” times.

N.B.Real registers don’t use handles!!!
They use logic gates - but they do generate carries between digits

register ++

Incrementing the Model Register

Gorry Fairhurst

010
+ 101
 111

110
+ 101
 1011
 1

101
+ 011
 1000
 111

Adding binary numbers

0
+ 0

0

0
+ 1

1

1
+ 0

1

1
+ 1

1 1

Adding single digits

Binary Addition

0

Carry

Gorry Fairhurst

0
00

21

Groups of 4 Bits

In general a group of n bits
may represent a set of 2n values

i.e. digits {0,1,2, ... , (2n-1)}

For 4 bits, n=4 therefore 24 or 16 values

Digits 0..15 {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

It’s not convienent to use two symbols for one digit!!!

So we normally use letters for digits greater than 9

Hence: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

Gorry Fairhurst

Dec. Hex. Binary
0 0x0 0000
1 0x1 0001
2 0x2 0010
3 0x3 0011
4 0x4 0100
5 0x5 0101
6 0x6 0110
7 0x7 0111
8 0x8 1000
9 0x9 1001
10 0xA 1010
11 0xB 1011
12 0xC 1100
13 0xD 1101
14 0xE 1110
15 0xF 1111

Converting Hexadecimal to Binary

Numbers represented by digits {0..F}
use base 16, or hexadecimal

Each hexadecimal digit may be
represented by 4 bit.

To convert a hexadecimal number
to binary convert each digit:
0x01FF = 0000 0001 1111 1111

Similarly:
1111 1111 0000 0000 =0xF0

N.B. To recognise hex numbers
we usually write “0x” before them!

Gorry Fairhurst

Dec. Hex.
0 0x0
1 0x1
2 0x2
3 0x3
4 0x4
5 0x5
6 0x6
7 0x7
8 0x8
9 0x9
10 0xA
11 0xB
12 0xC
13 0xD
14 0xE
15 0xF

Converting Hexadecimal to Decimal

Convert Hex to decimal by adding
weights of digits
0x1C7 = 1x162+Cx161+7x160

= 1x256+12x16+7
= 455.

Convert Decimal to Hexadecimal by
repeated division by 16.
e.g. convert 456 to hex

456 /16 = 28 rem 8 (0x8)
28/16 = 1 rem 12 (0xC)
 1/16 = 0 rem 1 (0x1)

Reading the remainders upwards:
456 is 0x1C8 in hexadecimal

Gorry Fairhurst

53241 ÷16 = 3327 R 9 (0x9)

3327 ÷16 = 207 R 15 10 (0xF)

207 ÷16 = 12 R 15 10 (0xF)

12 ÷16 = 0 R 12 10 (0xC)
53241 = 0x00CFF9

Decimal to Hexadecimal
Converting 53241 decimal to hexadecimal:

Converting 0x00CFF9 to decimal:
= (9 x 163) +(15x162) (15x161) +(12x160)
= 53241

Hexadecimal to Decimal
Value of digit

Position of digit

lsb

msb

Convention that positive numbers start with 0x0

More Examples

Gorry Fairhurst

 20 0x14 0001 0100
+5 +0x05 +0000 0101

=25 =0x19 =0001 1001

0 + 1 = 1

0 + 0 = 0

1+1 = 0, c

0 + 0 + c = 1

0 + 1 = 1

a b c S C

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

N.B.
Sum = 1 if there are an odd number of 1’s
Carry = 1 if there are two or more 1’s

3 bit binary adder

Hexadecimal Addition

Gorry Fairhurst

Binary
2 values per digit {0,1}

e.g. 10100 = 1x24+0x23+1x22+0x21+0x20

Decimal
10 values per digit {0,1,2,3,4,5,6,7,8,9}

e.g. 20 = 2x101+0x100

Hexadecimal
16 values per digit {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E.F}

e.g.14 = 1x161+4x160

Number Systems

Gorry Fairhurst

Examples using a 32 bit register
(8 hexadecimal digits)

1’s Complement (bit-wise inversion)

int x
x = ~x

e.g.

20 = 0x00000014

-20 = 0xFFFFFFEB

Note that the size of
variable determines
how many digits!

int’s are
normally 4 r1
(or 8 nibbles)

0x means the
number is in
hexadecimal

msb = 0 for positive number
msb = 1 for negative number.

Hexadecimal Signed Numbers

Gorry Fairhurst

0

40xFFFC = -4

0xFFFB = -5

0xFFFD = -3

0xFFFE = -2
0xFFFF= -1 1

2

3

5

6

Increment Decrement

(-1) +1 = 0

Hexadecimal Signed Numbers

Gorry Fairhurst

Subtraction is difficult!

Easier to negate a value in 2’s complement and then add

 20 0x14 0001 0100 0001 0100
-5 - 0x05 - 0000 0101 +1111 1011

=15 =0x0F =0000 1111 = 0000 11 11

-5 as a
byte

A carry is generated
and ignored at the msb

Subtraction

Gorry Fairhurst

2’s Complement (true negation)

int x
x = (~x)+1

e.g.

20 = 0x00000014

-20 = 0xFFFFFFEC

Sufficient to add 1 or 2 zeros
before the first non-zero digit.

More care is needed to get the size
correct for negative numbers

Hexadecimal Signed Numbers

Examples using a 32 bit register
(8 hexadecimal digits)

Gorry Fairhurst

The binary value “1111 1101” has the msb set,
it may therefore be interpreted as either:

 The unsigned char 0x00FD (+253)

or

The signed char 2’s complement number 0xFD (-3)

N.B.
In C the size of the type “char” is one byte
It is important to know the type of the number
to determine the value when the msb is set to 1.

1111 1101

Signed and Unsigned Numbers

Sign bit

Gorry Fairhurst

0111 1101

0111 11010000 0000

char (8 bits)

0111 11010000 00000000 00000000 0000

short int (16 bits)

int (32 bits)

N.B. The assembler (or compiler) must determine the
size of each variable to use the correct instruction

Size of Variables

Gorry Fairhurst

0111 1101

0111 11010000 00000000 00000000 0000

1111 1101

1111 11011111 11111111 11111111 1111

1111 1101

1111 11010000 00000000 00000000 0000

int = signed char (125)

int = signed char (-3)

int = unsigned char (253)

N.B. For signed values, the sign must be extended

Type Conversion

Gorry Fairhurst

Multiplication by 2

Multiplication by 2 implies adding a 0 to a binary number

e.g. consider the binary number 1010 (10 in decimal) x 2
1010 x 2 = 10100

= 1x23 +0x23+1x22+0x21+0x20
= 20 (decimal)

This is a shift operation, each digit is shifted left.

The same process as in decimal!

In the C programming language we write
a shift right n places as <<n, meaning multiply by 2n
Hence 0x2<<1 = 0x4, 0x1<<2 =0x8.

Use long multiplication to multiply by other values.

Gorry Fairhurst

Division by 2

Division by 2 implies deleting a digit from a binary number

e.g. consider the binary number 1010 (10 in decimal) / 2
1010 / 2 = 101

= 1x22+0x21+1x20
= 5 (decimal)

This is a shift operation, each digit is shifted right.

The same process as in decimal!

In the C programming language we write
a shift right n places as >>n, meaning divide by 2n
Hence 0x2>>1 = 0x1, 0xF>>2 =0x3.

Use Booth’s algorithm to perform long division.

Gorry Fairhurst

00
3

1 10 8
1

00

Carry-In

Carry-Out
register <<1

0N.B.
0x04<<1 = 0x08
A shift left (<<) multiplies by 2

Model Left Shift Register

Gorry Fairhurst

00
3

1 10 8
0

0

Carry-Out

Carry-In (0)
register >>1

0N.B.
0x08>>1 = 0x04
A shift right (>>) divides by 2

1

Model Right Shift Register

Gorry Fairhurst

DQ DQ DQ DQ

D3

0

Shift Left

D2 D1 D0

4-Bit Shift Register

Shifting is actually implemented by a shift register

The basic operation is the same:
Output of each bit feeds the input of the next
The last bit generates a “carry”

Gorry Fairhurst

00
3

1 10 E
1

1

OR (preset)

 1100
OR 0010
= 1110

1 1

Bit-Wise Logical Operators in the Model Register

N.B. A OR 0 = A
A OR -1 = -1

Gorry Fairhurst

Bit-Wise Logical Operators in the Model Register

00
3

1 10 8
1 0

0

AND (clear)

 1100
& 1001
= 1000

0

0

N.B. A AND 0 = 0
A AND -1 = A

Gorry Fairhurst

1100
XOR
0101
=
1001

00
3

1 10 9
0

1

XOR (invert)

1

Bit-Wise Logical Operators in the Model Register

N.B. A XOR -1 = ~A

Gorry Fairhurst

Caches & Memory

Gorry Fairhurst

000 001 002 003

004 005 006 007

008 009 010 011
004

004

Storing Information in Memory

Every memory cell
has a unique address

Each piece of
information is stored
in a particular location

Gorry Fairhurst

0 0
1 11
2 5
3 23
4 12
5 62Address of byte Value of byte

(0...255)

Address and Values

Memory is normally thought of as linear list
(in computing we call this an array).

Memory locations normally store a single BYTE
(each location stores a number 0..255)

Gorry Fairhurst

To write a value to the 4th location:

(i) Set the memory address value to 4
(ii) Set the data register to the value (e.g. 23)
(iii) Activate the WRITE control
(iv) DISABLE the memory

0 0
1 11
2 5
3 23
4 12
5 62

004004

012 012

memory
address
register

memory
data
register

Disabled
Read
Writecontrol

Writing a Value to an Address

Gorry Fairhurst

0 0
1 11
2 5
3 23
4 12
5 62

004004

012 012

memory
address
register

memory
data
register

Disabled
Read
Writecontrol

Reading the Value at an Address

To read a value from the 4th location:

(i) Set the memory address value to 4
(ii) Set the memory to READ
(iii) The data register returns the value (e.g. 23)
(iv) DISABLE the memory

Gorry Fairhurst

Random Access Memory (RAM)

Read / Write supported

Used for storing programs and data

Looses all data when power removed (volatile)

Non-volatile alternatives:

ROM, EPROM, FLASH

Read &
write control

Gorry Fairhurst

Read Only Memory (ROM)

Program/Data is set at manufacture

May be mass-produced very cheaply

Can never be changed (except by replacing ROM)

Used for storing parts programs that never change
e.g. parts of operating system kernel (firmware)

For programs it is more flexible to use EPROM, FLASH

There is no
write control!

Gorry Fairhurst

Flash Memory

Program/Data is written by CPU

May be upgraded very easily

Used primarily for storing programs
and configuration data

Very expensive compared to ROM, EPROM

Much slower (particularly to write) than RAM

Read &
write controls

Gorry Fairhurst

Program/Data is written by an EPROM programmer

Whole chip needs to be erased
(needs to be taken out of computer)

Used primarily for storing programs

More expensive than ROM, but reusable

Erasable Programmable Read Only Memory

EPROM erased by
exposing window
to Ultra-Violet
Light

Erase, write,
read many times

Gorry Fairhurst

Volatile memory
(looses data when no power)

Non-volatile memory
(keeps data when no power)

Dynamic RAM
(cheap)

fast

main memory

Static RAM
(expensive)

very fast

cache
& I/O buffer

ROM
(cheap)

fast

programs
(one use)

EPROM
(cheap)

fast

programs
(reusable)

FLASH
(cheap)

slow

programs
and data

Memory

Gorry Fairhurst

Read/ Write
Clock

Address Bus (output)
Ready

Control Bus (output) Data Bus (in/out)

A0 An D0 Dn

Address, Data, & Control Bus

Gorry Fairhurst

1 to n
decoder

1 to n
decoder

Address bus

Data bus

CS
+Vcc

Power
Multiplexer

Read/Write
Control

Random Access Memory (RAM)

Selected memory cell
Intersection of row (y) and column (x)

Row select
(x)

Col select
(y)

Gorry Fairhurst

1 to n
decoder

Decoder

Input (binary word with n bits)

Output
(2n output pins)

The decoder selects only one output pin

Hence a 3 bit decoder selects 1 of 8 pins

An input of 100 (4)
places a 1 at the output pin 4
and a 0 at all other output pins.

An input of 101 (5)
places a 1 at the output pin 5
and a 0 at all other output pins.Dec. Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Gorry Fairhurst

Memory

CS A

DR/W

Decoder

Address bus

Control input that enables the chip
- if CS=0, ignores all other pins
- if CS=1, obeys R/W controls.

At any time, only one chip has CS=1,
others must have CS=0.

CS value obtained by feeding highest
bits of address bus to a decoder.
Each CS is connected to an output.

The lower bits of the address bus
connect to address pins of the chip.

Chip Select (CS)

Gorry Fairhurst0000
01FF

2000
03FF

4000
05FF

6000
8000

ROM

RAM

Controller

ROM

CS A

DR/W
RAM

CS A

DR/W
Controller

CS A

DR/W

Decoder
Address bus

Memory Map

Gorry Fairhurst0000
01FF

2000
03FF

4000
05FF

6000
07FF

8000

ROM

RAM

Controller

ROM first 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ROM last 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

RAM first 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RAM last 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Cont. first 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cont. last 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Decoder
inputs

Inputs to the Address Decoder

Gorry Fairhurst

Memory

CS A

DR/W
Memory

CS A

DR/W
Memory

CS A

DR/W

Decoder

Data bus

Address bus

R/W =1

Reading a Location in Memory

Gorry Fairhurst

Memory

CS A

DR/W
Memory

CS A

DR/W
Memory

CS A

DR/W

Decoder

Data bus

Address bus

R/W =0

Writing a Location in Memory

Gorry Fairhurst

0x01

0x02

0x03

0x04

0x05

0x06

....

Addresses

q: 0x06

a variable labelled “q”

The value of q:
q == 0x06

The address of q:
&q == 0x03

q used as a pointer:
*q == r == 0x06
(in assembler *q==(q))r: 0xFF

a variable labelled “r”
r == 0xFF
&r == 0x06

Addresses and Memory

Gorry Fairhurst

CPUs are faster than Memory

CPUMemory

CPUs operate much faster
than memory does!

Accessing memory is a
severe bottleneck

Gorry Fairhurst

Accessing Memory

Three fortunate observations:

Programs may be optimised
Using registers instead of memory to reduce data transfer

Programs often execute loops of instructions
The same instructions are often used many times

Programs usually read and write consecutive locations
Data are often stored in words, or larger groups of bytes

CPUMemory

Gorry Fairhurst
Caches can do three things to improve performance:

Recently read data kept in fast memory for quick re-use

They read locations from memory before they are required

They defer writing data to memory
Allowing program to continue while memory catches up

Caches

0x00E20,0xFF

0x0660B,0x01

The memory write queue

Bus
Controller

Memory

CPU

Cache
Controller

Gorry Fairhurst

Memory
0
1
2
3
4
5
6

Cache
0x0010
0x0012
0x0FF0
0x1001
0x10F0
0x10F4
0x10F8

Bus
Controller

CPU Cache
Controller

0x00E20,0xFF

0x0660B,0x01

0x00120,?

0x0330B,?

High speed bus

Lower speed
memory bus

Read Q

Write Q

Cache

Gorry Fairhurst
Memory

0
1
2
3
4
5
6

Cache
0x0010
0x0012
0x0FF0
0x1001
0x10F0
0x10F4
0x10F8

Bus
Controller

CPU Cache
Controller

Check Cache
using high
speed bus

Read Q

Write Q

Request 0x1001

Read from Memory (in Cache)

Part 1: Before looking at RAM,
check the locations stored in the Cache

Gorry Fairhurst

Read from Memory (in Cache)

Memory
0
1
2
3
4
5
6

Cache
0x0010
0x0012
0x0FF0
0x1001
0x10F0
0x10F4
0x10F8

Bus
Controller

CPU Cache
Controller

High speed bus

Lower speed
memory bus

Read Q

Write Q

Part 2: If the location is in the Cache,
use the value stored in the Cache

Gorry Fairhurst

Read from Memory (Not in Cache)

Memory
0
1
2
3
4
5
6

Cache
0x0001
0x0012
0x0FF0
0x1001
0x10F0
0x10F4
0x10F8

Bus
Controller

CPU Cache
Controller

0x0330B,?

2) Request Queued

3) Data copied
to cache
from memory

Read Q

Write Q

1) Request 0x0001

5) CPU receives
requested data

4) Replaces
old data

Part 2: If the location is NOT in the Cache,
fetch value from RAM (also store in Cache)

