
UNIVERSITAT DE GIRONA

ESCOLA POLITÈCNICA SUPERIOR

Department of Electrical, Electronics and Automatics Engineering

Màster Universitari en Informàtica Industrial, Automàtica,

Computació i Sistemes

(MIIACS)

Predicting and Diagnosing Delays
in a Workflow Environment

Submitted by

Albert Plà Planas

apla@eia.udg.edu

Supervisor:

Dra. Beatriz López

July 9, 2010

Acknowledgments

First of all, I would thank Dr. Beatriz López, my supervisor in this Master

Thesis for her ideas and support. I also would greet the members of the

eXiT research group for all their help and advises, specially to Pablo, with

whom I shared too long working sessions.

To my friends and colleagues Marià, Masi, Santfeliu, Ricard, Henrik and

Albert. A coffee break is always necessary.

To the Wednesday night cooking crew. In this way the week is much shorter!

To my flat mates. Iotatranquils!

To the Besalú people, there’s always something to chat and laugh about.

To Pep Guardiola and his team. 2− 6 will never be forgotten

And finally I would thank my parents and family, with them its all eas-

ier.

This research project has been partially funded by the Spanish Government and

FEDER funds through the projects labeled TIN2008- 04547, DPI2009-07891 and

CTQ2008-06865-C02-0

Abstract

Nowadays business process management is becoming a fundamental piece in

many industrial processes. To manage the evolution and the interactions of

the business actions it is important to accurately model the steps to follow

and the resources needed by a process. Workflows provide a way of describ-

ing the order of execution and the dependencies between the constituting

activities of business processes. Workflow monitoring can help to improve

and to avoid delays on industrial environments where concurrent processes

are carried out.

In this thesis a new Petri net extension for modeling together workflow

activities with the resources needed by the represented process is presented:

resource-aware Petri nets. Moreover a workflow management system for

process monitoring, delay prediction, diagnosing and repairing is introduced.

Resource aware Petri nets include time and resources into the classi-

cal Petri net workflow representation, facilitating the task of modeling and

monitoring workflows. The workflow management system monitors the exe-

cution of workflows and detects possible delays through resource-aware Petri

nets. When a delay is predicted a case-based reasoning tool proposes preven-

tive actions in order to avoid or minimize the delay impact. Finally, when a

delay cannot be prevented, a complex event processing system analyzes and

diagnoses the delay causes.

In order to test this new approach, different services from a medical

maintenance environment have been modeled and simulated.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 The Problem . 3

1.3 Objectives and Methodology 3

1.4 Thesis Outline . 5

2 Background 7

2.1 Workflow Concepts . 7

2.2 Petri Nets . 9

2.2.1 Colored Petri Nets . 10

2.2.2 Timed Petri Nets . 11

2.2.3 Workflow Nets . 12

2.3 Case-Based Reasoning . 14

3 Related Work 16

3.1 Workflow Modeling . 16

3.2 Workflow Monitoring . 20

3.3 Workflow Discovering . 21

3.4 Workflow Adaptation . 23

3.5 Summary . 25

4 Workflow Management System 28

4.1 Workflow Management System 29

4.2 Workflow Modeling: Resource Aware Petri Nets 31

4.3 Delay Prediction with Resource Aware Petri Nets 33

4.3.1 Definitions . 35

4.3.2 Predicting Method . 35

i

4.4 Workflow Repairing: Case-Based Reasoning 36

4.4.1 Case Representation 37

4.4.2 Retrieve . 37

4.4.3 Reuse . 38

4.4.4 Revise and Retain . 40

4.5 Workflow Delay Diagnose: Complex Event Processing 40

4.5.1 Events on Workflow Nets 40

4.5.2 Complex Events on Workflows 41

4.5.3 Rules on Complex Events 42

4.6 Summary . 43

5 Experimentation and Results 44

5.1 Experimental Setup . 44

5.1.1 Workflows . 45

5.1.2 Scenarios . 47

5.2 Results . 49

5.3 Discussion . 52

6 Conclusions and further work 57

6.1 Conclusions . 57

6.2 Contributions . 59

6.3 Further Work . 60

A Implementation notes 61

A.1 The workflow editor . 61

A.2 Workflow management system 61

ii

List of Figures

1.1 Project life-cycle schema. 5

2.1 Business process vs. Workflow 8

2.2 High level Petri nets schema 11

2.3 Workflow patterns . 12

2.4 Business process vs. Petri nets 13

2.5 Case-based reasoning schema. 14

3.1 Workflow patterns in different modeling languages 17

3.2 Workflow modeling state of the art. 25

3.3 Workflow monitoring state of the art. 25

3.4 Summary of workflow mining state of the art. 26

4.1 Overview of the whole system. 29

4.2 Workflow management system schema 30

4.3 Resource-aware Petri nets schema 31

4.4 Delay estimation . 34

4.5 Workflow environment representation 38

4.6 Complex events examples . 42

5.1 Prototype modules . 45

5.2 MEEM and RMI workflows 46

5.3 IINE Worflow . 47

5.4 MRMI Workflow . 48

5.5 Scenario 5 graphical description. 50

5.6 Scenario 1 results . 51

5.7 Scenario 2 results . 52

5.8 Scenario 3 results . 53

iii

5.9 Scenario 4 results . 54

5.10 Scenario 5 results . 55

iv

Chapter 1

Introduction

1.1 Motivation

Nowadays business process management is becoming a fundamental piece in

many industrial processes. In today’s economy, suppliers, manufactures and

retailers are working together in order to reduce the production costs and to

maximize the productivity. To manage the evolution and the interactions of

the business actions it is important to accurately model the steps to follow

in the process, the resources needed and the flow of the messages between

the different parts involved (suppliers, manufacturers, clients, etc.). Work-

flows provide a way of describing the order of execution and the dependent

relationships between the constituting activities of the business processes.

Workflows usually model single and unique business processes, neverthe-

less, in real life environments, processes represented by workflows are rarely

executed individually. Workflows are usually executed concurrently, shar-

ing a limited number of resources sometimes even with external processes.

In consequence, a delay in an ongoing workflow can impact other pending

workflows, causing a cascade effect in the performance of the rest of the

system due to dependencies or to resource occupation. For this reason it

is important to monitor not only a single workflow execution, but also the

whole system, as a delay can echo in the rest of executions. Conversely

to previous works, the focus of this work is studying monitoring methods

1

to deal with all the workflows in a environment (at the organization level).

Monitoring means to be aware of the states of the whole system regarding

the current workflows actives and the resources available to carry them out.

Moreover, an intelligent monitoring method should be able to avoid,

or somehow, reduce the effects of unexpected behaviors, so, corrective and

preventive strategies are needed. Regarding corrective strategies, when a

workflow deadline is reached or close to be reached, a time out message

or a running out of time alarm should be fired. For example, in [12], the

authors provide a supporting tool to the user in order to modify running

workflows. Regarding preventive strategies, a monitoring method should be

able to predict when a workflow will fail before this happens. Preventive

strategies are important since when a workflow exceeds a deadline can cause

important problems in the system. In critical domains, such as medical

device maintenance, a delay in a workflow could involve the unavailability of

medical equipment causing delays on hospital operations, delays in surgeries

and actually impacting on patients health. In any case, workflow monitoring

is required to anticipate delays.

When a delay is detected it is important to act quickly in order to min-

imize the delay impact to the whole system and to the workflow itself. The

use of escalation and refactoring rules, provided by expert technicians, can

help to soft the impact of a delay and can be a good solution when there is

not many previous information about the system but there are some issues

about how to proceed: how are refactoring rules affected by the resource

availability? and by the number of current ongoing workflows? which rule

must be followed when more than one seems suitable? The use of knowl-

edge based techniques can help to minimize the delay propagation among

the system. In this thesis a complex event processing system is applied for

dealing with delay detection and diagnosis. However, this diagnostic work

is not the main focus of the thesis; it comes from the collaboration of other

researches at the eXiT research group. The focus of this work is dealing

into prediction strategies.

When a delay is predicted it is important to act quickly too. In this case

repairing strategies that take into account the current environment situa-

tion are needed. However, the number of factors involved in the decision to

be made is huge, depends on the kind of ongoing workflows, their current

execution state and the status of the available resources (overloaded, bro-

2

ken, etc.). The storage of historical data and the use of knowledge based

reasoning techniques can provide a way to tackle with the reparation strate-

gies. In this thesis a case-based reasoning tool is explored as way to exploit

historical data to repair workflows when delays are predicted.

The scope of this thesis includes a widespread range of domains: not only

manufacturing industrial processes, but also service oriented architectures,

multi agent systems interactions, route scheduling or even device mainte-

nance planification. Particularly, our work is specially concerned with med-

ical equipment maintenance business. We start from an infrastructure that

gives support to the different parts involved in a maintenance operation pro-

cess, and at the business level there are several workflows defined in order

to minimize equipment downtimes. However, such optimization cannot be

guaranteed if there is no way of monitoring the workflow status and to pre-

dict possible delays on their execution. Delays can be caused, for example,

by an unattended request on behalf of the manufacturer support service, or

by the sickness of a technician in charge of dealing with the maintenance

operations. Those are human-dependent delays, but some others caused by

resource overload can also happen due to concurrent execution of multiple

workflows.

1.2 The Problem

There is a need of developing methods to deal with concurrent workflows in

a given environment that share resources.

The hypothesis to be studied in this work is that Petri net extensions as

workflow modeling technique together with case-base reasoning which use

historical workflow data can be used to detect and predict delays.

1.3 Objectives and Methodology

The main goal of this thesis is to define a method to model simultaneously

the business process workflows and the resources needed by them, and to

develop a technique to monitor them in order to predict and repair delays.

As this is not a trivial task, we divided the objective in simpler subgoals:

• Realize a study about the current state of the art concerning workflow

3

modeling, workflow monitoring and workflow mining.

• Define a method for modeling workflows together with the resources

available in the system.

• Propose a technique to anticipate workflow delays.

• Monitor simultaneously all the system workflows so delays and abnor-

mal behaviors can be detected and predicted taking into account their

interaction and the shared resources.

• Propose a technique to repair workflows so predicted delays can be

avoided or its impact minimized.

• Test the monitoring system in a simulated environment in order to

validate its performance.

• Use a technique for refactoring the existing workflows when a delay is

detected in order to reduce the effect of it in the whole system.

As a research work, this thesis follows the scientific methodology generate

and test[31]. Regarding the generation step, since there are a myriad of

methods to consider, the thesis is focused on the following methodologies:

• Petri nets for workflow modeling, monitoring and delay prediction.

• Case based reasoning for workflow repair.

Regarding the test step, the methodology followed to realize the work is

the typical iterative project life-cycle(Figure 1.1) which consists in four dif-

ferent steps: identification, design, implementation and evaluation. The

identification stage is focused on the comprehension and identification of

the constraints and factors which involve the problem and on the direction

that the project must take. The design step defines the actions and the pro-

cedures that will take place in the project. The implementation stage, as its

name points, consists in carrying the actions defined in the previous phase.

Finally the evaluation phase is focused on testing the obtained product and

detecting which problems and issues are still not solved and which aspects

can be improved. The cycle is repeated until the evaluation obtained is

completely satisfactory.

4

Figure 1.1: Project life-cycle schema.

1.4 Thesis Outline

The master thesis is structured in the following chapters:

• Chapter 2 - Background: The basic concepts needed to understand

the work presented on this thesis are provided in this chapter. First we

provide a brief workflow vocabulary so the reader can be familiarized

with the concepts discussed on the rest of chapters; then a the basic

Petri net notation and terminology is introduced in order to facilitate

the comprehension of the monitoring and modeling methods presented;

finally the fundamentals of case-based reasoning are shown.

• Chapter 3 - State of the art: This chapter presents different works

and papers concerning the research exposed in this master thesis. It

is divided in four different sections. The first one, workflow modeling,

shows different methods which can be used to model workflow activi-

ties and applications where they have been used. The second section

work related to workflow monitoring is exposed. The third section

exposes research about discovering unknown workflows given a set of

data while the fourth section concerns the application of data mining

techniques to known workflows in order to adapt or optimize them.

• Chapter 4 - Methodology: This chapter explains the solutions we

adopted to solve the problem presented in the first chapter. Firstly

5

we propose an extension for the Petri nets in order to incorporate

the available resources in a system to its notation: resource aware

Petri nets. The following section explains how to monitor a system

using resource aware Petri nets and proposes a method for detecting

and predicting delays in workflow executions. The use of case based

reasoning for repairing workflows is proposed to avoid and reduce the

predicted delay impacts.

• Chapter 5 - Experimentation and results: Here the results of

the master thesis are presented simulating workflows corresponding to

common activities in the medical device maintenance industry. Firstly

some examples of process modeling are shown and then the concur-

rent execution of these workflows is simulated in different scenarios,

showing how the monitoring and the delay detection is done.

• Chapter 6 - Conclusions and further work: The last chapter of

the thesis states the conclusions obtained from the research. Moreover

a proposal to continue this work as a PhD is formulated.

6

Chapter 2

Background

This chapter describes the basic concepts required for understanding the

work presented in this thesis. Firstly, some terminology regarding workflows

is introduced, then Petri nets are accurately described and some of the most

common Petri net extensions are commented, finally, we briefly describe the

fundamentals of case-based reasoning and its different steps.

2.1 Workflow Concepts

In this section some workflow concepts which are treated along the docu-

ment are defined in an informal way. The goal of this section is to acquaint

the reader with the workflow nomenclature so the thesis can be easily un-

derstood.

• Business process: A business process is a set of related tasks which

must be carried out to produce a particular service or product. It can

be visualized as a diagram composed by a sequence of activities. E.g.

Figure 2.1a shows the business process of a device reparation.

• Task: A task is a concrete activity with an identifiable start and end

which must be accomplished within a defined period of time. A task

can be composed by other tasks. In Figure 2.1Device diagnosis or

device reparation are examples of tasks.

• Workflow: A workflow consists in a graph of interconnected actions

which represents the tasks and interactions to be realized by a mech-

7

Figure 2.1: a)Business process of device reparation. b)Workflow modeling

the device reparation business process using UML.

anism, a person, a staff, an organization, etc. Workflows can model

not only business process but also exchange of messages, software pro-

cedures or information flows. E.g. Figure 2.1b shows the workflow

which models the device reparation business process.

• Workflow language: A workflow language is a visual or grammat-

ical representation used to define a business process or a workflow.

Examples of workflow languages are business processes management

notation (BPMn) of flow charts.

• Workflow pattern: A workflow pattern is a workflow which define

specifically recurrent problems and provides a solution to the develop-

ment of workflow designs (e.g. iterations, concurrent task executions

or choices which are represented by rhombus in Figure 2.1b)

• Workflow instance: A workflow instance is a workflow which is being

8

executed in a concrete time instant. Every time a workflow starts, a

workflow instance is created following a given pattern.

• Workflow marking: A workflow marking is the status (the step

which is being executed, the data generated, the resources used, etc.)

of a workflow instance in a concrete time instant.

• Workflow environment: A workflow environment is a set of work-

flows which coexists in a common framework (e.g. an organization, an

industry, a server, etc.). They can share resources, actors or informa-

tion.

• Workflow environment marking: A workflow environment mark-

ing is the status of a workflow environment. It stores the different

workflow markings plus the resource information, the priorities, the

workflows which are waiting for resource to be released, etc.

• Workflow management system (WMS): The workflow manage-

ment system manages and monitors the different tasks which take

place inside an organization or a workflow environment. Is responsible

for monitoring the status of the different workflow instantiations and

to store in a log the different events related to the workflow develope-

ment.

2.2 Petri Nets

A Petri net is a mathematical modeling language for describing action flows.

Like other standards such as UML or BPMN Petri nets offers a graphical

notation for stepwise processes and can represent actions such as choices,

iterations, splits, joins, concurrent execution, etc. However, unlike almost

all the industry standards, Petri nets have a mathematical definition for

their execution and representation with a well-foundamentend mathematical

theory. Moreover, there exists different variants and modification of Petri

nets which facilitate the task of representing workflows and can be simplified

to the mathematical Petri nets notation.

A Petri Net (PN) is a particular vision of a bipartite graph. A PN is

composed by directed arcs, tokens and two kind of nodes: transitions or

bars and places or circles. It is defined as follows:

9

Definition 1. A Petri net is a 3-tuple 〈P, T,A〉 where

• P is a finite set of Places

• T is a finite set of Transitions

• P ∩ T = ∅

• A is the set of arcs which connect P with T and viceversa A : (P ×
T) ∪ (T × P)

In Petri nets directed arcs always connect transitions with places or vice

versa but never connect to nodes of the same kind. A token is an entity which

is traveling along a Petri net following the direct arcs and can represent a

workflow execution state. Places store the tokens until they advance to a

new node; in workflow terms places would represent an action which is being

developed or a waiting interval. Transitions are responsible to make tokens

advance; when a transition is enabled, if the previous place contains a token,

consumes the token and places the token at the end of the output arcs. This

action is known as firing and the equivalence in workflow semantics would

be to start an action. For a more elaborate introduction to Petri nets see

[35, 16].

The usage of Petri nets for workflow representation has been widely stud-

ied by authors like Russell[52], Van der Aaalst[65], Masuthe[40], Sheng[55]

or Tick[60]. As mentioned above, in order to include different domain par-

ticularities such as time, labels or priorities, Petri nets where enriched with

extensions which represented theses different domain particularities. This

new kind of nets were called high level Petri nets (Figure 2.2).

2.2.1 Colored Petri Nets

In the basic Petri net tokens have no kind of information incorporated,

in consequence, it is impossible to distinguish between them. In practical

terms, if a token corresponds to the status of real-life workflow, when two

tokens are inside the same Petri net there is no possibility to relate each

token with its correspondent flow. Using the basic representation, the only

way to discern between both tokens/process is to duplicate the Petri net and

to put each token to the different nets, which presents a problem for real

10

Figure 2.2: High level Petri nets extend the basic Petri net notation for

including new features such as token differentiation or time.

process modeling since when different kinds of processes appear into a work-

flow the size of the Petri net increases significantly. In order to avoid this

duplication, the colored Petri net extension was created[61]. Colored Petri

nets assign a type or an identifier to each token so the confusion between

tokens disappears.

2.2.2 Timed Petri Nets

Another common extension for the basic Petri nets is the inclusion of time

which can be handled in different ways. Transition-timed (T-timed) Petri

nets (PN) associate time to the transition. In T-timed PN An interval of

time can be assigned to each transition and they can only fire during this

time interval, therefore, tokens remains at the input places at least until this

time arrives. Place-timed PN associate time ts i to the places. This means

that when a token t arrives to a place p it must stay there at least tsp time

units before its transition fires. Finally, token-timed PN (or dense-timed

PN)[3] is an extension of Petri nets in which each token is equipped with a

real-valued clock so the time spent for every token can be registered. In this

work, when timed Petri nets are mentioned is referring to this token-timed

PN extension.

11

Figure 2.3: a)Petri net routing sequence. b)Petri net choice. c)Petri net

parallel execution. d)Petri net iteration.

2.2.3 Workflow Nets

Modeling a workflow with a Petri net is a simple task but it can take a

long time as all the situations and details must be taken into account. As

Figure 2.3 shows, Petri nets can represent typical workflow behaviors like

sequential routings, parallel executions, choices, iterations, etc.

When using Petri nets to model workflows, we talk about workflow nets

(WN). In WN places represent states or conditions, transitions represent

tasks, services, decisions or events and tokens correspond to cases (workflow

instances). The main restrictions for modeling a workflow with WN are the

following: a workflow net must have an input place i and an output place o

where:

• Place i does not have any incoming arc.

• Place o does not have any outcoming arc

• Each node n ∈ P ∪ T where n 6= i & n 6= o has a path to o

• Each node n ∈ P ∪ T where n 6= i & n 6= o has a path from i

In a workflow, the most common type of transition is the one which

represents tasks (e.g. send message in Figure 2.4 right), it is fired just at

the moment when the task starts. When transitions represent the making

of a decision they do not start any new task, they just chose if a path must

12

Figure 2.4: Transformation of a common workflow representation (left) to a

workflow Petri net (right).

be followed or not and they are fired by the system (or by the actor which

takes the decision). An example of this kind of transitions in Figure 2.4

is accept printing and another one is denegate printing. External events

(e.g. user inserts a coin into the printer) are also represented as transitions.

The firing of the transition occurs when the event happens. Finally some

transitions are just used for routing tasks (e.g. throw a concurrent execution

of processes) and they are fired by the system. It is important to notice that

there exists some dependencies between different transition types: a decision

type transition always comes after a task type one; decision type transitions

never come alone, there must be at least to complementary decisions so the

WF net is path complete.

As mentioned above, in WF nets places represents conditions (some

authors refers to conditions as states. A place indicates the status and the

conditions of a workflow in a concrete point, in other words, a place p is the

13

Figure 2.5: Case-based reasoning schema.

pre-condition of its input transition and a place p is the post-condition of

its output transition. E.g. in Figure 2.4 place p3 indicates than a message

has been send but it still have not been printed.

Finally, in WF nets, tokens (which are colored) represent cases. Every

time a token appears in the input place i means that a bussines new process

bp has started inside the workflow. Tokens are colored so the processes can

be distinguished between them. In some workflow nets the time is included

as dense-time Petri nets so the workflow can be represented more accurately.

2.3 Case-Based Reasoning

Case Based Reasoning (CBR) is a knowledge-based technique which allows

classifying or predicting a subject based on past experiences[2]. Reasoning

by reusing past experiences is a powerful and common way to solve problems

by humans. When facing a problem, humans tend to search for similar past

situations and to adapt the used solution to solve the current issue they are

dealing with. Case-based reasoning tries to transfer this behavior to artificial

intelligence. CBR seeks similar cases to the current one and analyzes which

decision or classification was taken in order to reuse it in the present solution.

All CBR shares a set of common tasks: identify the problem it is deal-

ing with, find a similar past case, use the old case to propose a solution to

the new one, evaluate the suggested solution and updating the knowledge

14

base with the new experience. As Figure 2.5 shows, CBR is divided in four

different stages which are repeated for every new case: Retrieve, Reuse, Re-

vise and Retain. First step, retrieve, searches for similar past situations to

the new one; Reuse stage uses the retrieved situations to propose a suitable

classification or solution to the problem; the third step, revise, consists in

supervising and validating the proposed classification (this task is often car-

ried by a human expert); in the last stage, Retain, it must be decided if the

treated case should be included or not in the knowledge database in order

to help in future situations.

CBR tools have been used in many different fields such as fault detection

in batch processes[10], medical diagnosis[47], device fault detection[44], etc.

Each domain has its own particularities and different techniques are required

to provide a proper solution. These singularities concern the four stages of

the CBR process. In the retrieve stage the way the data is provided is ex-

tremely important as the style the data is stored (plain or structured) con-

ditions the metrics to follow while comparing different cases; moreover the

type of the attributes (categorical, numerical, etc.), the attributes weighs,

how to deal with missing data, etc. are also important aspects to take into

account. The reuse of the retrieved case solution in the context of the new

case focuses on two aspects: the differences among the past and the current

case and what part of a retrieved case can be transferred to the new case

(directly coping the solution, using the same methodology, etc.). Depending

on the domain where CBR is applied these can mean to directly copy the

solution of the retrieved case or its adaptation. The revise and retain stages

are less affected by the application domain; the main difference between dif-

ferent CBR fields is the kind of expert which is in charge of deciding if the

adopted solution was correct and if it must be retained into the knowledge

base in order to increase system’s awareness.

15

Chapter 3

Related Work

Chapter 3 presents different works and papers concerning the research ex-

posed in this master thesis. It is divided in four different sections. The

first one, workflow modeling, shows different methods which can be used to

model workflow activities and applications where they have been used. In

the second section, work related to workflow monitoring is exposed. The

third section, workflow discovering and adaptation, presents a state of the

art concerning workflow mining to handle data about workflows. It is di-

vided in two parts: the first one exposes research about discovering unknown

workflows given a set of data while the last one concerns the application of

data mining techniques to known workflows in order to adapt or optimize

them.

3.1 Workflow Modeling

The lack of standardization in workflow representation has been a trending

research topic during the last years. This absence of unification has led

to a highly diversified types of workflow representations (see Figure 3.1).

Some authors use other fields’ representation models such as UML activity

diagrams[32] or different types of petri nets (called WF-nets)[49, 68]. On

the other hand other researchers have chosen to develop specific languages

for workflow representation.

16

Figure 3.1: Workflow pattern examples in different modeling languages.

Top left: sequential rouging. Top right: concurrent execution. Bottom left:

iterative routing. Bottom right: exclusive or choice.

17

Unified Modeling Language[51] (UML) is a standardized modeling lan-

guage used in the the field of software engineering. It allows to specify, to

design and to document object-oriented software across several types of di-

agrams. The UML activity diagram describes the process of the different

software activities step by step and their routing across different situations

and cases. It offers different kinds of splittings such as OR-splits, AND-splits

or conditional splits.These tools allows the activity diagram to represent al-

most any kind of information flow making the diagram able to describe the

basic behaviors of a workflow. Many authors, such as Kalnins et al.[32], pro-

pose to use UML or to extend UML[7, 75] in order to model workflow while

others have discussed its suitability. Dumas et al.[17] analyzed the UML no-

tation by representing the workflow patterns defined in [52] and concluded

that, unlike alternative commercial languages, UML provides support for

waiting and processing states and decomposition tools while they syntax

and semantics presents a lack of precision for complex actions such as can-

cellation patterns or Multiple Instance Patterns and that UML doesn not

fully capture important kinds of synchronization such as the discriminator

and the N-out-of-M join.

Other fields modeling languages have been also used to represent work-

flows. A similar tool to UML for workflow modeling is Business Process

Management Notation[42] (BPMN), it provides a graphical notation for

specifying business processes in a Business Process Diagram. BMPN is

highly understandable for almost any user familiarized with the workflow

modeled, however its absence of mathematical and formal notation and the

impossibility of linking BPMN with the execution process[30], reduce its

possibilities. BPMN is closely related with BPEL (Business Process Exe-

cution Language)[1] as it can be directly translated to it. BPEL originally

was created to model web service interactions but it has also been used to

model workflows, specially in service oriented architectures (SOA)[45], but

also in scientific processes[73] or to model grid computing interactions[73].

Moreover, another interesting point of BPEL, is that can be easily trans-

formed to other languages such as YAWL[13], BPMN (mentioned above) or

to Petri net struchtures[28] as Hinz et al. and Brogi et al. show on their

works.

Petri nets[46](PN) are an established tool for modeling and analyzing

processes[64]. On the one hand, Petri nets can be used as a design lan-

18

guage for the specification of complex workflows; on the other hand, Petri

net theory and notation provides powerful techniques for workflow analy-

sis. Moreover, Petri nets can be extended to high level Petri nets[15] which

allows a more accurate representation of the workflow representation. For

example, Eshuis et al.[19] pointed that a limitation of Petri nets is that a

transition does not necessarily fires at the time instant when a task is carried,

it can be fired at an aleatory time after the execution. To solve this prob-

lem they present reactive Petri nets[19]. Other examples of extended Petri

nets applied to workflow modeling is the one presented in [26] where Ha et

al. use timed colored Petri nets (allowing differentiation among tokens and

the inclusion of time restriction) to model dynamic product development

processes; or the use of hierarchical Petri nets (HPN), where each place sub-

stitutes a lower level Petri net, presented by Boualem in [8] or by Alt et al.

who use HPN to represent grid workflows[5].

In [67], Van der Aalst et al. propose a new workflow modeling lan-

guage named YAWL (yet another workflow language). To create YAWL,

the authors analyzed the different existing workflow modeling languages and

studied which ones were able to represent the higher number of workflow

patterns[52]. Van der Aalst et al. realized that the Petri net based lan-

guages were the ones which fitted best so they took them as a start point.

In this way, the authors created a more intuitive workflow language with a

formal mathematical notation and supporting almost all the existing work-

flow patterns. Besides at this stage YAWL only supports the control-flow

perspective, it is being developed and improved in other important workflow

aspects such as the data and the resource perspectives.

An alternative technique of modeling workflows is the use of workflow

patterns (WP). Workflow patterns refer to recurrent specific problems and

proven solutions to the development of workflow applications. It is estimated

that using WP any workflow can be represented. As seen above, WP are

also used to evaluate the performance of a workflow modeling language. The

main research in this field has been done by Van der Aalst et al.; in [52] they

present a classification and an analysis of the existing workflow patterns. In

2006 Russell et al. reviewed the list provided by Van der Aalst adding 20

more patterns which defined specific cases of the existing ones[53].

Regarding the resources representation in workflows, despite some lan-

guages such as the mentioned UML or BPEL provide tools for represent-

19

ing resources itself, many workflow modeling languages do not integrate re-

sources into its representations so they need to be extended. A recent work

on workflow representations that we should take into account is [36] which

proposes the condition task graphs (CTGs). In a CTG, the arcs are labeled

with probabilities. Tasks have resources associated. But due to the nature of

the conditional branch of the graphs, the particular resources requirements

for the execution of a given workflow can vary. Then the authors propose a

methodology to optimize the resources requirements. From our perspective,

such conditional representations could also be used for monitoring, without

the need of specific workflow management system. The authors point out

in their future work that their current research concerns the applicability of

their approach to BPM.

3.2 Workflow Monitoring

Workflow monitoring concerns our work since to predict delays it is necessary

to monitor the evolution of the workflows and to store information about

the events generated by the workflow execution. In this section we comment

some of the work developed in this area among the recent years and how it

is related with this MSc thesis.

In [29] a web based monitoring system for distributed workflow oper-

ations is presented. Hong et al. developed a software for supervising the

evolution of the workflow and to store statistical data. Nevertheless, the

software does not include any tools for predicting the evolution of the work-

flow or for the early detection of possible delays and it is not based in any

particular workflow language. In [33] Kanana et al. propose a monitoring

system based on triggers, as the above mentioned article.

Regarding workflow monitoring in service architectures, Van der Aalst

et al.[66] combine Petri nets (used to model the behavior of a service flow)

and event logs (used to model real behavior of a service flow) in order to

detect deviations and to store data for a further mining process. Then, in

[50] the historical data is used for simulation, so that a short time projection

can be obtained on the workflow outcomes.

As for the use of Petri nets for workflow monitoring, Frankowiak et al.[21]

developed a micro controller-based process monitoring in order to control the

correct procedure of a manufacturing chain where every Petri net transition

20

was linked to a micro controller input. The logistic field has also been a hot

research topic when it comes to Petri net monitoring[61].

Other previous related works regarding to workflows monitoring come

from the multi-agent community. For example, in [72] a multi-agent system

is proposed to monitor the workflows associated to a given business process,

so that they improve the system capabilities to deal with changes in the

environment. In [76] an agent based system is also proposed to deal with

coordination and management of workflows between virtual enterprises.

3.3 Workflow Discovering

Workflow discovering it is a reverse enginery method used to learn the work-

flow that defines a process from the practical experience. An event log is

build by executing the process several times. This log is later used to con-

struct a process specification which appropriately models the registered be-

havior. By assuming that each generated event refers to a single task, that

each event belongs to a single case and that the events are ordered[68] a

workflow equivalent to the process that generated the events can be found.

As logs are extracted from real processes, they can contain data errors such

as noise causing the events to be unordered, incomplete or mislabeled. Au-

thors have defined different approaches to discover workflows according to

different situations.

The first approach is the simpler and it assumes ideal logs with no noise

and complete information (the log registered all the cases). It uses workflow

nets as representation model. To rediscover the workflow which models the

process the α algorithm [63, 62] is used. As there exists an infinite number

of Petri nets which model a workflow, the α algorithm finds the simpler one

by assuming that for many WF-nets two tasks are connected if and only

if their causality can be detected by inspecting the log. However, this al-

gorithm presents some limitations when dealing with certain kind of loops

and different tasks with a common name cannot be detected as they are

understood as AND or OR splits. Moreover, as workflow nets are based

on Petri nets they present the same limitations, in consequence, α algo-

rithm presents problems when dealing with non-free-choice constructs[16].

Some programs that use this approach to model workflows are EMiT[63]

(Enchanced Mining Tool) and MiMo[62] (Mining Modeling), both from the

21

Eindhoven Technische Hogeschool.

In order to overcome the limitations of noise and completeness infor-

mation heuristic approaches were developed. Noise in log registries can

alter the order of the events making dependencies difficult to relate and

making consecutive events look like parallel or complementary executions.

Little Thumbs[74] is a tool which uses the α algorithm but includes heuristic

techniques in order to gain robustness. First of all Little Thumbs builds a

frequency table counting the times an event is followed by another one; then

applies a set of rules in order to decide if the events which appear on the fre-

quency table are consecutive actions, concurrent tasks, choices, etc. Finally,

based on the results of the previous state, reconstructs the workflow.

In [57] Silva et. al present a probabilistic method for workflow learn-

ing. In it, they propose and alternative to the α algorithm: the Learn-

OrderedWorkflow. Given a process event log, the algorithm detects which

tasks can be executed in parallel and which ones are dependent among them

by analyzing the task execution. The workflow returned is modeled using

a graph notation and it is not necessarily a complete workflow (can have

multiple ending points). To deal with the event log noise they perform the

χ test and parametrize the algorithm according to the obtained value. To

test their system, a simulated study based on a theoretical workflow that

models the annual process of writing final reports at Clairvoyance Corpora-

tion is performed. A similar work can be find in [22], where Gaaloul et. al

present a similar procedure but, in addition, they try to match the obtained

dependency relations with the workflow patterns presented in [52] by Van

der Aalst.

An alternative to deal with noise and incompleteness is the use of In-

Wolve[27]. This software is a tool developed by the University of Vienna

which, apart from dealing with noise, can work with event logs where events

can refer to more than one task in a workflow and where to different task can

use the same label. In order to achieve that, InWolve implements the split-

Par, which given a data log builds a workflow w, and the SAGtoADL[27],

which checks w synchronicity, algorithms. Another difference between this

approach and the ones mentioned before is that InWolve uses ADONIS[20]

as workflow representation language.

Process Miner [54] is a completely different approach from the ones men-

tioned above. While the previous commented tools are graph-based tech-

22

niques, the algorithms used by that Process Miner are rewriting methods

and they are specially tailored towards mining block-structured workflows.

Block-structured workflow models are modeled in a top-down way by setting

one operator as starting point of the workflow and nesting other operators

as long as the desired flow structured is obtained. In other words, a block-

structured workflow is a tree whose leafs are always operands. To reach the

block-structure that defines a process, Process miner reads the event log

and builds a trace for each process instance; then, a time-forward algorithm

constructs a process schema from the trace groups that is in the disjunctive

normal form. In the following step, Process Miner tries to find relations

between task orders and to identify the tasks that do not have a real prece-

dence relation between them. In the final step an induction is performed for

each decision point of the schema; decision trees are transformed into rules

and then they are attached to the particular alternative operators.

3.4 Workflow Adaptation

Given a concrete workflow and an historic of the workflow executions a

workflow can be refactored in order to simplify its representation, to obtain

a more accurate representation for the modeled process or to solve design

issues as incompleteness. Workflow mining can be also used to identify

conflictive points, conflicts, and bottle necks in manufacturing processes so

they can be optimized in order to improve the efficiency of the process.

In [71] a tool for automatic graph refactoring and completion are pre-

sented: the tool allows different improvements in real time as completing

partial workflow graphs or speeding up of OR-join workflows. Moreover it

provides local termination detection and refactoring for incomplete workflow

graphs and multi ending workflow graphs in runtime. In order to achieve

they use two different approaches which they call the Normal [70] and the

Refined [69] Process Structures which are based on transforming workflow

graphs into tree structure models.

Ho et. al present the intelligent production workflow mining system

(IPWMS)[25], a method to analyze the quality of a manufacturing process

and to optimize it. Using the information obtained from the execution of

the process, the authors analyze the quality of the workflow using fuzzy logic

rule sets. When an anomaly or a poor quality is discovered by its tool, an

23

external expert redefines the workflow and the goodness of the new workflow

is predicted using artificial neuronal networks which have been trained with

the previous workflows.

In [48] a supporting tool for workflow modification is proposed. The

goal of this tool is to help in the modification process once the status of the

workflow is known.

Subramaniam et. al consider that as workflows are manually designed,

they entail assumptions and errors which leads to inaccurate workflow mod-

els. In [59] they expose that the critical points which slow a workflow and

increase the uncertainty are the decision points (also known as XOR choices)

and that, by positioning this choices to the earliest stages can improve pro-

cess efficiency by decreasing their uncertainties and identifying redundant

activities. They present techniques to analyze the event logs generated by

the workflow management system in order to notice if XOR choices can

be moved to earlier points of the workflow so the efficiency of the process

increase.

In [11] workflow mining is used to distinguish tasks which apparently are

identical but which consume sensibly different time amounts. Studing work-

flow event logs represented as temporally-annotated sequences (TAS)[24]

they classify tasks according to duration. This information can be later

used to study and to optimize the modeled process since situations as lack

of resources or excessive load charges can be detected. This is done by giving

a higher importance to the timing of the tasks than to the order in which

they appear on the event logs[23].

Another approach to workflow adaptation is the application of case-

based reasoning (CBR). CBR[2] has been proposed as a natural approach

to the recall, reuse and adaptation of workflows and knowledge associated

with their systems structure. Minor[41] et. al present a case-based approach

to representation and index-based retrieval of past workflows in order to in

order to adapt recent workflow instances to system modifications and inno-

vations. The knowledge database they use is composed by UML workflows

and they compare the different workflows using the metrics defined in [14].

Moreover, the AI group at the University of Greenwich also has applied

CBR to workflow monitoring[34].

Another example of the CBR application to the workflow domain is

CAKE[9]. Given a set of requisites and conditions, CAKE seeks for sim-

24

Figure 3.2: Summary of workflow modeling state of the art.

Figure 3.3: Summary of workflow monitoring state of the art.

ilar requirements in a past cases database and models a workflow model

according to the requirements; It is used in different domains such as fire

extinction, software engineering, microchip manufacturing or medicine.

3.5 Summary

In this section we resume the work studied in this chapter according to

different parameters. The parameters used to qualify workflow modeling

tools are the following:

• Language describes if a language is a standard or if a language was

expressly created for workflow designing.

• Formal Language describes if the modeling language is supported

by a formal notation.

• PN Based indicates if the modeling language is based in Petri nets.

• Patter Compatibility describes the number of Van der Aalst[52]

patterns which can be represented by the workflow language

• Resource Definition shows if the language allows to include re-

sources into its representation.

25

Figure 3.4: Summary of workflow mining state of the art.

Regarding the workflow monitoring the used parameters are listed below:

• Supervision shows if the software captures the state of the workflow

at each variation.

• Log indicates if an event log is generated every time the workflow

advances.

• Prediction describes if the tool includes delay prediction techniques.

• Workflow Triggering indicates if the software is in charge of starting

the workflow actions.

• WF Adaptation shows the software is automaticly adapted when

the workflow changes.

• Multi Agent describes the software uses multi agent technology in

the monitoring procedure.

By analyzing the state of the art concerning workflow modeling we have

noticed that, as can be seen in Figure 3.2, there is no workflow specific

modeling languages which include resources inside its formal definition. Our

challenge is to fill this gap with the resource-aware Petri nets. Regarding the

workflow monitoring (Figure 3.3), any of the works analyzed on this chapter

provide prediction tools for an early detection of the workflow delays. We

pretend to add this feature to the ones which are covered by other tools

(supervision and data storage).

26

Figure 3.3 describes the workflow adaptation and discovering state of

the art in the following therms:

• WF Discovering shows if the tool can rebuild a workflow given an

event log.

• Representation indicates how workflows are represented.

• WF Refactoring describes if the software can modify the structure

of the graph in order to simplify it.

• WF Adapting shows how a workflow can be adapted by a modifica-

tion or by completing it.

• Quality Analysis describes if the tool evaluates the performance or

the workflow and if it can be optimized.

• Time Consideration points if the software takes into account the

workflow deadlines when refactoring or modifying the workflow.

• CBR indicates if the approach uses case-based reasoning techniques.

Analyzing the mentioned aspects, we detected that there is not many re-

search involving at the same time case-based reasoning with workflow mod-

ification and refactoring. Moreover, time constraints are not considered in

almost any of the articles analyzed. In this thesis we focus in the com-

bination of this two aspects: Time and case-based reasoning for workflow

modification.

27

Chapter 4

Workflow Management

System

As Figure 4.1 shows, our proposal is to develop a workflow management

system (WMS) which handles both the modeling and the monitoring of a

business process and its resources. The WMS models the business process

using high level Petri nets and monitors its development at the task level.

This allows us to predict the possibility of delays in the development of the

business process; to prevent this delays the WMS uses case-based techniques

in order to readapt successful past solutions so delays can be avoided or

minimized; moreover, to diagnose the cause of a delay, a complex event

processing system analyzes the event log generated by the WMS so delay

reasons can be diagnosed.

In this chapter we first introduce the WMS, then we present a Petri net

extension which combines timed Petri nets, colored Petri nets and adds the

concept of resource and subpath: resource aware Petri nets (RAPN). To

notice the delays we propose to monitor the workflow process on the task

level and heuristically calculate the retards instead of monitoring the whole

process. Finally we propose the foundations for refactoring and adapting

ongoing workflows using cased based reasoning when a delay is detected.

28

Figure 4.1: Overview of the whole system.

4.1 Workflow Management System

Before starting to describe our monitoring methodology we introduce the

workflow management system (WMS) architecture.

The workflow management system (WMS) uses Petri nets for work-

flow modeling, and takes into account all the resources available in the sys-

tem. Workflows and resources are handled by the monitoring system (MS),

as shown in Figure 4.2. The MS engine access to the following data:

• Library of workflow patterns, which contains the workflows modeling

the business process activity.

• Resource data base, which contains the information related to the

available resources of the system.

• Running workflows memory, which contains the workflows states cur-

rent running in the system (workflow environment marking).

With this information, the WMS uses the following method to start work-

flows:

1. Receives a request for a business process Bpi from the system.

29

Figure 4.2: The workflow management system is responsible for modeling

and monitoring the workflow and sends warnings when a possible delay is

detected.

2. Search in the workflow library for the pattern associated to Bpi,

Pattern(Bpi) = Wfi.

3. If Wfi is not running with other parameters in the WMS, then the

WMS loads the workflow from the workflow library

4. A new token is created and placed into the corresponding workflow.

Workflows are modeled with Petri nets, since they are a well known tool

for workflow modeling and they offer a wide range of extensions to facilitate

this task. Then, WMS is also responsible of firing the Petri nets transitions

while the workflows are interacting and advancing, so the workflow can be

monitored. Moreover, using previous cases (historical data in Figure 4.2),

WMS estimates durations of activities so delays, lack of resources or devia-

30

Figure 4.3: Resource-aware Petri nets extend the workflow net notation

including resources.

tions can be detected. When those are detected, MS sends warning messages

so the workflow can be restructured in order to minimize the impact of these

problems. WMS also stores workflow historical data so further data mining

can be done.

The key issues are how workflows are modeled, so the available resources

are taken into account in the monitoring phase. Particularly, we introduce

a new Petri net extension that is detailed below.

4.2 Workflow Modeling: Resource Aware Petri

Nets

Workflow modeling using high level Petri nets has been broadly studied

during the last years[64, 19]. As our work is specially focused on delays

prediction, we need to take care of the kind and number of resources needed

for every task inside the workflow so we can evaluate the time workflows will

spend waiting for an available resource. In order to satisfy this requirement

we extended the workflow net representation (Definition 2) with a new re-

source element (Figure 4.3). We called this extension resource-aware Petri

nets (RAPN) (Definition 6). RAPN incorporate resources to high level Petri

nets[3]. Resources (Definition 3) are related with sets of consecutive transi-

tions (forming subpaths, Definition 4) where the first transition (ts) is the

one which allocates the resource and the last (te) is the one which releases

it. If there are not available resources of the required type by a transition

31

(ts) this transition cannot be fired until a resource of the desired type is

released.

Definition 2. A Workflow net is a 4-tuple 〈P, T,A, TO〉 where

• P is a finite set of Places

• T is a finite set of Transitions

• P ∩ T = ∅

• A is the set of arcs which connect P with T and vice versa A : (P ×
T) ∪ (T × P)

• TO is a finite set of tokens which can store time information

• There exists an input place i and an output place o where:

– Place i does not have any incoming arc.

– Place o does not have any outcoming arc

– Each node n ∈ P ∪ T where n 6= i & n 6= o has a path to o

– Each node n ∈ P ∪ T where n 6= i & n 6= o has a path from i

Definition 3. A Resource is defined as a tuple 〈r,Q〉 where r is the kind

of resource and Q the amount of resources of type r available in the system.

Therefore R is a finite set of resources. R = {〈r1, Q1〉 , ... 〈rn, Qn〉} where n

stands for the resources cardinal.

Definition 4. A Transition Subpath (TS) is the set of connected nodes

between two transitions where ts is the starting transition of the subpath and

te the last one, TS = 〈ts, te〉.

Definition 5. A transition subpath resource dependence (SD) defines the

dependence between all the nodes of a subpath TSi and a set of resources,

SD = 〈TSi, {〈rj , kj〉}〉 where kj is the amount of resources of type rj needed.

Definition 6. A Resource-aware Petri net is a 6-tuple 〈P, T,A, TO,R,D〉
where

• P is a finite set of places

32

• T is a finite set of transitions

• P ∩ T = ∅

• A is the set of arcs which connect P with T and viceversa A : (P ×
T) ∪ (T × P)

• TO is a finite set of tokens which can store time information

• R is a finite set of Resources

• D is a finite set of transition subpath resource dependencies (SD)

• There exists an input place i and an output place o where:

– Place i does not have any incoming arc.

– Place o does not have any outcoming arc

– Each node n ∈ P ∪ T where n 6= i & n 6= o has a path to o

– Each node n ∈ P ∪ T where n 6= i & n 6= o has a path from i

4.3 Delay Prediction with Resource Aware Petri

Nets

The workflow management system (WMS) is responsible for monitoring the

development of a workflow case. Monitoring can be performed both at

workflow and task level. Monitoring at the workflow level means that it is

necessary to compare the evolution of the monitored workflow instance with

the standard behavior of the generic workflow. Then, for each workflow the

mean time and the standard deviation can be learned from past executions.

Every time a new instance is started, a maximum deadline for the case

resolution is assigned to it. Usually this deadline is a higher time value than

the mean execution time for the workflow. The exceeding of this deadline

can cause important problems in the system. In service oriented architec-

tures can imply the loss of messages, causing communication problems and

even the restart of the process. In other domains, such as medical device

maintenance, a delay in a workflow could involve the unavailability of medi-

cal equipment causing delays on hospital operations, delays in surgeries and

actually impacting on patients health.

33

Figure 4.4: Graphical representation about how the delays are estimated

based on the token information, the transitions mean times and the workflow

state.

That is why it is important to predict possible delays the sooner the

better so reescalation rules or modifications in the workflow can be done in

order to avoid the delay or to minimize the impact of this retard. Usually,

when a workflow deadline is reached or close to be reached, the workflow

management system sends a time out message or a running out of time

alarm. There, in addition to the mean time of a workflow we also learn from

past executions its estimated time duration.

However those warnings tend to arrive at the late phase of the workflow

(even if they are caused for an early delay) so a restructuration of the work-

flow or resource addition may be difficult to implement. We consider than

a lower-level monitoring of the workflow, in a task level, would result in an

earlier detection of the delay.

In our approach, besides the global execution time of the workflow, we

monitor the time that tokens spend on each place. Moreover we endow

tokens with information about the time it started the workflow, the instant

it arrived to the current place and the current time stamp. This information

allows us to detect possible delays in the workflow (e.g. Figure 4.4) as we can

notice when a task is exceeding it’s normal execution time (Definition 11),

sending task delay warning alarms. However, a delay in the execution of

a task does not necessarily means a delay in the workflow execution as a

faster execution of the rest of activities can avoid the global delay. In order

to advance the workflow execution delay we use the information stored on

34

the token and the time required to execute the worst case (the slowest path)

of the pending workflow. If the sum of the spent time in the previous tasks

of the workflow with the mean time of the pending tasks is higher than the

workflow deadline (Definition 13) then a workflow delay alarm is triggered.

Thus, the method we propose to monitor business process is prerformed

both at the workflow and at the task level.

4.3.1 Definitions

Definition 7. Transition mean time µtime(ti) is the mean of the time spent

by tokens in ti’s input place before ti is fired

Definition 8. Workflow mean time wfµtime(WF) is the mean of the time

spent by tokens in a workflow WF

Definition 9. The longest path of a workflow WF from a transition tc is

the slowest path to be executed starting from the current transition tc to the

endint transition te of the workflow. L(WF,tc)={tc, tc+1, ..., te}

Definition 10. The Elapsed Task Duration associated to a token TOi is the

difference between the arrival time of the token to a place pj and the current

time, ETD(TOi)= (Currenttime − arrivalT ime(TOi, pj)).

Definition 11. A Task Delay associated to a token TOi, SD(TOi), occurs

when a token has an elapsed task duration in a given place p that has exceeded

the tj output transition mean time, ETD(TOi) > µtime(tj)

Definition 12. The estimated duration of a workflow instance represented

by a token TOi, EDW (TOi), is the current elapsed duration, plus the addi-

tion of the transition mean time which belongs to the longest path, that is,

EDW (TOi) = (Currenttime −Wokflowstartingtime) +
∑

ti∈L(WF,tc)
µtime(ti)

Definition 13. A workflow instance represented by a token TOi has a de-

lay, WD(TOi), if its estimated duration exceeds the workflow mean time,

WD(TOi) = EDW (TOi) > wfµtime(WF).

4.3.2 Predicting Method

In order to make predictions the WMS stores the following information

about all the tokens that are currently inside a workflow: current time, the

35

instant time when the workflow instance started, the number of available

resources, which cases are occupying the resources, etc. Every time a task or

a decision is taken in any of the ongoing workflows, a transition is fired in its

corresponding resource-aware net. Thus, the algorithm applied to predict

workflow delays i s the one shown in Algorithm 1.

Algorithm 1 Delay detection algorithm

for each token TOi do

if ESD(TOi) > µtime(TOi.getCurrentTransition) then

TriggerTaskDelaywarning

end if

if EDW (TOi) > wfµtime(TOi.WF) then

TriggerWorkflowDelaywarning

end if

end for

During the monitoring two kind of warning can be send: Task De-

lay(Definition 11) and Workflow Delay(Definition 13). The first one ad-

vises that the time spent in the execution of a concrete task its exceeding

the task mean time; this do not necessary behaves a workflow delay as the

lost time can be recovered during the execution of the remaining tasks.

Workflow Delay alarm is triggered when the workflow estimated duration

exceeds its deadline. These alarms allow system supervisors to restructure

the workflow or to endow the system with more resources in order to avoid

the delays. Moreover, the study of these warnings with data mining and

statistical techniques can offer information about the performance of the

tasks and to detect which are the weaker points of the architecture.

4.4 Workflow Repairing: Case-Based Reasoning

In this section we propose the use of case-based reasoning (CBR) as a so-

lution for workflow repairing when delays are predicted. Organizations and

business companies tend to have preventive and procedures for solving prob-

lems, avoiding delays etc. This actions can have different nature: changing

workflow priorities, reallocating resources, modifying business process ap-

plying escalation rules, etc. Nevertheless, the continuous changes and mod-

ifications on workflow environments and the introduction of new business

36

processes can produce new situations in which the existing procedures are

not effective or even causing the absence of defined preventive actions. In

this sense, CBR offers way of dealing with the comparison of the environ-

ment marking at the time a delay is predicted with previous environment

markings, such that a preventive procedure can be obtained by the merging

of previous successful preventive procedures.

This section summarizes which aspects should be taken into account to

design a CBR tool for refactoring workflows when a delay is predicted in

order to minimize its impact. Firstly, we discuss about how a case should

be defined and compared; then the appropriate kind of reuse is studied;

finally we expose an example about how this CBR tool should work.

4.4.1 Case Representation

Before discussing which retrieving techniques it is important to define the

data contained by a case. In the problem we are facing a case is a workflow

environment marking in a concrete time instant and the solution applied

to it. Therefore the information contained in a case would be the problem

(workflow status: on time, delay predicted, delayed), the context (the total

number and the type of system resources, the resources available and its

status, the marking of the instantiated workflows which includes the petri

net modeling, token position, the workflow deadline, the time the workflow

started and the resources used by the WF and the instantiated workflow

status) and the solution (the collection of preventive procedures used to

refactor the workflows).

Consequently to this case definition, a case would be defined as struc-

tured data since neither the number or the kind of workflows and resources

would be static. In other words, one case could contain information about

just one workflow type and one resource type while another one could store

information about hundreds of them, making the plain representation com-

pletely inviable. In Figure 4.5 a possible representation of a case is shown.

4.4.2 Retrieve

Regarding the comparison between cases, it should combine different kinds of

metrics since the attributes which define a case are of different type. There is

a group of attributes (number of resources, number of workflows, etc.) which

37

Figure 4.5: Possible representation of a workflow environment case.

can be easily compared using geometrical metrics. The structured data,

such as the resource status or the instances inside each workflow, could be

represented as an structured language (e.g. XML) file so a suitable method

for comparing this part of the cases could be an adaptation of [56]. The

similitude between the workflow models should be calculated using graph

metrics. Graph comparing is a computational complex task so the process

of comparing would require good equipment and some time, therefore we

recommend to use the metrics presented in [14] should be considered. The

final step of the comparing process is the integration of the three kinds of

metrics.

4.4.3 Reuse

The reuse stage is also an important step for the workflow delay prevention

using case based reasoning. Conversely to other domains where CBR as used

to solve problems, in this application the solution used in a past case cannot

be directly used as a solution since is highly improbable that the workflow

environment is exactly the same in two different cases. In consequence, new

case reuse for adapting the solution of the most similar cases should be

explored.

For preventing a delay in a workflow environment the four most common

kind of solutions to be considered are the following:

38

• Increasing the priority of the workflows susceptible to be delayed. This

makes that a possibly delayed workflow waiting for a resource, uses it

as soon as it is released by another workflow.

• Increasing the amount of resources in the system. This solution can

imply economic costs are resources are expensive, but, in some emer-

gencies, the cost of including a new resource on the system can be

lower than the cost of having a delay in certain business process.

• Modifying and extending the workflow tasks deadlines. This method

can be used when the workflow susceptible to be delayed has a low

priority. In some situations the assumption of a delay in a secondary

workflow can avoid problems in the primary ones. This solution is

often combined with the first.

• Refactoring workflows. Some workflows can be altered by switching

tasks, realizing activities concurrently or by adding an alternative pro-

cedure. This one can reduce or avoid the delay but its application is

not trivial as requires an analysis of the modification impact into the

system and new deadlines and mean time tasks must be taken into

account.

According to the options presented before, the CBR should not only

provide the best kind of solution to face the delay but also provide the pa-

rameters and the adaptation needed to fit the solution to the current case.

In the adaptation process the solution can be the adjustment of a single so-

lution, the merging of two solutions, or a mixing of different parts of many

solutions. Regarding the first three type of possible solutions, the adapta-

tion of the retrieved solution concerns variables of the system (resources,

deadlines and priorities). A good starting point would be to study and

adapt the reuse techniques used by Cynthia Marling et al. in [38] where a

CBR calculates the insulin dose required by a diabetic patient. On the other

hand, the refactoring of workflows shares a lot of similarities with planifica-

tion problems as the solution to provide is not a value for a variable but an

structured graph or structured data. Consequently, the use of akin strate-

gies as the proposed in [39], where CBR is used to plan the behavior of small

football robots, or the used in [78] where, in a case-based planing problem,

39

they convert into constrains the different pieces of the plans retrieved and

they build a new planing based on this constrains.

4.4.4 Revise and Retain

The revise and the retain phases required for this CBR do not present any

special particularity as they do not have special needs. An expert supervises

the taken decisions and if they can contribute to the case data base with

new knowledge, they are added to it.

4.5 Workflow Delay Diagnose: Complex Event Pro-

cessing

Despite the prediction methods presented above, it is important not to for-

get the workflow diagnose as predictions sometimes can fail and delays can

be produced anyway. An automatic analysis of the delays detected can

help to apply corrective measures and to improve the system in future.

The execution of the workflow management system can produce events as

a consequence of its execution, this events are highly related to our Petri

net extensions: transition triggering, resource allocation, resource releasing,

etc. Since its analysis can be useful and can supply information about the

two main delay reasons (task delay or no available resources) we propose to

carry the workflow diagnosing using complex event processing[58].

4.5.1 Events on Workflow Nets

An event is an object that records a activity in a system. The event repre-

sents the activity and it may be related to other events [37].

To meet our needs we have created the representation of six events which

correspond to the most basic activities that a workflow can perform [43, 64]:

E1 Transition activation ⇒ act(W T , Tj , ti)

E2 Resource allocation ⇒ alloc(W T , rk, Pj , ti)

E3 Resource liberation ⇒ free(W T , rk, Pj , ti)

E4 Advance token ⇒ go(W T , Tj , Pj , ti)

40

E5 Start workflow ⇒ st(W T , ti)

E6 End workflow ⇒ end(W T , ti)

Where W T is a type T workflow, Tj stands for the j-th transition, rk is

the k-th resource, Pj represents the j-th place, ti is the i-th token and all

the event have an associated creation time stamp.

4.5.2 Complex Events on Workflows

A complex event is an event abstraction that signifies a set of events and their

relationships over a time interval. There are three relationships between

events that causes the most common event abstractions: time (event A

happened before/after event B), cause (event B happened because of event

A) and aggregation (event A signifies events B1, ... Bn).

In order to create a starting point for our study case we have created

six complex events that represent example situations we can find during a

workflow execution. They are the following

C1 Lack of resource: When an E1 but no E4 is detected means that the

token can not advance due a lack of some resource.

C2 Activity delay: If an E4 event is detected, but no E4 event is noticed

in the following [ts(E4), ts(E4) + duration(E4.Pj)] time interval, it

means that the estimated time to finish the activity has been exceeded

and hence there is a delay.

C3 Lack of resource delay: If a complex event C1 occurs and then a complex

event C2 occurs for the same process, we can conclude that there is a

delay in the process because of the lack of a resource.

C4 Transition delay: If a complex event C2 and then no E1 event is de-

tected, it implies that something in the process is exceeding its esti-

mated time.

C5 Workflow delay: If an E5 event enters the system but no E6 is detected

in the following interval [ts(E5), ts(E5) + duration(E5.W T)] then a

delay has appeared at some point during the execution delaying the

whole process.

41

Figure 4.6: Graphical representation of the complex events.

C6 Interruption warning: When a C4 is detected but no E1 arrives in

the following [ts(C4), ts(C4) + duration(C4.W T)] it means that the

process has been stuck for a long time in the same place and something

that was not expected is happening.

Where functions ts() and duration() returns the time stamp and the

estimated time it should take respectively. A graphical representation can

be observed in Figure 4.6 where the colon symbol represents an ordered

sequence of elements, the negation symbol “¬” represents the non-existence

of the elements bellow and the values inside the braces are the time interval

in which the the events (circles) must occur.

4.5.3 Rules on Complex Events

Using those complex events, a set of rules can be developed to infer opera-

tions that should be carried out by workflows to avoid sever delays. These

rules are like the following:

R1 IF C1 THEN check resources status

42

R2 IF C3 THEN prioritize

Such kind of rules are similar to any rule based system, and are domain

dependent according to the application field.

4.6 Summary

To sum up, our proposal for workflow monitoring, delay prediction and diag-

nosing is a workflow management system (WMS) based on a new Petri net

extension which introduce the resource concept into the Petri net notation:

resource-aware Petri nets (RAPN). In our WMS the business processes are

modeled as RAPN in such a way that the resources are not considered from

a single workflow point of view but from the whole workflow environment.

In this thesis we presented a monitoring system which, by monitoring the

business process from the task level and by considering the resource infor-

mation provide by RAPN, can estimate which workflow are susceptible to be

delayed so preventive actions can be taken avoiding or minimizing the delay.

The technique proposed to chose preventive actions is the use of case-based

reasoning since the analysis of the data log provided by the WMS combined

with the knowledge of which preventive actions have been taken in past can

provide solutions to new problems. Moreover, we endowed the WMS with a

complex event processing system which, studying the event log generated by

the WMS, allows to diagnose the causes of the unexpected and unpredicted

delays.

43

Chapter 5

Experimentation and Results

In this chapter we test the work previously presented in this thesis, con-

cretely we focus our experiments on the workflow monitoring and on the

delay prediction process. To test the performance of our system we modeled

and simulated a set of workflows extracted and adapted from the AIMES

project [4]. The chapter is divided in three sections, the first one presents

the tested scenarios, the second one shows the results obtained and, finally,

in the last one, the value of the results is discussed.

5.1 Experimental Setup

Our first prototype consists in 3 modules (Figure 5.1): a workflow frame-

work, a workflow simulation engine and the workflow management system

(see appendix A). The workflow framework can load Petri nets defined by

XML or load Petri nets designed with the PM Editeur[77] graphical editor;

it is responsible for firing transitions, moving tokens along the Petri net and

all the work related with Petri nets. Moreover it allows the user to define

resources and to associate them with different parts of the Petri net. The

workflow simulation engine permits to recreate the evolution of a workflow,

given a set of parameters (the workflow modeling, the probability of a work

instantiation, the standard deviation in the execution of a time and, number

of resources in the system and the duration of the simulation) it simulates

the execution of the workflow. Finally the workflow management system is

responsible for monitoring the evolution of the workflow, detecting possible

44

Figure 5.1: Prototype architecture.

delays and to ask the workflow motor to fire the transitions.

5.1.1 Workflows

The workflows correspond to common activities in the medical device main-

tenance industry such as assigning a technician for a device repairing, reas-

signing a technician, locally repair a device, etc.

• Reactive Maintenance Interventions - RMI (Figure 5.2 bottom):

describes the procedure to follow when a a medical device throws a

maintenance warning. In this case the system catch the warning and

classifies the action, locates the source of the action, assigns a priority

to the service and assigns the maintenance action to a technician.

Finally the technician carries the action and the workflow finalizes.

This workflow is composed by six services. In this case, the resources

needed to accomplish the workflow are technicians of a concrete type.

• Maintenance Event Escalation Management - MEEM (Fig-

ure 5.2 top): the technical staff leader wants to assign a concrete task

to an available technician. First of all, the staff leader looks which

technicians are available and which tasks have not been assigned; then

the staff leader defines a procedure to follow for a technician and fi-

nally the technician performs the assigned task (5 services). In this

45

Figure 5.2: Top: Maintenance event escalation management. Bottom: Re-

active maintenance intervention.

workflow two kinds of resources interfere in the development: the tech-

nical staff leader (which its amount will be always one as there is only

one leader in each group) and technicians of a concrete type.

• Inventory and Installation of New Equipment - IINE (Fig-

ure 5.3): It describes the established procedure to follow when a new

device arrives to a hospital. Firstly, a testing specialized technician

makes the quality tests in order to check the popper working of the

device and that all its documentation is attached, then the equipment

is registered and installed. If the received equipment is a piece for an

existing device an specialized technician embeds the equipment to its

correspondent device, otherwise, an installer mounts the device where

it corresponds. Nine different services are required for this workflow

and three different kind of resources (although only two will be used

at each instantiation).

• Multiple Reactive Maintenance Intervention - MRMI (Fig-

ure 5.4: This workflow is an extension of the Reactive Maintenance

Intervention (RMI) workflow presented before. As the previous one,

46

Figure 5.3: Inventory and Installation of New Equipment.

this business process is started when a medical device throws a mainte-

nance warning but is followed when the maintenance must be carried

out by two kinds of technician. The tasks to follow are almost the

same than the RMI but differ in the reparation task. In this workflow

an exclusive or selection is done and it must be decided if the two tech-

nicians can work concurrently or if they must act sequentially. The

resources needed in this process are two different kinds of technicians.

5.1.2 Scenarios

Combining the workflows presented in the previous paragraphs, we created

5 different scenarios to test the delay prediction procedure:

• Scenario 1 There are two kind of resources in the organization: tech-

nical staff leader(1 in the system) and technician type A(4 in the sys-

tem), and two different workflows:reactive maintenance interventions

using a type A technician and maintenance event escalation manage-

ment using a type A technician and a technical staff leader. The

resource type A technician is shared by both workflows. The scenario

simulated among 500 time units with a a workflow starting probability

p = 0.05 per time unit; the kind of workflow started is randomly cho-

sen with the same probability for each workflow type. This scenario

allows us to study the behavior of our methods in a simple experiment.

• Scenario 2 There are three kind of resources in the organization: 1

47

Figure 5.4: Multiple Reactive Maintenance Intervention.

technical staff leader, 3 technician type A and 1 technician type B. This

scenario uses two kind of workflows: reactive maintenance interven-

tions and maintenance event escalation management. However, this

time, some of the reactive maintenance interventions must be carried

by a type B technician so the reactive maintenance interventions have

two kind of instantiations, one using a type A technician and one us-

ing a type B. The scenario simulated among 500 time units with a a

workflow starting probability p = 0.05 per time unit; the probability

of starting a reactive maintenance intervention using a type B tech-

nician is p = 0.2 while the probability of starting one of the other

workflows is p = 0.4 for each one. The aim of this experiment is to

complicate the scenario 1 in order to study the performance of the

workflow management system in a more complex scenario.

• Scenario 3 This scenario adds the inventory and installation of new

equipment business process to the first scenario. We considered that

the type D technician as the same which appears in the Reactive main-

tenance intervention and in the maintenance event escalation manage-

48

ment . As technician D is used by all the workflows we considered to

include a high number of this type available resources in the system,

having 5 type D technicians (used by all the workflows), 1 staff leader

(used by MEEM) and 2 type I and T technicians (used by IINE). We

simulated a 500 time units period with a probability of instantiating

a workflow p = 0.05 distributed in 3/6 for RMI, 2/6 for IINE and 1/6

for MEEM. Scenario 3 allows us to study the workflow management

system when many resources are involved in the business processes.

• Scenario 4 In this case only the multiple reactive maintenance inter-

vention is used since we considerer that is an enough complex workflow

itself. Moreover, MRMI permits to study the difference between the

sequential and the concurrent use of resources. The simulation has

been done for 500 time units with a probability of starting a new

workflow of p = 0.2. In the simulation three resources of each kind

has been defined.

• Scenario 5 This scenario do not correspond to any of the business

process presented before since it is a completely synthetic case created

to analyze the behavior of the system when many workflows share the

same resource. Figure 5.5 describes the workflow environment where

three sequential workflows share the same resource (Resource 3) more-

over two of them share resource 2 and one also uses the resource 1.

The amount of resources available in the system for each workflow is

directly proportional to the number of workflows which use them: six

type 3 resources, four type 2 resources and two type 1 resources. As

the rest of scenarios, we have simulated 1000 time units, the proba-

bility of instantiating a new worfklow used is p = 0.01 with the same

probability for each workflow type.

5.2 Results

Figures 5.6, 5.7, 5.8, 5.9, and 5.10 shows the obtained results as a flow

execution diagram. The delayed workflows appear marked with their token

identifier. The workflow executions are represented as lines where the dashed

lines represents a normal execution (inside its maximum time of execution)

and information of delayed plans are shown as solid lines. Moreover, the

49

Figure 5.5: Scenario 5 graphical description.

instants in which our tool predicted a delay for the workflow are marked

with a vertical line.

Figure 5.6 shows the first scenario result. In this experiment two different

workflows are sharing two different resources. The simulation among 500

time units generated 30 workflow cases where 7 of them resulted in a delay

(T1, T8, T10, T15, T19, T22 and T26). All of them were predicted before

they occurred by our system although 2 false positives (a delay was predicted

but the workflow ended on time) were also predicted (T5 and T11). As it

is a simple scenario the number of delays produced is small.

Figure 5.7 shows the second scenario result where the same two workflows

share 3 different types of resources with a different quantity of them. The

simulation generated 31 workflow cases where 10 finished out of time (T7,

T9, T12, T15, T16, T17, T19, T20, T25 and T29). As happened on the

previous scenario all the delays were successfully predicted, nevertheless,

2 on time workflows where classified as delayed workflows (T1 and T12).

Moreover, due to the higher complexity of this experiment, it is important

to notice that the number of delays respect the first scenario has increased.

50

Figure 5.6: Result of the first scenario where the system resources are 4 type

A technicians and a 1 technician staff leader.

Figure 5.8 the results of the thirds scenario are shown. In it, the instal-

lation and inventory of new equipment is added to the first scenario. In the

simulation 26 workflows have been instantiated and 12 of them have been

marked as possible delayed workflows (T9, T11, T13, T14, T15, T16, T17,

T18, T19, T21, T22 and T24). As both the complexity and the number

of resources used in this scenario are higher than in the previous ones, the

number of delays in the system is also higher. Ten of this marked work-

flows have been correctly classified as they have suffered a delay, while T14,

despite the delay prediction, ended on time. The workflow defined by the

T24 token has been classified as susceptible of suffering a delay, however the

simulation ended before the workflow was delayed. Regarding the kind of

workflows marked as delayed, 3 correspond to the IINE WF, 4 to the RMI

WF and 5 to the EM WF.

In Figure 5.9 the output of the fourth scenario is shown. The simulation

of the Multiple reactive maintenance intervention generated 97 workflow

instances but only 5 have been predicted as delayed workflows (T1, T5, T43,

T77 and T78), nevertheless two of them are false positive as T5 and T43

ended inside the stipulated deadline. The low number of delays produced

is probably caused by the fact that only one workflow is monitored in this

scenario.

Finally, Figure 5.10 shows a synthetic example which shows the behav-

51

Figure 5.7: Result of the second scenario where the system resources are 3

type A technicians, 1 type B technician and a 1 technician staff leader.

ior of an organization where a resource is shared by many workflows. 42

workflows where generated among the simulation, 13 of them classified as

susceptible of suffering a delay (T5, T9, T10, T13, T14, T16, T17, T27,

T28, T32, T34, T37 and T38). 10 where correctly tagged while T9, T17

and T27 had an erroneous classification. Regarding the typology of the pre-

dicted workflows, 8 used 3 different types of resources, 2 needed two kind

of resources and 2 required just 1 resource. The results of this scenario are

quite similar to the third experiment as in both a high number of resources

is used.

5.3 Discussion

The obtained results in the different scenarios show that our prototype can

provide an early detection of workflow delays. In some cases such as to-

ken 7(scenario2), token 22(scenario3) or token 16(scenario5) the detection

is done up to 40 time units before the workflow deadline (32% of the work-

flow duration). This delay anticipation could be enough to restructure the

scheduling of the service workflow, especially in long duration workflows as

medical device maintenance operations (which can have long term deadlines)

or manufacturing processes (with midterm deadlines).

52

Figure 5.8: Result of the third scenario where the system IINE is added to

the workflow environment.

By comparing the first two presented scenarios we can notice that in the

second one there is a higher number of delays. This fact is due to the lower

number of available resources in the system. As more workflows are waiting

for a resource to be released, more workflows may be delayed. The higher

resource variety in the second scenario caused the ending of some workflows

that were instantiated after others. Despite this two remarkable differences,

the delay prediction presented a similar behavior in both scenarios.

If we compare the third scenario with the fourth we can realize that the

number of delays is much higher in scenario 3 than in scenario 4. This is

caused by the higher number of workflows in the organization since, despite

the fact that the multiple reactive maintenance intervention is a complex

workflow it is not affected by other procedures and all the workflows instan-

tiations have a similar behavior. Still focusing in this two scenarios, we can

see that the mismatched classifications is higher in scenario 4. Probably,

this points out that our workflow management system provides a more ac-

curate delay prediction when different types of workflow are interacting and

allocating resources.

The fifth scenario was created in order to analyze the behavior of the

system when several workflows share the same resource and when a work-

53

Figure 5.9: Result of the fourth scenario where only the multiple reactive

maintenance intervention is simulated.

flow uses many resources. In this case in an environment with 3 different

resources one of them is used by all the workflows inside the organization

and with one workflow using all the resource types. As expected, the work-

flow involving all resources types is the one which suffers a higher number of

delays and the biggest ones. The workflow management system have been

able to detect this fact and all the delays produced in the Workflow C where

detected with, at least, 30 time units which a reasonable margin for starting

a preventive action. Nevertheless, it is important to remark than almost

all the false positive classifications in this scenario have been done in the

Workflow C which shows than the algorithm tends to point delays in the

workflows which use more resources.

Table 5.1 shows the confusion matrix of the two presented experiments.

If we analyze the results we can observe that in any of the performed ex-

periments appear false negative classifications (delayed workflows classified

as on time workflows). This is a remarkable detail as it means that no de-

layed workflows are ignorated. Since our point of view, in the domain we

are dealing with, a false positive is less harmful than a false negative as a

false positive can result in a workflow checking by a supervisor while a false

negative can produce a global delay on the system. Regarding the false pos-

itives we can see that they also appear in all the tables, representing around

the 6% of the classified workflows on tables a, b, c and e. The impact of the

false positives is directly proportional of the cost of applying a preventive

action, in the workflow domain we consider than 6% is a reasonable per-

54

Figure 5.10: Result of the fifth scenario where many workflow instances

share the same resource.

centage. However, in table d, despite the fact that the percentatge of false

positives is lower (2.01%) we can see that means that those 2 false positives

represente a 40% of the workflow classified as delayed, probably this fact is

cause by the concurrent usage of workflows and it would be a good idea to

study this case in detail in future so the prediction algorithm can be more

precisely tuned.

Although the obtained results encourage us to follow this research direc-

tion, it is important to remember that the presented results were obtained

from workflow simulations, not from real procedures. It would be interest-

ing to apply the presented methodology to real data in order to analyze its

performance in a real environment.

55

PC\RC Delay On Time

Delay 7 2

On Time 0 21

PC\RC Delay On Time

Delay 10 2

On Time 0 19

(a) (b)

PC\RC Delay On Time

Delay 10 2

On Time 0 14

PC\RC Delay On Time

Delay 3 2

On Time 0 92

(c) (d)

PC\RC Delay On Time

Delay 10 3

On Time 0 39

(e)

Table 5.1: These tables show the confusion matrix from the different sce-

narios (a)Scenario 1 confusion matrix. (b)Scenario 2 confusion matrix.

(c)Scenario 3 confusion matrix. (d)Scenario 4 confusion matrix. (e)Scenario

5 confusion matrix.

56

Chapter 6

Conclusions and further

work

This final chapter presents the conclusions obtained from the research pre-

sented in this thesis. The chapter is divided in three sections. The first one

exposes the conclusions, the second points the contributions of this thesis to

artificial intelligence while the last one proposes some options to continue

this work.

6.1 Conclusions

In this thesis we have presented a new approach to cover a need that nowa-

days is becoming a key point in business processing, the workflow monitor-

ing.

Our work aimed to include a new perspective that can improve workflow

efficiency by taking under consideration not only the time (as it has been

done until now) but also the resources availability and the concurrent execu-

tion of workflows inside an organization. Actual tools for modeling services

are not enough to represent all the variables that can affect their efficiency,

as the available resources. That is, Petri nets, a common modeling tool,

allow to represent the resources needed by an activity, but neither the total

amount of resources available in the system nor their dependencies.

This work has faced different problems regarding workflow monitoring:

how to model workflows including information about the resources needed

57

to its execution; how to monitor a workflow for predicting possible delays in

its execution; how to decide which preventive actions should be taken when

a delay is detected; and how to diagnose the reason of a delay so can be

avoided in future.

For the first issue we defined the resource-aware Petri nets (RAPN), a

Petri net extension which includes the information of the resources needed

by each task. RAPN are based in color dense-time Petri nets, which have

been widely used to model workflows. Its main contribution is the addition

of the resource concept, which is allocated when a concrete transition is fired

and its released when the last transition which needs the resource is fired.

Once the business processes are modeled, workflow management systems

are in charge for its monitorization. The monitoring of RAPN in a task level,

taking into account the organization resources and the rest of workflows

which are executed in a workflow environment, allows to predict delays in a

workflow execution. According to this predictive capacity, we have discussed

how a preventive action to avoid or minimize delays can be chosen; we

proposed the fundamentals for a case-based reasoning tool to exploit the

information stored by the workflow management systems. For this purpose

we present a possible case definition of a workflow environment and we

discussed the kind of reuse techniques which should be used.

Moreover, taking advantage of the research carried out by other partners

of the eXiT research group, we include a complex event processing engine so

unpredicted delays it can be diagnosed by analyzing the event log generated

by the workflow management system (although this is not the focus of this

thesis).

To test our approach, we simulated a medical equipment maintenance

organization deployed in a service oriented architecture. The simulations

we ran fulfilled our expectations, indicating that an anticipated delay alarm

can be predicted in many different situations. There were also some cases

(around the 6% of the cases and 20% of the predictions) where the prediction

alarm was thrown despite no delay was finally produced (false positive) while

all the delays where succesfully predicted. In the tested domain the false

negatives have a much higher cost than the fasle positives as they behave

the impossibility of applying a preventive action, in this sense our approach

had an apropriate behavior as any false negative appeared.

At the end, the application of our proposed workflow monitoring system

58

is conditioned to the knowledge of the business resources. Thus, it seems

that could be straight applied inside an organization or company, however

it can present difficulties on its deployment in workflows involving exter-

nal partners since the workflow management system cannot trace all the

resources implicated on the business process of different companies.

6.2 Contributions

The main contribution of this thesis to the artificial intelligence community

are the creation of a high-level Petri net which includes in the flow modeling

the resources available inside a workflow environment. This extension, which

is based in dense-time Petri nets and color Petri nets, is resource aware Petri

nets. This fills a gap in the workflow representation field since there exist

some modeling languages (e.g BPEL) which include system resources but

none of them offer a formal notation and the same compatibility with the

Van der Aalst patterns[52] as Petri nets.

Moreover, we provide a workflow management technique which by moni-

toring workflows in the task-level (in the transition level when talking about

Petri nets) can predict unexpected behaviors in the workflow execution such

as delays.

The research work concerning the workflow modeling, the delay predic-

tion and the workflow monitoring exposed in this master thesis has been

submitted to the following conferences:

• Albert Plà,Beatriz López, Pablo Gay, and Joaquim Meléndez. Re-

source aware Petri nets for Service Workflow Monitoring and Delay

Prediction. 8th International Conference on Service Oriented Com-

puting (ICSOC). 2010, San Francisco, California. (Submitted)

• Pablo Gay, Albert Plà, Beatriz López, Joaquim Meléndez and Regina

Munier. Service workflow monitoring through complex event process-

ing. 15th IEEE International Conference on Emerging Techonologies

and Factory Automation (ETFA). 2010, Bilbao, Spain. (Accepted)

Regarding the work involving complex event processing, which is not the

main theme of this thesis but it is also treated, it has been published at the

following congress:

59

• Pablo Gay, Beatriz López, Albert Plà and Joaquim Meléndez. Com-

plex event processing for public-cycling transport supervision. 13th

Congrés Internacional de l’Associació Catalana d’Intel·ligència Arti-

ficial (CCIA). 2010, Espluga de Francoĺı (Tarragona), Spain. (Ac-

cepted)

6.3 Further Work

The work started in this MSc Thesis will be continued as a part of a PhD

program. A good starting point for continuing the work stated in the pre-

vious chapters would be the implementation of the case based reasoning

module and its integration to the workflow management system; also, tak-

ing advantages of optimization tools from the constraint community, as the

work done in [6] could be a good contribution.

The complex event processing module presented in Chapter 4.5 considers

a reduced set of events and a small collection of rules. Its extension and a

wider analysis of them could result in a better diagnosing of the unpredicted

delays.

This work has been tested using a simulation based on a medical de-

vice maintenance organization, its validation into a real environments such

as service oriented architectures or industrial manufacturing process would

provide an important feedback of the points which could be improved and

into the localization of weaker aspects.

Finally, the incorporation of agents into the monitoring stage, following

the work started by Blake[12] and Ehrler et al.[18] could provide a more

efficient monitoring and an interesting discussion about the resource-focused

or the workflow-focused approach.

60

Appendix A

Implementation notes

A.1 The workflow editor

The workflow editor is the tool we created for defining and modeling work-

flows. For this purpose we reused an existing application: The PM edi-

teur [77] (PME). PME provides a graphical editor for Petri net creation and

edition, it allows the user to create Petri nets in a simpler way and to save

them in its own file format. However, our proposed solution for workflow

modeling is the usage of RAPN. In consequence, we decided to create a

parser to transform the PME file format to a simpler XML file so it can be

easy understood. We implemented an editor where resources can be created

and, given a set of PME files, resources can be related with the Petri net

transitions so they become RAPN. The designed workflows are stored on

the workflow library.

A.2 Workflow management system

The workflow management system is also implemented in Java. It is com-

posed by the following different classes which implement the resource aware

Petri nets: arch, place, token, transition, resource and RAPN, the class

which unifies all of them. WMS implementation is highly related with the

WfSi java code as the WMS is checking the state of the WfSi in order to

analyze the behavior of the workflows and to check that the resource and

the tasks are evolving in the proper way.

61

Bibliography

[1] Bpel project. http://www.eclipse.org/bpel/ Accessed June 10th, 2010.

[2] A. Aamodt and E. Plaza. Case-based reasoning; foundational issues,

methodological variations, and system approaches. AI Communica-

tions, 7(1):39–59, 1994.

[3] P. A. Abdulla, P. Mahata, and R. Mayr. Dense-timed petri nets: Check-

ing zenoness, token liveness and boundedness. CoRR, abs/cs/0611048,

2006.

[4] AIMESproject. Deliverable 1.3: requirements specification, 2008-2010.

[5] M. Alt, S. Gorlatch, A. Hoheisel, and H.-W. Pohl. Using high-level petri

nets for hierarchical grid workflows. In E-SCIENCE ’06: Proceedings

of the Second IEEE International Conference on e-Science and Grid

Computing, page 13, Washington, DC, USA, 2006. IEEE Computer

Society.

[6] R. Bartak, J. Little, O. Manzano, and C. Sheahan. From enterprise

models to scheduling models: bridging the gap. Journal of Intelligent

Manufacturing, 21:121–132, 2010.

[7] R. Bastos, D. Dubugras, and A. Ruiz. Extending uml activity diagram

for workflow modeling in production systems. In HICSS ’02: Proceed-

ings of the 35th Annual Hawaii International Conference on System

Sciences (HICSS’02)-Volume 9, page 291, Washington, DC, USA, 2002.

IEEE Computer Society.

[8] B. Benatallah, P. Chrz;stowski-Wachtel, R. Hamadi, M. O?Dell, and

A. Susanto. Hiword: A petri net-based hierarchical workflow designer.

62

Application of Concurrency to System Design, International Confer-

ence on, 0:235, 2003.

[9] R. Bergmann, A. Fremann, K. Maximini, R. Maximini, and T. Sauer.

T.: Case-based support for collaborative business. In Proceedings of the

8th European Conference on CBR (ECCBR06), Springer LNCS 4106,

pages 519–533, 2006.

[10] X. Berjaga, A. Pallarés, and J. Meléndez. A framework for case-based

diagnosis of batch processes in the principal components space. In

ETFA’09: Proceedings of the 14th IEEE international conference on

Emerging technologies & factory automation, pages 745–753, Piscat-

away, NJ, USA, 2009. IEEE Press.

[11] M. Berlingerio, F. Pinelli, M. Nanni, and F. Giannotti. Temporal min-

ing for interactive workflow data analysis. In KDD ’09: Proceedings

of the 15th ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pages 109–118, New York, NY, USA, 2009.

ACM.

[12] B. Blake.

[13] A. Brogi, R. Popescu, A. Brogi, and R. Popescu. Bpel2yawl: Translat-

ing bpel processes into yawl workflows, 2006.

[14] H. Bunke and B. T. Messmer. Similarity measures for structured rep-

resentations. In EWCBR ’93: Selected papers from the First European

Workshop on Topics in Case-Based Reasoning, pages 106–118, London,

UK, 1994. Springer-Verlag.

[15] M. Buscemi and V. Sassone. High-level petri nets as type theories in

the join calculus. In In Proceedings of 4th FOSSACS, volume 2030 of

LNCS, pages 104–120. Springer, 2001.

[16] J. Desel and J. Esparza. Free choice Petri nets. Cambridge University

Press, New York, NY, USA, 1995.

[17] M. Dumas and A. H. ter Hofstede. Uml activity diagrams as a workflow

specification language. pages 76–90. Springer Verlag, 2001.

63

[18] L. Ehrler, M. Fleurke, M. Purvis, B. Tony, and R. Savarimuthu. Agent-

based workflow management systems(wfmss): Jbees - a distributed and

adaptive wfms with monitoring and controlling capabilities. In Journal

of Information Systems and e-Business Management, Volume 4, Issue

1, pages 5–23. Springer-Verlag, 2005.

[19] R. Eshuis and J. Dehnert. Reactive petri nets for workflow modeling.

In Application and Theory of Petri Nets 2003, pages 296–315. Springer,

2003.

[20] H.-G. Fill. Uml statechart diagrams on the adonis metamodeling plat-

form. Electron. Notes Theor. Comput. Sci., 127(1):27–36, 2005.

[21] M. R. Frankowiak, R. I. Grosvenor, and P. W. Prickett. Microcontroller-

based process monitoring using petri-nets. EURASIP J. Embedded

Syst., 2009:1–12, 2009.

[22] w. Gaaloul, K. Bana, and C. Godart. Towards mining structural work-

flow patterns. 3588/2005:24–33, 2005.

[23] F. Giannotti and M. Nanni. Efficient mining of temporally annotated

sequences. In In Proc. SIAM Conference on Data Mining, 2006.

[24] F. Giannotti and M. Nanni. Mining sequences with temporal annota-

tions. In In Proc. SIAM Conference on Data Mining, pages 346–357.

SIAM, 2006.

[25] C. L. A. I. G.T.S. Ho, H.C.W. Lau and K. Pun. An intelligent

production workflow mining system for continual quality enhance-

ment. The International Journal of Advanced Manufacturing Tech-

nology, 28(28):792–809, 2006.

[26] S. Ha and H.-W. Suh. A timed colored petri nets modeling for dynamic

workflow in product development process. Comput. Ind., 59(2-3):193–

209, 2008.

[27] J. Herbst and D. Karagiannis. Workflow mining with inwolve. Comput.

Ind., 53(3):245–264, 2004.

64

[28] S. Hinz, K. Schmidt, and C. Stahl. Transforming bpel to petri nets. In

W. M. P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, edi-

tors, Proceedings of the 3rd Int’l Conference on Business Process Man-

agement (BPM 2005), pages 220–235, Nancy, France, 2005. Springer

Verlag.

[29] H.-S. Hong, B.-S. Lee, K.-H. Kim, and S.-K. Paik. A web-based trans-

actional workflow monitoring system. In WISE ’00: Proceedings of the

First International Conference on Web Information Systems Engineer-

ing (WISE’00)-Volume 1, page 166, Washington, DC, USA, 2000. IEEE

Computer Society.

[30] J. R. M. Indulska. How good is bpmn really? insights from theory and

practice. In 14th European Conference on Information Systems, 2006.

[31] R. D. Jarrard. Scientific Methods. Online book

http://www.emotionalcompetency.com/sci/booktoc.html, 2001.

[32] A. Kalnins and V. Vitolins. Use of uml and model transformations for

workflow process definitions. CoRR, abs/cs/0607044, 2006.

[33] E. Kanana and M. Farhi. Monitoring information and data flows using

triggers in a dynamic workflow environment. In Proceedings of the 5th

European Conference on Knowledge Managemen, pages 175–179, 2004.

[34] S. Kapenakis, M. Petridis, J. Ma, and L. Bacon. Workflow monitor-

ing and diagnosis using case based reasoning on incomplete temporal

log data. In Proceedings of the Workshop on Uncertainty, Knowledge

Discovery, and Similarity in Case Based Reasoning UKDS, in Work-

shop proceedings of the 8th International Conference on Case Based

Reasoning, 2009.

[35] T. M. Koulopoulos. The Workflow Imperative: Building Real World

Business Solutions. John Wiley & Sons, Inc., New York, NY, USA,

1995.

[36] M. Lombardi and M. Milano. Allocation and scheduling of conditional

task graphs. Artificial Intelligence, 174(7-8):500–529, 2010.

65

[37] D. C. Luckham. The power of events: An introduction to complex event

processing in distributed enterprise systems. Addison-Wesley Longman

Publishing Co., Inc., 2001.

[38] C. Marling and J. Shubrook. Case-based decision support for patients

with type 1 diabetes on insulin pump therapy.

[39] C. Marling, M. Tomko, M. Gillen, D. Alex, and D. Chelberg. Case-

based reasoning for planning and world modeling in the robocup small

sized league. In In IJCAI Workshop on Issues in, 2003.

[40] P. Massuthe and K. Wolf. Operating Guidelines for Services. Petri Net

Newsletter, 70:9–14, Apr. 2006.

[41] M. Minor, A. Tartakovski, and R. Bergmann. Representation and

structure-based similarity assessment for agile workflows. In ICCBR

’07: Proceedings of the 7th international conference on Case-Based Rea-

soning, pages 224–238, Berlin, Heidelberg, 2007. Springer-Verlag.

[42] M. Muehlen and J. Recker. How much language is enough? theoretical

and practical use of the business process modeling notation. Advanced

Information Systems Engineering, pages 465–479, 2008.

[43] T. Murata. Petri nets: Properties, analysis and applications. Proceed-

ings of the IEEE, 77(4):541–580, August 2002.

[44] E. Olsson and P. Funk. Diagnosis of industrial equipment using case-

based reasoning and sound comparison. In J. Malek, editor, AILS2004,

page 8, April 2004.

[45] K. Pant. Business Process Driven SOA using BPMN and BPEL: From

Business Process Modeling to Orchestration and Service Oriented Ar-

chitecture. Packt Publishing, August 2008.

[46] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für

instrumentelle Mathematik, Bonn, 1962.

[47] C. Pous, P. Gay, A. Pla, J. Brunet, J. Sanz, T. R. Cajal, and B. López.

Modeling reuse on case-based reasoning with application to breast can-

cer diagnosis. In AIMSA ’08: Proceedings of the 13th international

66

conference on Artificial Intelligence, pages 322–332, Berlin, Heidelberg,

2008. Springer-Verlag.

[48] M. Reichert and P. Dadam. Adeptflex supporting dynamic changes

of workflows without losing control. Journal. Intelligent Information

Systems, 10:93?129, 1998.

[49] S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dy-

namic changes in workflow systems: a survey. Data Knowl. Eng.,

50(1):9–34, 2004.

[50] A. Rozinat, M. Wynn, W. van der Aalsta, A. ter Hofstede, and C. Fidge.

Workflow simulation for operational decision support. Data & Knowl-

edge Engineering, 68(9):834–850, 2009.

[51] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-

guage Reference Manual. Addison-Wesley, Boston, MA, 2. edition,

2005.

[52] N. Russell, Arthur, W. M. P. van der Aalst, and N. Mulyar. Workflow

control-flow patterns: A revised view. Technical report, BPMcenter.org,

2006.

[53] N. Russell, Arthur, W. M. P. van der Aalst, and N. Mulyar. Workflow

control-flow patterns: A revised view. Technical report, BPMcenter.org,

2006.

[54] G. Schimm. Process miner - a tool for mining process schemes from

event-based data. In JELIA ’02: Proceedings of the European Confer-

ence on Logics in Artificial Intelligence, pages 525–528, London, UK,

2002. Springer-Verlag.

[55] L. Sheng, F. Yushun, and L. Huiping. Dwelling time probability den-

sity distribution of instances in a workflow model. Comput. Ind. Eng.,

57(3):874–879, 2009.

[56] H. Shimazu. A textual case-based reasoning system using xml on the

world-wide web. In Proceedings of the European Workshop on Advances

in Case-Based Reasoning, pages 274–285, London, UK, 200. Springer-

Verlag.

67

[57] R. Silva, J. Zhang, and J. G. Shanahan. Probabilistic workflow mining.

In KDD ’05: Proceedings of the eleventh ACM SIGKDD international

conference on Knowledge discovery in data mining, pages 275–284, New

York, NY, USA, 2005. ACM.

[58] D. Sottara, A. Manservisi, P. Mello, G. Colombini, and L. Luccarini. A

CEP-based SOA for the management of WasteWater treatment plants.

In 2009 IEEE Workshop on Environmental, Energy, and Structural

Monitoring Systems, EESMS 2009 - Proceedings, pages 58–65, 2009.

[59] S. Subramaniam, V. Kalogeraki, D. Gunopulos, F. Casati, M. Castel-

lanos, U. Dayal, and M. Sayal. Improving process models by discovering

decision points. Information Systems, 32(7):1037 – 1055, 2007. Special

Issue on Intelligent Information Processing.

[60] J. Tick. Workflow model representation concepts. Nemzetkzi Szim-

pziuma 7 th International Symposium of Hungarian Researchers on

Computational Intelligence Workflow Model Representation Concepts,

7, 2002.

[61] W. van der Aalst. Interval timed coloured petri nets and their analysis,

1993.

[62] W. van der Aalst and B. F. V. Dongen. Discovering workflow perfor-

mance models from timed logs. In International Conference on Engi-

neering and Deployment of Cooperative Information Systems (EDCIS

2002), volume 2480 of Lecture Notes in Computer Science, pages 45–63.

Springer-Verlag, 2002.

[63] W. van der Aalst, A. Weijters, and L. Maruster. Workflow mining:

Which processes can be rediscovered? In Eindhoven University of

Technology, pages 1–25, 2002.

[64] W. M. P. van der Aalst. The application of Petri nets to workflow man-

agement. The Journal of Circuits, Systems and Computers, 8(1):21–66,

1998.

[65] W. M. P. Van Der Aalst. Inheritance of interorganizational workflows:

How to agree to disagree without loosing control? Inf. Technol. and

Management, 4(4):345–389, 2003.

68

[66] W. M. P. van der Aalst and M. Pesic. Specifying, discovering, and mon-

itoring service flows making web services process-aware. BPM Center

Report BPM-06-09, BPM Center, 2006.

[67] W. M. P. van der Aalst and Ter. Yawl: yet another workflow language.

Information Systems, 30(4):245–275, June 2005.

[68] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,

G. Schimm, and A. J. M. M. Weijters. Workflow mining: a survey of

issues and approaches. Data Knowl. Eng., 47(2):237–267, November

2003.

[69] J. Vanhatalo, H. Völzer, and J. Koehler. The refined process structure

tree. Data Knowl. Eng., 68(9):793–818, 2009.

[70] J. Vanhatalo, H. Völzer, and F. Leymann. Faster and more focused

control-flow analysis for business process models through sese decom-

position. In ICSOC ’07: Proceedings of the 5th international conference

on Service-Oriented Computing, pages 43–55, Berlin, Heidelberg, 2007.

Springer-Verlag.

[71] J. Vanhatalo, H. Völzer, F. Leymann, and S. Moser. Automatic work-

flow graph refactoring and completion. pages 100–115. 2008.

[72] M. Wang and H. Wang. Intelligent agent supported flexible workflow

monitoring system. In A. Banks Pidduck et al: CAISE 2002, LNCS

2348, pages 787–791, 2002.

[73] B. Wassermann, W. Emmerich, B. Butchart, N. Cameron, L. Chen, and

J. Patel. Sedna: A bpel-based environment for visual scientific workflow

modelling. In In Workflows for eScience - Scientific Workflows for

Grids. Springer Verlag, 2007.

[74] A. Weijters and W. van der Aalst. Rediscovering workflow models

from event-based data using little thumb. Integrated Computer-Aided

Engineering, 10:2003, 2001.

[75] G. Wirtz, M. Weske, and H. Giese. Extending uml with workflow mod-

eling capabilities. In CooplS ’02: Proceedings of the 7th International

Conference on Cooperative Information Systems, pages 30–41, London,

UK, 2000. Springer-Verlag.

69

[76] N. Zarour, M. Boufaida, L. Seinturier, and P. Estraillier. Supporting

virtual enterprise systems using agent coordination. Knowledge and

Information Systems, 8:330?349, 2005.

[77] M. S. Zdenk, M. Svdov, and Z. Hanzlek. Matlab toolbox for petri nets.

In 22nd International Conference ICATPN 2001, pages 32–36, 2001.

[78] H. Zhuo, Q. Yang, and L. Li. Constraint-based case-based planning

using weighted max-sat. In ICCBR, pages 374–388, 2009.

70

	Introduction
	Motivation
	The Problem
	Objectives and Methodology
	Thesis Outline

	Background
	Workflow Concepts
	Petri Nets
	Colored Petri Nets
	Timed Petri Nets
	Workflow Nets

	Case-Based Reasoning

	Related Work
	Workflow Modeling
	Workflow Monitoring
	Workflow Discovering
	Workflow Adaptation
	Summary

	Workflow Management System
	Workflow Management System
	Workflow Modeling: Resource Aware Petri Nets
	Delay Prediction with Resource Aware Petri Nets
	Definitions
	Predicting Method

	Workflow Repairing: Case-Based Reasoning
	Case Representation
	Retrieve
	Reuse
	Revise and Retain

	Workflow Delay Diagnose: Complex Event Processing
	Events on Workflow Nets
	Complex Events on Workflows
	Rules on Complex Events

	Summary

	Experimentation and Results
	Experimental Setup
	Workflows
	Scenarios

	Results
	Discussion

	Conclusions and further work
	Conclusions
	Contributions
	Further Work

	Implementation notes
	The workflow editor
	Workflow management system

