Multi-Attribute Auctions: Application to Workflow Management Systems

Albert Pla Planas

Supervisors: Dra. Beatriz López and Dr. Javier Murillo Departament EEEA

Universitat de Girona

Index

- Introduction
- Auctions for multi-attribute resource allocation
- PUMAA: Preserving utility multi-attribute auctions
- FMAAC: Framework for multi-attribute auction customization
- Multi-dimensional fairness for multi-attribute auctions
- Conclusions

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions

Introduction

Auctions in workflow management systems

- Auctions allow an optimal allocation for just-in-time:
 - Competitive market
 - Optimization according to a given criteria.

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensiona	ll Fairness	Conclusions
Auctions & Workflows	Dimensionality	Allocation issues	Multi-attribu	te auction	Challenges	Contributions

Auctions in workflow management systems

- Just-in-time resource allocation
- Special domains:
 - Production not known in advance
 - Production under demand / Supply chain under demand
 - Handling unexpected tasks (provoked by faults)
 - Unknown resource status
 - Outsourced resources

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensiona	ll Fairness	Conclusions
Auctions & Workflows	Dimensionality	Allocation issues	Multi-attribu	te auction	Challenges	Contributions

WMS: Multi-dimensional allocation problem

- Workflow managers are not only concerned by costs:
- Workflow managers are concerned about multiple attributes:
 - Economic costs
 - Product quality
 - Delivery times
 - Licenses / ISO standardizations
 - CO_2 emissions
 - Energy consumption

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensiona	al Fairness	Conclusions
Auctions & Workflows	Dimensionality	Allocation issues	Multi-attribu	te auction	Challenges	Contributions

WMS: Multi-dimensional allocation problem

- Multi-criteria allocation problem
 - Number of attributes considered in the allocation > 1
 - Modifying one attribute can condition the value of the rest
- Multi-attribute auctions
 - Number of attributes involved in the auction >1
 - Bids composed by several attributes.
 - Usually economic cost plus another attribute.
- Develop a multi-attribute auction mechanism for allocating resources and tasks in workflows

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensiona	l Fairness	Conclusions
Auctions & Workflows	Dimensionality	Allocation issues	Multi-attribu	te auction	Challenges	Contributions

Resource allocation in the supply chain issues

- Example: Smartphone manufacturer.
 - Needs to provide a bundle of smartphones in two days.
 Deadline = 2800 minutes
 - Sequentially outsources the manufacturing of the phone parts and ensembles them.
 - Maximum Budget = 200€

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensiona	al Fairness	Conclusions
Auctions & Workflows	Dimensionality	Allocation issues	Multi-attribu	te auction	Challenges	Contributions

Recurrent auctions issues

- Always the same participants in the market.
- **Bidder drop problem (BDP)**: Unsatisfied bidders leave the auction and the stronger bidders create an oligopoly.

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensiona	al Fairness	Conclusions
Auctions & Workflows	Dimensionality	Allocation issues	Multi-attribu	te auction	Challenges	Contributions

Challenges

- Multi-attribute incentive compatibility
 - Encourage resource providers (RP) to reveal their true values in terms of cost and attributes (respect their agreements)
- Workflow related issues
 - Misdelivered tasks
 - Delays, budget problems, quality problems...
- Recurrent auctions' issues
 - Bidder drop problem
 - Fairness in multi-criteria problems

Introd	uction A	Auctions for MARA	PUMAA	FMAAC	Multi-dimensio	nal Fairness	Conclusions
Auctic	ons & Workflows	Dimensionality	Allocation issues	Multi-a	tribute auction	Challenges	Contributions
	Challe	nges	VS.	Contr	ibutions		
	Multi-Workf	attribute IC	• ssues	PUMAA Design for ta for ta FMAAC Stud Deve custo	A gn of a multi- ask allocation i-criteria requ y attribute ty elop a omizing multi	attribute a uirements s pes in auct frameworl -attribute a	uction study ions for auctions
	• Recur issues	rent auctions	, •	Multi-c – Mult mec – Fair – Mini	limensiona idimensional nanism for M version of PU mize the bid	l fairness -fairness ARA. MAA der drop pr	roblem

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions

Auctions for Multi-Attribute Resource Allocation (MARA)

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensional Fairnes	ss Conclusions
Auction steps	Auction properties	State of the	art	Dimensionality	MAA for task allocation

Background: Auction protocol steps

- 1. Call for proposals (CFP)
- 2. Bidding
- 3. Winner determination problem (WDP)

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensional F	airness Conclusions
Auction steps	Auction properties	State o	f the art	Dimensionality	MAA for task allocation

Background: Auction Properties

- Mechanism Properties
 - Incentive Compatibility
 Encourage truthful bidding
 - Efficiency
 - •Best allocation possible
 - Buyer optimality
 - •Best possible price
 - Individual-rationality
 - •It is not harmful to participate
 - Budget-balance
 - •No need of external subsidy

- Allocation properties
 - Social Welfare
 - Utilitarian
 - Egalitarian
 - Robustness
 - Reduce utility loss
 - Provide alternative solutions
 - Reliable
 - Confidence of success

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensional Fairnes	ss Conclusions
Auction steps	Auction properties	State of the	art	Dimensionality	MAA for task allocation

Auction state of the art

		Туре				Auction Propperties			Allocation Properties			Particularities					
		Sides	ltems auctioned	1st / second price	Efficient	Incentive Compatible	Buyer- optimal	Individually rational	Budget Balance	BDP considered (fairness)	Robustness	Reliability	Social Welfare	Multi-criteria WDP	Bidder's attributes	Task allocation suitable	Procurement suitable
	Vickrey Auction	One	1	2	\checkmark	✓	X	1	 ✓ 	X	X	X	Util.	X	1	1	1
bute	MU Discriminatory Vickrey	One	n of the same type	2	~	×	x	1	✓	x	x	x	Util.	x	1	1	\$
iAttri	MU non Discriminatory Vickrey	One	n of the same type	2	1	1	x	1	1	x	x	x	Util.	x	1	1	1
Ч	VCG Auction	One	n	2	\checkmark	1	X	1	1	X	X	X	Util.	X	1	1	1
	GSP	One	n	2	X	x	X	\checkmark	\checkmark	X	X	X	Util.	X	1	?	?
	Google GSP	One	n	2	\checkmark	✓	X	1	1	X	X	X	Util.	X	1	?	?
	Che's first-score	One	1	1	X	X	\checkmark	\checkmark	1	X	X	X	Util.	\checkmark	n	 ✓ 	1
	Che's second-score	One	1	2	\checkmark	√	X	1	\checkmark	X	X	X	Util.	\checkmark	n	1	\checkmark
	Che's second- preferred-offer	One	1	2	✓	x	x	1	✓	x	x	x	Util.	√	n	✓	1
	Parkes Modified VCG	One	1	English 1st	✓	Nash-Bayes	x	1	✓	x	x	x	Util.	√	n	x	1
ute	David's English auction	One	1	English 2nd	✓	1	x	1	✓	x	x	x	Util.	1	n	x	1
trib	PERA	One	1	depends	✓	depends	depends	1	1	x	x	x	Util.	1	n	x	1
ti-at	De Smet auction	One	1	depends	✓	depends	depends	1	1	x	x	x	Util.	✓	n	x	1
Mult	Mahr unkown utility func.	One	1	2	✓	x	x	1	✓	x	x	x	Util.	√	n	1	1
~	VCG trust extension	One	1	2	X	x	X	1	1	X	\checkmark	X	Util.	\checkmark	2	√	✓
	Porter's fault tolerant	One	1	2	\checkmark	1	X	1	1	X	\checkmark	\checkmark	Util.	\checkmark	2	√	1
	Ramchurn's trust	One	1	2	\checkmark	1	X	1	\checkmark	X	\checkmark	~	Util.	\checkmark	2	1	1
		One	n	2	\checkmark	✓	X	\checkmark	\checkmark	X	X	X	Util.	X	2	1	\checkmark
	Zhao's double auction	Double	n	2	√	1	x	1	1	x	x	x	Util.	x	2	1	√
	PUMAA	One	1	2	\checkmark	1	X	\checkmark	\checkmark	X	\checkmark	~	Util.	\checkmark	n	\checkmark	\checkmark

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensional Fairnes	ss Conclusions
Auction steps	Auction properties	State of the	art	Dimensionality	MAA for task allocation

Auction dimensionality

	Uni-attribute auction	Multi-attribute auction
Uni-criteria WDP	Vickrey Auction Multi-unit Vickrey Auctions VCG Auction Generalized Second Price English Auctions Dutch Auctions	Zhao's Double Auction MAGNET
Multi-criteria WDP	Google PPC Auction	Che's Auctions Parkes Modified VCG David's English Auction PERA De Smet Auction Mahr Auction VCG-POS Porter's Fault Tolerant Auc. Ramchurn's Trust Auc.

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensional Fairnes	ss Conclusions
Auction steps	Auction properties	State of the	art	Dimensionality	MAA for task allocation

Multi-attribute resource/task allocation

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensional Fairnes	ss Conclusions
Auction steps	Auction properties	State of the	art	Dimensionality	MAA for task allocation

Multi-attribute resource/task allocation

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions

PUMAA:

Preserving Utility Multi-attribute Auctions

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions	
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties	

Requirements

- Reverse auction mechanism for task & resource allocation
- Several attributes
- Incentive Compatible
 - Economic cost (bidders bid their real economic aims)
 - Attributes (bidders submit the attributes they intend to deliver)
- Tolerance to uncertainty of task delivery
 - The delivered attributes may vary from the ones agreed
- Robustness (avoid utility loss)

[2] Multi-Attribute Auction Mechanism for Supporting Resource Allocation in Business Process Enactment. A Pla, B López, J Murillo STAIRS@ECAI 2012, 228-239

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

Assumptions & limitations

- Unknown task schedule (allocated on-the-go)
 - Discards COP solvers, genetic algorithms, etc.
- Tasks are always developed (in better or worst conditions)
- The variation of the task attributes affects agents utilities
- Bidding strategies are out of the thesis scope
- No externalities: Bidders are just concerned in the present auction

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

1. PUMAA: Call for Proposals

• An auctioneer a_0 needs to allocate a task T^j

$$T^{j} = \left\langle pa_{1}^{j}, \cdots, pa_{m}^{j} \right\rangle$$

- Sends a call for proposals (CFP) to all the bidders
 - Specifies the task
 - Specifies the attribute requirements

$$CFP = \left(T_0^j, \left\langle ar_0^1, \cdots, ar_0^n \right\rangle\right)$$

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

2. PUMAA: Bidding

- Bidders (a_i) evaluates the CFP and submits a bid $B_i = (b_i, AT_i)$
- Utility of a bidder:

$$b_i^t = v_i(T_0^J, AT_i^t)$$
$$u_i(p_i, b_i^t) = p_i - b_i^t$$

• Truthful or untruthful bid

$$B_i = (b_i, AT_i) | b_i = b_i^t \lor AT_i = AT_i^t$$

$$B_i = (b_i, AT_i) | b_i \neq b_i^t \lor AT_i \neq AT_i^t$$

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

3. PUMAA: Winning determination problem

• The winner is determined by an evaluation function V_o

 $V_0(b_i, AT_i)$ argmin_i(V_0(b_i, AT_i))

• The evaluation function will maximize the auctioneer a_0 's expected utility \bar{u} .

$$\bar{u}_0(T_0^j, b_i, AT_i) = v_0(T_0^j) - f_0(b_i, AT_i)$$

 \rightarrow valuation of the attributes (e.g. V₀)

 \rightarrow Value of the task

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

4. PUMAA: Payment rule

• Conditional Vickrey-based payment:

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

Evaluation (V₀) function requirements

- Real Valued Function
 - V₀(b,AT) must return a real number evaluation for each bid
 - The payment mechanism involves the numeric evaluation obtained by the second best bid.
 - Discards multi-criteria methods which result in ranked lists or orders without numeric valuations.
 - If there is not a numeric evaluation, the payment cannot be computed

[3] *Multi Criteria Operators for Multi-attribute Auctions* A Pla, B López, J Murillo Modeling Decisions for Artificial Intelligence (MDAI) 2012, 318-328.

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

Evaluation function requirements

- Monotonicity
 - If an attribute is improved, the score of the evaluation must also improve.
 - Ensures that, for every possible value in the attribute domain, V₀ (b,AT) will return a value.
 - Only applied in the range of values an attribute can take.
 - Example: If an attribute can only take positive values (time duration), it can be evaluated using its square function.

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

Evaluation function requirements

- Bijection
 - In order to calculate the payment, V_0 (*b*,*AT*) must have a bijective behavior regarding the economic attribute.
 - Given:

$$V_0(b,AT) = x$$

its reverse function will be

$$V_0^{-1}(x,AT)=b$$

where *b* can be just one value

- Need of distinguish between economic attribute b and AT
- Avoid vertical asymptotes to avoid payments of infinite value

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

Evaluation function examples

• Product

$$V_{0}(b_{i}, AT_{i}) = b_{i} * \prod_{j=1}^{n} at_{i}^{j}$$

$$p_{1} = \begin{cases} \frac{b_{2} * \prod_{j=1}^{j=n} at_{2}^{j}}{\prod_{j=1}^{n} at_{1}^{j}} & \text{if } AT_{1}^{\prime} \succeq AT_{1} \\ \frac{b_{1} * \prod_{j=1}^{j=n} at_{1}^{j^{\prime}}}{\prod_{j=1}^{n} at_{1}^{j}} & \text{if } AT_{1}^{\prime} \prec AT_{1} \end{cases}$$

Weighted sum

$$V_{0}(b_{i}, AT_{i}) = \mu_{0}b_{i} + \sum_{j=1}^{n} \mu_{j}at_{i}^{j}$$

$$p_{1} = \begin{cases} \frac{\mu_{0}b_{2} + \sum_{j=1}^{n} \mu_{j}(at_{2}^{j} - at_{1}^{j})}{\mu_{0}} & \text{if } AT_{1} \succeq AT_{1}^{\nu} \\ \frac{\mu_{0}b_{1} + \sum_{j=1}^{n} \mu_{j}(at_{1}^{j'} - at_{1}^{j})}{\mu_{0}} & \text{if } AT_{1} \prec AT_{1}^{\nu} \end{cases}$$

- Mathematical norms
 - E.g. Euclidean norm

$$V_0(b_i, AT_i) = \sqrt{b_i^2 + \sum_{j=1}^n (at_i^j)^2}$$

$$p_1 = \begin{cases} \sqrt{b_2^2 + \sum_{j=1}^n ((at_2^j)^2 - (at_1^j)^2)} & \text{if } AT_1' \succeq AT_1 \\ \sqrt{b_1^2 + \sum_{j=1}^n ((at_1^{j'})^2 - (at_1^j)^2)} & \text{if } AT_1' \prec AT_1 \end{cases}$$

• Weighted sum of functions

$$V_{0}(b_{i}, AT_{i}) = \mu_{0}g_{0}(b_{i}) + \sum_{j=1}^{n} \mu_{j}g_{j}(at_{i}^{j})$$

$$p_{1} = \begin{cases} \frac{g_{0}'(\mu_{0}g_{0}(b_{2}) + \sum_{j=1}^{n} (\mu_{j}g_{j}(at_{2}^{j}) - \mu_{j}g_{j}(at_{i}^{j})))}{\mu_{0}} & \text{if } AT_{1}' \succeq AT_{1} \\ \frac{g_{0}'(\mu_{0}g_{0}(b_{1}) + \sum_{j=1}^{n} (\mu_{j}g_{j}(at_{1}^{j}) - \mu_{j}g_{j}(at_{1}^{j})))}{\mu_{0}} & \text{if } AT_{1}' \prec AT_{1} \end{cases}$$

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

PUMAA: Incentive compatibility

Introduction	Auctions for M	ARA	PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

PUMAA: Incentive compatibility

- Finding a counter example with a constraint solver
 - Incentive compatible: For any feasible bid, the bidder's utility is higher by submitting the truthful attribute information:

 $\forall i \in \mathbb{N}, \forall (b_i, b_i^t, AT_i, AT_i^t) \in \mathbb{R} > 0 : \left\{ (u_i(b_i, AT_i, p) \le u_i(b_i^t, AT^t, p')) | (b_i^t \ne b_i') \lor (AT_i \ne AT_i^t) \right\}$

- ¿Is there any case not fulfilling this condition?
- Modeling the mechanism using an inequation system.
- Modeling the case where lying is better.
- If the inequation system is solvable \rightarrow **NOT INCENTIVE COMPATIBLE**
- If the inequation system has no solution \rightarrow **INCENTIVE COMPATIBLE**

[4] How to Demonstrate Incentive Compatibility in Multi-Attribute Auctions A Pla, B López, J Murillo Congrés Català d'Intel·ligència artificial (CCIA) 2013 FAIA 256, 303-306

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

PUMAA: Incentive compatibility

• Inequation system for the weighted sum

(a)
$$a(AT_1) \neq a(AT'_1) \lor b_1 \neq b'_1$$

(b) $\mu_1 b_1 + \mu_2 a(AT_1) < \mu_1 b_2 + \mu_2 a(AT_2)$
(c) $win = \begin{cases} 1 & \text{if } (\mu_1 b_2 + \mu_2 a(AT_2)) > \mu_1 b_1^t + \mu_2 a(AT'_1)) \\ 0 & \text{otherwise} \end{cases}$
(d) $win(\frac{\mu_1 b_2 + \mu_2 a(AT_2) - \mu_2 a(AT'_1)}{\mu_1} - b_1^t) < (\frac{\mu_1 b_1 + \mu_2 a(AT_1) - \mu_2 a(AT'_1)}{\mu_1} - b_1^t)$
(e) $\mu_1 + \mu_2 = 1$
(f) $0 < \mu_1 < 1$
(g) $0 < \mu_2 < 1$

Using Z3 constraint solver (real arithmetic logic):
 Not solvable → Incentive Compatible

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

PUMAA: Other properties

- Efficiency
- Buyer optimality
- Budget-balance
- Social welfare
- Robustness Reduce utility loss
- Reliability

X

Utilitarian

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

PUMAA Results – Simulation environment

- Real data-based multi-agent system simulation
- Service agent
 - Requires resource with specific skills
 - Different priority / deadline
 - Probability of occurrence

[5] Petri net-based process monitoring: A workflow management system for process modelling and monitoring, A Pla, P Gay, J Meléndez, B López Journal of Intelligent Manufacturing, 2012 1-16

- Resource provider agent
 - Requires resource with specific skills
 - Different execution time per task
 - Bidding strategy:
 - Honest, adaptive or cheating

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

PUMAA Results: Experiments

Experime nt	Goal	Scenarios	Methods evaluated	Metrics
1	Uni-attribute vs multi-attribute	Synthetic data Real data	 First price Fastest resource Vickrey MA PUMAA 	 Task allocation cost Delays produced
2	Strategy proofness	Synthetic data Real data Reinforcement Learning	1. PUMAA Different bidding strategies	 Bidders utility Auctioneers utility Dominant strategies
3	Evaluation function influence	Product Weighted sum Euclidean norm	1. PUMAA different evaluation functions	 Auctioneer's utility Bidder's utility Type of allocation
4	Utility preservation and robustness to cheaters	Ascendant number of cheaters	 PUMAA Che's SP 	 Auctioneer's utility Service cost Delays produced

[2] Multi-Attribute Auction Mechanism for Supporting Resource Allocation in Business Process Enactment. A Pla, B López, J Murillo STAIRS@ECAI , Montpellier 2012, 228-239 [6] *Workflow resource allocation through auctions* A Pla, B López, J Murillo Artificial Intelligence and Logistics (AILOG@IJCAI), Barcelona 2011, 55

Introduction	Auctions for MARA		PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

PUMAA Results: Uni-attribute vs. Multi-attribute

- Service cost allocation
 cost
- Delays produced

 PUMAA obtains the best balance between attributes: low cost / few delays

Introduction	Auctions for MA	RA	PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

PUMAA Results: Experiments

[2] Multi-Attribute Auction Mechanism for Supporting Resource Allocation in Business Process Enactment. A Pla, B López, J Murillo STAIRS@ECAI , Montpellier 2012, 228-239

[6] *Workflow resource allocation through auctions* A Pla, B López, J Murillo Artificial Intelligence and Logistics (AILOG@IJCAI), Barcelona 2011, 55

Introduction	Auctions for MA	RA	PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions
Requirements	Assumptions	PUMAA	Steps	Evaluation function	Incentive compatibility	Other properties

PUMAA – Results: Utility preservation

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions

FMAAC: Framework for Multi-attribute Auction Customization

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimen	sional Fairness	Conclusions
Types of attributes	Bidder-provided a	ttributes	Auctioneer-provide	d attributes	FMAAC	FMAAC Steps

Framework for Multi-attribute Auction Customization

- Study the types of attributes which can appear in a multi-attribute auction
- Using such study, design a framework for customizing multi-attribute auctions

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimen	isional Fairness	Conclusions
Types of attributes	Bidder-provided at	tributes	Auctioneer-providec	l attributes	FMAAC	FMAAC Steps

Attribute typologies in multi-attribute auctions

- Study the kind of attributes appearing in different auctions:
 - GSP, Vickrey, Porter's auction, Che's auctions, etc.
- Ownership
 - Who is introducing the attribute into the auction
 - Bidder-provided or auctioneer-provided
- Verifiability
 - Can the auctioneer check the veracity of the attribute
 - Verifiable or unverifiable

ntroduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimen	sional Fairness	Conclusions
ypes of attributes	Bidder-provided at	tributes	Auctioneer-provide	d attributes	FMAAC	FMAAC Steps

Unverifiable bidder-provided attributes

	Verifiable	Unverifiable
der ership	Verifiable bidder provided attributes	Unverifiable bidder provided attributes
Bid	Delivery times, qualities, energy consumptions, CO ₂ emissions	Economic cost, CO ₂ emission quota
tioneer nership	Auctioneer prov	vided attributes
Auc Ow	Auctions won, past performance	Agent's reputation

- Unverifiable bidder-provided attrs.
 - Real value only known by the bidder
 - Currency of the auction

- True-value not known by auctioneer
- Appear in all auctions
- Only 1 attribute

ntroduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimen	sional Fairness	Conclusions
Types of attributes	Bidder-provided at	ttributes	Auctioneer-provide	d attributes	FMAAC	FMAAC Steps

Verifiable bidder-provided attributes

	Verifiable	Unverifiable
der ership	Verifiable bidder provided attributes	Unverifiable bidder provided attributes
Bid Owne	Delivery times, qualities, energy consumptions, CO ₂ emissions	Economic cost, CO ₂ emission quota
oneer ership	Auctioneer prov	vided attributes
Aucti Owne	Auctions won, past performance	Agent's reputation

- Verifiable bidder-provided attrs.
 - The auctioneer can check if the attribute is truthful
 - Checking before payment

- Appear only in multi-attribute auctions
- n attributes

ntroduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimens	sional Fairness	Conclusions
Types of attributes	Bidder-provided at	tributes	Auctioneer-provide	d attributes	FMAAC	FMAAC Steps

Auctioneer-provided attributes

	Verifiable	Unverifiable
der ership	Verifiable bidder provided attributes	Unverifiable bidder provided attributes
Bid Owne	Delivery times, qualities, energy consumptions, CO ₂ emissions	Economic cost, CO ₂ emission quota
Auctioneer Ownership	Auctioneer prov Auctions won, past performance	vided attributes Agent's reputation

- Auctioneer-provided attrs.
 - Introduced by the auctioneer
 - Describe auctioneer's believes and information regarding past auctions

- Uni and multi-attribute auctions
- n attributes
- Multi-attribute auctions

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimen	sional Fairness	Conclusions
Types of attributes	Bidder-provided at	ttributes	Auctioneer-provide	ed attributes	FMAAC	FMAAC Steps
FMAA	AC					

- Framework for Multi-Attribute Auction Customization
- Generalizes PUMAA to include auctioneer-provided attributes

- Allow mechanism designers to cover new problems using information collected in recurrent auctions:
 - Egalitarian allocations
 - Reliable allocations

[7] Multi-Attribute Auctions with Different Types of Attributes: Enacting Properties in Multi-Attribute Auctions, A Pla, B López, J Murillo, N Maudet Expert Systems with Applications 41(10), 2014, 4829-4843

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dime	nsional Fairness	Conclusions
Types of attributes	Bidder-provided a	ttributes	Auctioneer-provide	d attributes	FMAAC	FMAAC Steps

FMAAC

- Steps of FMAAC:
 - 1. Call for proposals
 - 2. Bidding
 - 3. Winner determination

- Payment
 Attribute information process
- [7] Multi-Attribute Auctions with Different Types of Attributes: Enacting Properties in Multi-Attribute Auctions, A Pla, B López, J Murillo, N Maudet Expert Systems with Applications 41(10), 2014, 4829-4843

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimer	isional Fairness	Conclusions
Types of attributes	Bidder-provided a	attributes	Auctioneer-provideo	dattributes	FMAAC	FMAAC Steps

FMAAC: Steps

	PUN	ΛΑΑ	FMAAC
CFP	proposes:	AT^{ν}	—
Bidding	bid submission:	$AT^{u}AT^{v}$	=
WDP	bid evaluation:	$V_0(AT^uAT^v)$	Bid structure: $AT^{u}AT^{v} + AT^{p}$ Bid evaluation $V_0(AT^{u}AT^{v}AT^{p})$
Payment Rule	compute payme	ent using: AT^{ν}	compute payment using: $AT^{u} AT^{v} AT^{p}$
Attribute Information Update	-	-	Collects information of the auction: $Update(AT^{p})$

Auctioneer provided attributes in FMAAC

• Auctioneer provided attributes will modify multi-attribute auction allocation

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions

Multi-dimensional Fairness for Multi-attribute Resource Allocation

Introduction	Auctior	ns for MARA	PUMAA	FMAAC	Multi-dimensiona	l Fairness	Conclusions
Multi-dimensional	fairness	Priority	Quantitative	Qualitative	Probabilistic	fair-PUMAA	Results
Cha	lleng	es	VS.	Contri	butions		
• Mu	ulti-att orkflov	ribute IC v related	issues	PUMAA – Desig for ta – Multi FMAAC – Study – Devel custo	n of a multi-a sk allocation -criteria requi attribute typ ope a framew mizing multi-a	ttribute aud rements st es in auctic ork for attribute au	ction udy ons ictions
• Re iss	curren ues	t auctior	ıs' •	Multi-di — Multi mech — Fair v — Minir	mensional dimensional f anism for MA ersion of PUM nize the bidd	fairness airness RA 1AA er drop pro	blem

Introduction	Auctions fo	or MARA	PUMAA	FMAAC	Multi-dimensional Fai	irness	Conclusions
Multi-dimensional fairn	ess	Priority	Quantitative	Qualitative	Probabilistic	fair-PUMAA	Results

Multi-dimensional fairness

- Existing fairness methods are **uni-dimensional**.
- **Multi-dimensiona**l fairness: take into account all bidder-provided attributes.
 - Keep track of the auction victories and results
- Use a priority auctioneer-provided attribute w_i according to the bidders' auction history:
 - A high w_i means the agent might leave the market soon.
 - $-w_i$ should consider all the attributes
 - $-w_i \in [0,1]$

[8] Multidimensional Fairness for Auction-based Resource Allocation. A. Pla, B. López, J. Murillo Knowledge-based Systems. (Submitted on November, 2013).

Introduction	Auctions fo	r MARA	PUMAA	FMAAC	Multi-dimensional Fai	rness	Conclusions
Multi-dimensional fairn	less	Priority	Quantitative	Qualitative	Probabilistic	fair-PUMAA	Results

Quantitative methods

- Based on the number of victories or defeats.
- Won auction coefficient (WOC)
 - Relation between auctions won and auctions participated.
 - Proportional measure.

• Loosing streak (LS)

- Number of consecutives defeats
- Include cognitive distortions such as "bad luck sense"
- Defines a maximum loosing streak in which the player will not increase its priority.

$$w_i = 1 - \frac{1 + won(a_i)}{1 + par(a_i)}$$

$$w_i = 1 - \frac{max(0, ml - ls(a_i))}{ml}$$

Introduction	Auctions for	MARA	PUMAA	FMAAC	Multi-dimensional Fai	rness	Conclusions
Multi-dimensional fairn	ess	Priority	Quantitative	Qualitative	Probabilistic	fair-PUMAA	Results

Qualitative methods

- Evaluating the quality of a bid respect to the winner bid:
 - Avoids dummy bids to increase quality
 - Favors high-quality bidders
 - Fitness function to evaluate the bids:

$$q_i = \frac{V_0(B_i')}{V_0(B_1')}$$

- Bid-based WOC
 - Relation between the auctions won and the bid quality.

$$w_{i} = 1 - \frac{1 + won(a_{i})}{1 + \sum_{j=0}^{c-1} q_{i}^{j}}$$

Quality of the bids during the loosing streak.

$$w_i = 1 - \frac{max(0, ml - \sum_{j=c-ls(a_i)}^{c-1} q_i^j)}{ml}$$

Introduction	Auctions for	or MARA	PUMAA	FMAAC	Multi-dimensional Fa	irness	Conclusions
Multi-dimensional fairn	ess	Priority	Quantitative	Qualitative	Probabilistic	fair-PUMAA	Results

Probabilistic methods

• Priorities can affect the wealth rank of resource providers

Resource Providers Revenue / Wealth Rank Order

Introduction	Auctions fo	or MARA	PUMAA	FMAAC	Multi-dimensional Fa	irness	Conclusions
Multi-dimensional fairn	ess	Priority	Quantitative	Qualitative	Probabilistic	fair-PUMAA	Results

Probabilistic methods

- Probabilistic version of the previous methods
 - w_i is only update at certain auctions according to an update probability up_0
 - up_0 will condition the influence of the priority
 - Reduce the chances of a bidder learning its own priority

prob-WOC
 prob-BBWOC
 prob-LS
 prob-BBLS

Introduction	Auctions fo	or MARA	PUMAA	FMAAC	Multi-dimensional Fai	rness	Conclusions
Multi-dimensional fairn	ess	Priority	Quantitative	Qualitative	Probabilistic	fair-PUMAA	Results

fair-PUMAA properties

Introduction	Auctions for	r MARA	PUMAA	FMAAC	Multi-dimensional Fairness		Conclusions
Multi-dimensional fairn	ess	Priority	Quantitative	Qualitative	Probabilistic	fair-PUMAA	Results

fair-PUMAA Results: Experiments

Experiment	Goal	Scenarios	Methods evaluated	Metrics
1	Uni-dimensional vs Multi-dimensional	Real data	 PUMAA Uni-dimensional priority fair-Pumaa 	 Incomes Expenses Fairness (Gini's) Delays
2	Probabilistic Methods	Stochastic Methods	 PUMAA probWOC probLS probBBWOC probBBLS 	 Wealth Rank Disorder (Spearman's footrule) Fairness (Gini's)
3	Bidder Drop Problem	Real Data	 1. PUMAA 2. fair-PUMAA - WOC - LS - BBWOC - BBLS - probBWOC 	 Active bidders Mean task cost

Introduction	Auctions for	r MARA	PUMAA	FMAAC	Multi-dimensional Fa	irness	Conclusions
Multi-dimensional fairn	ess	Priority	Quantitative	Qualitative	Probabilistic	fair-PUMAA	Results

fair-PUMAA results – Uni-dim. vs Multi-dim.

Gini's index for the resource
 Delays per simulation providers income's

Introduction	Auctions fo	or MARA	PUMAA	FMAAC	Multi-dimensional Fa	irness	Conclusions
Multi-dimensional fairn	iess	Priority	Quantitative	Qualitative	Probabilistic	fair-PUMAA	Results

fair-PUMAA Results: Experiments

Introduction	Auctions fo	r MARA	PUMAA	FMAAC	Multi-dimensional Fai	rness	Conclusions
Multi-dimensional fairn	ess	Priority	Quantitative	Qualitative	Probabilistic	fair-PUMAA	Results

fair-PUMAA results – Bidder Drop Problem

Introduction	Auctions for MARA	PUMAA	FMAAC	Multi-dimensional Fairness	Conclusions

Conclusions

Introduction	Auction	s for MARA	PUMAA		FMAAC	Multi-dimensional F	airness	Conclusions
Challenges an	d contributions	PUMAA	FMAAC	Multi-d	imensional fairness	Future works	Publications	Funding
Ch	allenge	es	VS.		Contrib	outions		
1.	Multi-att	tribute l	IC	•	PUMAA – Design for task – Multi-c	of a multi-att allocation riteria require	ribute auc ements stu	tion ıdy
2.	Workflow	w relate	ed issues	•	FMAAC – Develo and cus – Study a	p a framewor stomizing PUN attribute types	k for exter MAA s in auction	nding ns
3.	Recurrer issues	nt auctio	ons'	•	Multi-dim – Multidi mechai – Fair ver	nensional fa mensional-fa nism for MAR sion of PUMA	airness irness A. AA	

Minimize the bidder drop problem

15

Conclusions: PUMAA

• Design auction mechanism for allocating multi-attribute resources in uncertain and dynamic workflow environments.

•	PUMAA:	Published in:
	 Suitable for uncertain domains 	PRIMA 2011 / AILOG 2010
	 Attributes considered along the whole mechanism 	STAIRS@FCAI 2012
	 Utility preservation 	0 // (III (0 (0 E 0/ (1 E 0 I E
	 Incentive compatible 	CCIA 2013
•	Evaluation function requirements — Monotonic, real-valued and bijective function	MDAI 2012
•	Tested with a real data-based MAS simulator	Journal of Intelligent Manufacturing (<i>in press</i>)

Conclusions: FMAAC

- Classification of the attributes which can appear on multi-attribute auctions
 - Unverifiable bidder-provided
 - Verifiable bidder-provided
 - Auctioneer-provided
- Framework for multi-attribute auction customization
 - Generalization of PUMAA
 - Adaptation of the allocation to domain requirements
 - For instance: egalitarian allocations, trust-inclusion, etc.

Published in:

Expert Systems with Applications Journal 41(10), August 2014

Conclusions: Multi-dimensional fairness

- Fairness in multi-attribute auctions must consider all the involved attributes.
- Definition of a fairness mechanism for multi-attribute auctions based on priorities.
 - Quantitative, Qualitative
 - Auctions won, Auctions lost
 - Deterministic, Probabilistic

 Experimentation showed that the use of priorities can minimize the bidder drop problem

Submitted to:

Knowledge-based Systems Journal (November 2013)

Future works

- Generalize PUMAA for combinatorial auctions*.
- Allow PUMAA to distinguish between "lies" and "estimation errors".
- Use similarity measures to allow "Unstructured bids".
- Add a trust-model to PUMAA using FMAAC*.
- Adapt PUMAA to other domains such as the electricity smart grid or health-care management.
- Study how false-name bidding can affect the fairness mechanism.

* [9] Using multi-attribute combinatorial auctions for sustainable workflow scheduling. F. Torrent, A. Pla, B. López. 12th Conference on Multiagent System Technologies (MATES 14). (To be submitted).

Introduction	Auctions for	or MARA	PUMAA	FMAAC	Multi-dimensional Fair	ness	Conclusions
Challenges and contribution	utions	PUMAA	FMAAC	Multi-dimensional fairness	Future works	Publications	Funding

Publications

- Journals
 - Albert Pla, Pablo Gay, Joaquim Meléndez, Beatriz López <u>Petri net-based process</u> <u>monitoring: a workflow management system for process modelling and monitoring</u> In: Journal of Intelligent Manufacturing. 2012. pages 1-16 (pre-print).
 - Albert Pla, Beatriz López, Javier Murillo, Nicolas Maudet <u>Multi-Attribute Auctions with</u> <u>Different Types of Attributes: Enacting Properties in Multi-Attribute Auctions</u> In: Expert Systems with Applications 41-10, August 2014, Pages 4829–4843
 - Albert Pla, Beatriz López and Javier Murillo. Multidimensional <u>Fairness for Auction-</u> <u>based Resource Allocation</u>. Knowledge-based Systems. (Submitted on November, 2013).

Conferences

- B. Lopez, Albert Pla, D. Daroca, L. Collantes, S. Lozano, J. Meléndez. <u>Medical equipment</u> <u>maintenance support with service-oriented multi-agent services</u>. PRIMA workshop on Services and Agents (ServAgents), Kolkata, India, November 12th-15th, 2010. To be published by Springer.
- Albert Pla, Beatriz López, Javier Murillo. <u>Multi-Attribute Auction Mechanism for</u> <u>Supporting Resource Allocation in Business Process Enactment</u>, In: Proceedings of the Sixth Starting AI Researchers' Symposium (STAIRS 2012) at ECAI 2012. ISBN: 978-1-61499-095-6 pages: 228-239 Montpellier, France, August 2012

Introduction	Auctions for	or MARA	PUMAA	FMAAC	Multi-dimensional Fair	ness	Conclusions
Challenges and contribution	utions	PUMAA	FMAAC	Multi-dimensional fairness	Future works	Publications	Funding

Publications

Conferences

- Albert Pla, Beatriz López, Javier Murillo. <u>Multi Criteria Operators for Multi-attribute</u> <u>Auctions</u>. In The 9th International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2012), Girona, Spain. November 2012. LNCS 7647, pp 318-328
- Albert Pla, Beatriz López, Javier Murillo <u>How to Demonstrate Incentive Compatibility in</u> <u>Multi-Attribute Auctions</u> In: Proc. 16th International Conference of the Catalan Association for Artificial Intelligence. Frontiers in Artificial Intelligence and Applications (vol 256). Pages: 303-306. October 2013, Vic, Catalonia
- Ferran Torrent, Albert Pla and Beatriz López. <u>Using multi-attribute combinatorial</u> <u>auctions for sustainable workflow schedulin</u>g. 12th Conference on Multiagent System Technologies (MATES 14). (To be submitted).
- Workshops
 - Albert Pla, Beatriz López and Javier Murillo. <u>Workflow Resource Allocation through</u> <u>Auctions</u>. 2nd Workshop on Artificial Intelligence and Logistics IJCAI, pp 55-60, Barcelona 2011.

Introduction	Auctions for	or MARA	PUMAA	FMAAC	Multi-dimensional Fair	ness	Conclusions
Challenges and contrib	utions	PUMAA	FMAAC	Multi-dimensional fairness	Future works	Publications	Funding

Grants & projects

- Scholarship
 - BR-UDG 12/2010
- Projects
 - AIMES: Advanced Infrastructure for Medical Equipment Management and Services
 - SUROS: Subastas Robustas mediante la incorporación de técnicas SMT
 - MoSHCA: My Mobile and Smart Health Care Assistant
- Journals
 - Albert Pla, Beatriz López, Pablo Gay, Carles Pous <u>eXiT*CBR.v2: Distributed case-based</u> <u>reasoning tool for medical prognosis</u> In: Decision Support Systems 54 (3), 1499-1510. DOI:10.1016/j.dss.2012.12.033. ISSN: 0167-9236
 - Pablo Gay, Beatriz López, Albert Plà, Jordi Saperas, Carles Pous <u>Enabling the Use of Hereditary</u> <u>Information from Pedigree Tools in Medical Knowledge-based Systems</u>, Journal of Biomedical Informatics, Available online 15 June 2013, DOI:0.1016/j.jbi.2013.06.003. ISSN 1532-046

Multi-Attribute Auctions: Application to Workflow Management Systems

Albert Pla Planas

Supervisors: Dra. Beatriz López and Dr. Javier Murillo Departament EEEA

Universitat de Girona

