next up previous contents
Next: DDSM Database Up: MIAS Database Previous: Results Based on Individual   Contents


Results Based on Consensus Manual Classification


Table 3.5: Confusion matrices for MIAS classification according to BIRADS categories using the consensus classification. The results are based on a leave-one-woman-out methodology with $ 322$ mammograms. (a) kNN classifier, (b) C$ 4.5$ decision tree, and (c) Bayesian classifier.
               kNN ( $ 77\%,\kappa = 0.68$ ) C4.5 ( $ 72\%,\kappa = 0.61$ ) Bayesian ( $ 86\%,\kappa = 0.81$ )
  B-I B-II B-III B-IV
B-I $ 70$ $ 13$ $ 1$ $ 3$
B-II $ 9$ $ 80$ $ 13$
B-III $ 1$ $ 17$ $ 73$
B-IV $ 3$ $ 2$ $ 8$
B-I B-II B-III B-IV
$ 72$ $ 13$ $ 1$ $ 1$
$ 13$ $ 68$ $ 20$ $ 2$
0 $ 21$ $ 68$ $ 6$
0 $ 2$ $ 11$ $ 24$

B-I B-II B-III B-IV
$ 79$ $ 1$ $ 3$ $ 4$
$ 3$ $ 86$ $ 6$ $ 8$
0 $ 2$ $ 85$ $ 8$
0 $ 6$ $ 4$ $ 27$
(a) (b) (c)


Table [*] shows results based on a leave-one-woman-out methodology for the classification of the whole MIAS database according to the consensus ground truth. The performance of the individual classifiers is $ 77\%$ correct classification for kNN and $ 72\%$ for C$ 4.5$ . These are intermediate values between Expert A and both Expert B and C. However, the Bayesian combination of the classifiers results in improvement and $ 86\%$ correct classification is achieved, which gives a better performance compared to those obtained by the individual experts without consensus. This result is confirmed by $ \kappa=0.81$ , which belongs to the Almost Perfect category. Examining each class alone, BIRADS I reached $ 91\%$ correct classification, BIRADS II $ 84\%$ , BIRADS III $ 89\%$ , and BIRADS IV $ 73\%$ .

Using the low/high density division, low density mammograms are $ 89\%$ correctly classified, while high density ones reach $ 94\%$ , resulting in an overall two class classification equal to $ 91\%$ .


next up previous contents
Next: DDSM Database Up: MIAS Database Previous: Results Based on Individual   Contents
Arnau Oliver 2008-06-17