next up previous contents
Next: About this document ... Up: UNIVERSITAT DE GIRONA Department Previous: FROC Analysis   Contents

Bibliography

1
American Cancer Society.
Breast cancer: facts and figures. 2003-04.
ACS, 2003.

2
American College of Radiology.
Illustrated Breast Imaging Reporting and Data System BIRADS.
American College of Radiology, 3rd edition, 1998.

3
I. Anttinen, M. Pamilo, M. Soiva, and M. Roiha.
Double reading of mammography screening films: one radiologist or two?
Clinical Radiology, 48:414-421, 1993.

4
D. Avrin, R. Morin, D. Piraino, A. Rowberg, N. Detorie, M. Zuley, J. A. Seibert, and E. D. Pisano.
Storage, transmission, and retrieval of digital mammography, including recommendations on image compression.
Journal of the American College of Radiology, 3:609-614, 2006.

5
L. W. Basset and R. H. Gold.
Breast Cancer Detection: Mammograms and Other Methods in Breast Imaging.
Grune & Stratton, New York, 1987.

6
A. H. Baydush, D. M. Catarious, C. K. Abbey, and C. E. Floyd.
Computer aided detection of masses in mammography using subregion Hotelling observers.
Medical Physics, 30(7):1781-1787, 2003.

7
P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman.
Eigenfaces vs Fisherfaces: Recognition using class specific linear projection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):711-720, 1997.

8
R. Bellotti, F. De Carlo, S. Tangaro, G. Gargano, G. Maggipinto, M. Castellano, R. Massafra, D. Cascio, F. Faucio, R. Magro, G. Raso, A. Lauria, G. Forni, S. Bagnasco, P. Cerello, E. Zanon, S. C. Cheran, E. López Torres, U. Bottigli, G. L. Masala, P. Oliva, A. Retico, E. Fantacci, R. Cataldo, I. De Mitri, and G. De Nunzio.
A completely automated CAD system for mass detection in large mammographic database.
Medical Physics, 33(8):3066-3075, 2006.

9
J. Benois and D. Barba.
Image segmentation by region-contour cooperation for image coding.
In Proc. IAPR International Conference on Pattern Recognition, volume C, pages 331-334, 1992.

10
E. A. Berns, R. E. Hendrick, M. Solari, L. Barke, D. Reddy, J. Wolfman, L. Segal, P. De Leon, S. Benjamin, and L. Willis.
Digital and screen-film mammography: Comparison of image acquisition and interpretation times.
American Journal of Roentgenology, 187(1):38-41, 2006.

11
J. C. Bezdek.
Pattern Recognition With Fuzzy Objective Function Algorithms.
Plenum Press, New York, 1981.

12
R. E. Bird, T. W. Wallace, and B. C. Yankaskas.
Analysis of cancers missed at screening mammography.
Radiology, 184:613-617, 1992.

13
R. L. Birdwell, D. M. Ikeda, K. D. O'Shaughnessy, and E. A. Sickles.
Mammographic characteristics of $ 115$ missed cancers later detected with screening mammography and the potential utility of computer-aided detection.
Radiology, 219:192-202, 2001.

14
L. Blot and R. Zwiggelaar.
Background texture extraction for the classification of mammographic parenchymal patterns.
In Proc. Medical Image Understanding and Analysis, pages 145-148, 2001.

15
L. Blot and R. Zwiggelaar.
A volumetric approach to risk assessment in mammography: a feasibility study.
Physics in Medicine and Biology, 50:695-708, 2005.

16
H. Bornefalk.
Estimation and comparison of CAD system performance in clinical settings.
Academic Radiology, 12:687-694, 2005.

17
K. Bovis and S. Singh.
Classification of mammographic breast density using a combined classifier paradigm.
In Proc. Medical Image Understanding and Analysis, pages 177-180, 2002.

18
N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe.
Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian national breast screening study.
J. Natl Cancer Inst., 87:670-675, 1995.

19
A. P. Bradley.
The use of the area under the ROC curve in the evaluation of machine learning algorithms.
Pattern Recognition, 30:1145-1159, 1997.

20
D. Brzakovic, X. M. Luo, and P. Brzakovic.
An approach to automated detection of tumors in mammograms.
IEEE Transactions on Medical Imaging, 9(3):233-241, 1990.

21
S. Buseman, J. Mouchawar, N. Calonge, and T. Byers.
Mammography screening matters for young women with breast carcinoma.
Cancer, 97(2):352-358, 2003.

22
J. W. Byng, N. F. Boyd, E. Fishell, R. A. Jong, and M. J. Yaffe.
Automated analysis of mammographic densities.
Physics in Medicine and Biology, 41:909-923, 1996.

23
C. B. Caldwell, S. J. Stapleton, D. W. Holdsworth, R. A. Jong, W. J. Weiser, G. Cooke, and M. J. Yaffe.
Characterization of mammographic parenchymal pattern by fractal dimension.
Physics in Medicine and Biology, 35:235-247, 1990.

24
R. Campanini, D. Dongiovanni, E. Iampieri, N. Lanconelli, M. Masotti, G. Palermo, A. Riccardi, and M. Roffilli.
A novel featureless approach to mass detection in digital mammograms based on support vector machines.
Physics in Medicine and Biology, 49:961-975, 2004.

25
D. M. Catarious, A. H. Baydush, and C. E. Floyd.
Incorporation of an iterative, linear segmentation routine into a mammographic mass CAD system.
Medical Physics, 31(6):1512-1520, 2004.

26
D. P. Chakraborty, H. J. Yoona, and C. Mello-Thoms.
Localization accuracy of radiologists in free-response studies: Inferring perceptual FROC curves from mark-rating data.
Academic Radiology, 14:4-18, 2007.

27
R. Chandrasekhar and Y. Attikiouzel.
Gross segmentation of mammograms using a polynomial model.
In Proc. International Conference IEEE Engineering in Medicine and Biology Society, volume 3, pages 1056-1058, 1996.

28
Y. H. Chang, L. A. Hardesty, C. M. Hakim, T. S. Chang, B. Zheng, W. F. Good, and D. Gur.
Knowledge-based computer-aided detection of masses on digitized mammograms: A preliminary assessment.
Medical Physics, 28(4):455-461, 2001.

29
C. H. Chen and G. G. Lee.
On digital mammogram segmentation and microcalcification detection using multiresolution wavelet analysis.
Graphical Models and Image Processing, 59(5):349-364, 1997.

30
P. C. Chen and T. Pavlidis.
Segmentation by texture using a co-occurrence matrix and a split-and-merge algorithm.
Computer Graphics and Image Processing, 10:172-182, 1979.

31
H. D. Cheng and M. Cui.
Mass lesion detection with a fuzzy neural network.
Pattern Recognition, 37:1189-1200, 2004.

32
I. Christoyianni, A. Koutras, E. Dermatas, and G. Kokkinakis.
Computer aided of breast cancer in digitized mammograms.
Computerized Medical Imaging and Graphics, 26:309-319, 2002.

33
S. Ciatto, N. Houssami, A. Apruzzese, and et al.
Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories.
Breast, 14(4):269-275, 2005.

34
J. Cohen.
A coefficient of agreement for nominal scales.
Educational and Psychological Measurement, 20:27-46, 1960.

35
A. S. Constantinidis, M. C. Fairhust, F. Deravi, M. Hanson, C. P. Wells, and C. Chapman-Jones.
Evaluating classification strategies for detection of circumscribed masses in digital mammograms.
In Proc. International Conference on Image Processing and Its Application, pages 435-439, 1999.

36
A. S. Constantinidis, M. C. Fairhust, and A. F. R. Rahman.
Detection of circumscribed masses in digital mammograms using behaviour-knowledge space method.
Electronic Letters, 36(4):302-303, 2000.

37
T. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham.
Active shape models - their training and application.
Computer Vision and Image Understanding, 61(1):38-59, 1995.

38
E. R. Davies.
Machine Vision.
Academic Press, London, UK, 2nd edition, 1997.

39
H. J. De Koning, J. Fracheboud, R. Boer, A. L. Verbeek, H. J. Collette, J. H. C. L. Hendriks, B. M. van Ineveld, A. E. de Bruyn, and P. J. van der Maas.
Nation-wide breast cancer screening in the Netherlands: support for breast cancer mortality reduction. National evaluation team for breast cancer screening.
International Journal of Cancer, 60(6):777-780, 1995.

40
A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum-likelihood from incomplete data via EM algorithm.
Journal of the Royal Statistical Society: Series B, pages 1-38, 1977.

41
J. Deschênes and D. Ziou.
Detection of line junctions and line terminations using curvilinear features.
Pattern Recognition Letters, 21(6-7):45-54, 2000.

42
Digital Imaging and COmmunications in Medicine.
http://medical.nema.org.
accessed 01/01/07.

43
R. O. Duda, P. E. Hart, and D. G. Stork.
Pattern Classification.
John Wiley & Sons, New York, 2 edition, 2001.

44
Editorial.
Glossary of terms.
Machine Learning, 30(2-3):271-274, 1998.

45
Editorial.
Looking back on the millennium in medicine.
New England Journal of Medicine, 342(1):42-49, 2000.

46
D. C. Edwards, M. A. Kupinski, C. E. Metz, and R. M. Nishikawa.
Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model.
Medical Physics, 29:2861-2870, 2002.

47
J. Esteve, A. Kricker, J. Ferlay, and D. Parkin.
Facts and figures of cancer in the European Community.
Technical report, International Agency for Research on Cancer, Lyon, France, 1993.

48
Eurostat.
Health statistics Atlas on mortality in the European Union.
Office for Official Publications of the European Union, 2002.

49
R. J. Ferrari, R. M. Rangayyan, and J. E. L. Desautels.
Segmentation of mammograms: Identification of the skin boundary and the pectoral muscle.
In Proc. International Workshop on Digital Mammography, pages 573-579, 2000.

50
R. J. Ferrari, R. M. Rangayyan, J. E. L. Desautels, R. A. Borges, and A. F. Frère.
Automatic identification of the pectoral muscle in mammograms.
IEEE Transactions on Medical Imaging, 23(2):232-245, 2004.

51
J. L. Fleiss.
Statistical Methods for Rates and Proportions.
John Wiley & Sons, New York, 1981.

52
T. W. Freer and M. J. Ulissey.
Screening mammography with computer-aided detection: Prospective study of $ 12860$ patients in a community breast center.
Radiology, 220:781-786, 2001.

53
J. Freixenet, X. Muñoz, J. Martí, and X. Lladó.
Colour texture segmentation by region-boundary cooperation.
In Proc. European Conference on Computer Vision, volume II, pages 250-261, 2004.

54
J. Freixenet, X. Muñoz, D. Raba, J. Martí, and X. Cufí.
Yet another survey on image segmentation: Region and boundary information integration.
In Proc. European Conference on Computer Vision, volume III, pages 408-422, 2002.

55
J. Freixenet, P. Planiol, J. Martí, R. García, J. Batlle, and R. Bassaganyas.
Cluster-shape characterization of microcalcifications.
In IEE Proceedings of Medical Applications of Signal Processing, pages 5/1-5/5, 2002.

56
K. S. Fu and J. K. Mui.
A survey on image segmentation.
Pattern Recognition, 13:3-16, 1981.

57
GE Healthcare.
http://www.gehealthcare.com.
accessed 01/01/07.

58
F. Gil, I. Méndez, A. Sirgo, G. Llort, I. Blanco, and H. Cortés-Funes.
Perception of breast cancer risk and surveillance behaviours of women with family history of breast cancer: a brief report on a spanish cohort.
Psycho-Oncology, 12:821-827, 2003.

59
Y. C. Gong, M. Brady, and S. Petroudi.
Texture based mammogram classification and segmentation.
Lecture Notes in Computer Science, 4046:616-625, 2006.

60
M. Goto, A. Morikawa, H. Fujita, T. Hara, and T. Endo.
Detection of spicules on mammograms based on a multistage pendulum filter.
In Proc. International Workshop on Digital Mammography, pages 135-138, 1998.

61
D. Guliato, R. M. Rangayyan, W. A. Carnielli, J. A. Zuffo, and J. E. L. Desautels.
Segmentation of breast tumors in mammograms by fuzzy region growing.
In Proc. International Conference IEEE Engineering in Medicine and Biology Society, volume 20, pages 1002-1005, 1998.

62
F. M. Hall.
Mammographic density categories.
American Journal of Roentgenology, 178:242-242, 2002.

63
F. M. Hall, J. M. Storella, D. Z. Siverstond, and G. Wyshak.
Nonpalpable breast lesions: Recommendations for biopsy based on suspicion of carcinoma at mammography.
Radiology, 167:353-358, 1988.

64
R. M. Haralick, K. S. Shanmugan, and I. Dunstein.
Textural features for image classification.
IEEE Transactions on Systems, Man, and Cybernetics, 3(6):610-621, 1973.

65
A. E. Hassanien, J. M. Ali, and H. Nobuhara.
Detection of spiculated masses in mammograms based on fuzzy image processing.
In Lecture Notes in Computer Science, volume 3070, pages 1002-1007, 2004.

66
Y. Hatanaka, T. Hara, H. Fujita, S. Kasai, T. Endo, and T. Iwase.
Development of an automated method for detecting mammographic masses with a partial loss of region.
IEEE Transactions on Medical Imaging, 20(12):1209-1214, 2001.

67
M. Heath, K. Bowyer, D. Kopans, R. Moore, and P. J. Kegelmeyer.
The Digital Database for Screening Mammography.
In Proc. International Workshop on Digital Mammography, pages 212-218, 2000.

68
M. D. Heath and K. W. Bowyer.
Mass detection by relative image intensity.
In Proc. International Workshop on Digital Mammography, pages 219-225, 2000.

69
J. J. Heine, M. Kallergi, S. M. Chetelat, and L. P. Clarke.
Multiresolution wavelet approach for separating the breast region from the background in high resolution digital mammography.
In Proc. International Workshop on Digital Mammography, pages 295-298, 1998.

70
J. J. Heine and R. P. Veltzuihen.
A statistical methodology for mammographic density detection.
Medical Physics, 27(12):2644-2651, 2000.

71
W. R. Hendee, C. Beam, and E. Hendrick.
Proposition: all mammograms should be double-read.
Medical Physics, 26:115-118, 1999.

72
S. H. Heywang-Köbrunner, D. D. Dershaw, and I. Schreer.
Diagnostic Breast Imaging. Mammography, sonography, magnetic resonance imaging, and interventional procedures.
Thieme, Stuttgart, Germany, 2001.

73
R. Highnam and M. Brady.
Mammographic Image Analysis.
Kluwer, Dordrecht, 1999.

74
R. Highnam, X. Pan, R. Warren, M. Jeffreys, G. D. Smith, and M. Brady.
Breast composition measurements using retrospective standard mammogram form (SMF).
Physics in Medicine and Biology, 51:2695-2713, 2006.

75
W. T. Ho and P. W. T. Lam.
Clinical performance of computer-assisted detection (CAD) system in detecting carcinoma in breasts of different densities.
Clinical Radiology, 58:133-136, 2003.

76
Z. Huo, M. L. Giger, C. J. Vyborny, U. Bick, P. Lu, D. E. Wolverton, and R. A. Schmidt.
Analysis of spiculation in the computerized classification of mammographic masses.
Medical Physics, 22(10):1569-1579, 1995.

77
iCAD Second Look.
http://www.icadmed.com.
accessed 01/01/07.

78
A. K. Jain, M. N. Murty, and P. J. Flynn.
Data clustering: A review.
ACM: Computing Surveys, 31(3):264-323, 1999.

79
A. K. Jain, Y. Zhong, and M. P. Dubuisson-Jolly.
Deformable template models: A review.
Signal Processing, 71:109-129, 1998.

80
A. K. Jain, Y. Zhong, and S. Lakshmanan.
Object matching using deformable templates.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(3):267-278, 1996.

81
H. Jiang, W. Tiu, S. Yamamoto, and S. Iisaku.
A method for automatic detection of spicules in mammograms.
Journal of Computed Aided Diagnostics of Medical Images, 2(4):1-8, 1998.

82
M. Kallergi, G. M. Carney, and J. Gaviria.
Evaluating the performance of detection algorithms in digital mammography.
Medical Physics, 26:267-275, 1999.

83
N. Karssemeijer.
Automated classification of parenchymal patterns in mammograms.
Physics in Medicine and Biology, 43:365-378, 1998.

84
N. Karssemeijer and G. M. te Brake.
Detection of stellate distortions in mammograms.
IEEE Transactions on Medical Imaging, 15(5):611-619, 1996.

85
M. Kass, A. Witkin, and D. Terzopoulos.
Snakes: Active contour models.
In Proc. IEEE International Conference on Computer Vision, pages 259-268, 1987.

86
L. A. L. Khoo, P. Taylor, and R. M. Given-Wilson.
Computer-aided detection in the United Kingdom national breast screening programme: prospective study.
Radiology, 237(2):444-449, 2005.

87
J. Kittler.
Feature selection and extraction.
In T. Y. Young and K. S. Fu, editors, Handbook of Pattern Recognition and Image Processing, pages 59-83. Academic Press, 1986.

88
H. Kobatake and M. Murakami.
Adaptive filter to detect rounded convex regions: Iris filter.
In Proc. IAPR International Conference on Pattern Recognition, volume 2, pages 340-345, 1996.

89
H. Kobatake, M. Murakami, H. Takeo, and S. Nawano.
Computerized detection of malignant tumors on digital mammograms.
IEEE Transactions on Medical Imaging, 18(5):369-378, 1999.

90
H. Kobatake, H. Takeo, and S. Nawano.
Tumor detection system for full-digital mammography.
In Proc. International Workshop on Digital Mammography, pages 87-94, 1998.

91
H. Kobatake and Y. Yoshinaga.
Detection of spicules on mammogram based on skeleton analysis.
IEEE Transactions on Medical Imaging, 15(3):235-245, 1996.

92
H. Kobatake, Y. Yoshinaga, and M. Murakami.
Automatic detection of malignant tumors on mammogram.
In Proc. IEEE International Conference on Image Processing, volume 1, pages 407-410, 1994.

93
Kodak.
http://www.kodak.com.
accessed 01/01/07.

94
D. Kopans.
Breast Imaging.
Lippincott-Raven, Philadelphia, 1998.

95
M. A. Kupinski and M. L. Giger.
Automated seeded lesion segmentation on digital mammograms.
IEEE Transactions on Medical Imaging, 17(4):510-517, 1998.

96
S. M. Kwok, R. Chandrasekhar, and Y. Attikiouzel.
Adaptation of the Daugman-Downing texture demodulation to highlight circumscribed mass lesions on mammograms.
In Proc. International Conference on Digital Signal Processing, pages 449-452, 2002.

97
S. M. Kwok, R. Chandrasekhar, Y. Attikiouzel, and M. T. Rickard.
Automatic pectoral muscle segmentation on mediolateral oblique view mammograms.
IEEE Transactions on Medical Imaging, 23(9):1129-1140, 2004.

98
S. M. Lai, X. Li, and W. F. Bischof.
On techniques for detecting circumscribed masses in mammograms.
IEEE Transactions on Medical Imaging, 8(4):377-386, 1989.

99
J. R. Landis and G. G. Koch.
The measurement of observer agreement for categorical data.
Biometrics, 33(3):159-174, 1977.

100
T. Lau and W. F. Bischof.
Automated detection of breast tumors using the asymmetry approach.
Computers and Biomedical Research, 24(3):273-295, 1991.

101
K. Laws.
Rapid texture identification.
SPIE, Image Processing for Missile Guidance, 238:376-380, 1980.

102
C. D. Lehman, E. White, S. Peacock, M. J. Drucker, and N. Urban.
Effect of age and breast density on screening mammograms with false-positive findings.
American Journal of Roentgenology, 173:1651-1655, 1999.

103
H. Li, Y. Wang, K. J. R. Liu, S. C. B. Lo, and M. T. Freedman.
Computerized radiographic mass detection - Part I: Lesion site selection by morphological enhancement and contextual segmentation.
IEEE Transactions on Medical Imaging, 20(4):289-301, 2001.

104
H. D. Li, M. Kallergi, L. P. Clarke, V. K. Jain, and R. A. Clark.
Markov random field for tumor detection in digital mammography.
IEEE Transactions on Medical Imaging, 14(3):565-576, 1995.

105
L. Li, R. A. Clark, and J. A. Thomas.
Computer-aided diagnosis of masses with full-field digital mammography.
Academic Radiology, 9(1):4-12, 2002.

106
T. Lindeberg.
Edge detection and ridge detection with automatic scale selection.
International Journal of Computer Vision, 30(2):117-156, 1998.

107
S. Lobregt and M. A. Viergever.
A discrete dynamic contour model.
IEEE Transactions on Medical Imaging, 14:12-24, 1995.

108
J. B. MacQueen.
Some methods of classification and analysis of multivariate observations.
In Proc. of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 281-297, 1967.

109
I. E. Magnin, F. Cluzeau, C. L. Odet, and A. Bremond.
Mammographic texture analysis: an evaluation of risk for developing breast cancer.
Optical Engineering, 25:780-784, 1986.

110
A. Malich, D. R. Fischer, and J. Böttcher.
CAD for mammography: the technique, results, current role and further developments.
Epidemiologic Reviews, 16:1449-1460, 2006.

111
J. Martí, J. Español, E. Golobardes, J. Freixenet, R. García, and M. Salamó.
Classification of microcalcifications in digital mammograms using case-based reasoning.
In Proc. International Workshop on Digital Mammography, pages 285-294, 2000.

112
J. Martí, J. Freixenet, M. Peracaula, A. Oliver, D. Raba, J. Espunya, J. Pont, and R. Martí.
Automatic segmentation of microcalcifications based on the fusion of different algorithms over CC and MLO views.
In Proc. International Workshop on Digital Mammography, 2004.

113
J. Martí, J. Freixenet, D. Raba, A. Bosch, J. Pont, J. Español, R. Bassaganyas, E. Golobardes, and X. Canaleta.
HRIMAC: Una herramienta de recuperación de imágenes mamográficas por análisis de contenido para el asesoramiento en el diagnóstico del cáncer de mama.
In Inforsalud: VI Congreso Nacional de Informática de la Salud, pages 125-132, 2003.

114
R. Martí, D. Raba, A. Oliver, and R. Zwiggelaar.
Mammographic registration: proposal and evaluation of a new approach.
In Lecture Notes in Computer Science, volume 4046, pages 213-220, 2006.

115
K. E. Martin, M. A. Helvie, C. Zhou, M. A. Roubidoux, J. E. Bailey, C. Paramagul, C. E. Blane, K. A. Klein, S. S. Sonnad, and H. P. Chan.
Mammographic density measured with quantitative computer-aided method: comparison with radiologists' estimates and BI-RADS categories.
Radiology, 240:656-665, 2006.

116
T. Matsubara, H. Fujita, T. Hara, S. Kasai, O. Otsuka, Y. Hatanaka, and T. Endo.
Development of a new algorithm for detection of mammographic masses.
In Proc. International Workshop on Digital Mammography, pages 139-142, 1998.

117
T. Matsubara, H. Fujita, S. Kasai, M. Goto, Y. Tani, T. Hara, and T. Endo.
Development of new schemes for detection and analysis of mammographic masses.
In Proc. International Conference on Information and Intelligent Systems, pages 63-66, 1997.

118
P. McKenzie and M. Alder.
Initializing the EM algorithm for use in Gaussian mixture modeling.
In Proc. on Pattern Recognition in Practice IV, pages 91-105, 1994.

119
G. J. McLachlan.
Discriminant Analysis and Statistical Pattern Recognition.
John Wiley and Sons, New York, 1992.

120
C. E. Metz.
Evaluation of digital mammography by ROC analysis.
In Proc. International Workshop on Digital Mammography, pages 61-68, 1996.

121
P. Miller and S. M. Astley.
Classification of breast tissue by texture analysis.
Image and Vision Computing, 10:277-282, 1992.

122
N. R. Mudigonda, R. M. Rangayyan, and J. E. L. Desautels.
Detection of breast masses in mammograms by density slicing and texture flow-field analysis.
IEEE Transactions on Medical Imaging, 20(12):1215-1214, 2001.

123
I. Muhimmah, A. Oliver, E. R. E. Denton, J. Pont, E. Pérez, and R. Zwiggelaar.
Comparison between Wolfe, Boyd, BI-RADS and Tabár based mammographic risk assessment.
In Lecture Notes in Computer Science, volume 4046, pages 407-415, 2006.

124
X. Muñoz, J. Freixenet, X. Cufí, and J. Martí.
Strategies for image segmentation combining region and boundary information.
Pattern Recognition Letters, 24(1-3):375-392, 2003.

125
National Electrical Manufacturers Association.
Digital Imaging and Communications in Medicine (DICOM).
National Electrical Manufacturers Association, 3.1 edition, 2006.

126
R. M. Nishikawa and M. Kallergi.
Computer-aided detection, in its present form, is not an effective aid for screening mammography.
Medical Physics, 33:811-814, 2006.

127
Oklahoma Heart Hospital.
http://www.okheart.com.
accessed 01/01/07.

128
A. Oliver, J. Freixenet, A. Bosch, D. Raba, and R. Zwiggelaar.
Automatic classification of breast tissue.
In Lecture Notes in Computer Science, volume 3523, pages 431-438, 2005.

129
A. Oliver, J. Freixenet, M. Peracaula, and J. Martí.
Mass segmentation using a pattern matching approach with a mutual information based metric.
In Proc. of the Congrés Català d'Intel·ligència Artificial, pages 123-130, 2005.

130
A. Oliver, J. Martí, R. Martí, A. Bosch, and J. Freixenet.
A new approach to the classification of mammographic masses and normal breast tissue.
In Proc. IAPR International Conference on Pattern Recognition, volume 4, pages 707-710, 2006.

131
X. Pan, M. Brady, R. Highnam, and J. Declerck.
The use of multi-scale monogenic signal on structure orientation identification and segmentation.
Lecture Notes in Computer Science, 4046:601-608, 2006.

132
L. F. Parr, A. L. Anderson, B. R. Glennon, and P. Fetherston.
Quality control issues on high resolution diagnostic monitors.
Journal of Digital Imaging, 14:22-26, 2001.

133
M. Penedo, M. Souto, P. G. Tahoces, J. M. Carreira, J. Villalón, G. Porto, C. Seoane, J. J. Vidal, K. S. Berbaum, D. P. Chakraborty, and L. L. Fajardo.
Free-response receiver operating characteristic evaluation of lossy JPEG2000 and object-based set partitioning in hierarchical trees compression of digitized mammograms.
Radiology, 237:450-457, 2005.

134
N. Petrick, H. P. Chan, B. Sahiner, and M. A. Helvie.
Combined adaptive enhancement and region-growing segmentation of breast masses on digitized mammograms.
Medical Physics, 26(8):1642-1654, 1999.

135
N. Petrick, H. P. Chan, B. Sahiner, and D. Wei.
An adaptive density-weighted contrast enhancement filter for mammographic breast mass detection.
IEEE Transactions on Medical Imaging, 15(1):59-67, 1996.

136
N. Petrick, H. P. Chan, D. Wei, B. Sahiner, M. A. Helvie, and D. D. Adler.
Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification.
Medical Physics, 23(10):1685-1696, 1996.

137
S. Petroudi, T. Kadir, and M. Brady.
Automatic classification of mammographic parenchymal patterns: A statistical approach.
In Proc. International Conference IEEE Engineering in Medicine and Biology Society, volume 1, pages 798-801, 2003.

138
E. D. Pisano, E. B. Cole, E. O. Kistner, K. E. Muller, B. M. Hemminger, M. L. Brown, R. E. Johnston, C. M. Kuzmiak, M. P. Braeuning, R. I. Freimanis, M. S. Soo, J. A. Baker, and R. Walsh.
Interpretation of digital mammograms: Comparison of speed and accuracy of soft-copy versus printed-film display.
Radiology, 223(2):483-488, 2002.

139
W. E. Polakowski, D. A. Cournoyer, S. K. Rogers, M. P. DeSimio, D. W. Ruck, J. W. Hoffmeister, and R. A. Raines.
Computer-aided breast cancer detection and diagnosis of masses using Difference of Gaussian and derivative-based feature saliency.
IEEE Transactions on Medical Imaging, 16(6):811-819, 1997.

140
H. Qi and W. E. Snyder.
Lesion detection and characterization in digital mammography by Bézier histograms.
In Proc. International Conference IEEE Engineering in Medicine and Biology Society, volume 2, pages 1021-1024, 1998.

141
W. Qian, L. Li, and L. P. Clarke.
Image feature extraction for mass detection in digital mammography: Influence of wavelet analysis.
Medical Physics, 26(3):402-408, 1999.

142
W. Qian, L. Li, L. P. Clarke, F. Mao, and R. A. Clark.
Adaptive CAD modules for mass detection in digital mammography.
In Proc. International Conference IEEE Engineering in Medicine and Biology Society, volume 2, pages 1013-1016, 1998.

143
W. Qian, L. Li, L. P. Clarke, F. Mao, R. A. Clark, and J. Thomas.
A computer assited diagnostic system for mass detection.
In Proc. International Workshop on Digital Mammography, pages 79-86, 1998.

144
W. Qian, X. Sun, D. Song, and R. A. Clark.
Digital mammography - wavelet transform and kalman-filtering neural network in mass segmentation and detection.
Academic Radiology, 8(11):1074-1082, 2001.

145
J. R. Quinlan.
Induction of decision trees.
Machine Learning, 1(1):81-106, 1986.

146
J. R. Quinlan.
C4.5: Programs for Machine Learning.
Morgan Kaufmann, New York, 1993.

147
J. R. Quinlan.
Bagging, boosting, and C$ 4.5$ .
In Nat. Conf. on Art. Intell., pages 725-730, 1996.

148
R2 ImageChecker.
http://www.r2tech.com.
accessed 01/01/07.

149
D. Raba, J. Martí, R. Martí, and M. Peracaula.
Breast mammography asymmetry estimation based on fractal and texture analysis.
In Proc. of the Computed Aided Radiology and Surgery, page 1398, 2005.

150
D. Raba, A. Oliver, J. Martí, M. Peracaula, and J. Espunya.
Breast segmentation with pectoral muscle suppression on digital mammograms.
In Lecture Notes in Computer Science, volume 3523, pages 471-478, 2005.

151
R. M. Rangayyan, E. N. M. El-Faramawy, J. E. L. Desautels, and O. A. Alim.
Measures of acutance and shape for classification of breast tumors.
IEEE Transactions on Medical Imaging, 16(6):799-810, 1997.

152
L. G. Roberts.
Machine perception of three-dimensional solids.
In J. Tippet, D. Berkowitz, L. Clapp, C. Koester, and A. Vanderburgh, editors, Optical and Electro-Optical Information Processing, pages 159-197. MIT Press, Cambridge, Massachussets, 1965.

153
A. A. J. Roelofs, S. van Woudenberg, J. D. M. Otten, J. H. C. L. Hendriks, A. Bödicker, C. J. G. Evertsz, and N. Karssemeijer.
Effect of soft-copy display supported by CAD on mammography screening performance.
Epidemiologic Reviews, 16:45-52, 2006.

154
P. K. Saha, J. K. Udupa, E. F. Conant, P. Chakraborty, and D. Sullivan.
Breast tissue density quantification via digitized mammograms.
IEEE Transactions on Medical Imaging, 20(8):792-803, 2001.

155
B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie, and M. M. Goodsit.
Computerized characterization of masses on mammograms: the rubber band straightening transform and texture analysis.
Medical Physics, 25(4):516-526, 1998.

156
B. Sahiner, H. P. Chan, N. Petrick, M. A. Helvie, and L. M. Hadjiiski.
Improvement of mammographic mass characterization using spiculation measures and morphological features.
Medical Physics, 28(7):1455-1465, 2001.

157
B. Sahiner, H. P. Chan, D. Wei, N. Petrick, M. A. Helvie, D. D. Adler, and M. M. Goodsit.
Image feature selection by a genetic algorithm: Application to classification of mass and normal breast tissue.
Medical Physics, 23:1671-1684, 1996.

158
B. Sahiner, N. Petrick, H. P. Chan, L. M. Hadjiiski, C. Paramagul, M. A. Helvie, and M. N. Gurcan.
Computer-aided characterization of mammographic masses: Accuracy of mass segmentation and its effects on characterization.
IEEE Transactions on Medical Imaging, 20(12):1275-1284, 2001.

159
M. Sallam and K. Bowyer.
Registration and difference analysis of corresponding mammogram images.
Medical Image Analysis, 3(2):103-118, 2001.

160
S. E. Selvan, C. C. Xavier, N. Karssemeijer, J. Sequeira, R. A. Cherian, and B. Y. Dhala.
Parameter estimation in stochastic mammogram model by heuristic optimization techniques.
IEEE Transactions on Information Technology in Biomedicine, 10:685-695, 2006.

161
L. Shen, R. M. Rangayyan, and J. E. L. Desautels.
Application of shape analysis to mammographic calcifications.
IEEE Transactions on Medical Imaging, 13:263-274, 1994.

162
E. A. Sickles.
Breast cancer screening outcomes in women ages 40-49: clinical experience with service screening using modern mammography.
Journal of the National Cancer Institute: Monographs, 22:99-104, 1997.

163
E. A. Sickles, W. N. Weber, and H. B. Galvin.
Baseline screening mammography: one vs two views per breast.
American Journal of Roentgenology, 147:1149-1153, 1986.

164
E. Siegel, E. Krupinski, E. Samei, M. Flynn, K. Andriole, B. Erickson, J. Thomas, A. Badano, J. A. Seibert, and E. D. Pisano.
Digital mammography image quality: Image display.
Journal of the American College of Radiology, 3:615-627, 2006.

165
R. Sivaramakrishna, N. A. Obuchowski, W. A. Chilcote, and K. A. Powell.
Automatic segmentation of mammographic density.
Academic Radiology, 8(3):250-256, 2001.

166
A. P. Smith.
Fundamentals of digital mammograhpy: physiscs, technology and practical considerations.
Radiology Management, 25(5):18-31, 2003.

167
T. Stathaki and A. G. Constantinides.
Neural networks and higher order spectra for breast cancer detection.
In Proc. IEEE Workshop on Neural Networks for Signal Processing, pages 473-481, 1994.

168
J. Suckling, D. R. Dance, E. Moskovic, D. J. Lewis, and S. G. Blacker.
Segmentation of mammograms using multiple linked self-organizing neural networks.
Medical Physics, 22:145-152, 1995.

169
J. Suckling, J. Parker, D. R. Dance, S. M. Astley, I. Hutt, C. R. M. Boggis, I. Ricketts, E. Stamatakis, N. Cerneaz, S. L. Kok, P. Taylor, D. Betal, and J. Savage.
The Mammographic Image Analysis Society digital mammogram database.
In Proc. International Workshop on Digital Mammography, pages 211-221, 1994.

170
L. Tabar, C. J. G. Fagerbert, A. Gad, L. Baldetorp, L. H. Holmberg, O. Grontoft, U. Ljungquist, B. Lundstrom, J. C. Manson, G. Erklung, N. E. Day, and F. Pettersson.
Reduction in mortality from breast cancer after mass screening with mammography. randomised trial from the breast cancer screening working group of the swedish national board of health and welfare.
Lancet, 1:829-832, 1985.

171
P. G. Tahoces, J. Correa, M. Soutu, L. Gómez, and J. J. Vidal.
Computer-assisted diagnosis: the classification of mammographic breast parenchymal patterns.
Physics in Medicine and Biology, 40:103-117, 1995.

172
P. Taylor, J. Champness, R. Given-Wilson, K. Johnston, and H. Potts.
Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography.
Health Technology Assessment, 9(6):1-58, 2005.

173
P. Taylor, S. Hajnal, M. H. Dilhuydy, and B. Barreau.
Measuring image texture to separate ``difficult" from ``easy" mammograms.
British Journal of Radiology, 67:456-463, 1994.

174
G. M. te Brake and N. Karssemeijer.
Comparison of three mass detection methods.
In Proc. International Workshop on Digital Mammography, pages 119-126, 1998.

175
G. M. te Brake and N. Karssemeijer.
Single and multiscale detection of masses in digital mammograms.
IEEE Transactions on Medical Imaging, 18(7):628-639, 1999.

176
E. L. Thurfjell, K. A. Lernevall, and A. A. S. Taube.
Benefit of independent double reading in a population-based mammography screening program.
Radiology, 191:241-244, 1994.

177
S. Timp and N. Karssemeijer.
A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography.
IEEE Transactions on Medical Imaging, 31(5):958-971, 2004.

178
G. D. Tourassi, N. H. Eltonsy, J. H. Graham, C. E. Floyd, and A. S. Elmaghraby.
Feature and knowledge based analysis for reduction of false positives in the computerized detection of masses in screening mammography.
In Proc. International Conference IEEE Engineering in Medicine and Biology Society, pages 6524-6527, 2005.

179
G. D. Tourassi, R. Vargas-Vorecek, D. M. Catarious, and C. E. Floyd.
Computer-assisted detection of mammographic masses: A template matching scheme based on mutual information.
Medical Physics, 30(8):2123-2130, 2003.

180
M. A. Turk and A. P. Pentland.
Eigenfaces for recognition.
Journal of Cognitive Neuroscience, 3(1):71-86, 1991.

181
P. Undrill, R. Gupta, S. Henry, and M. Downing.
Texture analysis and boundary refinement to outline mammography masses.
In Proc. IEE Colloquium on Digital Mammography, pages 511-516, 1996.

182
P. M. Vacek, B. M. Geller, D. L. Weaver, and R. S. Foster.
Increased mammography use and its impact on earlier breast cancer detection in Vermont.
Cancer, 94(8):2160-2168, 2002.

183
S. van Engeland, P. R. Snoeren, H. Huisman, C. Boetes, and N. Karssemeijer.
Volumetric breast density estimation from full-field digital mammograms.
IEEE Transactions on Medical Imaging, 25:273-282, 2006.

184
S. van Engeland, P. R. Snoeren, N. Karssemeijer, and J. H. C. L. Hendriks.
Optimized perception of lesion growth in mammograms using digital display.
In Proc. SPIE Medical Imaging, volume 5034, pages 25-31, 2003.

185
R. P. Velthuizen.
Computer diagnosis of mammographic masses.
In Proc. of the App. Imagery Pattern Recognition Workshop, pages 166-172, 2000.

186
L. A. Venta and R. E. Hendrick.
Mammographic density categories - reply.
American Journal of Roentgenology, 178:242-243, 2002.

187
S. K. Warfield, K. H. Zou, and W. M. Wells.
Simultaneous truth and performance level estimation (staple): An algorithm for the validation of image segmentation.
IEEE Transactions on Medical Imaging, 23:903-921, 2004.

188
J. Wei, H. P. Chan, B. Sahiner, L. M. Hadjiiski, M. A. Helvie, M. A. Roubidoux, C. Zhou, and J. Ge.
Dual system approach to computer-aided detection of breast masses on mammograms.
Medical Physics, 33(11):4157-4168, 2006.

189
J. Wei, B. Sahiner, L. M. Hadjiiski, H. P. Chan, N. Petrick, M. A. Helvie, M. A. Roubidoux, J. Ge, and C. Zhou.
Computer-aided detection of breast masses on full field digital mammograms.
Medical Physics, 32(9):2827-2838, 2005.

190
M. B. Williams, M. J. Yaffe, A. D. A. Maidment, M. C. Martin, J. A. Seibert, and E. D. Pisano.
Image quality in digital mammography: Image acquisition.
Journal of the American College of Radiology, 3:589-608, 2006.

191
F. Winsberg, M. Elkin, J. Macy, V. Bordaz, and W. Weymouth.
Detection of radiographic abnormalities in mammograms by means of optical scanning and computer analysis.
Radiology, 89(2):211-215, 1967.

192
M. Wirth, D. Nikitenko, and J. Lyon.
Segmentation of the breast region in mammograms using a rule-based fuzzy reasoning algorithm.
International Journal on Graphics, Vision and Image Processing, 5(2):45-54, 2005.

193
J. N. Wolfe.
Risk for breast cancer development determined by mammographic parenchymal pattern.
Cancer, 37:2486-2492, 1976.

194
J. Yang, D. Zhang, A. F. Frangi, and J. Yang.
Two-dimensional PCA: a new approach to appearance-based face representation and recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1):131-137, 2004.

195
L. Zheng and A. K. Chan.
An artificial intelligent algorithm for tumor detection in screening mammogram.
IEEE Transactions on Medical Imaging, 20(7):559-567, 2001.

196
C. Zhou, H. P. Chan, N. Petrick, M. A. Helvie, M. M. Goodsitt, B. Sahiner, and L. M. Hadjiiski.
Computerized image analysis: Estimation of breast density on mammograms.
Medical Physics, 28(6):1056-1069, 2001.

197
S. C. Zhu and A. Yuille.
Region competition: Unifying snakes, region growing, and Bayes/MDL for multi-band image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9):884-900, 1996.

198
S. W. Zucker.
Region growing: Childhood and adolescence.
Computer Graphics and Image Processing, 5:382-399, 1976.

199
R. Zwiggelaar, S. M. Astley, C. R. M. Boggis, and C. J. Taylor.
Linear structures in mammographic images: Detection and classification.
IEEE Transactions on Medical Imaging, 23(9):1077-1086, 2004.

200
R. Zwiggelaar, L. Blot, D. Raba, and E. R. E. Denton.
Set-permutation-occurrence matrix based texture segmentation.
In Lecture Notes in Computer Science, volume 2652, pages 1099-1107, 2003.

201
R. Zwiggelaar and E. R. E. Denton.
Optimal segmentation of mammographic images.
In Proc. International Workshop on Digital Mammography, pages 751-757, 2004.

202
R. Zwiggelaar, I. Muhimmah, and E. R. E. Denton.
Mammographic density classification based on statistical gray-level histogram modelling.
In Proc. Medical Image Understanding and Analysis, pages 183-186, 2005.

203
R. Zwiggelaar, T. C. Parr, J. E. Schumm, I. W. Hutt, C. J. Taylor, S. M. Astley, and C. R. M. Boggis.
Model-based detection of spiculated lesions in mammograms.
Medical Image Analysis, 3(1):39-62, 1999.



Arnau Oliver 2008-06-17