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Abstract. Accurate prostate segmentation in magnetic resonance (MR) 
images aids in volume estimation, surgical planing and multi-modal im­
age registration. However, automatic or semi-automatic prostate segmen­
tation in MR images is a challenging task due to inter-patient prostate 
shape and size variabilities. We propose a supervised learning framework 
of decision forest to achieve a probabilistic representation of the prostate 
voxels. Finally, propagation of region based levelsets in the stochastic 
space provides the segmentation of the prostate. Quantitative and qual­
itative results show a good approximation of the prostate volumes. 
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1 Introduction 

Prostate cancer is the most commonly diagnosed cancer in North America and 
accounted for 33,000 estimated deaths in 2011 [1]. 3D prostate segmentation in 
MR images aids in volume estimation of the prostate and in surgical planing. 
Manual segmentation of the prostate in MR images is time consuming and suffers 
from inter- and intra-observer differences. However, automatic or semi-automatic 
computer aided segmentation of the prostate is a challenging task owing to inter­
patient large scale shape, size and deformation variabilities of the prostate gland, 
intensity heterogeneities inside the prostate region and imaging artifacts. 

In the last decade, atlas-based prostate segmentation in MR images has be-
come popular [2–4]. Such methods have provided promising results when vali­
dated with large number of datasets. Further, shape prior deformable models 
are also often used for prostate segmentation [5, 6]. More recently Li et al. [7] 
used a machine learning approach to achieve a probabilistic segmentation of the 
prostate that was further refined with a levelset to achieve binary segmenta­
tion of the prostate. In recent years, supervised machine learning methods with 
decision forest have been adopted for solving classification problems in medi­
cal images [8]. Often context and appearance based features are used to build 
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Fig. 1. Schematic representation of our approach. 

a discriminative random decision forest to provide a voxel-wise probabilistic 
classification of a volume. Motivated by these approaches we propose a novel 
prostate segmentation method in which appearance, and spatial context based 
information from the training images are used to classify a new test image to 
achieve voxel-wise probabilistic classification. In our method, we adopt a similar 
approach in which appearance and spatial context based information are utilized 
to obtain a probabilistic segmentation of the prostate. Finally, a region based 
levelset propagating in probabilistic space produces binary segmentation of the 
prostate similar to the appraoch of Li et al. [7]. However Li et al. [7] had to per­
form rigid registration on the pelvic bones in computed tomography (CT) images 
and normalize the intensities before extracting features. Considering in prostate 
MRI pelvic bones are not visible and there is no reliable structure on which the 
rigid registration could be performed this method is difficult to adapt. Hence 
unlike [7] we have not registered the images to a common frame and normalized 
the intensities before extracting our features. Rather we have depended on the 
random forest classification model to handle variabilities in pose and appearance 
of the prostate. 

2 Proposed segmentation framework 

The proposed method is developed on two major components: the decision forest 
based probabilistic classification of the prostate, and propagation of region based 
levelsets to achieve a binary segmentation of the prostate. The schema of our 
proposed method is illustrated in Fig. 1. Our probabilistic classification problem 
may be formalized as a soft classification of voxel samples into either background 
or prostate. This classification problem is addressed by supervised random deci­
sion forest. Decision trees are discriminative classifiers which are known to suffer 
from over-fitting. However, a random decision forest achieves better generaliza­
tion by growing an ensemble of many independent decision trees on a random 
subset of the training data and by randomizing the features made available at 
each node during training [8]. 
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During training, the number of slices in a volume containing prostate is 
divided into three equal parts as apex, central and base regions. For example 
after selection of the first and the last slice if there are 9 slices, 3 top slices is 
grouped in apex, 3 slices after the apex slices are grouped in the central and the 
last 3 slices are grouped with the base slices. If there are 10 slices top 3 slices will 
go in the apex and the bottom 3 slices will be grouped with the bottom slices and 
4 central slices will be grouped with the central slices. The images are resized 
to a resolution of 256×256 pixels. In presence of magnetic bias contrast-limited 
adaptive histogram equalization (CLAHE) [9] is performed to minimize the effect 
of bias. The CLAHE unlike the general histogram equalization methods divide 
the image into small region or tiles and enhances the contrast of each of the tiles. 
Furthermore contrast of each tile matches a normal distribution and neighboring 
tiles are combined using bilinear interpolation to reduce boundary effect. The 
method has an advantage over the general histogram equalization as contrast in 
large homogeneous regions are unaffected from magnetic bias found in a small 
region of the image. 

The data consists of a collection of 3 × 3 neighborhood of pixels, centered 
at V = (X,F ). Where, X = (x, y) denotes the position of the voxel associated 
with a feature vector F . The mean and standard deviation of the 3 × 3 voxel 
neighborhood are used as the feature vector F . Each tree ti in decision forest 
receives the full set V , along with the label and the root node and selects a test to 
split V into two subsets to maximize information gain. A test consists of a feature 
(like the mean) and a feature response threshold. The left and the right child 
nodes receive their respective subsets of V and the process is repeated at each 
child node to grow the next level of the tree. Growth is terminated when either 
information gain is minimum or the tree has grown to maximum depth. Each 
decision tree in the forest is unique as each tree node selects a random subset of 
features and threshold. Three different decision forests are built corresponding 
to the three different regions of the prostate the apex, the central region and 
the base. We have used only 50% of the available training data for each of the 
regions to minimize the problem of overfitting as the quantitative results were 
produced with the training data. However the entire 50 training dataset could 
be used to build random forest for evaluating the 23 test datasets. 

During testing, after selection of the first and the last slice, the prostate 
in the test dataset is divided into three parts corresponding to the apex, the 
central region and the base. In presence of magnetic bias CLAHE is performed 
to minimize the effect of bias. All images are resized to a resolution of 256×256 
before classification. Decision forests trained for each of the regions are applied to 
achieve a probabilistic classification of the apex, the central and the base slices. 
The pixels are routed to one leaf in each tree by applying the test (selected during 
training). Each voxel of the test dataset is propagated through all the trees by 
successive application of the relevant binary test. When reaching a leaf node lt 
in all tree where t ∈ [1..., T ], posterior probabilities (plt ) are gathered in order to �T1compute the final posterior probability of the voxel defined by Prf = plt .T t=1 
Computation of class posterior probabilities in decision forest is illustrated in 
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Fig. 2. Random forest classification framework (a) Random forest training (b) Random 
forest classification with test images. 

Fig. 2. Intensity of the image is substituted with posterior probabilities obtained 
with random forest. According to Chan and Vesse [10] Mumford-Shah (MS) 
functional model the curve parameters were determined from minimization of 
region based energy given by, 

Ecv = (I − κ)2dA + (I − γ)2dA (1) 
Ru Rv 

Evolution of the curve in the stochastic domain ensured segmentation of the 
image (I) into two region u and v with mean intensities κ and γ obtained from 
posterior probabilities of the two region prostate and the background. In our 
model, the MS functional of [10] is adopted for the propagation of a region 
based levelset [10] in the stochastic space to provide the 3D binary segmentation 
of the prostate in a manner similar to the approach adopted by [7]. 

3 Results 

We have validated the accuracy and robustness of our approach with 50 training 
datasets and 23 test dataset of MICCAI prostate challenge [11]. We have fol­
lowed the norms of the MICCAI prostate challenge and have used the training 
data for training our decision forests. Quantitative results were achieved with 
the training dataset in two fold cross validation method in which 25 datsets were 
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Table 1. Training and testing specifications 

Specifications Values 

Algorithm 
Packages used 

User interaction 

For reading and writing images: 
ITK, Programming: Matlab 
Restricted to selection of the first 
and the last slice of prostate 

Machine 
CPU 
RAM 
CPU count 

Intel Core i5, 2.8 GHz processor 
8 GB 
4 

Time 
Training time 

Testing time 
User interaction time 

3 hrs for 25 datasets (50% of the 
training datasets) 
100 seconds (per dataset) 
20 seconds (Selection of first and 
last slice ) 

used for training to evaluate the remaining 25 datsets and this was repeated two 
times to obtain the results for 50 datasets. Qualitative results given in Fig. 3 
were achieved with the training datasets. We have fixed the number of trees to 
100, tree depth to 30 and the lower bound of information gain to 10−7 in decision 
forest. These parameters were chosen empirically as they provided promising re­
sults with training images. Manual interaction was restricted to only selection 
of the first and the last slice of the prostate and the entire process is automatic. 
The images are not rigidly registered and intensities are not normalized as de­
cision forest has the ability to handle variabilities and yet produce promising 
results. No region/volume of interest or seed points were selected for the pro­
cess. Once trained no parameters were tweaked to produce better results for the 
test images. 

During testing, a probabilistic classification of the pixels is achieved with 
decision forests for each of the apex, central and the base slices. Finally, a region 
based levelsets propagation in the stochastic space produces a binary segmenta­
tion of the prostate in 3D as discussed in 2. The training and testing specifications 
are enlisted in Table 1. We have used Dice similarity coefficient (DSC) of the 
apex, central and the base region to evaluate our method for all the training 
datasets. During quantitative evaluation half of the training dataset were used 
for building the random forest and tested on the remaining half of the training 
dataset. This was done two times for each of the apex, central and the base 
region to achieve the results. The mean and standard deviations for each of the 
apex, central and the base region are given in Table 2. Qualitative results of our 
method for some of the test datasets are presented in Fig. 3. It is to be noted 
that each dataset is composed in two consecutive rows. 
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Fig. 3. Subset of segmentation results of 4 datasets. The red contour/volume is created 
from the achieved segmentation. 
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Table 2. Prostate segmentation quantitative results for training datasets 

Region DSC 

Apex 0.64±0.18 
Central 0.73±0.11 
Base 0.61±0.17 

4 Conclusions 

A novel schema of probabilistic classification obtained with decision forest with 
the goal of segmenting the prostate in 3D MRI images has been proposed. Our 
approach is simple and computationally efficient. The proposed method has 
shown some promising results however the results could be probably further 
improved with optimized selection of discriminative features in decision forest 
and introducing shape and appearance priors in the framework as has been pro­
posed in our previous work in [12]. 
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