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Abstract. Low contrast of the prostate gland, heterogeneous intensity
distribution inside the prostate region, imaging artifacts like shadow re-
gions, speckle and significant variations in prostate shape, size and in-
ter dataset contrast in Trans Rectal Ultrasound (TRUS) images chal-
lenge computer aided automatic or semi-automatic segmentation of the
prostate. In this paper, we propose a probabilistic framework for auto-
matic initialization and propagation of multiple mean parametric models
derived from principal component analysis of shape and posterior prob-
ability information of the prostate region to segment the prostate. Un-
like traditional statistical models of shape and intensity priors we use
posterior probability of the prostate region to build our texture model
of the prostate and use the information in initialization and propaga-
tion of the mean model. Furthermore, multiple mean models are used
compared to a single mean model to improve segmentation accuracies.
The proposed method achieves mean Dice Similarity Coefficient (DSC)
value of 0.97±0.01, and mean Mean Absolute Distance (MAD) value of
0.49±0.20 mm when validated with 23 datasets with considerable shape,
size, and intensity variations, in a leave-one-patient-out validation frame-
work. The model achieves statistically significant t-test p-value<0.0001
in mean DSC and mean MAD values compared to traditional statistical
models of shape and texture. Introduction of the probabilistic informa-
tion of the prostate region and multiple mean models into the traditional
statistical shape and texture model framework, significantly improve the
segmentation accuracies.
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1 Introduction

An estimated 913,000 people worldwide were diagnosed with prostate cancer
[1] in 2008. TRUS guided biopsy is commonly used to diagnose prostate cancer
due to inexpensive real-time nature of the system and simplicity [15]. Accurate
prostate segmentation in TRUS may aid in radiation therapy planning, mo-
tion monitoring, biopsy needle placement and multimodal image fusion between
TRUS and magnetic resonance imaging (MRI) to improve malignant tissue ex-
traction during biopsy [15]. However, accurate computer aided prostate segmen-
tation from TRUS images encounters considerable challenges due to low contrast
of TRUS images, heterogeneous intensity distribution inside the prostate gland,
speckle, shadow artifacts, and presence of micro-calcifications inside the prostate.
There is no global characterization for the prostate and the non-prostate regions
in terms of pixel intensities and region appearance [15]. Moreover, inter patient
prostate shape, size and deformation may vary significantly.

Often deformable models and statistical shape models are used in prostate
segmentation. For example Badiel et al. [2] used a deformable model of warping
ellipse and Ladak et al. [11] used discrete dynamic contour to achieve semi-
automatic prostate segmentation. However, TRUS guided procedures should
necessarily be automatic. Shen et al. [14] and Zhan et al. [16] presented an
automatic method that incorporated a priori shape and texture information
from Gabor filters to produce accurate prostate segmentation. However, the
method is computationally expensive and probably unsuitable for TRUS guided
prostate intervention [15]. In recent years Cosio et al. [6] reported an automatic
method for prostate segmentation with active shape models [4]. However, the
optimization framework of genetic algorithm used is computationally intensive
and unsuitable for TRUS guided intervention.

To address the challenges involved with prostate segmentation in TRUS im-
ages we propose a multi-resolution framework using multiple mean parametric
models derived from Principal Component Analysis (PCA) of prostate shape and
posterior probabilistic values of the prostate region in TRUS images. The perfor-
mance of our method is compared with the traditional AAM [5] and also with our
previous work [9]. Compared to the use of intensity and one mean model as in [5]
and to the use of texture from Haar wavelet features in [9], posterior probabilis-
tic information of the prostate region obtained in a Bayesian framework is used
to train, initialize and propagate our multiple statistical models of shape and
texture. Statistically significant improvement is achieved with the use of multiple
mean models in the Bayesian framework when validated with 23 datasets, that
have significant shape, size, and contrast variations of the prostate, in leave-one-
patient-out validation framework. Experimental results show that our method
is unaffected by low contrast, heterogeneity of intensity distribution inside the
prostate, speckle, shadow artifacts, micro-calcifications, and significant shape,
size and intensity variations of the prostate gland between the datasets. Shen
et al. [14] and Zhan et al. [16] proposed to use Gabor filters to model prostate
texture and reduce heterogeneity of the prostate region in TRUS images. How-
ever, they often concluded that texture information inside the prostate region is
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unreliable. Hence, we adopt a probabilistic modeling of the prostate region based
on both positional information and intensity distribution inside the prostate to
reduce heterogeneity. The key contributions of this work are:

– The use of posterior probability information of the prostate region to build
the statistical model of texture.

– Using such information in training, automatic initialization and propagation
of the mean models.

– The selection of a mean model depending on the error of fitting of the poste-
rior probability information of the prostate region for accurate segmentation.

2 Proposed Segmentation Framework

The proposed method is developed on three major components: 1) Bayesian
framework to determine posterior probability of a pixel being prostate, 2) adapt-
ing multiple statistical models of shape and texture priors to incorporate the pos-
terior probabilities of the prostate region for training, initialization and prop-
agation of the parametric model and 3) selection of one of the mean models
depending on the error of fitting of the posterior probabilities to segment the
prostate. We present the Bayesian framework for determining posterior proba-
bility of the prostate region first followed by our statistical shape and probability
model of the prostate region. The optimization framework is addressed there-
after, and finally the grouping of the datasets for building multiple mean models
and selection of one among the mean models for segmentation is discussed.

2.1 Bayesian Formulation

In traditional AAM [5], the point distribution model (PDM) [4] of the contour
is aligned to a common reference frame by generalized Procrustes analysis [10].
Intensities are warped into correspondence using a piece wise affine warp and
sampled from a shape-free reference. Intensity distribution inside the prostate
region may vary significantly from one dataset to another depending on the pa-
rameters of acquisition and nature of the prostate tissue of a patient. Hence,
the use of intensity distribution of the prostate region to build the texture
model, as in traditional AAM introduces larger variabilities producing an in-
accurate texture model which adversely affects segmentation results. To reduce
inter dataset intensity variabilities and intensity variabilities inside the prostate
region, we propose to determine the posterior probability of the image pixels be-
ing prostate in a Bayesian framework and use PCA of the posterior probabilities
of the prostate region to build our texture model. We use K-means clustering to
roughly cluster the pixels into two classes (prostate and non-prostate) from the
intensities. The class means and standard deviations obtained from this rough
clustering are then used as the initial estimates in an expectation maximization
(EM) [8] framework to determine the probability of a pixel being prostate from
intensities. The E-step assigns the probabilities to the pixels depending on the
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(d) (e) (f) (g)

Fig. 1. Bayesian framework (a) TRUS image of a prostate (b) a posteriori of a pixel
being prostate, (c) centroid (white dot) computed from posterior probability values for
AAM initialization. On initialization, the AAM segments prostate in a multi-resolution
framework 1(d), 1(e) and 1(f) to give final segmentation 1(g).

current mean and standard deviation values of the classes, while in M-step the
means and standard deviation values are re-estimated. Maximum a posteriori
estimates of the class means and standard deviations are used to soft cluster the
pixels.

The likelihood of a pixel location in an image being prostate is obtained by
normalizing the ground truth values of all the pixels for all the training images
as

P (xps|Cprs) =
1

N

N∑

i=1

GTi (1)

where P (xps|Cprs) gives the probability of a pixel position being prostate with
xps being the pixel location and Cprs denoting prostate. GTi represents ground
truth of the training images with N the total number of ground truth images.
In our model the class prior probability is estimated from the frequency of the
pixels (x) belonging to a class as

P (CProstate) =

∑pnm
i=1 xi∑m
j=1 xj

(2)

where P (CProstate) gives the class prior probability of being prostate, xi rep-
resents the pixels belonging to prostate region (total given by pnm) and xj

represents the pixels in all training images (given by m). The probabilities of
intensity (being prostate) obtained in EM framework, location (being prostate)
and class prior probability (prostate class) are used in a Bayesian framework to
determine posterior probability of a pixel being prostate (Fig. 1(b)). According
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to Bayes rule,

P (Ci|X) =
P (X|Ci) P (Ci)

P (X)
(3)

the posterior probability distribution P (Ci|X) of a class is given by the prior
P (Ci) (i.e. P (CProstate)) and the likelihood P (X |Ci). P (X) being equal for
all classes can be removed from the formulation. Considering class conditional
independence (as the probability of a pixel intensity being prostate is indepen-
dent of the pixel location in the image and vice versa), the likelihood could be
formalized as,

P (X|Ci) = P (xps|Cprs) .P (xin|Cprs) (4)

In equation (4) the likelihood P (X |Ci) is obtained from the product of the
probability of a pixel intensity being prostate (P (xin|Cprs)) obtained from EM
framework (xin being pixel intensity) and the probability of a pixel location
being prostate (P (xps|Cprs)) obtained from (1). Our approach of using pixel
location for determining prior position information of the prostate is based on
the works of Cosio et al. [6] and Shen et al. [14]. Both used prior prostate
location information in TRUS images for automatic initialization of their model.
Cosio et al. [6] used a 3D feature vector of pixel location and intensity value to
classify and localize prostate in TRUS images for initialization of their model.
Similarly, Shen et al. [14] proposed to use the relative position of the prostate
with respect to the TRUS probe (located at the center of the base line of the
TRUS image) for initialization. These methods prove that prostate location in
TRUS images is not random and provides meaningful information. Hence, we
exploit the location information of the prostate in TRUS images in our Bayesian
framework to determine the posterior probability of the prostate region.

2.2 Statistical Shape and Texture Model

The process of building the parametric statistical model of shape and texture
variations involves the task of building a shape model, a texture model, and
consecutively a combined model of texture and shape and prior learning of the
optimization space from the combined model perturbation. To build the shape
model, a PDM [5] is built by equal angle sampling of the prostate contours to
determine the landmarks automatically. The PDM of the contours are aligned
to a common reference frame by generalized Procrustes analysis [10]. PCA of
the aligned PDMs identifies the principal modes of shape variations. Posteriori
probabilistic information (of pixels being prostate) of the segmented region are
warped into correspondence using a piece wise affine warp and sampled from
shape free reference similar to the AAM [5]. PCA of the posterior probabilities
from (4) is used to identify their principal modes of variation. The model may be
formalized in the following manner. Let s and t represent the shape and posterior
probability models, then

s = s + Φsθs, t = t + Φtθt (5)
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where s and t denote the mean shape and posterior probability information
respectively, then Φs and Φt contain the first p eigenvectors (obtained from
98% of total variations) of the estimated joint dispersion matrix of shape and
posterior probability information and θ represent the corresponding eigenvalues.
The model of shape and posterior probability variations are combined in a linear
framework as,

b =

[
Wθs

θt

]
=

[
WΦT

s (s − s)
ΦT

t (t − t)

]
(6)

where W denotes a weight factor (determined as in AAM [5]) coupling the
shape and the probability space. A third PCA of the combined model ensures
the reduction in redundancy of the combined model, and is given as,

b = V c (7)

where V is the matrix of eigenvectors and c the appearance parameters.

2.3 Optimization and Segmentation of a New Instance

In our model, we incorporate AAM optimization proposed by Cootes et al. [5].
The objective function of our model is similar to AAM. However, instead of
minimizing the sum of squared difference of intensity between the mean model
and target image, we minimize the sum of squared difference of the posterior
probability of the mean model and the target image. The prior knowledge of the
optimization space is acquired by perturbing the combined model with known
model parameters and perturbing the pose (translation, scale and rotation) pa-
rameters. A linear relationship between the perturbation of the combined model
(δc) and the residual posterior probability values (δt) (obtained from the sum of
squared difference between the posterior probability of the mean model and the
target image), and between the perturbation of the pose parameters (δp) and
the residual posterior probability values are acquired in a multivariate regression
framework as,

δc = Rcδt, δp = Rpδt (8)

Rc and Rp refer to the correlation coefficients. Given a test image, posterior
probability values of the pixels being prostate is determined in the Bayesian
framework 2.1. The sum of squared difference of the posterior probability values
with the mean model is used to determine the residual value δt. The combined
model (δc) and the pose parameters (δp) are then updated using (8) to generate
a new shape, and combined model and hence, new posterior probabilities. The
process continues in an iterative manner until the difference with the target
image remains unchanged.

2.4 Multiple Mean Models

Statistical shape and texture model assumes the shape and the texture spaces to
be Gaussian. However, inter patient prostate shape and their intensities may vary
significantly. In such circumstances, a single Gaussian mean model is inefficient to
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Fig. 2. Mean models fitting errors for with dataset 1 as reference

capture the variations of shape and texture spaces. To address this problem, we
propose to use multiple Gaussian mean models. The sum of squared differences
of the posterior probabilities between the mean models and a given test image is
recorded as the fitting error after the final segmentation with each of the mean
model. The segmentation results of the mean model with the least fitting error
is considered as the optimized segmentation.

The scheme of building the mean models is as follows; initially the 1st dataset
is chosen as the reference to register datasets 3 to 23 to produce a mean model
of shape and texture. This mean model is used to test dataset 2. The sum of
squared difference of the posterior probabilities between the mean model and
dataset 2 is recorded as fitting error after the final segmentation. Likewise, with
the fixed reference (dataset 1), we build the second mean model registering
datasets 2 and 4-23 to test on dataset 3 and record the fitting error. The process
is repeated for all datasets from 4-23. This provides 22 model fitting errors for
the test datasets with dataset 1 as reference (Fig. 2). Consequently, the reference
dataset is changed from 2 through 23 and the entire process is repeated for all
the datasets (23 in total). The entire procedure yields 23 graphs of model fitting
errors (one for each dataset).

We have analyzed these 23 model fitting error graphs and have observed that
with less fitting error (< 2000 units, where units signifies the sum of squared
differences of the probability values of the prostate region between the mean
model and the target image) we have higher accuracy in segmentation (in terms
of Dice similarity coefficient, mean absolute distance etc.). This is not surprising
considering the fact that the objective function of our optimization framework
tries to minimize the fitting error between the mean model and target image
with respect to the pose parameters. Hence, an increase in fitting error indicates
a reduction in segmentation accuracies. An empirical error value is determined
from these graphs, above which, the segmentation accuracy is reduced (in our
case the threshold value is 1700 units). The reference dataset that has a fit-
ting error less than the empirical value for maximum number of test datasets
is identified (dataset 1 in our case). The datasets below this fitting error are
grouped together (datasets 1, 6, 8, 10, 15 and 21(Fig. 2)) and are removed from
further grouping. The process is repeated until all the datasets are grouped.
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Table 1. Prostate segmentation quantitative comparison (HD, MAD and MaxD in
mm, Spec., Sens., and Acc., are for Specificity, Sensitivity and Accuracy respectively.)
Statistically significant values are italicized

Method DSC HD MAD MaxD Spec. Sens. Acc.

AAM
[5]

0.92±0.04 3.80±1.98 1.26±0.76 3.81±2.00 0.91±0.04 0.98±0.01 0.97±0.05

Ghose
et al. [9]

0.94±0.03 2.59±1.21 0.91±0.44 2.64±1.19 0.91±0.04 0.98±0.01 0.97±0.05

B-AAM 0.95±0.06 2.53±1.94 0.87±1.23 2.35±2.10 0.92±0.04 0.97±0.04 0.97±0.03

Our
Method

0.97±0.01 1.78±0.73 0.49±0.20 1.72±0.74 0.95±0.01 0.99±0.00 0.98±0.00

These groups of datasets provide individual mean models (5 mean models in our
case). However, increasing the number of mean models (decreasing the fitting
error threshold) improves segmentation accuracy with additional computational
time. Hence, the choice of optimum number of mean models depends on the
segmentation accuracy and computational time requirement of the process.

3 Experimental Results

We have validated the accuracy and robustness of our method with 46 axial mid
gland TRUS images of the prostate with a resolution of 348×237 pixels from 23
prostate datasets in a leave-one-patient-out evaluation strategy. During valida-
tion, a test dataset is removed and 5 mean model are built with remaining 22
datasets. All the 5 mean models are applied to segment the test dataset. The
mean model with the least fitting error is selected for accurate segmentation.
The ground truth for the experiments are prepared in a schema similar to MIC-
CAI prostate challenge 2009 [13], where manual segmentations performed by an
expert radiologist are validated by an experienced urologist. Both doctors have
over 15 years of experience in dealing with prostate anatomy, prostate segmenta-
tion, and ultrasound guided biopsies. We have used most of the popular prostate
segmentation evaluation metrics like DSC, 95% Hausdorff Distance (HD) [13],
MAD [15], Maximum Distance (MaxD) [12], specificity [7], sensitivity, and ac-
curacy [2] to evaluate our method. Furthermore, the results are compared with
the traditional AAM proposed by Cootes et al. [5], to our previous work [9] and
to B-AAM (that uses posterior probability of the prostate region and a single
mean model for segmentation). It is observed from Table 1 that, a probabilis-
tic representation of the prostate texture in TRUS images and using multiple
mean models significantly improves segmentation accuracy when compared to
traditional AAM and to [9]. We used posterior probability information for au-
tomatic initialization and training of our statistical shape and texture model.
As opposed to manual initialization of traditional AAM and in [9], our model is
initialized automatically. We achieved a statistically significant improvement in
t-test p-value<0.0001 for DSC, HD and MAD compared to traditional AAM [5]
and to [9]. A high DSC value and low values of contour error metrics of HD and
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(a) (b) (c) (d)

Fig. 3. (a), (c) Segmentation without multiple mean model (B-AAM), (b), (d) Seg-
mentation with multiple mean model.

MAD are all equally important in determining the segmentation accuracy of an
algorithm. In this context, we obtained better segmentation accuracies compared
to [5] and [9]. As observed in Table 1 B-AAM produces better result compared
to AAM justifying the use of posterior probability of the prostate region instead
of intensity. However, our model which uses both posterior probability and mul-
tiple mean models produces superior results compared to B-AAM, suggesting
that use of both posterior probability and multiple mean models are essential
to improve segmentation accuracies. Quantitative improvement in segmentation
accuracy with multiple mean model is evident from the last two rows in Table
1. Qualitative improvement in segmentation accuracy compared to B-AAM is
illustrated in Fig. 3 for two datasets. In Fig. 3, we observe that segmentation
accuracy of our model (in Fig. 3(b) and Fig. 3(d)) is better compared to B-
AAM (in Fig. 3(a) and Fig. 3(c)). Improved qualitative results with our method
compared to traditional AAM [5] are illustrated in Fig. 4. Our method is im-
plemented in Matlab 7 on an Intel Core 2 Duo T5250, 1.5 GHz processor and
2 GB RAM. The mean segmentation time of the method is 5.97±0.55 seconds
with an unoptimized Matlab code. Even with an unoptimized Matlab code in
Table 2 we observe that our mean segmentation time is comparable to [3], better
than [14] and [6] and inferior only to [15]. However, [15] used an optimized C++
code to achieve their results. We believe that speed up of computational time is
possible with a parallelized optimized code in GPU environment. A quantitative
comparison of different prostate segmentation methodologies is difficult in the

Table 2. Qualitative comparison of prostate segmentation

Reference Area Accuracy Contour Accuracy Datasets Time

Betrouni [3] Overlap 93±0.9% Distance 3.77±1.3 pixels 10 images 5 seconds
Shen [14] Error 3.98±0.97% Distance 3.2±0.87 pixels 8 images 64 seconds
Ladak [11] Accuracy 90.1±3.2% MAD 4.4±1.8 pixels 117 images -
Cosio [6] - MAD 1.65±0.67 mm 22 images 11 minutes
Yan [15] - MAD 2.10±1.02 mm 19 datasets/

301 images
0.3 seconds

Our Method DSC 0.97±0.01 MAD 1.82±0.76 pixels/
0.49±0.20 mm

23 datasets/
46 images

5.9 seconds
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Fig. 4. Performance of our algorithm against shape, size and contrast variations. The
white contour gives the ground truth and the black contour gives the obtained re-
sult. Columns 1, and 3 show segmentations with traditional AAM and 2, and 4 show
corresponding segmentations with our model for 10 datasets.

absence of a public dataset and standardized evaluation metrics. Nevertheless,
to have an overall qualitative estimate of the functioning of our method we have
compared with some of the 2D segmentation works in the literature in Table 2.
In Table 2 we may consider area overlap and area accuracy equivalent to that of
DSC values and average distance equivalent to that of average MAD. Analyzing
the results we observe that our mean DSC value is comparable to area overlap
accuracy values of Betrouni et al. [3] and Ladak et al. [11] and very close to the
area overlap error of Shen et al. [14]. However, it is to be noted that we have used
more images compared to Shen et al. Our MAD value is comparable to [3], [14],
[11], [6] and [15]. From these observations we may conclude that qualitatively
our method performs well in overlap and contour accuracy measures.
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4 Conclusion and Future Works

A novel approach of multiple statistical models of shape and posterior proba-
bility information of prostate region with the goal of segmenting the prostate
in 2D TRUS images has been proposed. Our approach is accurate, and robust
to significant shape, size and contrast variations in TRUS images compared to
traditional AAM. While the proposed method is validated with prostate mid
gland images, effectiveness of the method against base and apical slices is yet to
be validated.
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