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Abstract
Introduction Lesion segmentation plays an important role in
the diagnosis and follow-up of multiple sclerosis (MS). This
task is very time-consuming and subject to intra- and inter-
rater variability. In this paper, we present a new tool for auto-
mated MS lesion segmentation using T1w and fluid-
attenuated inversion recovery (FLAIR) images.
Methods Our approach is based on two main steps, initial
brain tissue segmentation according to the gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF) per-
formed in T1w images, followed by a second step where the
lesions are segmented as outliers to the normal apparent GM
brain tissue on the FLAIR image.
Results The tool has been validated using data frommore than
100 MS patients acquired with different scanners and at dif-
ferent magnetic field strengths. Quantitative evaluation pro-
vided a better performance in terms of precision while main-
taining similar results on sensitivity and Dice similarity mea-
sures compared with those of other approaches.
Conclusion Our tool is implemented as a publicly available
SPM8/12 extension that can be used by both the medical and
research communities.
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Introduction

Magnetic resonance imaging (MRI) plays an important role in
medical image analysis for both clinical and research studies.
Inflammatory demyelinating diseases such as multiple sclero-
sis (MS) [15], which affects more than 2.5 million people
worldwide, particularly women, presents plaques (lesions) of
demyelination typically observed in conventional MRI. De-
tecting those lesions is a crucial task for MS diagnosis as
stated in the 2010 revision of the McDonald criteria [18].
Thus, a fully automatic tool that can segment the lesions
would prevent user variability and reduce the time consump-
tion considerably. In the literature, there is not yet a standard
tool feasible for daily clinical practice [14], although many
attempts have been proposed thus far [6, 11, 13, 22, 27, 29,
31]. Automatic detection of MS lesions is a challenging prob-
lem [12, 14] that is hampered by factors such as diversity
among devices, MRI acquisition protocols, and case of
studies.

In this study, we present a new tool that follows the prin-
ciples of a recently presented algorithm for MS lesion detec-
tion [5] that was configured and tested only for 1.5-T images.
This algorithm is based on two main steps, initial brain tissue
segmentation according to the gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF), followed by a second
step where lesions are segmented as outliers to the normal
apparent GM brain tissue on the fluid-attenuated inversion
recovery (FLAIR) image. To extend this tool for processing
3 T brain volumes, we have changed the bias normalization
and tissue segmentation steps. Moreover, we have modified
the lesion segmentation process to include two iterations.
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These changes allow the reduction of false-positive (FP) de-
tection, maintaining a good true-positive (TP) rate. Compared
with the previous approach, this new strategy only needs T1w
and FLAIR while T1w, T2w, proton density-weighted (PDw),
and FLAIR images were previously needed for the tissue seg-
mentation process.

Evaluation of the tool is performed using three distinct
databases and comparing the results with the annotations man-
ually performed by expert radiologists, which are considered
as a gold standard. Two different datasets were acquired using
3-T MRI scanners, while one was acquired with a 1.5-T scan-
ner. To quantitatively evaluate our tool with respect to the
state-of-the-art, we have compared our results on the Medical
Image Computing And Computer-Assisted Intervention
(MICCAI) MS Challenge 2008 training dataset with three
recent works [13, 27, 31]. Moreover, we have also submitted
online1 the segmentation results for the testing dataset of the
MICCAI Challenge 2008, obtaining at the time of submission
the best results in the ranking using an unsupervised strategy.

Additionally, we integrate this novel tool as a SPM8/122

extension toolbox that is publicly available to the community3

and may be used in both 1.5-T and 3-T MRI.

Materials and methods

Data

We use data from the following sources.

1. 3-T dataset: 3-T Siemens (data from Hospital Vall
d’Hebron, Spain). This (non-public) database comprised
data from 70 patients with clinically isolated syndrome
(CIS) and was a very challenging dataset where the lesion
volume per patient was very small. The scanner used was
the 3-T magnet with a 12-channel phased-array head coil
(Trio Tim; Siemens, Germany). The following pulse se-
quences were obtained: (1) transverse proton density and
T2-weighted fast spin-echo (TR=2500 ms, TE=16–
91 ms, voxel size=0.78×0.78×3 mm3); (2) transverse
fast T2-FLAIR (TR=9000 ms, TE=93 ms, TI=
2500 ms, flip angle=120, voxel size=0.49×0.49×
3 mm3); and (3) sagittal 3D T1 magnetization-prepared
rapid gradient-echo (MPRAGE) (TR=2300 ms, TE=
2 ms; flip angle=9; voxel size=1×1×1.2 mm). For 24
patients, the lesions were annotated by experts on FLAIR
images with a lesion volume variation (mean±standard
deviation) and range (min–max) of 4.1±4.7 [0.18–18]
ml; however, for the rest of the cases, annotations were

performed in PDw images with a lesion volume variation
and range of 2.8±2.5 [0.25–9.5] ml.

2. 3-T MS Challenge 2008 dataset: 3-T Siemens high-
resolution images (data from the MICCAI Challenge
2008 dataset) [28].

(a) Training dataset: This dataset was composed of 20
images from two different hospitals with 3-T scanners,
10 images from the Childrens Hospital Boston (CHB; 3-
T Siemens), and 10 images from the University of North
Carolina (UNC; 3-T Siemens Allegra). Each case was
labeled using FLAIR images by an expert from the re-
spective hospital. The protocol consisted of T1w, T2w,
and FLAIR images. The T1w image was then rigidly
co-registered to the standard Montreal Neurological Insti-
tute (MNI) atlas. The T2w and FLAIR images were rig-
idly registered to its corresponding T1w images. All im-
ages were re-sliced at an isotropic 0.5×0.5×0.5 mm res-
olution with cubic spline interpolation. This resolution
was chosen, as most of the structural T1w, T2w, and
FLAIR datasets had originally an in-plane resolution of
0.5×0.5 mm, and several images had an original slice
thickness of 0.5 mm. The mean lesion volume and range
for the CHB and UNC datasets were 9.85±5.75 [4.4–
19.6] ml and 1.60±1.64 [0.1–4.5] ml, respectively.
(b) Testing dataset: This dataset comprised 23 images
from the same two hospitals, 14 cases from the CHB
and 9 cases from the UNC. All of them followed the same
scheme explained above. Manual annotations were not
available for this dataset. Participants had to send the re-
sults to theMICCAI Challenge platform to obtain an eval-
uation and an overall score.

3. 1.5-T dataset: 1.5-T General Electric scanner (data from
the Clínica Girona, Spain). This (non-public) database
comprised data from 14 patients with clinically confirmed
multiple sclerosis. The scanner used was a 1.5-T GE Sig-
na HDxt with 3D fast spoiled gradient T1w (TR 30 ms,
TE 9ms), fast spin echo T2w (TR 5000–5600ms, TE 74–
77 ms), PDw (TR 2700 ms, TE 11.9 ms), and FLAIR (TR
9002 ms, TE 80 ms, and TI 2250 ms). All images were
acquired in the axial view with a slice thickness of 3 mm
and with a resolution of 1×1×3 mm3. MS lesions were
annotated on PDw images with a lesion volume average
and range of 10.72±17.45 [0.43–67.8] ml.

Due to the variability of acquisition conditions and proto-
cols for MS datasets and in order to simplify our pipeline, we
used only T1w and FLAIR images.

Pre-processing

To address the MS lesion segmentation, a set of pre-
processing steps are necessary in advance (left column of

1 http://www.ia.unc.edu/MSseg/results_table.php
2 http://www.fil.ion.ucl.ac.uk/spm
3 http://atc.udg.edu/salem/slsToolbox/index.html
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Fig. 1). First, the brain region is extracted from all of the images
involved. There is a large literature covering the skull-stripping
problem [1, 19, 21, 24]. Among the available approaches, the
Brain Extraction Tool (BET) [26] from the FMRIB Software
Library4 is the most commonly used mainly for the satisfactory
results provided [3]. Thus, we decided to use BET here.

Intensity inhomogeneities are inherent to MRI for various
reasons: variable imaging parameters, overlapping intensities,
noise, motion, echoes, blurred edges, normal anatomical var-
iations, and susceptibility artifacts [23]. The effect of these
inhomogeneities can be attenuated by first reducing the image
noise and then correcting the intensities with the estimation of
the multiplicative bias field. Here, we have first used the an-
isotropic diffusion filter provided by the Insight Toolkit (ITK)
software library,5 which implements an N-dimensional ver-
sion of the classic Perona and Malik filter [17]. Thereafter,
the inhomogeneities were corrected using the well-known,
non-parametric, non-uniform intensity normalization (N3)
method6 [25], which is becoming a standard in brain MRI
pipelines. Although some works in the literature perform
BET after N3 intensity correction [19], when optimizing
non-uniformity correction using N3, the brain mask also helps
with its improvement [4, 32]. The main goal of our work is the
segmentation of MS lesions by using intensity features; there-
fore, the intensity normalization is a primary requirement.
Other works with similar necessities also perform as we do
here BET before intensity correction [24, 30]. The use of
default parameters for this N3 method has been revised in
recent works to adapt them to newer MRI scanners with
higher field strength and multichannel receiver coils, reducing
the smoothing distance parameter to 30–50 mm [4, 32].

Finally, we performed intra-subject registration, which con-
sists of the co-registration of T1w and FLAIR images of each
patient to the MNI space [16], which is the reference standard

space in SPM8/12. The target of the registration process is the
T1w image due to the higher resolution, thus the voxel size
used is the one from T1w, which depends on each database.
Different registration software programs can be found in the
literature [8]; however, because we aimed to develop a tool-
box integrated on SPM8/12, we used the spatial co-registra-
tion, estimate, and re-slice method from SPM8/12, based on
the work described in [7]. This is an affine registration process
using the normalized mutual information as an objective func-
tion and trilinear interpolation with no wrapping. This step
was unnecessary for the 3-T MS Challenge 2008 dataset be-
cause images were already registered to this space.

Lesion segmentation tool

Once the images were pre-processed, they could be analyzed
accurately. The lesion detection tool was based on identifying
the hyperintense regions in the FLAIR image, which we con-
sidered to be intensity outliers. Because the GM was the
brighter healthy tissue in FLAIR images, we used its distribu-
tion to define the hyperintense outliers. Hence, before
performing the lesion detection, a previous step consisting of
tissue segmentation was necessary.

There are different approaches for brain tissue segmenta-
tion [30]. In the approach of Cabezas et al. [5], this step was
performed by an expectation maximization segmentation
method combining T1w, T2w, and PDw images to address
partial volume effects. However, because our aim was to in-
tegrate our tool into the Statistical Parametric Mapping (SPM)
framework, we simplified this step using the well-known
SPM8/12 segment algorithm [1] that relies only on T1w im-
ages. Because the result of this segmentation was a probability
map per tissue type, we assigned GM, WM, or CSF class
according to the maximum value.

Subsequently, this GM mask was used to compute the in-
tensity distribution of the GM in the FLAIR image. This dis-
tribution should represent the highest intensities of the image,

Fig. 1 Scheme of the full lesion
segmentation process. The left
column shows the pre-processing
steps, while the right column
depicts the used strategy for MS
lesion segmentation

4 http://www.fmrib.ox.ac.uk/fsl/fslwiki/BET
5 http://www.itk.org
6 http://www.nitrc.org/projects/un_correct/
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but the lesions were still brighter; hence, their intensities were
considered to be outliers of this distribution. To detect the
outliers, we used the full width at half maximum (FWHM)
of the main peak to determine the standard deviation. The
threshold Thr is computed as follows:

Thr ¼ μþ ασ ð1Þ
where μ is the mean intensity of the GM distribution and σ is
the standard deviation determined using the FWHM. This
method provides a high robustness for determining the vari-
ability of a distribution, minimizing the effect of outliers (in
our case, lesions misclassified as GM). The parameter α is
used to adjust the detected candidate lesions.

Thereafter, we applied the following method to remove FP
lesions that remained after thresholding the FLAIR volume:

1. Tissue of the lesions (λts). The lesions should be classified
as WM, but registration limitations could lead to some
misalignments, and the tissue segmentation process could
classify them as GM. The percentage of voxels belonging
to the WM and GM over CSF was computed for all de-
tected lesions.When the threshold λts was higher than this
percentage, the lesion was then refused.

2. Neighborhood of the lesions (λnb). Because the lesions
should appear in the WM (although the lesions could be
classified as the GM), the surrounding voxels must strictly
belong to the WM. Therefore, another threshold was de-
fined to limit the proportion of theWMover GM and CSF
in the lesion neighborhood.

3. Lesion size. As stated in different works [2, 9], a brain
region could be considered as an MS lesion if its volume
is larger than 3 mm3. This rule allows the elimination of
hyperintense voxels or group of voxels smaller than 3 mm3.

In summary, the two first post-processing steps are as follows:

LesiWM þ LesiGM
�
�

�
�

Lesi
≥λts ð2Þ

LesiWM

�
�

�
�

Lesi
≥λts ð3Þ

where λts represents the ratio of lesion voxels belonging to the
WM (LesWM

i ) or the GM (LesGM
i ) and λnb represents the ratio

of lesion neighbor voxels belonging to theWM (LesWM
i ), both

over all lesion voxels (Lesi). Superindex i indicates the actual
lesion candidate.

Depending on the image acquisition machine and due to
the high heterogeneity in the lesion intensities, we noticed that
some of the lesions may fall under the automated threshold
determined in Eq. 1. However, setting this threshold at a lower
value enlarges real lesions at the expense of also introducing
much more FP, even after the refinement. To address this

issue, our segmentation tool allows the possibility to perform
the thresholding and refinement step twice, the second itera-
tion after discarding the voxels segmented in the previous step
that is performed at a higher threshold being more restrictive.
The advantage of this iteration instead of directly using a less
restrictive threshold is to avoid the oversegmentation of le-
sions and ensure a more accurate application of the post-
processing steps. This simple iterative strategy increases the
performance, particularly for 3-T images and challenging im-
ages that present more artifacts and abnormal intensities [10].

Figure 2 shows the results of the strategy when using only
one iteration and when using two iterations. We also show the
differences (g, h) with the ground truth and (i) between strat-
egies. One can see how (c) the strategy with a single iteration
leads to oversegmentation due to the necessity of fixing a
smaller global threshold compared to the strategy with two
iterations. The intensity of the dirty white matter
(inflammation) of higher hyperintense lesions sometimes
may be higher than small focal lesions; therefore, a single
threshold may lead to misclassification. Instead, the use of
two thresholds combined with the post-processing rules (λts
and λnb) allows the definition of an initially higher threshold
((d) first iteration) in order to avoid surrounding voxels

Fig. 2 Images representing a the original FLAIR image, b manual
annotation, c single-iteration strategy with only one threshold applied,
d–f the first threshold, second threshold, and final result, respectively,
of the two iteration strategies, g differences between the ground truth
and first strategy, h differences between the ground truth and second
strategy, and i differences between the first and second strategy
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belonging to the lesion inflammation; however, in e, the second
iteration threshold can be smaller to detect lower intensity le-
sions (in the example, two new small lesions are added in this
step). Note that the adjacent voxels of the initial segmented
lesions will be discarded through the post-processing rules (f).

Evaluation

Quantitative evaluation has been performed using three differ-
ent well-known measures, the Dice similarity coefficient
(DSC), true-positive rate (TPR), and positive predictive value
(PPV). All of those measures have been computed between
the ground truth (lesions manually segmented by the experts)
and automatic segmentation. The DSC is the most common
measure used to validate segmentation methods and compute
segmentation accuracy. This measure considers the TP, FP,

and false-negative (FN) voxels. It ranges between 0 and 1
and accounts for the presence or absence of voxels in both
annotations:

DSC ¼ 2� TP

FNþ FPþ 2 � TP
ð4Þ

The TPRmeasures the sensitivity of the method and ranges
between 0 and 1. The lower the false negatives (lesions
missed) were, the better the measure becomes. We computed
TPR region-wise, therefore rating the detection accuracy:

TPR ¼ TP

TPþ FN
ð5Þ

Finally, PPV computes the precision of the method. The
lower the false positives (healthy tissue classified as lesion),
the bigger the PPV. PPV ranges from 0 to 1 and is also com-
puted region-wise:

PPV ¼ TP

TPþ FP
ð6Þ

Experimental results

3-T dataset

We have divided this dataset of 70 patients into two different
groups depending on the image modality used to annotate the

Table 1 DSC, TPR, and PPV results (%) obtained on 3-T data from
Vall d’Hebron using FLAIR images to manually annotate the lesions

α λts λnb DSC TPR PPV

First iteration 3 0.70 0.60 26 20 65

Second iteration 1.5 0.70 0.65 30 35 53

One iteration 2.6 0.60 0.60 27 23 53

The first row is the first iteration when maximizing the PPV, the second
row is the result after the second iteration, and the third row is the best
result when assuming the same PPV result from the second iteration

Fig. 3 Boxplots representing DSC, TPR, and PPV measures obtained when testing our tool for three sets of data: 3 T from Vall d’Hebron annotated on
FLAIR and PDw images and 1.5 T from Clínica Girona annotated on PDw images

Neuroradiology (2015) 57:1031–1043 1035
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MS lesions (FLAIR or PDw). Notice that most patients in this
dataset have a very low lesion load.

We set up the parameters of the algorithm using only the first
group of patients. An exhaustive analysis was performed to find
both λts and λnb from 0 to 1 each 0.05 in both the first and
second iterations. This optimization is highly dependent on the
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Fig. 5 Correlation of the lesion volume between the ground truth and the
segmentation. The upper row results are obtained when testing the 3-T
dataset a FLAIR GT and b PDw GT, while the bottom row shows the

results when testing the c 1.5-T dataset. R2 fitting and its 95% confidence
bounds are also shown

�Fig. 4 Qualitative example of the obtained results using our automatic
tool. The GT is annotated on PDw images for cases 7.8 and 1.2 ml, and
FLAIR images for cases 12 and 0.5 ml). The first row of each case shows
the original FLAIR image, while the second rows show the automatic
segmentation results (green=TP, red=FP, and yellow=FN)
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parameter αwhich was also tested in both iterations from 1 to 3
each 0.1. In this dataset, the tissue classification classifies al-
most all detected candidate lesions—i.e., the hyperintensities in
FLAIR images, either as WM or GM. Therefore, λts does not
have a particular influence in the results.

In this test, the parameters of our proposal for the first iter-
ation were set conservatively, allowing only voxels over 97 %

of the GM distribution to obtain a low number of FP: α=3,
λts=0.7, and λnb=0.6, although λts was stable from [0–0.60],
there was a weak improvement when 70 % of the voxels be-
longs to the WM. In the second iteration, those parameters
were modified to allow more regions to be considered (α=
1.5, λts=0.7 and λnb=0.65, although similar results were found
for ranges of λts=[0.40–0.80] and λnb=[0.60–0.70]). Because
the second dataset was acquired using the same scanner and
using the same protocol, we maintained the same parameter
configurations for the testing. Table 1 shows how, using the
two iterations strategy, we could improve the averages of DSC
Δ0.03 and TPR Δ0.12 maintaining the same PPV.

When analyzing the first group of patients (see Fig. 3), we
obtained a mean Dice of 0.30±0.19, a mean TPR of 0.36±
0.21, and a mean PPV of 0.53±0.29. While evaluating the
second group of patients (annotations in PDw), the measures

Table 2 DSC, TPR, and PPV results (%) obtained on CHB MICCAI
Challenge 2008 data

Souplet Geremia Weiss Proposal

TPR PPV TPR PPV TPR PPV DSC TPR PPV DSC

01 22 41 49 64 60 58 59 58 79 63

02 18 29 44 63 27 45 34 52 52 38

03 17 21 22 57 24 56 34 47 53 40

04 12 55 31 78 27 66 38 33 62 58

05 22 42 40 52 29 33 31 80 86 31

06 13 46 32 52 10 36 16 38 78 25

07 13 39 40 54 14 48 22 45 61 46

08 13 55 46 65 21 73 32 27 96 34

09 3 18 23 28 5 22 8 41 85 24

10 5 18 23 39 15 12 13 43 38 19

AVG. 13.8 36.4 35 55.2 23.2 44.9 28.7 46.4 69 37.8

Comparison of three state-of-the-art approaches [13, 27, 31]. Cursive data
represent the best results

Table 3 Obtained DSC, TPR, and PPV mean results (%) on CHB
MICCAI Challenge 2008 data

α λts λnb DSC TPR PPV

First iteration 3 0.60 0.60 28 31 77

Second iteration 2.5 0.60 0.55 38 46 69

One iteration 2.5 0.75 0.40 34 41 69

The first row is the first iteration when maximizing the PPV, the second
row is the result after the second iteration, and the third row is the best
result when assuming the same PPV result from the second iteration
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Fig. 5 (continued)
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were a mean DSC of 0.33±0.18, a mean TPR of 0.50±0.20,
and a mean PPVof 0.62±0.23. Thus, the focus was to reduce
the FP detection trying to detect as much TP as possible.

A qualitative analysis of the segmentation results is illus-
trated in Fig. 4, where we show 2D and 3D views of four
different cases with different lesion loads. The trend observed
in the results showed that the higher the lesion volume was,
the higher the accuracy obtained, although 12 ml is still a low
volume. The slices shown in Fig. 4 illustrate clear examples of
MS lesions that our tool could easily detect. However, the
segmentations were usually slightly smaller than the ground
truth (GT), and some FPs were found, particularly in confus-
ing areas where the intensities were similar to MS lesions, and
the tool classified them as GM outliers (for example, the first
slice of case 0.5 ml or third slice of case 1.2 ml).

It is important to highlight that the lesion volume of the
segmentation correlates with the GT. In the 2D views, when
there are no lesions, the tool does not find anything; however,
when a significant lesion volume is present, the method can
detect it. The 3D view also helps to summarize the overall per-
formance, location, volume, and accuracy. Figure 5 plots the
linear correlation for the different datasets. The upper left plot

shows the result obtained for the FLAIR dataset, where a high
Pearson’s coefficient was obtained (r=0.95). By contrast, for the
PDw dataset (Fig. 5b), the presence of a few outliers reduced the
correlation coefficient to r=0.80 (r=0.91 will be obtained if the
twomost significant outliers are avoided). In both datasets, the p
value <<0.01 confirms that the correlation is significant.

However, it is important to notice the crucial issue regard-
ing the evaluation of the segmentation approaches, which is
the actual dataset used. This dataset contains 70 cases, which
comprise clinically isolated syndrome (CIS) patients present-
ing a small lesion load. This fact implies lower DSC values
than previously published results in the state-of-the-art [14]
due particularly to the severe punishment of small errors in
the segmentation.

3-T MS challenge 2008 dataset

The second database used to test our tool was the MICCAI
MS Challenge 2008 dataset, a high-resolution 3-T dataset.
This database is becoming a benchmark in the field, allowing
researchers to compare their results. Here, we present a com-
parison of our results on the training dataset with the ones
obtained by three recent works of the state-of-the-art [13, 27,
31]. The training results of Souplet et al. [27] are the ones
reported in Geremia et al. [13] andWeiss et al. [31].Moreover,
results obtained on the online testing dataset are also discussed
below and compared to the results of Souplet et al. and
Geremia et al. extracted from the MS Challenge webpage.

Training dataset

Table 2 shows the results obtained when testing the training
data from the Children’s Hospital Boston. The parameters for
the first iteration were set following the same optimization
strategy explained above, allowing only voxels over 97 % of
the GM distribution (α=3, λts=0.60, and λnb=0.60). In the
second iteration, those parameters were modified to allow
larger regions to be considered (α=2.5, λts=0.60, and λnb=
0.55, obtaining similar results within ranges of λts=[0.40–
0.80] and λnb=[0.50–0.60]). Notice that while the first itera-
tion uses almost the same configuration as the previous dataset
(Section B3T dataset^), the second requires new values for a
better adjustment to the high-resolution data.

Table 4 DSC, TPR, and PPV results (%) obtained using UNC
challenge MICCAI 2008 data

Souplet Geremia Weiss Proposal

TPR PPV TPR PPV TPR PPV DSC TPR PPV DSC

01 1 1 2 1 33 29 31 33 7 31

02 37 39 48 36 54 51 53 73 69 52

03 12 16 24 35 64 27 38 82 26 24

04 38 54 54 38 40 51 45 59 53 37

05 38 8 56 19 25 10 16 40 13 7

06 8 9 15 8 13 55 20 72 55 41

07 57 18 76 16 44 23 30 86 55 40

08 27 20 52 32 43 13 20 90 46 23

09 16 43 67 36 69 6 11 75 23 11

10 22 28 53 34 43 23 30 67 35 33

AVG. 25.6 23.6 44.7 25.5 42.8 28.8 29.4 67.9 38.2 30.1

Comparison with three state-of-the-art approaches [13, 27, 31]. Cursive
data represents de best results

Table 5 TPR (%), FPR (%), and
overall score results obtained
using the UNC and CHB MICC
AI Challenge 2008 test dataset

Souplet Geremia Proposal

TPR FPR Score TPR FPR Score TPR FPR Score

All UNC 47.8 73.8 43.5 74.7 51.4 48.6

All CHB 50 78 79.998 56.1 78 82.069 40.6 39.6 82.344

All average 49.1 76.3 51.2 76.7 44.9 43.2

Comparison with three state-of-the-art approaches [13, 27]. Cursive data represents de best results
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Looking at the obtained results, our approach showed
higher values in almost every case for all TPR and PPV.
DSC values were only provided in the work of Weiss et al.
[31]. A higher performance is obtained with our proposal than
that of Weiss et al. with an average of 0.38±0.15 and 0.29±
0.15, respectively. In Table 3, we show again the mean results
of each measure for the three segmentations (first and second
iteration and one iteration maintaining the PPV). The im-
provement of the second iteration for this dataset was 0.04
in DSC and 0.05 in TPR.

Table 4 shows the performance of our tool when using the
training data from the University of North Carolina. In this
test, we used the same configuration obtained when optimiz-
ing the previous dataset (CHB). The performance of the algo-
rithms followed a similar trend (TPR increased and PPV de-
creased).We obtained a TPR average of 0.68±0.19 and a PPV
average of 0.38±0.21. However, in this case, the DSC values
were more similar, obtaining 0.30±0.14 in our proposal and
0.29±13with the one byWeiss. The different performances of
all the algorithms between both datasets may be due to the fact
that lesion volume being different.

Testing dataset

Using the previous parameter configuration, we ran our tool
over the 23MS patients of the testing dataset. The results were
submitted to the MICCAI MS Challenge 2008, which pro-
vides an automatic evaluation of the segmentation, allowing
a comparison with other participants. In Table 5, we show the
average TPR, FPR, and overall score of the approaches of [13,
27] and our tool. Our results are slightly lower in terms of

Fig. 6 Qualitative comparison obtained between the GT and
performance of our proposal using 1.5-T data from Clínica Girona. The
first row of each case shows the original FLAIR image, while the second

row shows the automatic segmentation results (green=TP, red=FP, and
yellow=FN)

Table 6 DSC, TPR, and PPV mean results (%) using the 1.5-T dataset

α λts λnb DSC TPR PPV

First iteration 3 0.6 0.7 41 32 84

Second iteration 2 0.6 0.6 43 51 79

One iteration 2 0.6 0.55 43 51 79

The first row is the first iteration when maximizing the PPV, second row
is the result after the second iteration, and the third row is the best result
when assuming the same PPV result from the second iteration
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TPR, while the improvement in terms of FPR with respect to
the other approaches is clearly evident, with a better overall
score (82.344). At the time of submission, our overall score
was the first that used an unsupervised lesion detection
approach.

1.5-T dataset

Images (1.5 T) are the most widely used clinically [20]. There-
fore, we included a dataset of 14 MS patients who were ac-
quired at 1.5 T in the evaluation of our segmentation tool.
Notice, that in this dataset, we have three cases with a lesion
load of 16, 21, and 68 ml.

Due to the low number of patients, we ran a non-exhaustive
cross-validation scheme. We divided the database into four
random groups (two of four patients and two of three patients)
using only one set at each time for training, and the remaining
ones for testing. Following the same strategy used in the pre-
vious datasets, we observed that the best configuration was
obtained when setting a conservative first iteration (α=3, λts=
0.6, λnb=0.7) and a more permissive configuration for the
second iteration (α=2, λts=0.6, λnb=0.5, providing a similar
performance within ranges of λ ts = [0.40–0.80] and
λnb=[0.55–0.65]). The comparison of different iterations is
illustrated in Table 6, where no improvement is appreciable
with the second iteration when maintaining the same PPV.

The quantitative evaluation in terms of DSC, TPR, and
PPV is illustrated in the last three boxplots of Fig. 3. Within
this dataset, all measures increased compared with the 3-T
measures (mean DSC of 0.43±0.14, mean TPR of 0.51±
0.17, and mean PPVof 0.79±0.19). Furthermore, the boxplots
were more compressed, indicating that the obtained results for
those 14 patients were consistent independently of its lesion
load.

A qualitative evaluation is also illustrated in Fig. 6, where
we selected two extreme cases. Although the FP detections
have increased, quantitative results remain high due to the
high number of TPs detected. Regarding the volume correla-
tion, Pearson’s coefficient for this dataset was 0.99 with a
significant p value <<0.01 (see Fig. 5c), obtaining a very good
linear correlation in terms of the lesion volume.

Discussion

We have developed an automatic tool for segmenting MS
lesions using only T1w and FLAIR images. We used T1w
images to obtain brain tissue segmentation that is subsequent-
ly used to find the GM distribution in FLAIR images and
obtain the lesion mask as hyperintense outlier voxels of this
distribution. To improve the performance, the tool allows the
application of this threshold in two steps: first, in a conserva-
tive way to avoid a large number of FPs; and second, in a less

restrictive way, with the aim to increase the TP detections.
This simple iterative strategy increases the performance
of the tool specifically for 3-T images and for challenging
images with artifacts and abnormal intensities. By con-
trast, we cannot prove that same behavior in the 1.5-T
dataset. This cause may be due to the small number of
patients in this dataset.

In this work, we have presented results evaluated in three
different datasets, analyzing more than 100 patients in total.
They were acquired using different scanners; thus, different
protocols and different resolutions were tested. The variability
of the data and the obtained results in all of the datasets con-
firmed the robustness of our proposal. The general trend of the
study shows an improvement in the FP reduction over the
current state-of-the-art works, maintaining similar TPR in
both the detection and segmentation accuracy. Furthermore,
the rates in terms of FP detection present a regular perfor-
mance in all cases. In terms of DSC, we believe that the lower
values observed in the 3-T dataset may be a bias of the DSC
measure because in those cases with an almost imperceptible
lesion load, small voxel-wise errors have more influence into
the DSC computation than in cases with a higher lesion load.
Because the patients of this database have CIS, which may be
early-MS but they have not been yet diagnosed, they present
with a low lesion volume. Notably, some patients were anno-
tated in FLAIR and others in PDw images. In the 3-T dataset,
the tool was optimized with FLAIR annotations because the
tool uses FLAIR images for the lesion segmentation, resulting
in better lesion volume correlation with FLAIR annotation
masks and oversegmentation when evaluated with PDw
masks (see Fig. 5).

We want to remark that maintaining the two λ parameters
with default values at λts=0.6 and λnb=0.6 for all of the ana-
lyzed datasets and two iterations (therefore without a specific
optimization per dataset) also provides very similar results.
Instead, the α parameter has a strong influence on the perfor-
mance of our tool, i.e., the more permissive it is, the more
restrictive the two λ parameters must be. Therefore, the α
parameter configuration plays a very important role and must
be set for each scanner. Indeed, in an ideal configuration, λts
could be avoided because all of the hyperintensities will be
labeled as WM tissue by the SPM8/12 tissue segmentation.
The MICCAI MS Challenge 2008 dataset presented images
with a challenging bias and poor quality in some areas; there-
fore, λts had to be fixed accurately enough to reduce the num-
ber of artifacts misclassified as lesions.

Our tool is publicly available as an SPM8/12 extension
toolbox, being easily adaptable and with a default configura-
tion to be used straightaway. However, limitations in the per-
formance of the tool can be found if different tools than the
proposed here are used in the pre-processing steps. We rec-
ommend strictly following the pipeline presented in this work
to maximize the performance of the tool.
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