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Abstract. In an ongoing effort to assist radiologists in detecting breast cancer early, this paper focuses on breast
characterisation according to internal tissue characteristics. This is an important feature because it has been demon-
strated that women with dense breasts are more likely to suffer breast cancer, and also, the performance of automatic
mass detection methods decreases in dense breasts. The strategy of our proposal firstly identifies regions with similar
grey-level by using a clustering strategy. Subsequently, texture descriptors are extracted from each cluster by using
Local Binary Patterns and Co-occurrence Matrices, and finally used to train a classifier. Results obtained from the
complete MIAS database and using a leave-one-out strategy show a correct classification of 78% when compared to
expert assessment.

1 Introduction

Mammographic Computer Aided Diagnosis (CAD) systems are being developed to assist radiologists in the evaluation
of mammographic images [1]. However, recent studies have shown that CAD performance decreases as the density of
the breast increases, either decreasing the sensitivity [2] (the accuracy in which the lesions are detected) or decreasing
the specificity [3] (increasing the number of regions being normal tissue but marked by the automatic systems as
suspicious lesions). In addition, it is well-known that there is a strong positive correlation between breast parenchymal
density in mammograms and the risk to develop breast cancer [4]. Therefore, as Taylor [5] suggested, the development
of automatic methods for classification of breast tissue are justified by, at least, two factors:

• To permit a better use of the time and skills of expert radiologists by allowing difficult mammograms to be
examined by the most experienced readers.

• To increase the scope for CAD of abnormalities by concentrating on the easier (fatty) mammograms.

Classification in mammographic risk assessment can be based on a number of categories which might not describe the
same mammographic features [6]. However, the American College of Radiology Breast Imaging Reporting and Data
System (BIRADS) [7] is becoming a standard on the assessment of mammographic images and uses four categories
for density evaluation:

• BIRADS I: the breast is almost entirely fatty,

• BIRADS II: there is some fibro-glandular tissue,

• BIRADS III: the breast is heterogeneously dense,

• BIRADS IV: the breast is extremely dense.

Figure 1 shows example mammograms of each class (the mammograms are extracted from the MIAS database [8]).
Note how the internal density of the breasts increases from BIRADS I (left) to BIRADS IV (right). It should be noted
that besides density these BIRADS classes also included patterns that can be described as various textures. As such, it
seems appropriate to include both aspects in an automatic classification approach.

Although BIRADS is becoming the radiologic standard, it has not been commonly used in the evaluation of automatic
breast density classification approaches. Exceptions to this are the works of Bovis and Singh [9], Petroudi et al. [10],
and our previous work [11–13]. Bovis and Singh [9] extracted features from the global breast and used a combination
of classifiers for training and testing the system. Petroudi et al. [10] used textons to obtain a visual dictionary for
breast classification. This work was extended in [12] adding also SIFT features, although we found that textons
outperformed them. The strategy we used here is similar to the work presented in [11, 13], which in turn follows ideas
from Bovis and Singh [9] and more straightforward compared to Petroudi et al. [10] and Bosch et al. [12]. We used
the Fuzzy C-Means [14] for clustering the pixels with similar grey-level values into two classes and, subsequently, a
set of features derived from co-occurrence matrices was extracted from each cluster. In [11] the used classifier was a
Bayesian combination of kNN and a decision tree. Here, we use two more stable clustering algorithms for grouping
the tissue with similar grey-level. In addition to using texture features extracted from the co-occurrence matrices, we
also propose to use the Local Binary Patterns [15] for extracting the texture information. To our knowledge this is the
first attempt to use LBP in the mammographic field analysis.
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(a) (b) (c) (d)
Figure 1. Example mammograms, where the breast density increases from (a) BIRADS I to (d) BIRADS IV.

2 Clustering the tissue with similar appearance

As a first step, all mammograms are pre-processed to identify the breast region. Hence, the background, labels, and
pectoral muscle are removed from the image. We used a previous developed approach [16] which results in a minor
loss of skin-line pixels in the breast area, but those pixels are deemed not to be relevant for tissue estimation and the
relative number of potentially affected pixels is small.

Subsequently, using a clustering algorithm, the pixels with similar grey-level values are grouped together. We use
a clustering algorithm in order to obtain only two clusters of pixels, representing fatty tissue (the cluster with lower
mean intensity) and dense tissue (the cluster with higher mean intensity). In previous works we showed that the Fuzzy
C-Means algorithm outperforms the results obtained using other segmentation strategies [13]. In this work we want
to compare it with two alternative clustering algorithms, which are the Normalised Cuts [17] and the Mean Shift [18]
algorithms. All these approaches are summarised below:

• Fuzzy C-Means clustering allows each pattern of the image to be associated with every cluster using a fuzzy
membership function. In our implementation, the function minimised by the algorithm is defined by:

e2(Ξ, U) =
N∑

n=1

T∑

t=1

unt||pn − ct||2 (1)

where Ξ is the partition of the image, U is the membership matrix: unt represents the membership of pattern

pn to belong to cluster t, which is centred at ct =
∑ N

n=1 untpn∑ N
n=1 unt

, N is the number of patterns in the whole image

(i.e. the number of pixels), and T the number of clusters, which has to be known a priori. Instead of randomly
initialising the algorithm, the two cluster centres were initialised with the grey-level values that represent 15%
and 85% of the accumulative histogram of the mammogram pixels, respectively representing fatty and dense
tissue.

• The Normalised Cuts algorithm [17] deals with segmentation as a graph partitioning problem, where each node
represents a pixel and the edges the pixel neighbourhood. Given a similarity measure between each pair of points
in the set, it tries to group together points having large affinity between them. Namely, the algorithm consists
in four steps: 1. Given an image build a weighted graph and set the weight (w) on the edge connecting two
nodes to be a measure of their similarity. 2. Solve (D − W )x = λDx as an eigen decomposition problem,
where D is a N × N diagonal matrix with d(i) =

∑
j w(i, j). 3. Use the eigenvector with the second smallest

eigenvalue to bipartition the graph. 4. Decide if the current partition should be subdivided and recursively divide
the segmented parts if necessary. Note that as we only need two clusters, this last step is not necessary.

• The Mean Shift algorithm [18] is a robust, non-parametric density estimation based clustering approach for
image segmentation. It assumes that the feature space can be regarded as an empirical probability density func-
tion where dense regions correspond to the modes of the unknown density. A two-step kernel-based iterative
procedure is used for the localisation of the modes. First, the mean shift vector m is computed as:

m(x) =
∑n

i=1 xig(||x−xi

h ||2)
∑n

i=1 g(||x−xi

h ||2) − x (2)

where x is the actual mean, xi all the points in the kernel, h the bandwidth (the size of the kernel), and g is the
profile of the used kernel (we used a flat kernel). And secondly, the centre of the kernel is translated by m(x).
Both steps are repeated until convergence.
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3 Characterising the breast tissue

Once the pixels with the same grey-level have been grouped in the fatty and dense clusters, we extract a set of features
from both regions, and a feature vector is constructed by concatenating the fatty and dense features. In particular, we
test in this paper the use of Local Binary Patterns (LBP) [15] and the use of features extracted from co-occurrence
matrices [19].

The LBP operator labels the pixels of an image by thresholding the neighbourhood of each pixel with the centre value
and considering the result of this thresholding as a binary number. When all the image pixels have been labeled with
the corresponding LBP codes, the histogram of the labels is computed and used as a texture descriptor. However, this
representation is not directly applicable to our work, because we need to characterise the clusters instead of the full
image. Thus, we slightly modify the LBP in two different ways. Firstly, those pixels with a neighbourhood belonging
to both clusters are not considered when extracting the texture. And secondly, instead of extracting one histogram from
each mammogram, we extract two histograms per mammogram: one for the fatty cluster and the other one for the
dense cluster. Hence, the concatenation of both histograms is taken as the full description of a mammogram.

Co-occurrence matrices are essentially two-dimensional histograms of the occurrence of pairs of gray-levels for a given
displacement vector. Formally, the co-occurrence of gray-levels can be specified as a matrix of relative frequencies Pij ,
in which two pixels separated by a distance d and angle θ have gray-levels i and j. The full co-occurrence matrices are
not generally used as features (mainly due to their high dimensionality and potential sparseness), but instead a large
number of features derived from such matrices have been proposed [19].

4 Classifying the features

Once the features are extracted, a classifier is trained and used in a posterior step to classify new mammograms. In
this paper we test the use of four different classifiers [20]: kNN in combination with SFS feature selection, Fisher
discriminant analysis using a linear discriminant feature selection algorithm, C4.5 decision tree classifier, and support
vector machine.

5 Results

We test our approach using all 322 mammograms of the MIAS database [8], classified in BIRADS categories using
the majority opinion of three experts (in the 12 cases where there was complete disagreement, the intermediate class
was used). The results are obtained using a leave-one-woman-out strategy, where a query mammogram is tested by a
classifier trained on the rest of the mammograms belonging to different women, and this procedure is repeated until all
the mammograms have been used as a query image.

In these experiments we tested different parameters for LBP (we refer to the work of Ojala et al. [15] for details),
including the mapping (uniform, rotation-invariant, and uniform rotation-invariant), neighbourhood (4, 8, and 16),
and distance (1,2,4). In what follows we used the best results experimentally obtained, which were the ones using the
uniform rotation-invariant mapping and 8-neighbourhood with distances 1 and 2, and 16-neighbourhood with distances
1 and 4. The complete size of the used descriptor was 112. We also tested different parameters for the co-occurrence
matrices. In this paper we use four different directions: 0◦, 45◦, 90◦, and 135◦, and three distances equal to 1, 5,
and 9 pixels. Note that these values were empirically determined in our experiments and are related to the scale
of the texture features found in mammographic images. For each co-occurrence matrix the following features were
used: contrast, energy, entropy, correlation, sum average, sum entropy, difference average, difference entropy, and
homogeneity features. As each of these features is extracted from each class, we deal with 216 co-occurrence features
in total.

5.1 Segmentation comparison

In this section we used the same parameters for LBP and the same classifier (kNN+SFS) while varying the segmentation
algorithm used for segmenting the fatty and dense regions. This allows us to compare how the segmentation strategy
modifies the final results.

Table 1 shows the results obtained in each case, obtaining 65%, 78%, 73%, and 77% correct classification when no
segmentation, Fuzzy C-Means, Normalised Cuts, and Mean Shift segmentation algorithms were used respectively.
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Note that the best performances are obtained when using the Fuzzy C-Means algorithm and the Mean Shift, while
Normalised Cuts obtained intermediate results. The no segmentation strategy provided the worst results. This shows
the benefits of the proposed segmentation step for clustering the tissue with similar grey-level. On the other hand, the
low performance of the Normalised Cuts algorithm is due to the fact that the affinity function of this algorithm takes
the distance between pixels into account, which results in filled-in regions in the images. However, in this not the
aim of our work, because usually there are some small clusters of dense tissue inside large regions of fatty tissue, and
viceversa. These regions are effectively detected using the Fuzzy C-Means and the Mean Shift algorithms.

Automatic
B-I B-II B-III B-IV

M
an

ua
l B-I 71 13 1 2

B-II 14 70 17 2
B-III 4 24 57 10
B-IV 1 7 17 12

Automatic
B-I B-II B-III B-IV

73 13 0 1
7 77 17 2
0 14 75 6
1 1 9 26

Automatic
B-I B-II B-III B-IV

70 13 4 0
9 70 21 3
2 16 69 8
1 4 6 26

Automatic
B-I B-II B-III B-IV

75 6 4 2
8 83 10 2
0 18 70 7
1 2 14 20

(a) (b) (c) (d)
Table 1. Confusion matrices obtained when (a) no segmentation, (b) Fuzzy C-Means, (c) Normalised Cuts, and (d)
Mean Shift were used in the segmentation of fatty and dense tissue. B-I stands for BIRADS I, etc.

5.2 Features comparison

The aim of this section is to demonstrate the usefulness of computing texture information. Thus, the Fuzzy C-Means is
used as a segmentation strategy, kNN+SFS as the classifier, and we compare the results obtained using LBP with those
obtained using co-occurrence matrices. Table 2 shows the confusion matrices for both cases, obtaining 79% correct
classification when using features derived from co-occurrence matrices and 78% for LBP. Note that co-occurrence
matrices discriminate better low dense breasts, while Local Binary Patterns performs better the discrimination in dense
breasts. The difference between these two results is not significant and, in fact, these results can well be influenced by
the different dimensionality of the two set of features and to evaluate this is part of our future research.

Automatic
B-I B-II B-III B-IV

M
an

ua
l B-I 75 8 1 3

B-II 7 77 15 4
B-III 1 10 79 5
B-IV 3 3 7 24

Automatic
B-I B-II B-III B-IV

73 13 0 1
7 77 17 2
0 14 75 6
1 1 9 26

(a) (b)
Table 2. Confusion matrices obtained when (a) using co-occurrence matrices and (b) using Local Binary Patterns for
texture extraction.

5.3 Classifiers comparison

Finally, we tested here the use of different classifiers. Hence, the same segmentation algorithm is used (the Fuzzy
C-Means) and the same set of LBP features as it allows obtaining similar results with lower computational cost.

Table 3 shows the confusion matrices for kNN with SFS, linear discriminant analysis, C4.5 decision tree, and support
vector machine with a polynomial kernel, obtaining respectively, 78%, 65%, 68%, and 65% correct classification. The
high performance of the kNN+SFS algorithm compared to the other algorithms shows the difficulty of the problem,
being hard to find a real boundary separating the four classes (for the SVM we used a 10-fold cross-validation instead
of the leave-one-out to avoid overfitting). The unexpected poor performance of SVM is an aspect which will need
further investigation.

Automatic
B-I B-II B-III B-IV

M
an

ua
l B-I 73 13 0 1

B-II 7 77 17 2
B-III 0 14 75 6
B-IV 1 1 9 26

Automatic
B-I B-II B-III B-IV

78 9 0 0
15 59 28 1
0 31 54 10
2 2 15 18

Automatic
B-I B-II B-III B-IV

74 10 1 2
14 65 22 2
2 29 56 8
2 2 8 25

Automatic
B-I B-II B-III B-IV

77 9 0 1
16 55 31 1
0 35 50 10
1 4 14 18

(a) (b) (c) (d)
Table 3. Confusion matrices obtained when using (a) kNN classifier (k=3), (b) Fisher Discriminant Analysis, (c) C4.5
Decision Tree, and (d) Support Vector Machine.
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6 Conclusions

In this paper we have quantitatively compared the use of Fuzzy C-Means, Normalised Cuts, and Mean Shift for group-
ing the tissue with similar grey-level, as a first step of a full strategy for classifying the breasts according their internal
density. We have found that, due to the internal nature of the algorithm (the use of the distance between pixels into
the affinity function), the performance of the Normalised Cuts is lower compared to the use of both other algorithms.
On the other hand, Mean Shift and Fuzzy C-Means obtained similar performance, around 78% correct classification.
We consider these results in-line with the expected results, because when comparing the agreement between each
individual expert annotations and the consensus opinion we obtained 78%, 89%, and 72% agreement.

In addition, we effectively tested the use of Local Binary Patterns and co-occurrence matrices for describing the breast
tissue textural information. Results obtained from the complete MIAS database and using a leave-one-woman-out
strategy show that LBP and co-occurrence matrices features provide similar overall results, although LBP performs
better in dense breasts while co-occurrence matrices in fatty breasts. Future work will concentrate on further evaluation
of variation in these features.
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