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a b s t r a c t 

Over the last few years, the increasing interest in brain tissue volume measurements on clinical settings 

has led to the development of a wide number of automated tissue segmentation methods. However, 

white matter lesions are known to reduce the performance of automated tissue segmentation methods, 

which requires manual annotation of the lesions and refilling them before segmentation, which is tedious 

and time-consuming. Here, we propose a new, fully automated T1-w/FLAIR tissue segmentation approach 

designed to deal with images in the presence of WM lesions. This approach integrates a robust partial 

volume tissue segmentation with WM outlier rejection and filling, combining intensity and probabilistic 

and morphological prior maps. We evaluate the performance of this method on the MRBrainS13 tissue 

segmentation challenge database, which contains images with vascular WM lesions, and also on a 

set of Multiple Sclerosis (MS) patient images. On both databases, we validate the performance of our 

method with other state-of-the-art techniques. On the MRBrainS13 data, the presented approach was 

at the time of submission the best ranked unsupervised intensity model method of the challenge (7th 

position) and clearly outperformed the other unsupervised pipelines such as FAST and SPM12 . On MS 

data, the differences in tissue segmentation between the images segmented with our method and 

the same images where manual expert annotations were used to refill lesions on T1-w images before 

segmentation were lower or similar to the best state-of-the-art pipeline incorporating automated lesion 

segmentation and filling. Our results show that the proposed pipeline achieved very competitive results 

on both vascular and MS lesions. A public version of this approach is available to download for the 

neuro-imaging community. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Brain tissue volume based on Magnetic Resonance Imaging

(MRI) is increasingly being used in clinical settings to assess brain

volume in different neurological diseases such as Multiple Sclerosis

(MS) ( Giorgio and De Stefano, 2013 ). In MS, several studies have

analyzed the histopathological changes in patients with respect

to the progress of the disease, showing that the percentage of

change in brain volume tends to correlate with worsening condi-

tions ( Pérez-Miralles et al., 2013; Sormani et al., 2014 ). However,

manual segmentation of brain tissue is both challenging and time-

consuming because of the large number of MRI slices for each pa-
∗ Corresponding author. Fax: + 34 972 418976. 
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ient that make up the three-dimensional information, and the in-

erent intra/inter-observer variability of manually segmented scans

 Cabezas et al., 2011 ). The development of automated MS tissue

egmentation methods that can segment large quantities of MRI

ata, do not suffer from intra/inter-observer variability and specific

hanges of the brain such as MS associated lesions and brain

trophy, is still an active research field ( Klauschen et al., 2009;

e Bresser et al., 2011; Valverde et al., 2015a; Mendrik et al., 2015 ).

There are various brain tissue segmentation methods that have

een used in MS so far. General purpose intensity based methods

ombining intensity and a priori statistical anatomic informa-

ion such as FAST ( Zhang et al., 2001 ) or SPM ( Ashburner and

riston, 2005 ) are widely used nowadays. However, tissue abnor-

alities found in MS image patients such as White Matter (WM)

esions reduce the accuracy of these techniques ( Chard et al.,

010; Battaglini et al., 2012 ). This causes an overestimation of

http://dx.doi.org/10.1016/j.media.2016.08.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2016.08.014&domain=pdf
mailto:svalverde@eia.udg.edu
http://dx.doi.org/10.1016/j.media.2016.08.014
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1 http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009 . 
2 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg . 
ray Matter (GM) tissue not only by the effect of hypointense

M lesion voxels classified as GM, but also by the effect of these

esion voxels on normal-appearing tissue ( Valverde et al., 2015b ).

n these cases, methods that in-paint lesions on the T1-weighed

mage (T1-w) may be used to reduce the effects of the WM lesions

n tissue segmentation ( Chard et al., 2010; Battaglini et al., 2012;

alverde et al., 2014 ). These methods refill WM lesions with signal

ntensities of the normal-appearing WM before tissue segmen-

ation However, MS lesions have to be delineated manually first,

hich may be a tedious, challenging and time-consuming task

epending on the characteristics of the image ( Lladó et al., 2012 ). 

Regarding this issue, a wide number of automated lesion

egmentation techniques have been proposed during the last years

 Lladó et al., 2012; García-Lorenzo et al., 2013 ). Most of them

ntegrate other imaging modalities such as T2-weighted, Proton

ensity (PD) and Fluid Attenuated Inverse Recovery (FLAIR), as

hese modalities present a high contrast between tissue and

esions ( Lladó et al., 2012 ). More recent techniques include su-

ervised learning classifiers based on a spatial decision forest

 Geremia et al., 2011 ), statistical methods ( Sweeney et al., 2013 ),

atch-based models ( Guizard et al., 2015 ) or adaptive dictionary

earning methods ( Deshpande et al., 2015 ). Furthermore, differ-

nt unsupervised learning techniques make use of probabilistic

odels to separate WM lesions from normal-appearing tissue by

onsidering lesions as an outlier class ( Harmouche et al., 2015;

omas-Fernandez and Warfield, 2015; Jain et al., 2015 ). Also,

ther unsupervised techniques make use of the signal intensity

f lesions on FLAIR to threshold regions with similar intensity to

M lesions. These methods incorporate afterwards various post-

rocessing steps to automatically classify these regions as either

M lesions or normal-appearing tissue ( Schmidt et al., 2012;

oura et al., 2015 ). In contrast, there are fewer studies that have

ocused on tissue segmentation of MS images containing lesions.

hose include non-supervised techniques combining intensity,

natomical and morphological maps ( Nakamura and Fisher, 2009;

hiee et al., 2010 ), or supervised methods such as statistical clas-

ifiers ( Datta and Narayana, 2013 ), atlas based nearest-neighbor

ethods ( De Boer et al., 2009 ) and sparse dictionary learning

pproaches ( Roy et al., 2015 ). 

The increasing amount of published studies regarding auto-

ated WM lesion segmentation may be due to the particular need

f a quantitative analysis of focal MS lesions in individual and

emporal studies ( Lladó et al., 2012 ). Recent studies in MS ( Chard

t al., 2010; Gelineau-Morel et al., 2012; Ceccarelli et al., 2012;

érez-Miralles et al., 2013; Popescu et al., 2014; Magon et al.,

014; Valverde et al., 2015b ) indicate a certain tendency to the use

f widely validated segmentation tools such as Siena ( Smith et al.,

002 ), FAST ( Zhang et al., 2001 ) or SPM ( Ashburner and Fris-

on, 2005 ) in combination with automated lesion segmentation

nd/or lesion-filling approaches. However, their application in clin-

cal practice is still not generalized ( Giorgio and De Stefano, 2013 ).

In this paper, we present the Multiple Sclerosis SEGmentation

ipeline ( MSSEG ). This pipeline is a multi-channel method de-

igned to segment GM, WM and cerebro-spinal fluid (CSF) tissues

n images of MS patients. This method was motivated by our pre-

ious analysis of the effects of tissue segmentation on MS images

 Valverde et al., 2015b ), the role of lesion-filling ( Valverde et al.,

014 ), and its combination with automated lesion segmentation

n tissue segmentation ( Valverde et al., 2015b ). Similar to the

ork of Nakamura and Fisher (2009) and Shiee et al. (2010) , our

pproach uses a combination of intensity and anatomical and mor-

hological prior maps to guide the tissue segmentation. However,

ere the tissue segmentation is based on a robust, partial volume

egmentation where WM outliers are estimated and refilled before

he segmentation using a multi-channel post-processing algorithm.

his post-processing algorithm was partially inspired by the MS
esion segmentation algorithm proposed by Roura et al. (2015) .

evertheless, here we integrate multi-channel support, partial

olume segmentation, spatial context, and prior anatomical and

orphological atlases. We perform a quantitative and qualitative

valuation of our approach with general and MS data: we first

valuate the accuracy when using the MRBrainS13 challenge

atabase, which is composed of images containing vascular WM

esions and includes manual tissue annotations, allowing to com-

are the performance of our method with different state-of-the-art

echniques that also competed in the challenge. We also evaluate

he performance of our proposal on a set of MS patient images

ith different lesion burdens. On this data, we analyze the differ-

nces in the performance of our approach when using only T1-w

r when using both T1-w and FLAIR modalities. We compare it

ith other state of the art pipelines that include automated lesion

egmentation and filling processes before tissue segmentation.

he MSSEG method is currently available for downloading at our

esearch group webpage ( http://atc.udg.edu/nic/msseg ). 

. Methods 

The proposed brain tissue segmentation method is composed

f five different steps: registration of a statistical atlas into the

1-w space ( Section 2.2 ), tissue estimation ( Section 2.3 ), detection

nd re-assignation of lesion candidates to T1-w ( Section 2.4 ),

issue re-estimation, and partial volume re-assignation of tissue

aps into CSF, GM and WM ( Section 2.5 ). The overall schema of

he pipeline is depicted in Fig. 1 . We describe each step in detail

n the following subsections. 

.1. Notation 

To describe our approach, we employ the following notations.

 and F denote the input images T1-w and FLAIR, respec-

ively. P c denotes a probabilistic tissue atlas of a particular class

 = { cs f, . . . , wm } . S st denotes a morphological brain atlas of a

articular parcellated structure st . For each of the above images,

 j , F j , P c 
j 

and S st 
j 

denote an observation at a voxel j ∈ �, � being

he image domain. 

.2. Tissue prior registration 

The MNI-ICBM 152 2009a Nonlinear T1-w average structural

emplate image 1 was first affine registered to the native T1-w

mage space. Affine registration was based on a block matching

pproach ( Ourselin et al., 2002 ), followed by a non-rigid regis-

ration using a fast free-form deformation method ( Modat et al.,

010 ). Nifty Reg package 2 was used in both registration processes.

ransformation parameters obtained were then used to resample

he available MNI CSF, GM and WM tissue priors to the T1-w

pace. The resampled probabilistic tissue maps P csf , P gm and P wm 

ere extended to build intermediate partial volumes P csfgm as ( P csf 

0.4 ∩ P gm ≥ 0.4) and P gmwm as ( P gm ≥ 0.4 ∩ P wm ≥ 0.4) and

aking the mean value of the two input atlases. 

Moreover, a brain structural atlas of the cortical GM ( S CORTEX ),

entricles ( S VENT ), basal ganglia ( S BASAL ) and brainstem ( S BRAINSTEM )

as also resampled to the native T1-w space with the same trans-

ormation parameters used for the tissue probability maps. The

nitial morphological atlas had been built a priori by automatically

egmenting the MNI-ICBM 152 T1-w image into each of these

rain structures using the hierarchical algorithm proposed by

http://atc.udg.edu/nic/msseg
http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
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Fig. 1. The proposed method MSSEG consists of five different steps: (1) Three statistical a-priori tissue atlases (CSF, GM and WM) and a brain structure atlas are first registered 

into the patient space ( Section 2.2 ) and then used to (2) guide the tissue segmentation of the input T1-w image ( Section 2.3 ). (3) Then, the same output segmentation is 

employed to detect and refill WM outliers as normal-appearing WM based on the registered a-priori and hyper-intense FLAIR maps if available ( Section 2.4 ). The voxel 

intensities of candidate regions on T1-w are then refilled with normal-appearance WM intensities and (4) the tissue is re-estimated again using the process described in 

( Section 2.3 ). (5) Finally, intermediate volume maps are reassigned into CSF, GM and WM using both neighbor and spatial prior information ( Section 2.5 ). 
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Algorithm 1 Tissue estimation. 

1: Obtain the initial estimates of the centroids for each class k = 

{ 1 , . . . , C} : 
v k = 

1 

n 

∑ 

j∈ �
(T k j | P k j ≥ 0 . 5) n = | (T k j | P k j ≥ 0 . 5) | 

2: Compute the membership functions u jk 
3: Compute the new centroids: ∑ 

j∈ � u 
q 

jk 
T j 
Pohl et al. (2007) on EMSegmenter, 3 and manually adjusted by an

expert technician afterwards. 

2.3. Tissue estimation 

Brain tissue was estimated following a robust fuzzy clustering

approach similar to the one proposed in Pham (2001) , as this

method provides a fairly robust behavior including spatial context

information, applicability to multichannel data, the ability to

model uncertainty within the data and a straightforward imple-

mentation ( Pham, 2001 ). Similar to previous approaches ( Shattuck

et al., 2001; Bach-Cuadra et al., 2005 ), additional mixed-based

classes (CSFGM and GMWM) were added between adjacent pure

classes GM, WM and CSF in order to encode the distribution of

partial volume voxels, i.e. voxels that contain not only a single

tissue but rather a mixture of two or more adjacent tissues types.

The spatial penalizing weights were also extended by incorpo-

rating the probabilistic tissue priors in the segmentation process,

similar to Shiee et al. (2010) . Hence, we modified the objective

function proposed by Pham (2001) in order to incorporate also

prior-atlas information as follows: 

J MSSEG = 

∑ 

j∈ �

C ∑ 

k =1 

u 

q 

jk 
|| T j − v k || 2 + 

β

2 

∑ 

j∈ �

C ∑ 

k =1 

u 

q 

jk 

∑ 

l∈ N w 
j 

C ∑ 

m ∈ M k 

u 

q 

lm 

+ 

γ

2 

∑ 

j∈ �

C ∑ 

k =1 

u 

q 

jk 

∑ 

l∈ N w 
j 

C ∑ 

m ∈ M k 

P m 

l (1)

where { k ∈ C | C = { cs f, cs f gm, gm, gmwm, wm }} , u jk denotes the

membership probability of each voxel j for a particular class, v k are

the cluster signal intensity centers of each class, N 

w 

j 
is the set of

two-dimensional (2D) (2 w + 1) 2 or three-dimensional (3D) (2 w +
1) 3 neighbors centered on the voxel j , and M k = { 1 , . . . , C}\{ k } .
This approach depends on four parameters to adjust the member-

ship functions: the weighting parameter q that controls the degree

of fuzziness, the spatial constraint parameter β that controls the
3 https://www.slicer.org/slicerWiki/index.php/EMSegmenter-Overview . 
mount of neighbor information added, the prior belief parameter

used to control the amount of prior atlas information about

ach tissue, and finally the window radius of neighbors w . 

Similar to the work of Pham (2001) , the objective function

as minimized using the iterative Algorithm 1 that evaluated the

entroids and membership functions that satisfy a zero gradient

ondition with respect to the objective. In our approach, we

lso adapted the initial formulation proposed by Pham (2001) to

ncorporate prior-atlas information. u jk satisfied the condition to

e at local minimum with respect to Eq. 1 when: 

Initial centroids v k were estimated for each class C by taking

he mean signal intensity of the voxels on the T1-w image with

rior-tissue probability P k 
j 

≥ 0 . 5 . The membership function u jk was

lso adapted to incorporate prior-atlas information and computed

s follows: 

 jk = 

(|| T j − v k || 2 + β
∑ 

l∈ N j 
∑ 

m ∈ M k 
u q 

lm 
+ γ

∑ 

l∈ N j 
∑ 

m ∈ M k 
P m 

l 
) −1 / (q −1) ∑ C 

i =1 ((|| T j − v i || 2 + β
∑ 

l∈ N j 
∑ 

m ∈ M i 
u q 

lm 
+ γ

∑ 

l∈ N j 
∑ 

m ∈ M k 
P m 

l 
) −1 / (q −1) 

(2)

The five class tissue segmentation mask SEG j was computed by

ssigning to each voxel the class with the maximum membership

s follows: 

EG j = arg max 
k 

u jk ∀ j ∈ � (3)
v k = ∑ 

j∈ � u 
q 

jk 

k = { 1 , . . . , C} 
4: Repeat steps 2 and 3 until convergence 

https://www.slicer.org/slicerWiki/index.php/EMSegmenter-Overview
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Fig. 2. Proposed algorithm to estimate and refill outlier candidate regions into T1- 

w. The algorithm takes the 5 class T1-w segmentation and the hyper-intensity map 

H FLAIR if available as inputs. Connected regions of voxels with similar intensities are 

filtered based on their spatial location probability in tissue and morphological prior 

atlases. Selected regions are then refilled in the original T1-w image. 
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The parameters q, γ and w can be tuned manually to increase

he performance of the method, but were set to default values

 = 2 , γ = 0 . 1 and w = 1 with 2D that worked well in the majority

f cases. In contrast, the β parameter depends on the brightness

f the image, the deviation of the signal intensities of voxel class

embers with respect to their centroid value, and image noise

 Pham, 2001 ). Hence, choosing a proper value for the β parameter

s important to obtain an optimal or near-optimal performance. In

ur implementation, the β parameter was automated by fitting a

unction of the optimal empirical selection of the parameter with

espect to different levels of noise. This particular function was

ncreasing the weight of β with images with high level of noise

y allowing more spatial constraints, reducing the effect of noise

n tissue segmentation. In contrast, β was very low with images

ith low level of noise. To do this, we iteratively estimated the

ub-optimal β parameter of 10 images of the Brainweb dataset 4 

hat included different noise level (1–9%) and ground-truth anno-

ations. For each image, we also computed the noise level using

he Fast Noise Variance method proposed by Immerkær (1996) .

hen, the correspondent β parameters and noise levels were used

o fit a polynomial function to interpolate the β parameter. For

ll the evaluated images in this paper, we have automatically

pproximated the β as a function B ( x ) of their noise level x as

 (x ) = 0 . 0 011 x 4 − 0 . 0 015 x 3 + 0 . 0 074 x 2 − 0 . 0 01 x + 0 . 05 . 

.4. WM outlier estimation and filling 

By adding the intermediate tissue classes CSFGM and GMWM,

M lesion regions tended to be entirely classified as a single

lass out of WM either as GMWM, GM or CSFGM. This allowed

s to detect lesion regions as WM outliers by analyzing all the

ocal regions not initially segmented as WM based on their prior

robability and spatial connection to WM. 

First, different binary segmentation masks M 

c were computed

or each of the classes c = { gmwm, gm, cs f gm } . For each mask,

ll 2D regions of connected components were computed using a

ood-fill algorithm with a 4-connected neighborhood. We define

he set of all 4-connected p regions given an input binary image

s follows: 

 

T 
p ← �(M 

c 
j , n ) , p = { 1 , . . . , | R 

T 
p |} 

here the operator � refers to the connected components function

nd n is the number of connected neighbors. 

Optionally, a map of hyperintense region candidates was com-

uted on the FLAIR image following the same strategy shown

n Roura et al. (2015) . The binary mask M 

GM was first used to

ompute the intensity distribution on the FLAIR image, where GM

s typically hyperintense with respect to CSF and WM, and WM

esions are considered hyperintense outliers to GM. The mean and

tandard deviation of the GM distribution was computed using

he full-width at half maximum (FWHM) of the main peak of a

enerated histogram. Then, an initial map of hyperintense regions

oxels, H 

FLAIR , was determined by thresholding the FLAIR image F

s follows: 

 

F LAIR 
j = 

{
1 if F j > μ + ασ
0 otherwise 

∀ j ∈ � (4)

here μ and σ were the mean and standard deviation respec-

ively, of the GM distribution as computed using the FWHM, and

was a weighting parameter that scaled the minimum signal

ntensity of outliers. The binary mask H 

FLAIR was then used to

roup the candidate voxels into connected regions using the same

ethod proposed before: 

 

F ← �(H 

F LAIR , n ) , t = { 1 , . . . , | R 

F |} 
t t 

4 http://brainweb.bic.mni.mcgill.ca/brainweb/ . 

a  

f  

r  
here n was set to 3D connected elements ( n = 6 ) in order to re-

uce the amount of 2D false positive regions such as hyperintense

ub-arachnoid tissue. 

Given the computed binary masks for each tissue M 

gmwm ,

 

gm and M 

csfgm , the map of hyperintense voxels on FLAIR H 

FLAIR ,

nd its connected components R F t , we used a two-step iter-

tive algorithm that first estimated the regions with a high

robability of belonging to WM and refilled them into normal-

ppearing WM afterwards following the approach proposed by

alverde et al. (2014) . Fig. 2 shows in detail each step of the

lgorithm. Regions overlapping cortical GM on the brain struc-

ure atlas S CORT EX 
s were only processed if a matched region was

lso hyperintense in FLAIR, in order to reduce the amount of

alse positive regions such as isolated cortical GM segmented

egions. Regions not touching cortical GM were filtered based

http://brainweb.bic.mni.mcgill.ca/brainweb/
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Fig. 3. Graphical explanation of the WM outlier algorithm for two different cases when only using T1-w (Case A) and when using T1-w and FLAIR (Case B). Given the 

initial 5-class tissue segmentation as explained in Section 2.3 , all candidate regions were estimated and refilled using the iterative algorithm proposed in Section 2.4 . When 

only using T1-w (Case A), candidate regions were processed when they did not overlap with cortical GM in the brain structural atlas S (A1). For each of these regions, the 

probability of belonging to WM was computed based on the prior P wm atlas (A2), and these regions were refilled if the majority of the voxels had a probability of belonging 

to WM ≥ 50% (A3). In contrast, when using both T1-w and FLAIR (Case B), candidate regions that were not previously processed because of the overlap with cortical GM, 

were then evaluated if it also existed an overlap with respect to the FLAIR H FLAIR map (B2). The rest of the processes (B3 and B4) were similar to the ones of the case A. 
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on their prior probability of belonging to WM and their distance

to surrounding WM. Then, matched regions where half of their

surrounding neighbors were actually classified as GMWM or WM

were refilled in the T1-w image with normal appearing WM signal

intensities. Note that classes were visited from GMWM to CSFGM

in order to add new belief of the actual WM and use it to filter

the next region. R T p regions were computed in 2D in order to

reduce the impact of the registration differences between the

brain structural atlas and the T1-w image. By choosing R T p regions

in 2D, we limited the impact of the registration process to a single

slice, reducing the number of false negative estimated regions. 

If the FLAIR modality is not available, H 

FLAIR is automatically

set to zero, disabling the evaluation of R H regions and henceforth

forcing the method to evaluate the next T1 region R T p . If FLAIR is

used, all the regions that were discarded in the first part of the

algorithm or overlapped the cortex, were filtered according to their

spatial attributes in the FLAIR image. Each discarded region R T q in

the segmented mask SEG was matched with a particular region

in FLAIR R H t based on their overlap ( R H t | t = arg max t (| R H t ∩ R T q | ) ).
Then, matched regions where half of their surrounding neighbors

were actually classified as GMWM or WM were refilled in the

T1-w image with normal appearing WM signal intensities. Fig. 3

depicts a graphical schema of the different processes followed

by the WM outlier algorithm when using only T1-w and T1-w +
FLAIR, respectively. In all cases, we referred to the neighboring

voxels of a region N S as the neighbors with one voxel of distance

from the region’s boundaries. 

2.5. Partial volume maps 

Once the WM outliers were refilled in T1-w image as normal-

appearing WM, the resulting refilled image was used to seg-

ment the brain tissue following the same method described

in Section 2.3 . Afterwards, partial volume maps ( CSFGM ) and
 GMWM ) were reassigned to each of the three main classes CSF,

M and WM following a region-wise approach. 

Local 2D regions with similar intensities that were classified

s CSFGM and GMWM were estimated using the same connected

omponent algorithm described before. The structural brain atlas

 was then used to reassign regions where at least half of their

oxels overlapped with certain structures as follows: 

EG R p = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

CSF if 

( 

1 

| R p | 
∑ 

s ∈ R p 
S V ENT 

s 

) 

> 0 . 5 

GM if 

( 

1 

2 | R p | 
∑ 

s ∈ R p 
S CORT EX 

s + S BASAL 
s 

) 

> 0 . 5 

W M if 

( 

1 

| R p | 
∑ 

s ∈ R p 
S BRAINST EM 

s 

) 

> 0 . 5 

(5)

for all the regions p = { 1 , . . . , | R p |} . The voxels not reassigned

reviously were reclassified by adding them to the surrounding

ure class with the most similar intensity as follows: 

EG j = arg min 

c 

∣∣∣∣∣ T j −
1 

| N j | 
| N j | ∑ 

s =1 

(T s | SEG s = c) 

∣∣∣∣∣ (6)

or pure classes c = { cs f, gm, wm } and partial volume voxels

j = {∀ j ∈ � | SEG j = cs f gm ∪ gmwm } . The radius for neighbor

oxels was set to 6 in two dimensions. Fig. 4 depicts the partial

olume re-assignation process for one particular T1-w image. 

.6. Implementation details 

The proposed pipeline was entirely developed in MATLAB

v2014a, The Mathworks Inc, US), except for the registration

rocess that was run using the available NiftyReg package

 Ourselin et al., 2002; Modat et al., 2010 ). The method was con-

gured to run either in CPU or GPU. Experiments were carried
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Fig. 4. Partial volume assignment during tissue segmentation ( Section 2.5 ). A) Original T1-w image. B) Detailed view of the T1-w image. C) Tissue ground-truth with WM 

lesions highlighted in red. D) Initial 5 class tissue segmentation where csf, csfgm, gm, gmwm and wm tissues are depicted in blue, cyan, yellow, orange and red, respectively 

(see Section 2.3 ). E) Morphological brain tissue atlas with parcellated GM regions and ventricles. F) Partial volume csfgm and gmwm regions (depicted in green and blue, 

respectively). Previously estimated lesion candidates are depicted in red (see Section 2.4 ). 2D regions with half of their voxels overlapping with the morphological atlas are 

reassigned to the correspondent tissue. The rest of the voxels are reassigned to the neighboring pure class with the most similar signal intensity. G) Final tissue segmentation 

with partial tissue volume maps re-estimated as CSF (dark gray), GM (light gray) and WM (white). (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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ut on a GNU/Linux machine with a single Intel core i7 processor

t 3.4 Ghz (Intel Corp, US), and a NVIDIA K40 with 12GB of RAM

NVIDIA, US). The average execution time for the proposed method

ncluding registration and tissue segmentation was 8 min running

n the CPU core. Execution time on the GPU was approximately

 min, reducing the execution time on the CPU processor by four

imes. 

. Results 

.1. MRBrainS database 

.1.1. Data 

The available public MRBrainS 2013 database 5 consisted of 20

cans with varying degrees of brain atrophy and white matter

esions. These scans were acquired on a 3.0T Philips Achieva MR

canner at the University Medical Center Utrecht (The Nether-

ands) with the following sequences: 3D T1-w (TR: 7.9 ms, TE:

.5 ms), T1-Inverse Recovery (TR: 4416 ms, TE: 15 ms, and TI:

00 ms), and T2-weighted/FLAIR (TR: 11000 ms, TE: 125 ms, and

I: 2800 ms). Each of the scans was co-registered ( Klein et al.,

010 ) and intensity-corrected ( Ashburner and Friston, 2005 ) be-

ore releasing the data. The T1, T1-IR, and T2/FLAIR voxel size was

0.96 × 0.96 × 3.00 mm 

3 ) after registration ( Mendrik et al., 2015 ).

Three experts manually delineated each of the 20 scans into

SF, GM and WM and these annotations were used as the refer-

nce standard for the evaluation framework ( Mendrik et al., 2015 ).

xtended manual annotation containing various brain structures

nd white matter lesions for 5 scans were provided for training

hile the remaining 15 scans were blind and had to be skull-

tripped and segmented into CSF, GM and WM by participating

eams. 

.1.2. Evaluation: 

The segmentation results had to be submitted online for exter-

al evaluation based on the following scores for the CSF, GM and

M tissues ( c ): 
5 Available for downloading at: http://mrbrains13.isi.uu.nl/ . 

w

p

m

• Dice similarity coefficient ( DSC c ) ( Dice, 1945 ) between the man-

ual tissue segmentation ( GT C ) and the computed segmentation

( SEG C ) masks: 

DSC c = 

2 | SEG c ∩ GT c | 
| SEG c | + | GT c | × 100 (7) 

• The modified Hausdorff distance (95th percentile) 

( Huttenlocher et al., 1993 ) between the manual tissue seg-

mentation ( GT C ) points p ′ and the computed segmentation

points p in ( SEG C ) masks: 

h 

95 
c = max 

p∈ SEG c 
min 

p ′ ∈ GT c 
| p − p ′ | (8)

• The absolute difference in tissue volume ( AVD c ) between man-

ual tissue segmentation ( GT C ) and the computed segmentation

( SEG C ) masks: 

AV D c = 

∥∥∥∥ | SEG c | − | GT c | 
| GT c | 

∥∥∥∥ (9) 

In order to evaluate the performance of our method, we sub-

itted two different segmentation sets; one using only the T1-w

equences, and the other using both T1-w and FLAIR images. We

alidated the performance by comparing our scores with those of

ther submitted segmentation pipelines. 

.1.3. Experiment details 

The skull stripping of the input images was performed using a

imilar approach to other methods participating in the challenge

 Jog et al., 2013; Opbroek et al., 2013; Rajchl et al., 2015 ). The 5

raining images were non-rigidly registered to the image space

f each of the T1-w ( Modat et al., 2010 ), and the brainmask

as generated by a simple voting of the registered masks. After-

ards, each mask was refined in the T1-IR image by thresholding

yperintense voxels. 

All the parameters of our tissue segmentation method were

et to default values ( q = 2 , γ = 0 . 1 , w = 1 ). The β parameter

as computed automatically as described in Section 2.3 . The α
arameter that scaled the minimum signal intensity on the H 

F 

ask was set to α = 3 . 

http://mrbrains13.isi.uu.nl/
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Table 1 

Segmentation results on the 15 test images of the MRBrainS challenge. Mean 

DSC c , h 95 
c and AVD c scores for CSF, GM and WM tissue are shown for our 

proposed method when using only the T1-w modality ( MSSEG only T1 ) and 

when using the T1-w and FLAIR modalities ( MSSEG T1 + FLAIR ). The obtained 

values are compared with the best approach at the time of writing this paper 

( Stollenga and Byeon, 2015 ), and also with other unsupervised intensity mod- 

els techniques that also participated in the challenge such as FAST, SPM12 and 

VBM12 . 

DSC c 

Method CSF GM WM 

Best method 83.72 ± 2.63 84.82 ± 1.37 88.33 ± 0.89 

FAST only T1 69.95 ± 2.81 78.66 ± 2.24 85.98 ± 2.58 

SPM12 only T1 70.69 ± 3.75 80.34 ± 2.37 85.58 ± 1.73 

SPM12 T1 + FLAIR 74.03 ± 3.42 81.17 ± 2.24 86.03 ± 1.48 

SPM12 T1–iR 78.25 ± 3.78 79.41 ± 2.15 83.54 ± 2.14 

VBM12 74.56 ± 2.70 82.29 ± 1.49 87.95 ± 1.71 

MSSEG only T1 (T1–IR skull) 80.18 ± 2.67 82.06 ± 1.68 87.05 ± 1.46 

MSSEG T1 + FLAIR (T1–IR skull) 80.16 ± 2.67 82.20 ± 1.60 87.33 ± 1.35 

h 95 
c 

Method CSF GM WM 

Best method 2.14 ± 0.36 1.70 ± 0.01 2.08 ± 0.33 

FAST only T1 3.41 ± 0.25 4.35 ± 1.13 3.65 ± 0.85 

SPM12 only T1 5.34 ± 1.47 2.93 ± 0.25 3.06 ± 0.08 

SPM12 T1 + FLAIR 4.59 ± 0.61 2.90 ± 0.15 3.00 ± 0.07 

SPM12 T1–iR 4.01 ± 0.63 3.01 ± 0.29 3.60 ± 0.27 

VBM12 3.03 ± 0.14 3.20 ± 0.32 2.32 ± 0.42 

MSSEG only T1 (T1–IR skull) 2.81 ± 0.21 3.33 ± 0.21 2.91 ± 0.42 

MSSEG T1 + FLAIR (T1–IR skull) 2.81 ± 0.21 3.18 ± 0.15 2.88 ± 0.39 

AVD c 

Method CSF GM WM 

Best method 7.09 ± 4.01 6.77 ± 3.28 7.05 ± 5.22 

FAST only T1 11.83 ± 10.38 8.65 ± 6.34 11.47 ± 6.24 

SPM12 only T1 23.24 ± 16.04 6.95 ± 6.57 5.99 ± 3.95 

SPM12 T1 + FLAIR 10.07 ± 4.86 10.59 ± 8.34 5.21 ± 3.88 

SPM12 T1–iR 10.47 ± 5.69 7.23 ± 6.50 6.34 ± 4.61 

VBM12 6.80 ± 4.57 5.91 ± 3.91 6.06 ± 4.42 

MSSEG only T1 (T1–IR skull) 7.18 ± 3.33 6.15 ± 3.51 6.20 ± 5.45 

MSSEG T1 + FLAIR (T1–IR skull) 7.21 ± 3.31 5.99 ± 3.43 5.95 ± 5.44 
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3.1.4. Results 

Table 1 shows the mean DSC c , h 95 
c and AVD c scores obtained

by our proposed method. We compare our scores with other

non-supervised strategies that also participated in the challenge,

such as FAST, SPM12, or VBM12, 6 and also with respect to the

best ranked method proposed by Stollenga and Byeon (2015) .

The overall ranking of the methods also included the combined

brain (GM + WM) and intracranial (CSF + GM + WM) volumes,

which are not shown in the table for simplicity. 7 At the time of

submitting our results in the online application, our approach,

using both T1 and FLAIR ( MSSEG T1 + FLAIR ), was the best unsuper-

vised intensity model method in the challenge 7th position overall

31 participants), and its performance was very competitive in

comparison with several supervised methods that were explicitly

trained for the challenge. When using only the T1-w modality

( MSSEG only T1 ), our method was ranked in the 10th position, but

still clearly out-performed FAST (21th position), and SPM12 using

FLAIR + T1 (17th position), the T1-IR modality (18th position), and

the T1-w modality (20th position). 

Fig. 5 illustrates qualitatively the different steps performed by

our approach. After registering the probabilistic atlases into the

subject space ( Fig. 5 panels E–H), tissue was estimated from the

T1-w into 5 different classes ( Fig. 5 panel I). Then, WM outliers

were estimated in the T1-w image by analyzing all the regions not

initially segmented as WM with a high probability of belonging to

WM based on its spatial local probability and prior tissue infor-

mation (red regions depicted in Fig. 5 panel J). If FLAIR was also

provided, lesion candidates were analyzed as well based on their

signal intensity in the FLAIR image and their spatial local probabil-

ity of belonging to WM (green regions depicted in Fig. 5 panel J).

Afterwards, the lesion candidate regions were refilled in the T1-w

image with signal intensities similar to the WM, the refilled T1-w

image was re-estimated again and CSFGM and GMWM volumes

were reassigned to the three main classes ( Fig. 5 panels K and L). 

3.2. MS database 

3.2.1. Data 

This non-public database of images was composed of 24

images of clinically isolated syndrome (CIS) patients acquired

with a 3T Siemens MR scanner (Trio Tim, Siemens, Germany)

with a 12-channel phased-array head coil (data from Hospital

Vall D’Hebron, Barcelona, Spain). The following pulse sequences

were obtained: 1) transverse proton density and T2-weighted fast

spin-echo (TR = 2500 ms, TE = 16-91 ms, voxel size = 0.78 ×
0.78 × 3 mm 

3 ); 2) transverse fast T2-FLAIR (TR = 90 0 0 ms, TE =
93 ms, TI = 2500 ms, flip angle = 120 °, voxel size = 0.49 × 0.49

× 3 mm 

3 ); and 3) sagittal 3D T1 magnetization prepared rapid

gradient-echo (MPRAGE) (TR = 2300 ms, TE = 2 ms; flip angle =
9 °; voxel size = 1 × 1 × 1.2 mm 

3 ). For each scan, T1-w and FLAIR

images were first skull-stripped using BET ( Smith, 2002 ) and then

intensity-corrected using the N3 method ( Sled et al., 1998 ). Finally,

FLAIR images were co-registered into the T1-w space and then

re-aligned into the MNI space using SPM12 co-registration tools

with the normalized mutual information as the objective function

and tri-linear interpolation with no wrapping ( Ashburner and Fris-

ton, 2005 ). White matter lesion masks were semi-automatically

delineated from FLAIR using JIM software 8 by a trained technician

at the hospital center. The mean lesion volume was 4.30 ± 4.84

ml (range 0.1–18.3 ml). 
6 http://www.neuro.uni-jena.de/ . 
7 Overall ranking of methods for all the measurements can be consulted at http: 

//mrbrains13.isi.uu.nl/results.php . 
8 Xinapse Systems, http://www.xinapse.com/home.php . 

m  

d  

c  

a  

m  

i  
.2.2. Evaluation 

Expert manual annotations of tissues were not available for

his database. As validated in previous MS studies ( Battaglini

t al., 2012; Valverde et al., 2015b,c ), manual annotated lesions

asks were used to refill WM lesions in the original T1-w scans

ith signal intensities similar to normal-appearing WM using the

LF lesion filling method ( Valverde et al., 2014 ). Then, both the

riginal and the refilled images were segmented into CSF, GM and

M tissues using our proposed approach. The performance of

ur tissue segmentation method was evaluated by computing the

bsolute difference in tissue volume ( AVD c ) between the images

egmented containing lesions and the same images where WM

esions were refilled before the tissue segmentation: 

V D c = 

∥∥∥∥ | SEG c | − | GT f ill 
c | 

| GT f ill 
c | 

∥∥∥∥ × 100 (10)

here SEG c refers to the output segmentation masks of the seg-

ented images containing lesions, and GT 
f ill 

c refers to the output

issue segmentation masks of images where lesions were filled

efore segmentation and considered as ground-truth. 

Several works ( DellOglio et al., 2014; Valverde et al., 2015c )

ave already shown that part of the actual error in tissue seg-

entation may be partially masked by opposite directions in the

ifferences in total and normal-appearing tissue. For instance, at a

ertain lesion load, WM lesion voxels that have been misclassified

s GM may have an impact in normal-appearing GM voxels,

oving the intensity boundary threshold between GM and WM

ntensities. This cause that GM voxels with signal intensities in this

http://www.neuro.uni-jena.de/
http://mrbrains13.isi.uu.nl/results.php
http://www.xinapse.com/home.php
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Fig. 5. Automated tissue segmentation of the MSSEG method on the second subject of the training set of the MRBrainS13 database. A) Original T1-w image. B) Original FLAIR 

image. C) FLAIR image with manual annotated WM lesions depicted in red. D) Provided ground-truth for training purposes. Registered CSF, GM and WM prior atlas to the 

subject space (E, F and G, respectively). H) Morphological brain structural atlas registered to the subject space. I) First partial volume segmentation with csf depicted in blue, 

csfgm in cyan, gm in yellow, gmwm in orange and wm in red. J) Obtained WM outliers extracted from either T1-w (depicted in red) and FLAIR (depicted in green). K) Final 

tissue segmentation using only the T1-w image, with CSF depicted in dark gray, GM in light gray and WM in white. L) Final tissue segmentation when using both T1 and the 

FLAIR images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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P  
oundary may be misclassified as WM, cancelling totally or partly

he actual differences in WM tissue. In order to add an additional

easure estimator of the actual error in tissue segmentation that

ill not biased by these differences, we also compared, for each

issue, the percentage of misclassified voxels PMC c between the

riginal SEG c and the expert filled GT 
f ill 

c masks: 

 MC c = 

| SEG c ∩ GT f ill 
c | 

| GT f ill 
c | × 100 (11) 

In order to analyze the benefits of using FLAIR images in the

roposed approach, we evaluated the performance of our method

ithout estimating and refilling WM lesions before segmentation,

nd also estimating and refilling them using only a T1-w image

rst, and then using both T1-w and FLAIR. We then validated it

ith two other automated pipelines widely used in brain tissue

egmentation, FAST ( Zhang et al., 2001 ) (version FSL 5.0) and SPM

 Ashburner and Friston, 2005 ) (version SPM12 rev 6225), using

ither original images or after estimating lesions using the auto-

ated approach SLS proposed by Roura et al. (2015) . With images

here lesions were automatically segmented, estimated lesion

asks were then filled with the same SLF method ( Valverde et al.,

014 ) before tissue segmentation. Similar to our approach, we con-

idered the tissue segmentation masks of the experts refilled T1-w

mages segmented with FAST and SPM12 as the ground-truth for

ach method. Table 2 summarizes each of the evaluated pipelines

nd the corresponding process followed to segment the MS images.
.2.3. Statistical significance 

The statistical significance of the performance between meth-

ds was computed by running a series of permutation tests

 Menke and Martinez, 2004; Klein et al., 2009; Diez et al., 2014 )

etween the differences in the scores obtained by each method.

ermutation tests select random subsets of independent subjects

f the dataset, and for each of possible pair of methods, perform

ll possible permutations of their values in the corresponding

ubset, counting the number of times that the differences of

ne method are significant with respect to the other with ( p ≤
.05). After repeating this process over a number of iterations S,

he mean and standard deviation ( μ, σ ) of the fraction of times

hen each method produced significant p -values is calculated

ver all the iterations. With this approach, methods with higher

eans indicate a higher significance of their reported values. The

ethods were then ranked into three different levels according

o the difference between the mean score of the best method

o ± σ o and the distance with respect to the mean scores of

he rest of the methods. Hence, Rank 1 contained methods with

ean scores of ( μo − σo , μo ], Rank 2 contained those with mean

cores of ( μo − 2 σo , μo − σo ] and Rank 3 those in the interval

 μo − 3 σo , μo − 2 σo ] ( Klein et al., 2009; Diez et al., 2014; Valverde

t al., 2015a ). For all the tests, we set the number of comparisons

etween each pair of methods to S = 10 0 0 . 

.2.4. Experiment details 

The BET skull-stripping process was optimized as proposed by

opescu et al. (2012) without removing CSF from the brainmask.
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Table 2 

Summary of evaluated pipelines and processes used on the MS data. On the FAST only T1, SPM12 only T1 pipelines, images 

were segmented containing lesions without any prior automated lesion segmentation. On the FAST + SLS and SPM12 + 

SLS pipelines, WM lesions were automatically segmented using the SLS approach ( Roura et al., 2015 ) and estimated lesion 

masks were afterwards filled using the SLF method ( Valverde et al., 2014 ). On our proposed pipeline, when using MSSEG 

no filling images were segmented with MSSEG without estimating and refilling WM lesions before segmentation, while 

when using MSSEG only T1 and MSSEG T1 + FLAIR , lesion segmentation and filling was part of the same segmentation 

method. Manual lesion annotations were used to refill T1–w images on FAST GT, SPM12 GT and MSSEG GT pipelines before 

segmenting the images using FAST, SPM12 and MSSEG , respectively. AVD c and PMC c scores were then computed between 

pipelines 1 vs 3, 2 vs 3, 4 vs 6, 5 vs 6, 7 vs 10, 8 vs 10, and 9 vs 10. 

Pipeline Modality Lesion seg. Lesion filling Tissue seg. 

1. FAST only T1 T1 none none FAST 

2. FAST + SLS T1, FLAIR SLS (FLAIR) SLF FAST 

3. FAST GT T1 expert manual SLF FAST 

4. SPM12 only T1 T1 none none SPM12 

5. SPM12 + SLS T1, FLAIR SLS (FLAIR) SLF SPM12 

6. SPM12 GT T1 expert manual SLF SPM12 

7. MSSEG no filling T1 none none MSSEG 

8. MSSEG only T1 T1 internal internal MSSEG 

9. MSSEG T1 + FLAIR T1, FLAIR internal internal MSSEG 

10. MSSEG GT T1 expert manual SLF MSSEG 

Table 3 

Mean % of absolute difference in the CSF, GM and WM volume be- 

tween the 24 3T tissue masks where expert annotations were re- 

filled before segmentation and the same images segmented includ- 

ing white matter lesions. For each method, the reported values are 

the mean and standard deviation μ ± σ for the (a) AVD c and (b) 

PMC c scores obtained along the entire database. 

(a) Differences in AVD c 

Method Dif CSF (%) Dif GM (%) Dif WM (%) 

FAST only T1 0.07 ± 0.13 0.33 ± 0.45 0.42 ± 0.56 

FAST + SLS 0.04 ± 0.07 0.08 ± 0.12 0.11 ± 0.16 

SPM12 only T1 0.31 ± 0.46 0.27 ± 0.45 0.56 ± 0.69 

SPM12 + SLS 0.22 ± 0.22 0.13 ± 0.23 0.20 ± 0.32 

MSSEG no filling 0.19 ± 0.31 0.36 ± 0.45 0.68 ± 0.87 

MSSEG only T1 0.13 ± 0.20 0.21 ± 0.26 0.42 ± 0.54 

MSSEG T1 + FLAIR 0.04 ± 0.05 0.06 ± 0.05 0.13 ± 0.11 

(b) Differences in PMC c 

Method CSF (%) GM (%) WM (%) 

FAST only T1 0.08 ± 0.11 0.09 ± 0.12 0.53 ± 0.69 

FAST + SLS 0.06 ± 0.06 0.14 ± 0.16 0.25 ± 0.30 

SPM12 only T1 0.16 ± 0.32 0.25 ± 0.33 0.73 ± 0.86 

SPM12 + SLS 0.22 ± 0.31 0.24 ± 0.29 0.41 ± 0.43 

MSSEG no filling 0.02 ± 0.02 0.04 ± 0.01 0.70 ± 0.89 

MSSEG only T1 0.02 ± 0.03 0.03 ± 0.05 0.46 ± 0.58 

MSSEG T1 + FLAIR 0.04 ± 0.04 0.14 ± 0.13 0.27 ± 0.29 

 

 

 

 

 

 

 

 

 

 

 

t  

m  

s  

c  

t  

fi  

0  

w  

G  

t  

a

 

W  

r  

m  

d  

w  

w  

M  

l  

o

3

 

o  

c  

s  

p  

(  

3  

t  

w  

l  

f  

p

 

s  

f  

a

4

 

t  

p  
N3 was run with optimized parameters by reducing the smoothing

distance parameter to 30–50 mm ( Boyes et al., 2008; Zheng et al.,

2009 ). 

The SLF lesion filling method was run with default parameters

in all experiments. In the FAST and SPM12 images, where we

estimated lesion masks automatically, the lesion segmentation

method SLS was optimized for 3.0T data identically as shown in

Roura et al. (2015) . 

All the parameters of our proposed method were fixed to

default values ( q = 2 , γ = 0 . 1 , w = 1 ) as done in the MRBrainS13

database. The β parameter was computed automatically. The α
parameter that scaled the minimum signal intensity on the H 

F 

mask was set again to α = 3 . 

3.2.5. Results 

Table 3 (a) depicts the mean % of absolute differences in the CSF,

GM and WM volume ( AVD c ) for each of the methods evaluated.

Table 4 (a) shows the final ranking in the significance permutation
ests for obtained AVD c values. In general, automated lesion seg-

entation and filling reduced the impact of WM lesions in tissue

egmentation, and the differences in tissue volume were signifi-

antly lower when the methods used the FLAIR image to estimate

he WM outliers. Both the FAST + SLS and MSSEG T1 + FLAIR were

rst ranked in all tissues, with differences in tissue volume below

.15% with respect images where expert manual annotated lesions

ere filled before segmentation. In contrast, absolute differences in

M and WM volume were significantly higher in all the pipelines

hat did not incorporate automated lesion segmentation and filling,

nd these pipelines were ranked in the second and third groups. 

Table 3 (b) depicts the mean % of misclassified CSF, GM and

M voxels ( PMC c ) for each method. Table 4 shows the final

anking of each of the evaluated methods based on their % of

isclassified tissue. In general, the % of error in the pipelines that

id not incorporate the FLAIR sequence to estimate WM lesions

as concentrated in WM, as the performance of these pipelines

as significantly lower (Rank 2 and 3) when compared with

SSEG T1 + FLAIR and FAST + SLS, that yielded again significantly

ower % of misclassified WM voxels when compared with the rest

f pipelines. 

.2.6. WM outlier rejection 

Finally, we evaluated the performance of the proposed WM

utlier rejection algorithm with respect to the other pipelines by

omparing the percentages of lesion detection ratios and lesion

egmentation. At the baseline, the state-of-the-art method SLS

roposed by Roura et al. (2015) detected the 36% of true lesions

percentage of true positive incomes). This percentage decreased to

3% when the MSSEG only T1 was used. In contrast, the number of

rue lesions detected increased up to 41% when the MSSEG + FLAIR

as used. The number of regions detected that were not true

esions (percentage of false positive incomes) was lower in the

ormer method, as it was optimized to reduce the number of

ositive incomes ( Roura et al., 2015 ). 

Furthermore, we evaluated the performance of each method

egmenting WM lesions as WM. Fig. 6 shows the % of absolute dif-

erence in WM lesion volumes for each of the evaluated pipelines

nd their correspondent GT f ill c images. 

. Discussion 

In this paper we have presented a new, automated brain

issue segmentation pipeline for images containing lesions. The

roposed approach combines multi-channel intensities, anatomical
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Table 4 

Permutation tests results for evaluated methods on the 3T MS database. (a) Final rank based on the absolute % difference in CSF, GM 

and WM volume between methods. (b) Final rank based on % of misclassified CSF, GM and WM voxels between methods. Reported 

values are mean and standard deviation ( μo , σ o ) of the fraction of times when each method produces significant p -values ( p ≤
0.05). Positive values indicate that in average, the method out-performed the other methods in pair-wise significant tests. Negative 

values indicate the contrary. Rank 1: ( μo − σo , μo ], Rank 2: ( μo − 2 σo , μo − σ ], Rank 3 ( μo − 3 σo , μo − 2 σo ]. All permutation tests 

were run with 10 0 0 random iterations. 

(a) Evaluated methods ranked by the absolute % of CSF, GM and WM volume of 3T data. 

Rank Method (CSF) μ ± σ Method (GM) μ ± σ Method (WM) μ ± σ

Rank 1 MSSEG T1 + FLAIR 0.57 ± 0.53 MSSEG T1 + FLAIR 0.57 ± 0.53 FAST + SLS 0.71 ± 0.49 

FAST only T1 0.57 ± 0.53 FAST + SLS 0.57 ± 0.53 MSSEG T1 + FLAIR 0.57 ± 0.53 

FAST + SLS 0.57 ± 0.53 SPM12 + SLS 0.43 ± 0.52 SPM12 + SLS 0.25 ± 0.72 

Rank 2 MSSEG only T1 −0.24 ± 0.79 MSSEG only T1 0 ± 0.82 FAST only T1 −0.07 ± 0.73 

SPM12 + SLS −0.43 ± 0.53 SPM12 only T1 −0.43 ± 0.53 MSSEG only T1 −0.2 5 ± 0.72 

SPM12 only T1 −0.48 ± 0.5 

Rank 3 MSSEG no filling −0.57 ± 0.53 FAST only T1 −0.57 ± 0.53 SPM12 only T1 −0.5 ± 0.51 

MSSEG no filling −0.57 ± 0.53 MSSEG no filling −0.71 ± 0.49 

(b) Evaluated methods ranked by the absolute % of misclassified CSF, GM and WM of 3T data. 

Rank Method (CSF) μ ± σ Method (GM) μ ± σ Method (WM) μ ± σ

Rank 1 MSSEG only T1 0.86 ± 0.38 MSSEG only T1 0.86 ± 0.38 MSSEG T1 + FLAIR 0.71 ± 0.49 

MSSEG no filling 0.57 ± 0.78 MSSEG no filling 0.57 ± 0.79 FAST + SLS 0.71 ± 0.49 

Rank 2 MSSEG T1 + FLAIR 0.24 ± 0.8 FAST only T1 0.29 ± 0.95 SPM12 + SLS 9 ± 0.82 

MSSEG only T1 0 ± 0.82 

FAST only T1 0 ± 0.82 

Rank 3 FAST + SLS −0.14 ± 0.89 FAST + SLS −0.29 ± 0.76 MSSEG no filling −0.69 ± 0.54 

SPM12 only T1 −0.38 ± 0.49 MSSEG T1 + FLAIR −0.29 ± 0.75 SPM12 only T1 −0.74 ± 0.44 

FAST only T1 −0.43 ± 0.79 SPM12 only T1 −0.43 ± 0.53 

SPM12 + SLS −0.71 ± 0.49 SPM12 + SLS −0.71 ± 0.49 

Fig. 6. % of absolute difference in WM lesion volume for each of the pipelines evaluated with the 3T MS database. Figure legends also show the mean and standard deviation 

μ ± σ for the entire set of images. Images are sorted by lesion size (number of lesion voxels). 
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c  

t  

t  

a  

m  

b  

e  
nd morphological prior maps at different levels to estimate

rain tissue in the presence of WM lesions. The current method

ntegrates a WM outlier estimation and refilling algorithm that

s applied intermediately in order to reduce the effect of WM

esions on tissue segmentation. As shown by the results, the pro-

osed technique yields competitive and consistent results in both

eneral and MS specific databases without parameter tweaking.

urthermore, although we did not explicitly analyze the execution

imes of each of the evaluated algorithms, the proposed method

akes advantage of new affordable processors such as GPUs. These

rocessors reduce up to four times the execution time to reg-
ster and segment tissue when compared with general purpose

PUs. 

Although the method has been designed to deal with images

ontaining MS lesions, the performance of the method was also

ompetitive in other images containing vascular WM lesions as

hose of the MRBrainS13 dataset, where lesions resemble those of

he MS. This permitted us to evaluate the efficacy of our method

nd to validate it with other state-of-the-art tissue segmentation

ethods. All the challenge’s participant methods were evaluated

y comparing their obtained tissue masks with respect to manual

xpert annotations of tissues and WM lesions, which provided
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a quantitative measure of the performance of the methods. The

overall results showed that supervised methods obtained the best

results in the challenge, taking advantage of the inherent capability

to fit the database characteristics. At the time of writing this paper,

MSSEG T1 + FLAIR was ranked in 7th position out of 31 participants,

being the best non-supervised strategy followed by the VBM12 ap-

proach. As shown by the differences in each of the scores obtained,

the FLAIR modality appeared useful to improve the performance of

the method when compared with the MSSEG T1 , which was ranked

10th. The performance of the MSSEG was superior with all tissues

when compared to general purpose methods such as FAST (ranked

21th) and SPM12 (best ranked 17th), even if they used both image

modalities. However, the final method ranking should be taken

with care, given the differences in the skull-stripping processes

between methods. Differences in the boundaries of the estimated

skull masks may be behind the remarkable differences in CSF

among methods, altering also the intra-cranial cavity measure-

ments and consequently the overall score of each of the methods. 

In MS data, the performance of our method was similar or

better to the best pipeline incorporating a state-of-the-art method

for lesion segmentation and filling, validating its overall capability

to reduce the effects of WM lesions on tissue segmentation. The

MSSEG T1 + FLAIR and FAST + SLS were ranked in the first group of

methods with error differences in tissue volume below 0.15% in all

the tissues. All the pipelines using only T1-w without lesion cor-

rection and filling ( FAST/SPM only T1 and MSSEG no filling ) showed

a similar or lower % of misclassified CSF and GM voxels than those

using both FLAIR and T1-w. In contrast, the % of misclassified WM

voxels ( Table 4 (a)) and the differences in the reassigned lesion

volume ( Fig. 6 ) were significantly higher on the former, showing

that these methods tended to overestimate GM and underestimate

WM caused by the effect of WM lesions. In this aspect, our results

are consistent with previous studies that also analyzed the effects

of WM lesions on tissue segmentation ( Battaglini et al., 2012;

Gelineau-Morel et al., 2012; Valverde et al., 2015b,c ). 

Differences in the AVD c between the MSSEG T1 + FLAIR and the

MSSEG only T1 on the MRBrains13 data were similar to those

reported in MS data, showing that, in general, the inclusion of the

FLAIR modality reduced the overall error in tissue volume on all

the analyzed databases. On MS data, the % of misclassified CSF

and GM voxels was significantly lower on the MSSEG only T1 , but

significantly higher in WM, evidencing that MSSEG only T1 tended

to overestimate WM, while the error in the MSSEG T1 + FLAIR was

similar in both GM and WM. In addition, the results show that the

% difference in the total WM and lesion volume was significantly

lower on the MSSEG T1 + FLAIR in comparison with the MSSEG only

T1 . Hence, we would recommend using both the T1-w and FLAIR

modalities when possible. However, the accuracy of the MSSEG

only T1 pipeline was still superior to the FAST and SPM12 when

compared with the ground-truth annotations of the MRBrainS13

database. This suggests that at least with the available data, the

improvement in tissue segmentation was not only caused by the

addition of the FLAIR modality, but also by the combination of

intensity and the anatomical and morphological priors. 

This study, however, has some limitations. The lack of a

database consisting of MS images with manual annotations on the

tissue, limits our analysis to the differences in the tissue volume

with respect to images where expert lesion annotations were

lesion filled before tissue segmentation. However, the previous

analysis in prior studies proved to be effective in evaluating the

effects of WM lesions on tissue segmentation ( Battaglini et al.,

2012; Valverde et al., 2015b,c ). Furthermore, the mean lesion

sizes of the MS cohorts do not allow us to investigate better the

performance of the proposed method in the presence of images

with higher lesion loads. As a future work, we believe that an

additional study on MS with manual annotated tissue masks and
igher lesion loads would be helpful not only to analyze the

enefits of the proposed algorithm with MS images, but also to

nvestigate the benefits of adding other image channels such as

2 or PD. Furthermore, although the method was designed for

ross-sectional data, we are sensible to the fact that the current

pproach could be benefited by the possibility of evaluating

ongitudinal changes in the tissue volume. 

. Conclusion 

In this paper, we have proposed the Multiple Sclerosis SEG-

entation pipeline ( MSSEG ), a new MRI brain tissue segmentation

ethod designed to deal with images containing lesions. Our

roposed approach incorporates a robust partial volume tissue

egmentation with outlier rejection and filling, combining intensity

nd probabilistic and morphological prior maps in a novel-way.

hen combining T1-w and FLAIR modalities, our method has

hown very competitive results with the MRBrainS13 database,

anked at the time of submission in 7th position out of 31 partici-

ant strategies and being the best non-supervised intensity model

pproach so far. With MS data, differences in the tissue volume

ere lower or similar to the best available pipeline composed of

he FAST and a state-of-the-art method for lesion segmentation

nd filling. In all the experiments, the inclusion of the FLAIR

odality into the proposed method reduced the effect of WM

esions on the tissue segmentation, which suggests that this

odality should be used when available. In conclusion, our results

how that, at least with the presented data, the MSSEG improves

he measurement of brain tissue volume in images containing WM

esions. The proposed method is currently available to download at

he authors’ webpage ( http://atc.udg.edu/nic/msseg ). We strongly

elieve that the neuro-image community can benefit from its use

n future settings. 
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