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ABSTRACT

Breast density is an important risk factor for the development of breast cancer. The aim of this paper is to
evaluate temporal breast density changes using density maps, provided by the commercial software VolparaTM .
The dataset is composed of 563 mammograms from 55 patients (aged between 24 and 75 years old). The time
frame between two acquisitions varies from less than one year to 4 years. Pairs of mammograms are registered
using the morphons registration algorithm, in order to evaluate the structural similarity of the parenchymal
distribution between the two acquisitions. To provide a fair comparison, the results are divided considering the
patient age during the first mammographic acquisition and the time between the two studies. To evaluate the
changes in breast density, local and global measures, such as the rate of change of the volumetric breast density,
the histogram intersection between two density maps and the normalized cross-correlation after the registration,
are considered. The results show significant differences in the statistics, mainly focused on patients younger than
30 years old and ranged between 56 and 65 years old with respect to those in the adulthood (between 30 and
55 years old). Similarly, the time between the two mammographic acquisitions shows a significant difference for
patients older than 56 years old considering one and two year of difference between the two studies.
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1. INTRODUCTION

Volumetric breast density (VBD) is one of the most important risk factors for developing breast cancer.1 During
liftime, the glandular tissue of the breast decreases, in particular around menopause. Moreover, the breast
cancer incidence curve increases with the age2 and, therefore, aging is a risk factor per se. Usually, VBD is
determined by means of subjective visual measurements from the mammograms, and categorized using the BI-
RADS (Breast Imaging Reporting and Data Systems) standard.3 Several methods, such as feature-based,4,5

area-based approaches6,7 or physic-based models,8,9 have been proposed to obtain an objective VBD value. In
contrast, the physics-based model proposed by Highnam et al.,10 available under commercial license as VolparaTM

Density Maps (Volpara Solutions∗; Wellington, New Zealand), is able to provide the local (pixel-wise) information
of the glandular tissue thickness within the mammogram.

In addition to global measures, such as the volumetric breast density and glandular tissue volume, the local
density distribution can provide complementary information for risk assessment and disease development.11,12

Lately, VolparaTM Density Maps has shown the reliability of glandular tissue measurements using reacquired
mammographic images.13 In that work, 99 pairs of duplicated mammograms, acquired within a short time frame,
just few minutes, were used to evaluate the parenchymal pattern similarity between the two acquisitions. In
addition, the aim of this paper is to analyze the changes in local breast density over the time, extending the
previous work.

Several factors need to be considered in a temporal analysis: aging, involution, hormone replacement therapy,
oral contraceptive use, menstrual timing, diet, exercise, and general hormonal influences.14 These factors may
modify the appearance of the mammogram as well as the automatic density measures. The rate of involution
may be the true variable associated with risk. The relationship between breast cancer and hormonal interactions
and involution are suggested by the connection with high- and low- risk patterns.14 In this case, we focus our
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attention in aging. To achieve this goal, the mammographic studies are stratified considering the age of the
patients, in order to provide a fair comparison among the pre-, post- and menopausal stages, and the time frame
between the two studies. VolparaTM Density Maps is used to extract the glandular tissue and global and local
measures are used to evaluate the temporal changes.

This paper is organized as follows: Section 2 exposes the material and methods, which includes the basis
of VolparaTM and the evaluation methodology. Section 3 exposes the results obtained using local and global
statistics. This paper concludes with Section 4, discussion, and a brief conclusion, Section 5.

2. MATERIAL AND METHODS

2.1 VolparaTM Density Maps

The basis of Volpara software can be found in the work of Highnam et al.10 Briefly, VolparaTM starts by looking
for an entirely adipose area within the mammogram. The mean intensity value of this area (Pfat) is subsequently
used as a reference to estimate the density map DM(x, y), i.e. the thickness of the glandular tissue at each pixel
of the mammogram, using the equation:

DM(x, y) =
ln(P (x, y))/Pfat

µfat − µdense
, (1)

where P (x, y) corresponds to the gray level intensity at pixel (x, y) in the raw mammogram, which is proportional
to the x-ray energy absorbed at the image receptor. Key acquisition parameters from the meta-data of the
image (e.g. kVp, x-ray tube anode material, filter material, compressed breast thickness) are read from the
DICOM header to use the appropriate x-ray linear attenuation coefficients (µfat and µdense). This approach
provides us the spatial distribution of breast glandular tissue from Full Field Digital Mammograms (FFDM).
Integrating DM(x, y) over the whole mammogram, VolparaTM computes the Volume of Glandular Tissue (VGT).
Furthermore, by taking into account the area of the projected breast on the mammogram and the recorded
compressed breast thickness, VolparaTM also computes the Breast Volume (BV). Finally, the ratio between
VGT and BV represents the Volumetric Breast Density (VBD).

2.2 Density maps registration

Mammograms are two-dimensional projections of the internal tissues of the breast. However, the reproduction
of exact image acquisition conditions during repeated mammograms is not possible in practice. This is due
to small variations in patient positioning, differences in breast compression, or even different image acquisition
parameters that are selected by an automatic exposure control software (e.g. anode/filter material, beam quality).
In order to minimize these misalignments when comparing the local density maps, we perform a two-dimensional
registration step. In this case, the morphons registration algorithm was used to align the two temporal density
maps, because it obtained the best performance in previous work.13

Briefly, morphons15 is a non-rigid registration method performed in three steps. Firstly, it estimates the local
displacement using quadrature phase differences, which are invariant to image intensities and weak gradients,
and are used as a measure of the local structures. Afterwards, the local displacement is estimated as a function
of the local phase along each direction. Finally, the displacement is accumulated into a total displacement field
and regularized, allowing to morph the source image into the target image.

2.3 Evaluation

Global and local measures are used to evaluate the appreciable change of the glandular tissue computed by
VolparaTM . In particular, we focus our attention in the rate of change (RC) of the volume of the breast density,
the histogram intersection (HI) between the information contained in two density maps and the normalized
cross-correlation (NCC) between the two images in order to perform a structural analysis of the glandular
distribution.
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Table 1. Dataset composed of 613 pairs of temporal mammograms, divided considering the patient age in the first
acquisition and the time frame, in years, between the two acquisitions.

Age
Time frame 24-30 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70 71-75

0 2 0 0 4 1 4 4 4 0 0
1 20 28 102 56 73 34 22 26 0 8
2 16 20 56 28 14 16 7 8 0 4
3 6 0 20 12 0 4 0 2 0 0
4 0 4 4 4 0 0 0 0 0 0

2.3.1 Rate Of Change (RC)

The rate of change is used to mathematically describe the percentage change in value over a defined period of
time. RC represents the change of a variable with respect to the value from the former period. Usually, the
value is multiplied by 100 in order to obtain a percentage representation.

Formally, the RC is defined as follows:

RC =
V BDt − V BDt−1

V BDt−1
· 100. (2)

where V BDt and V BDt−1 represent the volumetric breast density value at time t and t− 1 respectively.

2.3.2 Histogram intersection (HI)

Histogram Intersection16 computes the similarity between the intensity (i.e the glandular tissue thickness) distri-
butions of the two images. Usually the intersection value is normalized to obtain a result between 0 (no overlap)
and 1 (identical distributions), and is defined as follows:

H(IA, IB) =
∑
i

min(hIA,i, hIB ,i) (3)

where hIA,i and hIB ,i represent the value of the bin i in the histograms corresponding to the image IA and IB .

2.3.3 Normalized Cross-Correlation (NCC)

Normalized Cross-Correlation17 is a standard statistical measure used to calculate whether two datasets are
linearly related, and represents the 2D version of the Pearson’s correlation coefficient. NCC is defined as follows:

NCC =

∑
(i,j)(IA(i, j) − ĪA)(IB(i, j) − ĪB)√∑

(i,j)(IA(i, j) − ĪA)2
√∑

(i,j)(IB(i, j) − ĪB)2
(4)

where IA(i, j) and IB(i, j) represent the intensity value (i.e. thickness of glandular tissue) of the pixel (i, j) and
ĪA and ĪB are the mean intensity values of the images IA and IB , respectively.

3. EXPERIMENTAL RESULTS

The dataset was composed of 563 images, including both CC and MLO mammograms, from 55 different patients,
yielding 613 temporal pairs of mammograms within time frames between 0 and 4 years. Images were acquired at
the Radboud University Medical Center (Nijmegen, The Netherlands) between January, 2005, and May, 2011,
using either a GE Senographe 2000D or a GE Senographe DS. These FFDMs were acquired for screening purposes
of women at high-risk breast cancer (high familiar or genetic risk), according to the standard clinical settings.
Patients aged between 24 and 75 (44.09 ± 10.16) years old during the first acquisition.

The dataset was divided, considering: i) the patient age in the first acquisition, and ii) the interval between
the two acquisitions. Table 1 summarizes the dataset division and the number of images for each interval. The
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Figure 1. Rate of change, in percentage, of the volumetric breast density, computed between two temporal density maps,
with respect to the patient age, in years. Each row corresponds to an increasing time frame between the two acquisitions,
from 0 to 4 years. Negative RC values represent that the software reports a higher VBD value in the first acquisition.

patients age were divided into 5-years frames, in order to provide a fair comparison of the changes among pre-,
post- and menopausal stages. The commercial software VolparaTM (v. 1.5.11) was used to extract the glandular
tissue distribution while the data analysis and statistical tests were performed using the software R-studio (R
v.3.0.3).18

Figure 1 shows the RC of the volumetric breast density computed by VolparaTM . Notice that, while equation 2
represent the first acquisition as t − 1, in this analysis, the time frame between two acquisitions varies from 0
(less than one year) to 4 years. Negative RC values represent that the software reports a higher VBD value in
the first acquisition.

RC values vary from −62.62%, when patients are between 61 and 65 year old in the time frame of 1 years
between the two acquisitions, to 110% in age ranged between 36 and 40 years in the frame of 2 years between the
two acquisitions. In the adulthood (patients younger than 45 years old) and the perimenopausal stage (between
46 and 55 years old) the median of the RC distributions are ranged between −16.9, with 3 years of difference
between the two mammographic studies, and 25.11, with less than one year. While in the menopausal stage
(between 56 and 65 years old) the median values vary from −22.49, less than one year, to 14.00, one year.
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Figure 2. Histogram intersection between two temporal density maps, with respect to the patient age, in years. Each
row corresponds to an increasing time frame between the two acquisitions, from 0 to 4 years. The higher the histogram
intersection, the higher the shared information between the images.

Regarding the latest, the RC values tends to decrease which represents the acceleration of the loose of glandular
tissue. Significant differences in the RC distributions are shown at this stage when the two mammograms are
acquired between 56 and 65 years old ( p < 0.05 and p < 0.001 considering each interval independently) with
respect to the adulthood stage.

Considering each age interval independently, women between 24 and 30 years old, as well as between 36
and 40 years old and between 60 and 65 years old show significant changes (p < 0.05, p < 0.05 and p < 0.01
respectively) in the RC distributions considering the time frame between the two acquisitions.

Figure 2 shows the histogram intersection between two density maps acquired within the corresponding time
frame. During this analysis, each bin in the histogram represents 1 mm of glandular tissue. Furthermore, notice
that, so far, the registration has not been performed and these values correspond to the density maps directly
obtained from the FFDMs. The HI values vary from 0.44, where patients are aged between 24 and 30 years old in
the time frame of 3 years between the two acquisitions, to 0.97 in age ranged between 36 and 40 years in the frame
of 3 years between the two acquisitions. Significant differences are shown when the mammograms are acquired
with one and three years of difference. In the first case, patient aged between 24 and 30 years old (p < 0.01)
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Figure 3. Normalized Cross-Correlation after morphons registration, with respect to the patient age, in years. Each row
corresponds to an increasing time frame between the two acquisitions, from 0 to 4 years. The higher the NCC value, the
higher the parenchymal pattern similarity.

and between 40 and 45 years old show a significant difference (p < 0.01) while, using the mammograms acquired
with 3 years of difference, this effect occurs when patient are ranged between 60 and 65 years old (p < 0.001)
with respect to the rest of the age intervals. Considering the patient age, there is not a significant difference
when two acquisitions are performed with different time frames, with the exception of the interval between 61
and 65 years old where the values obtained with 3 years of difference show a significant difference (p < 0.05)
with respect to the rest.

Finally, Figure 3 shows the normalized cross-correlation after the morphons registration step. Notice that
NCC introduces a structural analysis, since the statistics are computed using pixelwise considerations. NCC
values vary from 0.48, when patients are between 61 and 65 year old in the time frame of less than one year
between the two acquisitions, to 0.99 in age ranged between 24 and 30 years in the frame of one year between
the two acquisitions. In a pre-menopausal stage (women younger than 56 years old) the median of distributions
are ranged between 0.94 and 0.99, while in the menopausal and post-menopausal stages the median of the
distributions vary from 0.81 to 0.96. Notice that, in the menopausal stage, the NCC values tend to decrease
along time. Patients older than 55 years old show a significant difference (p < 0.05) in the NCC obtained between
the two mammograms of different acquisitions in all the cases, with respect to the rest of patients. Similarly,
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the youngest group, between 24 and 30 years old, show a significant difference (p < 0.05) with respect to the
adulthood stage, between 30 and 55 years old, in most of cases.

Considering each age interval independently, for patients younger than 56 years old, there is not a significant
difference among the different interval acquistion frames. However, between 56 and 65 years old, in most of the
cases there is a significance (p < 0.05). This significance does not appear in older patients.

4. DISCUSSION

The aim of this paper was to analyze the changes in breast density and parenchymal distribution over the time,
using the commercial software VolparaTM Density Maps in order to locally extract the glandular tissue directly
from Full-Field Digital Mammograms. Changes in the glandular tissue were evaluated using global and local
statistical measures such as the rate of change of breast density and the histogram intersection and normalized
cross-correlation between two density maps.

The results show several significant differences. Two main groups need to be considered. Patients younger
than 30 years old show a significant variation with respect to those in the adulthood (between 30 and 55 years
old) in all the statistics. Similarly, the group composed of women between 61 and 65 years old show a significant
different behavior with respect to the rest of cases. While using global measures, in this case the RC of the
glandularity, may not be clearly visible, using structural statistics, such as the NCC, show a clearly different
behavior for patients older than 56 years old. Furthermore, these statistics differ depending on the time interval
between two mammographic studies. Most of the measures show this behavior when the time between the two
acquisitions is two years.

The main limitation of this work is related to the histopathology of the patients. The FFDMs used in this
study have not been analyzed previously to this work. Therefore, we cannot assure that all the images belong
to healthy patients. While the breast density should decrease over the time, developing breast cancer may affect
automatic breast density measures because, usually, these softwares do not include an automatic diagnostic
system to discriminate between healthy and unhealthy tissues. Thus, the growing of the cancer may compensate
the loss of glandular tissue. Furthermore, changes in the breast thickness have not been considered. This
factor may affect the local distribution of glandular tissue13 and, therefore, the values directly obtained from the
density maps, such as the histogram intersection metric and NCC. Similarly, breast volume, breast glandularity,
including BI-RADS rating and glandular tissue percentage, and other factors regarding the mammographic
acquisition have not been analyzed.

5. CONCLUSIONS

The aim of this paper was to analyze the temporal changes in local breast density using VolparaTM Density
Maps. Using the measures provided by the software, we evaluated both global and local changes in the glandular
tissue. In order to compensate the different patient position between two temporal acquisition, the morphons
registration algorithm was used to align the mammograms.

Results showed significant variations with respect to the age and, for patients older than 56 years old, the time
between the two mammographic studies. While using global measures this fact may not be clearly visible, the
use of local and structural statistics allows to show a clearly different behavior. Therefore, statistical measures
directly computed from the density maps can improve the evaluation of temporal changes in glandular tissue.
This fact could help to provide newest approaches to evaluate risk breast cancer with a high likelihood of
developing breast cancer.
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