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Abstract. Texture is a powerful cue for describing structures that show
a high degree of similarity in their image intensity patterns. This paper
describes the use of Self-Invariant Feature Transform (SIFT), both as
low-level and high-level descriptors, applied to differentiate the tissues
present in breast US images. For the low-level texture descriptors case,
SIFT descriptors are extracted from a regular grid. The high-level tex-
ture descriptor is build as a Bag-of-Features (BoF) of SIFT descriptors.
Experimental results are provided showing the validity of the proposed
approach for describing the tissues in breast US images.
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1 Introduction

Breast cancer is the second most common cancer (1.4 million cases per year,
10.9% of diagnosed cancers) after lung cancer, followed by colorectal, stomach,
prostate and liver cancers. In terms of mortality, breast cancer is the fifth most
common cause of cancer death. However, it places as the leading cause of cancer
death among females both in western countries and in economically developing
countries [3].

Medical imaging plays an important role in breast cancer mortality reduction,
contributing to its early detection through screening, diagnosis, image-guided
biopsy, treatment follow-up and suchlike procedures [5]. Despite Digital Mam-
mography (DM) still remains as the image modality of reference for diagnose
purposes, Ultra-Sound (US) offers useful complementary diagnose information
due to its capabilities for differentiating between solid lesions that are benign or
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malignant [6]. It is estimated that between 65 ∼ 85% of the biopsies prescribed
using only mammography imaging could be avoided if US information had been
taken into account while issuing the diagnose [7].

In US images, texture is a major characteristic to distinguish between different
breast tissues, which also allows assessing of the lesion’s pathology [6]. Thus,
the importance of incorporating texture data from US images into Computer
Aided Diagnosis (CAD) systems. A comprehensive list of texture descriptors
used for detection, segmentation or diagnose tasks applied to US breast images
is given in Cheng et al. [1], where most of the descriptors are ad-hoc descriptors or
based on well-known texture descriptors such as co-occurrence matrices, wavelet
coefficients or Gray-Level Difference Method (GLDM).

This article explores the usage of Self-Invariant Feature Transform (SIFT)
descriptors for encoding the US characteristic texture produced by the speckle
noise present within the images. Its performance is evaluated using a multi-label
annotated dataset.

2 Material and Methods

In order to develop segmentation methodologies applied to delineate breast le-
sions in US data, a set of 700 US images was acquired at the UDIAT Diagnostic
Centre of Parc Tauĺı in Sabadell (Catalunya), between 2010 and 2012. All the
images were provided with accompanying Ground Truth (GT) delineation of the
lesions present in the image. From this image database, a reduced dataset of 16
images corresponding to different patients was selected and complemented with
multi-label GT in order to evaluate the texture description of the observable
tissues in the breast.

Figure 1 illustrates a breast image from the dataset with its associated GT.

3 Using SIFT as a Low-level Texture Descriptor in Order
to Differentiate the Tissues Present in Breast US
Images

Self-Invariant Feature Transform (SIFT) [4] transforms key-points into scale and
rotation invariant coordinates relative to local features. The SIFT descriptor at
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Fig. 1. Dataset sample. From left to right: image sample, accompanying multi-label
GT, tissue label GT color-coding.
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(a) (b) (c)

Fig. 2. Low level SIFT descriptor example. (a) Arbitrary coloring of the projected
SIFT space. (b) Original image. (c) Recoding of the extracted SIFT descriptors using
the color coding in (a).

a particular key-point, samples the magnitude and orientation of the gradients
surrounding this key-point to generate a 128-element feature. When setting up
SIFT as a texture descriptor, the key-points are considered to be a regular grid
in order to generate evenly sparse SIFT descriptors.

The usage of SIFT descriptor brings invariability to scale, rotation and minor
affine transformations along with robustness to illumination changes [4], which
allows to characterize the tissues despite the variability from US acquisition.

In order to analyze the US images, a SIFT descriptor is extracted at every
pixel position and them mapped into the SIFT space. The 128-dimension feature
is projected into a two dimensional space using Principal Component Analysis
(PCA). When combining features using PCA is convenient to know the ratio
known as explained variation, which in this case is given by λ1+λ2∑128

i=1 λi
= 21.6%.

For the remaining of the article all the calculations are carried out directly
in the projected space. However, it should be assumed that in a higher space
with greater explained variation, better separability could be achieved. Figure 2
offers a visual interpretation of a breast US image in terms of low-level SIFT
descriptors, where the extracted SIFT descriptors from all the images in the
dataset have been projected into the 2D principal component space (Figure 2a).
These SIFT descriptors have been arbitrary colored in order to visually assess
the descriptors (the more similar the colors, the closer the SIFT descriptors).

Thus, the analysis of the tissue distribution is performed in the texture space
defined by the SIFT descriptors by means of the Maximum A Posteriori (MAP)
estimator, as described in equation 1.

P (ω|x̄a) =
P (x̄a|ω) · P (ω)

P (x̄a)
(1)

Where P (ω|x̄a) is the probability that the sample a belongs to class ω ∈ W
(see fig. 1b as a reminder of the GT available classes) where x̄a is the feature
vector representing the sample a, such that xi

a is the ith feature. P (x̄a|ω) cor-
responds to the Maximum Likelihood (ML) of the feature distribution for a
particular class ω, while P (ω) and P (x̄a) are the priors for the class and feature
respectively.
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(a) (b) (c)

Fig. 3. SIFT space. (a) Projected space colored according to GT tissue labeling. (b)
P (x̄a). (c) P (ω)
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Fig. 4. Distribution of the SIFT descriptors for some classes in the GT

Figure 3 uses the entire dataset to illustrate the underlying problem and the
priors extracted from the same dataset. Fig. 3a shows a scatter plot where every
sample has been colored according to its GT. Fig. 3b shows an occurrence study
of the samples carried out in a discretization of the SIFT space. Fig. 3c illustrates
the class prior P (ω) corresponding to the proportion of samples present in the
dataset for each class.

Figure 4 shows the feature distribution study for every class, corresponding
to the P (x̄a|ω) in eq. 1. Similarities and dissimilarities between classes can be
observed through the tendencies within the features representing each class. To
illustrate that, it can be observed in figure 1 that the adipose tissue class contains
Cooper’s ligaments which are highly dense fibers, and fibro-glandular tissue is
made of dense fibers and unstructured fat. Or, the difficulty to produce accurate
GT delineations, which often happens for those regions where the structures are
not clear enough to the user (i.e. the background class in fig. 1).
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Fig. 5. Qualitative evaluation of the MAP labeling of the feature space

Equation 2 illustrates how to produce the preferred labeling of the space, as
is illustrated in fig. 5a. On it, the marginals P (ωi|xj) where j ∈ {1, 2} are also
represented to obtain a deeper understanding of the MAP.

labeling(x̄) = argmax
i

P (ωi|x̄) where i ∈ [1..|W |] (2)

For comparison purposes, the labeling process has been carried out on the
SIFT space as well as on the intensity space to analyze the tissue characteri-
zation. Figure 5 shows the qualitative evaluation of the MAP labeling for both
spaces. From this results, the SIFT feature space is preferred since when using
intensity some of the classes has no mode.

In order to generate cross-validated quantitative results, the descriptors have
been randomly sampled as follows: (10.000 samples×10 classes)×5 folds. At each
round 4 folds have been used for training the ML term in eq. 1 (P (x̄a|ω)) and
the remaining fold has been used for testing. The labeling results are provided in
figure 6 as boxplots representing the confusion matrices distribution across the
folds. In the figure, the samples are grouped by the actual class of the sample
and distributed by the predicted classes. The top label represents the samples’
actual class, whereas the predicted class is color coded at the bottom. Boxplots
in blue represent the results of classifying the samples using intensity, whereas
the bloxpots in red represent the results obtained when using SIFT. The lack of
variability within the boxplots illustrates a repeatability of the results across the
samples, which gets accentuated when using SIFT. The results show that the
preferred labels which cover larger portion of the feature space achieve better
results than the other classes. This is more clear for the intensity case since
there are classes with no mode and therefore all the samples of this class are
misclassified (see fig. 5). The sensitivity or True-Positive Ratio (TPR) allows
to obtain a general sense of performance across all the labels. The TPR value
obtained for the intensity case is 16.6 ± 27.5%, whereas for the SIFT case is
18.8±17.2% which show that both feature spaces produce similar results. Notice
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Fig. 6. Confusion matrices results distribution represented as boxplots. The results are
grouped by actual class of the samples and distributed by the predicted label.
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Fig. 7. SIFT-BoF descriptors qualitative analysis. (Left) image example. (Right) Dic-
tionary representation colored using the location of the keypoint location in fig. 3a
space. (1-8) Occurrence of the dictionary’s key-points associated to each region high-
lighted in the original image.

that the large variability reported is due to missclassification of the labels with
no mode, as can be observed in figure 5.



SIFT Texture Description for Understanding Breast Ultrasound Images 687

4 High-Level Texture Descriptor Using Bag-of-Features
(BoF) and SIFT Descriptors

Texture is an area property related to spatial repetition of structures, similar sta-
tistical properties of the area or both. A technique to embed statistical properties
of a low level descriptor is Bag-of-Features (BoF) which analyses the occurrence
of a set of keywords (or key-points) within a particular region [2].

In our proposal, the words or features representing the images are SIFT de-
scriptors. In order to determine the words forming the dictionary or codebook
needed to generate the BoF descriptors, the space of SIFT descriptors is clus-
tered in order to produce a hard quantification of this space. In this case, a
k-means procedure with k = 36 is used to generate the codebook. To generate
the BoF-SIFT feature, all the SIFT descriptors are substituted for the closest
SIFT descriptor in the codebook. Finally the texture description from a partic-
ular area is expressed as the keywords’ occurrence in this area. The descriptor
is normalized so that the sum of all the occurrences is 1.

In our application, the areas used for extracting BoF descriptors are deter-
mined by using Quick-Shift (QS) super-pixels, as is shown in figure 7. The figure
shows a codebook partitioning the feature space into 36 groups along with the
BoF descriptors for the 8 highlighted super-pixels. For the visualization of the
BoF features a heat color coding has been used to represent the occurrence of
each word within the codebook.

In order to quantitatively assess the performance of SIFT embedded within
a high-level feature descriptor such as BoF, a dataset of super-pixels with its
associated GT and BoF-SIFT descriptor has been build up. At this point a super-
pixel is eligible if it is larger than 50 pixels and is fully contained within the same
GT label. This second constrain has been relaxed for skin and rib classes allowing
super-pixels with 75% label contained to be eligible. The study has been carried
out only for all the tissue classes, thus excluding background and boundary
classes. To perform the evaluation 20 folds of 8 super-pixels (one per class) have
been selected forming a set of 152 samples for training and 8 samples for testing
at each round. The experiments have been repeated under the same conditions
with 3 different codebooks in order to take into account the variability introduced
by the codebook building. Again, for comparison purposes the experiment has
been repeated using both intensity and SIFT. The classification has been carried
out using Support Vector Machine (SVM). The TPR results achieved are 29 ±
3.6% for the case of intensity and 33.5 ± 2.3% for the case of SIFT, showing
their similar performance and the improvement from using high-level texture
descriptor over the low-level texture descriptor.

5 Conclusions

The present study was designed to explore the usage of SIFT feature space as
a texture for characterizing the different tissues present in a breast US image.
During the study, SIFT information have been used both as a low-level texture
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descriptor and encoded within a high-level texture descriptor using BoF. Perfor-
mance of using the SIFT space has been evaluated by comparison with intensity.
The results show that both performances are equivalent.

One of the limitaitons of this work is that all the calculations have been
performed using the 2D PCA projected space which does not include all the
variability of the data.

Despite these limitations, SIFT and intensity spaces produce similar results,
which encourage further studies on using SIFT texture descriptors characterizing
breast tissues in US images.
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