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Abstract. Mammographic density is strongly associated with breast
cancer, being considered one of the most important risk indicators for
the development of this type of disease. Likewise, the sensitivity of au-
tomatic breast lesion detection systems is significantly dependent on
breast tissue characteristics. Therefore, the measurement of density is
definitely useful for detecting breast cancer. The aim of this work is to
adapt our previously developed automatic breast tissue density classifi-
cation methodology for digitized mammograms to full-field digital mam-
mograms (FFDM), as well as to evaluate the possible improvements and
the classification results. After breast area extraction and peripheral en-
hancement, the method segments the breast area into fatty and dense
tissue, then morphological and texture features from each class are ex-
tracted and finally FFDM are classified according to a standard qual-
itative criteria. Results show a strong correlation (κ = 0.88) between
automatic and expert assessments and a better classification correction
percentage (CCP = 92%) compared to our earlier work.

Keywords: Breast density classification, full-field digital mammogra-
phy, feature extraction and selection, peripheral enhancement.

1 Introduction

Mammographic density represents the amount of radiodense tissue within the
breast and it is one of the strongest risk factors for breast cancer. Most of the
studies about the relationship between breast density and breast cancer report
that women with high dense breast have greater risk of breast cancer than those
with low dense breast [2]. Besides risk of developing breast cancer, density is also
related to the difficulty of detecting breast cancer [13]. The latest studies show
that even though breast density does not affect the sensitivity of microcalcifica-
tion detection Computer Aided Detection (CAD) systems, it significantly affects
mass detection, so the sensitivity of CAD systems for mass detection decreases
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in dense mammograms [15]. Therefore, breast density assessment is regarded as
an important tool to help radiologists and CAD systems to detect breast cancer.

Mammographic density can be measured both quantitatively and qualitatively.
Quantitative studies use the estimation of the percentage of breast density (dense
area divided by total area), the absolute dense area or the breast density vol-
ume [8].Whereas for qualitative assessment, theWolfe categories, the Tabár grade
or the Breast Imaging Reporting and Data System (BIRADS) score [12] can be
used. However, BIRADS classification is becoming a standard on the evaluation
of mammographic density where four patterns are used: (I) the breast is almost
entirely fat (< 25% glandular), (II) there are scattered fibroglandular densities
(25− 50% glandular), (III) the breast tissue is heterogeneously dense (51− 75%
glandular) and (IV) the breast tissue is extremely dense (> 75% glandular).

We have previously presented a breast tissue density classification method-
ology for digitized mammograms [14]. The main purposes of this work are to
extend our method for digitized mammograms to FFDM, to assess the bene-
fits of the updates, and finally to classify digital mammograms according to the
BIRADS score.

2 Original Methodology

The classification method is based on our previously developed algorithm for
breast tissue density classification [14]. The original method consisted in: (1)
preprocessing, (2) segmentation in fatty and dense tissue, (3) feature extraction
from both classes, and (4) classification according to BIRADS categories.

(1) Preprocessing: During the preprocessing step, the breast skin-line and the
pectoral muscle are detected using the approach of Kwok et al. [11]. Mam-
mograms are divided in breast area, background and pectoral muscle, and
only the breast area is kept.

(2) Segmentation: Gray-level information in combination with the fuzzy C-
means (FCM) clustering approach is used to group the pixels of the breast
area into fatty and dense tissue classes.

(3) Feature extraction: Once the breast area is divided into two classes, a set
of morphological and texture features for fatty and dense tissue are extracted.
As morphological features, the relative area and the first four moments of
the histogram are calculated and as texture features, the ones derived from
co-occurrence matrices.

(4) Classification: BIRADS classification of mammograms is performed using
three classifiers: K-Nearest Neighbor (KNN), the C4.5 decision tree and a
Bayesian classifier based on the combination of KNN and C4.5.

3 Updated Methodology

Although the general idea of the methodology is preserved, some changes have
been done to adapt the method to FFDM. The main differences are: (1) a periph-
eral enhancement is applied during the preprocessing stage and (2) additional fea-
ture selection techniques and classifiers are tested during the classification stage.
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(a) (b) (c)

Fig. 1. Example of the preprocessing process: (a) original image, (b) breast area seg-
mentation and (c) peripheral enhancement

3.1 Peripheral Enhancement

The first results of the FCM segmentation were not accurate enough due to the
presence of an overexposed area in the majority of mammograms (see Fig. 1(a)-
(b) and Fig. 2(a)). This is a known issue that happens during mammographic
acquisition because of breast thickness changes. During mammographic acqui-
sitions, breast is compressed with a tilting compression paddle, so the breast
thickness can be non uniform, being lower in the periphery and overexposing
this area. We decided to compensate the thickness variations in the periphery
of the breast by a peripheral enhancement method that is similar to the work
of Karssemeijer et al. [10] but using a multiplicative model. After extracting
the breast boundary and the pectoral muscle, the overexposed area is deter-
mined by Otsu’s thresholding and a correction factor is applied over each pixel
of the detected region. To calculate the correction factor, firstly a distance map
is generated using the distance from each point (x) in a mammogram (M) to
the breast skin line. From the furthest peripheral pixel to the closest, each pixel
value M(x) at distance i is divided by the mean value of its neighborhood at
distance i (Ni(x)) and multiplied by the mean value of its neighborhood at dis-
tance i+1 (Ni+1(x)), where Ni(x) = {t ∈ M at distance i : distance(t, x) ≤ k},
being k an experimentally set parameter (100 for our case). An example of the
overall process can be seen in Fig.1.

3.2 Feature Selection and Classification

Due to the large number of features, a feature-selection step is included selecting
the most effective subset of features. Various feature selection techniques are
evaluated (using WEKA [18] data mining software) such as Principal Component
Analysis [9], Gain Ratio attribute evaluation [17] or Support Vector Machine
(SVM) [6]. The classification of mammograms according to BIRADS categories
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is also performed with WEKA. We used more recent classifiers like Random
Forest [3] or SVM [4] and some combinations of classifiers as AdaBoost [5] or a
binary tree of SVM. The binary tree consists in firstly, classification of digital
mammograms in low or high breast density category and then low dense cases
are classified in BIRADS I or II and independently, high dense cases in BIRADS
III or IV. The reason was to convert our multiclass classification problem into
multiple binary classification problems as SVM is originally a binary classifier [1].

4 Results

The method was applied to the whole set of 236 FFDM acquired with a Selenia
FFDM system that form our local digital database. This database is composed
of left or right Medio-Lateral Oblique mammograms from 236 healthy women.

(a) (b) (c) (d)

Fig. 2. Example of the segmentation process: (a) original breast area, (b) FCM without
previous peripheral enhancement, (c) breast area after peripheral enhancement and (c)
FCM with previous peripheral enhancement.

4.1 Preprocessing and Segmentation

To determine not only the quality of the preprocessed images but also the seg-
mentation results, visual assessment was performed by one observer with more
than 10 years of experience in mammographic images. To evaluate the enhance-
ment process, the observer labeled the images as correctly enhanced or not and
a total of 83% of the images were considered to be improved with the peripheral
enhancement. An example of the enhancement results can be seen in Fig. 1(c).
To assess the segmentation improvements, the observer evaluated the differences
in the segmentation results when images were enhanced or not. Around 92% of
the segmentations obtained after image enhancement were considered similar or
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better than the ones obtained before enhancement. Specifically, the 45% were re-
garded as strictly better, therefore results show that there is a clear improvement
in the segmentation results when images are previously peripheral enhanced (see
Fig. 2).

4.2 Classification

Experts Classification. Four expert mammographic readers classified all the
images using BIRADS (current readers are different from the ones that partic-
ipated in the study [14]). The ground truth was determined by majority vote.
In case of tie, the median value was considered as the consensus opinion (like
in [14]).

Table 1(A)-(D) shows the confusion matrices for the classification of FFDM
for the four readers and the consensus opinion in year 2011. Like in our previous
work [14], the results show an evident interobserver variability, illustrating the
difficulty of the breast tissue density classification task. In low dense breasts
categories {BIRADS I & II}, expert B tends to classify in BIRADS I (17 mam-
mograms were classified as BIRADS I being BIRADS II) whereas experts C and
D tend to classify in BIRADS II (31 and 34 mammograms respectively were
classified as BIRADS II being BIRADS I). Note also that expert B repeats this
underestimation assignment when classifying in BIRADS II (8 mammograms
were classified as BIRADS II being BIRADS III) and expert C repeats the over-
estimation appointment when classifying in BIRADS III (11 mammograms were
classified as BIRADS III being BIRADS II). In high dense categories {BIRADS
III & IV}, expert D differs from the rest considering a few BIRADS III mam-
mograms (18/46) and a lot of BIRADS IV (27 mammograms were classified
as BIRADS IV being BIRADS III). When considering the individual BIRADS
classes, the correct classification percentage (CCP) values for expert A are really
high (99%, 98%, 85%, 100%, respectively). The results of the other experts are
less homogeneous and lower, except for expert C in BIRADS III with CCP =
91%. Using the Cohen’s kappa coefficient (κ) values, the agreement of expert A
with the consensus opinion belongs to the almost perfect category (κ = 0.94)
whereas the agreement of experts B, C and D with the consensus opinion belong
to the substantial category (κ = 0.78, 0.70, 0.61 respectively).

Furthermore, a few years ago, one of the experts classified the same database
according to BIRADS. Table 1(D)-(E) shows the confusion matrices for the
classification of FFDM for one reader and the consensus opinion, in two different
periods of time. Results reveal intraobserver variability in BIRADS II and III
classification. In the past the reader classified 88 mammograms as BIRADS II
whereas now the number increases to 120. On the other hand, 52 mammograms
were considered BIRADS III opposite to the current 20. Examining each class,
there are no significant variations in CCP values for BIRADS I (before: 58%,
after: 60%), BIRADS III (before: 37%, after: 39%), and BIRADS IV (before:
94%, after: 100%), opposite to the CCP values for BIRADS II (before: 59%,
after:97%).
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Table 1. (A)-(D) Confusion matrices for four expert radiologists and their consensus
opinion and (E) confusion matrix for one expert radiologist and the consensus opinion
in 2005.

Expert A Expert B Expert C Expert D Expert D
(Year 2011) (Year 2011) (Year 2011) (Year 2011) (Year 2005)

κ = 0.94 κ = 0.78 κ = 0.70 κ = 0.61 κ = 0.41

CCP = 96% CCP = 86% CCP = 79% CCP = 73% CCP = 57%

I II III IV I II III IV I II III IV I II III IV I II III IV

C
o
n
se
n
su
s I 84 1 0 0 85 0 0 0 54 31 0 0 51 34 0 0 49 36 0 0

II 1 86 1 0 17 67 4 0 0 77 11 0 0 85 2 1 0 52 35 1
III 0 0 39 7 0 8 36 2 0 2 42 2 0 1 18 27 0 0 17 29
IV 0 0 0 17 0 0 4 13 0 0 3 14 0 0 0 17 1 0 0 16

(A) (B) (C) (D) (E)

Automatic Classification. To evaluate our algorithm, we used a leave-one-out
methodology, i.e., each digital mammogram is analyzed by a classifier trained
using the mammograms of all other women in the database. Table 2(C) shows
the best confusion matrix after analyzing different feature selection and classifi-
cation methods. Specifically the confusion matrix is obtained using SVM feature
selection followed by binary tree of SVM classification and this combination
achieved a κ of 0.88 and a CCP of 92% (216/236). These values are higher than
the values of experts B, C and D although they are lower than the ones of the
expert A. When considering each BIRADS classes, the CCP for BIRADS I is
93% (79/85), for BIRADS II is 89% (78/88), for BIRADS III is 93% (43/46) and
for BIRADS IV is 94% (16/17). Note that BIRADS III reaches the highest CCP
value in comparison with the ones reached by the experts (A: 85%, B: 78%, C:
91%, D: 39%).

Table 2. Confusion matrices for MIAS, DDSM and digital databases classification
and their respectively consensus opinion: (A) Bayesian combination of KNN and C4.5
classifiers in MIAS, (B) Bayesian combination of KNN and C4.5 classifiers in DDSM
and (C) SVM Selection (SVS) + Binary Tree of SVM classification (BTSVC) in digital
database.

Bayesian MIAS Bayesian DDSM SVS + BTSVC
κ = 0.81 κ = 0.67 κ = 0.88

CCP = 86% CCP = 77% CCP = 92%

I II III IV I II III IV I II III IV

C
o
n
se
n
su
s I 79 1 3 4 58 25 23 0 79 6 0 0

II 3 86 6 8 15 295 26 0 5 78 5 0
III 0 2 85 8 12 46 196 1 0 2 43 1
IV 0 6 4 27 5 18 18 93 0 0 1 16

(A) (B) (C)
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Table 2(A)-(B) also shows the best confusion matrices of our work in [14]. In
this case the used classifier was a Bayesian combination of KNN and C4.5 clas-
sifiers and the classification method was tested using two public databases: the
Mammographic Image Analysis (MIAS) database [16] and the Digital Database
for Screening Mammography (DDSM) [7] which were obtained from scanned or
digitized film images. Although a direct comparison with our previous results
is difficult because the datasets used are different, in principle, the confusion
matrix of the digital database (Table 2(C)) seems to be better than the others
because there are less non-zeros off-diagonal elements. When comparing κ and
CCP values in digital and digitized databases (κ = 0.81, CCP = 86% (277/322)
for MIAS and κ = 0.67, CCP = 77% (642/831) for DDSM), they are slightly
better in the digital case. Examining the individual BIRADS classes, the CCP
for MIAS data set were 91%, 84%, 89% and 73% (respectively) and for DDSM
were 55%, 88%, 77% and 69% (respectively). All these values are also somewhat
better in the digital case (93%, 89%, 93% and 94%), although the highest differ-
ence is in BIRADS IV. Using the two-class classification (low vs high density),
the CCP for low case is 97% for digital, 89% for MIAS and 89% for DDSM,
whereas for high case is 97% for digital, 94% for MIAS and 79% for DDSM, so
in both cases, the percentage is higher for digital database. These results make
explicit the improvement reached with the updated method.

5 Conclusions

We have provided a breast density classification method that can be applied to
both digitized and digital mammograms. For our digital database we obtained
a κ of 0.88 and a CCP of 92% that represents a better agreement in 3 out of
4 radiologists. Results are also better than our previous work using MIAS and
DDSM, which indicates that the included changes improve the overall method.
In the future, we plan to work in two directions: (1) although the segmentation
results are qualitatively better when including peripheral enhancement, other
segmentation algorithms will be investigated; and (2) regions of interest will be
described using other texture features.
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