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Abstract

This paper proposes a method to learn deforma-

tion parameters off-line for fast multimodal registration

of ultrasound and magnetic resonance prostate images

during ultrasound guided needle biopsy. The registra-

tion method involves spectral clustering of the defor-

mation parameters obtained from a spline-based non-

linear diffeomorphism between training magnetic reso-

nance and ultrasound prostate images. The deforma-

tion models built from the principal eigen-modes of the

clusters are then applied on a test magnetic resonance

image to register with the test ultrasound prostate im-

age. The deformation model with the least registra-

tion error is finally chosen as the optimal model for

deformable registration. The rationale behind model-

ing deformations is to achieve fast multimodal registra-

tion of prostate images while maintaining registration

accuracies which is otherwise computationally expen-

sive. The method is validated for 25 patients each with

a pair of corresponding magnetic resonance and ultra-

sound images in a leave-one-out validation framework.

The average registration accuracies i.e. Dice similar-

ity coefficient of 0.927 ± 0.025, 95% Hausdorff dis-

tance of 5.14 ± 3.67 mm and target registration error

of 2.44 ± 1.17 mm are obtained by our method with a

speed-up in computation time by 98% when compared

to Mitra et al. [7].

1. Introduction

The appearance of malignant lesions in a Transrec-

tal Ultrasound (TRUS) guided needle biopsy of the
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prostate is mostly hypoechoic and the accuracy of find-

ing such lesions is typically 43% in sonography. Ap-

proximately 25% − 42% of cancer lesions can also be

isoechoic and the chance to diagnose hypoechoic ma-

lignant lesions from TRUS guided biopsy is ≤ 57% [3].

Magnetic Resonance (MR) images provide better soft-

tissue contrasts, therefore, fusion of pre-biopsy MR im-

ages onto interventional TRUS images might increase

the overall biopsy accuracy [9].

The prostate of the same patient may exhibit defor-

mations between the TRUS and the MR images. The

deformations are caused by the insertion of the endorec-

tal probe during the MR acquisition, bowel or gas in-

side the rectum and displacement of patient position

between the TRUS and MR imaging procedures. How-

ever, the deformation is mostly observed as flattening of

the part of the prostate adjacent to the rectum. There-

fore, in this paper we attempt to model such deforma-

tions of the prostate from a set of corresponding MR

images co-registered with the TRUS images. The de-

formable registration of the training set of TRUS and

MR images is done using the method of Mitra et al.

[7]. However, instead of the geometric approach used in

their work to establish point correspondences, we em-

ploy the shape-context based method of Belongie et al.

[1] and Bhattacharyya distance [2] to set contour point

correspondences across the TRUS and the MR prostate

images.

The deformable registration in [7] is based on the

minimization of the difference in segmented prostate

regions where both the TRUS and MR regions are un-

der the influence of a set of polynomial functions. The

MR image transformation employs a thin-plate spline

(TPS) interpolation. The combination of TPS based in-

terpolation and the set of polynomial functions ensures

a smooth diffeomorphic transformation of the MR im-

age at the cost of increased computation time. However,

the MR images need to be registered with the TRUS
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Figure 1. Point correspondences example. (a) points in

TRUS, (b) point correspondences of (a) in MR.

images in near real time during prostate biopsy. There-

fore, to achieve fast registration we propose to model

the TPS weight parameters obtained from the diffeo-

morphic registration of training TRUS-MR images and

then apply the modeled parameters to register a new

set of TRUS-MR images. Hence, we propose to clus-

ter the deformation vectors using spectral clustering ap-

proach and the principal eigen-modes of the deforma-

tion vectors of each of these clusters in a Gaussian space

form the deformation models. The registration of a test

set of TRUS-MR images involves recovering the affine

parameters from the established point correspondences

and the TPS weight parameters of each of the deforma-

tion model are consecutively applied. The model with

the least registration error between the TRUS-MR im-

ages is chosen as the optimal deformation model.

The remaining paper is organized in the following

manner. Section 2 describes the proposed method, Sec-

tion 3 provides the results related to registration accura-

cies and the computation time, followed by the conclu-

sions in Section 4.

2. The Proposed Method

The proposed method is based on the following com-

ponents: 1) Point correspondences established on both

the TRUS and MR images that are required for both the

training and testing phases, 2) the non-linear diffeomor-

phic framework required for deformation of the train-

ing MR images, 3) spectral clustering of TPS weight

vectors during the training and 4) linear estimation of

deformation parameters applied on the test MR image.

The following paragraphs provide descriptions of the

afore-mentioned components.

Point Correspondences: In this work we use manu-

ally segmented prostate shapes for accurate evaluation

of our method. However, in future we plan to use some

automatic prostate segmentation methods in TRUS and

MRI such as proposed in [6]. The segmented prostate

contour points are uniformly sampled using fixed Eu-

clidean distance. Let the number of uniformly sampled

points now be represented as n, then each sample point

ci may be represented by a shape descriptor that is a

n − 1 length vector of log-polar relative distances to

points cj , where i 6= j. The shape descriptor is binned

into a histogram that is uniform in log-polar space and

this histogram is the shape-context representation of a

contour point [1] i.e. ci is represented by a histogram

hi(k, θ) such that

hi(k, θ) = # {cj , i 6= j : (ci − cj) ∈ bin(k, θ)} , (1)

where k = log(
√

(xi1 − xj1)2 + (xi2 − xj2)2) and

θ = tan−1 xj2−xi2

xj1−xi1
of the relative distance (ci − cj),

where, ci = (xi1, xi2) and cj = (xj1, xj2). As sug-

gested by Belongie et al. [1], a total of 5 bins are con-

sidered for k and 12 bins for θ that ensures that the his-

togram is uniform in log-polar space.

In this work we choose the Bhattacharyya distance

[2] between the shape-context histograms of two shapes

to find the best point correspondence since it is fast to

compute. Thus, to match a point ci in a shape to a point

c′j in another shape, the Bhattacharyya coefficients be-

tween the shape-context histogram of ci and all c′j are

computed and the c′j that maximizes the relation in Eq.

(2) is chosen as the corresponding point.

argmax
c′
j

5
∑

k=1

12
∑

θ=1

√

ĥi(k, θ).ĥ′
j(k, θ), (2)

where, ĥi(k, θ) and ĥ′
j(k, θ) are the normalized shape-

context histograms of ci and c′j respectively.

The smoothness of the transformation between

the MR and TRUS images may be guaranteed if

the prostate mask centroids are also considered in

addition to the contour correspondences. The set of

correspondences established will be referred as pmi and

p
f
i , where i = 1, 2, . . . , 9 for the moving and fixed

images respectively in the following sections. Fig. 1

shows the 8 contour correspondences and the centroid

of the prostate overlaid on the TRUS and MR images.

Non-linear Diffeomorphism: Point correspon-

dences established on a pair of training TRUS-MR

images are used to align the moving MR image with the

fixed TRUS image. Assuming that x = [x1, x2] ∈ R
2

and y = [y1, y2] ∈ R
2 are the moving MR and fixed

TRUS images respectively, a system of nonlinear

equations is constructed as proposed in [4, 7]:
∫

If

ωt(y)dy =

∫

Im

ωt

(

ϕ(x)
)

|Jϕ(x)| dx. (3)

ϕ(x) = [ϕ1(x), ϕ2(x)] is the deformation field, |Jϕ(x)|
is the Jacobian determinant of the transformation at x

of the moving image. Each nonlinear function ωt(.),
t = 1, . . . , l generates one equation, yielding a sys-

tem of l equations [4]. The transformation ϕ(x) is a
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TPS interpolation of the moving image guided by the

set of points established on the same and is given by

Eq. (4) where, avu are the 6 affine parameters, wiv are

the TPS weight parameters for the control points with

i = 1, . . . n, v = 1, 2, u = 1, 2, 3, U(r) = r2 log r2 is

the radial-basis function and ‖.‖ is the Euclidean norm.

ϕv(x) = av1x1 + av2x2 + av3 +

n
∑

i=1

wivU(‖pmi − x‖),

s.t.

n
∑

i=1

wiv = 0 and

n
∑

i=1

pmi wiv = 0 (4)

The diffeomorphic framework also considers the cor-

respondence localization error across the moving and

fixed images and the regularization of the bending en-

ergy of the TPS as

1

n

n
∑

i=1

∥

∥

∥
p
f
i − ζ(pmi )

∥

∥

∥

2

σ2

i

+ λETPS = 0, (5)

where σ2

i is the sum of the variances of both the mov-

ing and fixed point correspondences, ETPS = ∆2ζ

with ζ(pmi ) = p
f
i . The adopted set of non-linear

functions are the power functions ωt(x) = xat

1
xbt
2

,

with (at, bt) ∈
〈

(0, 0), (1, 0), (0, 1), (1, 1), . . . , (5, 5)
〉

which provides sufficiently many equations to obtain

a least squares estimate of the 9 × 2 TPS weights and

6 affine parameters. The solution of Eq. (3) with the

constraints in Eq. (4) and Eq. (5) is then obtained via

the Levenberg-Marquardt algorithm.

Spectral clustering: The deformation parameters

i.e. the TPS weight parameters obtained for the set

of training fixed and moving images are grouped into

similar deformation clusters by a spectral clustering

approach that determines the number of clusters

automatically. Since, the TPS weight parameters are

essentially row vectors of length 9 × 2 for x- & y-

directions, we firstly compute the resultant direction

vector. Then the cosine similarities of P = 9 resultant

deformation vectors of the training set are used to

construct a P × P similarity matrix W . The objective

is to determine k disjoint clusters and the algorithm

may be defined in the following steps [8]:

1) Form the similarity matrix W ∈ R
P×P , i.e.

Wij =
Wi·Wj

‖Wi‖‖Wj‖
, where, Wii = 1.

2) Define the diagonal degree matrix D, where Dii is

the sum of the row elements of the Wi.

3) Form normalized Laplacian L as D−1/2WD−1/2.

4) Get the first k eigenvectors of L to build the matrix

U ∈ R
P×k by stacking the eigenvectors into columns.

5) Normalize the matrix U to V with unit-length row.

6) Treating each row of V as a point in R
k, apply

K-means clustering to re-normalized V matrix.

Table 1. Registration accuracies and computation time for

different methods. HD and TRE are in (mm) and time is in

seconds.

Methods Mitra et al. [7] DEF-NL DEF-L

DSC 0.982±0.004 0.978±0.010 0.927±0.25

HD 1.54±0.46 2.05±1.26 5.14±3.67

TRE 1.90±1.27 1.71±1.23 2.44±1.17

Time 320.79±76.01 106.34±32.45 4.99±3.52

Similar deformation vectors are now grouped into

k disjoint clusters, where k is the number of largest

eigen-vectors comprising 88% of the total variations

such that each cluster consists of more than one

deformation vector.

Linear estimation: Geva et al. [5] showed an

off-line linear estimation of basis functions from a

deformation space. They performed a PCA of the

coefficients of a bivariate B-splines transformation

to represent them by their principal eigen-modes.

Similarly, given a test moving image we may transform

it by the linear estimation of the TPS deformation

parameters i.e. wiv =
∑Ns

s=1
asbsiv. Ns is the number

of principal axes on which the coefficients are projected

after PCA with as and bsiv as the respective eigen-value

and the eigen-vector. Therefore, the transformation

ϕ(x) of Eq. (3) may be written as

ϕv(x) = av1x1 + av2x2 + av3+

+

n
∑

i=1

Ns
∑

s

asbsivU(‖pmi − x‖) (6)

The eigen-modes of k deformation clusters with an

average of 3 clusters comprise of 95% variation

of the principal modes and its Gaussian space of

−2σ,−1σ, . . . ,+2σ, with σ as the standard deviation

provide 5 deformation models for each cluster. The

affine parameters of the TPS transformation are ob-

tained by sum-of-squared differences minimization of

the point correspondences established on the test mov-

ing and fixed images. Finally to obtain the optimal

transformation of the test moving image, the regis-

tration error is computed as the percentage of non-

overlapping area in prostate foreground and the one

with least registration error is considered as the final

transformation.

3. Experiments and Results

The validation of our new method is done using 25
patients axial mid-gland slices for both the TRUS and

MR images with an average size of 250 × 200 pixels

with each pixel dimension being 0.2734× 0.2734 mm.

A leave-one-out approach is used where the deforma-

tion models are formed from 24 datasets and are applied
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Figure 2. Qualitative registration results. The first two columns show the fixed TRUS and the moving MR images respectively. The

3
rd and the 4th columns show the registration results for the proposed method without the deformation learning and the remaining columns

show the results with the deformation learning.

to transform the remaining one. The registration accu-

racy is evaluated in terms of Dice similarity coefficient

(DSC) that measures the global overlap of the prostate

regions, 95% Hausdorff distance (HD) that measures

the contour accuracy and target registration error (TRE)

that measures the extent of overlap of the anatomical

targets in the transformed MR image and the TRUS im-

age. Table 1 shows the registration accuracies for the

method of Mitra et al. [7] with 20 patient datasets,

the proposed method with non-linear deformation on

improved point correspondences without deformation

learning abbreviated as DEF-NL and that with the de-

formation estimation (DEF-L) i.e. non-linear deforma-

tion applied to a set of training TRUS-MR images, spec-

tral clustering to group deformations and thereby apply-

ing linearly estimated deformation parameters to trans-

form a test moving MR for 25 datasets in a leave-one-

out framework.

It is to be noted in Table 1 that our previous method

in [7] using 37 correspondences needs more compu-

tation time than our proposed methods DEF-NL and

DEF-L with 9 point correspondences. The registration

accuracies of DEF-NL are comparable to [7]. The over-

lap accuracies in terms of DSC and HD for DEF-NL

are statistically significantly better with Student’s t-test

p < 0.0001 and p < 0.001 respectively than DEF-L.

The TRE for DEF-NL is also slightly better than that

of DEF-L with a statistical significance of p < 0.005.

Nevertheless, the computation time of DEF-L shows a

statistically significant reduction with p < 0.0001 than

the remaining methods. Fig. 2 shows the registration

results for 2 patients, where it is observed that methods

DEF-L and DEF-NL produce similar results. The accu-

racy of our method DEF-L is qualitatively comparable

with that of Xu et al. [9] that demonstrates a near real-

time TRUS-MR prostate fusion method with an average

registration error of 2.3 ± 0.9 mm but requires 15 s for

the registration process. Our method was implemented

in MATLAB 2009(b) with 1.66GHz processor and 2GB

memory. The method shows a significant speed-up of

computation time when the off-line deformation learn-

ing approach is employed while maintaining a clinically

significant average target registration error of < 3mm.

4. Conclusions

A method of deformable registration between TRUS

and MR prostate images with prior learning of deforma-

tion parameters has been proposed. Spectral clustering

has been used to group similar deformations from train-

ing TRUS-MR images and thereafter the eigen-modes

of deformations for each deformation cluster in a Gaus-

sian space have been used to deform a new MR image

corresponding to the TRUS image. The method is fast

and efficient to transform a moving image with good

registration accuracy and may be used during prostate

biopsy if programmed on GPU. The accuracy of result-

ing deformation may be further increased if more pa-

tient sets are used to learn the deformation parameters.
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