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Abstract

Inter patient shape, size and intensity variations

of the prostate in transrectal ultrasound (TRUS) im-

ages challenge automatic segmentation of the prostate.

In this paper we propose a variational model driven

by Mumford-Shah (MS) functional for segmenting the

prostate. Parametric representation of the implicit

curve is derived from principal component analysis

(PCA) of the signed distance representation of the la-

beled training data to impose shape prior. Posterior

probability of the prostate region determined from ran-

dom forest classification facilitates initialization and

propagation of our model in a MS energy minimization

framework. The proposed method achieves mean Dice

similarity coefficient (DSC) value of 0.97±0.01, with

a mean Hausdorff distance (HD) value of 1.73±0.24

mm when validated with 24 images from 6 datasets in a

leave-one-patient-out validation framework. The model

achieves statistically significant t-test p-value<0.0001

in mean DSC and mean HD values compared to tradi-

tional statistical models of shape and appearance.

1. Introduction

Prostate volume determined from segmented TRUS

images serves as an important parameter in determin-

ing presence of benign or malignant tumor during di-

agnosis of prostate diseases. Segmented 2D axial mid

gland slices in TRUS images are used to estimate

prostate volume using planimetry calculation, prolate

ellipse volume calculation, and ellipsoid volume mea-
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surement [6]. However, accurate automatic or semi-

automatic computer aided prostate segmentation from

TRUS images is a challenging task due to low con-

trast of TRUS images, speckle and shadow artifacts,

inter-patient prostate shape, size and deformation varia-

tions and heterogeneous intensity distribution inside the

prostate gland. To deal with these challenges we pro-

pose a MS functional [10] based variational framework

to segment the prostate. Implicit shape prior of the para-

metric curve is derived from PCA of the signed distance

functions (SDFs) of the labeled training images. Poste-

rior probabilities of the prostate region derived in a su-

pervised learning framework of random forest is used

in initialization and evolution of the parametric curve.

The parameters of the evolving curve are determined

from minimization of region and contour based energy

as proposed in [1]. The key contributions of this work

are: (1) The use of a random forest framework to obtain

a soft classification of the prostate. (2) The use of shape,

contour and probability prior information for evolution

of levelsets.

2. Proposed Segmentation Framework

The proposed method is developed on two major

components: 2.1) supervised learning framework of

random forest to determine posterior probability of a

pixel being prostate, and 2.2) adapting implicit shape,

boundary and intensity prior model of [1] to incorpo-

rate the posterior probabilities of the prostate region for

initialization and evolution of the implicit curve.

2.1 Random forest based classification

In TRUS images prostate region have a heteroge-

neous intensity distribution and depending on the ac-

quisition parameters the region based statics (mean and

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-0-9 ©2012 ICPR 121



standard deviation) of the prostate may not significantly

vary from the background. Moreover, shadow arti-

facts and speckle may adversely affect the region based

statistics (determined from intensities) of the prostate

and the background. Significant separation of the in-

tensities of the prostate and the background is essential

for MS energy minimization framework. Moreover, in-

accurate region based statistics of the prostate and the

background adversely affect levelsets propagation and

hence segmentation accuracies. Therefore, to reduce

intensity variations inside the prostate region, and sig-

nificantly separate the intensities of the prostate and the

background we propose to determine the posterior prob-

ability of the image pixels being prostate in a supervised

learning framework of random forest and substitute in-

tensities with probabilities to achieve a better represen-

tation of the prostate and the background. Decision

trees are discriminative classifiers which are known to

suffer from over-fitting. However, a random decision

forest or random forest achieves better generalization

by growing an ensemble of many independent decision

trees on a random subset of the training data and by

randomizing the features made available at each node

during training [2].

During training, rigidly alignment of the training

datasets ensures minimization of pose variations. Sim-

ilarly, inter-patient intensity variations are normalized.

The data consists of a collection of V = (X,F ), each

centered at 3 × 3 neighborhood of pixels. Where,

X = (x, y) denotes the pixel position and the feature

vector F constitutes of the mean and standard deviation

of the 3× 3 pixel neighborhood. Each tree τi in random

forest receives the full set of V , along with the label

and the root node and selects a test to split V into two

subsets to maximize the information gain. A test con-

stitutes of a feature (like the mean of a pixel neighbor-

hood) and a feature response threshold. The left and the

right child nodes receive their respective subsets of V
and the process is repeated at each child node to grow

the next level of the tree. Growth is terminated when

either the information gain is minimum or the tree has

grown to a maximum depth specified. Each decision

tree in the forest is unique as each tree node selects a

random subset of features and threshold.

During testing, the test image is rigidly aligned to

the same frame of the training datasets and its intensi-

ties are normalized. The pixels are routed to one leaf

in each tree by applying the test (the threshold selected

during training). Each pixel of the test dataset is prop-

agated through all the trees by successive application

of the relevant binary test to determine the probability

of belonging to class c. When reaching a leaf node

lτ , where τ ∈ [1...,Γ] being the trees, the posterior

probabilities (Pτ (c|V )) are gathered in order to com-

pute the final posterior probability of the pixel defined

by P (c|V ) = 1

Γ

∑

Γ

τ=1
Pτ (c|V ).

2.2 Shape, region and contour based levelsets

The problem of segmenting the prostate using a
shape prior, global and local image information could
be resolved by minimizing,

F = Fshape + Fregion + Fboundary (1)

The process of building the shape model of the prostate
starts with the alignment of n segmented prostate im-
ages of the training set with intensity based affine regis-
tration to minimize pose differences. The boundaries of
each of the n aligned prostates are embedded as the zero
levelset of n separate SDFs Ψ with negative distances
assigned to the inside and positive distance assigned to
the outside of the prostate boundary. The mean levelset
function of the prostate is computed from the average

of these n SDFs, Φ = 1/n
∑n

i=1
Ψi. To extract the

shape variations of the prostates Φ is subtracted from
each of the n SDFs to create n mean-offset functions
Ψ̃. Each 2D mean-offset Ψ̃i is reshaped into a column
vector. Then the shape variability matrix of n prostates

is given by S =
[

ψ̃1, ψ̃2, ...., ψ̃n

]

. PCA of S yields the

sorted matrix of principal componentsWk (k is 98% of
the total shape variations) and a vector of eigen coef-
ficients xpca. With our dataset 5 principal components
made up of 98% of the total shape variations. Hence the

shape model is given as φ̂ = Φ+Wkxpca. The process
of building the shape model is illustrated in Fig. 1. The
energy associated with the shape term may be given as,

Fshape =

∮

1

0

φ̂2 (xpca, hxT
(C (q)))

∣

∣

∣
C

′

(q)
∣

∣

∣
dq (2)

φ̂2 (xpca, hxT
(C (q))) = φ̂2 (xpca, C (q)) ≈

∣

∣

∣
Ĉxpca − C (q)

∣

∣

∣

2

where C is the active contour at point q, xpca is the
vector of eigen coefficients and hxT

is an element of a
group of geometric transformation parameterized by xT
the geometric transformation matrix. This essentially
evaluates the shape difference between the contour C

and the zero levelset Ĉ of the shape function φ̂ as shown
in Fig. 2. By minimizing this energy we restrict the lev-
elset evolution to follow prostate shape prior. As dis-
cussed in 2.1 intensity of the image is substituted with
posterior probabilities obtained with random forest. Ac-
cording to Chan and Vesse [3] MS functional model the
curve parameters were determined from minimization
of region based energy given by,

Ecv =

∫

Ru

(I − κ)2dA+

∫

Rv

(I − γ)2dA (3)

Evolution of the curve ensured segmentation of the im-
age into two regions u and v with mean intensities κ
and γ without any specific shape. In our model, the MS
functional of [3] is modified to incorporate shape prior.
The region based energy term as a function of the shape
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Figure 1. (a) The aligned contours of the training prostate

images. (b) SDFs of the aligned training dataset with black

contour showing the mean shape. (c), (d), (e), and (f) show

the first four primary eigenmodes of variations of the prostate.

(h) Shows the mean shape (black contour) Φ and (g) and (i)

represent the variance in mean shape (black contour) with Φ±
2λ1 given by the magenta contour. From (b) to (i) red signifies

high values and blue signifies low values.

Figure 2. Illustration of shape function φ̂(xpca, C(q)).
The green contour gives the shape model and the red contour

shows the evolving contour. The objective is to minimize the

distance between the evolving contour and the shape model.

φ̂ is given as,

Fregion =

∫

Ω

ΘinH
(

φ̂ (xpca, xT )
)

dΩ (4)

+

∫

Ω

ΘoutH
(

−φ̂ (xpca, xT )
)

dΩ

where H (.) is the Heaviside function and Θr =

|I − µr|
2
+ µ |▽µr|

2
and µ is the mean r = in or out

of the prostate shape prior. Gradient descent minimiza-
tion of the energy term aids in determining the shape
xpca and the pose parameters xT of the evolving curve
to drive the shape model towards a homogeneous in-
tensity region with the shape of interest. However, the
model cannot handle local deformation like irregular
boundaries of the prostate. Hence a new energy term
is introduced as Fboundary that aids in capturing the lo-
cal edge variations around the global shape variations.
Local edge information is captured by the energy term
given as,

Fboundary =

∮

1

0

g (|▽I (C (q))|)
∣

∣

∣
C

′

(q)
∣

∣

∣
dq (5)

Table 1. Prostate segmentation quantitative comparison

(HD, and MAD in mm.) Statistically significant values are

italicized
Method DSC HD MAD

AAM [4] 0.94±0.03 4.92±0.96 2.15±0.94

Ghose [8] 0.95±0.02 3.82±0.88 1.26±0.51

Ghose [9] 0.96±0.01 2.80±0.86 0.80±0.24

Our Method 0.97±0.01 1.73±0.24 0.42±0.09

where g (·) is the Gaussian kernel applied on the image

gradient (∇I). The energy minimization of F of Eq. (1)

is performed using the gradient descent optimization.

3. Experimental Results and Discussions

We have validated the accuracy and robustness of

our method with 24 axial mid-gland TRUS images of

the prostate with a resolution of 354×304 pixels from

6 prostate datasets in a leave-one-patient-out evaluation

strategy. Manual segmentations performed by an ex-

pert radiologist were validated by an experienced urol-

ogist to prepare the ground truth. Both doctors have

over 15 years of experience in dealing with prostate

anatomy, prostate segmentation, and ultrasound guided

biopsies. For the random forest based classification, we

have fixed the number of trees to 100, the tree depth to

30 and the lower bound of information gain to 10−7.

These parameters were chosen empirically as they pro-

duced promising results with the test images. We have

used most of the popular prostate segmentation evalua-

tion metrics like DSC, 95% Hausdorff Distance (HD),

and MAD, to evaluate our method. Furthermore, the re-

sults are compared with the traditional AAM [4], and

to statistical shape and texture model of [8] and proba-

bility prior model of [9]. It is observed from Table 1

that a implicit representation of the evolving contour

propagating on the probabilistic representation of the

prostate regions in TRUS images significantly improves

segmentation accuracy when compared to [4, 8, 9]. As

opposed to the manual initialization of [4, 8], we use

the posterior probability information for automatic ini-

tialization. We achieved a statistically significant im-

provement in t-test p-value<0.0001 in mean DSC, HD,

and MAD. As observed in Table 1 better segmentation

acuracies is achieved with texture features [8] and pos-

terior probabilites [9] compared to the use of image in-

tensities for curve evolution. However, use of poste-

rior probability and implicit curve representation in our

work provides better results when compared to [8, 9].

Working of our model and performance of different lev-

elsets are illustrated in Fig. 3. To provide qualitative

results of our method we present a subset of results in

Fig. 4. The first row shows the results achieved with

AAM [4] and the second row shows the results achieved
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Figure 3. Illustration of working of our model and quali-

tative results of different levelsets. (a) is the image to be seg-

mented, (b) random forest classification, (c) contour energy,

(d) region based energy, (e) shows the initial levelsets (red

contour) with SDFs and (f) segmentation with our model, (g)

segmentation with levelsets [3], (h) segmentation with levelset

[3] on posteriors, (i) segmentation with levelsets [1] on inten-

sity. In (f), (g), (h), and (i) green contour is the ground truth

and red contour is the obtained segmentation.

with our method. A quantitative comparison of dif-

ferent prostate segmentation methodologies is difficult

in absence of a public dataset and standardized evalu-

ation metrics. Nevertheless, to have an overall qualita-

tive estimate of the functioning of our method we have

compared with some of the existing works in Table 2.

Analyzing the results we observe that our mean DSC

value is similar to DSC value of [7]. However, it is to

be noted that our MAD value is better compared to [11],

[5] and [7]. From these observations we may conclude

that qualitatively our method performs well in overlap

and contour accuracy measures.

4. Conclusions

A novel variational framework for curve evolution

based on MS functional based on posterior probabil-

ity information of the prostate region with the goal of

segmenting the prostate in 2D TRUS images has been

proposed. Our approach is accurate, and robust to sig-

nificant shape, size and contrast variations in TRUS im-

ages when compared to traditional AAM and some of

the works in literature.

Figure 4. The green contour gives the ground truth and the

red contour gives the obtained result. Row 1 shows the results

achieved with AAM and row 2 shows results of our model for

the corresponding prostates.

Table 2. Qualitative comparison of prostate segmenta-

tion; Ov=Overlap, Ac=Accuracy, Dt=Distance, px=pixels,

mm=millimeter, Ds=datasets, im=images

Reference Area Ac Contour Ac Ds

Cosio [5] - MAD-1.6±0.6 mm 22 im

Yan [11] - MAD-2.10±1.02

mm

19 Ds/

301 im

Ghose [7] DSC 0.97±0.01 MAD-0.49±0.20

mm

23 Ds/

46 im

Our

Method

DSC 0.97±0.01 MAD-1.56±0.32

px/0.42±0.09 mm

6 Ds/

24 im
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