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Abstract—We present here an approach for automatic mass
diagnosis in mammographic images. Our strategy contains
three main steps. Firstly, region of interests containing mass
and background are segmented using a level set algorithm
based on region information. Secondly, the characterisation of
each segmented mass is obtained using the Zernike moments
for modeling its shape. The final step is the diagnosis of
masses as benign or malignant lesions, which is done using
the Gentleboost algorithm that also assigns a likelihood value
to the final result. The experimental evaluation, performed
using two different digitised databases and Receiver Operating
Characteristics (ROC) analysis, proves the feasibility of our
proposal, showing the benefits of a correct shape description
for improving automatic mass diagnosis.
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I. INTRODUCTION

Breast cancer is still a significant health problem in the

world. It is estimated that between one in eight and one

in twelve women will develop breast cancer during their

lifetime [1]. Up to date, there is no guaranteed way to pre-

vent breast cancer, and efforts are focused on the detection

of abnormalities at an early stage that is fundamental for

improving survival rates. Mammography is still the most

effective and reliable method for an early breast cancer

detection, since it allows the detection of subtle scale signs

such as masses.

Radiologists tend to describe a mass according to its

shape, margin characteristics, optical density, and other

associated findings. The mass shape is one of the most

important features to diagnose a mass as being benign or

malignant. Normally, a benign process is associated with

the presence of circular or oval shapes, while in contrast

spiculated masses are more probable to be the sign of a

malignant process. Figure 1 shows three benign and three

malignant masses (the two first columns show typical cases

of benign and malignant processes while the last one shows

atypical cases).

The diagnosis of masses is a challenging task, even for an

expert radiologist, since the mass morphological aspects can

be very subtle and difficult to diagnose. In fact, it is reported

that less than 30% of all breast biopsies show a malignant

pathology [2], [3]. Hence, computer-aided approaches are

being proposed to support radiologists in this discrimination

of benign and malignant lesions [4]. These approaches are

usually structured in three steps: segmentation of the region

of interest (ROI – a crop of the mammogram containing

the lesion), characterisation of the segmented masses, and a

posterior classification.

According to these steps, our approach for automatic mass

diagnosis can be described as follows: the segmentation

step is based on a region based level set segmentation,

recently used in mass segmentation by Yuan et al. [5]. The

characterisation step presents the main novelty of our paper

since, to our knowledge, we present the first attempt to use

the Zernike moments [6] for describing the mass shape.

The final classification step is performed in terms of the

Gentleboost algorithm [7].

The rest of this paper is structured as follows. The

following three sections introduce the level set segmenta-

tion, the Zernike moments, and the Gentleboost algorithm,

respectively. Experimental results performed in two different

databases are presented in Section V. The paper finishes with

the conclusions and further work.

II. ROI SEGMENTATION USING A LEVEL SETS

APPROACH

The first step of our approach for mass diagnosis is the

segmentation of a mass. As already mentioned, we use

a geometric active contour based approach for this task.

However, note in Figure 1 that the segmentation of the mass

contour is not a trivial task, even for expert radiologists.

Notice also that to perform the diagnosis we do not use all

the image but ROIs.

In this paper we use the active contour approach of Chan

and Vese [8] which relies on intrinsic properties of the region

to be segmented, instead of using gradient information.

Hence, the energy function modelling the evolving contour

C is mathematically defined as
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Figure 1. The upper row shows three mass examples being benign masses,
while the bottom row shows three mass examples being malignant masses.
Note that although round masses without spicules tend to be benign process,
they can also be malignant process (last figure of bottom row). On the
other hand, the presence of spicules does not necessarily be associated
with malignant process (last figure of upper row).

E(c1, c2, C) = µ length(C) +

+ λ1

Z

in(C)

|f(x, y) − c1|
2
dxdy +

+ λ2

Z

out(C)

|f(x, y) − c2|
2
dxdy (1)

where µ, λ1, and λ2 are fixed weight parameters. The first

summand prevents the contour from converging to a small

area, while the second and the third terms measure the

homogeneity of the inner (with mean c1) and outer (with

mean c2) regions of the image f(x, y), respectively. This

equation is solved by level set theory, where the 2D contour

is represented as the zero level set of the 3D function φ.

In order to avoid the intrinsic re-initialising term of level

sets, Li et al [9] proposed to add the following term in the

model:

ν
1

2

∫
Ω

(1 − ||∇φt||)
2dxdy (2)

where ν is another weighting parameter and the integration

is over the whole image space (Ω). Therefore, as shown in

the work of Yuan et al. [5], the differential equation that

defines the model is:

∂φ

∂t
= δǫ[µκ − λ1(f(x, y) − c1)

2 + λ2(f(x, y) − c2)
2]

+ νdiv[(1 −
1

||∇φ||
)∇φ] (3)

where δǫ is the Dirac measure and κ the curvature of the

contour that incorporates also the regularisation term shown

in Eq. (2).

After the segmentation, the ROI may contain several

disconnected objects. Hence, for obtaining a single object

mass we selected the largest one using the connected

component labeling (CCL) algorithm. Moreover we apply

a close morphologic operation to obtain a smooth contour.

Note that we used a small round morphologic structural

element (size 3) to avoid removing possible spiculation.

III. ROI DESCRIPTION USING THE ZERNIKE MOMENTS

Once the mass is segmented from the background, we

describe its shape using the Zernike moments, which have

been previously used as object descriptors in several pattern

recognition and image retrieval applications with significant

results [6]. The Zernike moments are a set of descriptors

obtained using complex kernel functions based on Zernike

polynomials, which are defined with an order p and a

repetition q (being |q| ≤ p, |p − q| even) as:

Zpq =
p + 1

π

∫ ∫
x2+y2≤1

V ∗
pq(x, y)g(x, y)dxdy (4)

where g(x, y) represents the analysing (segmented) mass

shape and V ∗ is the complex conjugate of function V usually

defined in polar coordinates as:

Vp,q(ρ, θ) =

p∑
k = |q|

|p − k|even

(−1)
p−k

2
p+k
2 !

p−k
2 !k−q

2 !k+q
2 !

ρkeiqθ (5)

The main characteristics of the Zernike moments are

their ability to describe a shape with minimum information

redundancy (due to their orthogonality property), the

robustness in noisy environments, and the fact that they

are invariant to an arbitrary rotation and multi-level

representation of the describing shape. In this work we

extracted the 13 first order moments, which resulted in a

set of 49 features per mass.

IV. ROI CLASSIFICATION BY MEANS OF THE

GENTLEBOOST ALGORITHM

Once the segmented masses are translated to feature

vectors, the learning step is performed using the Gentleboost

classifier. Boosting algorithms are based on the simple idea

that the sum of weak classifiers can produce a strong clas-

sifier. In the Gentleboost algorithm [7] the weak classifiers

(ht) are simple regression stumps with one of the features

(x), so at each round t the feature with less error is selected:

ht(x) = a δ(xi > th) + b (6)

where th is a threshold determining if pattern x belongs to

the object class, xi is the i’th dimension of x, and a and b

are parameters selected to minimise the error of the classifier

(a is the regression slope and b the offset):

e =
∑

(w (y − (a (xi > th) + b))2) (7)
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At each round the training data weights (w) are updated,

increasing in the following round the possibility of classify-

ing correctly the previous incorrectly classified points. In the

GentleBoost algorithm the data weights are updated using:

wt+1 = wt ey·ht(x) (8)

When testing a new data, the final classifier is computed

using the weak classifier created at each round of the

boosting. Therefore, the testing data is classified according

to the sign of the sum of weak classifiers:

H(x) =
∑

h(x) (9)

The absolute value of H(x) shows the confidence of the

classified data.

V. RESULTS

The described approach has been evaluated using two dif-

ferent digitised database: the MIAS and the DDSM. We ex-

tracted all the diagnosed masses of the MIAS database [10],

which constituted a set of 57 ROIs, 37 diagnosed as benign

masses, while the 20 remaining were malignant. The spatial

resolution of the images was 50µm x 50µm and the optical

density was linear in the range 0 − 3.2 and quantised to 8
bits. On the other hand, we used a large subset of 818 ROIs

extracted from the DDSM database [11], 397 diagnosed as

benign and 421 as malignant. The mammograms of the

DDSM were digitised using different mammograms: a DBA

M2100 ImageClear (42×42 µm pixel resolution), a Howtek

960 (43.5×43.5 µm pixel resolution), a Lumisys 200 Laser

(50 × 50 µm pixel resolution), and a Howtek MultiRad850

(43.5 × 43.5 µm pixel resolution). All the images were 12
bits per pixel. In both databases, the ROIs were manually

extracted from the respective annotations, hence the mass

was always centred at the ROI (see Figure 1 for examples).

Note that in the case the mass is not centred but fully

included in the ROI the level set segmentation approach is

also able to provide good results.

The evaluation of our experiments was done by using a

cross-validation scheme and Receiver Operating Character-

istics (ROC) analysis [12]. In a N -folder cross-validation all

the images are divided into N different groups, from where

N − 1 is used to train the classifier, while the remaining

group is used for testing. This procedure is repeated N times

until all the groups are used for testing. Note that using this

methodology each image appears in the test set only once. In

detail, we used N = 10 for the DDSM database and N = 57
for the MIAS one, which is the degenerative case where all

the images except the testing one are used in the training

(leave-one-out methodology). Note that this is necessary due

to the small number of ROIs available.

The evaluation of the results is performed in terms of

ROC analysis, widely used in the medical field. Note that

the used classifier provides a numerical value related to the
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Figure 2. ROC analysis of our approach. We obtained better results when
testing the MIAS database (solid line) than thesting the DDSM one (dotted
line).

membership of each class. Therefore, varying the threshold

of this membership it is possible to generate a ROC curve,

representing the true positive rate (the number of malignant

ROIs detected divided by the total number of malignant

ROIs) as a function of the false positive rate (the number

of malignant ROIs missed divided by the overall number of

benign ROIs). The area under the curve (known as Az) is an

indication for the overall performance of the observer, and is

typically used to analyse the performance of the algorithms.

Figure 2 shows the ROC curve of the proposed approach

evaluated in both databases. For the MIAS database we

obtained Az = 0.89, while for the DDSM we had an

Az = 0.72. For instance, at a false positive rate of 0.24, 95%
of the malignant cases were correctly classified for the MIAS

database. In contrast, at the same false positive rate, the

sensitivity for the DDSM database was 69%. As expected,

better results were obtained when using the MIAS database,

since fewer cases were used in this experiment and also due

to the fact that the DDSM contains a larger mass variability.

However, we would like to point out that the results were

obtained using only shape information alone, and in some

cases, this information is not enough to correctly diagnose

the case (see last column of Figure 1).

Table I shows a comparison between different approaches

for mass diagnosis. However, we want to clarify that not all

the methods used the same databases and number of ROIs

and therefore our aim is only to provide a general trend

of the performance of our approach with respect to other

strategies. Note that the results obtained using the MIAS

database outperformed most of the approaches, although

our results were obtained using less number of cases. In

contrast, the results obtained using the DDSM database

were lower than those shown in the table. Note, however,

that we used a larger database (except for the work of

Varela et al. [13]). Moreover, we want to stress that we
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Table I
COMPARISON OF MASS DIAGNOSIS APPROACHES, DETAILLING THE

NUMBER OF CASES USED AND THE OBTAINED RESULTS.

Authors Cases Az

Guliato et al. (2008) [15] 111 0.94

Delogu et al. (2007) [16] 226 0.78

Varela et al. (2006) [13] 1076 0.81

Lim and Er (2004) [17] 343 0.87

Sahiner et al. (2001) [14] 249 0.87

Mudigonda et al. (2000) [18] 39 0.85

Our approach – MIAS 57 0.89

Our approach – DDSM 818 0.72

only used shape information to characterise the masses,

while the other works combine several feature descriptors.

VI. CONCLUSION

A new proposal for mass diagnosis have been presented

in this paper. Our approach starts segmenting a ROI by

using a level set formulation based on the internal properties

of the regions instead of using gradient information. Once

the mass is segmented, we used the Zernike moments for

characterising the shape, and the Gentleboost algorithm for

classifying the mass as benign or malignant. The experi-

mental results which have been obtained using two different

databases show the validity of our approach, proving the

benefits of obtaining a good shape description.

Further work is directed to the use of other features

that radiologists take into account when diagnosing a case,

like the mass optical density or features related to the

abruptness of the margin [14], [13]. Moreover, we want to

test our approach using a digital database, since it is well

known that this technology improves the contrast between

the different internal structures.
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