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� Université de Bourgogne, Le2i UMR-CNRS 6306, Le Creusot, France
† Universitat de Girona, Computer Vision and Robotics Group, Girona, Spain

� Girona Magnetic Resonance Center, Girona, Spain
‡ Hospital Dr. Josep Trueta, Girona, Girona, Spain.

(jhimli.mitra/soumya.ghose/dro-desire.sidibe/fabrice.meriaudeau)@u-bourgogne.fr, (aoliver/marly/llado)eia.udg.edu

ABSTRACT

This paper presents a novel method to identify the 2D axial
Magnetic Resonance (MR) slice from a pre-acquired MR
prostate volume that closely corresponds to the 2D axial
Transrectal Ultrasound (TRUS) slice obtained during prostate
biopsy. The shape-context representations of the segmented
prostate contours in both the imaging modalities are used
to establish point correspondences using Bhattacharyya dis-
tance. Thereafter, Chi-square distance is used to find the
prostate shape similarities between the MR slices and the
TRUS slice. Normalized mutual information and correlation
coefficient between the TRUS and MR slices are computed to
find the information theoretic similarities between the TRUS-
MR slices. The maximum of the weighted likelihood function
of the afore-mentioned statistical similarity measures finally
yields the MR slice that closely resembles the TRUS slice ac-
quired during the biopsy procedure. The method is evaluated
for 20 patient datasets and close matches with the ground
truth are obtained for 16 cases.

Index Terms— Prostate biopsy, 2D TRUS/3D MR corre-
spondence, shape similarity, image similarity, weighted like-
lihood function.

1. INTRODUCTION

Prostate cancer has been a major cause of mortality among
human males in the European and American societies since
the last 25 years. Therefore, prostate cancer screening pro-
grams are conducted where a patient with abnormal findings
after a digital rectal examination, serum Prostate Specific
Antigen (PSA) level over 4.0 ng/ml and PSA velocity be-
tween 0.4 − 0.75 ng/ml/yr is generally advised for a prostate
biopsy for histopathological examination of the prostate tis-
sues. The appearance of malignant lesions in a Transrectal
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Ultrasound (TRUS) guided needle biopsy is mostly hypoe-
choic and the accuracy of finding such lesions is typically
43% in sonography [1]. Approximately 25% − 42% of can-
cer lesions can also be isoechoic under TRUS. Therefore, the
chance to diagnose hypoechoic lesions from TRUS guided
biopsy that are malignant is ≤ 57% [2]. Vilanova et al.
[3] demonstrated that the accuracy of Magnetic Resonance
Imaging (MRI) to diagnose prostate cancer is 72% − 76%.
Therefore, for men deemed to be at risk of prostate cancer,
fusion of pre-biopsy MR images onto interventional TRUS
images might increase the overall biopsy accuracy [4].

Fusion of pre-biopsy MR on interventional TRUS may
be done in several ways. An Electro Magnetic (EM) tracker
attached to the 2D TRUS probe may be used that sweeps the
prostate to reconstruct a 3D TRUS volume. The 3D TRUS
volume is then fused with the MR volume to obtain the spa-
tial position of the 2D TRUS slice during biopsy within the
pre-biopsy MR volume [4]. On the other hand, a 3D TRUS
probe may be directly used to acquire 3D TRUS volume
and a volume-volume registration may be performed [5, 6].
However, neither 3D TRUS probe is commonly available in
diagnostic centers nor the use of the EM tracker is an es-
tablished clinical practice. Therefore, intending to solve the
2D TRUS-MR slice correspondence problem, we propose a
method based on Chi-square distance of shape-context repre-
sentations of the prostate contours and information theoretic
measures like Normalized Mutual Information (NMI) and
Correlation Coefficient (CC) of the TRUS-MR slices. Finally,
the maximum of the Weighted Likelihood (WL) function of
the Chi-square distance and the NMI and CC parameters is
computed to find the MR slice that closely matches the TRUS
slice. The novelties of the proposed work may be summarized
as follows:
1) Using shape context representations of the contours to find
prostate shape similarities between TRUS and MR slices.
2) Combining shape information with intensity information
through a WL framework to identify the correct MR slice.

In the remaining paper, section 2 describes the proposed
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Fig. 1. Point correspondences example. (a) contour points in TRUS, (b)
point correspondences of (a) in MR.

method in detail, section 3 provides the results and discus-
sions followed by the conclusions in section 4.

2. THE PROPOSED METHOD

In this work, the prostate is manually segmented from the 2D
TRUS axial slice and the pre-biopsy axial MR volume where
the TRUS slices are considered to be parallel to the MR ax-
ial plane. However, we will finally use the fast automatic
prostate segmentation methods in both MR and US modali-
ties by Ghose et al. [7, 8]. The shape similarity measure of
Chi-square distance on shape-context representations of point
correspondences is explained in section 2.1, the information
theoretic image similarity measures like NMI and CC are ex-
plained in section 2.2 with explanation of WL approach in
section 2.3.

2.1. Shape Similarities
The segmented prostate contour points are uniformly sam-

pled using fixed Euclidean distance of ε i.e. if ci is a contour
point, i = 1, . . . , N , then maximize the following equation

argmax
j

‖ci − cj‖
2
≤ ε, i �= j. (1)

The number of uniformly sampled points given as n, each
sample point ci may be represented by a shape descriptor that
is a n−1 length vector of log-polar relative distances to points
cj , where i �= j. The shape descriptor is binned into a his-
togram that is uniform in log-polar space and this histogram
is the shape-context representation of a contour point [9] i.e.
ci is represented by a histogram hi(k, θ) such that
hi(k, θ) = # {cj , i �= j : (ci − cj) ∈ bin(k, θ)} . (2)

k is the log r = log(
√

(xi1 − xj1)2 + (xi2 − xj2)2) and
θ = tan−1 xj2−xi2

xj1−xi1
of the relative distance (ci − cj), where,

ci = (xi1, xi2) and cj = (xj1, xj2). As suggested by Be-
longie et al. [9], a total of 5 bins are considered for k and 12
bins for θ that ensures that the histogram is uniform in log-
polar space. This also means that more emphasis is given to
the nearby sample points than those that are far away.

In the original work of Belongie et al. [9], the point cor-
respondence between two shapes is obtained by a bipartite
graph matching method. However, in this work we choose the
Bhattacharyya distance [10] between the shape-context his-

tograms of two shapes to find the best point correspondence
since it is fast to compute and statistically a robust measure
to find correspondences in similar shapes like prostate con-
tours in TRUS and MRI. Thus, to match a point ci in a shape
to a point c′j in another shape, the Bhattacharyya coefficients
between the shape-context histogram of ci and all c′j are com-
puted and the c′j that maximizes the relation in Eq. (3) is
chosen as the corresponding point.

argmax
c′
j

5∑
k=1

12∑
θ=1

√
ĥi(k, θ).ĥ′

j(k, θ), (3)

where, ĥi(k, θ) and ĥ′
j(k, θ) are the normalized shape-context

histograms of ci and c′j respectively. Fig. 1 shows the con-
tour correspondences overlaid on the TRUS and MR prostate
shapes.

After the corresponding points are identified, the Chi-
square (χ2) distances between the TRUS slice and each of the
MR slices are calculated based on the corresponding shape-
context histograms and is given by Cij in Eq. (4). The final
distance is the sum of all the χ2 distances of the correspond-
ing points (shape-context histograms) in TRUS and MR and
is given byH in the following equation.

Cij =
1

2

5∑
k=1

12∑
θ=1

(ĥi(k, θ)− ĥ′
j(k, θ))

2

ĥi(k, θ) + ĥ′
j(k, θ)

, H =
l∑

i=1

Cij , (4)

where, l is the number of point correspondences. The TRUS-
MR slice pair with minimum sum of χ2 distance (H) is iden-
tified and its significance will be discussed in the following
subsection.

2.2. Image Similarities
Image similarity measures have been extensively used in

multimodal image registration problem to ensure that the
moving image is transformed with close resemblance to the
fixed image. In this work, our problem is to find an MR
slice in the volume that closely resembles the TRUS slice.
Therefore, to find such similarity we employ the well-known
NMI and CC as image similarity measures. It may be noted
here that in an image registration problem, either NMI or CC
is used as a similarity measure. However, as demonstrated by
Fei et al. [11] that better registration accuracies are obtained
with CC in low resolution and with MI in high resolution and
lower registration accuracies are obtained when CC is used
in high resolution and MI in low resolution respectively. Re-
lated to our problem, some TRUS slices have smaller prostate
sizes than the other. Therefore, considering the variability in
prostate sizes we decided to use both NMI and CC as similar-
ity measures.

The TRUS-MR slice pair identified with the minimum
H as obtained from Eq. (4) is used to retrieve the 2D rigid
transformation (inplane rotation and translation) parameters
between them; and the remaining MR slices in the volume
are rigidly registered with the TRUS slice using the same
parameters. This registration step ensures similar 2D inplane
rigid alignment of all the MR slices of the volume with the
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Table 1. Ground truth (GT) and results for MR slices corresponding to a TRUS slice. The matched cases are shown in italics.
Patients/MR Slice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Agreement (%)

GT (Expert 1) 6 8 9 7 6 10 6 10 5 7 6 5 12 8 6 5 7 7 6 7 45%
GT (Expert 2) 2 7 6 5 6 9 6 8 7 6 6 4 13 8 4 8 10 9 6 7 75%
Our method 3 7 3 6 5 9 6 8 8 6 9 3 13 3 4 8 10 6 7 5 -

2D TRUS slice.
After the alignment of the MR volume with the TRUS

slice, pairwise NMI and CC are computed for each MR-
TRUS slice pair. The NMI is an information theoretic mea-
sure that tries to reduce the joint entropy of the images [12]
and is given by

NMI =
H(M) +H(T )

H(M,T )
(5)

where, H(M) and H(T ) are the marginal entropies of the
MR (M ) and TRUS (T ) images respectively, and H(M,T )
is the joint entropy of the images. H(M,T ) can be written
using probability theory as

H(M,T ) = −
∑
M,T

p(M,T ) log [p(M,T )], (6)

where, p(M,T ) is the joint probability distribution of the im-
ages obtained from their joint histogram.

The CC gives a linear dependence between two random
variables M (m) and T (t) [13] as intensities of the MR and
the TRUS images respectively, and is defined as:

CC(M,T ) =

∑(
T (t)− T (t)

)(
M(m)−M(m)

)
√∑(

T (t)− T (t)
)2 ∑(

M(m)−M(m)
)2 .

(7)
m and t are the pixel positions in the TRUS and MR images
respectively. M(m) and T (t) are the average pixel intensities
for the overlapping regions.
2.3. Weighted Likelihood (WL)
The MR slice corresponding to the observed TRUS slice

should ideally be the one with lowest H obtained from sec-
tion 2.1 and maximized NMI and CC as obtained from section
2.2. The values of these statistical shape and image similarity
measures are consecutively transformed into pdfs to accom-
modate our problem into the WL framework.

Given a set of random data X = {x1 . . .xn} each hav-
ing a pdf pi(xi; ξ), i = 1 . . . n and ξ the parameter, the WL
function of the pdfs [14] is given by

WL(X; ξ) =
n∏

i=1

pi(xi; ξ)
λi , (8)

where, λi are the weights that may be determined depending
on the application. In this work, the set of random variables is
X = {H′,NMI,CC}, whereH′ = 1−H and their respective
probability values constituting the pdfs in Eq. (8). The ξ

being each MR slice of a volume, a separate WL value is
generated for each TRUS-MR slice pair. Finally, the MR slice
that provides the maximum WL function value is chosen as
the slice that closely corresponds to the TRUS slice.

3. RESULTS AND DISCUSSIONS

The results are validated against the ground truth obtained
from an expert radiologist and an expert urologist for 20
patients axial mid-gland TRUS slices. The axial MR slices
have slice thickness of 3pixels with inter-slice gap of 3.5
pixels where the pixel dimension is 0.2734 × 0.2734 mm.
The weight for λH of section 2.3 is computed from a training
phase and is obtained as the average probability of obtaining
the MR slice equal or [−1,+1] slice away from either or
both the expert ground truth that employs only H′ for 20 pa-
tients in a leave-one-patient-out framework. Similarly, λNMI

and λCC are also computed yielding probabilistic weights of
λ = 0.35, 0.45, 0.25 for H′, NMI and CC respectively. Table
1 shows the ground truth of the axial MR slice corresponding
to an axial TRUS slice provided by the experts (indepen-
dently) and the results we obtained using our method.

It is observed from Table 1 that the automatic MR slice
choice matched at least one of the expert ground truth for 9
out of 20 cases wherein the experts differ in their opinions
for 5 patient cases (2, 6, 10, 12 & 13) with [−1,+1] slice dif-
ference and for 9 patient cases (1, 3, 4, 8, 9, 15, 16, 17 & 18)
with 2 − 4 slice differences. The expert choices matched
exactly in 6 cases (5, 7, 11, 14, 19 & 20) out of which our
result matched exactly for one patient case 7 and [−1,+1]
slice away for patients 5 & 19 respectively. For all 14 cases,
where the experts disagreed on their opinions, our results
either matched exactly or are 1−2 slices above/below at least
one expert or are between the expert choices for 13 cases
except patient 3. Since, the expert choices agreed exactly and
[−1,+1] slice away in 11 out of 20 cases, the experts are in
agreement by 55%.

Comparing each of the expert ground truth indepen-
dently with our method, the exact match with expert 1
ground truth is only for patient 7 while [−1,+1] (a sta-
tistically significant 20% error) slice away for 8 patients
(2, 4, 5, 6, 10, 13, 18 & 19). Therefore, 9 out of 20 cases i.e.
45% results are in agreement with that of the ground truth of
expert 1. Similarly for 9 cases (2, 6, 7, 8, 10, 13, 15, 16 & 17)
our results exactly matched expert 2 ground truth and are
1 slice away for 6 patient cases (1, 4, 5, 9, 12 & 19). This
signifies that the results of our method are in 75% agreement
with that of expert 2 ground truth. The inter-expert variability
in the choice of MR slice being high (55% agreement), our
method performs better with an agreement of 75% for expert
2 (Table 1) that shows an increase in performance by 36.36%.
However, the slice choice by our method are in 45% agree-
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Fig. 2. TRUS-MR corresponding slices. Rows (top to bottom) show patient
cases 9, 3 and 11 respectively. The 1

st column shows the TRUS slices, the
2
nd and the 3

rd show the expert ground truth for the MR slices and the last
column the obtained result using our method.

ment with expert 1 ground truth (Table 1) which indicates a
decrease in performance by 18.18%.

The results obtained by our method for patients 3 and 11
do not match any of the expert ground truth and are neither
[−1,+1] slice away from either of the ground truth. The
reason for the failure in these cases could be the use of de-
terministic weight values instead of adaptive weight values
of λ i.e. instead of using fixed weights for H′, NMI and CC
for all patient cases, the weights may be altered depending
on the values of H′, NMI and CC obtained for each of the
TRUS-MR pair on a probabilistic scale. Fig. 2 shows patient
case 9 where the result obtained is one slice below than that
of the ground truth of Expert 2 as shown in Table 1. Fig. 2
also shows patient cases 3 and 11 where the results are not
close to any of the expert ground truth.

The method has been implemented in MATLAB and the
complete process takes 3 secs on an average to find out the
corresponding MR slice from a set of 12 − 14 slices. It is to
be noted that Xu et al. [4] employed an EM tracker to locate
the spatial position of the 2D TRUS slice (during guided
biopsy) in the 3D TRUS volume. Thereafter, to compen-
sate for the prostate motion, the sum-of-squared difference
(SSD) between the maximum translational and rotational
TRUS slices within a short time frame (during TRUS guided
biopsy) and the corresponding spatial 2D TRUS slices ob-
tained in the 3D TRUS volume was minimized. However, in
our case the exact orientation of the 2D TRUS probe relative
to the prostate is unknown. Therefore, we may similarly
propose the minimization of SSD or NMI between the 2D
MR slice corresponding to the 2D TRUS slice (obtained from
our method) and the corresponding MR slices of the maxi-
mum translational and rotational TRUS slices during biopsy.
Hence, our proposed method provides a good starting point
for multimodal registration and may be used as a substitute of
EM tracker and 3D TRUS probe that are generally not used
for biopsy.

4. CONCLUSIONS

A method to find out 2D MR slice correspondence of a 2D ax-
ial TRUS slice during biopsy has been reported in this paper.
The method is based on statistical shape and image similarity
measures, a weighted combination of which provides likeli-
hood values for the MR slices. The method is fast in find-
ing out MR correspondences that are nearly the same as the
ground truth obtained from two experts. Since EM tracker
is not easily available in hospitals in Europe and 3D TRUS
is normally not employed for biopsy purposes, our proposed
method may provide a good starting point for multimodal fu-
sion of TRUS-MR images to improve the sampling of biopsy
tissues. Although the results reported in this paper are vali-
dated only for mid-gland or close to mid-gland axial slices,
the validations for the base and apex TRUS axial slices and
TRUS sagittal slices and cross-validation of our method with
the use of an EM tracker have been left as future works.
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