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Abstract. Intensity-based registration algorithms have been widely
used in medical image applications. This type of registration algorithms
uses an object function to compute a transformation and optimizes a
measure of similarity between the images being registered. The most
common similarity metrics used in registration are sum of squared differ-
ences, mutual information and normalized cross-correlation. This paper
aims to compare these similarity metrics, using common registration
algorithms applied to breast density maps registration. To evaluate the
results, we use the protocols for evaluation of similarity measures pro-
posed by Škerl et al. They consist in defining a set of random directions
in the parameter space of the registration algorithm and compute statis-
tical measures, such as the accuracy, capture range, number of maxima
and risk of non-convergence, along these directions. The obtained results
show a better performance corresponding to normalized cross-correlation
for the rigid registration algorithm, while the sum of squared difference
obtains the best result for the B-Spline method.

1 Introduction

Breast density maps is a type of image in which the intensity pixels values corre-
spond to the glandular tissue thickness presented in the mammogram. Figure 1
shows an example of these images, obtained using the commercial software
VolparaTM . Establishing a correlation between two density maps, alike to mam-
mograms, can improve the detection and follow-up of breast diseases. This is
not an easy task. Due to the different patient positioning during the acquisition,
image registration is needed to compensate the errors yielded [4,7].

Several registration algorithms have been proposed to establish spatial
correspondence between images [3,5]. The registration problem is expressed as a
minimization of an energy composed of a regularization and a similarity term.
Registration algorithms can be divided into two categories: feature- and intensity-
based algorithms. In particular, intensity-based registration algorithms consist in
maximizing the matching criterion, usually a similarity metric between images.
This kind of algorithms can be decomposed into three principal components [1]:

– the similarity metric, which specifies the agreement between the images,
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Fig. 1. Pair of repeated mammograms (left), acquired within a short time interval, and
their respective density maps (right) computed by the commercial software VolparaTM .
Red color represents denser areas (Color figure online).

– the transformation model, which defines the transformation of the source
image to match the target,

– the optimization strategy, which improves the parameters of the transforma-
tion model, based on the metric.

The definition of the similarity criterion relies on the nature of image gray-
level dependencies [6] and, moreover, the most popular optimization algorithms,
such as the gradient-descent algorithm, use the surface defined by the metric in
the parameter space to reach the optimum. Therefore, the similarity metric is one
of the factors that affect the quality of registrations [8]. Intensity-based metrics
can define non-convex topologies. Defining a suitable metric reduces the likeli-
hood of obtaining a suboptimal solution by means of locating a small number of
maxima, reducing the risk of non-convergence or maximizing the capture range
of the global maxima during the optimization. Figure 2 shows a cost-function sur-
face, from a rigid registration method, using the three similarity metric analyzed
in our study: sum of squared differences (SSD), mutual information (MI) and
normalized cross-correlation (NCC). Notice that the optimal solution does not
change widely its position in the search space. However, sub-optimal solutions
(i.e. local maxima) are found using some metrics but not others.
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Fig. 2. (a) Sum of squared difference, (b) Mutual information and (c) Normalized cross-
correlation applied to measure similarity between two density maps within the search
space of a rigid registration process. The higher the values, the higher the agreement
between images. The global optimal value is localized in the center of the images, while
a local optimum value (red area below the global value) is visible in (b) (Color figure
online).

The aim of this paper is to evaluate these three similarity metrics to lead
the temporal registration of VolparaTM Density Maps. We perform the registra-
tion using two widely used algorithms: affine and B-Spline registration methods.
To evaluate the suitability of the metric, we test the protocol for evaluation
of similarity measures proposed by Škerl et al. for rigid [8] and non-rigid [9]
registration.

The rest of this document is organized as follows: Sect. 2 presents a brief
review of the employed methodology, such as the registration algorithms, simi-
larity metrics and evaluation, Sect. 3 describes the results obtained. The paper
ends with the discussions and conclusions.

2 Methodology

2.1 Registration Methods

Affine Registration Algorithm. Affine registration carries out the rotation,
translation, and scaling over the whole image. It is frequently used as an initial-
ization step for a posterior non-rigid registration, although in some contexts it
could also be used as a stand-alone registration tool given that it is less affected
by registration artefacts [2].

B-Spline Free-Form (BSFF) Deformation Algorithm. This method uses a
mesh of control points that are deformed using B-Spline interpolation looking for
the maximization of a similarity measure. The degree of deformation of the mesh
can be modeled with the resolution of the mesh. This produces deformation that,
although local in nature, maintains coherence between neighboring points [2].
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During this work, we use 5 × 5 nodes on the grid, considering just those within
the images and not those corresponding to the boundary conditions.

2.2 Similarity Metrics

Sum of Squared Difference Metric. The SSD metric computes the squared
differences between gray intensity values corresponding at each pixel. SSD is
defined as:

SSD =
1

N · M

∑

(x,y)

(I1(x, y) − I2(x, y))2 (1)

where I1(x, y) and I2(x, y) represent the intensity gray value -i.e. the breast
density thickness- at pixel (x, y) for each image, I1 and I2, and N · M is the
number of pixels of the images. When both images are identical, the sum of
square difference is equal to zero.

Mutual Information Metric. MI is a measure of the mutual dependence
between both images, related with Shannon entropy, and defined by the following
equation:

MI =
∑

i,j

pi,j log
pi,j

pi · pj
(2)

where pi, pj are the probability distributions of the individual images and pi,j

is the joint probability distribution. During this work, the probabilities are
obtained by using a histogram divided into 64 bins. Thus, MI allows to con-
sider non-linear differences in intensity gray values. Regarding the evaluation
of similarity, higher mutual information values imply higher agreement between
images.

Normalized Cross-Correlation Metric. NCC is a standard statistical mea-
sure used to calculate whether two datasets are linearly related. It represents the
2D version of the Pearson’s correlation coefficient and it is defined as follows:

NCC =

∑
(x,y)(I1(x, y) − Ī1)(I2(x, y) − Ī2)√∑

(x,y)(I1(x, y) − Ī1)2
√∑

(x,y)(I2(x, y) − Ī2)2
(3)

where Ī1 and Ī2 represent the mean of the intensity pixel values in the images
I1 and I2 respectively.

2.3 Metric Evaluation

The evaluation protocols, for rigid and non-rigid registration algorithms, pro-
posed by Škerl et al. are based on systematic simulations of the transforma-
tion state along random directions in the parameters space of the registration
method. The following sections briefly expose these methods. For further refer-
ences see [8,9].
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Fig. 3. Normalized SSD along two lines in the parameter space, composed of 100 points.
The solution obtained during the registration corresponds to the middle (point number
50). Notice that the maximum similarity is obtained when SSD is the minimum.

Affine Registration Evaluation. Once the affine registration has reached an
optimal solution, we can define a hypersphere in the parameter space. Within
the hypersphere, we can define a random direction crossing from one side to the
other, and traversing the center of the sphere -i.e. the optimal solution- like the
radius of a wheel. Finally, we compute the similarity metric using the parameters
defined along this direction. Figure 3 shows two of these lines, once the results
have been normalized.

During this work, we use 50 random directions, using 100 points per line.
The parameter space was defined considering the degrees of freedom of the whole
image. Hence, the source image was allowed to slide in the interval [−LX , LX ] in
the X direction, being LX the length of the target image in the X direction, and
[−LY , LY ] in the Y direction, being LY the length of the target image in the Y
direction. The rotation parameter is defined between −π and +π radians. Finally,
the scale factor vary from 0.5 and 1.5 due to the mammographic acquisition does
not allow big changes in the breast shape.

BSFF Deformation Evaluation. In this case, localizing a hypersphere in the
parameter space is a more challenging problem. Therefore, to define the direction
to obtain the sample point, first, all nodes composing the mesh are initialized
using a random displacement from that obtained during the registration. Then
each node, consecutively, is taken as a control point. Around the control point,
a circle with radius R is defined. Similarly to the previous method, we use this
circle to vary the control point position, sampling along one defined direction.

For each node, 20 lines composed of 100 points were defined. In this case, the
parameter space was defined in a node-wise way. Nodes are initialized considering
the neighborhood, to avoid the overlap or inversion of position between two
nodes. Thus, the search space of the node Ni is within the interval [XE ,XW ]
in the X direction, being XW the x position of the node at left and XE of the
node at right, and [YN , YS ] in the Y direction, being YN the y position of the
node above and YS of the node at below.

Statistics. First, during the evaluation, parametric space features and similarity
values are normalized to avoid preferred variables. For instance, the translation
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parameters in millimeters are much larger than the rotation parameters in radi-
ans. This fact can induce to an error during the conclusions. To evaluate the
similarity metrics, we use the following features:

– Accuracy (ACC), defined as the Euclidean distance between the initial optimal
position X0 and the global maxima Xn,max in the line n. If the initial position
is the actual global maxima, ACC = 0.

ACC = ||Xn,max − X0|| (4)

– Distinctiveness of optimum (DO) is the average change of the similarity metric
SM within distance r, close to the global maxima. DO shows the sharpening
of the similarity metric around the global maxima.

DO(r) =
2 ∗ SM(Xn,max) − SM(Xn,max−r/σ) − SM(Xn,max+r/σ)

2r
(5)

where σ represents the distance between two consecutive points along a prob-
ing line.

– Capture range (CR) is the distance between the global maxima and the closest
minima along the line.

CR = min(||Xn,max − Xn,min||) (6)

– Number of maxima (NOM) is the number of maxima -i.e. suboptimal solution-
in each line. We have changed this feature (originally number of minima)
considering that, in our case, the maxima represents a suboptimal solution.

– Risk of Non-convergence (RON) is the average of positive gradients dn,m

within distance r from the global maxima in each line.

RON(r) =

∑
n,m dn,m

2r
(7)

Therefore, the better a similarity measure, the smaller the accuracy, number of
maxima and risk of non-convergence and the larger the values of capture range
and distinctiveness of optimum.

3 Results

The dataset was composed of 21 pairs of mammographic images (42 FFDMs
in total) from 21 women, including 14 pairs of CC and 7 pairs of MLO pro-
jections. Each image pair corresponds to mammograms acquired within a very
short time interval, few minutes. We used the commercial software VolparaTM

(Volpara Solutions1, Wellington, New Zealand) to extract the density map of
the mammogram. Both images were registered using affine registration and
BSFF deformations. All registration methods were implemented using the
InsightToolkit (ITK v.4.8.0) libraries. The optimization followed a gradient
1 http://volparasolutions.com/.

http://volparasolutions.com/
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Fig. 4. Statistical measures for affine registration. The better a similarity measure, the
smaller the ACC, NOM and RON and the larger the values of DO and CR.
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Fig. 5. Statistical measures for B-Spline registration. The better a similarity measure,
the smaller the ACC, NOM and RON and the larger the values of DO and CR.

descent approach, while linear interpolation was performed for pixel interpo-
lation. Data analysis and statistical tests were carried out using the statistical
software R (v.3.0.3).

Figure 4 shows the results obtained for affine registration. The median and
quartile deviation of the boxplot represent the accuracy and robustness for each
metric. For instance, in this case, NCC shows a better performance in all of cases.
The median of the NCC distributions for ACC, NOM and RON are smaller than
those corresponding to the other metrics and, similarly, they are bigger for CR
and DO. However, the same distribution shows a higher quartile deviation for
NOM and a large number of outliers for NOM and RON.

On the other hand, Fig. 5 shows the results corresponding to the B-Spline
registration. In this case, the results obtained with SSD shows a better perfor-
mance in ACC, NOM and RON; NCC obtains the best results of CR.

4 Discussion and Conclusion

In this work, we have evaluated the three most common image similarity met-
rics used for intensity-based registration of density maps. To achieve this goal,
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we have used the protocols proposed by Škerl et al. [8,9]. In our experience,
these protocols show a different performance with respect to the registration
algorithm. During the evaluation of the affine registration, the protocol shows a
good performance. Modifying the registration parameters allows a sampling of
all the features in the hyperspace and an accurate interpretation of the para-
meter space around the localized optimal solution. Furthermore, ACC, CR and
NOM show NCC as a robust and stable metric to lead the affine registration.
The risk of non-convergence is smaller while the capture range and the accuracy
of this metric is high, defining NCC as the preferred metric.

During the B-Spline registration, the number of nodes has a big impact in the
likelihood of localizing a suboptimal solution. The more nodes, the smaller the
local deformation and, therefore, the higher the number of maxima at each line.
Furthermore, the nodes situated in the black background of the mammogram
have a small impact over the metric but high in the statistics exposed. For
instance, a large number of points in the black background could produce a high
ACC because the movement of these points have a small impact over the final
result of the similarity metric. However, these points are considered similarly to
those with a high impact over the metric in the statistics. We consider that the
proposed protocol is not suitable in this case. Establishing the impact of each
node is mandatory to avoid wrong results or misinterpretations.

Finally, the metrics used show different behavior with respect to the regis-
tration algorithms. While NCC shows a clearly better performance during the
affine registration, SSD may be the best option for B-Spline registration, due
to the better performance obtained for ACC, NOM and RON. However, there
is not a significant difference with respect to those obtained using NCC, which
obtains a clearly better value for CR.
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