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Abstract. This paper presents a method for automated mammographic
risk classification based on breast density estimation in mammograms.
The overall profile of breast tissue density is represented using a topo-
graphic map, which is a hierarchical representation, obtained from the
upper level sets of an image. A shape tree is constructed to describe
the topological and geometrical structure of the shapes (i.e. connected
components) within the topographic map. Two properties, saliency and
independency, are defined to detect shapes of interest (i.e. dense regions)
based on the shape tree. A density map is further generated focusing on
dense regions, which provides a quantitative description of breast den-
sity. Finally, mammographic risk classification is performed based on the
breast density measures derived from the density map. The validity of
this method is evaluated using the full MIAS database and a large dataset
taken from the DDSM database. A high agreement with expert radiol-
ogists is indicated according to the BIRADS density classification. The
obtained classification accuracies are 76.01% and 81.22%, respectively.

1 Introduction

Numerous studies have indicated that breast density is a strong risk factor for
developing breast cancer [1–6], and therefore quantitative estimation of breast
density is of great importance for mammographic risk classification. A variety of
semi-automated and fully-automated approaches have been developed to quan-
tify breast density. The most commonly used method is interactive thresholding
(known as Cumulus), where the greylevel threshold is manually tuned by ob-
servers to segment dense tissue [1]. Petroudi and Brady [2] implemented breast
density segmentation using textons. Oliver et al. [3] used the fuzzy c-means
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clustering to segment the breast into fatty and dense tissue, and features were
extracted from both tissue classes for the subsequent breast density classifica-
tion. Tzikopoulos et al. [4] employed the minimum cross entropy thresholding to
detect dense tissue. He et al. [5] developed a method for segmenting mammo-
graphic images into Tabár’s four mammographic building blocks and the relative
proportions of the four building blocks were used for mammographic risk clas-
sification. Kallenberg et al. [6] proposed a segmentation method where different
approaches to breast density segmentation in the literature were integrated.

We propose a new method to classify mammographic images into different
risk categories based on quantitative estimation of breast density. Dense tissue
regions are detected using the topographic map of the breast region. Quantitative
measures of breast density are derived from the resulting density map and used
for mammographic risk classification. A topographic approach was also used by
Hong et al. [7] for a different purpose of detecting the breast boundary, the
pectoral muscle and candidate masses. In addition, most previous methods need
a learning procedure (e.g. [2, 3, 5]) or use a high dimensional feature vector for
segmenting/classifying breast density (e.g. [3, 4, 6]), while the proposed method
is straightforward and uses only few features for classification.

2 Topographic Representation

A topographic map is a morphological and multiscale decomposition of an image
relying on the connected components of the level sets. In this work, the topo-
graphic map is built by the upper level sets at a sequence of intensity levels over
the full intensity range of the image, which is defined as TM(I) = {Uli(I) | li ∈
L, i = 1, 2, · · · , N}, where Uli(I) represents the upper level set of the image I at
an intensity level of li, L denotes the full intensity range, and N is the number
of intensity levels for generating the upper level sets. The connected components
(8-connectivity) of the topographic map are referred to as the shapes in which
the holes have been filled (see [8] for details). The upper level sets constitute
a decreasing family corresponding to an increasing intensity level. Therefore,
the topographic map has a hierarchical structure from large to small scales (the
scale here corresponds to the area of the shapes), and the number of intensity
levels N behaves as a resolution factor in the sense that a large N can capture a
high-resolution topographic map. In addition, the topographic map is contrast
invariant to any increasing contrast change due to its hierarchical property.

The topological and geometrical structure of the shapes in the topographic
map can be described by a shape tree, which is constructed based on an inclusion
relationship between the shapes. The root node represents the whole topographic
map and each node descended from the root corresponds to a shape in the map.
If shape Si spatially encloses shape Sj, Si is the parent node of Sj , and Sj

is the child node of Si. If one node has multiple immediate child nodes, it is
called a branching node. The immediate child node of a branching node is called
a base node. If one node has no child node, it is called a terminal node. An
M -generation ancestor family of a shape S, denoted by AM (S), is defined as
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AM (S) = {pm(S), | m = 1, 2, · · · ,M}, where pm(S) is the mth parent node of
S. An M -generation descendent family of S, denoted by DM (S), is defined as
DM (S) = {cm(S), | m = 1, 2, · · · ,M}, where cm(S) is the mth child node of S.

3 Breast Density Estimation

An example mammogram is shown in Fig. 1(a). As a pre-processing step, the
breast region is segmented using the approach in [9] as shown in Fig. 1(b) and the
level lines (i.e. shape contours) are shown in Fig. 1(c) (32 uniformly spaced inten-
sity levels are used). The corresponding topographic map is shown in Fig. 1(d)
(the shapes smaller than 300 pixels are removed to eliminate sensitivity to noise
and small intensity irregularities). All shapes contained in the topographic map
are shown in Fig. 1(e). It is shown that the shape contours closely capture the
boundaries of regions with various densities. On the one hand, a nesting pat-
tern is formed near the boundary of a distinctively dense region where the shape
contours are densely nested. On the other hand, a significant transition happens
between the contours of two adjacent shapes if one of which is the outermost
boundary of a dense region. Dense tissue regions are regarded as salient or inde-
pendent shapes in the topographic map. Specifically, a salient shape is a shape
which indicates the local maximum intensity value with respect to the surround-
ing background; and an independent shape corresponds to a shape of which the
contour has a significant transition from that of the parent shape.

Dense tissue regions are considered as salient shapes, when regions have higher
intensity values than the surroundings. The saliency of a shape can be evaluated
based on the shape tree. In each branch of the tree, the nodes closer to the
terminal node have a higher saliency score compared to those further away, as
the terminal node indicates the maximum intensity value among all the nodes in
this branch. Therefore, the terminal nodes are rated as the most salient shapes.
However, the base node corresponding to each terminal node is finally selected,
as it is the outermost shape enclosing a dense region. Dense tissue regions are
detected from the finest scale to coarser scales by iteratively tracing the base
nodes from multiscale shape trees, obtained by gradually removing small shapes
(shapes smaller than 300×i pixels are removed at the ith iteration). The iterative
process terminates when a trunk is formed. Figure 1(f) concisely illustrates this
iterative process covering the core shape trees (shapes S3, S4, · · · , S22 located in
the trunk are not displayed). It is shown that the tree is cut at iterations 2, 6
and 9, and the trunk is formed at the 9th iteration. Finally, the nodes S24, S25,
S29 and S30 (indicated by red solid squares in Fig. 1(e)) are selected as dense
tissue regions as shown in Fig. 1(g).

Dense tissue regions are regarded as independent shapes as a sharp shape
transition happens between their ancestor and descendent families. The inde-
pendency of the shape S is defined as:

Ind(S) =
1

Area(S)
· 〈Area(A

M (S))〉 −Area(S)

Area(S)− 〈Area(DM (S))〉
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Fig. 1. (a) Original mammogram; (b) breast region segmentation; (c) level lines (shape
contours); (d) topographic map; (e) all shapes contained in (d) (S1 - S30); (f) mul-
tiscale shape trees in the iterative process indicating the change in the tree layout
(nodes marked with red circles are the selected shapes at that iteration); (g) dense
tissue regions extracted based on saliency ; (h) dense tissue regions extracted based
on independency ; (i) all extracted dense tissue regions (after removing false positives);
and (j) density map (the contrast has been normalised for better visualisation).

where Area(S) is the area of the shape S, 〈Area(AM (S))〉 and 〈Area(DM (S))〉
are the mean areas of the ancestor and descendent families of S, which are
computed by 1

M

∑M
m=1 Area(p

m(S)) and 1
M

∑M
m=1 Area(c

m(S)), respectively.
Ind(S) is normalised by Area(S) to avoid bias caused by the size of the shape.
It is noted that a large independency value indicates the shape has significant
shape change with respect to its ancestor family but insignificant shape change
with respect to its descendent family, which indicates a high probability of it
being the outermost shape enclosing a dense region. Thus, dense tissue regions
are detected from the resulting trunk of the shape tree by setting a threshold
on Ind(S). The shapes with independency values larger than the threshold are
selected. For an illustration of the detection of subtle region boundaries, M = 1
and a threshold of 8.6 × 10−6 are used here (the threshold of independency
was automatically determined for each mammographic image when generating
the experimental results presented in the following section, but small variations
provided similar results). As a result, S15, S19, S20, S21, S22, S23, S25, S27 and
S28 (indicated by black dotted squares in Fig. 1(e)) are selected as dense tissue
regions as shown in Fig. 1(h).
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To remove false positive regions, the 2nd order central moments of the resulting
dense tissue regions are computed. Two descriptors, elongation and compactness,
are computed for each region. In our work, the regions of interest are compact,
approximately circular or elliptical regions, and therefore regions with a large
elongation value (> 5.5) or a small compactness value (< 0.04) are discarded.
The two thresholds were set by experiments mainly for the purpose of removing
the elongated shapes along the straight boundary of the breast region due to the
incomplete removal of the pectoral muscle. The final detection result is shown
in Fig. 1(i).

In order to quantify breast density for mammographic risk classification, a
density map is created for mammographic images based on the detected dense
tissue regions (see Fig. 1(j) for an example), which is defined as:

DM(x, y) =

⎧
⎨

⎩

0 (x, y) /∈ Regions
1

|Rmin|
∑

(x,y)∈Rmin

I(x, y) (x, y) ∈ Regions

where DM(x, y) is the intensity value of pixel (x, y) in the density map, Regions
denotes the union of all the dense tissue regions, Rmin represents the smallest
region containing pixel (x, y) in Regions, and |Rmin| calculates the number of
pixels within Rmin. Two quantitative measures of breast density are derived from
the density map for mammographic risk classification, which are referred to as
dense area and average density, respectively. The dense area corresponds to the
overall area of the dense regions in the breast, which is defined as the number of
the non-zero pixels in the density map, calculated by density area = |Regions|.
The average density corresponds to the average density of the dense regions,
which is defined as the average intensity value of the non-zero pixels in the density
map, computed by average density = 1

|Regions|
∑

(x,y)∈Regions DM(x, y).

4 Results

To evaluate the performance of the proposed method for mammographic risk
classification, it has been applied on two well-known databases. The first one
is the full Mammographic Image Analysis Society (MIAS) database [10], which
contains 322 mammograms from 161 women. Bilateral (left and right) MLO
mammograms were taken for each woman. Three expert radiologists were in-
volved to classify 321 valid mammograms (mdb295ll was excluded for historical
reasons) into four classes according to the Breast Imaging Reporting and Data
System (BIRADS) density classification [11]. The consensus between the three
individual ratings was considered as the final class label which was used as the
classification ground truth in this work. The second one is a larger dataset taken
from the Digital Database for Screening Mammography (DDSM) database [12],
which contains 1662 mammograms from 831 women. Four mammograms were
taken for each woman, including both MLO and CC views of each breast. The
right MLO and CC mammograms of each woman were extracted for the sub-
sequent experiments. In contrast to the MIAS database, the BIRADS density
rating was provided in the DDSM database, which was used as the ground truth.
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Fig. 2. Detected dense tissue regions and density maps (the contrast has been nor-
malised for better visualisation) of example mammograms. From left to right, the
mammograms range from BIRADS I to BIRADS IV.

For each mammogram, eighty-five uniformly spaced intensity levels (N = 85)
were used to generate a high-resolution topographic map. The shape tree was first
constructed at the finest scale, containing all the shapes larger than 300 pixels.
Then, the shape tree was simplified to coarser scales by iteratively removing
small shapes and as such only the shapes larger than 300× i pixels were retained
at the ith iteration. On the basis of this, dense tissue regions were iteratively
detected by searching for the base nodes. A three-generation family (M = 3)
was used to detect dense tissue regions from the remaining trunk afterwards.
Fig. 2 shows the resulting dense tissue regions and the corresponding density
maps of example mammograms, which indicated realistic segmentation of dense
regions. As shown in Fig. 2, the overall area of dense regions and the average
intensity of the density map both increase from BIRADS I to BIRADS IV, which
is consistent with the increasing breast density and mammographic risk.

For mammographic risk classification, the two quantitative measures, dense
area and average density, derived from the density map were used as features.
The value of dense area was normalised by dividing the area of the breast re-
gion to avoid the bias induced by the size of individual breasts and as such
the normalised dense area represented the relative proportion of dense tissue
to the whole breast. On the other hand, the value of average density was nor-
malised by dividing the maximum intensity value of 255 within the full greylevel
scale (8 bits). The purpose of using a uniform value to normalise average den-
sity instead of a varied value depending on mammograms was to preserve the
original correlation of intensity information between mammograms. A k-Nearest
Neighbours (kNN) based classifier was used for classification, which was initially
based on a simple majority vote unless multiple classes indicated the same num-
ber of training samples among the k nearest neighbours (i.e. a tie occurs in the
decision making) in which case a distance weighted approach was applied to
resolve the tie. The Euclidean distance was used as the similarity measure. The
leave-one-woman-out methodology was used for cross-validation. For the MIAS
database, when classifying one MLO mammogram of one woman, the opposite-
side mammogram was excluded from the training set. For the DDSM database,
we classified mammograms of the MLO view and the CC view separately. Thus,
the leave-one-woman-out methodology was regarded as the leave-one-image-out
cross-validation for mammograms of a single view.
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Table 1. Confusion matrices for the MIAS database and the DDSM database

(a) MIAS (CA = 76.01%)

Automatic
BIRADS I II III IV CA

T
ru
th

I 72 13 2 0 83%
II 18 73 12 0 71%
III 0 19 70 5 74%
IV 0 0 8 29 78%

(b) MLO DDSM (CA = 75.21%)

Automatic
BIRADS I II III IV CA

T
ru
th

I 80 26 0 0 75%
II 33 266 35 2 79%
III 0 40 186 29 73%
IV 0 4 37 93 69%

(c) CC DDSM (CA = 74.61%)

Automatic
BIRADS I II III IV CA

T
ru
th

I 72 34 0 0 68%
II 29 280 27 0 83%
III 0 54 180 21 71%
IV 0 5 41 88 66%

(d) MLO/CC DDSM (CA = 81.22%)

Automatic
BIRADS I II III IV CA

T
ru
th

I 93 13 0 0 88%
II 27 286 23 0 85%
III 0 41 199 15 78%
IV 0 5 32 97 72%

The confusion matrices for the two databases can be found in Table 1. The
overall classification accuracy (CA) was 76.01% for the MIAS database, while for
the DDSM database, the CAs were 75.21% and 74.61% for the MLO view and
the CC view, respectively. The CA for the DDSM database of the individual view
was slightly worse than that for the MIAS database. This might be due to the fact
that the DDSM database used in the experiments contained more mammograms
than the MIAS database and the mammograms belonging to the same class
showed higher variance than the MIAS database. However, the obtained results
for the DDSM database still indicated the robustness of our method on a large
dataset. In addition, we investigated the capability of combining the MLO and
CC views of each woman for mammographic risk classification. The two features
extracted from each individual view were concatenated into a single feature
vector for each woman. The combination of the two views provided a good
improvement as shown in Table 1(d). An overall CA of 81.22% was obtained
and the CAs for the four BIRADS classes were all improved.

It is shown that good classification results have been obtained compared to the
closely related work where the same database and the same BIRADS classifica-
tion ground truth were used for classification, which enabled a direct comparison.
In [3], the achieved best CAs were up to 86% and 77% for the MIAS and DDSM
databases, respectively. However, it should be noted that the sophisticated clas-
sification using more features and more advanced classifiers is outside the scope
of this paper, and will be investigated in future work. In [5], the proportions of
different breast tissue classes were directly used for classification and the CA was
70% for the MIAS database. In addition, it should be noted that the proposed
method is distinct from a greylevel thresholding method. We have compared the
obtained results with a simple segmentation method (Otsu thresholding). The
resulting CA of Otsu was 48.29% for the MIAS database by using the area and
average intensity of the segmented regions for classification.
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5 Conclusions

We have presented a method for automated mammographic risk classification,
which is based on quantitative estimation of breast density. The topographic
map was exploited to represent a series of regions having a range of densities. A
novel way was proposed to define dense tissue regions in the topographic map, in
terms of saliency and independency. The resulting density maps have indicated
realistic description of breast density. High classification accuracies have been
obtained for the MIAS and DDSM databases according to the four BIRADS
categories, which indicates the promising capability of the proposed method. In
addition, the proposed breast density measures have been demonstrated to have
the potential for quantifying breast density and tracking the quantitative change
in breast density over time for mammographic risk assessment.
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