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Abstract— This paper presents a novel method to identify the
2D axial Magnetic Resonance (MR) slice from a pre-acquired
MR prostate volume that closely corresponds to the 2D axial
Transrectal Ultrasound (TRUS) slice obtained during prostate
biopsy. The method combines both shape and image intensity
information. The segmented prostate contours in both the imag-
ing modalities are described by shape-context representations
and matched using the Chi-square distance. Normalized mutual
information and correlation coefficient between the TRUS and
MR slices are computed to find image similarities. Finally, the
joint probability values comprising shape and image similarities
are used in a rule-based framework to provide the MR slice that
closely resembles the TRUS slice acquired during the biopsy
procedure. The method is evaluated for 20 patient datasets, of
which 18 results match at least one of the two clinical expert
choices.

I. INTRODUCTION

Prostate cancer has been a major cause of mortality

among human males in the European and American so-

cieties since the last 25 years. Therefore, prostate cancer

screening programs are conducted where a patient with

abnormal findings after a digital rectal examination, serum

Prostate Specific Antigen (PSA) level over 4.0ng/ml and PSA

velocity between 0.4 − 0.75ng/ml/yr is generally advised

for a prostate biopsy for histopathological examination of

the prostate tissues. The appearance of malignant lesions

in a Transrectal Ultrasound (TRUS) guided needle biopsy

is mostly hypoechoic and the accuracy of finding such

lesions is typically 43% in sonography [1]. Approximately

25% − 42% of cancer lesions can also be isoechoic under

TRUS. Therefore, the chance to diagnose hypoechoic lesions

from TRUS guided biopsy that are malignant is ≤ 57%
[2]. Vilanova et al. [3] demonstrated that the accuracy of

Magnetic Resonance Imaging (MRI) to diagnose prostate

cancer is 72%− 76%. Therefore, MRI may serve as a triage

for men deemed to be at risk of prostate cancer and fusion

of pre-biopsy MR images onto interventional TRUS images

This work was supported by VALTEC 08-1-0039 of Generalitat de
Catalunya, Spanish Science and Innovation grant nb. TIN2011-23704, Spain
and Conseil Régional de Bourgogne, France.

1 J. Mitra, S. Ghose, D. Sidibé & F. Meriaudeau are with Le2i
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might increase the overall biopsy accuracy [4].

Fusion of pre-biopsy MR on interventional TRUS may

be done in several ways. An Electro Magnetic (EM) tracker

attached to the 2D TRUS probe may be used that sweeps the

prostate to reconstruct a 3D TRUS volume. The 3D TRUS

volume is then fused with the MR volume to obtain the

spatial position of the 2D TRUS slice during biopsy within

the pre-biopsy MR volume [4]. On the other hand, a 3D

TRUS probe may be directly used to acquire 3D TRUS

volume and a volume-volume registration may be performed

[5]. However, neither 3D TRUS probe is commonly available

in diagnostic centers nor the use of the EM tracker is an

established clinical practice. Therefore, intending to solve the

2D TRUS-MR slice correspondence problem, we propose

a method based on Chi-square distance of shape-context

representations of the prostate contours and image similarity

measures like Normalized Mutual Information (NMI) and

Correlation Coefficient (CC) of the TRUS-MR slices. The

probability of an MR slice being the correct match for

the corresponding TRUS slice is determined from the joint

probabilities of shape similarity and each of the image

similarity measures (NMI and CC) yielding two sets of

probability values. The shape and image similarities assume

independence, therefore multiplication of the same provides

the combined probability. The slice having the maximum

joint probability among the obtained sets of probability

values is normally chosen as the correct match. However,

owing to the segmentation inaccuracies and inter-modality

prostate deformations, the overlap area between the TRUS

and MR images will differ that would incorporate some error

in the image-based similarity and hence the choice of the

correct MR slice from joint shape and image similarities.

Therefore, a rule-based approach is adopted to prioritize

the shape similarity in such cases over image similarities.

The novelties of the proposed work may be summarized as

follows:

1) Using shape context representations of the contours to find

prostate shape similarities between TRUS and MR slices.

2) Combining shape information (here shape context) with

image intensity information (NMI and CC), thereby yielding

the combined probability of an MR slice that closely resem-

bles the TRUS slice both in shape and intensity pattern.

3) Rule-based approach to prioritize the shape similarity

in case of ambiguous maximum joint probability values of

shape and image similarities.

In the remaining paper, section II describes the proposed
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(a) (b)

Fig. 1. Point correspondences example. (a) contour points in TRUS, (b)
point correspondences of (a) in MR.

method in detail, section III provides the results and discus-

sions followed by the conclusions in section IV.

II. THE METHOD

In this work, the prostate is manually segmented from the

2D TRUS axial slice and the pre-biopsy axial MR volume

where the TRUS slices are considered to be parallel to the

MR axial plane. The manual segmentation ensures better

evaluation of our method, although in future we will use

the fast automatic prostate segmentation methods in both

MR and US modalities by Ghose et al. [6], [7]. The shape

similarity measure using Chi-square distance is explained in

section II-A, the image similarity measures like NMI and

CC are explained in section II-B with the explanation of

joint probability of shape and image similarities and the

rule-based approach to choose the best matching MR slice

corresponding to the axial TRUS slice in section II-C.

A. Shape Similarity

The segmented prostate contour points are uniformly sam-

pled using fixed Euclidean distance of ε i.e. if ci is a contour

point, i = 1, . . . , N , then maximize the following equation

argmax
j

‖ci − cj‖
2
≤ ε, i 6= j. (1)

Let the number of uniformly sampled points now be rep-

resented as n, then each sample point ci may be represented

by a shape descriptor that is a n − 1 length vector of log-

polar relative distances to points cj , where i 6= j. The

shape descriptor is binned into a histogram that is uniform

in log-polar space and this histogram is the shape-context

representation of a contour point [8] i.e. ci is represented by

a histogram hi(k, θ) such that

hi(k, θ) = # {cj , i 6= j : (ci − cj) ∈ bin(k, θ)} . (2)

k is the log r = log(
√

(xi1 − xj1)2 + (xi2 − xj2)2) and

θ = tan−1 xj2−xi2

xj1−xi1
of the relative distance (ci − cj), where,

ci = (xi1, xi2) and cj = (xj1, xj2). As suggested by

Belongie et al. [8], a total of 5 bins are considered for k

and 12 bins for θ that ensures that the histogram is uniform

in log-polar space. This also means that more emphasis is

given to the nearby sample points than those that are far

away.

In the original work of Belongie et al. [8], the point

correspondence between two shapes is obtained by a bipartite

graph matching method. However, in this work we choose the

Bhattacharyya distance [9] between the shape-context his-

tograms of two shapes to find the best point correspondence

since it is fast to compute and statistically a robust measure to

find correspondences in similar shapes like prostate contours

in TRUS and MRI. Thus, to match a point ci in a shape to

a point c′j in another shape, the Bhattacharyya coefficients

between the shape-context histogram of ci and all c′j are

computed and the c′j that maximizes the relation in Eq. (3)

is chosen as the corresponding point.

argmax
c′
j

5
∑

k=1

12
∑

θ=1

√

ĥi(k, θ).ĥ′

j(k, θ), (3)

where, ĥi(k, θ) and ĥ′

j(k, θ) are the normalized shape-

context histograms of ci and c′j respectively. Fig. 1 shows

the contour correspondences overlaid on the TRUS and MR

prostate shapes.

After the corresponding points are identified, the Chi-

square (χ2) distances between the TRUS slice and each of

the MR slices are calculated based on the corresponding

shape-context histograms and is given by Cij in Eq. (4).

The final distance is the sum of all the χ2 distances of the

corresponding points (shape-context histograms) in TRUS

and MR and is given by H in the following equation.

Cij =
1

2

5
∑

k=1

12
∑

θ=1

(ĥi(k, θ)− ĥ′

j(k, θ))
2

ĥi(k, θ) + ĥ′

j(k, θ)
, H =

l
∑

i=1

Cij ,

(4)

where, l is the number of point correspondences. The TRUS-

MR slice pair with minimum sum of χ2 distance (H)

is identified and its significance will be discussed in the

following subsection.

B. Image Similarities

Image similarity measures have been extensively used in

multimodal image registration problem to ensure that the

moving image is transformed with close resemblance to

the fixed image. In this work, our problem is to find an

MR slice in the volume that closely resembles the TRUS

slice. Therefore, to find such similarity we employ the well-

known NMI and CC as image similarity measures. Fei et

al. [10] demonstrated that CC is more discriminative as

an image similarity in low resolutions and NMI at higher

resolutions for registration problems. Related to our problem,

some TRUS slices have smaller prostate sizes than the

other. Therefore, considering the variability in prostate sizes

we decided to use both NMI and CC as image similarity

measures.

The TRUS-MR slice pair identified with the minimum H
as obtained from Eq. (4) is used to retrieve the 2D rigid

transformation (in-plane rotation and translation) parameters

between them; and the remaining MR slices in the volume

are rigidly registered with the TRUS slice using the same

transformation parameters. This registration step ensures

similar 2D in-plane rigid alignment of all the MR slices of

the volume with the 2D TRUS slice. After the alignment

of the MR volume with the TRUS slice, pairwise NMI and

CC are computed for each MR-TRUS slice pair. The NMI is
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TABLE I

EXPERT CHOICES AND THE RESULTS FOR THE MR SLICES CORRESPONDING TO A TRUS SLICE OBTAINED BY OUR METHOD. THE MATCHED CASES

ARE SHOWN IN ITALICS.

Patients/MR Slice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Agreement (%)

Expert 1 6 8 9 7 6 10 6 10 5 7 6 5 12 8 6 5 7 7 6 7 65%

Expert 2 2 7 6 5 6 9 6 8 7 6 6 4 13 8 4 8 10 9 6 7 80%

Our method 3 8 3 6 5 9 6 8 7 6 6 5 13 8 6 8 10 6 6 4 -

an information theoretic measure that measures the mutual

dependence between the images [11] and is given by

NMI =
H(M) +H(T )

H(M,T )
(5)

where, H(M) and H(T ) are the marginal entropies of the

MR (M ) and TRUS (T ) images respectively, and H(M,T )
is the joint entropy of the images. H(M,T ) can be written

using probability theory as

H(M,T ) = −
∑

M,T

p(M,T ) log [p(M,T )], (6)

where, p(M,T ) is the joint probability distribution of the

images obtained from their joint histogram.

The CC gives a linear dependence between two random

variables M (m) and T (t) [12] as intensities of the MR and

the TRUS images respectively, and is defined as:

CC(M,T ) =

∑
(

T (t)− T (t)
)(

M(m)−M(m)
)

√

∑
(

T (t)− T (t)
)2 ∑(

M(m)−M(m)
)2

.

(7)

m and t are the pixel positions in the TRUS and MR images

respectively. M(m) and T (t) are the average pixel intensities

for the overlapping regions.

C. Choosing the best matching MR slice

The MR slice corresponding to the observed TRUS slice

should ideally be the one with lowest H obtained from

section II-A and with maximized NMI or CC as obtained

from section II-B. The values of these statistical shape and

image similarity measures are consecutively transformed into

pdfs to compute the joint probability.

Given a set of independent random variables X =
{x1 . . .xn}, each defined by the pdf p(xi), i = 1 . . . n, the

joint probability of the independent random variables is given

by

p(X = x1, . . .X = xn) = p(X = x1) · . . . · p(X = xn)
(8)

In this work, the set of independent random variables is X =
{H′,NMI,CC}, where H′ = 1 − H and their respective

probability values constituting the pdfs. Therefore, two sets

of joint probability values are obtained by combining the

shape and image similarities as

PNMI = p(X = H′,X = NMI) = p(X = H′) · p(X = NMI)
(9)

PCC = p(X = H′,X = CC) = p(X = H′) · p(X = CC)

After obtaining the joint probabilities, the idea is to find

the MR slice that corresponds to the TRUS slice jointly

maximizing the H′ and NMI or H′ and CC. Let us con-

sider the maximum joint probabilities of PNMI and PCC be

P
max

NMI and P
max

CC respectively. Then the rule-based method to

identify the best MR slice is as follows: The value of λ is

Algorithm 1 The rule to choose the best MR slice

if
∣

∣P
max

NMI − P
max

CC

∣

∣ > λ then

Choice = MR slice corresponding to

max(P
max

NMI , P
max

CC )
else

Choice = MR slice corresponding to the maximum

value of H′

end if

determined through the experimental validation procedure. If

P
max

NMI and P
max

CC both have closely separated values then it is

difficult to bias on any one of the joint probability (P
max

NMI or

P
max

CC ) to determine the best matching MR slice. Therefore,

in such cases the shape similarity measure is prioritized in

determining the slice choice.

III. RESULTS AND DISCUSSIONS

The results are validated against the MR slice choices

obtained from an expert radiologist and an expert urologist

for 20 patients axial mid-gland TRUS slices. The axial MR

slices have slice thickness of 3 mm with inter-slice gap of

3.5 mm where the pixel dimension is 0.2734 mm × 0.2734
mm. The value of λ is determined experimentally as 0.15
that is the value which maximizes the number of cases in

agreement to that of the expert choices. This means that if

the maximum joint probability values P
max

NMI and P
max

CC are

similar by more than 85% then the slice choice is dependent

only on the maximum shape similarity rather than joint image

and shape similarities. Table I shows the choices of the axial

MR slice corresponding to an axial TRUS slice provided

by the experts (independently) and the results we obtained

using our method. The inter-slice gap being 3.5 mm, we have

considered the [−1,+1] slices i.e. a statistically significant

20% error when computing the inter-expert and between

expert and our method accuracies of slice choice.

It is observed from Table I that the automatic MR slice

choice matched at least one of the expert choices for 18 cases

wherein the experts agree in their choices for 11 patient cases

(patients 2, 5, 6, 7, 10, 11, 12, 13, 14, 19 & 20). The expert

choices matched exactly in 6 cases (5, 7, 11, 14, 19 & 20)

out of which our result matched exactly for 4 patient cases

(7, 11, 14 & 19) and −1 slice away for patient 5 respectively.

Since, the expert choices agreed exactly and [−1,+1] slice

away in 11 out of 20 cases, they are in agreement of 55%.

Comparing each of the expert choices independently
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Fig. 2. TRUS-MR corresponding slices. Rows (top to bottom) show patient
cases 5, 3 and 20 respectively. The 1

st column shows the TRUS slices, the
2
nd and the 3

rd show the expert 1 and 2 MR slice choices respectively
and the last column shows the obtained result using our method.

with our method, the exact matches with expert 1 are for

7 patients (2, 7, 11, 12, 14, 15 & 19) while [−1,+1] slice

away for 6 patients (4, 5, 6, 10, 13, & 18). Therefore, 13
out of 20 cases i.e. 65% results are in agreement with

that of the choices of expert 1. Similarly for 11 cases

(6, 7, 8, 9, 10, 11, 13, 14, 16, 17 & 19) our results exactly

matched expert 2 choices and are [−1,+1] slice away for 5
patient cases (1, 2, 4, 5, & 12). This signifies that the results

of our method are in 80% agreement with that of expert

2 slice choices. The agreements between our method and

each of the expert choices are shown in the last column of

Table I. The inter-expert variability in the choice of MR slice

being high (55% agreement), our method performs better

with an agreement of 65% for expert 1 that shows a 18.18%
increase in performance and with 80% agreement for expert 2

that shows an increase in performance by 45%. The overall

performance of our method is said to be 90% considering

accurate slice matches in 18 out of 20 cases while failing

for patient 3 and 20. Fig. 2 shows patient case 5 where the

result obtained is one slice below than that of the choices

of experts 1 and 2 as shown in Table I. Fig. 2 also shows

patient cases 3 and 20 where the results are not close to any

of the expert choices. However, observing the slice choice

by our method and that of the expert for patient 20 it may

be noted that both the choices are visually similar.

The method has been implemented in MATLAB and the

complete process takes 3 secs on an average to find out the

corresponding MR slice from a set of 12−14 slices. It is to be

noted that Xu et al. [4] employed an EM tracker to locate the

spatial position of the 2D TRUS slice (during biopsy) in the

3D TRUS volume. Thereafter, to compensate for the prostate

motion, the sum-of-squared differences (SSD) between the

maximum translational and rotational TRUS slices within

a short time frame of the biopsy and the corresponding

spatial 2D TRUS slices obtained in the 3D TRUS volume

was minimized. Similarly, considering an error of [−1,+1]
slices from the actual MR slice, we can directly use the slice

obtained by our proposed method for multimodal registration

between TRUS and MR employing the method of Mitra et al.

[13]. However, if an EM tracker is additionally attached to

the TRUS probe during biopsy, then it would be possible

to locate an approximate position of the TRUS slice in

MR volume. Consequently, our method can be employed

to search for the best slice within a smaller subset in the

neighborhood of the correct MR slice thereby improving on

the accuracy of slice choice.

IV. CONCLUSIONS

A method to find out 2D MR slice correspondence of a

2D axial TRUS slice during biopsy has been reported in this

paper. The method is based on statistical shape and image

similarity measures and their joint probabilities and applying

a rule-based method to prioritize the shape similarity in some

cases. The method is fast in finding out MR correspondences

that are nearly the same as the choices obtained from two

experts. Since EM tracker is not easily available in hospitals

in Europe and 3D TRUS is normally not employed for biopsy

purposes, our proposed method may provide a good starting

point for multimodal fusion of TRUS-MR images to improve

the sampling of biopsy tissues. Although the results reported

in this paper are validated only for mid-gland or close to mid-

gland axial slices, the validations for the base/apex TRUS

axial slices, TRUS sagittal slices and cross-validation of our

method with the use of an EM tracker have been left as

future works.
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