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Abstract

Registration is an important step during prostate biopsy
with interventional Ultrasound (US) to project the Mag-
netic Resonance (MR) information of the corresponding
slice of a pre-acquired MR volume of the same patient.
This paper presents a method of deformable registration
between US and MR prostate modalities using Thin-Plate
Splines (TPS). The use of radial-basis functions such as
splines is a typical approach for deformable registration
wherein, TPS are more computationally efficient than B-
splines. However, registration with TPS employs strate-
gic choice of correspondence points in the moving and ref-
erence images and therefore, has been rarely used by re-
searchers for prostate registration. Aiming to deal with this
issue, a novel method to automatically choose correspon-
dence points (control points) based on the prostate geom-
etry is presented in this paper. Shepard’s interpolation is
used with the TPS in order to deal with the interpolation
artifacts produced by reverse TPS transform. To evaluate
the accuracy of our correspondence generation method, two
intuitive geometric methods for prostate contour sampling
are also implemented. Our registration results are vali-
dated using 4 patient datasets obtaining an average DSC
of 0.97 ± 0.01.

1. Introduction

Prostate biopsy is often performed with interventional
Trans-Rectal Ultrasound (TRUS) imaging. Ultrasound im-
ages provide a satisfactory boundary of the prostate with-
out any contrast between the normal and malignant tis-
sues of the prostate. Therefore, clinicians generally extract
10-12 samples strategically from different regions of the
prostate. This approach increases the risk of malignant re-
gions not being uncovered and consequently the number of
re-biopsies [9]. However, malignant prostate regions may
be detected more accurately using MR imaging. MR im-
ages provides a better contrast between the normal and ma-
lignant tissues of the prostate. Therefore, informations from
MR images need to be fused with the interventional US im-
ages of the same patient [5, 2, 13, 12, 7]. Deformable regis-
tration is necessary for the fusion of interventional US and
pre-acquired MR images as the prostate may undergo sig-
nificant deformations due to the insertion of the endorectal
probe through the rectum during the MRI, inflation of the
endorectal balloon, full bladder, bowel and gas in rectum or
different patient positions on the couch during MRI and US
procedures.

Deformable registration using TPS requires selection of
correspondence points on the moving and reference im-
ages and the transformation parameters are computed from
these correspondences. Lu et al. [6] and Fei et al. [3]
used TPS with manually chosen correspondences to warp
MR prostate volumes. Salient points on prostate contour
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were automatically identified using equal angle sampling
by Padilla-Castañeda and Arámbula-Cosı́o [8]. Yan et al.
[14] used equally spaced salient points on prostate contour
based on Euclidean distance to build a partial active shape
model for segmentation.

This paper focuses on deformable multimodal prostate
registration employing TPS and proposes a novel approach
to establish correspondence points in the US and MR
modalities. Our approach does not require correspondences
to be established manually and is fully automatic after ob-
taining the segmented prostate contours. The generation
of correspondence points exploits the shape geometry of
the prostate and its principal shape components. There-
after, correspondence points are generated in different res-
olutions. Resolution signifies sparse to dense set of control
points for TPS. The TPS framework includes the correspon-
dence localization errors and uses inverse-square distance
weighted commonly known as Shepard’s interpolation [11]
to yield a smooth transformation. The accuracy of our cor-
respondence point generation algorithm for registration is
evaluated against two intuitive geometric prostate contour
sampling methods. The results are validated on 4 patients,
where, our method of generating correspondences always
outperforms the other geometric methods.

The organization of the paper is as follows: section 2
describes the methods implemented, section 3 compares
the results of different correspondence points generation al-
gorithms along with the improved registration quality us-
ing Shepard’s interpolation over reverse TPS interpolation.
Conclusions and future improvements are presented in sec-
tion 4.

2. Proposed method

This section is divided into two subsections; the first
one dealing with the correspondence points generation al-
gorithm and the second one explaining the thin-plate splines
with Shepard’s interpolation.

2.1. Automatic correspondences

Assuming that the 2D MR/US corresponding slices are
found on visual inspection by an expert, our correspon-
dence points generation algorithm is based on a triangu-
lation method with the principal axes of the segmented
prostate as the underlying framework. Principal axes make
the best representation of the primary orientation of a shape
and are generated from the Principal Component Analysis
(PCA) of the contour points of the shape.

The 2D-US prostate reference image and the correspond-
ing 2D-MR moving image from the MR volume are initially
segmented using the method of Ghose et al. [4]. Prin-
cipal axes of the reference image are generated and pro-
jected onto the moving image with shifted mean assum-

ing that the corresponding slices have no rotation of the
prostate between them. The intersection points of the prin-
cipal axes with the prostate boundary for both the reference
and moving images are identified automatically. The tri-
angulation method to generate correspondence points be-
gins by traversing the intersections of the principal axes in
a clockwise or anti-clockwise manner in each image. The
order of traversing should however be the same for both the
reference and moving images.

Triangles are generated by joining the adjacent intersec-
tions of the principal axes forming a quadrant and drop-
ping a perpendicular from the midpoint of the line joining
these intersections. The adjacent intersection points and the
point of intersection of the perpendicular dropped on the
prostate contour comprise a triangular approximation of the
prostate region in the quadrant. Likewise, other quadrants
of the shape are processed for both the reference and mov-
ing images. Hence, new points formed by the triangulation
method are generated on the shape contours for the first
resolution (see Fig. 1(b)). Resolution signifies coarser to
denser control points on the shape contour. The points are
reordered and further triangulations are made at subsequent
resolutions, approximating smaller prostate regions close to
the boundary. Fig. 1 shows the triangulation method for
three subsequent levels.

(a) Level 0 (b) Level 1 (c) Level 2, only
shown for right-
bottom quadrant

Figure 1. Method of generating correspondence points in different
resolutions.

Instead of considering only the contour points for the de-
formable registration, certain points inside the prostate con-
tour are also considered for a smooth deformation of the
internal glandular structures of the prostate that are quite
evident in MR images and sometimes partially visible in
US images. The internal points are primarily the prostate
centroid and the midpoints of the line joining the adjacent
principal axes in the first resolution (see Fig. 1(b) and 1(c)).

Two methods of prostate contour sampling at equal an-
gles and equal spaces are also implemented to compare
the accuracies of our proposed correspondence generation
method. These geometric sampling methods are intuitive
where, in equal-angle sampling, the angles are equally
spread inside each quadrant formed by the principal axes.
In equal-space contour sampling, the points are also gen-
erated inside each quadrant depending on the number of
contour points falling in the same. Fig. 2(a) and Fig. 2(b)
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(a) Equal-angle sampling (b) Equal-space sampling

Figure 2. Geometric methods for correspondence points genera-
tion.

(a) Points generated in US (b) Points generated in MR

Figure 3. The *s indicate points generated with equal-angle sam-
pling and the squares indicate the points generated with our ap-
proach. Note thhat in bottom-left quadrant with our method, we
are able to get good correspondences even in the presence of a
significant deformation.

show the contour points obtained with equal-angle sampling
and equal-space sampling approaches respectively. Fig. 3
shows a case when bad correspondences are generated with
equal-angle sampling due to significant deformation be-
tween the reference and moving images. Our method makes
triangular approximations of prostate quadrants and smaller
regions and moves towards the prostate boundary in a sym-
metric manner with the perpendicular bisector of the trian-
gle as reference. Other methods use the prostate centroid
only as the reference lying far from the boundary and there-
fore the localization error of correspondences increases.

2.2. Thin-plate splines registration

The thin-plate spline is a commonly used basis function
in 2D-Euclidean space [1] to map the coordinates of a mov-
ing image into a reference image, when a set of homologous
correspondence points are established in both images. In its
regularized form, the deformable TPS model includes the
affine model as a special case. Correspondences are gen-
erated automatically on both the moving and reference im-
ages. Following is a brief algebraic description of the TPS
model.

If pi = (xi, yi) and qi = (xj , yj), i = j = 1, . . . , n rep-
resent two sets of corresponding landmarks in the moving
and reference images respectively, then, the TPS interpolant
f(x, y) minimizes the bending energy or the integral bend-
ing norm

If =
∫ ∫

�2
(f2

xx + 2f2
xy + f2

yy)dxdy (1)

and has the form

f(x, y) = a1 + axx + ayy + (2)
n∑

i=1

wiU(‖(xi, yi) − (x, y)‖),

where, U = r2 log r. f(x, y) should have square integrable
derivatives if

n∑
i=1

wi = 0 and
n∑

i=1

wixi =
n∑

i=1

wiyi = 0

Together with the interpolation conditions, f(xi, yi) = qi,
a linear system is obtained for the TPS coefficients as

[
K P
PT O

] [
w
a

]
=

[
q
o

]
(3)

where, K is a n × n matrix and Kij =
U(‖(xi, yi) − (xj , yj)‖), ith row of P is (1, xi, yi),
O is a 3 × 3 matrix of zeros, o is a 3 × 1 column vector of
zeros, w and q are column vectors of wis and qjs respec-
tively and a is a column vector of the affine parameters a1,
ax and ay .

Localization errors of the correspondence points may be
considered by extending the interpolation to regularization
[10]. This is accomplished by the minimization of

H(f) =
n∑

i=1

(qi − f(xi, yi))2

σ2
i

+ λIf . (4)

The covariance σ2
i is the sum of the covariances of the

points pi and qi and λ = 0.01 is the regularization term.
This minimization can be analytically formed into an equa-
tion [

K + nλC−1 P
PT O

] [
w
a

]
=

[
q
o

]
(5)

where,

C−1 =

⎛
⎜⎝

σ2
1 0

. . .
0 σ2

n

⎞
⎟⎠

Introducing the term nλC−1 yields a better conditioned lin-
ear system and a robust numerical solution. Finally, (5) is
framed as

LU = V (6)

and solved as

U = L−1V (7)
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where,

L =
[

K + nλC−1 P
PT O

]
, U =

[
w
a

]

and

V =
[

q
o

]
.

The TPS and affine parameters obtained from the TPS
framework are used to warp the moving image using
nearest-neighbor interpolation to map the pixel values onto
integer coordinates. However, TPS interpolation produces
holes in the transformed image as not all the pixels are being
mapped onto it. Therefore, a general approach is to unwarp
the transformed image to fill up the unmapped pixels. Un-
fortunately, the reverse transformation fails to achieve accu-
rate results since, splines are not exactly reversible. Hence,
we propose to use Shepard’s interpolation [11] to fill the
holes produced by forward TPS interpolation. This method
of interpolation successfully interpolates a point from scat-
tered pixel points. In our implementation, an unmapped
pixel is mapped with an intensity value, interpolated from
the scattered mapped pixels in a 7 × 7 mask centering the
pixel. This interpolation method is faster than computing
the reverse TPS parameters and produces smooth intensity
warping of the moving image.

3. Results and Discussions

Our proposed methods are tested with 4 patients’ middle
slice images of the prostate from which, automatic prostate
segmentations are available in both US (Siemens ACU-
SON) and MR images (GE 1.5T). For all the images we
applied the three correspondence generation methods de-
scribed in section 2.1. Fig. 4 shows the obtained results with
Patient-1. Observe that our correspondence points (see last
row of Fig. 4), yield better registration result than the other
two approaches. The number of correspondences generated
using our method normally starts from level 2 including the
center and other internal points i.e. 21 correspondences. It
is observed that a maximum of 37 correspondences (level
3) are required for a smooth warping.

Notice from columns 1 and 2 of Fig. 4 that differ-
ent numbers of correspondences are generated for each ap-
proach as these are found to be optimal to provide satisfac-
tory registration qualities. With our method 37 correspon-
dences yields a smooth deformation. On the other hand,
with other methods less number of correspondences pro-
vide satisfactory results. However, increase in number of
points in the latter methods increases correspondence local-
ization errors and hence yield poor registrations. This is
well justified with the fact that our approach estimates cor-
respondence points in localized regions and thus, can avoid
undesirable localization errors.

Observing Fig. 4 (1st and 2nd rows) note that overall ac-
curacies of the registration along the prostate boundaries are
satisfactory, when equal-angle and equal-space samplings
are used respectively, although the internal structures do not
have smooth deformations. Equal-angle sampling produces
better results for Patients 1 and 3 and produce undesirable
registrations for Patients 2 and 4. Therefore, only Patient-1
results with all the correspondence point generation meth-
ods have been presented to maintain the brevity of the paper.
Fig. 5 shows the results obtained with our correspondence
approach for patients 2, 3 and 4.

Registration accuracy is evaluated by computing the
Dice Similarity Coefficient (DSC), measuring the overlap
between the transformed moving image and the reference
image. Table 1 shows DSC values obtained with our ap-
proach along with the computation times for generating cor-
respondence points and TPS interpolation with Shepard’s
interpolation. An average DSC of 0.97±0.01 is obtained for
all the patients. The DSC values after TPS registration using
the equal-angle sampling and equal-space sampling and our
correspondence method only for Patient-1 are 0.97 and 0.96
and 0.98 respectively. Therefore, it may be concluded that
although, equal-angle sampling and equal-space sampling
correspondence methods provide high DSC values in cer-
tain cases, specially when the prostate contours have simi-
lar shapes in the respective modalities, our approach always
outperforms the other geometric approaches.

Fig. 6 shows the interpolation artifacts in the deformed
image when reverse TPS is used (Fig. 6(a)) and a smooth
deformation when Shepard’s interpolation method is ap-
plied (Fig. 6(b)). The algorithms have been implemented in
MATLAB with 1.66 GHz, Core2Duo processor with 2GB
memory and it has been observed that a forward TPS and
Shepard’s interpolation is more computationally efficient
than forward and reverse TPS interpolation.

4. Conclusions and Future Works

A novel geometric approach to generate correspondence
points for registration, based on segmented prostate con-
tour has been presented. The method is based on triangu-
lar approximation of closed boundary regions that may be
generalized for regular-shaped anatomical structures. Our
method showed better correspondences being generated, re-
sulting in smooth deformations and significantly high re-
gion overlaps after registration, in comparison with other
geometric correspondence points generation methods. The
method is computationally efficient in order to be used dur-
ing biopsy procedures. TPS interpolation along with Shep-
ard’s interpolation produced smoother deformations and
could avoid interpolation artifacts resulting from reverse
TPS interpolation.

We propose to validate our method of correspondence
point generation with more patient data and claim on the
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Figure 4. Qualitative registration results for Patient-1. (First-row) correspondences using equal-angle sampling,(second-row) correspon-
dences using equal-space sampling, (third-row) correspondences using our method. The first-left column shows the reference US images,
second column shows the moving MR images, third column consists of the registered images and the last column consists of checker-board
displays to evaluate quality of registration.

Figure 5. Patient-2 to Patient-4 registration results using our method of correspondences. The columns are similar to Fig. 4.

robustness of the algorithm. We also propose to extend our
registration framework to the fusion of 3D TRUS/MR vol-
umes and develop a method to search for the corresponding
US and MR slices automatically. Optimal number of corre-
spondences could be generated incorporating mutual infor-
mation maximization in the TPS framework. The maximum
time during TPS interpolation is required in transforming
the moving image with the interpolation parameters, rather

than the optimization phase that requires less than 1 sec.
Therefore, the forward TPS with Shepard’s interpolation
can be accelerated if the transformation is parallelized with
GPU implementation. Conclusively, our method of gener-
ating correspondences and the TPS/Shepard’s interpolation
are efficient and may be used for non-rigid registration dur-
ing US interventional biopsies if the intermediate manual
interventions are removed and the implementation is paral-
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Table 1. Computational performance and accuracy of the proposed algorithm.

Patient# Correspondence
points method(secs)

TPS/Shepard’s
method(secs)

DSC

1 0.2 94.58 0.98
2 0.2 83.91 0.97
3 0.14 22.71 0.96
4 0.16 50.15 0.97

(a) Forward-Reverse TPS interpolation (b) Forward TPS/Shepard’s interpolation

Figure 6. Comparison of forward-reverse TPS interpolation with forward TPS/Shepard’s interpolation, (a) interpolation artifacts visible in
center and lower part of the image (encircled), (b) smooth deformation.

lelized.
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