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Prostate segmentation is a challenging task, and the challenges significantly differ from

one  imaging modality to another. Low contrast, speckle, micro-calcifications and imaging

artifacts like shadow poses serious challenges to accurate prostate segmentation in tran-

srectal ultrasound (TRUS) images. However in magnetic resonance (MR) images, superior

soft  tissue contrast highlights large variability in shape, size and texture information inside

the  prostate. In contrast poor soft tissue contrast between prostate and surrounding tissues

in  computed tomography (CT) images pose a challenge in accurate prostate segmentation.

This article reviews the methods developed for prostate gland segmentation TRUS, MR and

CT  images, the three primary imaging modalities that aids prostate cancer diagnosis and

treatment. The objective of this work is to study the key similarities and differences among

the different methods, highlighting their strengths and weaknesses in order to assist in the

choice of an appropriate segmentation methodology. We  define a new taxonomy for prostate

segmentation strategies that allows first to group the algorithms and then to point out the

main advantages and drawbacks of each strategy. We  provide a comprehensive description
of  the existing methods in all TRUS, MR and CT modalities, highlighting their key-points and

features. Finally, a discussion on choosing the most appropriate segmentation strategy for

a  given imaging modality is provided. A quantitative comparison of the results as reported

in  literature is also presented.

a major health problem. The highest rate of prostate cancer
1. Introduction
Statistics from Cancer Research UK show that more than 338,
000 people are diagnosed with prostate cancer every year in
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cases are diagnosed in USA, Australia, New Zealand, Western
and Northern Europe, while the lowest rates are observed in
South and Central Asia [1].
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the same time. We globally classify the methods into different
c o m p u t e r m e t h o d s a n d p r o g r a m s 

Primarily transrectal ultrasound (TRUS), magnetic reso-
ance imaging (MRI) and computed tomography (CT) imaging
re used in diagnosis, treatment, and follow-up of the prostate
ancer. Fig. 1 shows an example of a prostate obtained in each
f these imaging techniques, where we can see that the infor-
ation provided by each modality significantly differ from

ach other. The use of a particular modality depends on the
linical aim. For instance, MRI  is primarily used in diagnos-
ic and treatment planning for prostate diseases [2,3], since it
rovides good soft tissue contrast and enables a better lesion
etection and staging for prostate cancer. In addition, dynamic
ontrast enhanced MRI  (DCE-MRI) aids in identifying malig-
ant tissues from the diffusion rate of the contrast agent

4–6] and magnetic resonance spectroscopy aids in identifying
alignant tissues from the relative concentration of different
etabolites (like citrate, choline and creatine) [7].  On the other

and, TRUS is primarily used in determining prostate volume
nd in prostate biopsy due to the fact that it is an inexpensive,
ortable and real-time in nature [8].  Note from Fig. 1(a) that
RUS images are characterized by speckle, shadow artifacts
nd low contrast [9] where the prostate gland can be often
bserved as a hypoechoic mass surrounded by a hyperechoic
alo [10]. Finally, CT is generally used in prostate brachyther-
py to determine the placement of the radioactive seeds and
lso to confirm the seed location post-procedure [7].  The high
ttenuation of the radioactive seed produces high intensity in
T images as could be visualized in Fig. 1(c). Note, that distin-
uishing external and internal anatomy of prostate from CT
mages is difficult due to poor soft-tissue resolution. The main
eatures associated with the different imaging modalities are
ummarized in Table 1.

In this article we will primarily focus on methods devel-
ped for prostate gland segmentation in TRUS, MR and CT

mages. Prostate segmentation from TRUS, MRI and CT plays
 key role in different stages of clinical decision making
rocess. For instance prostate volume, that can be directly
etermined from prostate gland segmentation, aids in diag-
osis of benign prostate hyperplasia. The prostate boundary

s utilized in different treatments of prostate diseases, like
rostate brachytherapy, high intensity focused ultrasonogra-
hy, in cryotherapy and in transurethral microwave therapy.
oreover, both prostate volume and contour are also useful in

he follow up of prostate brachytherapy. In addition, prostate
land segmentation also facilitates multimodal image  fusion
or tumor localization in biopsy, minimally invasive ablative
nd radiation therapy. However, manual segmentation of the
rostate is a tedious task, prone to inter and intra observer
ariability. Therefore, computerized schemes are currently
eing investigated to perform this task.

Three related surveys on prostate segmentation were pub-
ished by Zhu et al. [11], Noble et al. [12], and Shao et al. [8].  Zhu
t al. carried out a survey on computerized techniques devel-
ped for prostate cancer detection and staging, including not
nly prostate segmentation but also prostate staging, comput-
rized visualization and simulation of prostate biopsy, volume
stimation and registration between US and MR modalities.
oble et al. presented a survey on US segmentation meth-

ds developed for different organs (i.e. heart, breast, prostate)
nd for the detection of vascular diseases. Finally, Shao et al.
resented a survey on prostate segmentation methodologies
 o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 262–287 263

developed for TRUS images. Therefore, the surveys of Noble
et. al. and Zhu et al. were done on a broader perspective
and hence an exhaustive classification and discussion focused
only on prostate segmentation methods was missing, while
Shao et al. restricted their discussion to methodologies devel-
oped only for TRUS images.

This paper presents an up-to-date summary of the tech-
niques developed for prostate segmentation in TRUS, MRI  and
CT modalities. We classify and review the different approaches
found in the literature in order to show similarities and dif-
ferences and further to extract advantages and drawbacks
from the reviewed algorithms. To have an overall qualita-
tive estimation of the performance of the different methods,
we have grouped the methods according to their theoretical
approach and have presented their evaluation metrics and
degree of validation. Note that a quantitative comparison of
different prostate segmentation methodologies is difficult in
the absence of public data sets, publicly available software,
and standardized evaluation metrics.

In summary, we  consider that the major contributions of
this paper are:

• A new classification scheme grouping the surveyed meth-
ods on the basis of the theoretical approaches to the
problem. Such classification is useful in highlighting the
similarities and differences of the reviewed approaches.

• The inclusion of prostate segmentation approaches in all
TRUS, MR  and CT modalities in a single article. This is key
aspect for finding links and differences between the differ-
ent segmentation techniques, and it is even more  important
with the growing popularity of multi-modal prostate seg-
mentation. Furthermore, to the best of our knowledge, for
the first time a review on prostate segmentation methods
developed in CT imaging is presented.

• A comparison of different segmentation methods based on
their results are also presented.

• A discussion about choosing an appropriate segmentation
method for a given imaging modality is carried out.

The outline of the paper is as follows. The state-of-the-art
computer-aided prostate segmentation procedures are classi-
fied and presented in Section 2. In Section 3, validation and
quantitative evaluation of the prostate segmentation in TRUS,
MR and CT images are provided. Discussion on selection of
an efficient prostate segmentation technique based on imag-
ing modality is presented in Section 4. Finally, the paper ends
with conclusion and future trends.

2.  Prostate  segmentation  methods

In this work, we classify the prostate segmentation methods
according to the theoretical computational approach taken
to solve the problem. We  believe that such a classification
successfully points out the key algorithmic similarities and
dissimilarities, highlighting their strengths and weaknesses at
strategies: contour and shape based, region based, supervised
and un-supervised classification methods based, and hybrid
methods. We further refine these groups to produce a more

dx.doi.org/10.1016/j.cmpb.2012.04.006
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Fig. 1 – TRUS, MRI  and CT provide different information of the prostate (the contour is outlined in green). TRUS and MRI
images of the same patient. (a) In TRUS imaging, the prostate is shown as a hypoechoic mass surrounded by a hyperechoic
halo. (b) T2 weighted MRI  allows to see the internal anatomy of the prostate. Note that the contrast around prostate is
enhanced with endorectal coil (A). (c) CT image of a different prostate showing radioactive seeds in white. (For interpretation

refer
of the references to color in this figure legend, the reader is 

local classification schema. For instance, contour and shape
based methods are further classified into edge, probabilistic
filters and deformable models. The full taxonomy proposed
in this paper is shown in Fig. 2 that also presents the work
that follow each strategy. Note that level sets methods appear
under contour and shape based and region based methods.
This is due to the fact that level sets can be guided by either
boundary or region information.

We have grouped the prostate segmentation methods in
four different groups, according to the information used to
guide the segmentation. Broadly,

• Contour and shape based methods: These methods
use prostate boundary/edge information to segment the

prostate. Since often edge information is unreliable in TRUS
and CT images and in the base and the apex region of the MR
images, prior shape information is incorporated to provide
better results.

Table 1 – Advantages and disadvantages of the prostate imagin

Advantages 

TRUS

Useful in determining prostate volume 

No radiation involved 

Inexpensive 

Portable 

Useful for real time imaging 

MRI

Useful in determining prostate volume 

No radiation involved 

High contrast for soft-tissues 

Allows lesion detection
Enables functional imaging of prostate
Staging of cancer possible

CT

Useful in determining spread of prostate cancer to bon
Useful in determining effectiveness of prostate brachyt
red to the web version of the article.)

• Region based methods: These methods use local inten-
sity or statistics like mean and standard deviation in an
energy minimization framework to achieve segmentation.
The methods in this category primarily varies depending on
the energy minimization framework. For example in atlas
based methods a model of the prostate is created from man-
ually segmented training images and intensity difference
between the model and a new un-segmented image  is min-
imized. In contrast, in region based level sets prior mean
and standard deviation information of the prostate region
from manually segmented images are used to maximize the
distance between prostate and background regions depend-
ing on region based statistical moments and propagate an
implicitly defined deformable model whose energy is mini-
mized at the zone of convergence of the two regions.
• Supervised and un-supervised classification methods:
These methods use features like intensity or higher dimen-
sional features like filter responses to cluster and/or classify
the image  into prostate and background regions. The

g techniques.

Disadvantages

Low contrast images
Difficult to detect lesions
Speckle
Shadow artifacts
Cancer staging is difficult

Expensive
Not portable
Difficult to implement real time imaging

e tissues Expensive
herapy Radiation involved

Not portable
Poor soft-tissue contrast
Difficult to detect lesions
Cancer staging is difficult
Difficult to implement real time imaging

dx.doi.org/10.1016/j.cmpb.2012.04.006
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Fig. 2 – Our proposed taxonomy of prostate segmentation. TRUS references in red, MRI  references in green and CT
references in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
o

•

f the article.)

objective of such methods are to group similar objects
together based on the feature vector. Unlike region based
methods of energy minimization frameworks a threshold-

ing scheme is used based on some proximity or distance
measure to group similar objects together.
Hybrid methods: The objective of the hybrid methods is to
combine information from contour, shape, region and/or
supervised or un-supervised classification information to
segment the prostate. These methods are more  robust to
imaging artifacts and noise.
In the following subsections, the reviewed methods are
described according to the presented taxonomy. Moreover,
for each category, the approaches are grouped and described

dx.doi.org/10.1016/j.cmpb.2012.04.006
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according to the imaging modalities: TRUS, MRI, and CT.
Observe that this classification allows to easily see if the
approaches belonging to one category are useful for segment-
ing the prostate in a given modality.

2.1. Contour  and  shape  based  segmentation

Contour and shape based methods exploit contour fea-
tures and shape information to segment the prostate. These
methods can be categorized into edge based methods,
probabilistic filters and deformable model segmentation tech-
niques. Deformable model based techniques are further
classified into active contour models, deformable meshes,
active shape models, level sets and curve based segmentation.
The following subsections discuss individually each of these
categories.

2.1.1.  Edge  based  segmentation
Extracting edges in an image  using gradient filters like Prewitt,
Robert, Sobel, Shen and Castan and Canny, is a popular prac-
tice in image  processing. However, in the presence of noise
gradient filters often detect false edges and also the detected
edges are often broken. Although computationally expensive
edge linking algorithms have to be designed to produce con-
nected edges, in most cases is necessary to combine edge
based algorithms with intensity based and texture based infor-
mation for accurate segmentation [13].

2.1.1.1.  TRUS.  Prostate segmentation based on edge infor-
mation seems to be particularly difficult in TRUS images.
Traditional edge detection filters fail to obtain accurate edges
due to the low contrast, speckle and other imaging artifacts
like shadow regions. To overcome these problems, Liu et al.
[14] propose to use a radial bass relief representation of the
prostate, which consists in superimposing the original image
with a zoomed negative of the same. Kwoh et al. [15] used har-
monics from the Fourier transform to reduce spurious edges
of this representation. Other approaches aim to reduce the
speckle from the original image.  For instance, Aarnink et al.
[16] used local standard deviation to identify homogeneous
and heterogeneous regions in the image  in a multi-resolution
framework, and this information was considered for detect-
ing the prostate boundary with more  reliability. In contrast,
Pathak et al. [17] reduced speckle by applying a stick filter
based on the non-zero correlation value of speckle over large
distances. The intensity value of the central pixel was replaced
by the average of the intensity values in the horizontal, ver-
tical and diagonal directions of a given size. The resulting
image was further smoothed using an anisotropic diffusion
filter. In the third stage, some basic prior knowledge of the
prostate, such as shape and echo pattern, is used to detect the
most probable edges describing the prostate. Finally, patient-
specific anatomic information is integrated during manual
linking of the detected edges to segment the prostate.

2.1.1.2.  MRI.  The use of typical edge detector operators in MR

images can produce many  false edges due to the high soft
tissue contrast. Hence, Zwiggelaar et al. [18] used first and
second order Lindeberg directional derivatives [19], in a polar
coordinate system to identify the edges. An inverse transform
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 262–287

of the longest curve selected after non maximal suppression
of disconnected curves in the vertical direction was used to
obtain the prostate boundary. On the other hand, Samiee et
al. [20] used prior information of the prostate shape to refine
the prostate boundary. Average gradient values obtained from
a moving mask (guided by prior shape information) were used
to trace out the prostate boundary. In a similar way, Flores-
Tapia et al. [21] used a priori shape information of the prostate
to trace out the boundary by the movement  of a small mask
on a feature space constructed from the product of the detail
coefficients of the Haar wavelets in a multi-resolution frame-
work.

2.1.2.  Probabilistic  filtering
Probabilistic filters like the Kalman filter [22], the probabilistic
data association filter (PDAF) [23] and particle filters [24] have
been successfully used to segment images. These methods
model the boundary of an organ as a probabilistic trajectory of
a moving object where the motion is governed by a dynamic
model subject to a particular uncertainty. Segmentation algo-
rithms based on probabilistic filters are fast as no optimization
framework is necessary [25]. However, these methods may be
sensitive to the initialization and the extension to 3D segmen-
tation is complicated. Hence, to the best of our knowledge
no method has been developed for 3D segmentation of the
prostate in MR  and in CT images.

2.1.2.1.  TRUS.  Abolmaesumi et al. [25] used PDAF to segment
the prostate in TRUS images. The stick filter [17] was used to
reduce speckle and enhance the contrast. The authors argued
that the boundary of the prostate was given by a trajectory of
an object whose motion was governed by a model from a finite
set of known models at any given radius. The models differed
in uncertainty levels and structures, and switched between
the models depending on the Markov transitional probabil-
ity [26]. The authors assumed that the acceleration could be
modeled by Gaussian noise and the model produced a noisy
version of the actual position of the particle. Each trajectory
was associated with a Kalman filter and the output was com-
bined with an interactive multiple model and PDAF to estimate
the boundary location. On the other hand, as the prostate
in TRUS images is characterized by a hypoechoic mass sur-
rounded by hyperechoic perimeter [10], Sahba et al. [27] used
median filtering followed by top hat and bottom hat trans-
forms to effectively separate bright areas from dark regions
trapping the characteristic feature. Binary thresholding fol-
lowed by morphological filtering produced a smooth contour
of the boundary. Subsequently, a Kalman filtering followed by
a fuzzy inference produced the final prostate contour.

2.1.3.  Deformable  model  based  segmentation
Deformable model segmentation techniques are influenced
by theories from geometry, physics and mathematical opti-
mization. Geometry imposes constraints on the model shape,
physical theories guide the evolution of the shape in space,
and optimization theory guides the model to fit the avail-

able data [28]. Deformable models are often associated with
internal and external energies. External energies propagate
the deformable model towards the object boundary and inter-
nal energies preserve smoothness of the contours during

dx.doi.org/10.1016/j.cmpb.2012.04.006
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eformation. Internal and external energies associated with
 deformable model are combined and included in an energy
inimization framework to segment anatomical structures by
arping to the edges with minimum deformation away from

heir mean shape. The methods proposed in a deformable
odel framework may be broadly classified into active con-

our models, deformable mesh, active shape models, level sets
nd curve fitting.

.1.3.1.  Active  contour  models.  The active contour model
ACM) or snake was initially developed by Kass et al. [29].
n initialization close to an edge, the active contour model
volves following the direction of the gradient in progressive
eformation and stops at the edge. However, different exter-
al energies like balloon force [30], distance potential force [31]
nd gradient vector flow [32] have been proposed to improve
he capture range of active contour.

2.1.3.1.1.  TRUS.  Considering low contrast in TRUS
mages, localization of true prostate edge to produce external
nergy is a real challenge. Knoll et al. [33] used maxima of

 multi-scale dyadic wavelet to determine prostate edges.
alloon force was used as external force to deform a snake
owards the maxima of the dyadic wavelet transform to
egment the prostate in a multi-resolution framework. The
orm restricted contour deformation and its initialization
y template matching are performed in a coarse to fine
egmentation process based on a multiscale image  edge
epresentation containing the important edges of the image
t various scales. To improve on the internal force of the ACM,
adak et al. [34] used cubic interpolation between four points
elected by the user to produce a discrete dynamic contour
DDC) [35]. Ding et al. [36] used a cardinal spline to construct
he initial contour of the prostate from three or more  man-
ally selected points located in the prostate boundary. The
nal contour produced in one slice was used to initialize the
eighboring slices. To improve on the capture range of the
radient force, Jendoubi et al. [37] used gradient vector flow
32] computed from the gradient map  obtained using sobel
nd Laplacian of Gaussian as external force to drive active
ontour towards the boundary of the prostate. Zaim et al.
38] used difference of Gaussian followed by non maximal
uppression to detect dot patterns that were coherent with
rostate tissue texture. An active contour constructed from
anual delineations of prostate with dot pattern and gradient

s external energy was used to segment the prostate.

.1.3.2.  Deformable  mesh.  Broadly, deformable meshes could
e categorized into shape constrained deformable mesh or
arametric deformable mesh. The methods included in the
rst category usually start dividing an initial manual seg-
entation in triangular and tetrahedral facets. Subsequently,

imilar to an ACM framework, the mesh deforms under
he influence of internal and external forces to produce the
esired segmentation. The objective of internal forces is to
aintain a smooth surface while an external force drives the
odel towards the boundary of the organ. Often, the principal
urvature of the surface is used as internal energy and the gra-
ient is one of the most popular choices for external energy.
owever, gradient is usually combined with texture to improve

he segmentation results. On the other hand, in the parametric
 o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 262–287 267

deformable model, the deformable mesh is constructed on the
basis of a three dimensional geometrical figure like a sphere,
ellipsoid or a cube that has a close resemblance with the organ.
Geometrical parameters are used for internal energy compu-
tation. Either gradient or texture or both are used as external
forces to deform the mesh.

2.1.3.2.1.  TRUS.  To maintain the prostate shape, Ghanei
et al. [39] used a shape constrained deformable mesh in a
multi-resolution framework to achieve three dimensional seg-
mentation of the prostate. Principal curvature of a surface
from Todd and McLeod’s method [40] was used as the internal
force. The external force was computed from the expansion
and the restoration model proposed by Rao and Ben-Arie [41].
A Gaussian noise model was assumed, while an edge was con-
sidered as a step function. An impulse response function was
generated and applied to the volumetric data to generate the
gradient. The gradient obtained in the process was used as
the external force for mesh propagation for segmenting the
prostate.

2.1.3.3.  Active  shape  model.  In the absence of prior shape
information, the final segmentation result of deformable
models results often vary widely from the shape of the
anatomical structure. Cootes et al. [42] proposed the active
shape model (ASM) that worked in the deformable model
framework maintaining the principal modes of shape vari-
ations of the anatomical structures under study. Principal
modes of shape variations are identified by principal compo-
nent analysis (PCA) of the point distribution models (PDM) [42]
aligned to a common reference frame with generalized Pro-
crustes analysis. Shape space is assumed to be Gaussian and
is represented with a mean shape added to weighted principal
modes of variations identified from PCA. With the initializa-
tion of the shape model, each landmark is searched within
local vicinity to reach a better position with respect to the
edges with a minimum displacement constraint that main-
tained the shape. Once all landmarks were displaced, scaling,
rotation and translation parameters were chosen that mini-
mized the distance between the deformed contour and the
shape model. Prior shape information incorporated in active
model makes it robust to noise and artifacts and produces
improved segmentation results. In order to consistently set
the corresponding landmarks automatically, the minimum
descriptor length and Hill’s algorithm [43] were proposed.
The different methods primarily differed in the optimization
framework and the feature space used for modeling the defor-
mation.

2.1.3.3.1.  TRUS.  Shen et al. [44] used rotational invariant
Gabor features computed with respect to the TRUS  probe to
characterize the prostate boundaries in multiple scales and
multiple orientations. The Gabor features are further recon-
structed to be invariant to the rotation of the ultrasound probe
and incorporated in the prostate model as image  attributes
for guiding the deformable segmentation. The real and imag-
inary parts of Gabor features were used for smoothing and
edge detection respectively. A hierarchical deformation strat-

egy is then employed in which the model adaptively focuses
on the similarity of different Gabor features at different defor-
mation stages using a multiresolution technique form coarse
to finer features to achieve segmentation. Similarly, Betrouni

dx.doi.org/10.1016/j.cmpb.2012.04.006
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et al. [45] enhanced the prostate edge and reduced noise using
a priori knowledge of the noise in TRUS images. An ASM was
then used to produce the segmentation of the prostate. Hodge
et al. [46] used the mean of manual segmentation from three
experts to produce the ground truth value for prostate in TRUS
images. An ASM was constructed from manually delineated
contours after the reduction of noise using a median filter.
The authors proposed to modify PDM of Cootes to generate
all plausible shapes by dividing the prostate mid gland images
into three regions and creating three plausible prostate shapes
for each.

2.1.3.3.2.  MRI.  Cootes et al. [42] proposed to segment
prostate in MR  slices using the framework of ASM (they actu-
ally proposed prostate segmentation as one of the applications
of their generic ASM model). Zhu et al. [47] proposed a hybrid
of two and three dimensional ASMs to segment the prostate
in MR  data sets. A three dimensional ASM was built that rep-
resented the shape variance of the prostate. In each iteration,
the three dimensional ASM was updated by the final search
result of two dimensional segmentation. The authors claimed
that, unlike pure 3D ASM, their hybrid ASM had a superior
performance in sparse three dimensional data sets as 3D ASM
built from sparse data was inefficient in detecting all possible
modes of shape variations.

2.1.3.3.3.  CT.  The first attempt to use ASM to segment CT
images of the prostate was done by Tang et al. [48], who used
ASM to segment the prostate, but also the bladder and the
rectum. In contrast, Feng et al. [49] used an ASM to segment
only the prostate. Deviating from traditional ASM, the image
correspondences were obtained by means of SIFT features [50].
Inter and intra patient specific ASM were built from manually
delineated contours of the prostate.

2.1.3.4.  Edge  based  level  sets.  The level sets framework intro-
duced by Osher et al. [51] is a popular, powerful and efficient
tool for medical image  segmentation. This framework was
developed to study curve propagation in higher dimensions.
The level set is allowed to expand starting from a seed point
in a direction normal to the curve surface that produces the
segmented contour, with a speed inversely proportional to the
intensity gradient. The evolution finally stops where the inten-
sity difference is highest in a local neighborhood. Hence, the
propagation of the curve in a level sets framework may help
in finding an object boundary, and allows an efficient curve
splitting and merging based on topological changes.

2.1.3.4.1.  TRUS.  Considering intensity heterogeneity of
the prostate gland, it is difficult to segment prostate with
traditional level set initialized on gray-scale images. Hence,
Kachouie et al. [52] used Gaussian filtering followed by mor-
phological filtering to classify the mid  gland image  into
prostate and non prostate regions. An elliptical level set auto-
matically initialized inside the prostate region was used to
segment the prostate using first and second order moments
of a Gaussian probability density function. The authors then
used modified local binary patterns (LBP) to extract texture

features of the prostate gland in TRUS images [53]. Gradient
magnitude information of the modified LBP map  was used as
the external force to drive the elliptical level set to conver-
gence, thereby segmenting the prostate.
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2.1.3.5.  Curve  fitting.  Parametric curves like splines, ellipses
and Bezier curves are often used to segment prostate due to a
close resemblance between the central gland of the prostate
and an elliptical curve. Curve parameters are used as inter-
nal force and gradient as external force to deform the curve
towards the prostate boundary.

2.1.3.5.1.  TRUS.  Hu et al. [54] used an ellipsoid, initialized
from manual delineations of the limits of the axes, to produce
3D prostate segmentation. Ellipsoid warping using thin plate
spline transformation was used to map  the user selected six
control points to the end of the semi major axis of the ellip-
soid to ensure a better fitting. The deformation of the ellipsoid
was influenced by the internal and external forces to pro-
duce the segmentation. In a similar way, Ding et al. [55] used
a deformable super ellipse to just obtain an initial estimate
of the prostate contour. Subsequently, the initial parameters
of the super ellipse and gradient information of the image
were jointly optimized to produce the final segmentation. To
reduce propagation errors, a continuity constraint based on an
autoregressive model was imposed on the initialization of the
contour in new slices. Badiel et al. [56] also used an elliptical
curve to segment the prostate. The ellipse was fitted through
six user defined points. The deformation of the prostate was
modeled with a sine function in the angular direction and
with a Gaussian function in the radial direction. The warp-
ing function was built using these two functions to create
an elliptical shape for the prostate. Finally, segmentation of
the prostate was achieved by ellipse fitting to the prostate
boundary obtained by interacting multiple modes PDAF [25]
and reverse warping. In contrast to these works, Saroul et al.
[57] used a tapered super ellipse to segment the prostate. The
prostate gland was divided into eight octants and the intensi-
ties of each octant were modeled using a Rayleigh distribution.
The tapered super ellipse was combined with the probability
density functions of the intensities of the prostate and non
prostate region in an energy optimization framework to seg-
ment the prostate region. Mahdavi et al. [58] used a similar
tapered ellipsoid to segment the prostate. The authors used
untapering and warping of the image  to make the shape of
the prostate elliptical. Probe center as well as the bottom,
center, middle right, and bottom right of the prostate gland
were selected by the user. The image  was then transformed
to polar coordinates with the center of the probe as the coor-
dinate center. This aided in untapering and warping of the
image.  After initial fitting, a deformation model was used to
get the final fitting of the prostate boundary traced by inter-
acting multiple modes PDAF [25]. The obtained ellipse was
used to initialize other slices of the ellipsoid. The process
continued for all the slices to obtain a segmented prostate
in 3D.

2.2.  Region  based  segmentation

Predominant intensity distributions of the prostate region
in different imaging modalities have been exploited by

researchers to develop region based segmentation algo-
rithms. Region based segmentation methods are further
categorized into atlas, graph partitioning and level set
methods.

dx.doi.org/10.1016/j.cmpb.2012.04.006
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.2.1.  Atlas
n atlas is created from a set of manual segmentations of
n anatomical structures registered to a common coordinate
rame. The atlas is then used as a reference to segment images
f a new patient. Therefore, in atlas based segmentation, the
egmentation problem is treated as a registration problem,
ince the segmentation is based on finding a one-to-one trans-
ormation mapping a pre-segmented atlas image  to the new
arget image.  Atlas guided segmentation is well suited for seg-

entation of structures that are stable over a large population,
ike the human brain [59].

.2.1.1. MRI.  Klein et al. [60] followed a multi-atlas approach
o segment the prostate. Affine registration and subse-
uently a non rigid registration using cubic B-spline [61] in a
ulti-resolution framework was used to register the training

olumes to the test volumes. Corresponding transformation
as applied to the label images of the training dataset. In

he next step most similar atlas scans were selected based on
he measure of similarity computed from normalized mutual
nformation. To combine these atlas scans to into a single
egmentation majority voting and STAPLE algorithm is used
o produce the final segmentation. Recently, Dowling et al.
62] improved on the results obtained by [60] by introduc-
ng a pre-processing step of bias field correction, histogram
qualization and anisotropic diffusion smoothing. Dowling
t al. then used rigid, affine and diffeomorphic demons reg-
stration to generate multiple labels of the test image.  Most
imilar labels were identified and fused to generate the final
egmentation. Langerak et al. [63] proposed a new schema
or fusion of the labels in a multi atlas segmentation frame-
ork. They proposed to combine segmentation result of all

he labels to produce the gold standard the target label. Each
f the labeled images of each of the atlas was compared to
he target label. Labels below a certain threshold was dis-
arded and the target label is re-estimated with labels that
ave already been selected. The process continues in an iter-
tive manner to provide the final estimated segmentation
abel.

.2.1.2.  CT.  Acosta et al. [64] used affine and non-rigid
emons registration to build a probabilistic atlas of the
rostate, rectum, bladder and bones from the training images.
iven a new test image  the probabilistic atlas was registered
sing affine and demons registration and the labels of the atlas
ere transformed with the same transformation vector to seg-
ent the prostate, rectum, bladder and bones. Later, Acosta et

l. [65] used a multi-atlas schema where similar atlases, were
anked and their labels fused to produce segmentation of the
rostate, rectum, and bladder.

.2.2. Graph  partition
n graph based segmentation methods pixels or group of pix-
ls are considered as nodes while edges (gradients) between
ixels are often considered as costs. The graph is then parti-

ioned by minimizing a cost function and closely related pixels
re grouped in different classes. Different graph partitioning
lgorithms like minimum spanning tree, minimum cut, and
ormalized cuts may be used for such purpose [66].
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2.2.2.1.  TRUS.  Zouqi et al. [67] built a graph partition scheme
to segment the prostate. The graph was built with nodes and
edges. Pixels were the nodes while horizontal edges that con-
nected these nodes represented edge discontinuity penalties.
User defined pixels from the object and the background were
used to build two special nodes: the source and the sink ter-
minal. The max  flow algorithm [68] gradually increased the
flow sent from the source to the sink along the edges in the
graph given their costs. Upon termination, the maximum flow
saturated the graph. The saturated edges corresponded to the
minimum cost cut giving an optimal segmentation. The initial
contour obtained after graph cut segmentation was further
refined in a fuzzy inference framework that determined the
membership of a pixel based on the region based statistics.

2.2.3. Region  based  level  sets
In contrast with the traditional boundary based level sets,
Chan and Vese [69] used region based statistics in their energy
minimization criteria to propagate the level set and seg-
ment the image.  The method obtained superior results in the
absence of strong edges and in the presence of white noise
since the stopping criteria was dependent on region based
statistics.

2.2.3.1.  TRUS.  To produce a uniform region for the prostate,
Fan et al. [70] set the value of a cubical voxel to 0 if the dif-
ference between the minimum and the maximum intensity
values in the voxel was below 2. The value was set to 1 if the
difference was greater than 2 but less than a threshold. This
fast discriminative approach was used to extract the prostate
region and used in a region based level set framework to seg-
ment the prostate in three dimensions.

2.3.  Supervised  and  un-supervised  classification  based
algorithms

In pattern recognition feature could be defined as a mea-
surable quantity that could be used to distinguish two  or
more  regions. More  than one feature could be used to dif-
ferentiate different regions and an array of these features
is known as a feature vector. The vector space associated
with feature vectors is known as feature space. Supervised
and un-supervised classification (PR) based techniques aim at
obtaining a partition of the feature space into a set of labels for
different regions. Primarily classifier and/or clustering based
techniques are used for the purpose. Classifiers use a set of
training data with labeled objects as a priori information to
build a predictor to assign label to future un-labeled observa-
tions. In contrast, in clustering methods a set of feature vectors
are given and the goal is to identify groups or clusters of sim-
ilar objects on the basis of the feature vector associated with
each. Proximity measures are used to group data into clusters
of similar types.

2.3.1.  Classifier  based  segmentation

In classifiers based segmentation the prostate is seen as a
prediction or learning problem. Each object in a training set
is associated with a response variable (class label) and a fea-
ture vector. The training set is used to build a predictor that

dx.doi.org/10.1016/j.cmpb.2012.04.006
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can assign class label to a object on the basis of the observed
feature vector.

2.3.1.1.  TRUS.  Intensity heterogeneity, unreliable texture fea-
tures and imaging artifacts pose challenges in the feature
space to partition. Zaim [71] used texture features, spatial
information and gray-level values in a self organizing map
neural network to segment the prostate. In a more  recent
work [72] the authors used entropy and energy of symmet-
ric, orthonormal, and second order wavelet coefficients [73]
of overlapping windows in a support vector machine (SVM)
classifier. Mohammed et al. [74] used spatial and frequency
domain information from multi-resolution Gabor filters and
prior knowledge of prostate location in TRUS images to iden-
tify the prostate. Parametric and non parametric estimation of
power spectrum density of the Fourier transform along with
ring and wedge filter [75] of the region of interest (ROI) were
used as feature vectors to classify TRUS images into prostate
and non prostate region using non linear SVM.

2.3.2.  Clustering  based  segmentation
The goal of clustering based methods is to determine intrinsic
grouping in a set of un-labeled data based on some distance
measures. Each data is associated with a feature vector and
the task is to identify groups or clusters of similar objects on
the basis of the set of feature vectors. The number of groups
is assumed to be known and implicitly one must select the
relevant feature, distance measure and the algorithm to be
used.

2.3.2.1.  TRUS.  Richard et al. [76] used the mean shift algo-
rithm [77] in texture space to determine the mean and
covariance matrix for each cluster. A probabilistic label was
assigned to each pixel determining the membership of a pixel
with respect to every cluster. Finally, a compatibility coeffi-
cient and pixel spatial information was used for probabilistic
relaxation and refinement of the prostate region.

2.4.  Hybrid  segmentation

Combining a priori boundary, shape, region and feature infor-
mation of the prostate gland improves segmentation accuracy.
Such methods are robust to noise and produce superior results
in the presence of shape and texture variations of the prostate.
This section discusses the methods that have combined two
or more  of the methods presented in previous sections.

2.4.1.  TRUS
Mid  gland image  of the prostate in axial slices in TRUS images
is often characterized by a hypoechoic mass surrounded by
a hyperechoic halo. In order to capture this feature, Liu et
al. [78] proposed to use radial search from the center of the
prostate to determine the edge points of the prostate. The key
boundary point was identified from the largest variation in
gray value in each line. An average shape model constructed
from manually segmented contours was used to refine the key

points. A similar schema was adopted by Yan et al. [79]. In this
case, contrast variations in normal vector profiles perpendic-
ular to the PDM were used to automatically determine salient
points and produce prostate boundaries. Salient points were
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determined by discarding points that fall in shadow regions.
Prior shape information of the prostate shape aided determin-
ing the missing points in shadow regions in TRUS images.
Optimal search performed through vector profiles perpendic-
ular to the salient points was used to determine prostate
boundary with a discrete deformable model in a multi-
resolution, energy minimization framework.

Modeling shape and texture features and using them to
segment a new image  has been used by many  researchers. The
schema primarily varied in the approach adopted for the cre-
ation of the shape and the texture model. For instance, Zhan et
al. [80] proposed to model the texture space by classifying into
prostate and non prostate regions the texture features cap-
tured by rotational invariant Gabor filter by means of a SVM.
This classified feature space was subsequently used as an
external force in a deformable model framework to segment
the prostate. In their consequent work [81], the authors pro-
posed to speed-up the process by using Zernike moments [82]
to detect edges in low and middle resolutions and maintain-
ing the texture classification using Gabor features and SVM.
In a different way [83], the authors also proposed to reduce
the number of support vectors by introducing a penalty term
in the objective function of the SVM, which penalizes and
rejects the outliers. Finally, Zhan et al. [9] proposed to combine
texture and edge information to improve the segmentation
accuracy. Multi-resolution rotational invariant Gabor features
of the prostate and non-prostate regions were used to train a
Gaussian kernel SVM system to classify textures of prostate
regions. In the deformable segmentation procedure, SVM are
used to label voxels around the surface of deformable model
as prostate or non prostate tissues. Subsequently, the surface
of deformable model is driven to the boundary by the defor-
mation force of labeled prostate tissues. The step of tissue
labeling and the step of label-based surface deformation being
dependent on each other, the process is carried out iteratively
to convergence.

A similar schema was adopted by Diaz and Castaneda [84].
Asymmetric stick and anisotropic filters were firstly applied
to reduce speckle in TRUS images. A DDC was produced using
cubic interpolation of four points initialized by the user. The
DDC deformed under the influence of internal force, gradi-
ent magnitude and damping forces to produce the contour
of the prostate. Features such as intensity mean, variance,
output of back projection filter, and stick filter were used to
construct the feature vectors. The pixels were classified into
prostate and non prostate regions using SVM. Subsequently,
DDC was automatically initialized from the prostate bound-
ary and used to obtain the final contour of the prostate. Cosío
et al. [10] used position and gray scale value of a prostate in
TRUS image  in a Gaussian mixture model of three Gaussian to
cluster prostate, and non prostate tissues and to identify halo
around the prostate in TRUS images. Bayes classifier was used
to identify prostate region. After pixel classification the ASM
is initialized with the binary image  using a global optimiza-
tion method. The optimization problem consists of finding the
optimum combination of four pose and two shape parameters,

which correspond to an approximate prostate boundary in the
binary image.  A multi population genetic algorithm with four
pose and ten shape parameters was used to optimize an ASM
in a multi-resolution framework to segment the prostate.

dx.doi.org/10.1016/j.cmpb.2012.04.006


i n b i

a
e
a
G
a
T
o
d
G
w
r
i
l
u
w
m
i
t
t
s
o
a
a
i
f

d
m
m
1
a
a
t
i
p
r
d
i
t
a
v
w
g
t
f
n
m
t
a
a
p
a
d
t
r

2
P
e

c o m p u t e r m e t h o d s a n d p r o g r a m s 

Another common hybrid approach is to use both shape
nd intensity distribution to segment the prostate. Medina
t al. [85] used an AAM framework [86] to model the shape
nd the texture space of the prostate. In this framework the
aussian model of the shape and intensity created from PCA
nalysis is combined to produce a combined mean model.
he prostate was segmented exploiting the prior knowledge
f the nature of the optimization space in minimizing the
ifference between the target image  and the mean model.
hose et al. [87] used the approximation coefficients of Haar
avelets to reduce speckle to improve on segmentation accu-

acies. Later, Ghose et al. [88] improved the model further by
ntroducing contrast invariant texture features extracted from
og Gabor quadrature filters. More  recently Ghose et al. [89]
sed probabilistic information obtained in a Bayesian frame-
ork to build the appearance model. Furthermore, multiple
ean models of shape and appearance priors were used to

mprove on segmentation accuracies. Gong et al. [90] proposed
o use a deformable super ellipse to produce a shape model of
he prostate. Using the deformable super ellipse as the prior
hape model for the prostate, the end goal was to find the
ptimal parameter vector that best describes the prostate in

 given unsegmented image.  The search was formulated as
 maximum a posterior criterion using the Bayes rule. The
nitial parameters were used in maximum a posteriori (MAP)
ramework to obtain the optimized parameters for the ellipse.

Later, Tutar et al. [91] used the average of three manually
elineated prostate contours to construct a three dimensional
esh with spherical harmonics to represent the average
odel of the prostate. With 8 harmonics, a feature vector of

92 element was reduced to 20 using PCA. Users initialize the
lgorithm by outlining the prostate boundaries in mid  gland
xial and sagittal images. Therefore, the problem of finding
he shape parameter vector that would segment the prostate
n spatial domain was reduced to find the optimal shape
arameters in parametric domain that maximized the poste-
ior probability density of a cost function, which measures the
egree of agreement between the model and the prostate edge

n the image.  Yang et al. [92] proposed to use min/max flow [93]
o smooth the contours of the 3D model of the prostate cre-
ted from 2D manual delineation. The primary modes of shape
ariations were identified with PCA and morphological filters
ere used to extract region based information of the prostate

land. The shape model and region based information were
hen combined in a Bayesian framework to produce an energy
unction, which was minimized in a level set framework. Gar-
ier et al. [94] used 8 user defined points to initialize a 3D
esh of the prostate. Two algorithms were used to determine

he final segmentation of the prostate. First, DDC with edge
s external force and the 6 central gland user defined points
s landmarks was used to deform the mesh to segment the
rostate. Next, the initial mesh was used to create the graph
nd in second stage image  features like gradients were intro-
uced to build the cost function. Finally, graph-cut was used
o determine the prostate volume. The graph cut results were
efined with DDC to improve the results.
.4.2. MRI
rior shape and size information of the prostate were
xploited by Vikal et al. [95] to build an average shape model
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from manually delineated contours. The authors used the
Canny filter to determine edges after pre-processing the
images with a stick filter to suppress noise and enhance
the contrast. The average shape model was used to discard
pixels that did not follow similar orientation as the model.
The obtained contour was further refined by the removal of
gaps using polynomial interpolation. The segmented contours
obtained in the middle slices were used to initialize slices lying
above and below the central slice.

The use of a Bayesian framework to model the texture of
the prostate is common in MR images. For instance, Allen et
al. [96] proposed to segment the prostate in an EM framework
treating the three distinctive peaks in intensity distribution
as mixture of three Gaussians (background, central region
and periphery of the prostate). A shape restricted deformable
model with the clustered pixels as a deformation force was
then used to segment the prostate. Similarly, in Makni et al. [3],
the intensities of the prostate region were modeled as a mix-
ture of Gaussians. They proposed a Bayesian approach where
the prior probability labeling of the voxels was achieved by
using a shape restricted deformable model and Markov field
modeling. The conditional probability was associated with the
modeled intensity values, and the segmentation was achieved
by estimation of an optimum label for prostate boundary pix-
els in a MAP decision framework.

Although atlas based registration and segmentation of the
prostate has become popular in recent time, the obtained
segmentation results had to be refined with a deformable
model to improve the accuracy. Martin et al. [2] used a hybrid
registration minimizing intensity and geometry energies for
registering the atlas. The minimization of the intensity based
energy aimed at matching the template image  with the refer-
ence image  while the minimization of the geometric energy
matched the model points of the template image  to the scene
points belonging to the reference image.  Finally, a shape con-
strained deformable model was used to refine the results.
More  recently, Martin et al. [97] used a probabilistic atlas to
impose further spatial constraints and segment the prostate
in three dimensions.

Shape and texture modeling of the prostate were merged
in the work of Tsai et al. [98], who used a shape and region
based level set framework to segment prostate in MR  images.
One of the contours was fixed and used as the reference sys-
tem where all the other contours were affine transformed to
minimize their difference in a multi resolution approach. PCA
of the shape variability captured the primary modes of varia-
tions and was also incorporated in the level set function, along
with region based information such as area, sum of intensities,
average intensity and variance information. The minimization
of the level set objective function produced the segmented
prostate. The authors also suggested a coupled level set model
of the prostate, the rectum, and the internal obturator muscles
from MR  images to segment these structures simultaneously
[99]. The algorithm was made robust by allowing the shapes
to overlap with each other, and the final segmentation was
achieved by maximizing the mutual information of the three

regions. Similarly, Liu et al. [6] used a deformable ellipse to
segment prostate boundary after Otsu thresholding [100] of
the image  in prostate and non prostate region. A shape con-
strained level set initialized from the elliptical fitting of the

dx.doi.org/10.1016/j.cmpb.2012.04.006
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prostate was used to further refine the results. Finally, post
processing of the gradient map  of the prostate and the rectum
produced the final segmentation. Firjani et al. [101] mod-
eled the background and the foreground pixels with Gaussian
mixture Markov random field and used the information of
probability of a pixel being prostate in building the shape
model. The shape and the intensity were jointly optimized
with a graph cut based algorithm. The authors extended their
work for a 3D segmentation of the prostate [102]. Zhang et al.
[103] proposed an interactive environment for prostate seg-
mentation. Region and edge based level sets were used to
segment the prostate from the background depending on fore-
ground and background region based information provided by
the user.

Gao et al. [104] represented the shapes of a training set
as point clouds. Particle filters were used to register clouds
of points created from prostate volumes to a common refer-
ence to minimize the difference in pose. Shape priors and local
image statistics were incorporated in an energy function that
was minimized to achieve prostate segmentation in a level
set framework. More  recently, Toth et al. [105] used a series of
50 Gaussian kernel of variable size to extract prostate texture
features. ASM constructed from manually delineated contours
of training images was automatically initialized depending on
the most probable location of the prostate boundary to achieve
segmentation. Later, Toth et al. [106] in addition to intensity
values, used mean, standard deviation, range, skewness, and
kurtosis of intensity values in a local neighborhood to propa-
gate ASM automatically initialized from magnetic resonance
spectroscopy (MRS) information. MRS  information was clus-
tered using replicated k-means clustering to identify prostate
in mid  slice to initialize multi feature ASM. Khurd et al. [107]
localized the center of the prostate gland with Gaussian mix-
ture model and expectation maximization based clustering
after reducing magnetic bias in the images. Thresholding on
the probabilistic map  of the prostate obtained with random
walker based segmentation algorithm [108] to segment the
prostate (Table 2).

2.4.3. CT
As shown in Fig. 1(c), the prostate gland in CT images shows an
uniform intensity distribution and poor contrast between the
gland shape and its surrounding tissues. Hence, combining
shape information with region based statistics is a common
approach when segmenting CT images, since the prior shape
information restricts the deformation to viable shapes while
the region based statistics propagate the deformation. For
instance, Freedman et al. [109] used manually delineated con-
tours to form a three dimensional mesh in which the contours
were interpolated using splines. The intensity information of
each slice was incorporated in a probability density function
(PDF) framework. For segmentation, each slice was intersected
with the mesh yielding a series of polygons and their corre-
sponding histograms, which were added and normalized to
get the distribution of each of the slices. The segmentation was
finally achieved by the minimization of the cumulative distri-

bution function of the PDF between the model and the image
slices. Similarly, Rousson et al. [110] used two shape con-
strained level sets for simultaneously segmenting the prostate
and the bladder. A non overlapping constraint was imposed
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 262–287

to drive the prostate and bladder apart by assuming that the
two level sets evolved independent from each other and a
penalty term was introduced whenever the two  voxels were
shared. Davis et al. [111] proposed to quantify organ motion
for adaptive radiation therapy using deformable registration.
Bowel gas was segmented using thresholding and morpho-
logical filtering and then using gradient direction to collapse
the bowel. Finally, deformable registration was used to seg-
ment the prostate. In contrast, Ghosh et al. [112] used a genetic
algorithm to guide the level set that segmented the prostate.
The pose and weight parameters of manually delineated con-
tours were used as inputs to the genetic algorithm, and the
fitness function was constructed based on texture features.
The pixels inside the generated curve were grouped depending
on Laws texture values and the fitness score was generated.
This score was maximum when all the landmarks were in
a texture similar to the one of the prostate region. Subse-
quently, the curves were ranked according to the fitness scores
and the higher ranking curves were chosen to produce chil-
dren by mutation and crossover. The process continued for
several iterations until convergence. Similarly, Costa et al.
[113] used PCA to impose shape constraints and used region
based statistics in an energy minimization framework. A local
affine registration of the pelvic bones was used to localize
the prostate and the bladder from prior spatial information.
A morphological filtering followed by a modified region grow-
ing was used to obtain an initial estimate of the segmentation
of the bladder. A non overlapping constraint created from the
distance potential of the prostate and bladder was used to
drive the two structures apart during segmentation.

Finally, shape, edge and region based statistics can be
also combined for segmenting the prostate. Song et al. [114]
used an arc weighted graph [115] for incorporating shape
constraints and edge information for segmentation of the
bladder and the prostate. Prior shape knowledge was intro-
duced using the weights of both graph nodes and directed
graph edges or arcs. A three dimensional level sets were used
for a rough segmentation of the bladder and manually delin-
eated contours of the prostate were used to construct the
mean shape and fit it to a CT image  using rigid transforma-
tion. Recently, Song et al. [116] improved the segmentation
accuracy by incorporating region based intensity distribu-
tion information and using both boundary and region based
energy in an energy minimization framework optimized with
graph cut. Chen et al. [117] used three level sets for the
prostate, bladder and the rectum that deformed under the
influence of distance signed function computed from shape
statistics, gradients, PDF of the region and a smoothness con-
straint to segment the three organs. Chen and Radhke [118]
also used shape and intensity priors in their level set frame-
work. Kernel density estimation was used for both shape
and intensity priors to construct an energy function that was
minimized using gradient descent optimization. Feng et al.
[119] used profile-based gradient features and the local-region
based probability distribution function to build appearance
model. ASM used the appearance model for deformation to

segment the prostate. Gradient and probability distribution
function combined feature produces more  accurate and robust
segmentations than general gradient features for ASM. An
on line learning mechanism was used to build shape and
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Table 2 – Advantages and disadvantages of the reviewed prostate segmentation approaches.

Approaches Advantages Disadvantages

Contour and shape

Edge Easy to extract Edge information is unreliable and often
broken

Shape Provides robustness against noise and
artifacts

Depends on strong edge information for
fitting

Probabilistic filters Robust against noise along boundary Difficult to initialize and to extend to 3D
Deformable models

ACM Easy to implement, produces smooth
contours

Depends on reliable edge information,
good initialization required, large-scale
deformations produce spurious corners

Mesh Shape information is preserved Reliable edge information is often
necessary, rigid shape representation,
slow in speed

ASM Shape representation and variation in
Gaussian space is defined

Inaccurate in large-scale shape
variations, extension to 3D is difficult,
need of training

Contour level set Contour implicitly defined, easy
extension to 3D

Depends on reliable edge information,
slow in speed

Curve fitting Easy to implement, fast Rigid shape structure, reliable edge
information is necessary

Region
Atlas Automatic, robust to contrast differences,

incorporate prior shape and intensity
information

Building atlas is not trivial and prone to
registration errors, slow in speed of
segmentation

Graph partitioning Efficient optimization, region based
information could be incorporated

Incorporating shape priors is difficult,
manual interaction often necessary

Region level set Region based information more reliable
than edge, implicit contour

Intensity heterogeneity produces
fragmented regions, no prior shape
information, slow in speed

PR
Clustering Prior training not required, automatic No prior shape information
Classification Robust against noise, automatic No prior shape information, a training

step is necessary

Hybrid Combination of any of the
above approaches

More robust to imaging artifacts and
noises, produces accurate segmentations

Choice of combining information from
different sources is complicated, often
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ppearance statistics for accurately capturing intra-patient
ariation.

Li et al. [120] used rigid alignment of the pelvic bone struc-
ures to align the training images. Features like appearance,
ontext, Haar like features, histogram of oriented gradients
nd pixel coordinates were extracted in 2D inside a region
f interest to train two location adaptive classifier. Given a
ew image  the two classifiers were used to produce two prob-
bilistic map  of the location of the prostate. The two maps
ere fused and a level set is used to produce a binary clas-

ification. Finally, absolute intensity variation between the
ontext location (obtained from the map) and current pixel
as used in the classifier to update the classifier and pro-
uce final segmentation. Liao et al.[121] uses rigid alignment
f the bone structures to localize prostate. Localized mul-
iresolution Haar wavelets, histogram of oriented gradients,
nd local binary patterns features were extracted and salient
eatures were selected from a Gaussian function developed
rom Dice ratio. An online learning was used to integrate both
nter and intra patient specific information to localize prostate
rom a sigmoid function. Given a new image  learnt image

imilarity function was utilized to align new patient for seg-
entation with a support vector regression. Lu et al. [122]

hape and region prior level sets to segment the prostate and
 B spline based registration was used to minimize the cross
the methods are optimized for prostate
segmentation and less generic

correlation value between the image  in training stage and
treatment stage to constrain the segmentation results. The
segmentation and registration framework worked iteratively
to produce the final segmentation. Chen et al. [123] used
median and morphological filtering on k means clustering
to identify bones, muscles and gas in images. Slice by slice
segmentation of the bones were performed to identify pelvic
and coccyx bones to impose anatomical constraint in prostate
segmentation. PCA of anatomical landmarks generated using
Fourier descriptors were used to identify shape variations.
Finally, registration on intensity in region of interest was
obtained. Shape, anatomical and registration were all used in
a Bayesian framework to achieve segmentation.

3. Validation  and  qualitative  performance
evaluation

The performance of prostate segmentation algorithms is usu-
ally evaluated comparing the output of the method with a

ground truth (gold standard) obtained from manual delin-
eations of the prostate done by experienced radiologists.
Hodge et al. [46] advised to use the mean of the manual
segmentations of different radiologists and/or of the same

dx.doi.org/10.1016/j.cmpb.2012.04.006
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radiologist at different times to reduce inter and intra observer
variations in preparation of the ground truth value.

Analyzing the literature we have seen that the evaluation
metrics could be categorized into qualitative and quantita-
tive based metrics. In a qualitative evaluation, the obtained
contour is visually compared with the ground truth value.
In contrast, for quantitative evaluation, an error between the
obtained contour and the ground truth is numerically com-
puted. Typically, these error metrics could be classified into
contour based, area based and volume based methods. Con-
tour based metrics rely on computing how close the ground
truth and the obtained contours are. Typical metrics used
are the Hausdorff distance (HD) [124], the mean absolute dis-
tance (MAD) [79], mean distance (MD) [27], maximum distance
(MaxD) [78], and root mean square error (RMSQ) [47]. Area
based errors are based on computing how much the ground
truth and the obtained area overlap. It can be measured by
the Dice similarity coefficient (DSC) [125], area accuracy [56],
area sensitivity [56], area specificity [84], area overlap [25], area
overlap error [44], and area error [27] metrics. Finally, volume
overlap error and difference, average difference [33], overlap
[91], detection, false detection, centroid distance [109], and
similarity [123] are used for computing a 3D overlapping error.
However, DSC, specificity, sensitivity, accuracy and HD of vox-
els are also used in terms of voxels to determine volumetric
overlap [104]. The evaluation metrics for prostate segmenta-
tion is enlisted in Tables 3 and 4.

Ideally a comparison of different state-of-the-art prostate
segmentation methodologies on a public dataset should have
been done to evaluate the performance of the state-of-the-
art methods. However, a quantitative comparison of different
methodologies is difficult in the absence of public software,
data sets and standardized evaluation metrics. In addition, the
methods are developed using wide variety of algorithms with
specific application requirements. Hence, such a quantitative
comparison of different prostate segmentation methods on
the same dataset with some standardized metrics is extremely
difficult as could be observed in some recently published
works [2,10,44,58,79,90,97,104]. Nevertheless, to have an over-
all quantitative estimate of the functioning of some of the
state-of-the-art works in the literature we present the reported
results in Tables 5–7 for TRUS, MRI  and CT imaging, respec-
tively.

The index of the tables is expanded below.

• The name of the first author has been used as a reference
of the paper.

•  The segmentation dimension (Dim) gives the output of a
given segmentation methodology. The output can be in two
(2D) or three (3D) dimensions.

• B/A indicates whether base and apex slices were considered
for 2D segmentation.

• Pre-Proc indicates the type of pre-processing used in the
method.

• In. indicates the use of endo-rectal coil in acquisition of MR
images.
• The segmentation criteria shows in what of the reviewed
categories should be classified the analyzing segmentation
algorithm. Hybrid segmentation methodologies are spec-
ified with the type of algorithms that are combined to
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 262–287

produce the final segmentation (the acronyms of this row
are: DM, deformable model; ASM, active shape model; AAM,
active appearance model; GA, genetic algorithm; EM, expec-
tation maximization; DDC, discrete dynamic contour; ACM,
active contour model; SVM, support vector machine; ANN,
artificial neural network; S–R level set, shape and region
based level set).

• The automation (Auto) column specifies the degree of
manual interaction that was necessary. The process is con-
sidered automatic if the degree of manual interaction was
restricted to training.

• The measure column refers to the measures used by the
authors to present their obtained results.

• The last column (Validation) gives the number of images or
data sets (volumes) that were used to validate the developed
algorithm.

The tables are firstly analyzed according to the imaging
modality. Afterwards, a brief discussion on the evaluation pro-
cedures is given in Section 4.

3.1.  Open  problems

We have explained in previous sections the validation proce-
dures followed by the researchers. From the reported results a
set of open problems are revealed.

1. Manual delineation of the prostate contours is considered
to be the gold standard to which the result of a seg-
mentation methodology is compared. Only few authors
considered the mean of delineated contour by different
experts and of the same expert at different time to reduce
inter and intra observer variability of the process. Rasch
et al. [126] quantified inter observer variabilities of CT and
MRI. He found that, the average ratio between the volume
derived by one observer for a particular scan and patient
and the average volume was 0.95, 0.97, and 1.08 for the
three observers. Under such inter observer variabilities an
interesting option could be the use of prostate phantom
to validate volume information obtained using computer
aided segmentation.

2. The unavailability of public prostate database makes
quantitative comparison of the segmentation algorithms
difficult. Moreover, the quality of results depend on the
both the scans and quality of contouring. Lately, MIC-
CAI prostate challenge datasets for MRI are being used
for comparison [104]. A public datasets of prostate images
[127] could also be used for validation. The quality of the
images vary with CT, MR  and TRUS machines, as advanced
machines produce images of superior quality. Thus, it
becomes almost impossible to compare the performance of
two algorithms separated by a span of significant number
of years.

3. Lack of standardized metrics in evaluation of segmentation
result makes the comparison of developed methodologies

difficult as shown in Table 3 and Table 4. Mean aver-
age distance, maximum distance, average distance, area
of overlap, area difference, volume overlap and volumet-
ric error are just a few of the commonly used metrics.

dx.doi.org/10.1016/j.cmpb.2012.04.006
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Table 3 – Evaluation metrics for 2D.

Metric Parameters Equation Used by

Contour

Hausdorff distance (HD) Given a set of finite points A = {a1,
a2, . . . ap} and B = {b1, b2, . . ., bq}

HD(A, B) = max(h(A, b), h(B, A))
where h(A, B) = max

a∈A
(min

b∈B
‖a − b‖)

[17,90]

Root mean square distance (RMSD) RMSD(A, B) =
√

1
N

∑N

j=1
(Aj − Bj)

2 [47]

Mean distance (MD) Given signed distance dj between
each corresponding points j(j = 1, 2,
. . .,  N) between the algorithmic
segmented surface and ground
truth.

MD  = 1
N

∑N

j=1
dj [27,33,34,44,45,136,90,54,78,85,9,48]

Mean absolute distance (MAD) MAD  = 1
N

∑N

j=1
|dj| [17,34,55,136,54,78,137,91,10,79,88,95,97,122,106]

Maximum distance (MaxD) MaxD = max |dj | [34,45,136,54,78,91,10,79]

Area

Dice similarity coefficient (DSC) TP = true positive, TN = true
negative, FP = false positive, and
FN = false negative

DSC = 2TP
(FP+TP)+(TP+FN) [88,20,21,95,6]

Sensitivity (SN) SN = TP
TP+FN [34,56,74,88,113]

Specificity (SP) SP = TN
TN+FP [88]

Accuracy (AC) AC = TP+TN
TP+TN+FP+FN [34,56,74]

Overlap (OV) OV = TP
FP+FN [25,38,45,71,85]

Overlap error (OE) OE = 1 − Ov [44,27]

Surface distance (SD) Given unsigned distance ds

between the algorithmic
segmented surface and ground
truth.

SD  = 1
N

∑s=1

N
ds [62,49,120,110,109,114]

dx.doi.org/10.1016/j.cmpb.2012.04.006
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Table 4 – Evaluation metrics for 3D segmentation.

Metric Parameters Equation Used by

Volume

Hausdorff distance (HD) Given a set of finite voxels
A = {a1, a2, . . . ap} and
B = {b1, b2, . . .,  bq}

HD(A,  B) = max(h(A, b), h(B,
A)) where
h(A, B) = max

a∈A
(min

b∈B
‖a − b‖)

[3,104,106]

Dice similarity
coefficient (DSC)

TP  = true positive, TN = true
negative, FP = false positive,
and FN = false negative in
voxels

DSC = 2TP
(FP+TP)+(TP+FN) [60,3,97,104,63,62,64,49,118,120]

Sensitivity (SN) SN = TP
TP+FN [84,97,106]

Specificity (SP) SP = TN
TN+FP [84,106]

Accuracy (Ac) Ac = TP+TN
TP+TN+FP+FN [84]

Similarity (VS) VS = 2TP
2+FP−FN [123]

Detection (VDe) VDe = TP
FP+FN [114]

Detection error (VDEr) VDEr  = 1 − VDe [114]

Difference (VD) MSV = manually segmented
volume, and
ASV = algorithmically
segmented volume

VD  = (MSV∪ASV)−(MSV∩ASV)
2×MSD [33,136,9,96,109]

Average difference
(AVD)

AVD = MSV−ASV
MSV [33,46,54]

Overlap (VO) VO = MSV∩ASV
MSV∪ASV [91,94,106]

Overlap error (VOE) VOE = 1 − VO [9]

Error (VE) VE = MSV+ASV−2(MSV∩ASV)
MSV+ASV [58]

Centroid distance (VCD) Given ground truth centroid
cm and ca algorithmic

VCD  = |cm − ca | [110,109]
segmented volume
centroid.

However, since MICCAI prostate challenge 2009 [125], Haus-
dorff distance and DSC are being increasingly used.

4. Very few fully automatic methods have been developed,
and often manual initialization and sometimes manual
editing is encouraged. This may be suitable for off-line
procedures like the estimation of prostate volume, but
unsuitable for on-line procedures like real time fusion of
multi-modal images [128].

4.  Choosing  an  appropriate  segmentation
method

Choice of a proper segmentation methodology is dependent
on contexts like imaging modality, and the final target applica-
tion of the process. Hence, we have provided recommendation
of selection of a particular segmentation technique based on
these two basis. We have divide the section into TRUS, MRI and
CT subsections and have provided recommendations based on
applications in each of these modalities.

4.1.  TRUS

TRUS image  of a prostate has low contrast and the signal
is often corrupted by speckle, shadow artifacts and micro-
calcifications [79]. There are two different ways to deal with
speckle. One option is to minimize its effect in the image  using,

for example, stick filters [17], that allow reducing speckle while
enhancing the contrast of the image.  The second option is to
take benefit of this information, which can be done modeling
speckle as a Rayleigh’s distribution [57]. Any of these options
could be employed for pre-processing of the image  and pre-
pare it for further analysis.

Prostate volume determined from segmented TRUS images
serves as an important parameter in determining presence of
benign or malignant tumor during diagnosis of prostate dis-
eases. Three commonly used prostate volume measurement
techniques in TRUS are planimetry calculation, prolate ellipse
volume calculation, and an ellipsoid volume measurement
technique. Segmentation of prostate in 2D in the axial slices in
the mid  gland region to determine maximum area and height
is useful in determining volume in all these techniques. Note
in Table 5 that no one tried a pure region based approach to
segment the prostate. This is due to the fact that these algo-
rithms fragment the prostate into a large number of small
regions due to the heterogeneity inside the prostate gland.
Related with edge based approaches, we noted that pure con-
tour based methods like edge detection [17] are being replaced
(or expanded) with methods that combine prostate shape and
region based information [9,10,84], providing a more  robust
approach in the presence of speckle and low contrast. In con-
trast, Abolmaesumi et al. [25] and Sahba et al. [27] proposed an
interesting option of modeling the prostate contour as a Gaus-
sian distribution. Such assumption provides more  robustness
to contour based methods in low contrast. ASM is another edge
based approach frequently used for prostate segmentation in
2D images. However, such models are dependent on reliable
edge information and hence may be adversely affected in the
presence of shadow artifacts [79]. Moreover, the automatic

initialization and extension to 3D is difficult [47]. However,
shape constrained deformable models have been successfully
employed by different authors [9,91,92] as observed in Table 5.
Automatic delineation of the prostate in mid-gland images

dx.doi.org/10.1016/j.cmpb.2012.04.006


c
 o

 m
 p

 u
 t

 e
 r

 m
 e

 t
 h

 o
 d

 s
 a

 n
 d

 p
 r

 o
 g

 r
 a

 m
 s

 i
 n

 b
 i

 o
 m

 e
 d

 i
 c

 i
 n

 e
 

1
 0

 8
 

(
 2

 0
 1

 2
 )

 262–287
 

277

Table 5 – Quantitative evaluations: prostate segmentation in TRUS imaging.

Reference Year Dim B/A Pre-processing Segmentation criteria Auto Performance Validation

Measure Value

Contour and shape

Pathak et al. [17] 2000 2D Yes Stick filter Edge based No Contour MAD 1.5 mm 125 images
Contour HD 4 mm

Abolmaesumi [25] 2004 2D No Stick filter Probabilistic filter No Area OV 98% 6 images
Sahba et al. [27] 2005 2D No Smoothing,

morphological
filtering  and
thresholding

Probabilistic filter No Contour MD 3.3 ± 1.3 pixels 19 images

Area error 2.4 ± 1.1%
Knoll et al. [33] 1999 3D Yes Wavelet for edge

enhancement
DM–ACM Yes Volume VD 10.97% 77 images

Contour MD 2.61 mm
Volume AVD 8.48%

Ladak et al. [34] 2000 2D No No DM–ACM No Contour MAD 4.4(≈0.63 mm) ±1.8 pixels 117 images
Contour MaxD 19.5(≈2.5 mm) ±7.8 pixels
Area AC 90.1 ± 3.2%
Area SN 94.5 ± 2.7%

Ding et al. [55] 2005 3D Yes No DM–ACM No Contour MAD 2.79 ± 1.94 mm 6 data sets
Zaim et al. [38] 2007 2D No Median and

morphological
filtering

DM–ACM Yes Area OV 92% 10 images

Ghanei et al. [39] 2001 3D Yes No DM–Mesh No Volume VS 89% 10 data sets
Shen et al. [44] 2003 2D No Gabor features DM–ASM Yes Contour MD 3.2(≈1.28 mm) ±0.87 pixels 8 images

Area OE 3.98 ± 0.97%
Area error 1.66 ± 1.68%

Betrouni et al. [45] 2004 2D No Median and
morphological
filering

DM–ASM No Contour MD 3.77(≈2.55 mm) ±1.3 pixels 10 images

Contour MaxD 6.25(≈4.18 mm) ±1.8 pixels
Area OV 93 ± 0.9%

Hodge et al. [136] 2006 3D Yes Median filter DM–ASM No Contour MD 0.12 ± 0.45 mm 36 data sets
Contour MAD 1.09 ± 0.49 mm
Contour MaxD 7.27 ± 2.32 mm
Volume VD 0.22 ± 4.58%

Hu et al. [54] 2002 3D Yes No DM–curve fitting No Contour MD (−)0.2 ± 0.28 mm 5 data sets
Contour MAD 1.19 ± 0.14 mm
Contour MaxD 7.01 ± 1.04 mm
Volume VD 7.2  ± 3.4%

Gong et al. [90] 2004 2D Yes No DM–curve fitting No Contour MD 1.36 ± 0.58 mm 125 images
Contour HD 3.42 ± 1.52 mm

Badiel et al. [56] 2006 2D No No DM–curve fitting No Area SN 97.4 ± 1% 17 images
Area AC 93.5 ± 1.9%
Contour MAD 0.67 ± 0.18 mm
Contour MaxD 2.25 ± 0.56 mm

dx.doi.org/10.1016/j.cmpb.2012.04.006
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Table 5 – (Continued)

Reference Year Dim B/A Pre-processing Segmentation criteria Auto Performance Validation

Measure Value

Mahdavi et al. [58] 2011 3D Yes No DM–curve fitting No Volume VE 6.63 ± 0.9% 21 data sets

PR
Zaim et al. [71] 2005 2D No Median and

morphological
filtering

Classifier–ANN Yes Area OV 91% 10 images

Mohammed et al. [74] 2006 2D No Gabor filtering Classifier–SVM Yes Area SN 83.30% 18 regions
Area AC 93.75%

Hybrid methods

Liu  et al. [78] 2002 2D No Mean filtering Edge and average Yes Contour MD 0.4 ± 1.3 mm 282 images
shape model Contour MAD 0.9 ± 0.9 mm

Contour MaxD 3.8 mm
Gong et al. [137] 2005 2D Yes No Level set and curve

fitting
No  Contour MAD 0.64, 1.13, 0.52 and 1.16 mm 4 images

Medina et al. [85] 2005 2D No Median filtering AAM No Area OV 96% 95 images
Contour MD 3.58 ± 1.49 pixels

Tutar et al. [91] 2006 3D Yes No Mesh and average No Contour MAD 1.26 ± 0.41 mm 30 data sets
shape model Contour MaxD 4.06 ± 1.25 mm

Volume VO 83.5 ± 4.2%
Zhan and Shen [9] 2006 3D Yes Gabor filtering SVM, DM and mesh Yes Contour MD 1.07(≈0.33 mm) ±0.1 voxels 6 data sets

Volume VOE 4.31 ± 0.4%
Volume VD 2.39 ± 1.29%

Yang et al. [92] 2006 3D Yes No Shape model and
level set

Yes  Correct
segmentation rate

82% 11 data sets

Cosío [10] 2008 2D No No EM and ASM Yes Contour MAD 1.65 ± 0.67 mm 22 images
Contour MaxD 3.93 ± 1.9 mm

Diaz et al. [84] 2008 3D Yes Stick filters ACM and SVM No Volume SN 80% 7 data sets
Volume AC > 90%
Volume SP > 90%

Yan et al. [79] 2010 2D Yes No ACM and ASM Yes Contour MAD 2.01 ± 1.02 mm 10 data sets
Ghose et al. [87] 2010 2D No Haar wavelets Wavelets and AAM No Area DSC 0.95 ± 0.1 25 images

Contour MAD 1.48 ± 0.36 mm
Ghose et al. [89] 2011 2D No No EM and AAM Yes Area DSC 0.97 ± 0.01 23 data sets

Contour MAD 0.49 ± 0.20 mm
Ghose et al. [88] 2012 2D No Haar wavelets Quadrature filter

and AAM
No  Area DSC 0.95 ± 0.2 6 data sets

Contour MAD 1.26 ± 0.51 mm
Garnier et al. [94] 2011 3D Yes No Mesh, graph cut and

DDC
No  Volume VO 86.36 ± 3.78% 28 data sets

Volume HD 4.79 ± 1.62 mm

dx.doi.org/10.1016/j.cmpb.2012.04.006
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Table 6 – Quantitative evaluations: prostate segmentation in MR  images.

Reference Year Dim In. Pre-processing Segmentation criteria Auto Performance Validation

Measure Value

Contour
Samiee et al. [20] 2006 2D Yes Normalization Edge based No Area DSC 0.9057 ± 0.0014 2 data sets
Flores-Tapia et al. [21] 2008 2D Yes Wavelets Edge based No Area DSC 0.93 ± 0.005 19 images
Zhu et al. [47] 2007 3D No No DM–ASM No RMSD 5.4811 ± 2.9 mm 26 data sets

Region

Klein et al. [60] 2008 3D No No Atlas Yes Volume median DSC 0.85 50 data sets
Langerak et al. [63] 2010 3D No No Atlas Yes Volume DSC error 0.0.05 100 data sets

Volume SN/SP error 0.05
0.99

Dowling et al. [62] 2011 3D No Bias field correction,
histogram
equalization and
smoothing

Atlas  Yes Volume median DSC 0.86 50 data sets

Area SD 2.00  ± 1.3 mm

Hybrid methods

Allen  et al. [96] 2006 3D No No EM and DM No Contour MAD 2.8 ± 0.82 mm 22 data sets
Volume VD 6.5 ± 5.4%

Martin et al. [2] 2008 3D – No Atlas and DM No Mean error 3.39 ± 1.95 mm 18 data sets
Makni et al. [3] 2009 3D – No DM and Bayes Yes Volume HD 9.62 mm 12 data sets

Classifier Volume DSC 0.90
Vikal et al. [95] 2009 3D Yes Stick filters Edge and shape No Contour MAD 2.0 ± 0.6 mm 3 data sets

Guidance Area DSC in mid slice 0.93 ± 0.3
Liu et al. [6] 2009 2D Yes No DM and level set Yes Area DSC 0.91 ± 0.03 10 data sets
Firjani et al. [101] 2010 2D Yes No Intensity and shape Yes Area OE 5.2 ± 1.2% 98 images
Firjani et al. [102] 2011 3D Yes No Intensity and shape Yes Contour MD 0.8 ± 0.9 mm 98 images
Martin et al. [97] 2010 3D No No Probabilistic atlas Yes Area SD 2.41 mm 36 data sets

and DM DSC 0.84
RMSD 1.97
MaxD 9.04
Sensitivity 0.86

Gao et al. [104] 2010 3D No No Shape and edge No Volume DSC 0.82 ± 0.03 15 data sets
Guidance for level sets Volume HD 10.22 ± 4.03 mm 15 data sets

Volume DSC 0.84 ± 0.03 13 data sets
Volume HD 8.10 ± 1.50 mm 13 data sets

Toth et al. [105] 2011 3D Yes Multiple kernel
Gaussian filtering

Shape and edge based Yes Volumetric ratio 1.05 ± 0.21 45 data sets

Toth et al. [106] 2011 3D Yes No Shape and edge based Yes Volume VO 0.7 32 data sets
Volume SN 0.81
Volume SP 0.99
Contour HD 7  mm
Contour MAD 5 mm

dx.doi.org/10.1016/j.cmpb.2012.04.006
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Table 7 – Quantitative evaluations: prostate segmentation in CT images.

Reference Year Dim In. Pre-processing Segmentation criteria Auto Performance Validation

Measure Value

Contour and shape

Knoll et al. [33] 1999 3D – Wavelets DM–ACM Yes Contour MD 2.48 mm 86 images
Volume VD 11.78%
Volume AVD 9.5%

Tang et al. [48] 2004 2D – No DM–ASM Yes Contour MD 2.44 ± 1.24 mm 5 images
Feng et al. [49] 2009 3D – No DM–ASM No Volume DSC 90.5 ± 4% 24 data sets

Area SD 1.9 ± 0.71 mm

Region
Costa et al. [64] 2010 3D No No Atlas Yes Volume DSC 0.564 ± 0.192 19 data sets
Costa et al. [65] 2011 3D No No Atlas Yes Volume DSC maximum 0.47 approx. 24 data sets

Hybrid methods

Freedman et al. [109] 2005 3D – No S-R Mesh Median volume VD 89%, 81%, 85% 48 data sets
Volume VCD 3.17 pix (≈ 2.94 mm),

5.29 pix (≈ 4.91 mm),
4.07 pix (≈ 3.78 mm)

of 3 patients

Area SD 0.57, 1.02, 0.83 pix
Rousson et al. [110] 2005 3D – No S-R level set No Area OV 84% 16 images

FP 21%
Volume VCD 5.2 mm
Area SD 4.2 mm

Davis et al. [111] 2005 3D – No DM and registration Yes Volume DSC 0.82 ± 0.06 40 dataset
Costa et al. [113] 2007 3D – No S-R level set Yes Area SN 75% 16 data sets

Area AC 80%
Feng et al. [119] 2010 3D – No ASM and

appearance model
No  Volume DSC 92.4 24 data sets

Area SD 1.47 mm
Song et al. [114] 2009 3D – No ACM, Mesh and No Volume VDe 85.2% 21 data sets

Graph Cut Volume FP 13.60%
Area SD 1.38 ± 1.08 mm

Chen et al. [117] 2009 3D – No S-R level set No Volume VS 93.20% 15 dataset
Chen et al. [118] 2009 2D – No S-R level set Yes DSC 0.91 ± 0.90 10 images
Li et al. [120] 2011 3D – No Classifier and level

sets
Yes  DSC 0.908 11 data sets

Area SD 1.40 mm
Liao et al. [121] 2011 3D – No Classifier and

registration
Yes Volume DSC 0.89 ± 0.02 10 data sets

Lu et al. [122] 2011 3D – No S-R level set and
registration

Yes Contour MAD 1.96 ± 0.48 mm 32 data sets

Contour HD 2.83 ± 0.76 mm
Chen et al. [123] 2011 3D – Median and

morphological
filtering

Shape and anatomy
constrained
intensity based
registration

Yes Volume TP 0.84 185 data sets

Volume FP 0.13
Area SD 1.1 mm

dx.doi.org/10.1016/j.cmpb.2012.04.006
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urther reduces inter observer variabilities. The method of
hose et al. [89] could be used for the purpose it is automatic,

ast and accurate.
In prostate brachytherapies, oncologists should prepare a

et of parallel TRUS ultrasound images and manually segment
ach 2D slice to obtain the prostate volume which is then used
o plan the location of the seeds. Hence, fast semi-automatic
r automatic prostate segmentation in 2D slices or 3D volume
ould be useful in such procedures. Mahdavi et al. [58] method
f fitting an ellipsoid to prostate edges is a very useful method
or such a scenario as the method has shown good volumetric
verlap accuracy.

Automatic, and fast prostate segmentation from 2D US
mages is often necessary in image  guided prostate biopsy or
obot assisted surgery [79]. DDC and super quadrics are com-
utationally efficient procedures to segment the prostate in
D. However, the fastest segmentation of the prostate contour
ad been reported using partial ASM [79] and probabilistic fil-
ering [25]. Considering semi-automatic approach adopted by
25], the method developed by Yan et al. [79] is well suited
or real time segmentation of the prostate in two dimensions.
ote that the speed of a given segmentation method could
e improved if the method could be parallelized and imple-
ented in graphical processing unit as well as if an off-line

earning of the optimization space could be adopted as pro-
osed by Ghose et al. [88]. Moreover, segmentation of prostate

n TRUS videos could be modeled as a tracking boundary prob-
em to achieve near real time segmentation.

Supervised and un-supervised classification based meth-
ds have the advantage of being fully automatic [71,74],
lthough a training is necessary in the ones using a classifier.
owever, the intensity heterogeneity and unreliable texture
f the prostate gland challenge again the development of

 pure clustering or classification schema for the prostate.
herefore, an interesting and common option is the use of

 clustering or/and classification schema for initial segmenta-
ion and subsequently use the obtained information for the
nitialization and/or propagation of a deformable model to
roduce the final segmentation [9].  Another common hybrid
pproach is the integration of shape and intensity information
ointly optimized in an AAM framework [85]. Off-line learning
f the optimization space aids in fast prostate segmentation.
owever, such methods are affected by large-scale contrast
ariances and use of texture information in place of raw inten-
ity improve segmentation accuracies [88].

.2.  MRI

R  images of the prostate have better soft tissue contrast
ompared to US or CT images. However, insertion of the
ndorectal coil to enhance contrast in the prostate region
ntroduces intensity inhomogeneities that may adversely
ffect the segmentation accuracy of algorithms dependent on
ixel intensities. Viswanath et al. [129] performed an extended
eview of three techniques [130–132] applied to magnetic field
ias field correction. The authors concluded that bias field cor-

ection algorithm should be application specific. For example
t was observed that [130] performed best with the goal of
dentifying cancer and on the other hand bias field correc-
ions can adversely affect clustering and classification based
 o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 262–287 281

techniques of segmentation. It is to be noted that MR  images
with endorectal coil are relatively simpler to segment due
higher contrast of images around the prostate and well
deformed shape of the rectum.

Prostate segmentation from MR  images are frequently used
for volume determination, surgical planning and multi-modal
image  registration. In all these applications prostate segmen-
tation could be done automatically or semi-automatically.
However, minimum human interaction is desired to mini-
mize human induced variations and errors. In the last decade,
deterministic and probabilistic atlases are frequently used for
3D segmentation of the prostate. Such methods are automatic,
robust to intensity variability and to noise [60]. Martin et al.
used both deterministic atlas [2] and probabilistic atlas [97] to
segment the prostate, although the obtained segmentations
were refined with a deformable model. Pair wise atlas selec-
tion schema of Dowling et al. [62] has shown greater accuracy
compared to [60,133]. Hence, for atlases pairwise registration
is better compared to average atlas based segmentation. In
Table 6 we observe that Klein et al. [60] with atlas based seg-
mentation achieved an impressive overlap accuracy of 0.85
DSC value when validated with 50 data sets. However, Mar-
tin et al. [97] with probabilistic atlas and deformable model
based segmentation achieves similar overlap accuracy and a
good contour accuracy values when validated with 36 data
sets. Atlas based methods [60] and probabilistic modeling of
the prostate region [2] provide a more  robust approach in the
presence of these inhomogeneities.

Deformable models are frequently used for prostate seg-
mentation. Makni et al. [3] used information coming from an
initial classification scheme to initialize a deformable model.
Note also that automatic methods are primarily developed
using classifiers, atlas and deformable models. It has to be
noted that anatomical structures around the prostate may
affect the prostate deformation. Modeling the anatomical
structures like bladder and rectum along with prostate will
provide additional flexibility to the segmentation algorithm
[99]. A hybrid segmentation method that incorporates shape
and intensity priors achieves good segmentation accuracy
[98,104]. Accuracies of segmentation of prostate in MRI  using
3D ASM depends on initialization. Cosio et al. [10] provided
an efficient initialization scheme in their work using Bayesian
classification. In recent years Toth et al. [106] have used clus-
tering of spectral data obtained in DCE MRI  to initialize 3D
ASM. Segmentation accuracies were improved using feature
driven ASM.

4.3.  CT

Prostate segmentation from CT images is extremely important
for patient undergoing radiation therapy. In such cases auto-
matic segmentation of intra-treatment CT images for adaptive
radiation therapy of the prostate is useful. In adaptive radia-
tion therapy periodic inter-treatment CT images are used for
localization of the tumor and a feedback control strategy is
used to correct the differences between planned and deliv-

ered dose distribution due to spatial changes in the treatment
volume [111]. Also, in radiation therapy it is essential to ensure
accurate delivery of the target dose under organ motion. Often,
gold fiducial markers in or adjacent to the target in image
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guided radiotherapy is used to correct day-to-day variations
in the target position as these fiducial markers being radio-
opaque could be used to as a visible surrogate [134]. The
fiducial markers are frequently used for motion estimation
and to accurately locate region of interest [135] and motion
correction is useful for segmentation of prostate in inter-
treatment prostate images [111]. Segmentation of prostate in
intra-treatment CT images is important for adaptive treat-
ment planning and often same patient image  is used to model
and segment the prostate. Tang et al. [48], Feng et al. [49],
Freedman et al. [109], [111], and Song et al. [114] have all used
same patient for training and segmentation.

Poor contrast between prostate and surrounding tissues
makes the prostate segmentation difficult in CT images. We
observe in Table 7 that intensity homogeneity of the prostate
region in CT images has been frequently used for designing
models that exploit shape and region information. Poor tis-
sue contrast between the prostate gland and the surrounding
tissues inhibits methods that work on boundary informa-
tion, and hence, shape prior information constraints the
propagation of deformable models in the absence of strong
edges. Building shape restricted level sets propagating on
intensity statistics is well suited for prostate segmentation
[109,110,113,117,122].

5.  Conclusion  and  future  trends

Diagnostic imaging has become an indispensable procedure
in medical science. Methods of imaging the patient anatom-
ical structures have improved the diagnosis of pathologies,
creating new avenues of research in the process. Automatic
segmentation of anatomical structures from different imaging
modalities like US, MRI and CT has become an essential step to
reduce inter and intra-observer variability, improving contour-
ing time thereafter. This paper reviewed the methods involved
with prostate segmentation. Strength and limitations of the
segmentation methodologies have been discussed along with
the presentation of validation and performance evaluations
of the same. Finally, a discussion on choosing an appropriate
segmentation methodology for a given imaging modality has
been carried out. It has been highlighted that prostate segmen-
tation techniques should utilize geometric, spatial, intensity,
texture, and imaging physics priors to improve accuracy.

Prostate segmentation is still an open problem and with
advancement of technology for diagnosis, treatment and fol-
low up of prostate diseases new requirements have to be met.
Multimodal image  fusion of at least two imaging modalities
provides valuable information. For example, the fusion of MRI
and TRUS imaging should aid in obtaining more  accurate sam-
ples during biopsies. However, for such a method to work
in a real scenario, automatic, accurate and real time fusion
of the two  imaging modalities is necessary. Under such cir-
cumstances automatic real time segmentation of the prostate
and registration on prostate contours would improve accuracy
and efficiency. Automatic and accurate real time segmenta-

tion of the prostate may be achieved with efficient algorithms
designed for graphical processing units. Moreover, the goal of
segmenting the prostate in every frame could be modified with
the objective of tracking prostate in every frame. An increase
 b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 262–287

in 3D prostate segmentation methods will be the trend in
coming years due to the increasing use of 3D imaging modali-
ties, where efficient and accurate algorithms are necessary. In
that sense, information from dynamic contrast enhanced MRI,
and MR spectroscopy will be increasingly used as additional
features for automatic segmentation. In addition, registration
done on prostate contour for the same modality over a period
of time may provide also valuable information about the pro-
gression of a prostate disease.
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