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Abstract. Purpose : Segmentation plays a central role in medical
imaging, though is not a trivial task to perform in some screening modal-
ities such as Ultra-Sound images. This paper addresses the role of auto-
matic seed placement when segmenting breast lesions in B-mode Ultra-
Sound images, and proposes a new algorithm to automatically locate
seed regions for further region growing expansion.
Methods : In this work some state-of-the-art methodologies for seed
placement are reviewed and a new method basing its region selection on
assigning a probability of belonging to a lesion for every pixel depending
on intensity, texture and geometrical constraints of the pixel is proposed.
Results : The proposed algorithm has been evaluated using a set of
sonographic breast images with accompanying expert-provided ground
truth, and successfully compared to other existing algorithms.
Conclusions : The experimental results show the performance and ro-
bustness of the method when placing seed regions in noisy environments.
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1 Introduction

Breast cancer constitutes one of the leading causes of death for women in de-
veloped countries, and is most effectively treated when diagnosed at an early
stage [11].

Taking this into account, Digital Mammography is still the most powerful
screening tool for breast cancer [6]. However, some studies [12] have shown in
a recent past that Ultra-Sound (US) images of the breast can provide useful
complementary information in cases where the patients present dense glandular
breast tissue, and a tumor presence can be shielded when using mammogram
screening. In addition, US images is a non-expensive and non-invasive technique
with no side effects, thus rendering sonography an attractive complement to
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digital mammography and leading to a re-emergence of interest in image seg-
mentation applied to ultrasound data [7] due to the segmentation’s clinical value.
Despite this, performing automatic segmentation in US images is a challenge be-
cause they often suffer from poor quality. US imaging tends to generate artifacts
like weak edges produced by acoustic similarity between adjacent tissues, shad-
ows presence when the signal gets completely attenuated preventing to screen
any further, low contrast as a consequence of the US wave attenuation by the
tissue media, or, speckle which is an unwanted collateral artifact coming from
coherent interface of scatterers that appear as a granular structure superimposed
on the image.

Due to segmentation’s clinical value, the literature reports several techniques
proposals for both guided and automatic segmentation of lesions in US images
that try to overcome all the US screening inconveniences. Among those, region
growing procedures that expand a seed accordingly to some criteria, have been
reported to be suitable for US image segmentation [5, 4, 7]. However if seeds are
not properly selected, the final segmentation results would be definitely incorrect.

This work uses an already stated framework for segmenting breast lesions in
US images [5] in order to study the seed placement influence when segmenting
and compare several seed selection procedures that can be plugged within such
framework. This work also proposes a novel procedure combining texture and
intensity features with geometric constrains. The framework has been tested with
different seed selection procedures, against a data-set of sonographic images with
accompanying expert-provided ground truth.

2 Seed Placement Background

Determining seed points on an US image that lead to a proper segmentation
of breast lesion is not a trivial task, basically due to the noisy nature of the
US images and the presence of other structures rather than lesions with similar
acoustic properties (e.g. in some screening conditions, subcutaneous fat can be
mistaken as a lesion). To achieve a fully automatic procedure, seeded segmen-
tation methods require an automatic seed placement as well. The remaining of
this section reviews some of those automatic procedures for selecting good seeds.

Pixel Rewarding method to select seed points (PR) Madabushi and
Metaxas [4] proposed a method which rewards each pixel according to its posi-
tion, intensity and texture using an assessment function. The main advantage of
this pixel rewarding proposal remains in its spatially constrained seed reward-
ing along with the fact that the lesion’s appearance is obtained by means of a
learning step. On the other hand, its major disadvantage remains in choosing
an appropriated neighborhood for the term representing the probability mean of
the surrounding pixels when calculating the pixel reward. If the neighborhood
used is too small, it might incorrectly reward a noisy region; otherwise, if the
used neighborhood is too large, a proper seed can be hidden due to its neighbors’
low recall.

Gradient-Based method to select seed points (GB) Drukker et al.
[1] investigated the use of Radial Gradient Index (RGI) filtering technique to
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automatize Horsch et al. segmentation proposal [2] by adding automatic seed
placement. Such seed placement uses the gradient as the only feature to select
seeds by computing the maximum RGI [3] for all the pixels of the input image.
RGI is a measure similar to Average Radial Derivative (ARD) coefficient that
is used to drive the segmentation by Horsch et al. [2]. Summing up, every pixel
is proposed as a potential lesion in order to determine which pixel would have
the best reward, so the seed selection is deeply coupled to the segmentation pro-
cedure. Clearly, the main drawback of this seed selection is its computational
cost, which was partially solved by means of subsampling techniques. However,
due to the comprehensive nature of the seed determination, the method remains
unadvisable for anything but offine applications.

Intensity Binarized ranked Regions method to select seed points
(IBRR) Shan et al. [10] find candidate lesion regions based on intensity and
rank them using the region properties; once the region is chosen, a seed point is
determined within the selected region.

3 ITG: a novel seed region selection methodology

Both intensity and texture have been stated as a high specificity features when
charaterizing breast lesions in US images [12]. In addition, the tendency of cen-
tering the lesions when acquiring the images by the radiologists has also been
stated [4]. Figure 1 shows the proposed methodology which makes use of In-
tensity, Texture and Geometric constrains (ITG) and takes advantage of the
mentioned statements in order to select a seed region for further region growing
expansion. The proposal, combines the probability of a pixel being part of a
lesion depending on its intensity, texture and position to generate a joint proba-
bility or total probability plane. Then the selection criterium selects the largest
region of the connected pixels that satisfy a confidence level of being a lesion. So
for selecting the best candidate regions, the probability plane gets thresholded in
order to split the image with foreground and background. This thresholding has
been empirically set at 0.8 as a good tradeoff between large foreground regions
and low lesion belonging recall. Once determined the regions, the largest one
gets selected as seed region.

Equation 1 illustrates the Joint probability calculation, where τ(x, y) indi-
cates the total probability for a pixel (x, y) of being part of a lesion depending on
its intensity i, texture t and position (x, y). Since intensity, texture and location
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Fig. 1: Block diagram describing the seed region selection proposal.
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features can be assumed Independent and Identically Distributed (IID) [4], the
total probability corresponds to the three features’ probability product. The in-
tensity probability Γ (i) is computed from a Probability Density Function (PDF)
determined during a training step necessary to compute P (i|Lesion). Γ (i) can
be computed from the intensity PDF by the assumption of a Bayesian frame-
work. Γ (t) has the same nature as Γ (i) and the texture PDF also needs to be
determined during a training step. The seed location constrain Γ (x, y) corre-
sponds to a bivariate Gaussian function where the variances have been visually
assessed and fixed at 1

3 of the image size.
τ(x, y) = Γ (i) · Γ (t) · Γ (x, y) (1)

The texture measure used is given by equation 2 and corresponds to the
difference between the pixel intensity I(x, y) and the intensity mean of its N
nearest neighbors (here an eight pixel neighborhood is used).

T (x, y) = I(x, y)− 1
N

N−1∑
δ=0

Iδ(x, y) (2)

In summary, the proposed methodology uses five inputs to automatically
determine a seed region: the intensity image, the texture image, the intensity
and texture PDFs, and the seed location prior; along with a fixed parameter to
split the probability plane. Figure 2 illustrates all the steps involved during the
course of action, where the upper row represents the procedure inputs (intensity,
texture, geometrical constrains and learned PDFs), and the lower row shows the
probability image for the intensity feature (e), for the texture feature (f), the
total probability (g) and the final seed region selection (h). The final selected
region (the largest) is depicted in magenta and the region candidates obtained
when thresholding the probability plane are shown in cyan.

4 Experimental setup

The Gaussian Constraining Segmentation framework proposed by Massich et al.
[5] has been used to test and evaluate the seed placement approach. Although
such segmentation framework allows different user interation levels, as figure 3
depicts, only the fully automatic procedure has been used in this work. First,
an initial region R0(x, y) is determined and then grown into a preliminary le-
sion delineation R(x, y) that is used to obtain a multivariate Gaussian function
describing the shape, position and orientation of the lesion (GµΣ(x, y)). Finally
the Gaussian Constraining Segmentation (GCS) procedure refines the segmen-
tation by thresholding an intensity dependent function Ψ(x, y) constrained by
the multivariate Gaussian describing the lesion.

In order to evaluate the segmentations, Massich et al. [5] propose to use
Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm
[13] to obtain the Hidden Ground Truth (HGT) from multiple expert delin-
eations. Then use the µ-coefficient proposed as a variance of the True-Positive
Ratio (TPR) or Jaccard coefficient that takes into accound the experts agree-
ment by means of the HGT.
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Fig. 2: Seed region selection illustration. (a) pre-processed intensity image (b)
texture image (c) intensity and textureProbability Density Functions (d) seed
location prior colored as overlay (e) Γ (i) (f) Γ (t) (g) total joint probability τ(x, y)
(h) candidate regions (in cyan) and the final selected region (in magenta).

For evaluating purposes, a set of 25 sonograms were acquired in the Hospital
Dr. Josep Trueta of Girona. Each image has seven ground truth delineations
provided by different radiology experts. The training and testing of the data is
obtained using a leave-one-out methodology.

4.1 Seed region location

When evaluating the seed selection, a key issue is to determine what defines
a good seed in terms of the initial seed position. Figure 4a illustrates the ten
Areas-of-Interest used in this case of study to test the influence of the lesion
center distance and orientation. The Areas-of-Interest have been selected as: out

  GCS-based segmentation 

R(x, y)

R0(x, y)

Seed Placement

Region Growing

Determine the Best 
Fitting Gaussian

Gaussian Constraining 
Segmentation

I(x, y)

GµΣ(x, y)

St(x, y) ∈ [0, 1]

I(x, y)user defined
R0(x, y)

user defined
R(x, y)

Fig. 3: Methodology block diagram. When user interaction is used (only for semi-
automatic segmentation), it overwrites the previous input.
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Fig. 4: First experiment: (a) distribution of the seeds’ regions, and (b) segmen-
tation results in terms of µ-coefficient.

of the lesion (1), inside the lesion close to the boundaries (2-5), inside the lesion
slightly shifted from the central part (6-9) and, central part of the lesion (10).
Figure 4b shows the segmentation results for each Area-of-Interest according to
the µ value. Each of the ten Areas-of-Interest has been randomly sampled with
15 seed regions. The boxplots clearly shows that achieving good segmentation
results highly depends on locating the seed regions within the lesion (Areas-
of-Interest 2 to 10). The figure also shows that the regions can be clustered in
three main classes a to c: (a) Areas-of-Interest 6-10 that correspond to the inner
lesion area, (b) 2-5 boundary area, and, (c) 1 anything outside the lesion. The
results indicates that the better segmentation results are achieved when the seed
is placed in (a), but not necessarily in the most inner region.

4.2 Methodology evaluation

As well to determine the role of the seed region location in terms of segmentation
results, the proposed seed selection method has been evaluated by comparing to
the methods referred in section 2: PR, GB and IBRR. Figure 5 illustrates the
obtained results when comparing methodologies. The first plot (fig. 5a) shows
the location of the selected seed regions along three areas based on the first ex-
periment. The second plot (fig. 5b) illustrates the mean and variation of the final
segmentation results for each methodology and area. Finally, figure 5c illustrates
the performance distribution of each methodology regardless of which area the
seed regions are placed. Notice that figure 5a is expressed in terms of the seeds
distribution within the three groups of Areas-of-Interest while 5b and 5c refers
to the µ coefficient to assess the final segmentation results.

Altough the PR and IBRR methods place more seeds in the central area than
the proposed ITG method, the latter has the best performance in terms of final
segmentation results when the seed is placed in the central area (a). The GB
performance is not significant since its ability to place the seed regions within
the (a) area is quite low, and most of the seeds fall outside the lesion.
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Fig. 5: Second experiment: comparison between the proposed method (ITG) and
the PR, GB and IBRR methods. (a) seed region location (b) µ values depending
on the seed location (c) global µ values.

4.3 Noise degradation
This experiment has been devoted to observe the seed placement evolution in
challenging noisy scenario by repeating the segmentation on artificially degraded
US images. The noise in US images mainly comes from scattering and reflec-
tion [9]. The structures present on a sonogram produce an adaptative coherent
scatter comonly regarded as a Rician PDF [9], whereas the incoherent or diffuse
scattering normally modeled as a Rayleigh PDF [9] leads to speckle artifacts. In
order to obtain a fairly realistic US degradation, a percentage of the pixels from
the image have been modified by a random walk of aleatory number of steps. For
every step within the random walk, an amplitude and phase of the scatter have
been simulated. Finally in order to eliminate the impulse nature of the added
noise, a spacial correlation has been carried out [8]. From 0% to 100% of the
pixels within the images have been alterated following the mentioned scheme by
steps of 5%. Accordingly to the doctors, although some images have way more
noise than the acceptable for diagnose purposes, the images seem to have been
acquired with lower performing US imaging equipment. Figure 6e shows the ratio
of seed regions placed within the 75% of the most inner area of the lesion between
the ITG method and the PR and IBRR methods. Observe that for the proposed
ITG method, values are mainly higher than 0.6 as for the IBRR method. Notice
that previous experiments recalled that when the seed is properly placed ITG
performs better than IBRR.

5 Conclusions

In this work, the importance of a good seed selection for a region growing like
procedure has been stated. Some state-of-the-art seed placement procedures have
been implemented, discussed and compared to a novel seed region selection pro-
posal based on assessing the probability of belonging to a lesion for every pixel
in the image depending on its intensity, texture and location and selecting the
largest area obtained. The location of good seed regions on noisy environments
has also been addressed, thus validating the performance and robustness of the
methodology when placing seed regions in such noisy environments.
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Fig. 6: Third experiment: seed placement performance on noisy enviroment. (a-
d) same image with different amount {0, 20, 40, 80}% of added noise (e) ratio of
correctly placed seeds at different noise levels.
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