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Abstract— In image segmentation, clustering algorithms are
very popular because they are intuitive and, some of them, easy
to implement. For instance, the k-Means is one of the most used
in the literature, and many authors successfully compare their
new proposal with the results achieved by the k-Means. However,
it is well known that clustering image segmentation has many
problems. For instance, the number of regions of the image has to
be known a priori, as well as different initial seed placement (ini-
tial clusters) could produce different segmentation results. Most
of these algorithms could be slightly improved by considering the
coordinates of the image as features in the clustering process (to
take spatial region information into account). In this paper we
propose a significant improvement of clustering algorithms for
image segmentation. The method is qualitatively and quantitative
evaluated over a set of synthetic and real images, and compared
with classical clustering approaches. Results demonstrate the
validity of this new approach.

I. INTRODUCTION

Clustering methods are one of the most used algorithms in
image segmentation, specially used to compare new proposals
with them. In a recent review by Jain et al. [1], clustering meth-
ods are divided into hierarchical and partitional algorithms,
where the main difference between them is that hierarchical
methods produce a nested series of partitions (usually, these
partitions are schematized using a dendrogram, representing
the nested grouping of patterns and similarity levels at which
groupings change), while partitional methods produce only one
partition. Although hierarchical methods can be more accurate,
partitional methods are used in applications involving large
data sets, like the ones related with images, due to the fact the
construction of a dendrogram is computationally prohibitive.
Actually, hierarchical algorithms have time complexity of
O(n3d) (n is the number of pixels of the image and d the
number of features), while partitional algorithms usually have
time complexity O(nd) or O(n2d) (see the work of Jain et
al. [1] for a review on these methods). However, partitional
algorithms have two inherent disadvantages: 1) the algorithm
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has to know, a priori, the number of regions which compose
the image, and 2) the fact that the final segmentation could
be a local solution. The latter is due to the fact that different
initial seed placement could produce different segmentation
results of the image. Moreover, many image segmentation
clustering algorithms present another common drawback, as
they missregard spatial information, which is one of the main
sources of information for human segmentation [2].

As a partitional clustering algorithm usually produces clus-
ters by optimizing a criterion function, the combinatorial
search over the set of possible results would solve the inherent
problems that it presents. However, as this solution is compu-
tationally prohibitive, the algorithm is run multiple times with
different starting states producing a set of results [1]. This set
is subsequently evaluated by measuring the distances among
the different clusters of pixels in the feature space in order
to choose the best final configuration. In the new proposal of
Bezdek and Pal [3], three of these methods are reviewed and
improved.

The main problem for image segmentation purposes of most
partitional clustering algorithms is that they do not use spatial
information [4], in contrast with region based methods that
use themselves such information (in fact spatial information
is the basis of these methods). Otherwise, clustering algorithms
assume that pixels belonging to the same cluster have a similar
behaviour, which is explained by uniform features like grey
levels, texture or colour. Based on the complementary nature
of clustering and region methods, our approach wagers for the
integration of both strategies in order to solve the problems
that both methods bear when are used separately. In literature
there are different proposals for this integration. For instance,
one of the first works integrating both strategies is the work
of Pappas [5], in which spatial constraints are included by the
use of a Gibbs Random Field, which looks for local intensity
variations. On the other hand, the common solution consists
on including the pixels coordinates as artificial features in the
clustering process [1].

Following the ideas presented by Freixenet et al. [6], in this
paper we propose an unsupervised segmentation method which



Fig. 1. Scheme of our fully unsupervised segmentation algorithm.

takes advantages of the integration of different strategies. The
method begins by detecting the main contours of the image in
order to place a number of seeds in the appropriated positions.
The parameter that controls the number of seeds is always set
up with the aim that it will be larger than the real number of
regions. Following, “non boundary pixels” are classified using
typical clustering algorithms obtaining the core regions. Pixels
placed near boundaries are classified according to region and
boundary information. Finally, the method ends with a merging
step in order to refine the initial over-segmented result. The
remainder of this paper is structured as follows: Section II
describes the proposed segmentation technique, detailing the
method used to detect the starting seeds, as well as the strategy
to classify boundary-pixels. Experimental results proving the
validity of our proposal are shown in Section III. Finally,
conclusions are given in Section IV.

II. THE SEGMENTATION METHOD

Our fully unsupervised approach, roughly depicted in Fig-
ure 1, begins with an automatic seeds placement using contour
information. This information is used to determine an initial
number of clusters in the image, larger than the final number
of regions. Next, a clustering algorithm classifies the pixels
into regions. In this stage, we introduce two main restrictions:
1) do not classify the pixels with a high gradient; that is,
pixels that belong to a boundary region and 2) do not classify
pixels far away from the center of all clusters (noise pixels). As
result, when the clustering finishes, the core of the regions are
segmented, while there is a number of pixels not yet classified.
The segmentation of these pixels is subsequently performed
by using the information of the core of the regions, as well as
boundary information. The last step consists on merging the
regions previously obtained. This over-segmentation scheme is

used in order to ensure the placement of seeds into the main
regions of the image.

A. Initialization

The placement of the initial seed points can be stated
as a central issue on the obtained segmentation results of
a clustering algorithm. Despite their importance, traditional
algorithms chooses them randomly. In order to make a more
reasonable decision, edge information can be used to decide
which is the most correct position to place the seeds. To obtain
a sample of each region large enough to model its homogeneity
behaviour, initial seeds have to be placed completely inside
the regions. Boundary information allows us to extract these
positions in the core of the regions by looking for places far
away from the contours.

The main idea is to calculate how much the contours of the
image affect to each pixel of the image. Obviously, contours
near one pixel would affect it more than contours far away
from it. Therefore, the following equation is defined in order
to calculate this effect:

Ge(p) =
∑

i∈I

g(i)
1 + d(i, p)

(1)

where I is the whole image, g(i) is the value of the gradient
of one pixel (we use Sobel filters for calculating it) and d(i, p)
is the Euclidean distance between pixels i and p. The main
drawback of this approach is the high computational cost,
making it inviable for larger images. However, we can compute
this information locally, considering only contours near each
pixel. Therefore, Equation 1 can be re-written as

Ge(p) =
∑

i∈E(p)

g(i)
1 + d(i, p)

(2)



Fig. 2. Seed placement in the image of Lenna.

where E(p) is the set of pixels near the pixel p. This manner,
pixels with low Ge would be pixels far away of all contours
(pixels situated in the core of the regions) while pixels with
high Ge will be those near boundaries. Thus, that pixel with
lowest value of Ge of the region will be selected as a seed.
We define a region as the set of pixels connected among them
which appear when binarizing Ge at different thresholds, with
the restriction that the area of the set of pixels must be greater
than the original image divided by 100. Figure 2 shows the
seed placement in the image of Lenna obtained using the
described strategy.

When segmenting real images sometimes is necessary to
work with texture features. The problem of texture edge
detection is considered as a classical edge detection scheme
in the multidimensional set of k texture features which are
used to represent the region characteristics. Thus, boundaries
of homogeneously textured regions are defined to be located
where sudden changes in local texture characteristics occur.
Nevertheless, as is well known, texture is an inherently non-
local image property. All common texture descriptors, there-
fore, have a significant spatial support which renders classical
edge detection schemes inadequate for the detection of texture
boundaries. Hence, the result of this simple method is inaccu-
rate and thick contours are obtained. However, this information
is enough to perform the seed placement according to the
algorithm proposed above, in which seeds are placed in zones
free of contours or, in other words, the “core” of the regions.

Nevertheless, before these seeds are used as initial central
points of a clustering algorithm, a seed merging must be
considered. If the image has a cluster which is split into two
(or several) spatially not connected regions, the seed placement
algorithm will produce two different seeds. In order to merge
them, all seeds are compared using the Euclidean distance on
texture features space. If two seeds are separated by a short
distance they are merged.

Fig. 3. Four partitions are considered in the classification of boundary pixels.

B. Clustering with boundary restriction

The clustering process is performed by using a classical
algorithm, such as k-Means, but including one important
restriction: pixels with a high gradient are not classified. As
is above noted, gradient of pixels is obtained over the set of
texture features, and not over the original image as is usual,
in order to avoid false contours due to microtexture. The
reason of this restriction is that, in images rich on texture, the
clustering will not be effective in boundary pixels. This is due
to the fact that texture features are extracted using the local
neighbouring information, and in these positions the texture
value will be a mixture of two or more regions. Hence, in
order to avoid a bad classification of these pixels, the algorithm
simply does not classify them.

When initial clustering finishes, the algorithm has to classify
the unsegmented pixels. Nevertheless, it is well known that the
extraction of boundary information for textured images is a
very tough task. Moreover, a texture model of the adjacent
textures is required to enable precise localization. Current
segmentation of non-boundary pixels allows to obtain this
required knowledge, and the core of regions are used to model
each region by a multivariate Gaussian distribution considering
the set of texture features.

Following the work of Paragios and Deriche [7], we shall
consider that a pixel constitutes a boundary between two
adjacent regions, A and B, when the textural properties at
both sides of the pixel are different and fit with the models
of both regions. Therefore, the probability of a pixel to be
boundary between regions A and B is maximum when the
pixel is exactly the edge between textures A and B because
textures at both sides fit better with both models. As is shown
in Figure 3, four possible neighbourhood partitions (vertical,
horizontal and two diagonals) are considered. The algorithm
looks for pixels with maximum probability to be boundary in
order to determine the exact place of the edge.



C. Merging the regions

When the classification of all the pixels in the image
has finished, the result is the image segmented in as many
regions as the initialization stage produced. As we have above
noted, the algorithm produces more regions than the human
vision would appreciate. Therefore, the optimum number of
regions has to be calculated. In this sense, we first construct a
dendrogram with its leafs corresponding to each region. As
regions are modelled using a gaussian approach, the links
between the different leafs (clusters) are calculated using
the Bhattacharyya distance. We use this averaging distance
because, as Jain et al. [1] states, the single linkage tends
to produce “long” and “stringy” clusters, while complete
linkage tends to produce “small” and “compact” clusters. An
average distance produces intermediate clusters. Bhattacharyya
distance between two clusters is defined as:

d(C1, C2) = 1
8 (m1 − m2)T (S1 + S2)−1(m1 − m2)

+ 1
2 ln(

1
2 |S1+S2|√
|S1||S2|

) (3)

In this equation, Ci represents each class, mi the mean of the
i class, and Si its covariance. The first term of Equation 3
represents the separation due to the averages of each class,
while the second is the separation due to the covariances.

When the dendrogram has been constructed, the problem
of finding the optimum number of classes is equivalent to
the question of where to cut the dendrogram. A review of
techniques for cutting the dendrogram is detailed in the book
of Milligan and Cooper [8]. However, with these methods, the
values have to be recomputed if a merge is done. We decide the
level to cut by computing the average of the link distances that
the cut will break. As larger the distance, more separated are
the clusters among them. In this way, the problem of finding
the optimum number of classes is equivalent to minimize the
following energy function:

E(cut) = 1
Dav

(4)

In this equation, Dav is the average of the distances of the
links which the cut will broke.

If an estimation of the possible number of regions is avail-
able, this information can be taken into account by including
a new term on the decision criterion. Specifically, Equation 4
can be generalized as:

E(cut) = 1
Dav

∗ (1 + α(Nk − Nc)) (5)

In this equation, Dav is the average of the distances of
the links to cut, Nk is the previously estimated number of
clusters given by a supervisor or extracted from the previous
experimentation, and Nc is the number of clusters that the cut
will produce. Note that the parameter α permits to modify the
importance of the last term.

TABLE I

PIXEL CLASSIFICATION RATES FOR SYNTHETIC IMAGES FOR THE THREE

CLUSTERING ALGORITHMS. FIRST ROW ARE THE RATES FOR THE

ORIGINAL ALGORITHMS; SECOND ROW ARE THE IMPROVED VERSIONS

USING PIXEL COORDINATES AS ARTIFICIAL FEATURES; THIRD ROW ARE

THE RESULTS OBTAINED BY USING OUR APPROACH.

KM FCM GM
Avg Std Avg Std Avg Std

Original 60.2 12.5 61.1 14.7 66.5 12.5
Coord. 62.3 11.2 63.2 13.6 68.7 10.5

Proposal 70.1 10.8 71.3 9.8 75.5 9.6

III. EXPERIMENTAL RESULTS

Traditional clustering algorithms have been considered to
compare the performance of classical versus the new proposal.
Moreover, we have also compared our algorithms with those
clustering versions that use pixel coordinates as artificial
features. Note that we do not make direct comparison to
known and more sophisticated algorithms, like Mean Shifts [9]
or Normalized Cuts [10], because the aim of this paper is
to provide significant improvements in classical clustering
algorithms.

A. Clustering algorithms

In this paper we use three typical clustering partitional
algorithms, which are the k-Means, the Fuzzy C-Means and
the Gaussian of Mixtures algorithm. We briefly review the
implemented methods.

1) k-Means Algorithm (KM): The popular k-Means al-
gorithm [11] is an error minimization algorithm where the
function to minimize is the sum of squared error:

e2(K) =
K∑

k=1

∑

i∈Ck

(xi − ck)2 (6)

where ck is the centroid of cluster Ck, and K the number
of clusters (known a priori). Two factors have made the k-
Means popular: it has linear time complexity and its easy
implementation [1].

2) Fuzzy C-Means Algorithm (FCM): One restriction of
the k-Means algorithm is that it associates each pattern of the
image into one, and only one, cluster. With the use of fuzzy
theory, each pattern can be associated with every cluster using
a membership function. See the book of Bezdek [12] for the
source of these algorithms.

3) Gaussian of Mixtures Algorithm (GM): Another way to
allow each pattern to belong to different clusters is by using
the Gaussian of Mixtures algorithm [13]. In this probabilistic
model, each pattern is characterized by a set of Gaussian
mixtures:

p(xi;K) =
K∑

k=1

πkgk(xi) (7)

where gi is a Gaussian distribution and πi a prior distribution
(
∑

k πk = 1). The model parameters and the cluster member-
ship function are determined by maximizing the log-likelihood



TABLE II

TABLE SHOWING THE RELATION WITH THE NUMBER OF REGIONS THAT

OUR ALGORITHM FINDS (Nc) AND THE REAL NUMBER OF REGIONS (Ngt).

Real Images KM FCM GM
Nc < Ngt 81% 83% 82%
Nc = Ngt 8% 7% 9%
Nc > Ngt 11% 10% 10%

TABLE III

PIXEL CLASSIFICATION RATES FOR REAL IMAGES FOR THE THREE

CLUSTERING ALGORITHMS. FIRST ROW ARE THE RATES FOR THE

ORIGINAL ALGORITHMS; SECOND ROW ARE THE IMPROVED VERSIONS

USING PIXEL COORDINATES AS ARTIFICIAL FEATURES; THIRD ROW ARE

THE RESULTS OBTAINED BY USING OUR APPROACH.

KM FCM GM
Avg Std Avg Std Avg Std

Original 69.6 17.5 62.8 19.7 75.6 13.3
Coord. 73.6 13.3 71.8 12.5 79.8 11.2

Proposal 81.2 11.2 82.2 8.2 87.3 8.6

function:
l(K) =

∑

i∈I

log(p(xi;K)) (8)

where I is the whole image. This step is efficiently done by
using the Expectation Maximization algorithm [14].

B. Experimental Data

The described segmentation method can be performed over
any set of real and synthetic images. In order to work with
real images, texture features have to be used. The result of
comparing the relative merits of the different types of texture
features have been nonconclusive and a clear winner has not
emerged in all cases. For the experimental trials showed in
this paper we used the co-occurrence matrices proposed by
Haralick et al. [15]. Two of the most typical features, contrast
and entropy, are computed for distances one and five, and
for orientations 0◦, 45◦, 90◦, and 135◦, constituting a 16-
dimensional feature vector.

The evaluation of image segmentation has been performed
by measuring the percentage of not-correctly segmented pixels
considering the segmentation as a multi-class classification
problem. Therefore, we used for this evaluation two image
databases including ground-truth. Concretely, we used 50 syn-
thetic mosaic images extracted from the Outex Database [16]
and 20 real images extracted from the Berkeley Segmentation
Dataset [17].

C. Discussion

As we can see in Table I an error mean of 39.8%, 38.9%,
and 33.5% was obtained for the originals KM, FCM and
GM algorithm when applied over the set of synthetic images.
Meanwhile, an error mean of 37.7%, 36.8%, and 31.3% was
obtained using pixel coordinates as artificial features and an
error of 29.9%, 28.7%, and 24.5% was obtained when our
proposal was considered (we have used in this experiment
Equation 5 with Nk = 5). We want to emphasize the

(a) (b)

Fig. 4. Real image segmentation results. The images are extracted from the
Berkeley Segmentation Dataset [17]. Column (a) shows the original images
and column (b) the segmentation results.

improvement of the rate of well-segmented pixels, while not
the absolute rate of pixel classification. Note that the Outex
Database is designed as a framework for empirical evaluation
of texture classification and segmentation algorithms [16]. In
this sense, the results of the algorithms we have used, could be
improved using another kind of texture features, like features
extracted from Gabor filters, wavelets, etc.

The second set of images we tested was the real ones. In
this case, we used Equation 4 because we do not know a priori
de number of regions of the images. In Table II we analyse
the number of regions that the algorithm found, comparing
it with the number that ground-truth found. We can see that
our algorithm tends to under-segment the images, i.e., our
algorithm tends to merge regions.

Table III shows the rates of pixels well-classified we ob-
tained when dealing with real images. We can see that the error
mean using our approach is again reduced compared with the
other cases. Moreover, Figure 4 shows three examples of real
images segmented using our proposed method.

Finally, we want to remark that our approach is not slower
than the remaining ones, although our algorithm calculates
the best placement for the seeds, and does a final merge step.
This is due to the fact that the clustering step of our approach
is faster than the clusterings alone, because in our case,
pixels which can modify the clusters (those near boundaries
or far away of all clusters) are excluded of the iterations and
classified later. In our experiments, our approach is 1.2 times
slower than the k-Means algorithm, while the k-Means with
pixels coordinates as artificial features is 1.5 times slower than
the original k-Means. These rates are increased with the FCM



or the GM, but still satisfying the relation above mentioned.

IV. CONCLUSIONS

A new strategy for clustering segmentation which integrates
region and boundary information has been described. The
algorithm uses boundary information in order to initialize,
in an unsupervised way, the number and the location of the
seeds which are used as initial central points of the clustering
algorithm. The clustering is subsequently applied only for
pixels with low gradient, in order to not miss-classify boundary
pixels. Subsequently, precise edges are determined by compar-
ing neighbourhood of pixels with features of adjacent regions.
Finally a merging step is required to merge adjacent regions.
The method has been compared with classical clustering
algorithms, and has been tested on a set of synthetic and real
images. The experimental results demonstrate the effectiveness
of the proposed algorithm in estimating regions with high
accuracy, and the improvement of the classical clustering
approaches.
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