
An international programme by the University of Girona (Spain), the University of Bourgogne (France) 
and the University of Cassino (Italy) funded by Erasmus + Programme. 

Joint Master in Medical Imaging and Applications

Master Thesis Proceedings

Promotion 2020-22



2



Copyright © 2022 MAIA

Published by the MAIA Master

www.maiamaster.org

This document is a compendium of the master thesis works developed by the students of
the Joint Master Degree in Medical Imaging and Applications. Therefore, each work is
independent on the other, and you should cite it individually as the final master degree
report of the first author of each paper (Student name; title of the report; MAIA MSc
Thesis; 2022).

www.maiamaster.org


4



Editorial

Computer aided applications for early detection and diagnosis, histopathological image
analysis, treatment planning and monitoring, as well as robotised and guided surgery will
positively impact health care during the new few years. The scientific community needs
of prepared entrepreneurships with a proper ground to tackle these topics. The Joint
Master Degree in Medical Imaging and Applications (MAIA) was born with the aim to
fill this gap, offering highly skilled professionals with a depth knowledge on computer
science, artificial intelligence, computer vision, medical robotics, and transversal topics.

The MAIA master is a two-years joint master degree (120 ECTS) between the Uni-
versité de Bourgogne (uB, France), the Università degli studi di Cassino e del Lazio
Meridionale (UNICLAM, Italy), and the Universitat de Girona (UdG, Spain), being the
latter the coordinating institution. The program is supported by associate partners,
that help in the sustainability of the program, not necessarily in economical terms, but
in contributing in the design of the master, offering master thesis or internships, and
expanding the visibility of the master. Moreover, the program is recognised by the Eu-
ropean Commission for its academic excellence and is included in the list of Erasmus
Mundus Joint Master Degrees under the Erasmus+ programme.

This document shows the outcome of the master tesis research developed by the
MAIA students during the last semester, where they put their learnt knowledge in prac-
tice for solving different problems related with medical imaging. This include fully
automatic anatomical structures segmentation, abnormality detection algorithms in dif-
ferent imaging modalities, biomechanical modelling, development of applications to be
clinically usable, or practical components for integration into clinical workflows. We
sincerely think that this document aims at further enhancing the dissemination of infor-
mation about the quality of the master and may be of interest to the scientific community
and foster networking opportunities amongst MAIA partners.

We finally want to thank and congratulate all the students for their effort done during
this last semester of the Joint Master Degree in Medical Imaging and Applications.

MAIA Master Academic and Administrative Board
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Abstract

Myocardial Infarction (MI), commonly known as heart attack, is the irreversible death of the Myocardium’s tissue
due to the lack of oxygen for an extended period of time. LGE-MRI scans are considered the defacto in the diagnosis
and prognosis of MI. Still, they require manually segmenting the Myocardium and the infarcted tissue, which is a
complex and time-consuming task. Hence, an automatic segmentation method of the Myocardium tissue is highly
desirable. CNNs (Convolutional Neural Network) are used extensively for solving this problem; over the EMIDEC
(automatic Evaluation of Myocardial Infarction from Delayed Enhancement Cardiac MRI) challenge in MICCAI
2000, CNNs were used. Still, they required complex architectures to achieve state-of-the-art results. This paper
presents a novel architecture based on Self-Attention Transformer. Vision transformers following the original vision
transformer ViT have proven their capabilities in achieving state-of-the-art results on multiple benchmarks in different
vision tasks, including medical imaging tasks beating many CNN architectures. Still, they require huge amount of
data for either pretraining or training to achieve good performance which is a big restriction in applying them in the
medical imaging domain despite their performance. This thesis introduces a novel segmentation architecture based
on the NesT architecture for the encoder network and inspired by it we introduce a novel decoder based on the same
architecture. NesT achieved state-of-the-art results on ImageNet and CIFAR classification tasks with minimal training
compared to other transformer networks. In this paper we introduce NesT-UNet which produced results comparable
to the state-of-the-art on the EMIDEC dataset using a simple training process including simple data augmentation and
a pretraining method to improve the network’s performance.

Keywords: Vision Transformers, Deep Learning, LGE-MRI, Cardiac Infarction Segmentation

1. Introduction

According to the World health organization (WHO),
Cardiovascular Diseases (CVDs) are the leading cause
of death worldwide. An estimated 17.9 million people
died from CVDs in 2019, representing 32% of all global
deaths; of these deaths, 85% were due to heart attack
and stroke1.

Heart attack or Myocardial infarction MI2, refers to
the tissue death (infarction) of the heart muscle (my-
ocardium). The death of the tissue happens due to is-

1https://www.who.int/news-room/fact-sheets/

detail/cardiovascular-diseases-(cvds)
2https://simple.wikipedia.org/wiki/Myocardial_

infarction

chemia, which is the lack of oxygen supply to the heart
tissues. Coronary arteries are responsible for supply-
ing the heart with oxygenated blood flow. Still, when
plaque starts to build up in an artery, narrowing it down,
the blood flow becomes slower or, in some cases, com-
pletely blocked.

If the blockage in the artery is not treated immedi-
ately, the oxygen-deprived tissues around the artery start
to die. The treatment, in this case, is revascularization,
which is a procedure that tries to restore the blood flow
in the blocked arteries. In some cases, the blood flow
will not be restored completely in some regions. This
phenomenon is called No-Reflow.

After the treatment, it is crucial to evaluate the state
of the heart to check if the infarcted regions have re-
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Figure 1: LGE-MRI scan from the EMIDEC dataset where the colors
overlaying the ground truth mask are representing the segmentation
classes, Red for Left ventricle, Green for Myocardium, Purple for In-
farction, and Pink for No-Reflow. The figure shows the difference in
contrast between the healthy tissue and the Infarcted tissues

covered their functionalities after the revascularization.
Cardiac MRI can be used to assess the state of the heart
in a non-invasive and accurate manner, especially the
late gadolinium enhancement (LGE) MRI.

LGE-MRI is considered the standard modality for de-
tecting and evaluating MI. After injecting the patient
with a gadolinium-based contrast agent for approxi-
mately 10 minutes, the scan is performed. The wash-
in and wash-out of the contrast agent differentiate the
healthy and infarcted tissues as presented in figure 1. In
addition, the geometry of the Myocardium can be used
to conclude the functionality of the damaged muscle,
which guides further future treatment.

In the typical workflow, the scans are segmented
by a clinician manually, which is an exhausting, time-
consuming process. In addition, it suffers from inter-
and intra-observer variability. These problems can be
addressed by automatic cardiac segmentation of the
healthy and damaged tissues.

That being said, automatic cardiac segmentation has
many challenges, such as size variation of the seg-
mented region due to the expansion and contraction of
the heart during the different cardiac cycle phases and
different shapes over heart regions such as basal, middle
and apex slices. In addition, motion artifacts, low con-
trast between infarctions, healthy tissues, and the blood
pool in the left ventricle (LV), also the class imbalance
between the infarctions and healthy tissues which make
developing an automatic cardiac segmentation system a
challenging problem.

In this paper, We explore a novel architecture for car-
diac tissue segmentation. This document is organized
as following, In section 2, we explore the literature cov-
ering this topic, establishing the state-of-the-art in the
process. Also we explore the literature of transformers
in general and in segmentation specifically. In section
3, we present the different approaches and experiments
done during this work the we end the section with the
proposed pipeline for segmentation. In section 5, we
present the results following the experiments discussed
in 3 with statistical information about the results. A final
discussion summarizing the achieved results and report-
ing the final overall results in section 7.

1.1. Cardiac Structures Segmentation
In clinical cardiology, it is essential to measure and

evaluate the state of the heart. Several metrics are cru-
cial for the clinician to be able to diagnose and treat pa-
tients, such as Ejection Fraction (EF), Stroke Volume,
and myocardium thickness, and Cardiac MRI has be-
come the standard for analysis. All the metrics depend
on the accurate segmentation of the anatomical struc-
tures of the heart, which is a time-consuming activity.

Many datasets have been released with their re-
spected challenges to find more robust and automated
systems for solving the segmentation problem, such as
The Sunnybrook Cardiac MR Left Ventricle Segmenta-
tion challenge - MICCAI 20093, The LV Segmentation
Dataset and Challenge, MICCAI-STACOM 2011, The
Right Ventricle Segmentation Dataset - MICCAI 20124,
The 2015 Kaggle Second Annual Data Science Bowl,
and Automated Cardiac Diagnosis Challenge (ACDC)
- MICCAI 20175. Some of these datasets predate the
deep learning era, so all the applied techniques are based
on the classical methods, but the number can show the
importance of the problem and its difficulty.

1.2. EMIDEC
The EMIDEC (automatic Evaluation of Myocardial

Infarction from Delayed Enhancement Cardiac MRI)
challenge was organized during the MICCAI 2020 con-
ference. The objectives of this challenge are to segment
and classify cases with MI. The overall dataset consists
of 150 exams, with 100 cases for training and the other
50 for testing. The training dataset contains 67 patho-
logical cases, meaning the patient suffers from MI and
33 normal cases, while the testing dataset has 33 patho-
logical cases and 17 normal cases. The dataset pro-
vides LGE-MRI exams composed of a series of short-
axis slices and the associated clinical information. For
each case, The segmentation mask shows the LV, My-
ocardium and if it is a pathological case, the segmen-
tation mask provides both the MI and No Reflow tis-
sue. Here we are focusing on the segmentation part of
the challenge. The goal of the segmentation contest is
to present the best automatic segmentation method for
the Myocardium, the MI, and No Reflow tissue if they
exist. Some samples of the dataset are shown in fig-
ure 2, The dataset is highly complex, for example in
terms of size, we observe high variability aparent in the
first row of figure 2 between the Apex slice, Middle
Slices and Basal slice also the Myocardium thickness
between them. In addition to the class imbalance be-
tween the presented classes because not all slices con-
tain No-Reflow or Infarction and not a infected slice
present the same malignant tissue size.

3http://www.cardiacatlas.org/studies/

sunnybrook-cardiac-data/
4http://www.cardiacatlas.org/challenges/

lv-segmentation-challenge/
5https://www.creatis.insa-lyon.fr/Challenge/acdc/
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Figure 2: Samples from the EMIDEC dataset where the colors
overlaying the ground truth mask are representing the segmentation
classes, Red for Left ventricle, Green for Myocardium, Purple for
Infarction, and Pink for No-Reflow. The figure presents the huge
variability in size between the Apex, Middle and Basal Slices. Also
it presents the variability of the infarction tissue which has irregular
shape and irregular number of pixels within each slice

2. Literature Review

2.1. Convolution-Based algorithms

The problem of cardiac segmentation has evolved
through multiple stages; the first was the use of Non-
deep learning methods to segment different anatomical
parts of the heart, such as the Right Ventricle (RV) and
Left Ventricle (LV). With the rise of deep learning,CNNs
has achieved great success for Cardiac MRI segmenta-
tion.

For the past few years, CNNs have been used exten-
sively for Cardiac MRI segmentation; in this section,
we will discuss some of the methodologies used with a
focus on the EMIDEC challenge since it is a recent chal-
lenge; it presents the mainstream research directions
in cardiac segmentation and diagnosis. Lalande et al.
(2022) presented the challenge results and provided an
overview of the methodologies used for this challenge
and cardiac segmentation in general.

CNN-based UNets had become the defacto architec-
ture in solving the segmentation problem in medical
imaging, and cardiac segmentation is no different. In
the EMIDEC challenge, Challengers used various con-
figurations of UNets. Zhang (2020), the winner of the
challenge used a cascade of 2D-3D UNet, shown in fig-
ure 3, inspired by nnUNet (Isensee et al., 2021). The
cascade aims to utilize the best properties in 2D and
3D. 2D UNet focuses only on the intra-slice features,
hence 3D UNet refines the 2D segmentation; this con-
cept avoids the intra-slice heterogeneity and considers
the volumetric information for more refined segmenta-
tion.

Another method used was multi-stage segmentation,
where the first stage is to segment the Myocardium and
the second is to segment the infarction and no-reflow
tissues. Camarasa et al. (2020) followed this method
adding uncertainty to the process by passing the My-
ocardium segmentation to a probabilistic auto-encoder

Figure 3: Zhang (2020) Schematic showing the cascaded network
where the left part is the 2D UNet while the right part is the 3D UNet

Figure 4: Hu et al. (2018), Schematics of Squeeze-and-Excitation
module

using Monte-Carlo dropout, the generated map is fed to
the second model for scar segmentation.

In addition to the more vanilla encoding blocks used
with UNets such as ResNet, ResNeXt, and Inception
modules, some challengers tried to add attention to the
UNet encoders. Yang and Wang (2020), and Girum
et al. (2020) applied Squeeze-and-excitation (SE) (Hu
et al., 2018) for better modeling capabilities. Girum
et al. (2020) also used the Selective Kernel (SK) block in
the decoder to adaptively adjust the receptive field size
to enable automatic kernel size selection.

SE was one of the first adaptors of attention mecha-
nism in CNNs, SE blocks managed to improve channel
inter-dependencies at almost no computational cost by
adaptively adjusting the weight of each feature map in
the aggregation of the final map. The input for the SE
block is a feature map of size C×H×W, where C is the
number of channels, (H,W) are the spatial dimensions
of the feature map. The feature map’s spatial dimen-
sions are Squeezed, usually, by average pooling into a
vector of shape C×1×1. Fully connected layers project
the squeezed map into weights to aggregate the origi-
nal feature maps into the final output map, focusing on
the important feature maps by Exciting them with large
weight values. Figure 4 illustrates the schematics of this
block. The SE block with its attention mechanism im-
proved many computer vision algorithms but it can only
be considered as an addition to the convolution blocks
because the modeling and the feature extraction process
still depends on the convolution layers.

Challenge discussion. The challenge results are shown
in table 1. The overall segmentation of the Myocardium
is good, where the best performance was a 0.879 Dice
score and 0.712 Dice score for the Infarction, but on the
other hand, the No-Reflow tissue proved to be difficult,
with the best Dice score at 0.785. It is also worth noting
that the Dice score for the No-Reflow class is equal to
one for the correct classification of its absence from the
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Challenger Myocardium Infarction No-Reflow
Dice Vol Diff. (cm3) Hausdorff (mm) Dice Vol Diff. (cm3) Pet. Diff. (%) Dice Vol Diff. (cm3) Pet. Diff (%) Acc. (case (%)) Acc. (slice (%))

Zhang 0.879±0.027 9.26±9.08 13.01±8.81 0.712±0.268 3.12±5.15 2.38±0.031 0.785±0.393 0.63±2.27 0.38±0.012 84.00 94.97
Feng et al. 0.836±0.124 15.19±16.41 33.77±111.63 0.547±0.340 3.97±8.36 2.89±0.045 0.722±0.432 0.88±3.41 0.53±0.017 80.00 90.78
Yang et al. 0.855±0.027 16.54±10.27 13.23±6.80 0.628±0.315 5.34±7.88 4.37±0.062 0.610±0.463 1.85±3.32 1.69±0.033 76.00 81.56
Huellebrand et al. 0.841±0.051 10.87±8.53 18.3±15.74 0.379±0.296 6.17±8.36 4.93±0.059 0.523±0.483 0.95±3.00 0.64±0.015 70.00 85.75
Camarasa et al. 0.757±0.111 17.11±15.45 25.44±21.71 0.308±0.280 4.87±8.49 3.64±0.047 0.605±0.485 0.87±3.27 0.52±0.016 74.00 84.36
Zhou et al. 0.825±0.057 13.29±11.34 83.42±158.97 0.378±0.309 6.10±9.45 4.71±0.06 0.520±0.487 0.88±3.38 0.54±0.017 64.00 86.87
Brahim et al.3 0.791±0.050 12.68±10.59 23.87±11.52 0.274±0.379 7.05±12.73 5.19±0.074 0.641±0.479 0.83±3.109 0.50±0.016 74.00 89.39
Girum et al.3 0.803±0.057 11.81±14.09 51.48±98.15 0.340±0.474 11.52±16.53 8.58±0.101 0.780±0.414 0.89±3.61 0.51±0.018 78.00 89.66

Table 1: Lalande et al. (2022), EMIDEC Challenge results. Pct. Diff.: Difference between the percentage of the infarcted Myocardium.

Figure 5: Arega et al. (2021), Schematics of the used method with the
losses used

Figure 6: Brahim et al. (2022), Schematics of the ICPIU-Net archi-
tecture and training

case, which points out the difficulty of the task. From
the results, we can deduce that more complex networks
and pipelines are not guaranteed to produce better re-
sults; on the contrary, more adaptive and more tuned
architectures are achieving better results following the
nnUNet philosophy contradicting the ideas in the natu-
ral images for datasets such as CityScape or COCO.

Other researchers tried to enhance the segmentation
results after the challenge. Arega et al. (2021) proposed
to use Monte-Carlo (MC) dropout within the network
to generate N samples, then the final prediction is the
average of the samples, and the variance of the samples
was used as an uncertainty loss as shown in figure 5.

Brahim et al. (2022) used a multi-stage strategy for
segmentation, as shown in figure 6. The first stage is
3D UNet for initial segmentation with an extra classi-
fication head to recognize the pathological cases. The
second stage is refining the shape of the Myocardium
using a 3D convolutional variational auto-encoder to re-
construct the prediction mask. An ensemble of models
is used to compute the final prediction mask. To our
knowledge, the ICPIU-Net achieves the best results on
the EMIDEC dataset with Myocardium Dice of 95.32,
Infarction Dice of 78.3, and No-Reflow Dice of 77.83.

So far, all the architectures used depends on some fu-
sion technique. Multi-stage networks are trying to over-
come the lack of a single convolution 2D or 3D to pre-
dict the output well enough, so the prediction of each
stage is refined or utilized by the next step to overcome
its shortcomings, inspiring going in a different direction.
With the rise of self-attention-based networks (trans-
formers), it seems like an excellent candidate to solve
the misgivings of convolution-based UNets.

2.2. Transformers
The first transformer emerged from the natural

language processing (NLP) field in the sequence-to-
sequence application such as machine translation. They
emerged from the need to model the long-term depen-
dencies between elements in the sequence, i.e., words in
a sentence to generate the appropriate output sequence.
Now transformers dominate the field of NLP and are
applied in many applications within the NLP field and
other fields.

Transformers were initially designed to solve the ma-
chine translation problem and were explored exten-
sively in the literature Fan et al. (2021), Mehta et al.
(2020), and So et al. (2019). Transformers were also
adopted in other applications such as language model-
ing (Dai et al., 2019), (Rae et al., 2019), and named en-
tity recognition Li et al., Yan et al. (2019).

Also, a significant effort was focused on pretrain-
ing models on a very large scale that can serve as a
start point for many applications such as the GPT se-
ries, GPT (Radford et al., 2018), GPT-2 (Radford et al.,
2019), and lastly GPT-3 (Brown et al., 2020). GPT-3 is a
175 billion parameter model that is being used for many
applications such as translation and question answering.
also, it has been used to write new articles from scratch
and generate code. BERT Devlin et al. (2018) is another
example, enabling anyone to develop their question an-
swering system achieving state-of-the-art results.

Transformers also was adopted in other fields; In
audio applications, transformers have been used for
speech recognition (Chen et al., 2021e), (Dong et al.,
2018), Speech synthesis (Ihm et al., 2020), (Zheng et al.,
2020) and many other applications. Lin et al. (2021) is
a comprehensive review of transformer applications.

2.2.1. Self-Attention
Transformers layers depend on the self-attention

mechanism. The attention is a function mapping a se-
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Figure 7: Vaswani et al. (2017) Schematic showing the self-attention
mechanism

quence of input vectors to a corresponding output se-
quence where each output vector is a weighted sum of
all the input vectors. A compatibility function computes
the weights depending on the relation between each vec-
tor with the other elements in the input sequence.

Vaswani et al. (2017), presents the attention function
as a mapping between a query and a set of key-value
pairs, as shown in figure 7. The Scaled Dot-Product
Attention compatibility function computes a score be-
tween each query and each of the key-value pairs. The
function calculates the dot product between the query
vector and each of the key vectors, and then the result-
ing product will be normalized by the square root of
the vector’s size d to neutralize the effect of the vec-
tor’s length on the dot product’s value range. A Softmax
function is applied to the scaled dot product vectors to
get the final weights used to get the output vector.

Practically, The computations are done in a matrix
format to speed up the calculations by stacking the
queries into one matrix Q and the key-value pairs into
matrices K and V; the final output matrix is:

Attention(Q,K,V) = S o f tmax(
QKT

√
d

)V (1)

2.2.2. Multi-Head Attention
Similar to CNNs, where each convolution layer ap-

ples multiple kernels to extract various features from
the same input, each attention layer applies multiple at-
tention heads to the same input where each attention
head is using equation 1. Each attention head is ap-
plied to a projected part of the input vector. Each head
attends to a subspace of the original feature vector ex-
tracting different information independently, increasing
the layer’s modeling capability. The outputs of all the
heads are concatenated and then are linearly projected
into the output embedding dimension. The formulation

is as follows:

MultiHead(Q,K,V) = Concat(H1, · · · ,Hh)WO (2)

where, H is one of the head

Hi = Attention(QWQ
i ,KWK

i ,VWV
i ) (3)

A linear, fully connected layer can model each projec-
tion for batch implementation.

2.2.3. Position Embedding
The attention mechanism doesn’t account for the ele-

ments’ order in the sequence, meaning that all the per-
mutations of the sequence will result in the same output
vectors. Position embeddings solve this problem by us-
ing the absolute position of each vector in the sequence
to compute an embedding that is added to the input vec-
tor accounting for the vector’s position in the sequence.

Vaswani et al. (2017) used a fixed position embed-
ding equation found empirically and showed that the re-
sults of using learnable position parameters are almost
identical to the fixed embedding function. This is true
for different NLP applications, but other works produce
better results with learnable position encoding parame-
ters.

2.3. Vision Transformers

Transformers and attention mechanism proved their
modeling power in the NLP field. Inspired by their suc-
cess, multiple works tried to adopt transformer architec-
tures in computer vision. Dosovitskiy et al. (2020) were
the first to try applying pure transformer architecture in
computer vision with almost no modification in the orig-
inal architecture. They based their design on the original
transformer paper Vaswani et al. (2017). The only mod-
ification was transforming the image into a sequence be-
cause the nature of transformers requires the input to be
a sequence of elements. An image is a 2D sequence of
pixels, but using the self-attention module on the pixel
level will be prohibitive in computation complexity and
memory requirements. Hence, the image was split into
16 × 16 patches then each patch was embedded into a
smaller dimension space using an embedding layer. A
linear projection function, a fully connected layer, was
used to perform the patch embedding where each patch
was reduced into a D dimension vector and will stay
constant across the transformer layers in the network.

Each transformer block is composed of multi-headed
self-attention (MSA) followed by an multi-layer percep-
tron block (MLP). The layer’s architecture is shown in
figure 8 with an overview of the model. The results
from the ViT architecture triggered many researchers to
incorporate transformers architectures in different com-
puter vision tasks from the recognition tasks such as
image classification and segmentation to multi-model
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Figure 8: Dosovitskiy et al. (2020), Left section is an overview of the
model, the right section is the architecture transformer encoder

problems such as visual-question answering, visual rea-
soning, Khan et al. (2021) prove a comprehensive sur-
vey about the different applications of ViTs in the com-
puter vision domain.

2.4. Vision Transformers in Medical Imaging

Medical imaging started adopting transformers and
applying them in different applications for diagnosis
and prognosis. He et al. (2022) is a comprehensive re-
view of many applications using transformer-based ar-
chitectures in the medical imaging field.

2.4.1. Classification
In the classification problem, some applications ap-

plied ViT as is. Gheflati and Rivaz (2021) used ViT on a
breast ultrasound dataset to classify normal, malignant,
and benign breast tissues. They compared the ViT fine-
tuned network vs. many CNN based models such as
ResNet, VGG, and Inception, and they reported better
performance from the ViT architecture on both accuracy
and area under the curve (AUC).

Gao et al. (2021a) compared ViT and DenseNet on
COVID-19 CT-Scan diagnosis dataset. The dataset has
both 2D and 3D scans, and it is worth noting that they
extracted sub-volumes from the 3D scan, effectively fix-
ing the sequence length for the ViT and solving the prob-
lem of variable 3D scan depth. There results showed
that ViT performance is better than DenseNet.

other contributions tried to utilize the ideas of the vi-
sion transformer. Liu and Yin (2021) applied ViT-based
architecture VOLO Yuan et al. (2021) for COVID-19 di-
agnosis from X-Ray images. VOLO implements a new
kind of attention called outlooker attention achieving
SOTA performance for COVID-19 diagnosis.

Other methods try to combine self-attention lay-
ers with other components, such as convolution layers
which have a high inductive bias for images and have
the potential to increase the data efficiency either for
training or fine-tuning. Also, from a modeling stand-
point, attention tries to model the relationship between
elements of the sequence, while convolution focuses on
the local features extracted from the neighborhood of

each pixel. The difference in the modeling techniques is
encouraging to integrate both of them.

Barhoumi and Ghulam (2021), Used an ensemble
of different CNN networks, trained using different
paradigms to extract diverse and rich features, then the
features are fed to a transformer encoder for classifi-
cation. They showed that the results increase with the
number of CNNs used and the quality of each; also, the
modeling power of the transformer encoder captured the
important information from each CNN’s feature map.

Chen et al. (2021a), proposed GasHis-Transformer,
to classify gastric histopathological images. They used
a multi-scale model and designed two modules, the
Global Information Module (GIM) and the Local In-
formation Module (LIM). The GIM used both convo-
lutions and a MSA block while LIM is a convolution
block. Moreover, they used the Inception-style method
to learn multi-scale local representations. Their results
show a great generalization capability where the model
was generalizable to other cancer histopathological im-
age classification tasks.

2.4.2. Registration
Recently ConvNets were used to solve the registra-

tion problem, but it was shown that convolution net-
works couldn’t model long-range spatial dependencies
very well. Transformers solved this issue due to self-
attention, enabling more spatial precision in feature
mapping. Inspired by TransUNet (Chen et al., 2021d),
Chen et al. (2021c) used a hybrid of Convolutions and
Transformer blocks in a VNet style where the encoder
uses convolution blocks for feature extraction and in
the decoder for the upsampling. In contrast, the bot-
tleneck used the transformer blocks. In addition, the
network used the whole 3D volume benefiting from the
spatial information in the 3D format, which is very com-
mon in medical imaging. Chen et al. (2021b) used
the same principle as VoxelMorph (Balakrishnan et al.,
2019) where the network is learning to produce a dense
displacement field between the fixed and moving image.
Swin Liu et al. (2021) as an encoder for feature extrac-
tion, they used a convolution-based decoder with long
skip connections to maintain the flow of spatial infor-
mation for better registration. In addition, they used 3D
convolution for more spatially aware features. (Zhang
et al., 2021b) used the shifted-window self-attention
layer from Swin (Liu et al., 2021). Each 3D volume is
split into 3D patches then a convolution-based encoder
and decoder are used to generate a deformation field be-
tween the fixed and moving patches. After computing
the patch-wise deformation fields, Swin layer is used to
stitch them, producing a whole deformation field for the
entire volumes.

2.4.3. Object Detection
Shen et al. (2021) presented COTR architecture based

on DETR (Carion et al., 2020) for polyp lesions detec-
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Figure 9: Shen et al. (2021), Overview of COTR architecture with the
convolution-in-transformer module

tion in colonoscopies. The architecture uses ResNet18
convolution backbone to extract high-level features.
The features are fed into convolution-in-transformer,
shown in figure 9 which is a block containing a self-
attention layer followed by a convolution. The decoder
follows the standard architecture for a transformer de-
coder except that the decoder uses the objects as a query
running in parallel following DETR. A feed-forward
network then uses the decoder output for the object clas-
sification and another one for the bounding box regres-
sion.

Jiang et al. (2021) presented RDFNet for caries de-
tection, it is based on YOLO V5 but they are using self-
attention blocks with convolution layers.

2.4.4. Segmentation
Segmentation is an essential application in the med-

ical imaging domain. With the emergence of vi-
sion transformers, many transformer-based architec-
tures were designed and utilized for different segmenta-
tion tasks, for example, in cardiac segmentation, Chen
et al. (2021d), Xu et al. (2021), Gao et al. (2021b), Zhou
et al. (2021), and Cao et al. (2021) achieved a a state
of the art results on different related datasets, while in
multi-organ segmentation Chen et al. (2021d), Xu et al.
(2021), Zhou et al. (2021), Chang et al. (2021), Li et al.
(2021), Xie et al. (2021) and Cao et al. (2021) also
achieved state of the art results. The same can be said
many about many other tasks.

UNet-based architectures have achieved great suc-
cess in the medical imaging domain, and many archi-
tectures are trying to utilize the transformer modules
within the UNet architecture. The research into this idea
can be categorized as follows. Strategies for combining
transformer modules with the existing UNet architec-

Figure 10: Sun et al. (2021), Encoder architecture with two encoding
paths, convolution-based and transformer-based

Figure 11: Zhang et al. (2021a), Overview of the TransFuse architec-
ture, the transformer encoder is shown in the left part of the image
while the convolution encoder is shown in the bottom right. The Bi-
Fusion module uses the output of the encoders per spatial level com-
puting the final feature map for each level

ture and strategies to integrate transformer layers in ex-
isting UNet architecture directly.

Combining transformers with existing UNet architec-
tures:. Several contributions try to merge the trans-
former modules with the existing UNet architecture
without changing the UNet itself, Sun et al. (2021), used
two independent encoding paths; the first is the stan-
dard convolution-based encoder used in UNet, while the
other is a standard transformer-based encoder. Figure
10 shows the merging of their final outputs by a con-
volution block generating the last feature map. Zhang
et al. (2021a), used the same strategy but added an extra
fusion module, BiFusion, shown in figure 11 to com-
bine the features from both encoders at each spatial level
to leverage both the coarse and fine features maps ex-
tracted at each encoding level. The BiFusion uses con-
volution layers with attention to compute the final fea-
ture map.

Transformer UNet integration. Different contributions
tried to integrate transformer layers directly into the ar-
chitecture. One of the first approaches was to insert
transformer layers as a bottleneck between the encoder
and decoder, Chen et al. (2021d) presented TransUNet,
shown in figure 12 with this integration strategy, The
architecture used a standard convolution-based encoder
for feature extraction followed by twelve transformer
layers to extract better global information from the final
feature map. The decoder is a standard UNet decoder
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Figure 12: Chen et al. (2021d), Overview of the TransUNet archi-
tecture, (a) Schematic of the transformer layer, (b) Schematic of the
network

Figure 13: Gao et al. (2021b), (a) Overview of the UTNet architec-
ture, (b) Pre-activation residual block, (c) Structure of the transformer
encoder block

with the features extracted from the transformer bottle-
neck as the input. The architecture proved successful,
beating many convolution-based networks.

Chang et al. (2021) did the same as TransUNet but
integrated the transformer layers into the bottleneck of
Claw UNet and achieved better results than TransUNet
in multi-organ segmentation task. Xu et al. (2021) pro-
posed LeViT-UNet, the novelty was in using the LeViT
transformer.

Other approaches tried to integrate the transformer
layers within the modules themselves, Li et al. (2021)
used the transformer layer in the decoder for upsam-
pling, they claim that using attention-based methods for
the upsampling step in the decoder produces a signifi-
cant difference compared to interpolation or deconvolu-
tions.

Gao et al. (2021b) integrates the self-attention within
each block of the network, figure 13. The encoder uses
convolution-based residual blocks and passes the fea-
ture map to a transformer layer.

2.5. Data Efficiency in Vision Transformers

Transformer-based architectures have proven to
achieve a state-of-the-art performance beating many
convolution-based architectures, but these networks re-
quire a large amount of data. Some contributions start
by pretraining the models on huge datasets and fine-
tuning the trained model for the required task. For ex-
ample, Swin (Liu et al., 2021) is a state-of-art model

for many tasks in computer vision. In classification
it achieved state-of-art results on ImageNet-1K beating
many convolution-based networks. They presented an
ablation study showing the difference in performance
between training only on ImageNet-1K vs pretraining
on ImageNet-21K first then fine-tuning on ImageNet-
1K. Similarly, ViT compared the results of pretraining
on datasets with different magnitudes in size, ImageNet-
1K, ImageNet-21K, JFT-300M. They showed the in-
creased performance on the fine-tuned task with the in-
crease in the size of the pretraining datasets.

Transformers demands larger amount of data relative
to CNNs for training or for pertaining, which presents
an obstacle in applying transformers in a lot of vision
tasks.

3. Material and methods

In this section, we will discuss and explain the dif-
ferent approaches and experiments to tackle the task at
hand. In section 3.1, we discuss the motivation of our
approach. From section 3.2 to section 3.10 we discuss
the different components utilized during this thesis and
the final pipeline is summarized in section 3.11.

3.1. Motivation

CNNs and their variants have achieved state-of-the-
art results in the problem of cardiac segmentation par-
tially thanks to their progressively enlarged receptive
fields that can learn a hierarchical feature representa-
tion. However, the long-term dependencies within im-
ages, such as the non-local correlation of objects in the
image, are neglected in CNNs. For complex problems
such as Infarction segmentation, that correlation is es-
sential for comparing the different tissue types to detect
anomalies.

Inspired by the success of transformers in com-
puter vision tasks in general and medical imaging tasks
specifically, we investigate the usage of the state-of-the-
art transformer models in the application of cardiac im-
age segmentation and then present our novel method.

3.2. Nested Hierarchical Transformer

In this section, A novel segmentation method will
be presented based on the Nested Hierarchical Trans-
former (NesT) Zhang et al. (2022) architecture.

CNNs own their success for many reasons, mainly,
The ability to extract hierarchical features from the im-
age due to their increasing receptive field by the usage
of different pooling techniques. And a strong inductive
bias such as the locality of feature extraction or the pool-
ing that focuses on the neighborhood of the pixel rela-
tive to its neighbors.

These gave a considerable edge to CNNs in computer
vision tasks and led to more efficient, robust models to
be trained with less data and less computation power.
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Figure 14: Zhang et al. (2022), overview of the NesT architecture

Although transformers exhibit a more substantial mod-
eling power than CNNs, they are very data-hungry due
to their lack of biases in the CNNs by design.

Their paper explored the idea of nesting basic local
transformers on non-overlapping image blocks and hier-
archically aggregating them. They found that the block
aggregation function is critical in enabling cross-block
non-local information communication. Based on this
information, they introduced a simplified architecture
compared to many transformers architectures such as
Swin. NesT tries to incorporate both self-attention and
convolution layers into one architecture playing to both
of their strengths.

Figure 14 presents the high-level concept of the ar-
chitecture. The architecture is a stack of levels to form
the hierarchical representation of the image. Each level
comprises a stack of transformer layers for feature ex-
traction, followed by an aggregation block that uses the
computed feature maps to merge the neighboring blocks
into a single block with more refined features. The exact
process is applied for every level giving the hierarchical
structure presented in figure 14.

3.2.1. Embedding
The first step is to split the image into patches similar

to other transformer networks. Given an input image
of shape H × W × C, and a patch size of S × S . The
image is split into S × S patches then each patch will be
linearly projected into an embedding vector in Rd. The
final number of patches will be

Pn = H ×W/S 2 (4)

Then all the embeddings are partitioned into blocks and
flattened to generate the input X ∈ RBn×n×d where Bn is
the number of blocks at the lowest NesT level, n is the
sequence length (the number of patches) at each block
and d is the embedding dimension of each patch. both
Bn and n can be considered hyper-parameters of the net-
work but they must satisfy the equality in equation 5 so
the extracted patches can be split evenly into blocks

Bn × n = Pn (5)

Figure 15: NesT Level, (a) Stack of N transformer layers composing
the feature extractor (b) The aggregation block used for merging the
extracted features

3.2.2. NesT Level
Each level is composed of two main components, the

first, is a feature extraction module and the second is an
aggregation module. The goal of the feature extractor
is to compute feature map per input block while the ag-
gregation block merge the output blocks’ feature maps
to ensure information sharing across different blocks
and down-sample the spatial dimension by merging the
neighbouring blocks into one.

Feature extractor:. Figure 15 (a) presents the schemat-
ics of the feature extractor. Each encoder is a stack
of transformer layers following the design of Vaswani
et al. (2017). Each layer is composed of multi-head self-
attention (MSA) layer with the difference that the MSA
process all the blocks independently and in parallel fol-
lowing equation 6.

MSANesT (Image) = Stack(F1, F2, · · · , FTn )
where Fi = MSA(blocki)

(6)

MSANesT is followed by a feed-forward fully connected
network (FFN) with skip connection and layer normal-
ization (LN) (Ba et al., 2016). The architecture uses
trainable position embeddings per transformer layer
Touvron et al. (2021).

Block Aggregation. Local self-attention methods are
essential for data efficiency and for reducing the com-
putational requirements but in turn, it affects the infor-
mation flow between the neighbouring blocks also the
translation equivariance (Vaswani et al., 2021) of the
network.

Swin Liu et al. (2021) achieves this task by shifting
the block partition windows between each consecutive
self-attention layer to connect adjacent blocks which is
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very hard to implement. Also, Swin has to apply a spe-
cial masked self-attention to guarantee spatial continu-
ity due to the shifting adding extra complexity to the
process.

NesT on the other hand uses simple convolution-
pooling module, figure 15 (b) for information integrat-
ing between different blocks to compute finer, more
global information. It is vital to apply the aggregation
on the image plane so that the information can be ex-
changed between spatially close blocks. Also this in-
duces extra bias from the shape of the image where
the information exchange happens between neighbour-
ing patches and blocks not across lowly correlated parts
of the image. Figure 16 illustrates the advantage of ag-
gregating the feature at the image plane to insure the
exchange of information across the boundaries of neigh-
bouring blocks.

3.2.3. NesT, Experiments and Results
The strength point of this architecture is data effi-

ciency. To test their architecture they applied it to classi-
fication tasks on CIFAR (Krizhevsky et al., 2009) which
is considered a small dataset for classification tasks,
ImageNet 2012 benchmark Deng et al. (2009), and
ImageNet-21K which are much bigger datasets. NesT
models, other transformer models and CNNs are trained
on these datasets from scratch with the CNNs acting as
the baseline to compare the performance of the different
transformers architectures.

ImageNet results are shown in table 2, ImageNet is
considered a big dataset and it is used extensively by
different CNN classification models which in turn been
used either as feature extractors or for transfer learning
but in table 2, convolution networks achieved similar
results to different transformer methods either the ones
that utilizes global self-attention, meaning that trans-
former networks can achieve results similar to CNN net-
works.

Local attention methods performs better compared
to both CNNs and global attention transformers. on
the other hand NesT models performs better than Swin
models proving that even while using similar trans-
former layers, the aggregation of the different blocks
plays vital role in dictating the output performance.

Finally, table 3 shows ImageNet results but with
ImageNet-22K pretraining and as expected the overall
performance of transformer networks increased but still
NesT-B proved superior to other transformer models

3.3. NesT for Segmentation
Proving its ability to achieve state-of-art results with

only training on relatively small datasets compared to
other transformer networks. In this section, NesT-based
models will be used for segmentation, as far as we know
this is a novel application for this architecture.

Inspired by successful segmentation networks such
as TransFuse (Zhang et al., 2021a) and Swin-UNet Cao

Arch. Type Method # Parameters Top-1 Acc. (%)

Convolution
ResNet-50 25M 76.2

RegNet Y-4G 21M 80.0
RegNet Y-16G 84M 82.9

Global Attention
ViT-B/16 86M 77.9
DeiT-S 22M 79.8
DeiT-B 86M 81.8

Local Attention

Swin-T 29M 81.3
Swin-S 50M 83.3
Swin-B 88M 83.3
NesT-T 17M 81.5
NesT-S 38M 83.3
NesT-B 68M 83.9

Table 2: Zhang et al. (2022), Comparison on the ImageNet dataset.
All models are trained from random initialization.

ViT-B/16 Swin-B NesT-B
ImageNet Acc. (%) 84.0 86.0 86.2

Table 3: Zhang et al. (2022), Comparison on the ImageNet dataset
results with ImageNet-22K pretraining

et al. (2021), we will use NesT as an encoder with pure
UNet convolution-based decoder. To establish the base-
line, we use the models provided by the authors, namely
NesT-T, NesT-S, and NesT-B as encoders. All the varia-
tions of NesT have the same number of levels and same
patch size, (4 × 4) but vary in other parameters, the dif-
ferences are presented in table 4. We also use the pre-
trained weights, (trained on ImageNet from random ini-
tialization) provided by the authors. It is worth noting
that NesT-T wasn’t used because after some preliminary
testing it produced inferior results to NesT-S/B

Transformer Depth Embedding Dimension MSA number of Heads
NesT-T [2, 2, 8] [96, 192, 384] [3, 6, 12]
NesT-S [2, 2, 20] [96, 192, 384] [3, 6, 12]
NesT-B [2, 2, 20] [128, 256, 512] [4, 8, 16]

Table 4: Comparison between the NesT architecture variations, trans-
former depth: how many transformer layers are stacked per NesT
level, Embedding dimension: Number of feature channels per NesT
level, and MSA number of Heads: The number of heads for the self-
attention mechanism

3.3.1. NesT-UNet Variations
The first variation NesT-UNet, presented in figure

17a. A UNet architecture is employed where the en-
coder used is as-is NesT architecture with patch size
of 4 × 4, although this cases a problem that the spa-
tial reduction in size is not consistent with UNet style
of halving the spatial size of the image in each encoder
block. In NesT, an image of shape H × W is reduced
to H/4 × W/4 by the patch embedding and the first
NesT layer. The Decoder used is a simple 2D Trans-
posed Convolution for upsampling followed by two con-
volution blocks. It is worth noting that using the pre-
trained weights, we needed to resize the input image to
224 × 224.

The second variation, NesT-V2-UNet is trying to in-
crease the depth of the architecture and use 2 × 2 patch
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Figure 16: Zhang et al. (2022), Illustration of block aggregation and a comparison when applying to the block plane versus on the image plane.
Although both perform convolution and pooling spatially, performing block aggregation on the image plane allows information communication
among blocks (different color palettes) that belong to different merged blocks at the upper hierarchy

size to create a better spatial features with more skip
connections. The architecture presented in figure 17b.
The pretrained weights are used as an initialization for
some of levels of the network for better performance
and faster convergence.

The third variation, NesT-Dense-UNet is trying to
capitalize more on the spatial information extracted by
the encoder while maintaining the high level features
extracted by the original encoder with patch size 4 × 4
so instead an extra embedding layer is used in addition
to the original one with patch size of 2×2 followed by a
NesT level. Also a convolution encoder blocks used to
extract low level features from the original image that
can be used by the decoder to extract better features.
The architecture is presented in figure 17c.

3.4. NesT as a Decoder

In this section we will present a novel decoder based
on the NesT architecture. NesT encoder has proved that
it can extract strong features suitable for medical im-
age segmentation as shown in the results, section 5. As
a next step we utilize the same principles of the archi-
tecture to create a decoder but instead of block aggre-
gation module between each level, we implement Block
Expansion module to increase the spatial dimensions af-
ter each NesT level. The architecture of the new block
is presented in figure 18, The Block Expansion module
consists of two steps, the first is the upsample of the im-
age to twice its spatial size using Bilinear Interpolation
followed by convolution layer for feature aggregation
across patches and blocks. The second step is feature
projection to reduce the number of channels, it starts
by concatenating the newly computed features with the
output of the encoder with the same spatial dimension
and final MLP with the reduced number of channels.
The main goal of the second step is to project the feature
map into a lower dimension because the transformer
block is not designed to change the number of the fea-
tures shape.

3.5. Segmentation Losses

The choice of the loss functions are critical for any
deep learning problem. For our knowledge there is no
systematic way to choose the best loss function but re-
cent evidence suggests that a combination of loss func-
tions are the best for achieving state-of-the-art results.
Iantsen et al. (2020) used a combination of Dice Loss
and Focal Loss to achieve state-of-the-art for head and
neck tumor segmentation while (Ma, 2021) used a com-
bination of Dice Loss and TopK Loss. We utilize well es-
tablished loss functions in this work and explore meth-
ods of combining them together to achieve higher per-
formance.

Cross Entropy (CE):. Any segmentation problem can
be modeled as a classification problem where each
pixel is considered independent multi-class classifica-
tion problem following equation 7 where each C is the
number of possible classes for a pixel, G is the ground
truth segmentation mask, and P is the protected proba-
bility by the model. A pixel-wise CE has been proven
to work well in segmentation tasks.

CE = −
C∑

i

Gi log Pi (7)

Dice Loss (DSC-L):. Dice coefficient is used to mea-
sure the overlap between the predicted segmentation
and the ground truth so it can be used as an evalua-
tion metric for segmentation. It has also been used as
a loss function by inverting the metric into a loss func-
tion following equation 8. The dice score is explained
in section 4.3 and in equation 12.

DSC-L = 1 − DS C(G, P) (8)

Segmentation Classification Loss (Seg-Cls):. Both the
Infarction and No-Reflow classes don’t exist in ev-
ery slice or every volume meaning that the miss-
segmentation of a single pixel will result in a very low
evaluation score. To help solving this issue, we present a
loss function based on the predicted segmentation map.
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(a) UNet style architecture utilizing the NesT ar-
chitecture as the encoder. Each decoder block
is composed of 2D Transposed Convolution fol-
lowed by concatenation of the upsampled features
with the encoder’s skip connection features then
finally two convolution block to compute the final
output

(b) Enhancement on the first NesT-UNet by using
a finer patch size 2 × 2

(c) Enhancement on the first NesT-UNet by using
an extra two encoder block, the first is a NesT level
with finer embedding patch size of 2 × 2 and the
second is a convolution encoder block for very low
feature extraction. Both are in addition to the orig-
inal encoder for more tuned low level feature ex-
traction.

Figure 17: The difference NesT variations used in the thesis

Figure 18: Block Expansion module used in the NesT decoder. It
composes mainly of two steps, The upsampling step to increase the
spatial resolution followed by projecting the features into a lower di-
mension

The algorithm is shown in algorithm 1. Focal loss (Lin
et al., 2017) is known to handle imbalanced classes
more efficiently by having a higher loss for poorly clas-
sified elements.

Compound Losses:. combing different losses have
proven effective in many works so we presented differ-
ent losses with different properties, CE is a pixel-wise
loss function, DSC-L is a region-based loss working on
a higher level than CE. It aims to maximize the over-
lap between entire regions not just on the pixel level.
HD-L is a boundary loss which aims to minimize the
distance between the components of the same class.
Also, we presented a novel custom loss for slice classifi-
cation minimizing the segmentation miss-classification

Algorithm 1 Segmentation Classification Loss

Require: P: Predicted Segmentation Probabilities, G:
Ground Truth Mask
Loss = 0
for c ∈ [Infarction,No-Reflow] do
//G-label: Ground truth class label
G-label = 1 If c ∈ G else 0
//P-probability: The Segmentation confidence in

the existence of class c in the prediction
P-probability = Non-Zero Mean(P(c))
Loss += Focal Loss(P-probability, G-label)

end for
// Returns the two classes average loss
return Loss / 2

// ŷ: probability of the predicted class ∈ [0, 1]
// y: Binary classification label ∈ {0, 1}
procedure Focal Loss(ŷ, y)

loss =


α(1 − ŷ)γ log ŷ y = 1
α(ŷ)γ log 1 − ŷ y = 0

return loss
end procedure
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rate. We explore the utilization of these different func-
tions to enhance the overall results.

3.6. Preprocessing

EMIDEC dataset is composed of LGE-MRI scans
for different patients. Each MRI consists of a stacked
short-axis slices from base to apex of the left ventri-
cle with the following features: pixel spacing between
1.25 × 1.25mm2 and 2 × 2mm2, slice thickness of 8mm
and distance between slices between 8 and 13mm. So as
a preprocessing step, all the images are resampled into
one spatial spatial spacing of 1.5×1.5×10mm based on
the statistics of the training dataset.

Also to prevent the drawback of the displacement of
the heart location between slices due to different breath-
holds, the slices are realigned according to the gravity
center of the area defined by the epicardial contour. The
specific positioning of the heart enabled us to process
only specific part of the slices, a ROI of shape 96 × 96
is cropped.

The intensity range of the MRI scans is from 0 to
more than 4000 so all the images are standardized, equa-
tion 9. The normalization helps the model to converge
better, and faster.

S ample =
S ample − Mean(S ample)

S T D(S ample)
(9)

3.7. Data Augmentation

EMIDEC dataset is considered a small dataset with
only 100 scans that are used for training and validation
resulting in around 600 2D slices for training. To help
improve the quality of the training and avoid overfitting
given the small dataset size we used different data aug-
mentation techniques.

Random Rotation Augmentation:. The heart has spe-
cific geometrical circular shape, so to preserve that
property we only used random rotation with a degree
randomly sampled between [−180, 180] with probabil-
ity of 0.5.

Random Affine Augmentation:. We take the augmenta-
tion a step further with using a full affine transforma-
tion involving random translation, rotation, scaling and
shearing.

Mix-Up:. The method used here is based on a proposed
by Zhang et al. (2017) as an augmentation method for
image classification. The methods original idea was to
use pairs of training samples to generate a new one fol-
lowing equation 10 where I1, I2 are the image pair and
y1, y2 are their corresponding labels. In this case the
neural network trains on convex combinations of pairs
of examples and their labels and by doing so, Mix-Up
regularizes the neural network to favor simple linear
behavior in-between training examples. Zhang et al.

(2017) proved that this approach increases the perfor-
mance while reducing the overfitting of the model.

Inew = λI1 + (1 − λ)I2

ynew = λy1 + (1 − λ)y2
(10)

The problem at hand is segmentation not classifica-
tion problem but the No-Reflow class is highly imbal-
anced so as a form of augmentation we utilized the prin-
ciples of Mix-Up to generate more slices with the low
frequency classes. The negative slices are blended with
the other slices containing the low frequency class fol-
lowing equation 11 where IP, IN are the positive image
slice and negative image slice respectively, and MP,MN

are their corresponding masks. C is the set of low fre-
quency classes, namely the Infarction and No-Reflow.

Inew(x, y) =


λ ∗ IP(x, y) MP(x, y) ∈ C
(1 − λ) ∗ IN(x, y) else

Mnew(x, y) =


MP(x, y) MP(x, y) ∈ C
MN(x, y) else

(11)

Other works utilized similar techniques utilized Mix-
Up for segmentation but in a different manor. Eaton-
Rosen et al. (2018) used the original Mix-Up method
but on the pixel level. They also apply selective process
for choosing which patches to apply the augmentation
to based on the foreground pixels’ percentage. To our
knowledge there is no method applying Mix-Up in this
manor.

3.8. Postprocessing

The output of the NesT UNets provide very accept-
able results in terms of preserving the anatomical shape
properties of the Myocardium but in some cases the
small regions are miss-classified as Infarction due to ar-
tifacts in the original image, these artifacts sometimes
also magnified by the upsampling of the original im-
age from 96 × 96 to 224 × 224 which is required by
the architecture, to solve this issue we apply a postpro-
cessing step on the output of the 2D networks. Figure
19 presents some examples before and after the post-
processing supporting the artifacts hypothesis. we com-
pute the connected components for the Infarction class
and use a threshold based on the area of the connected
components to replace the infarction with Myocardium
instead.

3.9. Pretraining

Transformers’ performance has proven to scale with
the size of the dataset used but different works tried
to enhance their performance by pretraining the mod-
els on different tasks using supervised learning such as
the original ViT (Dosovitskiy et al., 2020) and Swin (Liu
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Figure 19: Examples of applying postprocessing on the models’ out-
put. The first column is the original image, the second is the ground
truth mask, the third column is the postprocessed image and the fourth
is the model’s output. We notice in the first two images that the In-
farction (purple) exists in only few pixels and they only appear on the
boarder between the Myocardium (Green) and Left ventricle (Red)
supporting the hypothesis that the miss-classification is due to arti-
facts in the original image.

et al., 2021). The usage of supervised training presents
an obstacle in medical imaging due to the lack of su-
pervised data. Many works tried to tackle the problem
differently by using self-supervised learning techniques.
Tang et al. (2021) introduced UneTR, which a 3D seg-
mentation network based on Swin architecture. In or-
der to train their network, they introduced a novel self-
supervised learning framework with task tailored for
medical imaging analysis. They achieve state-of-the-art
results on different segmentation datasets namely, Be-
yond the Cranial Vault (BTCV) Segmentation Challenge
with 13 abdominal organs and segmentation tasks from
the Medical Segmentation Decathlon (MSD) dataset
(Antonelli et al., 2021). The only downside is that they
utilized 5050 CT dataset for the pretraining. Zhou et al.
(2022) introduce a simpler pretraining scheme for ViT
compared to UneTR. They use Masked Auto-Encoder
(MAE) with the task of reconstructing the original im-
age from only partial observations. In this case the net-
work is encouraged to learn the underlying structures
of the images which is more relevant medical imag-
ing compared to natural images processing. Medical
imaging techniques are constrained by the anatomical
structures in the image and by using self-supervision to
reconstruct the original images, the network can learn
these anatomical constrains improving the performance
of downstream tasks. In this work, we utilize both self-
supervision auto-encoder technique and a supervised
pretraining and compare their performance.

Supervised:. NesT architectures are pretrained on the
classification of ImageNet which is a nature images
dataset, although it provide a boost for the performance
of the network, the dataset has different properties com-
pared to medical images. The goal of this experiment is

to fine tune the network on a similar task before the fi-
nal fine tuning on the required task. We chose the ACDC
dataset, this dataset is part of a challenge to compare the
performance of automatic methods on the segmentation
of the left ventricular endocardium and epicardium as
the right ventricular endocardium for both end diastolic
and end systolic phase instances. Providing a very close
application to the task at hand. The goal is to pretrain
our architectures on the ACDC dataset before fine tun-
ing on the EMIDEC dataset.

Self-Supervised:. Similar to the supervised pretraining
approach, we are using a technique similar to MAE
called in-painting. Each 2D slice is sub-masked and
the network is responsible for reconstructing the orig-
inal image. We apply this method on both ACDC and
EMIDEC datasets. Figure 21, presents some samples
for the self-supervised inpainting task applied on the
EMIDEC dataset.

For the self-supervised task, we added an extra
branch to the architecture with the final encoder’s fea-
ture map as its input. The new branch is composed of
a cascade of deconvolutions to upscale the feature map
and convolution layers for feature extraction and reduc-
tion. This task is optimized using the L2 loss.

3.10. Interpretability
One of the main motivations behind the utilization

of the NesT architectures is its inherit affinity to pro-
vide interpretable results. Interpretability, is a very hot
topic in AI in general and in medical imaging specially.
the nested hierarchy with the independent block process
in NesT resembles a decision tree in which each block
is encouraged to learn non-overlapping features and be
selected by the block aggregation. This unique behav-
ior motivated a new method for explaining the model
reasoning, the authors presented gradient-based class-
aware tree-traversal (GradGAT) method for classifica-
tion interpretability.

The main idea is to find the most valuable traver-
sal from a child node to the root node that contributes
to the classification logits the most. Intuitively, at the
top hierarchy, each of four child nodes processes one of
2 × 2 non-overlapping partitions of feature maps. We
can use corresponding activation and class-specific gra-
dient features to trace the high-value information flow
recursively from the root to a leaf node. The negative
gradient provides the gradient ascent direction to max-
imize the class c logit, meaning a higher positive value
means higher importance.

Figure 20, presents an example of applying
GradGAT. The Radio telescope image, the highest path
is showing that the network is focusing on the right part
of the image while on the other hand the Lighter image
is showing that even if the model output is correct the
model is not focusing fully on the right region in the
image but it is focusing on the strong light source in the
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Figure 20: Zhang et al. (2022), Output visualization of the proposed
GradGAT. Tree nodes annotate the averaged responses to the pre-
dicted class. We use a NesT-S with three tree hierarchies.

opposite corner to the lighter. We experimented with
this method for interpreting the classification results of
the NesT architecture.

3.11. Proposed Pipeline

In this section we will discuss the final pipeline and
which techniques are used to compute the final results
of the thesis. The final pipeline utilizes a NesT-B UNet
for the segmentation task with the novel NesT based
decoder. For preprocessing we implement simple ran-
dom rotation data augmentation and for postprocess-
ing we apply connected components removal based on
area threshold. The segmentation network is pretrained
on the EMIDEC dataset using a mixture of supervised
task, namely the segmentation of said dataset and a self-
supervised task, namely, inpainting on the same dataset.

4. Experiments Setup

4.1. Frameworks and Development Tools

All the experiments were done using Pytorch as the
main deep learning framework. For NesT pretrained
model we used Pytorch Image Models package (Wight-
man, 2019) which imports the original code and pre-
trained weights of the authors . Also, for segmentation
utilities such as loss functions and different UNet based
models, we used Pytorch Segmentation Models package
Yakubovskiy (2020).

4.2. Training

In the development of the pipeline different number
of architectures and their corresponding variances were
trained, so we used an adaptive training process to ac-
commodate for the different needs for each of the mod-
els. We used AdamW (Loshchilov and Hutter, 2017)
optimizer with initial learning rate of 10−4. Reduce
Learning Rate on Plateau scheduler was used to adjust
the learning rate based on the model performance. The
scheduler reduces learning rate when a metric, in this
case the validation loss has stopped improving. This
gives some flexibility for the model to choose which
learning rate range is more suitable for its training. All
the models are trained for a maximum of 500 epochs
with early stopping. The goal of early stopping is to

condition the termination of the training process on a
metric achieving the best result while in process avoid
overfitting. It is worth noting that some models such
as NesT-UNets finished training in only 40 − 60 epochs
while the 3D models such as NesT-UNet3D required up
to 300 epochs. Different models required different mini-
batch sizes to fit in the GPU memory, So each model
training starts with an estimation of the batch size and
automatically each models finds the suitable batch size
by trail and error. The hyperparameters were initially
estimated by cross validation process. AdamW is pro-
ducing better results compared to SGD and Adam opti-
mizes. The optimizer used its default parameters, with
0.01 weight decay (L2 regularization), 0.9 as beta 1 and
0.999 as beta 2. All the NesT encoders trained from
scratch initialize their weights with values drawn from a
truncated normal distribution. The values are effectively
drawn from the normal distribution with extreme values
redrawn until they are within the acceptable bounds.

4.3. Evaluation

To evaluate the segmentation results, we used Dice
coefficient to measure the similarity between the pre-
dicted segmentation and the ground truth. we also use
the Accuracy to measure the model’s performance in de-
tecting the malignant tissue either the infarctions or the
No-Reflow over the entire image. For example in the
case of infarction accuracy, if there exist a pixel in the
predicted mask with the infarction label, the label of the
image is considered positive. The goal of this metric is
to measure how well the segmentation network is de-
tecting the malignant cases. These metrics are utilized
for both 2D slices and 3D volumes.

Dice score follows equation 12, where G is the
ground truth segmentation mask while P is the predicted
mask. The accuracy measures the ratio between the cor-
rectly classified samples, namely true positives (TP) and
true negatives (TN) and the overall number of samples
following equation 13 when FP is the false positives and
FN is the false negatives.

DS C(G, P) =
2|G ∩ P|
|G| + |P| (12)

Acc. =
T P + T N

T P + T N + FP + FN
(13)

To evaluate the overall performance of the models we
used five-fold cross validation where the original hun-
dred patience are split into eighty for train and twenty
for validation. Then the final metric is computed based
on the test dataset after the training. We report the av-
erage and the standard deviation of the five runs per ex-
periment.
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5. Results

5.1. Baseline

To establish a baseline for the new method, we use
2D UNet based methods which have established their
success in the field, the first is a classical UNet and the
second is UNet-SE which is a standard UNet with the
addition of Squeeze & Excitation Blocks (Roy et al.,
2018). In addition to different state-of-the-art trans-
former segmentation networks used successfully in the
medical imaging domain namely, TransUNet (Chen
et al., 2021d), Swin-UNet (Cao et al., 2021), and Trans-
Fuse (Zhang et al., 2021a). To test the mentioned net-
works, they are trained from both random and with pre-
trained weights initializations. The results of training
from scratch are presented in table 5, The convolution
based methods such as UNet, UNet-SE perform better
than Swin UNet, showing the ability of CNNs to per-
form better in the realm of small datasets. On the other
hand, TransUNet is performing better than all of them
because it capitalizes on the advantages of CNNs and
transformers.

The same models were trained with their respected
pretrained weights as initialization. The results of this
experiments are presented in table 6. All the meth-
ods shows improvement in their overall performance
but Swin UNet shows a significant improvement from
the initialization compared to the other models and its
own random initialization, testifying that pure trans-
former based models tend to require more data com-
pared to other models and their performance increase
with amount of data used, either for pretraining or ac-
tual training. Also, Swin UNet achieved results com-
parable to the CNN networks after lagging behind with
random initialization. CNNs benefited from the initial-
ization and the overall performance increased but they
didn’t surpass the TransUNet. TransUNet kept the best
overall performance but Swin UNet scored much better
in segmenting the infarctions.

5.2. NesT Variations

We compared the different NesT variations in two
contexts same as the baseline models, the first is the
training of the networks from scratch with random ini-
tialization and the second is using the ImageNet pre-
trained weights as initialization.

The results of the random initialization are presented
in table 7. It is clear that almost all variations achieved
better results than the pure transformer networks, Swin
UNet and UneTR with almost 10 dice points in each cat-
egory while achieving comparable results to the CNN
networks, UNet, UNet-SE which proves the network
ability to perform well in the range of small datasets
compared to transformer networks. On the other hand,
TransUNet proved better at learning that the NesT vari-
ations.

The results of using pretrained weights as initializa-
tion are presented in table 8. With the usage of the
pretrained weight, NesT variations proved more robust
compared to all the baseline models, including Tran-
sUNet especially in Myocardium, and Infarction seg-
mentation but lacks a bit with the No-Reflow segmen-
tation. It is also worth noting that TransUNet use the
weights from pretraining on ImageNet-21K while NesT
variations use weights from pretraining on only Ima-
geNet. The overall performance of NesT is encouraging
to push for better segmentation results.

5.3. Data Augmentation

Data augmentation is widely used for either enhanc-
ing the performance or avoiding overfitting due to small
dataset size. 3.7 explains the augmentation techniques
used through this experiment. All the expirments used
Cross Entropy and Dice Losses and used the ImageNet
weights as initialization. Table 9 presents the results
for the classical augmentation techniques. Both NesT-B
Dense and NesT-B performed much better with a simple
augmentation,

Mix-Up is used to help with the Infarction, and No-
Reflow class imbalance in the number of pixels per sam-
ple. Table 10, presents the results of the Mix-Up exper-
iments. The technique didn’t enhance the performance
much compared to simple augmentations,

5.4. Segmentation Loss Functions

In this section, we compare the different combina-
tions of loss function used. The experiment uses simple
random rotation augmentation mentioned previously.

A combination of Cross Entropy Loss (CE) and Dice
Loss DSC-L is considered a defacto in image segmen-
tation and we consider it the baseline loss function used
by all the experiments before. In addition we experi-
mented with our novel loss function explained in sec-
tion 3.5. Table 11, presents a comparison between the
loss functions. It is clear that the addition of the novel
loss function increased the Dice score for both the In-
farction and No-Reflow classes. Nest-B increased by 2
dice points in 2D No-reflow and 4 in 3D segmentation,
while the Infarction increased by 4 points in 2D and 2
points in 3D.

5.5. Pretraining

The performance of any model is dependant on the
amount of data used for pretraining which has been
proved in sections 5.1 and 5.2. In this section we dis-
cuss the results of using different datasets and different
pretraining techniques. For this experiment we use the
Nest-B UNet architecture, a combination of CE, DSC-L,
and Seg-Cls losses, and random rotation augmentation.

Table 12 compares between the performance using
the pretraining on both the EMIDEC and ACDC. For
ACDC dataset, the results were similar to the results
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Model Average DSC Mayo DSC Infarction No-Reflow
2D DSC 3D DSC 2D DSC 3D DSC 2D DSC Post 2D DSC 3D DSC Case Acc. Slice Acc. 2D DSC 3D DSC Case Acc. Slice Acc.

UNet 69.63 ± 2.13 61.06 ± 3.11 76.47 ± 1.6 78.21 ± 1.56 47.92 ± 3.64 60.96 ± 2.04 43.22 ± 1.64 82.0 ± 3.16 85.36 ± 1.89 84.49 ± 3.02 61.76 ± 7.92 71.6 ± 2.19 86.15 ± 1.61
UNet-SE (Roy et al., 2018) 69.0 ± 1.94 60.88 ± 3.41 75.11 ± 0.86 76.93 ± 0.94 47.14 ± 4.94 58.35 ± 2.31 42.61 ± 3.07 83.2 ± 2.68 83.02 ± 1.98 84.74 ± 3.56 63.09 ± 9.35 72.8 ± 4.6 87.09 ± 1.67

TransUNet (Chen et al., 2021d) 71.64 ± 1.19 62.79 ± 2.43 80.2 ± 1.12 81.23 ± 1.17 51.19 ± 6.55 60.8 ± 4.38 46.42 ± 8.15 82.0 ± 7.62 84.02 ± 3.52 83.52 ± 5.09 60.72 ± 11.78 73.6 ± 6.69 86.48 ± 3.68
Swin UNet (Cao et al., 2021) 60.51 ± 5.66 51.45 ± 6.33 73.16 ± 1.44 74.6 ± 1.39 38.58 ± 5.72 56.27 ± 5.52 41.03 ± 5.12 82.8 ± 3.03 83.18 ± 2.26 69.78 ± 12.21 38.73 ± 13.29 55.6 ± 11.35 75.14 ± 11.07
UNETR2D (Tang et al., 2021) 60.53 ± 3.52 52.72 ± 8.08 77.05 ± 0.82 78.7 ± 0.82 36.41 ± 2.88 58.79 ± 2.34 42.16 ± 5.73 82.8 ± 3.9 85.98 ± 1.75 68.11 ± 12.51 37.3 ± 23.81 53.2 ± 15.4 74.3 ± 9.03

Table 5: Baseline methods trained from random initialization. UNet-SE is a standard UNet with the addition of Squeeze & Excitation Blocks (Roy
et al., 2018).

Model Average DSC Mayo DSC Infarction No-Reflow
2D DSC 3D DSC 2D DSC 3D DSC 2D DSC Post 2D DSC 3D DSC Case Acc. Slice Acc. 2D DSC 3D DSC Case Acc. Slice Acc.

UNet 74.49 ± 1.31 66.39 ± 2.65 81.71 ± 0.66 82.83 ± 0.63 58.2 ± 2.7 67.22 ± 1.45 54.85 ± 2.58 89.2 ± 3.03 88.83 ± 1.34 83.55 ± 2.68 61.49 ± 6.37 76.8 ± 6.26 88.32 ± 2.36
UNet-SE (Roy et al., 2018) 73.41 ± 1.53 63.0 ± 2.21 81.13 ± 1.04 82.26 ± 0.92 56.65 ± 2.34 65.11 ± 2.41 50.92 ± 3.65 86.4 ± 1.67 87.04 ± 2.43 82.46 ± 2.61 55.82 ± 4.94 70.4 ± 3.29 87.88 ± 3.2

TransUNet (Chen et al., 2021d) 75.93 ± 1.83 65.99 ± 3.79 82.14 ± 0.47 83.08 ± 0.45 59.39 ± 4.93 64.51 ± 2.51 50.83 ± 6.68 84.4 ± 6.07 85.47 ± 2.44 86.27 ± 1.46 64.05 ± 5.89 76.4 ± 4.34 89.44 ± 1.0
Swin UNet (Cao et al., 2021) 73.75 ± 4.05 64.73 ± 4.46 81.32 ± 0.89 82.42 ± 0.72 60.61 ± 2.82 67.92 ± 1.42 57.2 ± 4.71 89.2 ± 4.6 89.16 ± 1.03 79.33 ± 8.88 54.58 ± 10.21 70.8 ± 8.9 85.03 ± 6.81

Table 6: Baseline methods trained with pretrained weights initialization. UNet-SE is a standard UNet with the addition of Squeeze & Excitation
Blocks Roy et al. (2018)

Model Average DSC Mayo DSC Infarction No-Reflow
2D DSC 3D DSC 2D DSC 3D DSC 2D DSC Post 2D DSC 3D DSC Case Acc. Slice Acc. 2D DSC 3D DSC Case Acc. Slice Acc.

NesT-S UNet 66.72 ± 3.35 58.02 ± 6.21 78.1 ± 1.7 79.68 ± 1.72 51.66 ± 2.13 61.27 ± 1.53 47.96 ± 3.8 86.8 ± 2.28 86.31 ± 0.71 70.41 ± 11.17 46.42 ± 17.85 61.2 ± 9.86 75.64 ± 8.38
NesT-B UNet 68.76 ± 3.33 60.49 ± 3.75 78.51 ± 1.24 79.89 ± 1.33 52.76 ± 6.27 62.28 ± 2.63 51.15 ± 5.95 87.2 ± 4.15 86.03 ± 1.28 75.01 ± 2.91 50.43 ± 5.02 66.4 ± 4.1 80.61 ± 2.28

NesT-S V2 UNet 63.5 ± 6.9 53.71 ± 8.71 76.56 ± 1.48 78.1 ± 1.33 48.29 ± 5.35 57.53 ± 6.3 42.16 ± 7.64 86.0 ± 5.1 86.37 ± 2.0 65.66 ± 16.13 40.87 ± 18.83 56.4 ± 14.52 71.62 ± 14.42
NesT-B V2 UNet 68.89 ± 2.99 58.18 ± 4.36 76.91 ± 1.48 78.32 ± 1.53 53.7 ± 4.69 60.84 ± 2.97 47.3 ± 6.13 84.8 ± 4.38 85.7 ± 2.18 76.06 ± 4.36 48.92 ± 7.03 66.0 ± 6.32 81.28 ± 3.85

NesT-S Dense UNet 66.58 ± 3.46 56.33 ± 6.44 78.4 ± 0.62 79.8 ± 0.61 51.44 ± 1.55 60.15 ± 1.59 45.93 ± 3.92 86.0 ± 1.41 86.15 ± 0.9 69.89 ± 11.63 43.25 ± 16.05 61.2 ± 15.21 76.98 ± 11.22
NesT-B Dense UNet 67.06 ± 3.7 57.48 ± 5.6 78.85 ± 0.94 80.38 ± 0.75 52.28 ± 1.72 60.56 ± 1.81 47.26 ± 4.04 85.2 ± 3.03 84.97 ± 0.89 70.05 ± 10.56 44.8 ± 13.53 62.8 ± 14.18 75.98 ± 9.85

Table 7: NesT UNets variations, Trained from random initialization

Model Average DSC Mayo DSC Infarction No-Reflow
2D DSC 3D DSC 2D DSC 3D DSC 2D DSC Post 2D DSC 3D DSC Case Acc. Slice Acc. 2D DSC 3D DSC Case Acc. Slice Acc.

NesT-S UNet 69.51 ± 6.77 58.85 ± 8.14 83.54 ± 0.34 84.51 ± 0.34 58.39 ± 7.44 66.56 ± 5.46 53.35 ± 7.61 85.6 ± 5.55 89.11 ± 2.2 66.58 ± 13.18 38.67 ± 17.21 54.0 ± 15.03 72.01 ± 12.43
NesT-B UNet 71.5 ± 0.75 61.92 ± 1.49 83.93 ± 0.63 84.8 ± 0.58 59.6 ± 1.83 68.57 ± 1.29 55.6 ± 2.5 86.8 ± 3.03 88.77 ± 1.85 70.95 ± 1.89 45.38 ± 4.18 61.2 ± 4.38 76.26 ± 1.91

NesT-S V2 UNet 69.95 ± 3.64 60.41 ± 3.48 80.83 ± 1.27 81.99 ± 1.18 55.66 ± 6.35 64.04 ± 3.69 50.82 ± 5.28 85.2 ± 4.15 86.59 ± 2.26 73.36 ± 5.55 48.43 ± 6.12 64.8 ± 7.01 79.11 ± 5.52
NesT-B V2 UNet 72.46 ± 0.74 63.34 ± 1.15 81.24 ± 0.78 82.28 ± 0.67 58.69 ± 3.38 67.06 ± 1.0 54.03 ± 3.37 85.2 ± 3.9 88.49 ± 1.14 77.46 ± 1.13 53.72 ± 3.33 70.8 ± 4.38 82.57 ± 1.18

NesT-S Dense UNet 76.41 ± 2.58 65.76 ± 2.35 84.31 ± 0.32 85.18 ± 0.32 63.33 ± 4.4 69.75 ± 1.29 56.86 ± 2.35 86.4 ± 3.29 88.32 ± 0.85 81.58 ± 4.1 55.24 ± 6.24 69.2 ± 6.42 86.26 ± 4.26
NesT-B Dense UNet 73.12 ± 3.35 62.95 ± 3.64 84.13 ± 0.34 84.96 ± 0.32 60.87 ± 2.11 67.95 ± 1.55 54.8 ± 2.47 85.6 ± 3.29 88.04 ± 1.0 74.37 ± 9.42 49.07 ± 9.92 63.2 ± 8.44 79.61 ± 8.72

Table 8: NesT UNets variations, Trained with the pretrained weights as initialization

Method Model Average DSC Mayo DSC Infarction No-Reflow
2D DSC 3D DSC 2D DSC 3D DSC 2D DSC Post 2D DSC 3D DSC Case Acc. Slice Acc. 2D DSC 3D DSC Case Acc. Slice Acc.

Random
Rotation

NesT-S UNet 79.36 ± 1.42 70.33 ± 1.38 85.47 ± 0.52 86.35 ± 0.52 67.24 ± 2.37 72.95 ± 0.29 62.81 ± 1.54 89.6 ± 0.89 90.11 ± 0.25 85.37 ± 2.32 61.84 ± 5.16 73.6 ± 5.18 89.16 ± 2.13
NesT-B UNet 78.9 ± 2.04 68.5 ± 4.69 85.23 ± 0.4 86.13 ± 0.37 66.79 ± 2.74 72.1 ± 1.3 60.93 ± 3.7 90.0 ± 2.0 90.17 ± 0.98 84.69 ± 4.36 58.45 ± 11.32 71.6 ± 10.14 88.49 ± 3.67

NesT-S V2 UNet 76.95 ± 1.26 67.96 ± 2.25 82.98 ± 0.69 84.08 ± 0.56 64.31 ± 3.0 69.76 ± 1.22 58.32 ± 1.57 88.8 ± 1.79 88.21 ± 1.87 83.55 ± 2.66 61.47 ± 5.98 73.6 ± 5.73 87.32 ± 2.69
NesT-B V2 UNet 75.47 ± 3.32 66.61 ± 4.61 83.78 ± 0.92 84.67 ± 0.91 63.49 ± 2.95 70.09 ± 1.88 59.9 ± 2.97 89.2 ± 3.63 88.99 ± 0.98 79.13 ± 7.56 55.26 ± 12.73 69.2 ± 10.55 83.46 ± 6.86

NesT-S Dense UNet 78.74 ± 2.42 69.28 ± 3.84 85.5 ± 0.67 86.33 ± 0.77 64.37 ± 5.19 71.94 ± 2.36 62.56 ± 4.57 88.8 ± 4.15 89.39 ± 0.86 86.34 ± 1.66 58.96 ± 6.66 70.4 ± 4.98 88.94 ± 2.77
NesT-B Dense UNet 79.49 ± 0.75 70.44 ± 1.45 85.46 ± 0.27 86.27 ± 0.25 66.66 ± 1.34 72.51 ± 0.85 62.74 ± 0.65 90.4 ± 0.89 90.0 ± 1.6 86.35 ± 1.59 62.29 ± 4.3 73.2 ± 3.03 90.11 ± 1.58

Affine

NesT-S UNet 76.84 ± 3.27 67.23 ± 4.66 84.26 ± 0.64 85.24 ± 0.65 63.4 ± 1.92 71.33 ± 0.97 57.64 ± 3.46 86.4 ± 2.97 90.0 ± 0.31 82.87 ± 8.54 58.81 ± 10.56 70.8 ± 8.79 86.76 ± 8.04
NesT-B UNet 78.14 ± 1.29 68.82 ± 2.39 83.99 ± 0.44 84.94 ± 0.5 63.3 ± 2.54 71.22 ± 0.68 59.62 ± 3.52 88.0 ± 3.74 89.83 ± 0.87 87.11 ± 2.19 61.89 ± 6.35 73.6 ± 4.56 90.61 ± 2.11

NesT-S V2 UNet 74.13 ± 3.16 64.5 ± 4.58 82.37 ± 0.29 83.43 ± 0.3 59.69 ± 3.87 67.68 ± 1.69 54.07 ± 4.34 84.8 ± 3.63 87.77 ± 1.11 80.34 ± 7.03 56.01 ± 10.13 70.8 ± 9.23 85.14 ± 6.56
NesT-B V2 UNet 74.8 ± 2.13 65.67 ± 2.72 82.28 ± 0.78 83.41 ± 0.77 60.62 ± 4.32 68.26 ± 2.29 56.61 ± 2.72 88.4 ± 2.19 87.21 ± 1.52 81.5 ± 4.03 56.99 ± 6.6 70.8 ± 6.72 86.2 ± 3.55

NesT-S Dense UNet 76.23 ± 2.36 68.1 ± 2.11 84.16 ± 0.65 85.07 ± 0.59 60.17 ± 4.34 70.43 ± 1.51 59.05 ± 2.17 87.6 ± 2.19 89.66 ± 1.2 84.36 ± 2.98 60.18 ± 4.38 72.4 ± 3.85 88.1 ± 2.48
NesT-B Dense UNet 78.72 ± 1.33 70.17 ± 2.38 84.4 ± 0.36 85.36 ± 0.35 65.58 ± 1.98 71.61 ± 0.99 60.68 ± 2.36 89.6 ± 2.61 89.89 ± 0.67 86.18 ± 2.2 64.46 ± 6.0 75.6 ± 5.55 89.72 ± 2.27

Table 9: Results of applying different Augmentation techniques on different model variations. Namely, Random rotation and Affine transformation

without the pretraining but EMIDEC pretraining proved
effective in increasing the performance of the model es-
pecially for the Segmentation and Inpaint task at the
same time, figure 21 presents some qualitative exam-
ples of both the reconstruction and segmentation during
the pretraining with very good reconstruction results,
especially for the underlying structures of the image,
namely the Myocardium and very good segmentation
results even with the sub-masked images.

5.6. NesT Decoder

We experimented with different architectures for the
Block Expansion and we report the best results in ta-
ble 13, The new decoder produce results comparable
to the convolution decoder except for No-Reflow where
the novel decoder produce higher results. The best con-
volution decoder evaluated at 70.34 average dice points
on 3D No-Reflow segmentation while the novel NesT
decoder evaluated at 76.52 average dice points.

5.7. Results Analysis based on Anatomical Features
In this section we discuss the performance of the

trained models on the different anatomy of the heart.
Figure 22 presents the difference in both size and thick-
ness of the Myocardium and also presenting the chal-
lenge in processing both the Apex and Basal slices. Ta-
ble 22, presents a comparison between the performance
of different models on the different slice types.

6. Exploring GradGAT

As explained in section 3.10, NesT hierarchical tree
structure is very useful for results interpretability and it
proved useful on datasets such as ImageNet which was
one of the reasons that encouraged us to work with this
architecture. To test this method we implemented sim-
ple classification head following the same architecture
as the NesT paper. The classification task was trained to
classify if a slice has Infarction and No-Reflow tissue in
a multi-label classification scheme.
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Model Mix-Up λ Average DSC Mayo DSC Infarction No-Reflow
2D DSC 3D DSC 2D DSC 3D DSC 2D DSC Post 2D DSC 3D DSC Case Acc. Slice Acc. 2D DSC 3D DSC Case Acc. Slice Acc.

NesT-B
UNet

0.2 77.86 ± 1.07 68.1 ± 1.96 82.73 ± 0.74 83.85 ± 0.64 60.36 ± 2.7 66.13 ± 1.47 57.19 ± 1.97 86.0 ± 2.83 79.83 ± 2.21 84.73 ± 3.4 63.27 ± 4.73 75.6 ± 2.19 88.6 ± 3.01
0.8 77.56 ± 1.51 67.39 ± 2.56 82.51 ± 0.56 83.59 ± 0.56 57.63 ± 3.6 66.98 ± 2.13 59.57 ± 4.55 88.4 ± 5.18 80.89 ± 3.28 83.21 ± 3.4 59.0 ± 6.62 73.2 ± 3.03 87.21 ± 2.82

NesT-B
Dense UNet

0.2 76.88 ± 1.33 66.8 ± 2.38 82.41 ± 0.52 83.37 ± 0.57 58.09 ± 2.52 65.83 ± 1.72 56.73 ± 4.41 86.8 ± 5.22 80.22 ± 1.43 82.39 ± 2.24 60.3 ± 4.03 75.2 ± 3.63 87.09 ± 1.6
0.8 77.81 ± 2.55 66.94 ± 5.05 82.74 ± 1.0 83.77 ± 0.91 57.97 ± 5.32 66.61 ± 1.56 57.74 ± 4.38 88.8 ± 3.03 80.11 ± 2.18 84.08 ± 6.36 59.31 ± 11.25 70.8 ± 8.9 87.71 ± 5.4

Table 10: Results of applying the Mix-Up Augmentation with different λ on the NesT-B UNet model

Model Loss Average DSC Mayo DSC Infarction No-Reflow
2D DSC 3D DSC 2D DSC 3D DSC 2D DSC Post 2D DSC 3D DSC Case Acc. Slice Acc. 2D DSC 3D DSC Case Acc. Slice Acc.

NesT-B UNet CE + DSC 78.7 ± 1.07 70.96 ± 1.02 85.1 ± 0.52 85.96 ± 0.52 64.05 ± 2.61 72.36 ± 1.48 62.01 ± 2.99 89.6 ± 3.29 90.84 ± 1.46 86.95 ± 2.09 64.9 ± 4.74 75.6 ± 5.9 90.22 ± 2.28
CE + DSC + Seg-Cls 80.56 ± 1.03 73.51 ± 2.29 84.79 ± 0.49 85.65 ± 0.5 68.46 ± 1.68 72.64 ± 1.27 64.42 ± 2.3 92.8 ± 1.79 90.17 ± 0.87 88.42 ± 1.43 70.45 ± 4.59 80.4 ± 2.19 91.45 ± 0.96

NesT-B
Dense UNet

CE + DSC 79.12 ± 1.36 70.44 ± 2.1 84.89 ± 1.03 85.75 ± 0.99 64.96 ± 2.93 71.94 ± 1.05 59.99 ± 2.33 86.8 ± 3.03 89.5 ± 0.8 87.52 ± 1.8 65.59 ± 4.76 77.2 ± 3.9 91.34 ± 1.49
CE + DSC + Seg-Cls 80.27 ± 0.73 71.68 ± 1.55 85.01 ± 0.43 85.89 ± 0.45 69.19 ± 1.09 72.75 ± 0.74 63.6 ± 1.68 91.6 ± 1.67 90.17 ± 1.55 86.6 ± 1.03 65.54 ± 3.32 77.2 ± 3.03 90.56 ± 1.29

Table 11: Comparison between different loss functions and their combinations. Mainly the table shows the increase in performance with the
addition of the novel Seg-Cls loss function

Dataset Method Average DSC Mayo DSC Infarction No-Reflow
2D DSC 3D DSC 2D DSC 3D DSC 2D DSC Post 2D DSC 3D DSC Case Acc. Slice Acc. 2D DSC 3D DSC Case Acc. Slice Acc.

ACDC
inpaint 78.42 ± 0.98 68.63 ± 1.32 83.81 ± 0.79 84.69 ± 0.64 65.89 ± 2.11 70.37 ± 0.75 59.76 ± 0.72 90.0 ± 2.45 89.78 ± 1.32 85.57 ± 1.69 61.44 ± 3.47 74.8 ± 3.63 89.78 ± 1.68

seg 79.83 ± 1.09 71.5 ± 1.74 84.75 ± 0.43 85.64 ± 0.42 68.72 ± 0.52 72.65 ± 0.28 62.14 ± 2.36 89.33 ± 2.31 91.34 ± 0.28 86.03 ± 3.07 66.73 ± 5.73 78.0 ± 4.0 89.76 ± 2.64
seg-inpaint 80.52 ± 1.1 71.39 ± 2.35 85.17 ± 0.34 86.1 ± 0.28 69.11 ± 1.89 71.94 ± 1.08 61.34 ± 3.31 89.33 ± 2.73 89.76 ± 0.52 87.27 ± 1.85 66.73 ± 4.3 78.33 ± 3.88 90.64 ± 1.94

EMIDEC inpaint 80.7 ± 0.44 72.47 ± 1.07 84.92 ± 0.3 85.81 ± 0.29 68.13 ± 1.2 72.4 ± 1.03 62.51 ± 1.9 90.4 ± 2.19 89.83 ± 0.75 89.04 ± 1.08 69.1 ± 3.74 79.2 ± 2.28 92.74 ± 1.41
seg-inpaint 82.12 ± 0.49 74.2 ± 0.93 85.83 ± 0.14 86.67 ± 0.16 71.54 ± 1.24 73.73 ± 0.97 65.59 ± 1.8 92.4 ± 1.67 90.61 ± 1.09 89.0 ± 0.99 70.34 ± 3.0 80.8 ± 3.03 92.07 ± 1.0

Table 12: Comparison between the different Pretraining techniques, inpainting, segmentation and inpaint-segmentation on both the EMIDEC and
the ACDC dataset

Dataset Method Average DSC Mayo DSC Infarction No-Reflow
2D DSC 3D DSC 2D DSC 3D DSC 2D DSC Post 2D DSC 3D DSC Case Acc. Slice Acc. 2D DSC 3D DSC Case Acc. Slice Acc.

ACDC
inpaint 80.1 ± 1.18 72.19 ± 2.69 84.35 ± 1.2 85.26 ± 1.0 69.67 ± 1.78 72.49 ± 1.31 63.46 ± 2.14 92.0 ± 2.0 90.17 ± 0.96 86.28 ± 2.0 67.83 ± 5.95 81.6 ± 5.9 90.56 ± 1.93

seg 80.71 ± 0.87 71.88 ± 1.5 84.65 ± 0.42 85.58 ± 0.35 70.27 ± 1.85 72.63 ± 1.13 62.88 ± 2.24 90.0 ± 2.45 89.83 ± 0.9 87.19 ± 0.95 67.17 ± 2.5 78.4 ± 3.58 90.56 ± 0.82
seg-inpaint 81.01 ± 1.37 71.84 ± 1.94 85.45 ± 0.63 86.36 ± 0.53 71.43 ± 1.45 73.91 ± 1.96 64.46 ± 2.73 91.6 ± 1.67 91.45 ± 1.73 86.15 ± 2.34 64.7 ± 3.04 76.4 ± 3.29 89.78 ± 1.97

EMIDEC inpaint 78.52 ± 0.72 70.21 ± 1.31 83.08 ± 1.4 84.07 ± 1.31 67.22 ± 1.06 70.34 ± 1.12 62.52 ± 1.82 92.8 ± 2.28 88.83 ± 1.35 85.26 ± 0.85 64.03 ± 2.91 76.8 ± 2.28 88.88 ± 0.41
seg-inpaint 82.53 ± 0.74 75.6 ± 1.05 85.28 ± 0.21 86.18 ± 0.22 71.68 ± 1.73 72.55 ± 1.09 64.11 ± 1.45 92.0 ± 2.83 88.66 ± 1.87 90.64 ± 0.49 76.52 ± 2.43 86.4 ± 3.29 93.3 ± 1.19

Table 13: Results of implementing the NesT decoder instead of the standard convolution decoder used by UNet

Figure 21: Examples of Segmentation-inpaint pretraining using the
EMIDEC dataset. The first column is the sub-masked image, the sec-
ond column is the ground truth mask, the third is the model’s segmen-
tation output and the fourth is the reconstructed images. It is clear that
the reconstruction process is successful in generating the underlying
structures of the image, namely the Myocardium and Left-ventricle
regions. Also it shows the exceptional results from the segmentation
giving the missing information of the image.

From our expirments, the method is not suitable for
all classification tasks especially for complex dataset
such as EMIDEC. The aggregation of the activation val-
ues across the different levels leads to misleading results
due to its over simplicity. In the current method the
highest level will compute the average activation map
using a 2 × 2 grid choosing the best quadrant, meaning
the quadrant contributing the highest to the final score,

Figure 22: The figure presents the difference between slices based on
their location in the MRI sequence. The left image is the Apex which
is smallest area in the sequence which makes it very hard to process,
the middle is a Middle slice, they are the easiest to process and the
right is Basal, the main reason for their difficulty is the existence of
multiple structures around the cavity such as the Right-Ventricle

followed by the same process on the selected quadrant.
This simple aggregation leads to bad results when the
region of interest is at the boarder between the quadrants
or the ROI exists in two quadrants at once. In figure 23,
the GradGAT managed to get close to the best ROI in
the image but the aggregation failed to hone in the right
one and of course it completely missed the Infarction in
the bottom right quadrant of the image.

Although the method wasn’t effective for our case but
it presents an interesting hierarchical method that can be
used for interpretability of the results. In future work, a
good approach instead of using the current aggregation
method, we can look at the tree as a whole and use dif-
ferent techniques from graph theory such as Min-Cut.

7. Discussion

In this work we implemented novel segmentation net-
work based on the NesT architecture to establish a fair
baseline we utilized well established methodologies in
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Model Slice Location Myo 2D DSC Infarction 2D DSC No-Reflow 2D Dice

UNet
Apex 74.52 ± 1.09 61.0 ± 1.81 86.02 ± 2.17

Middle 82.56 ± 0.72 67.08 ± 1.38 80.62 ± 2.92
Basal 84.51 ± 0.85 74.21 ± 5.42 96.21 ± 3.42

UNet-SE
Apex 73.74 ± 1.97 58.61 ± 5.34 79.83 ± 3.83

Middle 82.08 ± 1.05 65.32 ± 2.22 80.79 ± 3.32
Basal 83.61 ± 0.65 70.5 ± 2.19 93.74 ± 2.01

TransUNet
Apex 74.88 ± 0.77 59.44 ± 2.14 86.61 ± 1.45

Middle 83.18 ± 0.62 64.37 ± 2.08 84.31 ± 1.58
Basal 84.05 ± 0.97 70.32 ± 9.23 96.05 ± 4.5

Swin UNet
Apex 74.78 ± 1.18 62.6 ± 2.86 81.74 ± 6.98

Middle 82.09 ± 0.93 67.89 ± 1.81 76.9 ± 9.29
Basal 83.88 ± 1.11 73.36 ± 1.92 89.45 ± 9.45

Nest-B + Conv Decoder
Apex 80.67 ± 0.55 70.73 ± 1.41 87.17 ± 2.94

Middle 86.38 ± 0.26 72.6 ± 1.15 87.61 ± 1.55
Basal 88.14 ± 0.18 82.57 ± 2.14 98.02 ± 0.04

Nest-B + NesT Decoder
Apex 79.51 ± 0.81 68.52 ± 2.84 88.44 ± 1.64

Middle 85.92 ± 0.25 72.09 ± 0.79 89.69 ± 0.49
Basal 87.74 ± 0.11 78.93 ± 1.72 97.71 ± 0.99

Table 14: Analysis of the results based on the autonomy of the slice
where the Apex is the smallest slice in the MRI, the Basal which is
the top slice and the rest are the Middle slices

Figure 23: The Left image presents the selected quadrants one inside
the other, we can clearly see that the final quadrant is very near to the
Infarction. The right figure is the ground truth mask where the white
color represents the infarcted tissue.

CNNs and transformer segmentation networks. From
the results at section 5.1, we can conclude that CNNs
still perform better than other networks when trained on
small datasets but at the same time from the literature
review we conclude that enhancing their performance
is becoming increasingly difficult. and requires multi-
ple networks performing multiple tasks to enhance the
results. ICPIU-Net utilizes two different networks with
multiple different losses and sub-tasks also it was train-
ing using a complex training procedure while (Zhang,
2020) followed the same design as nnUNet utilized a
2D UNet followed 3D Unet. Another direction inte-
grated CNNs with transformer modules, namely Tran-
sUNet and achieved great performance improvement
utilizing the best of both worlds but this shows the lim-
ited capacity of CNNs to model difficult problems and
the improvements of the two modeling methods, namely
CNNs and transformers when integrating together.

In section 5.2, we provide the initial results for
our novel architecture showing its performance rivaling
CNN networks either with random initialization or us-
ing pretrained weights also its performance rivals state-
of-the-art transformer networks especially when train-
ing from scratch. Multiple of the model’s variations beat
the convolution UNets while training from scratch espe-
cially in Infarction and Myocardium segmentation op-
posite to other pure transformer networks such as Swin
UNet and UNETR 2D which didn’t perform well on ran-
dom initializations. Training from pretrained weights

boosted the performance of Swin UNet greatly but it is
still didn’t perform as well as the CNNs or TransUNet
while NesT gained better performance maintaining best
results on the Myocardium and Infarction segmentation.

The results are indebted to the well designed local
self-attention layers capable of extracting meaningful
strong features from small datasets and the block ag-
gregation layer that provided a simple method for shar-
ing the local information extracted per block across
the neighbouring blocks. The result was a network
has a strong feature extraction capabilities due to self-
attention and a strong inductive bias due to the tree
structure of the network and the inductive bias from the
convolution layer in the aggregation block.

In section 5.3, We study the effects of different data
augmentation techniques that proved effective in en-
hancing the performance by regularizing the training
and avoid overfitting which is evident from the boost in
performance for both NesT-B Dense and NesT-B. Both
of them are larger networks with higher number of pa-
rameters that naturally require more data to train and
more prone to overfit. All the augmentation techniques
enhanced the performance, For the classical methods
both the simple random rotation and Affine transforma-
tion augmentation boosted the performance of the mod-
els by 3 − 4 dice points, Random rotations performed
better than the Affine transformation because random
rotations preserve the anatomical structure better than
Affine transformation also the reason for this is pointed
out by NesT original paper (Zhang et al., 2022), as
their ablation study showed that the network is highly
stable compared to other networks such as DeiT and
this is reflected in the consistent increase in the per-
formance of the architecture independent to the aug-
mentation techniques used. The Mix-Up technique en-
hanced the performance but with extra complexity com-
pared to the other techniques without showing a satisfy-
ing performance corresponding to that cost. Although it
achieved its goal of enhancing the performance for the
No-Reflow class by extra 10 dice points compared to
training without augmentation and 1 − 2 dice points de-
pending on the used model variation but with a negative
effect on the other classes.

In section 5.4, We present the effects of the loss func-
tions used. It has been a standard to utilize multiple
losses together to enhance the overall performance of
the model with each focusing on a certain aspect to op-
timize. A combination of Cross Entropy and Dice Loss
penalise the output of the network on the pixel level
and a region level while Seg-Cls, our novel loss func-
tion is acting as a False Positive FP reduction mech-
anism where it penalizes any segmentation mask that
miss-classify the case as malignant instead of healthy
by measuring the confidence of the predicted segmenta-
tion mask as a class and penalizing the miss-classified
pixels specifically.

In section 5.5, we present the experiment of pre-

1.19



NesT UNet: Pure Transformer Segmentation Network with an application for Automatic Cardiac Myocardial
Infarction Evaluation 20

training the model using different methods on different
datasets. First The ACDC dataset is used as for super-
vised pretraining using a segmentation task where both
the encoder and decoder paths are trained on an imag-
ing modality that is similar to LGE-MRI and using a
task that is highly similar to EMIDEC also it has been
used for self-supervised training by inpainting the orig-
inal image from only partial information about the im-
age. In addition, both of the methods are used together
achieving higher performance, we indebted this im-
provement to the advantages of the two methods, for the
segmentation the decoder is trained on a similar dataset
which serves as a better initialization while training on
the EMIDEC while the inpainting trains the encoder
network to learn the underlying structures (anatomical
structures) of the image reconstructing the original im-
age. Similar to ACDC we apply inpainting and inpaint-
ing with segmentation on the EMIDEC dataset. The
improvement of performance over the ACDC pretrain-
ing which is around 2 − 4 dice points across the board
due to the difference in domain, even if the domain is
highly similar but the difference in the intensity distribu-
tion prevented a great score improvement. On the other
hand, pretraining on the EMIDEC itself achieved the de-
sired goal of challenging the network to learn the under-
lying structures of the image with acceptable segmenta-
tion performance that petrained the decoder before the
fine-tuning solely on the segmentation task.

In section 5.6 we present the results of adopting the
novel NesT decoder which is similar to the encoder
proved capable of learning better than a pure convo-
lution decoder with an performance increase in No-
Reflow segmentation by 6 dice points with EMIDEC
segmentation-inpainting pretraining. Both pretraining
experiments testify for the ability of the transformers to
learn long-range dependencies and their strong ability
to model difficult problems even with the class imbal-
ance on pixels per image level. It is also noting that in
all experiments the models produced results which are
anatomically correct. The Myocardium is always en-
veloping the left-ventricle. Both the Infarction and No-
Reflow are within the Myocardium, which is very diffi-
cult to achieve using CNNs without a complex training
process.

The overall performance of the final models is com-
pared to the state-of-the-art and beating most of the
leader-board of the EMIDEC challenge using only a 2D
network with limited postprocessing. A summary of the
results are shown in table 15, comparing the NesT UNet
results to the baseline, EMIDEC Leader-board, State-
of-art, and NesT models.

Also the performance is good on the anatomical level.
The Basal slices are well segmented and always has
high dice score compared to other types especially Apex
even with the existence of more anatomical parts such
as the Right-ventricle, while on the other hand, Apex
shows the lowest performance, which is expected. Still,

Model Myo 3D DSC Infarction 3D DSC No-Reflow 3D Dice

Baseline
UNet 82.83 ± 0.63 54.85 ± 2.58 61.49 ± 6.37

TransUNet (Chen et al., 2021d) 83.08 ± 0.45 50.83 ± 6.68 64.05 ± 5.89
Swin UNet (Cao et al., 2021) 82.42 ± 0.72 57.2 ± 4.71 54.58 ± 10.21

EMIDEC Challenge
Zhang 0.879±0.027 0.712±0.268 0.785±0.393

Feng et al. 0.836±0.124 0.547±0.340 0.722±0.432
Yang et al. 0.855±0.027 0.628±0.315 0.610±0.463

STOA ICPIU-Net 95.32 78.3 77.83

NesT Best Models
NesT-B1 86.29 65.64 66.25
NesT-B2 85.62 65.77 76.88
NesT-B3 86.45 62.97 73.61
NesT-B4 86.41 66.45 79.13

Table 15: Results Summary, where the best models are reported and
compared to the state-of-the-art and the baseline. The NesT architec-
tures used in this table are NesT-B UNet and they are addition to one
another, NesT-B1 uses data augmentation, NesT-B2 uses data augmen-
tation and the Seg-Cls loss, NesT-B3 uses the pretraining and finally
NesT-B4 uses the NesT Decoder

it is worth noting that the drop in dice score between
the Apex and other parts, especially with Infarction is
minimum in the NesT architectures.

8. Limitations and Future Work

This architecture is only designed to work in 2D
and this slicing prevent the network from learning from
inter-slice information available for 3D segmentation.
As a part of the future work, we intend to implement
the same architecture in 3D and utilize 3D UNet for re-
fining the output of the 2D model, which promises an
improvement in the overall result. The Interpretability
in this architecture wasn’t explored enough, and it will
be the focus of future works related to this architecture.

9. Conclusions

In this paper, we explored the application of a
novel transformer segmentation network on the diffi-
cult EMIDEC dataset and achieved results comparable
to state-of-art results beating almost every contribution
on the challenge’s leader-board with only a single 2D
architecture where the state-of-art require the integra-
tion of multiple networks with different sub-tasks. We
show that a good mix of convolutions and self-attention
blocks can yield better results than convolution results
with small data. In addition to the architecture’s ability
to achieve good results from random initialization train-
ing, the architecture can still scale up in performance
with the amount of data used for training and pretrain-
ing techniques similar to other transformer networks.
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Abstract

Modern computer-aided detection/diagnosis (CAD) based on deep learning algorithms achieve high results in detec-
tion of prostate cancer in magnetic resonance imaging (MRI). However, the performance of these algorithms drop
when the testing cases are taken from a different domain (i.e. samples acquired using a different MRI scanner). In this
research, we have investigated the performances of the state-of-the-art domain generalization techniques beginning
from the simple solutions like histogram matching to the more advanced deep learning based models like CycleGAN.
We do not introduce any new novel method in this study rather we have reapplied the current state-of-the-art tech-
niques and compared the performances. From our experimental results, we have deduced that simple solutions are
not adequate to capture the complexity of medical images and hence fail to obtain domain generalization. We have to
rely on advanced techniques that take into account not just the intensity information but also the spatial information
to achieve our goal.

Keywords: Domain generalization, prostate cancer, magnetic resonance imaging, histogram matching, data
augmentation, computer-aided detection and diagnosis

1. Introduction

Prostate cancer (PCa) is the world’s second most
prevalent cancer and is still one of the leading causes
of cancer related death in men (Miller et al.). PCa le-
sions can range from low-grade, benign tumours that re-
main harmless forever to highly aggressive tumours that
can rapidly advance into clinically significant disease
and cause death (joh, 2014). Prostate biopsies are com-
monly used in clinical practice to histologically assign a
Gleason Score (GS) and Gleason Grade Group (GGG)
to each lesion as a marker of cancer aggressiveness (Ep-
stein et al., 2016). For decades, ultrasound biopsies
were done in absence of a modality that can identify
the existence and location of cancer. Prostate magnetic
resonance imaging (MRI) is able to succesfully detect
and localize prostate cancer and so it is able to rule
out needless biopsies (Verma et al., 2017). The stan-
dard guideline for reading and obtaining prostate MRI is
the Prostate Imaging Reporting and Data System: Ver-
sion 2 (PI-RADS v2) (Engels et al., 2020) (Weinreb
et al., 2016). The shapes and sizes of clinically sig-
nificant prostate cancer (csPCa) can be very heteroge-

neous and majority of the times it resembles the various
non-malignant conditions making it very complex and
time-consuming to interpret. Hence, the development
of accurate CAD systems is vital to aid the radiologist
in the process of early detecting of csPCa (Saha et al.,
2021c).

In recent years, powerful deep learning based algo-
rithms have been developed which are good enough to
rival human performance in detecting csPCa. By train-
ing on vast volumes of data, deep learning techniques
are gaining favor in many fields of medical image anal-
ysis. They have produced outstanding results and have
been proven to have the capability to generalize.

However, these deep learning models are highly sen-
sitive to domain shifts which might occur due to sev-
eral reasons. The variability occurs across the different
vendors (Siemens Healthineers, Philips Medical Sys-
tems, Canon Medical Systems, Toshiba Medical Sys-
tems, etc.) of prostate MRI. Even scans obtained using
scanner from the same vendor can drastically differ due
to the different protocols followed by different institu-
tions. Different patient cohort also plays a role in the
problem of domain shift. The best way of tackling this
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domain shift is by training a model on all the different
variations of the prostate MRI. To make matter worse,
the training data in this field is very scarce with Prosta-
teX being the only publicly available dataset.

In this study we investigate state-of-the-art classical
and deep learning based algorithms proposed in recent
literature for domain generalization in order to propose
a robust reproducible algorithm for csPCa detection.
That being said, for this study we only focus on the do-
main shift caused by the difference in scanners across
two different vendors, Siemens Healthineers and Philips
Medical Systems.

2. State of the art

Several techniques have been introduced over the past
few years to bridge the gap of domain shift. To further
promote research in domain generalization, challenges
like the Multi-Centre, Multi-Vendor and Multi-Disease
Cardiac Segmentation (M&Ms) (Campello et al., 2021)
and Cross-Modality Domain Adaptation (CrossMoDA)
(Dorent et al., 2022) have also been organized where the
participants submit their models and are ranked based
on the performance on publicly available dataset with
hidden test set. The main focus of the M&Ms challenge
was to discover deep learning technique which would
have the ability to generalize across diverse dataset for
cardiac image segmentation while the crossMoDA fo-
cused on domain adaptation of brain structure segmen-
tation. From the current literature, two most commonly
used approaches of domain generalization are:

1. Test Time Augmentation (TsTA) - where the un-
known domain sample is transformed to match the
style of known domain during inference.

2. Train Time Augmentation (TrTA) - where the style
of the unknown domain is introduced in the model
by means of augmentation during training.

The TsTA is a simple and fast yet effective choice
to obtain domain generalization since it does not re-
quire a model to be trained again from scratch and also
does not require a huge amount of data from the tar-
get or unknown domain. The top 3 participants of the
M&Ms challenge used TsTA, where they generate mul-
tiple transformation of a single sample during predic-
tion and then averaged all the prediction results to ob-
tain the final result. A very common method to transfer
style during inference is histogram matching (Full et al.,
2020) (Meyer et al., 2021) (Ma, 2020).

In the TrTA, the variance is introduced inside the
model through augmentation during the training phase.
Strategies like histogram matching, blurring, brightness
modification, flipping, scaling, rotating, etc are used to
introduce diversity in the training data and to enhance
the generalization capability of the model (Yaras et al.,
2021). Other simple domain generalization techniques

include using label propagation to introduce new sam-
ples during training (Zhang et al., 2020). Advanced
architectures like, CycleGAN and variational autoen-
coders are also used for TrTA.

While, the advanced technique were not common
among the top performers of M&Ms challenge, ma-
jority of the participants of the CrossMoDA challenge
used the advanced architectures for domain adaptation.
Choi (2021) used the contrastive learning for unpaired
image-to-image translation (CUT) (Park et al., 2020)
model which is a generative adversarial network (GAN)
(Goodfellow et al., 2014) based technique where the
network uses contrastive learning to learn the mapping
of one domain to another. Wu et al. (2021) and Xu et al.
(2021) also used CUT for the translation of the images.
Shin et al. (2021), Dong et al. (2021), Liu et al. (2021),
Belkov et al., Joshi et al. (2021), Li et al. (2021a) and Ly
et al. (2021) used CycleGAN based architecture to per-
form the translations across domains. In Ouyang et al.
(2021), additional shallow networks are used so that the
model is able to learn both domain dependent and do-
main independent features in the samples.

There are other research works like the AutoAugment
proposed in by Cubuk et al. (2018), where the best aug-
mentation policies are learned based on the dataset pro-
vided. Learning the parameters of optimizing the mag-
nitude and probability of applying each augmentation is
extremely time consuming hence there are some vari-
ation which are less exhausting like Fast-AutoAugment
(Lim et al., 2019). Zhang et al. (2019) used deep stacked
transformations where several augmentations are ap-
plied on top of each other to achieve more complex aug-
mentations.

Having said that, there are very few literature which
focusing specifically on PCa in MRI. Girometti (2020)
combined data augmentation with transfer learning
to improve domain generalization performance of the
model. Chiou et al. (2020) uses CycleGAN to obtain
domain adaptation of prostate lesion detection. Hao
et al. (2020) explores the standard data augmentation
techniques and how these augmentations can be applied
independently on the different channels of the MRI to
enchance performance. In Grebenisan et al. (2021), in-
stead of optimising data augmentation parameters the
authors a sepaarte encoder decoder netowrk is intor-
duced to make the base model concentrate on structural
aspects that remain unchanged even when the domain
changes.

In this research, we investigate the impact of common
classical techniques (e.g. histogram matching) in do-
main generalization and the effect of the deep learning
based techniques (e.g. CycleGANs) in domain adapta-
tion through data augmentation.
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3. Material and methods

3.1. Dataset
The dataset consisted of 3050 prostate multipara-

metric MRI (mpMRI) scans from Radboud University
Medical Center (RUMC) and 988 scans from Univer-
sity Medical Center Groningen (UMCG). The RUMC
dataset was used as the primary domain on which all
the models were trained and the UMCG dataset was our
unknown domain which was used to evaluate the perfor-
mance of domain generalization capability of the mod-
els. Among the 988 UMCG scans, 221 scans were used
as the validation set and the rest of the scans were kept
aside hidden as the test set.

The RUMC scans were acquired using 3T MR scan-
ners (Skyra 3T, TrioTim 3T and Prisma 3T) of Siemens
Healthineers while the the scans from UMCG were
acquired using scanners from two different vendors,
Siemens Healthineers and Philips Medical Systems.
Table 1 shows more detail on the type of scanners
present in the UMCG dataset. All RUMC scans were
fully annotated by expert radiologists and the UMCG
cases were annotated by pathologists. The patients are
biopsy-naivemen (RUMC: {median age: 66 yrs, IQR:
61-70} and UMCG: {median age: 69 yrs, IQR: 65-74}),
with elevated levels of PSA (RUMC: {median level:
8 ng/mL, IQR: 5-11} and UMCG: {median level: 9.1
ng/mL, IQR: 6-15}).

All the scans were obtained following standard
mpMRI protocols in compliance with PI-RADS v2 (En-
gels et al., 2020). To comply with the most recent liter-
atures in PCa, we have used biparametric MRI (bpMRI)
(Saha et al., 2021c) (Saha et al., 2021a) Eklund et al.
(2021) which means our dataset includes T2-weighted
(T2W), diffusion-weighted images (DWI) and apparent
diffusion coefficient (ADC) maps (Jambor, 2017) (Israël
et al., 2020). DWI images are acquired at different b
values ranging from 50 to 1000 s/mm2 and T2W im-
ages are acquired using a wide range of turbo spin-echo
sequence. ADC maps and high b-value DWI (b≥ 1000
s/mm2) are computed from the raw DWI scans. Prior
to usage, all scans are spatially resampled to a common
axial in-plane resolution of 0.5 mm2 and slice thickness
of 3.6 mm via B-spline interpolation.

3.2. Model Architecture
To fulfill the main goal of this research work we

experimented with mainly two different techniques to
transfer the style of the source domain to the target do-
main. We started out with a very simple approach, his-
togram matching and then moved to the more advanced
generative adversarial networks. We further explored
the effectiveness of the different data augmentations.
Throughout all these experiments, we kept our baseline
segmentation network constant and explored only the
other aspects of the algorithm. In this section, we ex-
plain our baseline neural network in detail.

Table 1: MRI scanner and vendor information of the University Med-
ical Center Groningen dataset

Vendor Scanner Number of
name patients

Philips Ingenia 3T 591
Philips Intera 1.5T 25
Philips Achieva dStream 1.5T 11
Philips Achieva 1.5T 110

Siemens Avanto 1.5T 43
Siemens Skyra 3T 90
Siemens Aera 39
Siemens Prisma 59
Siemens Espree 20

For segmentation, we used nnU-Net as our baseline
network (Isensee et al., 2021). The nnU-Net model is
a self configuring segmentation model based on the U-
Net architecture (Ronneberger et al., 2015) (Full et al.,
2020). It is able to choose the suitable architecture and
augmentation parameters based on the input dataset and
hence is independent of any sort of dataset related bias.
The nnU-Net model outperformed existing solutions in
23 international biomedical segmentation competitions
which consisted of broad variety of datasets which fur-
ther proves the bias-free nature of nnU-Net. Needless
to say, it is also the current state-of-the-art in prostate
lesion segmentation (Bosma et al., 2021a).

For our experiments, we used the 3D U-Net config-
uration which trains for 1000 epoch per fold and as a
5-fold cross validation. The nnU-Net uses Dice and
Cross-Entropy (CE) loss functions by default, but we
used only the CE loss function as it was shown in Saha
et al. (2021b) to be a better loss function when it comes
to segmentation in prostate MRI. The Dice loss func-
tion fails in our case because not all the samples in our
dataset contains lesion and the Dice loss function ex-
pects every sample to contain a lesion otherwise it mal-
functions specially in cases where the predicted image
contains a lesion but the ground truth does not.

The nnU-Net has been designed to automatically
adapt its parameters based on the dataset provided
(Isensee et al., 2019) and thus have generalization ca-
pability. The model starts by adjusting the batch size
and patch size based on the memory of the GPU. It pri-
oritizes patch size over batch size as it is vital in im-
proving performance. Then it applies mainly 2 differ-
ent types of augmentation, intensity based and spatial
based. The summary of augmentations applied in the
nnU-Net pipeline as provided in the Section 4 of supple-
mentary information of (Isensee et al., 2021) are show
in Table 2. The x ∼ U(a, b) in the table indicates that
x was drawn from a uniform distribution between a and
b. All the augmentation functions were build using the
python framework called batchgenerators development
by the authors of nnU-Net (Isensee et al., 2020). Figure
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Figure 1: Self configuring architecture of nnU-Net
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Table 2: Default augmentations applied in the nnU-Net pipeline

Augmentation Range Probability per sample
Rotation U(30, 30) 0.2
Scaling U(0.7, 1.4) 0.2
Gaussian noise U(0, 0.1) 0.15
Gaussian blur U(0.5, 1.5) 0.2
Brightness U(0.7, 1.3) 0.15
Contrast U(0.65, 1.5) 0.15
Simulation of low resolution U(1, 2) 0.25
Gamma augmentation U(0.7, 1.5) 0.15
Mirroring - 0.5

7b shows the parameters and their automatic configura-
tion in detail.

In terms of our dataset, T2W and DWI scans are sub-
jected to instance-based z-score normalization, whereas
ADC maps are subjected to robust global z-score nor-
malization based on the entire training dataset. For
anisotropic dataset like ours, nnU-Net applies affine
transformations in 2D and other intensity and spatial
based augmentations (Bosma et al., 2021b). Also to pre-
vent nnU-Net from zero padding our samples, extended
the field of view to 80.0 mm × 80.0 mm × 72.0 mm,
which corresponds to a matrix size of 160 × 160 × 20
of our dataset.

3.3. Histogram Matching

Histogram matching (HM) is the simplest way of
transferring the style of source domain into the target
domain. It is simply done by matching the cumulative
histogram of target domain to that of the source domain
(Yaras et al., 2021). The built in function in the scikit-
image library was used in the implementation of HM
(van der Walt et al., 2014) in our experiments. And for
all the experiments the HM was done independently for
each channel, T2W, ADC and DWI to reduce the com-
plexity of learning. The qualitative assessment that we
did and from the scnas shown in Figure 5 and 6, we
derived that the translation of T2W and ADC channel
across the datasets is fairly easy while the DWI transla-
tion is likely the most difficult to learn.

3.3.1. Histogram Matching at Test Time
At this point of the experiment, the nnU-Net model

was already trained on the 3050 RUMC cases. Instead
of directly predicting on the UMCG samples, we used
HM to transfer the style of RUMC cases to the UMCG
cases as shown in Figure 2. We began with one-to-one
HM. Inspired from the experiments done in Yaras et al.
(2021), for each UMCG sample we randomly picked
a RUMC case and performed HM. We then performed
one-to-one HM by only considered 95% percentile of
the reference histogram.

We also did histogram matching of one UMCG case
to multiple RUMC cases in hopes to achieve a more

stable outcome. Firstly, we tried the one-to-10 HM
approach, where for each UMCG case we randomly
picked 10 RUMC cases and got 10 histogram matched
samples. We predicted on all the 10 samples and took
the average of the softmax predictions. Secondly, we
did HM of each UMCG case to the histogram of the en-
tire RUMC dataset. As the last experiment of our TsTA,
we matched the global histogram of the UMCG dataset
to the global histogram of the RUMC dataset. All the
results are discussed in the Section 4.

3.3.2. Histogram Matching at Train Time
Inspired from the approach of the runner-up in the

M&Ms challenge (Ma, 2020), we planned to integrate
the HM into the already existing powerful augmenta-
tion pipeline of nnU-Net. We began by one-to-one HM
where we randomly picked a UMCG sample (recall that
during TrTA our primary dataset is RUMC) and used
HM to introduce the style of the unknown domain dur-
ing the training phase. To achieve a more generalized
result, we experimented with the global histogram of
the UMCG dataset instead of using histogram from a
single sample. Lastly, we matched the histogram of
the whole RUMC dataset to the whole UMCG dataset
and qualitatively the matched images looked very stable
(examples shown in Figure 4). Therefore we integrated
the many-to-many HM method in the final augmenta-
tion pipeline . The pipeline is summarized in Figure
3. Having said that, this method caused an issue. We
could no longer perform the style transfer during train-
ing as we were matching histogram of the whole dataset
of source and target domain and thus had to generate the
histogram matched images beforehand. All the results
are discussed in Section 4.

3.4. Adding More Augmentation

Tweaking the parameters of data augmentations is
very reliable when it comes to building a generalized
model. Handful of papers have been published where
the domain generalization is achieved by solely opti-
mizing the parameters of the augmentations based on
the data (Cubuk et al., 2018) (Lim et al., 2019) (Cubuk
et al., 2019). The optimization is done based on the
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Figure 2: Block diagram of histogram matching at test time

Figure 3: Block diagram of histogram matching at train time

Figure 4: Qualitative results of many-to-many histogram matching at train time
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(a) T2W (b) ADC (c) DWI

Figure 5: The prostate bpMRI scans for a single patient from the RUMC dataset is shown above. The 3 sequences shown (5a) T2-weighted
imaging (T2W), (5b) apparent diffusion coefficient (ADC) maps and (5c) diffusion-weighted imaging (DWI) were obtained using Skyra 3T scanner
of Siemens Healthineers.

(a) T2W (b) ADC (c) DWI

Figure 6: The prostate bpMRI scans for a single patient from the UMCG dataset is shown above. The 3 sequences shown (6a) T2-weighted imaging
(T2W), (6b) apparent diffusion coefficient (ADC) maps and (6c) diffusion-weighted imaging (DWI) were obtained using Ingenia 3T scanner of
Philips Medical Systems.

magnitude of augmentation to be applied and how often
they should be applied. The authors of Xu et al. (2020)
integrated the AutoAugment in the data augmentation
pipeline of nnU-Net and noticed improvements in the
generalization capability of the model. We tried to run
the code provided by the authors of the article, but the
implementation utilized an earlier version of nnU-Net
that is not compatible with the current version. Since
the augmentations we were utilizing required us to use
the latest version of nnU-Net, we could not successfully
run the code. Additionally, all of the papers, based on
optimizing of parameters, required the base model to be
executed multiple times in order to reach the optimum
value and the time constraints of the project would not
allow us to complete the experiments in time. Conse-
quently, we focused on the literature which would be
possible to implement. Papers by Zhang et al. (2019),
Hao et al. (2020) and Girometti (2020) specifies the dif-
ferent ranges of parameters of the augmentations that
work well on medical imaging datasets. We tried out the
various augmentations in the suggested range of param-
eters from recent literature as well as the other variations
of augmentations provided in the GitHub repository by
the authors of nnU-Net. All the results are discussed in
Section 4.

3.5. Experimental Design
To ensure a fair comparison with the baseline model,

we maintained the preprocessing, tuning and train-
validation pipeline for each candidate system in a given
experiment (Saha et al., 2021c). For all our exper-
iments, the only part we modified the augmenation
part that comes after preprocessing. Patient-level di-
agnosis performance is evaluated using the Area un-
der Receiver Operating Characteristic (AUROC) met-
ric. Lesion-level detection performance is evaluated us-
ing the Average Precision (AP) metric. All the metrics
were calculated in three dimensions across entire image
volumes.

4. Results

4.1. Histogram Matching at Test Time
For the HM at test time, the baseline nnU-Net was

trained on RUMC dataset and predicted on the UMCG
dataset. Figure 7a shows the lesion-level average pre-
cision (AP) and the patient-level area under the ROC
curve (AUROC) of the different HM methods on the val-
idation set of UMCG. The ”baseline nnUNet” refers to
the performance of the nnU-Net on the original UMCG
samples and the rest of the labels refer to the different
HM methods. From the graph we can see that the per-
formance does not improve when one-to-all or all-to-all
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(a) Lesion-level average precision (on the left) and patient-level area under the ROC curve (on the right) of test time augmentation methods

(b) Lesion-level average precision (on the left) and patient-level area under the ROC curve (on the right) of train time augmentation methods

(c) Lesion-level average precision (on the left) and patient-level area under the ROC curve (on the right) of adding more augmentation methods
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HM is done. The one-to-one HM is the most unstable
one among all the methods as it is completely dependent
on the set of samples picked during the matching of his-
togram. When repeated several times, the performance
of one-to-one HM ranges from AUROC of 0.712-0.729
and AP of 0.248-0.268. One-to-10 has the most stable
performance and therefore we selected it as our best HM
technique for TsTA.

4.2. Histogram Matching at Train Time

For the HM at train time, the ”baseline nnUNet”
is as usual the one that was trained on RUMC
dataset. The ”augment nnUNet” is the nnU-Net that
was trained on the RUMC cases as well as the
many-to-many histogram matched RUMC cases, i.e.
6100 cases. Both ”baseline nnUNet” and the ”aug-
ment nnUNet” were predicted on the original UMCG
cases. The ”augment nnUNet with TTA” is where the
”augment nnUNet” is predicted on histogram matched
UMCG samples (one-to-10 in this case). It is clearly
visible that the performance drop when we add TsTA.
Even though the performance in terms of both AUROC
and AP is higher for ”augment nnUNet”, the ascent in
outcome is not satisfactory.

4.3. Adding More Augmentation

Figure 7c shows the difference between using and not
using augmentation in the nnU-Net pipeline. The curve
”insaneDA2 nnUNet” refers to the insaneDA2 augmen-
tation that was designed by the authors of nnU-Net.
The ”insaneDA3 nnUNet” refers to the additional aug-
mentations that we added based on the recent literature.
From the graphs we can observe that both of the aug-
mentations have comparable performance.

5. Discussion

We have implemented and investigated as much do-
main generalization algorithms as possible within the
time constraint of the project. In this section, we ex-
plain the reasoning behind the performances of the ex-
periments we have done so far.

5.1. Histogram Matching and Data Augmentation

For TsTA, we started out with one-to-one HM which
worked fairly well in some cases but failed miserably in
cases where the bladder was absent in source image and
present in the reference image. Some abnormal bright
artifacts also appeared in the resulting image as shown
in Figure 8a. After studying the individual histograms
(shown in Figure 8), the initial assumption was that the
strange peak at the beginning of the reference histogram
was the main cause of the artifacts. Considering 95%
percentile of the reference image was not able to resolve

this issue as seen in Figure 9a. After studying the his-
tograms of the datasets thoroughly we noticed how dif-
ferent the intensity ranges are (shown in Figure 10a, 10b
and 10c). For example, in the case of channel T2W as
shown in Figure 10a, the range of intensity is within the
range of 0 to 1000 for RUMC dataset whereas it reaches
values ≥ 2000 in the UMCG dataset. Moreover, the
intensity range drastically differ among the individual
samples of UMCG which is mostl likely the reason why
HM failed to capture the intensity format correctly even
in cases were the reference was the global hisotgram of
the dataset (examples shown in Figure 9b).

For TrTA, as shown in Figure 11, a high contrast was
being introduced when we matched single RUMC case
with single UMCG case. When we did the one-to-many
HM, we afced yet more issues. First of all, the contrast
problem became worse as shown in first image of Fig-
ure 12. Secondly, since the nnU-Net contains its own
augmentations, in some cases the histogram matching
is performed on an already augmented image, resulting
in undesirable pixel values present in the source image
being taken into account when doing the HM (shown
in second image of Figure 12). Due the presence of
some vital preprocessing inside the spatial augmenta-
tions function this could not be avoided. Moreover, an-
other major reason why HM failed is because it only
takes into account the intensity values and cannot han-
dle the challenges of translating medical images which
contains distinctive patterns (Isensee et al., 2019).

Neither of the HM techniques was able to consider-
ably boost the performance of our segmentation model
on the target domain thus we shifted our focus to the
tweaking the parameters of data augmentation. The data
augmentations that are proven to work best for domain
generalization as mentioned in Girometti (2020), Hao
et al. (2020) and Zhang et al. (2019)) are already im-
plemented in the nnU-Net pipeline. So outperforming
a model which is already integrated with the best aug-
mentations is difficult. Additionally, there is very few
literature available on the topic of prostate MRI seg-
mentation. The very little literature that are present
use very weak baseline model to compare their meth-
ods. For instance, in the paper by Hao et al. (2020)
the performance of the new model is compared to a
neural network model with no augmentation. A model
trained with augmentation is very likely to perform bet-
ter than a model with no augmentation. Besides major-
ity of the approaches we found were based on simpler
datasets. For example, cardiac images are used in the
M&Ms challenge which is much simpler as opposed to
our complex bpMRI dataset. As a result, we cannot de-
clare with certainty that the methods described in those
articles are well grounded enough to prove that they are
actually capable of domain generalization. Even in case
where the prostate cancer dataset was used, it was not
possible for us to compare our results due to the fact
that each author used their own dataset that is not pub-
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(a) Qualitative results of one-to-one histogram matching

(b) Histogram matching of channel T2W

(c) Histogram matching of channel ADC

(d) Histogram matching of channel DWI

Figure 8: Qualitative and quantitative results of One-to-one histogram matching in test time augmentation
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(a) 95% percentile one-to-one histogram matching

(b) One-to-all histogram matching

Figure 9: Qualitative results of histogram matching at test time
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(a) T2W channel of RUMC and UMCG datasets

(b) ADC channel of RUMC and UMCG datasets

(c) DWI channel of RUMC and UMCG datasets

Figure 10: Histograms of T2W, ADC and DWI channels of both RUMC and UMCG datasets
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Figure 11: Qualitative results of one-to-one histogram matching at train time

Figure 12: Problems of one-to-many histogram matching during augmentation
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licly available. Given this, having a publicly accessible
database for PCa detection in MRI would be beneficial.

5.2. Limitations and Future Work
In the long run, the best way of obtaining domain

generalization is by training the model on all the dif-
ferent variations of the data. However, in the short run
it is not practically feasible due to the lack of data avail-
ability. Right now, we must focus on making use of the
very little data that is available and still come up with
a model capable enough to generalize across domains.
From this study, we can clearly conclude that simple ap-
proaches like histogram matching is not enough. Hence
we must shift to more advanced architecture like Cycle-
GAN which is able to capture the intensity as well as
the structural transformations across datasets. On a side
note, while designing the advanced architecture it is also
vital to keep in mind that the translated images does not
introduce diagnostically irrelevant or inaccurate infor-
mation because at the end of the day our ultimate goal is
to help improve PCa diagnosis and detection. We have
already done several experiments with CycleGAN al-
ready as shown in Section Appendix A and we put the
rest aside for future study. When we finish building the
model, we plan to evaluate it on the publicly available
dataset of the recently launched PI-CAI (Prostate Imag-
ing: Cancer AI) grand challenge. In the final evaluation
we also plan to add the confidence intervals of the ex-
periments.

One of the major limitations of our project was the
lack of time to carry out all the experiments. As a re-
sult, we only looked at domain shifts produced by dif-
ferent scanners and on the top of that our dataset was
only limited to Siemens and Philips vendors when in re-
ality there are several other vendors. We also did not
take into account other external factors (e.g. patient co-
hort) which are important factors that should be taken
into consideration to build a robust domain generaliza-
tion model for PCa detection.

6. Conclusions

In conclusion, we have reproduced several state-of-
the-art techniques in our study. To summarize our ex-
perimental results, histogram matching fails to capture
the translation required to achieve domain generaliza-
tion. Moreover, we were unable to outperform the per-
formance of nnU-Net because it already contains the ca-
pability to generalize based on the input data. As a re-
sult, we have to rely on more advanced architectures if
we want to outperform this state-of-the-art self config-
uring segmentation model.
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Appendix A. CycleGAN as Augmentation

CycleGAN (Zhu et al., 2017) (Isola et al., 2017) is
very commonly used to translate image of one domain
to another. Since it has been shown to be very effec-
tive for domain generalization, we implemented the al-
gorithm to use it as an augmentation to train our nnU-
Net model (Kong and Shadden, 2021) (Li et al., 2021b)
(Li et al., 2020). To summarize, CycleGAN consists of
2 generators and 2 discriminator. The first generator is
responsible for the translation of source domain to the
target domain and the second generator translates the
target domain back to the source domain. In addition
to the adversarial loss, this neural network has 2 more
loss functions, cycle consistency loss and identity loss.
The identity loss function makes sure the model does
not try to translate images if the input is already given
in the target domain. The cycle consistency loss ensures
the difference between the initial source image and the
resulting source image is minimum.

Figure A.13

For our initial experiments, we used 3D CycleGAN
and trained separate CycleGANs for each channel. The
model failed to learn the translation so we tried other
variations of the architecture. The first variation we
tried was the residual CycleGAN which was proposed
by de Bel et al. (2021). In residual CycleGAN, the
input image is considered while generating, by using
skip connections, and this resulted in an improvement in
overall performance. Having said that, this architecture
failed to capture the translation as well. We then exper-
imented using Wasserstein loss function (Hu et al.). We
also performed another experiment where we introduce
the variations in the training samples by means of ran-
dom style transfer as showed in Kline (2021). But none
of these GAN-based 3-dimensional designs were able to
capture the structural properties of the channels. For all
the above experiments we relied on the codes provided
by the authors in their articles. The different codes from
the different authors were coded to handle the specific
dataset they were working on and was not designed to
handle the massive variations in the intensity levels of
our datasets and this could be a major reason why the
models failed on our dataset.

This time we took a step back and restarted our ex-
periments by using the code from a much more reliable
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(a) Original UMCG (b) Generated UMCG (c) Original RUMC

Figure A.14: Generated sample of CycleGAN for the T2W channel

(a) Original UMCG (b) Generated UMCG (c) Original RUMC

Figure A.15: Generated sample of CycleGAN for the ADC channel

(a) Original UMCG (b) Generated UMCG (c) Original RUMC

Figure A.16: Generated sample of CycleGAN for the DWI channel

(a) Patient-level area under the ROC curve of CycleGAN compared to the base-
line model

(a) Lesion-level average precision of CycleGAN compared to the baseline
model

source - the official PyTorch implementation of Cycle-
GAN. The library however could only work with 2D
PNG images. We picked 50 samples from each dataset
and converted each of the 20 slice from a single sam-
ple and saved them in PNG. With just 50 samples from
each dataset, the CycleGAN model was able to fully
capture the transformation and the styles to go back and
forth from one dataset to the other. Impressed by the
results, we updated the code so that it was now able to
handle the NIFTI samples. However, the code was still
unable to handle 3D volumes as internally all the trans-
formations and augmentations applied on the data are
designed using the Python imaging library (PIL) for-
mat which can only handle grayscale or RGB images.
In addition to that, the preprocessing of the model re-
quired all the samples to be converted, processed and
generated in the intensity range of 0 - 255 which means
the model never learns the intensity ranges of our orig-
inal datasets. As a result, the generated images are in
an intensity range which our pretrained nnU-Net is un-
able to recognize. We added a post processing pipeline
in the code to retrieve the intensity information. From
the generated images in Figure A.14, A.15 and A.16 we
can clearly visualize that the model is able to learn the
required structural information very well but the results
shown in Figures A.18a and A.17a clearly indicates that
the intensity information we are loosing in the prepro-
cessing stage is equally important to achieve domain
adaptation or generalization and somehow needs to be
preserved. We are actively working on this model step
by step to create a fully functional three-dimensional
CycleGAN that works on our data.
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Abstract

Live cell microscopy is an essential step in analysing the response of cells to certain drugs which lead to advancements
in finding a cure for deadly diseases such as cancer. In the present master thesis a deep learning solution is proposed
to segment and track cells in microscopy images. The architecture that we propose is based on a DeepSORT tracking
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1. Introduction

Live cell imaging is a key approach in cell biol-
ogy to study dynamic cellular mechanisms and cell
fate in physiological conditions and in processes in-
volving treatment with drug screening for therapeutic
aims. For example, according to Gascoigne and Tay-
lor (2008) knowledge of tumor response to certain anti-
mitotic agents would allow better design of clinical tri-
als. These screening tests can only be achieved with live
cell imaging techniques. To have a better understand-
ing of the response of human tumor cells to antimitotic
agents, a systematic approach is taken. More precisely,
by using automated time-lapse microscopy, single-cell-
bases assay is established and the response of cells to
different antimitotic drugs is analysed. Additionaly, it
has been tried to identify oncogenic lesions that could
be responsible for cell fate outcomes.

Furthermore, quantitative information of cell cycle
length, fate of the cells combined with the analysis of
different drugs on the cell yet excluding the investment
of time and financial resources

Caldon and Burgess (2019) highlight the benefits of
lineage analysis and the increased potential of break-
throughs in cures for various diseases. Therefore, com-
putational analysis of live cell imaging is very impor-
tant.

Mitosis is a fundamental biological process which re-
sults in forming two new daughter cells which are repli-
cas of the mother cellSullivan (2001) and is in conse-
quence an important part of live cell imaging analysis.

Figure 1: Field of view for raw and reconstructed DIC and PC images

We can observe in Figure 1 how Vicar et al. (2019)
show quality of reconstructions of two types of trans-
mitted light microscopy: Differential Interference Con-
trast (DIC) and Phase Contrast (PC) images. The cells
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have a transparent nature which leads to the need of con-
trast enhancement techniques based on the phase infor-
mation and unfortunately artifacts are introduced at this
stage. As a result, the PC cells have a halo effect and
shade-off and the DIC cells have a 3D like topographi-
cal effect due to shadow-cast artifacts. Both types of im-
ages present significant challenges in terms of segmen-
tation, yet we can observe that the results on DIC images
are less desirable in comparison with the PC ones. We
can therefore admit that the DIC images present a major
challenge in terms of image processing and computer
based analysis.

With the importance of the cell lineage and the finan-
cial and biological materials in mind, the human fac-
tor needs to be duly noted as well. Biologists perform
a plethora of tests and although the recognition of the
phase of the cell is relatively easy for the human eye,
observation and tracking of the same cells present at the
beginning of the experiment throughout the whole du-
ration can prove to be a difficult task due to the clarity
of the image, crowding of the cells in the image, large
number of images or human factors such as tiredness or
subjectivity.

Figure 2: MLN8237 delays entry into mitosis.

Figure 2 was used in order to visualize the effect
of different dosages of the the MLN8237 inhibitor and
DMSO on various cells to track the percentage of inter-
phasic cells entering mitosis with respect to the time for
the experiment. According to Asteriti et al. (2014) the
results were grouped in 4-hours intervals and it recorded
250 interphases in 3 experiments for each condition.
The magnitute of the experiment is impressive and there
are countless other experiments done in this field.

Based on the criteria present in the microbiology re-
search field and understanding the needs of the biolo-
gists we propose a Deep Learning solution to detect and
track interphasic and mitotic cells and build the lineage
of these objects.

To materialize our goal we preprocess and augment
the given images, afterwards we feed the prepared
dataset to a detector whose output becomes input for the
tracker. We then output the tracked cells in video out-

put with the detections overlapping the image as well as
CSV format containing information about the lineage.
This architecture can be visualised in Figure 3.

In the upcoming sections we present details about the
research process and creating this paper while describ-
ing the current state-of-the-art, the challenges that our
dataset brought, the methods that we have tried, our re-
sults, discussion on the results, the conclusions of our
work as well as the acknowledgements of the people
that made this work possible.

2. State of the art

The Ilastik toolkit, described in Berg et al. (2019),
is an interactive machine learning software under the
GNU General Public License for bio-image process-
ing and analysis. Several experiments were performed
trying to polish the capabilities of this tool to datasets
under investigation, since it performed very well for
other datasets. For example, Baharlou et al. (2019)
use ilastik to classify cells in mass cytometry into three
classes: nuclear, cytoplasmic and background. Another
approach for cytometric images in described in Damond
et al. (2019) where with the help of Ilastik, they identify
islets and blood vessels. Another example of the usage
of this tool is present Stringer et al. (2021) in the con-
text where they utilize Ilastik to segment 3D volumes
of a dataset containing stained histological images of
human organs, fluorescent U2OS images with Hoechst
stain and NIH3T3 fluorescent cells.

Aside from the high performance on various appli-
cations, usability was another benefit provided by this
tool. Indeed, Ilastik has a user-friendly interface and
the possibility to replicate the same steps by sharing
projects. This is depicted in Figure 18.

Ilastik is using machine learning algorithms such as
Random Forest to generate new predictions for segmen-
tation.

The ilastik menu provides several pre-defined work-
flows to perform image segmentation, classification and
tracking.

Object Classification and Tracking of Ilastik require
either the results of Pixel Classification workflow, or an-
notated images also known as segmentation masks. The
results of the Pixel Classification workflow may be ei-
ther segmentation mask or pixel prediction map. Pixel
prediction maps assign to each pixel a probability that
the pixel is close to the nucleus center, while the seg-
mentation map clusters parts of the image where the
pixels belong to the same class.

The images under investigation haven’t had any seg-
mentation ground truth. Therefore, we had to create our
own annotations.

We have used for the best results the Ilastik pipeline
in the following order and we explain in detail in the
Appendix the several experiments that we performed.
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Figure 3: Proposed Deep Learning based architecture

1. Pixel Classification to obtain prediction maps for
two classes: cells and background;

2. Object Classification to gather maps for tracking
for two classes: interphasic and mitotic;

3. Tracking to output tracking masks and CSV track-
ing file.

The final tracking for the manually annotated images
was fairly good, we see in the following picture where
each color represents an assigned cell identity.

Figure 4: Example of generalisation for field E

Unfortunately, Ilastik was not able to generalise well
and thus the result by batch processing to obtain new
masks based on the training was unsatisfactory as we
see in Figure 5 where we show the raw image and the
automatic output with prediction map in the middle and
segmentation map in the right. This is a major issue
because tracking is highly dependent on the proper de-
tection of the objects.

Figure 5: Example of generalisation for field E

Ideally, using ilastik would have been a more stable
and easy to use tool for the biologists in the long run, but

considering all the previous points we had to continue
our search of finding another solution.

A possible approach consisted of using an U-Net
model to obtain the segmentation masks. U-Net has
shown high segmentation performance in medical imag-
ing, so it was a natural choice to use this algorithm. Be-

Figure 6: U-Net predictions for binary classification

cause U-Net did not retrieve satisfying results either, we
continued our literature review and we had the upcom-
ing findings.

Currently two cell tracking challenges with publicly
available datasets exist: Cell Tracking Challenge (CTC)
Ulman et al. (2017) and Cell Tracking and Mitosis
Challenge (CTMC) Anjum and Gurari (2020). The
CTC challenge contains fluroescent microscopy images,
while the CTMC provides bright-field microscopy im-
ages.

Anjum and Gurari (2020) benchmarked two state-of-
the-art cell tracking algorithms that were tested on the
challenge dataset: Viterbi and DeepCell where both take
as input segmentation masks.

Viterbi Magnusson et al. (2015) is considered to be
the best performing algorithm as per the last Cell Track-
ing Challenge and it uses object associations for track-
ing.

DeepCell Moen et al. (2019) uses in essence deep
multiple object tracker and traditional cell event detec-
tor and RetinaMask with pretrained ResNet50 on Ima-
geNet.

Both state-of-the-art algorithms perform well on flu-
orescent and certain bright field images. However, they
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altogether fail to track the U2OS cell line as it has been
shown in Anjum and Gurari (2020).

Following the paper Ulman et al. (2017) many tra-
ditional approaches and some machine learning based
algorithms proved to be efficient for the CTC data. Yet,
we had to take into account that the CTC data contains
mostly fluorescent images and according to the Ulman
et al. (2017) the data that negatively influenced the al-
gorithms and led to worse performance was closer to
brightfield images.

Our dataset containing U2OS cells is similar to the
CTMC challengee U2OS cell lime images. The pre-
viously mentioned challenge together with the CTMC
statements lead us to search for other state-of-the-art al-
gorithms outside the cell paradigm.

If we take into consideration only the microscopy
imaging and cells segmentation, all algorithms men-
tioned up until this point in this section would have sig-
nificant performance on images with a clear distinction
between the nucleus and the background. An impor-
tant limitation to bear in mind is the considerable drop
in performance when given data where the background
and foreground are very similar in terms of color, illu-
mination, contrast and texture.

The YOLO family of object detection has been
the state-of-the-art for multiple of their models in the
COCO dataset Lin et al. (2014). Specifically, YOLOX
Ge et al. (2021) achieved state-of-the-art performance
on the COCO dataset in 2021.

DeepSORT is a high performance tracking algorithm
that has a strong mathematical foundation. It was not
specifically designed for microscopic cells tracking, but
it presented very good results on pedestrian tracking.
Wojke et al. (2017)

Considering the literature review, we implement
some of the previously mentioned algorithms and we
discuss their performance in the upcoming chapters.

3. Material and methods

3.1. Dataset

Our dataset consists of raw Differential Interference
Contrast (DIC) images of human osteosarcoma U2OS
cell lines seeded in 2-4 micro-slides (Ibitreat) were ob-
served with an inverted microscope (Eclipse Ti, Nikon)
using a 40× (Plan Fluor, N.A. 0.60, DIC) or a 60× Oil
(Plan Apo, N.A. 1.4, DIC) objective (Nikon). During
the whole registration, cells were kept in a microscope
incubator (Basic WJ, Okolab) at 37 ◦C in 5% CO2.
DIC images were acquired every 5 or 7 min using a
DS-Qi1Mc camera (Nikon) or a Clara camera (ANDOR
technology). Asynchronous cultures were treated with
Aurora kinase inhibitor (MLN8237) to induce mitotic
defects and cell death.

Our initial data consisted of TIFF videos that repre-
sent cells placed in 5 different fields: A, B, C, D, E and

Field Frames Interphasic Mitotic
A 69 904 98
B 69 997 43
C 69 858 111
D 68 406 198
E 66 506 176
T 67 941 85

Total 408 4612 711

Table 1: Dataset summary

T. The videos add up to 408 frames of size 400 × 320
with 5323 cumulated objects.

We describe the distribution of images and objects in
Table 1 and we can conclude that a high class imbalance
is present among the presence of interphasic and mitotic
cells.

Figure 7 shows a sample from each of the six fields
starting from the red-colored frame with field A and go-
ing clockwise to the violet-colored field T. Here, we can
observe that the illumination and contrast strongly vary
in the different fields.

Figure 7: Images of fields A (red), B (orange), C (yellow), D (green),
E (blue) and T (violet)

For this project, we were interested in two types of
cells: interphasic and mitotic. These are exemplified in
Figure 8, where the blue and yellow rectangles indicate
an interphasic and a mitotic cell, respectively.

As previously mentioned, the desired output is to de-
tect the duration of mitosis and then the resulting daugh-
ter cells. Because of this it was not of high importance
the perfect recognition of the cytoplasm. Instead, by
convention we could rather take into account the nu-
cleus of the cell as reference.

3.1.1. Annotations
To annotate the data for further use in the soon ex-

plained methods in Section 3.3 we have used two types
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Figure 8: Example of the types of cells in field C

of annotation:

1. Segmentation masks
2. Bounding boxes

The segmentation masks provide pixel-wise labeling of
the mitotic and interphasic cells for each image. They
were hand drawn and refined using the ilastik tool Berg
et al. (2019), as detailed in the Appendix.

The bounding boxes provide object-wise labeling of
the mitotic and interphasic cells and were drawn and
labeled for each image using the Make Sense online tool
Skalski (2019). Using this tool, we have drawn all the
cells present in each frame and labeled them as either
interphasic or mitotic. After this step, we have exported
the annotations in YOLO format as text files and as xml
files.

Figure 9: Bounding box annotation of a B field image

In Figure 9, we present an example of bounding
box annotation of a frame from the B field sequence.
Here we can observe the interphasic cells delimited
with yellow bounding boxes and the mitotic cells with
red bounding boxes. By convention, we label the two
daughter cells resulting right after division as mitotic
cells as their visual characteristics are very similar to the
standard mitotic cell. This does not hamper the quality
of the annotation since, after a few frames, they change
morphology, and we label them as interphasic cells.

Concerning the creation of ground truths for the
tracking, we have taken the annotations obtained from
Make Sense Skalski (2019) in the Pascal VOC format
and converted them into a CSV file. Afterwards, with a
simple script, we have visualised one bounding box at
a time for each frame of the test set and manually filled
in the tracking id for each cell object. The result of the

tracking annotation of ground truth has the following
format:
< f rame >< trackId >< class >< xmin ><

ymin >< xmax >< ymax >

3.1.2. Data Augmentation
We have included data augmentation for three cases:

U-Net, YOLOv4, YOLOX. For the U-Net we aug-
mented the data by applying transformations such as
random rotation, horizontal and vertical flip, transpose,
grid distortion, color space transformations like random
contrast, random brightness, random gamma, random
crop, sharpen, blur, clahe.

For YOLOv4 data augmentation is present as an im-
portant step in the methods of the architecture. They
have used both photometric distortion (e.g., brightness,
contrast, saturation or noise adjustment) and geomet-
ric distortion (e.g., scaling, cropping, flipping and ro-
tating). Furthermore, special methods are used for in-
stance DropBlock applied in the context of feature map
for regularization Ghiasi et al. (2018). They also in-
troduce two new data augmentation methods: Mosaic
and SAT. Unlike CutMix which cuts patches of the im-
age and mixes only two input images by pasting them
among training images while also proportionally mixes
the ground truth labels Yun et al. (2019), Mosaic mixes
four training images. Self-Adversarial Training (SAT)
encapsulates two forward backward stages, where the
first one is an image altering neural network and the sec-
ond is that the network is trained to detect normally the
previously modified image.

YOLOX uses mainly MixUp Zhang et al. (2018)
and Mosaic, but when comparing the performance of
this model with other different previous models, they
slightly change a few parameters or even remove com-
pletely MixUp.

3.2. Metrics

We differentiate between two categories of metrics:
object detection and tracking metrics and in the upcom-
ing paragraphs of this section we explain these metrics.
For the first category we are using precision, recall, F1
score and mAP. In order to evaluate the performance of
the tracking approach, we use IDF1, MOTA and MOTP.

Precision is the metric which ”tells” how many cor-
rect predictions a model produced with respect to the to-
tal number of predictions. Below we show the explicit
formula where TP represent the correct predictions also
known as true positives and the FP which is the abbre-
viation for false positives. In our case a false positive
means that a cell is detected when that cell is not in fact
present. A perfect precision would have value 1 mean-
ing that there would be no false detections.

Precision =
T P

T P + FP
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Recall also known under the name of sensitivity is
computed as the ratio between the correct predictions
with respect to the total number of cases in which it oc-
curs. In this case the false negatives are denoted as FN
and for instance it means when a cell is present in the
frame, but it does not get detected. The recall is perfect
is when no false negatives are present so the ratio is 1.

Recall =
T P

T P + FN

F1 score The F1 score is computed as the harmonic
mean of the precision and recall, where an F1 score is
perfect when both the precision and the recall are per-
fect which means that the value of the metric is 1.

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

Before we define the mean Average Precision (mAP),
we must explain how we regard to the intersection over
union. The intersection over union (IoU) measures the
intersection of the detections of the algorithm compared
to the groundtruth and the perfect value is 1. In our case
we consider a correct prediction if at least 50% of the
detection overlaps with the groundtruth.

IoU =
area o f overlap
area o f union

The Average Precision (AP) can be seen as the Area
Under Precision-Recall Curve (AUPRC) and is com-
puted using the following formula:

AP =
∫ 1

0
p(r) dr

mAP is defined as the mean value of the computed
Average Precision for each class present in the dataset.
Because the AP can achieve the ideal value of 1 since
the precision and recall can also achieve at most 1 and
the AP is a function of the previously mentioned, the
mAP has also the most desirable value of 1.

mAP =
1
N

N∑

i=1

APi

IDF1 represents the ratio of the detections that were
properly identified over the average number of ground-
truth and computed detections. Similarly to the F1
score, the IDF1 score combines the identification preci-
sion and recall through their harmonic mean and in the
original formula they show the explicit version. Ristani
et al. (2016)

IDF1 =
2 ∗ IDT P

2 ∗ IDT P + IDFP + IDFN

MOTA which stands for Multiple Object Tracking
Accuracy is a widely used metric in object tracking that
penalizes detection errors given by false negatives (FN),

false positives (FP) and fragmentations (Φ) normalized
by the total number of true detections (T). Ristani et al.
(2016) Milan et al. (2016) In a similar concept to pre-
viously described metrics, FN represents the sum of all
false positives across the frames, namely all the times
when the tracker detected a cell, but in fact there was
no cell. Fragmentations refer to the switches of iden-
tity in a frame when the ground-truth does not present
such change. The highest value MOTA can achieve is 1
and that is in the ideal case when there are no detection
errors and the fragmentations are absent.

MOT A = 1 − FN + FP + Φ
T

MOTP Milan et al. (2016) which is the abbreviation
of Multiple Object Tracking Precision is the average
overlap between all correctly assigned detections (true
positives) and their ground-truths. In the formula, ct

means the number of matches in the given frame t, while
dt,i is the overlap of the detection with its ground-truth.

MOT P =
∑

t,i dt,i∑
t ct

3.3. Methods
3.3.1. Preprocessing

Due to the low contrast and difference in illumination
in the raw images as seen in Fig. 7, the interphasic cells
are very hard to detect. Therefore, we have used as a
preprocessing step the CLAHE algorithm Yadav et al.
(2014) for image enhancement.

(a) (b) (c)

Figure 10: Pre-processing of a B field image: (a) raw image, (b) re-
sult after the first CLAHE step, and (c) final result after the second
CLAHE step

Figure 10 illustrates the pre-processing steps applied,
from the raw B field image (a) to the first CLAHE step
(b), ending with the second CLAHE step (c).

The comparison in Figure 11 shows that the three
histograms, each corresponding to its left picture, sig-
nificantly differ. The second histogram, corresponding
to the image resulting from of a traditional histogram
equalization performed by ImageJ, is better than the ini-
tial one in terms of contrast. However, it contains many
values close to zero, corresponding to darkened areas of
the image, effect not desirable for our application. We
have chosen CLAHE as a contrast enhancement method
because the traditional histogram equalization provided
by ImageJ for example would extend the number of
black pixels and thus confuse the upcoming algorithms.

3.6



Cell Segmentation and Tracking in Label-free Contrast Images:
a Deep Learning Approach 7

Figure 11: Image histograms for a B field image in its raw ver-
sion (first row), histogram-equalised version (second raw), and pre-
processed version using two CLAHE steps (third raw)

The third histogram, corresponding to the final pre-
processed image, shows that we successfully enhanced
the image contrast. We can also evaluate visually that
the interphasic cells are more visible than in the original
image.

3.3.2. YOLOv4
Introduced in Bochkovskiy et al. (2020), YOLOv4 is

an object detection algorithm that achieved state-of-the-
art performance on the MS COCO dataset. It utilizes
as a base the DarkNet neural network framework which
was written in C and CUDA.

In Fig. 12, we can see the main architecture of this
algorithm of a general deep learning approach for object
detection. Succeeding to the figure we explain the main
features underlying architecture of YOLOv4.

Figure 12: Object detector architecture

The input represents the raw images for the network.
We have fed the network resized images as (384, 320)
pixels which were also preprocessed using CLAHE.

For the backbone YOLOv4 applies Darknet53, which
is a 53-layer convolutional neural network with the pur-
pose of obtaining feature map.

The neck is used to enhance feature discriminabil-
ity and robustness. For the YOLOv4 instead of FPN
(Feature Pyramid Network) they use PANet (Path Ag-
gregation Network) as a method of parameter aggrega-

tion from different backbone levels for different detector
levels.

The head just as the neck is a subset of the backbone
and it handles the predictions. Typically, the head can
be divided into two types:

• one-stage detector: YOLO, SSD, RetinaNet

• two-stage detector: Faster R-CNN, Mask R-CNN

In the YOLOv4 architecture they have utilized
YOLOv3 as the head.

In the backbone data augmentation was also em-
ployed. cutmix and mosaic, dropblock regularization
and class label smoothing

They are also using a novel self-regularized non-
monotonic activation function called MISH Misra
(2019) that achieves great results in terms of perfor-
mance and stability and which can be defined as:

f (x) = x ∗ tanh(so f tplus(x))

When running the YOLOv4 code, we had to adjust
some parameters to our custom dataset. The main mod-
ifications that we made in the configuration file are:

• Changed the batch from 1 to 64

• Updated the subdivisions from 1 to 16

• The width and height must be multiples of 32,
therefore we set them to 384 and 320 respectively

• Set the number of classes to 2

• The value for maximum batches should be mini-
mum 6000. In case of more than 3 classes, the
value becomes the number of classes multiplied by
2000. Since we have two classes, our maximum
batches is 6000 instead of 500500.

• The steps became a tuple of (80%, 90%) of the
maximum number of batches. In our case, the steps
became 4800, 5400

• Before each YOLO layer, we change the number of
filters from 255 to the number of classes plus 5 all
multiplied by 3. Hence, in our project the number
of filters is 21.

Max batches leads to the total number of iterations
for model training. Steps represents the number of it-
erations for which the learning rate will be multiplied
by scale factor. Batch determines the number of im-
ages that are to be processed during one iteration while
subdivisions mean the number of mini-batches in one
batch, namely the number of batches that the GPU will
process in one cycle.
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3.3.3. YOLOX
YOLOX authored by Ge et al. (2021) is a 2021 object

detector that achieved state of the art on the MS-COCO
dataset providing improvements over its YOLO prede-
cessors and provide a better trade-off between speed and
accuracy.

YOLOX is using a YOLOv3 Darkent53 baseline and
a and a Spatial Pyramid Pooling(SPP) layer.

Figure 13: Comparison between the YOLOv3 head and decoupled
head

In Figure 13 the YOLOX authors show the YOLOv3
architecture of the head and the new architecture that
they proposed with a decoupled head. This is a major
unique difference between the latest algorithm and its
ancestors.

In order to increase the convergence speed they use a
decoupled head that for each level of the Feature Pyra-
mid Network the feature channel is subsequently re-
duced to a 1 x 1 Convolutional Layer followed by two
parallel branches with 3 x 3 Convolutional layers for
classification and regression tasks in the aim to reduce
the conflict between the later two.

The improvements on the MS-COCO dataset Lin
et al. (2014) compared to other models were the driv-
ing reason for us to utilize this method for our dataset.
The results will be later discussed in the results section.

3.3.4. DeepSort
Tracking in the given dataset context is a challeng-

ing task even considering a perfect detection of the cell
objects because unlike pedestrian tracking for example,
our cells divide. Therefore, from supposedly one initial
object will result two separate neighboring objects with
different ids.

Considering that the state-of-the-art described in sec-
tion 2 could not produce satisfying results, we have
decided to look for an option outside the cell tracking
paradigm and adapt it for our requirements.

DeepSORT Wojke et al. (2017) is highly performant
multiple object tracking algorithm which had good re-
sults on the MOT challenge. An important asset of this
algorithm is that it presented good results even for oc-
cluded objects. That is another reason why we have cho-
sen to use this in the context of overlapping bounding

boxes of our cells when the wells become more popu-
lated.

SORT stands for Simple Online Real-time Tracking
and altough real-time tracking is not a necessary condi-
tion for our project, it could deem itself useful for future
experiments for the biologists.

DeepSORT is based on five essential steps1, also
summarized in Figure 14:

1. detection of the objects;
2. update of the existing track positions via the

Kalman filter;
3. grouping of the tracks by age and running the Hun-

garian algorithm on each cluster by the newest to
oldest track;

4. processing the left unmatched and unconfirmed
tracks of youngest age by the SORT;

5. setting the unmatched detections as new tracks.

Figure 14: DeepSORT architecture

In our case, as we have previously explanied, we used
the YOLO family of detectors. The detections alone are
not enough to produce tracking, hence when a detection
is multiplied from one frame to the next one, they use
a linear constant velocity model. In the case that a de-
tection is associated to a target, the detected bounding
box is used to update the target state where the Kalman
filter optimally solves the velocity components. In the
situation where no detection is associated, the state is
predicted only with the linear velocity model excluding
the correction of the Kalman filter. In essence, it could
be said that the Kalman filter is also providing the miss-
ing tracks.

It is also important to perform target association. To
be able to assign detections to existing targets, each ob-
ject’s bounding box geometry is estimated by predict-
ing its new location in its latest frame. The assignment
is solved optimally by the Hungarian Algorithm, which
has shown the particularity of showing very good per-
formance when an object occludes another one. Fur-
thermore, in our case when cells enter or leave the well,
after a certain number of frames unique identities need
to be created or destroyed from the current track. The al-
gorithm computes the assignment cost metric as the in-
tersection over union (IoU) between each detection and
all predicted bounding boxes of the existing objects.

1https://papers.readthedocs.io/en/latest/

tracking/deepsort/
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In the paper Wojke et al. (2017) they display sev-
eral formulas, out of which the following two describe
the usage of the Kalman filter and the Mahalanobis dis-
tance.

Their square the Mahalanobis distance between the
predicted Kalman states and the newly arrived measure-
ments to incorportate the motion information to trans-
form the goal into a problem solvable by the Hungarian
algorithm.

d(1)(i, j) = (d j − yi)T S −1
i (d j − yi) (1)

In the above formula the (yi, S i) is the projection of
the i-th track distribution into measurement space and
d j is the j-th bounding box detection.

The next formula considers the appearance space and
evaluates the smallest cosine distance between the i-th
track and the j-th detection. That is also important for
us, because the cells have slightly different moving pat-
terns throughout their lifespan in the well.

In addition, this step is useful is our context as well
because the Kalman filtering estimation of the location
is not precise enough since the images of the cells are
taken 5 minutes apart, therefore in some cases certain
cells will have a rather rapid displacement and the oc-
clusions might happen at a fast rate.

d(2)(i, j) = min{1 − rT
j r(i)

k |r(i)
k ∈ R} (2)

In the previous formula, r j denotes the appearance
descriptor computed for each d j and k represents the
track.

They combine the Mahalanobis distance useful for
short-term predictions of object locations with motion
and the cosine distance great for recovering identities
after occlusion with less motion into one weighted sum
as it follows:

c + i, j = λd(1)(i, j) + (1 − λ)d(2)(i, j) (3)

To create trackers, any detection with an overlap less
than the minimun IoU is considered to signal an un-
tracked object. That is, if a bounding box B was de-
tected, but it did not overlap enough with a present
bounding box A, then the bounding box B encapsu-
lates a new object. Initially, the velocity is set to 0.
The tracker is subjected to a test period under which
the target needs to be associated ith detections and thus
the tracking of false positives is reduced. Tracks are
stopped if they are not detected for a certain number of
tlost frames. In the case the object appears again in frame
after that threshold, that object will be assigned a new
identity.

To obtain the appearance feature vector a classifier is
trained until a fairly good accuracy is obtained. After-
wards, the final classification layer from the network is
excluded and the remaining dense layer produces a sin-
gle feature vector to be classified. Then, nearest neigh-

bour queries are used in the visual appearance to es-
tablish the previously mentioned measurement associa-
tions.

In the end, we visualize the video output of the
tracked sequences and we export the results in a csv file
containing the following format:

< im >< tid >< cls >< xm >< ym >< xM >< yM >

This format represents in order the frame, track iden-
tity of the object, class of the object and the bounding
box coordinates in the xmin, ymin, xmax, ymax format.

3.3.5. Lineage
We take the obtained CSV from DeepSORT and im-

plement a post-processing step to be able to build the
lineage. The procedure we propose is illustrated in Al-
gorithm 1. If we find a cell that is mitotic and in the next
frame the same cell becomes interphasic, it could mean
that either a cell division occurred and the second is a
daughter cell or initially a misclassification happened.
We then check if the next cell with a new cell id is in the
vicinity of the previously mentioned interphasic cell. In
this case, the two interphasic cells are daughters of the
mitotic cell in the precedent frame.

Furthermore, we output the total number of cells that
were present in the observation lifecycle based on the
total number of unique cell identities that were tracked.

4. Results

4.1. Detection
We have trained the models on 4 videos, namely

fields A, C, D and E and tested on 2 videos. One of
the test videos is similar to the training ones, while the
other one is rather different from the training set. Below
we show the comparison of the images.

In table 2 we show the results of the YOLOv4 results
in comparison to YOLOX for both video B and T. We
can deduce from the table that YOLOv4 achieves an av-
erage mAP of 76.02% slighly outperforming with 0.5%
the 70.98% mAP of YOLOX.

Figure 15: Comparison of predictions on a test image obtained using
YOLOv4 (left) and YOLOX (right).

We see in Fig. 15 a comparison between the predic-
tions resulting from the YOLOv4 algorithm in the left
image and the YOLOX algorithm in the right.

3.9



Cell Segmentation and Tracking in Label-free Contrast Images:
a Deep Learning Approach 10

for f ← 1 to max f rame do
if cell.class[ f − 1] is mitotic then

if cell.class[ f ] is interphasic then
if cellnewId.class[ f ] is interphasic & cellNewId.bbox[ f ] is inVicinityO f (cell.bbox[ f ]) then

cell.parent[ f ]← cell.id[ f − 1] cellNewId.parent[ f ]← cell.id[ f − 1]
end

end
end

end
Algorithm 1: Origin determination algorithm

Figure 16: Comparison of test images from field B in raw format, annotations, predictions using YOLOv4 and YOLOX.

In Figure 16 we illustrate a comparison of test video
B between the raw frames B02, B14 and B68, the corre-

sponding annotations overlayed with the preprocessed
image, the predictions of YOLOv4 on the third row and
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Model Batch Video F1 mAP
YOLOv4 16 B 0.79 0.8233

T 0.78 0.6972
YOLOX 16 B 0.8 0.8779

T 0.7 0.5418

Table 2: Comparison between different models on the test dataset

lastly the predictions of YOLOX on the bottom row.

4.2. Tracking

Video R IDF1 MOTA MOTP

B 0.79 0.86 0.80 0.82 0.1
T 0.76 0.74 0.74 0.7 0.27

Table 3: Tracking results on test set

Table 3 shows the tracking results for half of each
video from the test set according to the metrics a priori
mentioned where P represents the precision and R the
recall.

To sample visually the results of the tracking algo-
rithm we show in the upcoming figure 5 consecutive
frames from each video.

5. Discussion

Our journey in this project has in its core the hon-
est desire to help biologists in their research to discover
and develop better and new cures for highly impacting
human diseases.

We have first sought information about the meth-
ods that were already implemented and we focused on
the literature that was specific for transmitted light mi-
croscopy. Among them we have noticed that this field
is indeed challenging and we can objectively state that
DIC images are some of the most difficult ones and in
great need of further research.

As at the beginning of the project we have worked
on raw data and thought about the use of our results
after the completion of the research period, we used
the Ilastik tool that uses Machine Learning and was de-
signed to achieve state of the art performance for cells.

Our approaches to use the Ilastik tool were explained
in Chapter 2 as well as our final approach for this pro-
gram. However, after after we completed our experi-
ments we came to the conclusion that unfortunately this
tool was not able to generalise for our dataset. Our ini-
tial aim was to provide a pipeline with minimal diffi-
culty to use, but in this case Ilastik was not a solution.

We have then trained a U-Net with the manual seg-
mentation masks for our dataset obtained by using
Ilastik. We approached this method with the goal of
obtaining other good segmentation masks that would be

used as input for the rest of the Ilastik pipeline. Yet,
in spite of its previously known performance, for our
dataset and with our pipeline it could not become a pil-
lar in our solution.

Another possible trial was based on binarization by
adaptive thresholding, gradient vector field followed by
Gaussian filtering for nuclei detection to provide seed
points for watershed which would serve for segmenta-
tion henceforth used for tracking as described in Li et al.
(2010). In our case due to the faint contrast between the
nuclei of the cell and background as well as the char-
acteristic that the instensities of the content of the cells
coincides with the background, this application was not
suitable for our dataset.

In general, the mentioned algorithms and others that
we encountered in the literature review performed fairly
well on Phase Contrast cell images because of the halo
effect around the cells which lead to better chances to
drastically enhance the difference between background
and cells, therefore leading to better segmentation.

Due to the size of the available dataset, the previously
presented reasons and the tedious and time-consuming
annotations to obtain segmentation masks, we have cho-
sen to shift our approach to object detection followed by
tracking.

We have chosen to test the performance of YOLO on
our dataset because of its previous state of the art per-
formance and fast inference time. We chose two mod-
els very different in implementation yet both highly per-
formant: YOLOv4 and YOLOX and trained on four of
our videos (A, C, D, E) and tested on the two remain-
ing videos (B, T). Sample B is similar to the training
data and the performance is naturally higher regardless
of the model. On the other hand, the frames that con-
struct video T consist rather different cells in regards to
shape so the performance is lower in both models.

YOLOv4 is the older model out of the two and uses
the Darknet framework. In order to run the experi-
ment, we made use of the annotations that we created
in YOLO format which consists of the following fields
in this order: frame, class, x, y, width, height, where the
later 4 are bounding box coordinates.

YOLOX is a 2021 method that brings several changes
that we describe in section 3.3.3. To be able to perform
out trials with this algorithm, we converted the YOLO
annotations into COCO JSON format.

The results are rather close to one another. Yet,
analysing the detections in particular for both classes,
we decided to keep the YOLOv4 model for the upcom-
ing step as it had the individual class AP closer in value
compared to YOLOX. This was an important decision
because the tracker needs good detections to keep the
cell identities as consistent as possible.

For obtaining the detection results, we have set a con-
fidence threshold of 25%. The reason behind this choice
is that we have noticed that many cells are properly clas-
sified even though the threshold is low. Moreover, we
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Figure 17: Comparison of tracking results for test fields B and T for five frames in a sequence

have observed that in general in the worst case a cell is
either detected with the wrong class or is not detected at
all.

In Figure 16 we show an example of the detections
and we also comment on the metric in this case. Firstly,
we notice a great difference in the contrast of the im-
age and the improvement in terms of ease to detect cells
even for the human eye. Secondly, we notice that in
these frames as well as the overall experiment YOLOv4
is able to detect slightly better the cells. For example,
in image B68 YOLOv4 detected the right lower corner
cell whereas YOLOX did not.

When we were assessing the requirements of the
project we have established that in general biologists do
not annotate the marginal cells but it would have a neu-
tral effect is those were to be detected. Consequently
at the stage of creating annotations, we did not include
marginal cells that were mostly not present in the frame
our threshold being 50% presence. However as a result
of the present marginal cells that matched the threshold
and the similarity between cells, the algorithm learned
to detect marginal cells as well.

The metric shows relatively good results, but in re-
ality the output is better than the metric. The reason
behind this statement is that the detected marginal cells
are considered false positives, but in truth they present a
good detection.

Moreover, to strengthen our previous comment about
the confidence threshold we can observe for example in
image B14, the cell located at the lower right border has
a confidence of only 31%, yet it is well classified. Tak-
ing as example frame B02, we notice that the middle
low cell has a confidence threshold of 25% and is clas-
sified as interphasic. In truth it is a mitotic cell, but from
the image information alone and based on the training
set it could arguably be classified as interphasic.

In order to track the cells we chose DeepSORT as
an algorithm as we previously described in this paper.
Not only does this method have a strong mathematical
foundation, but it also has shown good results in combi-
nation with YOLO detectors.

In our results we can observe that the tracking is
highly dependent on detection in the sense that a better
detection leads to a better tracking result as well. There-
fore, it was expected that the tracking accuracy for video
B is higher than for video T.

DeepSORT has several particularities that we believe
are worth mentioning. When the algorithm gets ini-
tialised, the first two frames of every video are lost. The
reason for this lies in the fact that it utilizes those frames
to use the YOLO weights to find the detections and then
is able to locate them and then assign tracking identi-
ties to the cells. One major drawback is that some new
identities have a too large magnitude between their id
and the elder cells ids. Namely, somtimes a new cell
can obtain for instance id 20 even though in the frame
the highest id would be 15.

The tracking results are rather satisfactory, but it is
important to take into account that the accuracy is prone
to drop over time when the well becomes populated with
more cells after several mitotic events took place.

6. Conclusions

In the present paper we have described our path to
achieve our initial goal: provide a solution for cell de-
tection and tracking.

The deep learning solution that we have initially pro-
posed proved to be satisfactory and this approach can be
generalised for similar cells. In a future case for other
cell lines if the differences between cells are striking,
new training can be issued as the annotation step with
bounding boxes is highly sped up in comparison to tra-
ditional segmentation masks.

Another notable benefit consists in the comparison
of our results with the DeepCell or Viterbi algorithms
which could not track at all the images of the U2OS cell
line.

6.1. Future Work

Research never stops, but rather it goes to the next
step. That is why, in what regards future work we can
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now output a few plans and suggestions based on our
experience with this project.

Firstly, an immediate improvement could be achieved
by correcting the assignment of new identities in the
DeepSORT pipeline and increasing the efficiency of the
lineage algorithm.

Secondly, more data should be annotated to obtain
segmentation masks. Then a Mask R-CNN model could
be trained and objectively evaluated based on the seg-
mentation obtained of the cells present in bounding
boxes.

Thirdly, other trackers could be assimilated into the
pipeline and have the performance analysed such as:
StrongSORT Du et al. (2022) which is the newest ver-
sion of DeepSORT, CenterTrack Yang et al. (2021)
or other centroid based tracker, Re3 which incorpo-
rates temporal information into the model Gordon et al.
(2017) or an LSTM based tracker which would take into
account memory of previous frames.

Fourthly, a tracking neural network plugin for Ilastik
could be created. Another option to extend the usability
of the project would be to build a standalone desktop
application where new models could be trained and used
to track the cells and build the cells’ lineage.
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Ulman, V., Maška, M., Magnusson, K.E.G., Ronneberger, O.,
Haubold, C., Harder, N., Matula, P., Matula, P., Svoboda, D.,
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7. Appendix

While trying to optimize our results with Ilastik we
have performed several trials to find the approach that
would bring the most value to our research and raw
dataset.

Figure 18: Ilastik Startup Screen

We have thereof began to use the Ilastik pipeline with

the Pixel Classification to generate segmentation masks
and pixel prediction maps.

At first we have tried the standard trial where the
background was drawn simply as as a few lines and
the cells followed a very rough shape. Because of this,
the algorithm was learning the wrong features and it
could not properly produce further usable masks. Suc-
cessively we tried the following approach:

Figure 19: Ilastik second approach on Pixel Classification

Under this approach, we tried to encapsulate each cell
in a rather rough background shape and draw the cell
paying more attention to the countour of the nucleus. In
this case we have use two classes: background drawn in
blue and cells drawn in red.

Figure 20: Ilastik third approach on Pixel Classification

The third hypothesis was to use 3 class segmentation
from the beginning of the pipeline. Namely, 3 classes
for pixel classification: background drawn in blue, inter-
phasic cells colored in yellow and mitotic cells painted
in red.

In the previous figure we can see the raw image in
the upper left corner, the manual drawing of the desired
delimitation of classes in the upper right corner, the re-
sulting segmentation in the lower right corner and the
resulting probability map in the lower left corner.

Although at first glance the segmentation map is bet-
ter, due to the different versions in the ilastik work-
flow, specifically differences in the processing options
between using segmentation or probability map as in-
put, we have chosen to continue with the probability
map as input.

For this approach we have reduced the distance be-
tween the background delimitation and the cell by draw-
ing the cells closely encapsulated in the background. In
the second image we can observe the yellow cells and
the blue background pixel assignment. The result is still
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Figure 21: Ilastik fourth approach on Pixel Classification

showing misclassified pixels, but in this case the predic-
tion is much better. A comment worth mentioning for
further research is that we made use of the live predic-
tion provided by Ilastik and we could correct the proper
assignment of pixels on the go by first visualising the
uncertainty map.

The outlier are not a major inconvenience at this step
because they are sparse in comparison to the previous
approaches and the probability map can be correct in
the next step: object classification.

Figure 22: Object Classification in ilastik

In Fig. 22, we can see the raw image in the upper left
corner, the threshold and size filter output in the upper
right corner, the manual classification step in the lower
left corner and the final object prediction in the lower
right corner.

The threshold and size filter is a crucial step in the
workflow as it helps clear the pixel prediction map pre-
viously obtained by the pixel classification. We can no-
tice that now the cells are clearly differentiated from the
background. Yet, one major downside is that the choice
of the values of the threshold is global and there will
be a trade-off between a clear image and keeping all the
cells present.

After setting the threshold for segmenting the objects,
we classified them into mitotic and interphasic. In this
case, the mitotic cells are colored in blue and the in-
terphasic ones are colored in yellow. After training the
model for several frames, we have left two objects un-
classified manually as we can see in the lower left im-
age. However, we can see in the lower right image that
the classification has been done correctly and the upper
two cells are classified as mitotic and the rest as inter-
phasic.

In order to use the tracking workflow, we use the

masks obtained from the object classification step. The
previous step served as a thresholding and object map
creation step.

Figure 23: Tracking with ilastik preprocessing

In Fig. 23, we can see in the left-most image the
thresholding and size step. Because we have very care-
fully drawn the cells and masks before in the steps prior
to tracking, this step was not entirely needed, but it
serves as a double check of the cleaning of the map. We
have chosen the hysteresis method for thereshold and
specified not to merge objects. This way certain very
close separate cells could be differentiated.

The middle image shows the division detection step
where we label each cell as either not dividing in yellow
or dividing in blue. In the workflow this is labeled as an
optional step, but we have deemed this step as manda-
tory for our data.

The rightmost image show the object count classifi-
cation step where we can input and afterwards correct
the prediction of a single object depicted in blue or two
objects painted in red.

Figure 24: Thresholding step in tracking

We must mention before moving forward the impact
of the thresholding step. In this case the threshold was
slightly different and the separation step had a different
outcome. Therefore, the cell that was supposes to be
identified as a whole, became halved. Such undesirable
outcome shows in the tracking map as well.

Figure 25: Tracking with ilastik frames 9, 10, 24

In Fig. 25, we present visually the tracking output of
ilastik. Each color represents a tracking id assigned to
that specific cell.

A positive aspect is that the lower green cell changed
shape and entered mitosis and was able to maintain the
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same id throughout the frames. In addition, the brown
and the light blue cells remained constant in annotation.
The red mitotic cell underwent division and even though
in the subsequent frame the daughter cells received an-
other id, in later frames this was corrected.

On the negative side, the upper dark blue cell lost its
identity throughout the frame. The bright green mitotic
cell from frame 9 divided and by the 24th frame the
daughter cells had been assigned a completely different
id. The lower yellow cell inherited the id of the pink cell
even though no division happened to the yellow cell nor
the displacement was very large. A new cell has entered
the frame and was assigned a new id in frame 10, but by
frame 24 it was detected as a daughter of the pink cell.
Moreover, after the pink cell present in frames 9 and 10,
throughout the frames

Recently, a new version has been released that con-
tains a plugin which allows the usage of a pretrained
network in the BioImage Model zoo2 format in order to
perform pixel classification.

Unfortunately a common trait between the ap-
proaches was that altough with enough training it per-
forms relatively well on the trained images, for our
dataset this tool is not able to properly generalise.

Subsequently, we tried to find another solution and
we tried to obtain segmentation masks using a U-Net
pretrained on masks obtained from Ilastik.

In addition to our mentions in Section 2, we would
like to add here that although the U-Net has shown rela-
tively good results for 3 classes (interphasic, mitotic and
background), it could not generalise well for other im-
ages. which in the long run it would prove to be coun-
terproductive as the acquisition of new annotated data
would be very time consuming. In addition to this, it
had worse results for two classes (interphasic and mi-
totic).

Figure 6 contains the U-Net prediction for the image
present in the left in comparison with the groundtruth
present in the middle in the binary class trial. After-
wards, figure 26 illustrates the result of the prediction
for a 3 class case where the interphasic cells are black,
the mitotic one is white and the background is gray.

Figure 26: U-Net prediction with ilastik masks

2https://bioimage.io/#/about
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Abstract

Computed tomography (CT) scans enable the detection of local enlargements in the abdominal aorta (AA), resulting to
straight-forward quantitative and qualitative understandings, typically instated as abdominal aortic aneurysm (AAA).
Although, the segmentation of aorta is disposed to stall in presence of expanded lumen or intraluminal thrombus as
a result of insufficient spiteful examples, raising the susceptibility for uneventful outcomes of an aortic rupture. The
motion of this research proposes to develop and validate a fully automated deep learning algorithm to segment and
measure AAAs on abdominal CT scans. The computer-aided detection (CAD) model is steered by a self-configuring
convolutional neural network (CNN), which plumps for essential decisions in a standardised environment to design
the 3D segmentation pipeline, regardless of the dataset diversity in the domain. It uses an additional 3D instance-based
vertebral segmentation software bundle for independent vertebrae labelling. It coheres with a post-processing routine
to perceive the growth patterns by investigation across the aortic centerline around strong anatomical landmarks. It
benefits from supplementary measurement techniques of the maximal diameter and cross-section area for gaining
extensive insights of the main characteristics of AAA. The system evaluates the relationship between the AA and
vertebra level surface features. Conclusively, it generates a portable document, devised to group the anticipated
aneurysmal information.

The 3D CAD system agrees with expert’s suggestions about the existence of the aneurysm in 398 institutional
images, exhibiting a high capacity to generalize across genders and portions of a full body CT scan using solely
radiologist-supported quantitative speculations from the radiology reports. The end-to-end routine achieves an 95.7
% dice score coefficient (DSC) on the validation subset for patient-specific cases, indicating a modest agreement
with radiologists within an average difference of 0.3 cm in the relative measurement of maximal AAA diameter, thus
justifying the possibility of generalizing to the detection of aneurysms using report-based textual information only.

Keywords: computed tomography, abdominal aorta, abdominal aortic aneurysm, vertebra, deep learning,
convolutional neural network, computer-aided detection, segmentation, detection, centerline, post processing,
portable document, dice score coefficient

1. Introduction

In the western world, abdominal aortic aneurysms
(AAA) are commonly associated with increasing inci-
dences of morbidity and mortality among the elderly
population. In clinical research, the popular discussions
on the therapy (namely, endovascular aneurysm repair,
EVAR) of ruptured AAA (rAAA) takes into account
non-modifiable risk factors such as male gender, ad-
vanced age and inherent genetic features. The incidence
of AAA is much higher in men (7.6%), however women
(1.3%) are susceptible to aggressive aortic enlargement

pattern and behold higher risks of rupture (Li et al.,
2022; Pleumeekers et al., 1995). The perils of dilation in
the largest vessel in human body crossing the threshold
of the normal arterial wall diameter are fatal in cross-
gender studies, leading to an asymptomatic rupture mor-
tality of 85–90% (Kent, 2014). With each decade, the
patient-specific risk of AAA increases significantly for
men over 50 years old and women between 60 and 70
years old (Bengtsson et al., 1992). Although the ther-
apeutic stratification suggests the prevalence of AAA
among men is four times higher than among women,
and among people with family history of the disorder
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Figure 1: The overview of aorta. (left to right) 3D rendering of the surface anatomy corresponding with the aorta, and the appearance of aorta as
the overlays in three respective planar views, axial plane, coronal plane and sagittal plane on CT scan

is four times higher than among those without a fam-
ily history, smoking still forfeits the rest as the strongest
modifiable risk factor (Kent et al., 2010).

The flexible identification of multi-sized aneurysms
is the pinnacle of effective clinical diagnosis and
surveillance for the AAA. While abdominal ultrasound
(US) and computed tomography (CT) angiography
(CTA) are the most commonly used diagnostic imag-
ing tools for AAA detection and helping to foresight
pre-operative and post-operative decision-making and
planning, magnetic resonance imaging (MRI), positron
emission tomography-computed tomography (PET-CT)
and incidental detections are also in practice (Wan-
hainen et al., 2019). Despite the highly sensitive (95%)
and specific (100%) nature of ultrasonography (Fleming
et al., 2005), CT stands out to be the exquisite choice of
the abdominal region for aortic aneurysm detection out-
lining the precise anatomical information, as shown in
Fig. 1 (Hansen, 2016; Landman et al., 2015). Even so,
plethora of studies and standard guidelines still empha-
sise on the ardent need of invariant descriptions of sur-
face context to help the contextual investigation of the
ailments. The importance of abdominal aorta (AA) sur-
face markers for determining the likely beginning of AA
further till the bifurcation of the AA becomes significant
at this point. (Ali Mirjalili et al., 2012). The surveil-
lance of the growth of aneurysm becomes crucial when
exceeding 50% of the average aortic diameter, giving
rise to perceptive monitoring of small AAAs (3.0cm–
5.4cm) and prophylactic actions for patients prone to
rupture (≥ 5.5cm)(Chaiko f et al., 2009).

The advent of principled techniques for AAA identi-
fication has expanded the scope of research in medical
image analysis, providing a sincere insight to benefit the
physicians with comprehensive qualitative and quantita-
tive analysis.

2. State of the art

Convolutional neural network (CNN)-based ap-
proaches have provided encouraging research in the
realm of computer-aided diagnosis or detection (CAD)
throughout the last decade (Gao et al., 2019). Modern
machine learning techniques provide extensive insights
of the expanse and morphology of aneurysms, which

is vital for automated characterization of AAA in CTA
(Raffort et al., 2020).

Throughout the history of screening high-resolution
medical images, pinnacle of traditional image segmen-
tation methods underlined by Raffort et al. (2020) con-
fers the striking achievements of active shape model
segmentation scheme by de Bruijne et al. (2004), tri-
angular mesh-based graph search model by Lee et al.
(2010), level set method by Zohios et al. (2012) and
many more. Caradu et al. (2021) supports the point
by presenting a comparable qualitative assessment of a
fully automated software (PRAEVAorta) for infrarenal
aneurysm detection comparing with physician’s repro-
ductions on 100 scans, but here and now leading pro-
posals using deep learning. Some researchers sum-
mit across open discussions of the influence of reg-
ularization methods like Otsu’s thresholding and K-
means clustering in penalising output probability maps
by CNNs to magnify the segmentation quality (López-
Linares et al., 2018b).

Many studies suggest minor rearrangements in CNNs
to extend its algorithmic utility. Lu et al. (2019) anchors
on 3D-UNet (Çiçek et al., 2016) for 321 scans and ap-
praises the largest axis of detected ellipses (Fitzgibbon
et al., 1996) to counter the overlooked incidental detec-
tion on 57 examinations, achieving 91% sensitivity and
95% specificity. Golla et al. (2021) verifies the deep
convolutional networks (3D ResNet) using layer-wise
relevance propagation on 106 scans to achieve an area
under the curve (AUC) of 0.971. Dziubich et al. (2020)
manifests the calibre of ensemble of end-to-end con-
volutional neural networks (U-Net, ResNet, VBNet) to
outmatch standard methods unaccompanying any post-
processing step, by 3% on Dice metrics. Brutti et al.
(2022) propose a 2.5D-based approach to merge spatial
information in 2D fusion step and minimize the com-
putational requirements compared to 3D networks to
achieve eminent results.

By bringing DetectNet and DCNN to clinical fore-
grounds with comparable findings, López-Linares et al.
(2018a) highlights the importance of non-contrasted
thrombi segmentation. To reach a stirring F1-score of
91.97 % for thrombus detection, sequential detection
and segmentation tracks may be topped up with opti-
mized loss functions to counter problems like class im-
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balance (smooth L1 loss and modified focal loss, re-
spectively) enunciated by Hwang et al. (2022).

Several evolutionary studies have endorsed mixed-
effect models in conventional follow-up data utilizing
multi-modal information (in-silico or omic dataset) for
effective detection of AAAs. Jiang et al. (2020) pro-
poses a two-step training of deep belief networks (DBN)
that encapsulates geometrical features with growth
and remodelling (GR) models based on finite element
method (FEM) and adjusting the pretrained weights
to capture the aneurysmal features in the second step.
Hong and Sheikh (2016) spotlights the intrinsic ability
of DBNs to learn in presence of a smaller training sam-
ple and lower segmentation complexity.

For the screening and monitoring of patients in AAA
risk management, Sokol and Nguyen (2022) stresses
on the use of a multi-parametric scheme that includes
therapeutic risk factors from electronic health record
(EHR), anatomical references from ultrasound (US) and
CT, and genetic details of the variants to jaw the inher-
ent risks.

Habijan et al. (2020) confirm their take on deep su-
pervision in 3D U-Net across the decoder tract together
with deconvolutional layers replacing the upsampling
layers, giving rise to the average DSC of 91.03%.

Mohammadi et al. (2019) canvasses a proposal of
CNNs to detect the appearing ailment and categorized
quantitative estimation of its severity using hough cir-
cles algorithm to estimate aortic measurements. Finding
the maximal diameter using a fully automated pipeline
by establishing the medial axes of lumen, centerline ex-
traction and detection of maximum equivalent diameter
rivets a rather pragmatic approach to assort the aortic
ellipses (Adam et al., 2021; Brutti et al., 2022; Lareyre
et al., 2021).

In matters of acquiring statistical understandings
from available descriptions of the bulge in AA, there
is thin limelight on one of the most important abdom-
inal surface landmarks clearly visible in CT scans, the
vertebral levels of the AA. Ali Mirjalili et al. (2012) ap-
preciates the clinical significance of the levels of verte-
bra for therapeutic distinction of anatomical regions of
interest, despite huge disparities in the combinations of
ethnicity, age, BMI, gender and possible medical con-
ditions for over 108 CT cases. The research study also
shows the statistical association of celiac trunk at T12
vertebral level (>40%), extending AA until the bifurca-
tion commonly at L4 (60%), backing the common med-
ical incidences with standard discussions. To explore
the importance of precise anatomical segmentation and
identification of vertebra to gather understandings about
the peak correlation amidst AA along the different ver-
tebral levels, Lessmann et al. (2019) proposes an iter-
ative instance-based segmentation model with an opti-
mised traversal strategy across the vertebral column to
obtain favourable labels.

Although research results of modern day CNNs tends

to break the grip of hurdles in biomedical image seg-
mentation, most of them fail to generalize on fresh
datasets beyond the presented tests. Finally, Isensee
et al. (2020a) conceive the possibility by proposing a
completely automated, adaptable U-Net based archi-
tecture called nnU-Net that configures pre-processing
requirements and network parameters confidently with
cost-effective design choices. The publicly accessible
tool has demonstrated impressive results on prominent
public datasets in the biomedical area by automatically
managing broad ranges of hyperparameter adjustments
based on intrinsic data information.

2.1. Contributions

The goal of this study is to bring together the most
up-to-date state-of-the-art methodologies for creating
an automated narrative of end-to-end 3D learning for
AAA identification and quantitative studies on CT im-
ages. The following overview summarizes contributions
of our experiments:

• We investigate a customized self-configuring CNN
architecture (nnU-Net) that focuses on retrieving
key structural discriminators in CT images on top
of textural identifiers across distinct 3D patches
of the full volume. Regardless of intravenous
(IV) contrast, manifolds of thoracoabdominal cav-
ity were employed to make the most out of data
diversity-based segmentation. We manually edit
the annotations for each patient assigned to the
training subset to include the missing aortic sec-
tions, if necessary.

• We acquire the aorta segmentations on inference
set and lead the key-points for centerline extrac-
tion, which can be used to determine effects of lo-
cal aortic mesh enlargements. We look at the local
descriptors and see how they help with the post-
processing scheme.

• We utilise a pre-trained instance-wise segmenta-
tion network to extract the vertebral levels for the
CT volumes. The research percepts to make use of
case-specific labels by combining them with forth-
coming quantitative information to help clinicians
draw inferences from a statistical curvature-based
pattern in AA along the vertebral column.

• To introspect the aneurysm, we compute diame-
ters across the centerline with reference to acquired
points in 3D coordinate plane, compute the respec-
tive maximum diameters and cross-sectional areas,
and compare the evaluation to the patient’s radio-
logical diagnosis report with the real world. We
create a non-linear trace of diameters compared
with the relative change of distance vector travers-
ing upwards, starting from one aorta end point to
the other for better discussion in our study. In
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contrast to the centerline-based diameter extraction
from the aortic mesh model, we use binary masks
in the axial plane of CT scans to locate the cir-
cular blobs of interest, offering two-dimensional
macrodescriptors along the slices, and check the
output values to put our method to test.

• We compare our descriptive performance to that of
homogenous research limited to monotonous test
cases using 398 distinct cross-gender evidences
from the university medical facility. We direct our
model to create a portable document, the reference
report for the patients, and we hence test its ability
to detect AAA on CT scans in general.

3. Material and methods

3.1. Dataset

The first share of the dataset includes 50 clinically
collected abdominal CT scans (Fig. 2) from a colorectal
cancer chemotherapy study and a retrospective ventral
hernia investigation at the Vanderbilt University Med-
ical Center (VUMC). The key objective of the open-
source dataset is to furnish pseudo-labels for the internal
dataset. It is supported by precise annotations drawn by
the field experts for thirteen organs and evaluation of the
accuracy of volumetric labels facilitated by the radiolo-
gists (Landman et al., 2015). The raw data is divided
into 30 (60%) training samples and the rest 20 (40%)
for testing. Besides the availed test subjects, the train-
ing set is randomly partitioned into 6 (20%) validation
subjects across the forthcoming five folds of learning.

The cornerstone of this veritable study involves the
internal dataset, comprising of 398 CT scans (Fig. 3)
from the Radboud University Medical Center (RUMC).
It is succeeded by pseudo-labels, obtained during the
inference stage from the VUMC dataset. The authors
eye down the pseudo-labels to observe some future line
of actions, and take necessary modification measures
for 9 (2.3%) distinct patient-cases (discussed in Section
3.1.3). Special attention has been paid to inspect and
consider harmonic subjects of interest for the learning
arrangements of the networks.

3.1.1. CT Scans
A series of 50 CT scans have been taken from VUMC

during the portal venous contrast phase with variable
volumetric dimensions (512 x 512 x 85 – 512 x 512
x 198) and field of views (approximately 280 x 280 x
280 mm3 – 500 x 500 x 650 mm3). The slice thickness
goes from 2.5 mm to 5.0 mm, and the in-plane resolu-
tion extends from 0.54 x 0.54 mm2 to 0.98 x 0.98 mm2

(Landman et al., 2015).
Meanwhile, 398 CT cases have been internally as-

sorted by the Department of Radiology and Nuclear

Medicine at RUMC, by the application of natural lan-
guage processing (NLP) on the radiology reports by
competent authorities (in Dutch) from the cohort of
2000 to 2021. The gathered cross-study cases have a
huge variability in the volumes, dimensions belonging
to either of the two among 512 x 512 or 1024 x 1024
along the dense axial plane (Volumetric Depth {mean
depth : 561, interquartile range (IQR) : 34-2014}) with
voxel depth ranging from 0.25 mm to 5.0 mm, and a
voxel spacing stretching from 0.30 x 0.30 mm2 to 0.97
x 0.97 mm2. The patients are aged men and women (Fe-
male {median age : 68, IQR : 44-89}, Male {median age
: 70, IQR : 43-117}) accompanied by a speculated med-
ical association with abbreviations like ”AAA” (one of
the key factors for casting the obvious) from their re-
spective radiology reports (prevalence : 1.5%). The
experts discover many false positives (FP) as an out-
come of minor typographical mistakes in the radio-
logical scripts. For instance, ”AAAnhoudende exacer-
baties van bronchiectasieen met subfebriele temp geen
verwekker kweek.” translates to ”Sustained exacerba-
tions of bronchiectasis with subfebrile temperature no
causative agent culture.” is one of the many FPs likely
lost in translation. Although the earmarked example is
a simple spelling mistake of AAAnhoudende instead of
Aanhoudende with a literal translation to Continuous,
the reproduces have a good chance to hold clerical er-
rors in the different descriptive sections of the medical
reports, leading to small inconsistencies in the choice of
the target cases. Accordingly, all the chosen volumes
and their textual counterparts have been validated care-
fully by the authors to consider sufficient dilated cases
of aorta.

Prior to training, all the scans undergo spatial resam-
pling to the median target spacing of the dataset. Further
discussions in Section 3.2.1 will unveil the side-by-side
automated techniques. All things considered, the train-
ing volumes are resampled using the third-order spline-
based interpolation and the respective ground truths are
treated with linear interpolation (Isensee et al., 2020a).
Regardless of the deceit, research investigations have
been playing with non-rigid registration across the vol-
umetric cross-sections (Landman et al., 2015). Yet, the
primary objective of the studies envision to capture the
anatomical features.

3.1.2. Clinical Annotations
The VUMC CT scans have been assessed by clini-

cal specialists using the MIPAV utility (McAuliffe et al.,
2001) for validating (and adjusting, if required) the
multi-organ annotations put together by a team of ex-
perienced undergraduate volunteers (Landman et al.,
2015). All the following multi-organ annotations are
conditioned to convert into a foreground class of aorta
and the rest as background. The authors review the bi-
narized masks for the 30 VUMC cases to find out the
potential chances of missing the delineations for the aor-
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Figure 2: The CT scans for a single patient from the VUMC dataset is shown above. The instances contain aorta segmentation with yellow overlays
in three respective planar views, a) axial plane, b) coronal plane and c) sagittal plane.

Figure 3: The CT scans for a single patient from the RUMC dataset is shown above. The instances contain aorta segmentation with yellow overlays
in three respective planar views, a) axial plane, b) coronal plane and c) sagittal plane.

tic arc and/or the ascending thoracic aorta in majority of
the volumes (frequency : 60%), to prepare for the sub-
sequent hurdles and ways to consider the essentials.

In the RUMC CT dataset, the responsible radiolo-
gists have performed the scans with the consideration of
medical guidelines for the need of intravenous agents in
the study in order to pinpoint the origin of unexplained
symptoms. Fig. 2 and Fig. 3 portray the diversifica-
tion across the volumes and the existence of typical or
dilated aorta in both the datasets.

3.1.3. Manual Segmentation
Keeping the absent aortic annotations in mind, the de-

mand for handcrafting the paired pseudo-labels in the
internal dataset is the preliminary step. The inherited
dataset with voxel-level annotations for each VUMC CT
scan is expected to train for generating aortic segmen-
tations using a three-dimensional CNN (elaborated in
Section 3.2.1). The bunch of optimized trained model
weights are handled in the inference scheme of the
detection network for the RUMC dataset to result in
pseudo-labels for the aortic region.

Hereafter, the authors rectify the discussed hurdles
and update the masks using the interactive MITK (Wolf
et al., 2005) tool to include the missing delineations in
different aortic regions (prominently, the intraluminal
thrombus, aortic arc and ascending thoracic aorta) into
the predicted labels, as revealed in Fig. 4. The overlay
masks aligned over the CT volumes are refactored using

the Add and Live Wire functions in the 2D Tools menu
of the Segmentation module. On occasions, the Subtract
and Erase functions have been explored to remove the
avoidable annotations.

3.2. Model Architecture

To reckon the extent of an aneurysm formed in the
AA alongside its respective anatomical surface land-
marks, we employ two parallel 3D CNN bottlenecks
(N1, N2) followed by a post-processing implementation
(PAAA). The sequential model (succeeded by the train-
ing of VUMC dataset using the imminent network for
benefiting the other dataset) is guided by the detection
network - N1, for the purpose of segmenting the lumen
and thrombus, if present in abdomen, backed by dif-
ferent measurement techniques to quantify the detected
aneurysms. Conversely, another pre-trained instance-
based segmentation model - N2 predicts the vertebra
levels from the incoming inference set in isolation. A
part of post-processing routine takes over the calcula-
tion of the center of gravity for vertebral labels along
the spine towards individual planar localization. Multi-
planar CT volumes across various structural regions are
processed using patches of 3D convolutions. The pre-
vailing discussion about a series of study in the RUMC
scans having dimensions of 1024 x 1024 returns with a
solution destined to adapt the higher resolutions to the
observable dimensions. The N1 pipeline anticipates to
adapt these into the automated pipeline by resampling
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Figure 4: Abdominal cross-section along the axial plane on the CT scan. a) Original region of interest - presence of intraluminal thrombus b)
Pseudo-labels shown by red overlay maps c) Updated delineations using the MITK tool shown by yellow overlay maps d) Superimposing b) and c)
to illustrate the qualitative difference

Figure 5: Intensity distributions of CT scans from different anatomical
regional with variable presence of contrast

the aforesaid cases to twice its pixel spacing in order to
scale all the three dimensions with new spacing. Inten-
sity normalization is performed thereafter on resampled
input volumes (512, 512, x, where x is varying depth
of the volume) using global dataset percentile clipping
and z-score with global foreground mean and standard
deviation to handle the huge intensity range, as traced
in Fig. 5. The investigated U-Net-like model N1 adapts
its topology for utilising the encoder-decoder structure
with skip connections, instance normalization, leaky
ReLU and deep supervision (Isensee et al., 2020a). At
the training schedule, N1 uses sum of cross-entropy and
dice loss as its loss function. Ultimately, binary pre-
dictions from N1 and multi-label segmentations from
N2 are individually forwarded to the queue of PAAA.
As a result, end-to-end supervised learning concludes
by drawing statistical inferences about the possible en-
largements supported by report-guided measurements
from the internal dataset. All output parameters are ag-
gregated into a single extensive report for expert’s ref-
erence. The entirety of the end-to-end mechanism is
illustrated in Fig. 6.

3.2.1. Detection Network
The central module of our study is the detection net-

work (N1) or nnU-Net (Isensee et al., 2020a), carefully
ornamented with all the evidences stitched together in

Fig. 7. The dominant purpose of N1 is to generate
highly sensitive voxel-level segmentations of aorta on
CT scans.

An infrarenal AAA, the most common of its kind,
covers an estimate ellipsoidal volume of 140 ± 70 cm3

and is the usual representation of catastrophic enlarge-
ments (mean maximal diameter : 5 ± 1.0 cm) (Rena-
purkar et al., 2012). The automated selection of in-
put patch size for the N1 training schemes of VUMC
dataset is decided at 192x192x48 voxels per volume and
160x128x112 voxels per volume for RUMC dataset.
The overlapping strategy throughout the entire volume
utilizes adjoining information of the local anatomy,
grading larger patch sizes above the batch size (resolved
at two for both N1 training instances). Patches of desig-
nated shapes paired with their labels are extracted from
all across the volume to train N1. The core of this re-
search is followed by the curse of severe class imbal-
ance, hence oversampling is implemented by the robust
pre-processing strategy of nnU-Net. 66.7% of patches
are selected from random locations within each of the
training samples, while 33.3% of patches are guaran-
teed to seize the foreground classes present in selected
training sample. The training of N1 uses the combina-
tion of soft dice and cross-entropy loss :

Ltotal = Ldice +LCE (1)

For deep supervision outputs at all resolutions, a
corresponding downsampled ground truth segmentation
mask is used for loss computation, estimated as sum of
the losses (L) :

L = w1 × L1 + w2 × L2 + ... (2)

where, weights are reduced by half with a decrease
following in each resolution and normalized to the sum
of one : wi+1 =

1
2 x wi

The nnU-Net uses credentials of classical U-Net
(Çiçek et al., 2016; Ronneberger et al., 2015) as its
base three-dimensional architecture using a config-
urable topology as per the number of downsampling
operations on each axis depending on patch size and
voxel spacing. The creditable design choices of the N1
pipeline using a set of heuristic rules guides the reflec-
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Figure 6: End-to-end automated abdominal aortic aneurysm detection pipeline

tion of substantial improvements in the paradigm of se-
mantic segmentation within biomedical imaging appli-
cations. The 3D U-Net empowers the strengths of glob-
ally capturing multi-resolution features from the human
anatomy. N1 uses two convolution blocks per resolution
step composed with instance normalization for normal-
izing contrast between spatial elements on single sam-
ples (Ulyanov et al., 2017) and leaky ReLU nonlinearity
to enable negative slopes in both encoder and decoder
networks. The upsampling operation is performed using
convolution transposed while the downsampling opera-
tion is implemented using strided convolution. Amidst
the trade-off between performance and memory usage,
considerations of initial number of feature mappings is
decided at 32 and doubled (or halved, depending on the
bottleneck) with each downsampling (or upsampling,
relying on the change in feature maps) operation. The
number of feature maps is also restricted to 320 for the
3D U-Net to tone down the final model size. Thereafter,
N1 is trained with deep supervision as well, allowing
gradients to be laced down deep into the network and
facilitates training of all layers in the network by adding
additional auxiliary losses in decoder to all but the very
two lowest resolutions. The built-in architecture of the
3D U-Net model is shown in Fig. 8.

A five-fold cross validation is observed for training
the entire U-Net configuration with default choice of
1000 epochs per fold. The network weights are op-
timally learned with stochastic gradient descent, Nes-
terov momentum (µ = 0.99) and initial learning rate
of 0.01 decaying throughout training using the polyno-
mial learning rate scheduler. For batch size as small
as two, the number of foreground patches after han-
dling class imbalance is forged to a minimum of one,
making the quintessential decision to input one ran-
dom and one foreground patch for the N1 training per
batch. For elevating the performance of the strong foun-
dations, diverse data augmentation techniques are ap-
plied by means of rotations, scaling, influence of gaus-
sian noise and gaussian blur, brightness, contrast, simu-
lation of low resolution, gamma correction and mirror-

ing (Isensee et al., 2020b).

3.2.2. Predictive Modelling of Instance-based Verte-
bral Segmentation

The goal of the segmentation network, N2, is
to provide specific vertebra level predictions using
instance-to-instance segmentation of each scan for
cross-referencing the AA. The outputs are utilised by
PAAA, taking the segmented vertebral column into ac-
count for locating centers of gravity of individual ver-
tebra levels, focused on the lumbar and thoracic verte-
brae. This helps clinicians to develop an understanding
between the correlation of the local enlargements across
the abdominal vertebral landmarks.

Lessmann et al. (2019) proposes a four-component
vertebra-by-vertebra segmentation and labelling
method (N2) based on a fully convolutional neural
network (FCNN) (Fig. 9) convened to execute many
tasks at once by analyzing the patch size of 128 x
128 x 128 voxels, big enough to contain a minimum
of one vertebra. The input volumes are resampled
to an isotropic resolution of 1mm x 1mm x 1mm to
avoid divergent predictions on cases with varying
resolutions. The patches are sampled in such a way so
as to ensure the compulsory presence of vertebral bones
besides the 25% of random sampling across the entire
volume. Along the patches, the iterative inference
network segments a unique vertebra, and the respective
anatomical information is shared about the succeeding
vertebra near by for employing the patch to shift for
segmentation of the next vertebra. The network takes
inspiration from the traditional 3D U-Net architecture
composing skip connections and default number of
convolutions with padding and batch normalisation in
the encoder-decoder arrangement (Çiçek et al., 2016;
Ronneberger et al., 2015). Binary classification of all
voxels in the patch happens to segment the voxels from
a 3D patch, enhanced with an instance-based memory
that informs N2 about the already segmented vertebrae.
This allows segmentation of voxels corresponding to a
single instance rather than all vertebrae visible in the
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Figure 7: Automated self-configuring heuristics for the nnU-Net pipeline
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Figure 8: The 3D architecture of nnU-Net for the RUMC training dataset

Figure 9: Instance-based vertebral segmentation and labelling
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Figure 10: Vertebrae segmentation and multi-label classification outputs of the vertebral levels represented along the sagittal plane

patch. This binary flag per voxel information is utilized
by N2 to segment just the vertebrae that haven’t been
segmented yet. When a vertebra is fully segmented, the
instance memory is updated, causing the network to dis-
regard that vertebra in next iteration and instead focus
on upcoming vertebra. The identification sub-network
is the third component, predicting anatomical label of
each of the identified vertebra levels using maximum
likelihood estimation. A completeness classification
sub-network is introduced to the network as the fourth
component to distinguish between fully visible and
partially visible vertebrae. In return, PAAA takes just the
fully visible vertebra levels into consideration. The N2
network architecture is illustrated in Fig. 6. The loss
term λ is the combination of segmentation error used
to minimize weighted number of incorrectly labelled
voxels, labeling error uses l1 norm difference of
predicted (pL) and true labels (tL) and the completeness
classification error used to define the binary cross
entropy between the true labels (tC) and the estimated
probability of complete visibility (pC).

L = λ × FPsoft + FNsoft︸                  ︷︷                  ︸
Segmentation error

+ |pL − tL|︸   ︷︷   ︸
Labelling error

+ (−tClogpC − (1 − tC)log(1 − pC))︸                                     ︷︷                                     ︸
Completeness classification error

where:

λ = weighted factor of the cost

FPsoft and FNsoft = differentiable expressions for re-
spective number of predictions

The research constructs upon interconnected commu-
nication between the N2 model architecture and pre-
trained model weights along with well-defined pre-
processing and post-processing channels for the predic-
tion pipeline packaged into a software bundle, popularly

known as containers (Merkel, 2014). This light-weight
container is chained in the entire execution with forth-
coming PAAA tools to reward the quantitative measure-
ments around significant vertebral landmarks. The pre-
dictions on the inference set provide us with valuable
information about the vertebrae, as shown in Fig. 10.

3.3. Post-Processing

Characterization of aortic aneurysms based on quan-
titative and qualitative assessments on predicted binary
masks is the principle objective of the post-processing
pipeline, PAAA discussing patient’s expected treatment
phase. The vision of trained nnU-Net networks is elu-
cidated by softmax prediction maps outputted by N1
in finding the vulnerable aortic surface walls. On the
other hand, N2 gives us more information about vari-
ous vertebral labels, helping us to establish the anatom-
ical range of AA for precise AAA identification be-
yond the aneurysmal threshold. The post-processing
approach takes full charge once the analogous infer-
ence models (N1, N2) deliver the desired prediction out-
puts. The pipeline ensures to capture characteristics
of potential abdominal aneurysms, allowing exploration
to gather conclusions and contemplate with immediate
therapeutic actions. For universal convenience of com-
prehending bulges in aorta, wide range of geometrical
descriptor-based discussions support the evaluations of
an aneurysm using aorta diameter, cross-sectional area
of the expansion, volumetric changes in aorta, mechan-
ical surface modeling of aorta, and so on. The study
condenses a wide variety of statistical findings into easy
parametric realisations of estimating the ruinous range
of diameter, which will be useful to radiologists. The fi-
nal connection is based on comparison of report-guided
radiological outcomes, visualised endorsements of the
aneurysm and quantitative findings from the automated
algorithm.
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3.3.1. Conventional Methods
Most of the quantification algorithms rely on simpli-

fied shape extraction using macrodescriptors (maximum
incircle, geodetic length) and statistical lengths (Feret,
Martin and Nassestein diameter) along different planes
of visualization (Kroell, 2021). This study perceives to
assess the baseline descriptors with final automated pro-
cessing module.

On one hand (complemented with a parallel experi-
ment on centerline extraction using statistical descrip-
tors, briefly discussed in Appendix A) the pipeline
builds a rational sequence of diametric calculations us-
ing the characteristics of elliptical pixel arrangements
along the axial plane. Because of the commonly asso-
ciated challenges in the curvature of thoracic aorta to
find measurements solely on the basis of shape descrip-
tors, the approach now excludes the region and evalu-
ates thoracoabdominal and abdominal surfaces, by re-
jecting slices with multiple blobs. The next move aims
to detect circular blobs on the inverted binary masks
(foreground as 0 and background as 1, satisfying the
default detector settings) relying upon carefully chosen
parameters for optimal detection based on extracting the
entirety of the connected components and returning the
length of keypoints. We further stir previous discussions
on algorithms by Kroell (2021) for statistical measure-
ments based on macrodescriptors of detected blob(s) to
return the central position and diameter of the maximum
inclosing circle, the largest possible circle that touches
the projection area from the inside. The algorithm iter-
ates over the possibility of determining the diameter of
circle based on spotting new candidate points surround-
ing the center of mass of detected blob, aiming to settle
the constraints to output the optimal measure (Li et al.,
2020).

The research tries to inculcate a rather pragmatic ap-
proach to extract lengths of major axis (Mmajor) and mi-
nor axis (Mminor) of the detected ellipse. We find the
average of two chords to approximate the measurement
of diameter, resulting to a negligible difference (disre-
garded further) compared to the diameter from the max-
imum inclosing circle, as shown below :

d =
Mmajor + Mminor

2
(3)

3.3.2. Centerline Extraction
After assistance in the prediction step in obtaining

aortic segmentations for the various RUMC CT in-
stances, the automatic post-processing pipeline starts
its bit for centerline extraction once the prediction re-
sults are in. We start by visualising the 3D aortic masks
and decide on necessary reconstruction of the isosur-
face using marching cubes algorithm (Fedorov et al.,
2012; Lorensen and Cline, 1987). Thereafter, number
of points in the mesh model is smoothed by topology-
preserving reduction of surface triangles and merging

of coincident points, removal of unused points (i.e.
not used by any cell), treatment of degenerate cells is
made possible to consider necessary percentage of use-
ful points (Taubin et al., 1996). The pipeline continues
to automatically select centroids of the endpoints for the
aortic mesh by first selecting a relative position of the
starting point with respect to origin of the mask and it’s
respective endpoint. This mechanism can be manually
performed as well using 3D-Slicer tool and interactively
mark endpoints on mesh models at ends of the aorta
for precise centerline extraction, reducing geometrical
and computational complexity. While the requisites are
dealt with, centerline model with the respective center-
line curve points in the RAS coordinate system are ex-
tracted using Extract Centerline module in the vascular
modeling toolkit (VMTK) (Antiga et al., 2008). The
entire process has been summarised with an illustrated
example in Fig. 11. The algorithm returns a JSON file
indexing the respective centerline points (i.e., an array
of lists having three coordinate values per index) which
is now available to be utilised for the calculation of max-
imal diameter.

3.3.3. Diameter Extraction
The algorithm uses Cross-Section Analysis module of

3D-Slicer tool to provide necessary quantitative mea-
surements for lumen and respective dilation in diseased
cases (Fedorov et al., 2012). With input as the processed
mesh surface model with centerline curve points in pos-
session, it provides us with measurements of minimum
inscribed spherical (MIS) diameter and surface area for
the maximum and minimum aortic cross-sections for in-
dividual curve points in RAI coordinate system. We
brush aside the automated measurements of the ex-
tremes as they tend to locate minima near endpoints,
and maxima in thoracic aorta. From here, another func-
tion works upon the diameter column and provides the
statistical assessment of the incremental pattern of di-
ameter in the aorta. For this purpose, it uses the starting
point of the centerline at the aortic annulus in the tho-
racic region until the beginning of the branching of iliac
arteries. It also computes the length of the centerline
by the cummulative sum of all the consecutive distance
vectors, which we use further for correlation. An ad-
ditional exploratory step of extracting 3D voronoi di-
agram is implemented by construction of convex poly-
gons along the dense center-points of aorta, giving us an
insight of the effective distance of surface with respect
to centerline (Antiga et al., 2003). The jitters resemble
larger polygons built across aortic regions with a rel-
ative enlargement and color scheme showing traces of
the direction of maximum descent. The complete struc-
ture of centerline extraction has been illustration in Fig.
11. The major passed down takeaway is the non-linear
graphical plot of the change in calculated aortic diame-
ter along the centerline.

4.11



Automated Abdominal Aortic Aneurysm Detection on CT Scans 12

Figure 11: Visualisations of the VMTK output modules for the centerline extraction pipeline

3.3.4. Graphical Analysis of the Abdominal Aorta

Figure 12: Graphical quantification of AAA with respect to the end-
point distances (centerline points)

The final component must be handled now that all of
the pieces are in place. The research confirms the le-
gitimacy of basic techniques for calculating diameter,
taking into account the overall desire for lowering com-
plexity and enhancing process efficiency. The centerline
extraction approach, which makes use of VMTK’s au-
tomated modules, gives us a better understanding of the
dense centerpoints traversing along the centerline to re-
port the changes in diameter over the entire aorta (Fig.
12). Although most methods focusing just on AA have
been developed as a part of process for grasping the
region of interest along distance vectors of the center-
line, further examination into spatial relationship with
anatomical markers is needed to demonstrate the use of
end-to-end automated intuitive diagnostic tools.

Figure 13: Graphical quantification of AAA with respect to the ver-
tebral column, thresholded from T12 and summing up at the detected
end of the lumbar spinal region

In this scenario, the study supports vertebra identifi-
cation and uses a mathematical analogy to maximize the
benefit. Following the heuristics developed under PAAA,
N1 and N2 pipelines provided separate predictions on
the same patient cases. The geometrical analysis starts
with binary masks that must be present in the predic-
tions, as well as the reciprocal labelled values of seg-
mented vertebrae and computed diameters. The prac-
tical necessity to examine the obtained diameter along
the axial plane with reference to vertebrae becomes part
of our discussion by combining the arrays of data. Sec-
ondly, initial ideas of constructing a scatter plot of dia-
metric measures along individual labels, while simple,
would not be the greatest explanation for a definitive
revelation of the aneurysmal curve. This necessitates
determining the center of gravity (shown in Algorithm
1) of each vertebrae and connecting the landmarks as a
simple scalar representation on a non-linear plot of the
observed diameters and axial slices.

Algorithm 1 Pesudocode to compute the center of grav-
ity of each unique vertebra label

Require: unique vertebra labels
for element i in unique vertebra labels do

Computer start which is the slice where i begins
Computer end which is the slice where i ends
center o f gravity = (start + end)/2

end for

Clear explanations concerning the presence of AA
around lumbar spinal area (L1–L5), with AA com-
mencing at lower terminal ends of thoracic spinal lev-
els (T12), have been addressed, largely to get to this
point of asserting our introspection, as per set standards
and guidelines (refer to Section 2). Finally, a graphi-
cal depiction of non-linear curve with quickly changing
diameter throughout the axial plane in thoracoabdomi-
nal region is obtained, indicating aneurysmal threshold
with a significant focus on the vertebra levels behind the
AA (Fig. 13).
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3.3.5. Portable Document
The final heuristic of the pipeline introduces a

portable document format (PDF) document generation
under python using the outputted variables and inde-
pendent screenshots from the executed algorithm. The
choice of library has been made to enable easier format-
ting options with automatic text justification, page and
line breaks, and plethora of support for links, colors and
images, best suited for our study.

Figure 14: Diagnostic reference reports and graphical quantification
of the AAA with respect to the vertebral column along the axial plane

In the aforementioned trail, it compiles outputs of ex-
tracted centerline, generates pair of screenshots along
coronal and sagittal planes with complete overlay maps
of aortic binary masks over median slice number along
respective axes, generates another pair of screenshots
along axial plane finding maximum and minimum di-
ameter slices to have better understanding of underly-
ing aneurysmal structure. It is completed with the non-
linear curve of aortic diameter along the centerline, il-
lustrating subsequent changes in diameter within the
aorta. Each report mentions the time of the study and
the patient filename to help users affix the case-specifc
outcomes with necessary theurapeutic discussions. For
the purpose of anatomical visualization, the 3D aorta is
represented with the voronoi diagram and aortic mesh
overlayed on the centerline model (also shown in Fig.
11). Along with a PDF output (as shown in Fig. 14) of
the document, the algorithm outputs a portable network
graphics (PNG) for the vital plot (Fig. 13).

4. Results

4.1. Qualitative Assessment of Detection Networks

Simple CNN implementations supervised by pre-
cisely delineated aortic masks provide decent segmen-

tations for the undilated aorta to the common popula-
tion. In presence of deviations in target predictions, the
essential parameters for therapeutic screening are usu-
ally missed. Fig.15 portrays the aforesaid revelations in
the prediction outcomes of our implementation on the
RUMC inference dataset. It reciprocates the importance
of case-specific delineations (as the measures taken into
consideration in Section 3), showing decent qualitative
improvements in localization of enlargements in aorta.
We notice that N1 training on VUMC dataset captures
the strong contrast of intraluminal region, beholding
useful information to guide inferences through aortic
segmentation. With additional exploration of manual
interventions in succeeded pseudo-labels by consider-
ing the thrombus and missing aortic regions in the tho-
racic cavity, distinction of dilated aorta tends to increase
the scope of detection network. While we initially at-
tribute our assessment to contrast-enhanced CT scans, it
is important to mention the appreciable results on infer-
ence set regardless of the anatomical cross-section and
intravenous trace in abdomen. Despite the facts men-
tioned, the pipeline misses to detect massive enlarge-
ments above 6 cm. It follows similar trails in recently
ruptured aneurysms and some post-operative instances
with familiar incidences of huge dilations in the AA.

4.2. Quantitative Assessment of Detection Networks
The intrinsic post-processing module of 3D nnU-Net

automatically looks after metric calculations for valida-
tion samples. Over six data samples in cross-validation,
N1 network obtains an average validation Dice Score
Coefficient (DSC) of 0.935 for entire aorta segmenta-
tion in VUMC cases, right from aortic annulus in the
ascending thoracic aorta to the bifurcation of iliac arter-
ies at the end of AA. The learning curve for this dataset
in Fig.16 speaks for itself. There is a strong overlap be-
tween loss function curves suggesting the limited, yet
worthwhile reusability of the optimized weights. While
pre-processing criterion shortlists two cross-validation
data samples per fold in RUMC cases, average valida-
tion DSC stands at 0.871 identifying and segmenting the
intraluminal thrombii from the vast stretch of contrast.
Fig.17 seems to have random perturbations across the
learning curve, with possible plateauing in the learning
outcomes. From the Table 1 and Table 2, we introspect
quantitative performances of initial network across the
five-fold cross validation by nnU-Net. Although both
have comparable DSC as modern-day research investi-
gations, it turns out that the rejection rate for false sam-
ples across both volumetric validations is quite high. We
notice a significant variability in performance across the
training scheme for both datasets. The jaccard’s index
for foreground class of RUMC validation set proves to
be higher, while managing to include missing aortic re-
gions compared to the other. The mean scores of pre-
cision and recall for respective dataset breathes the effi-
ciency of trained weights for RUMC dataset, equivalent
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Figure 15: Qualitative assessment of the detection network on the RUMC inference set

Figure 16: Per-epoch progress of Dice score coefficient, training loss and validation loss for the 2nd training fold - VUMC train-val plot
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Figure 17: Per-epoch progress of Dice score coefficient, training loss and validation loss for the 4th training fold - RUMC train-val

compared to predictions coming from expert-level an-
notated training cases.

4.3. Qualitative Assessment of the Predictive Model for
Vertebra Segmentation

The automatic predictions on RUMC inference set
provides us with qualitative results. Covering a total
of 25 output classes (24 vertebrae and the background
class), the average runtime of a complete iteration over
a single sample was a little over 110s, starting right from
the initialisation step, normalizing the images read, re-
sampling to isotropic resolution, moving further with
traversing upwards along the spine for vertebral iden-
tification, labelling and final step of resampling predic-
tions to original resolution. The number of visible ver-
tebrae typically ranges from 7 to 19 completely visible
vertebral levels. Even though in presence of a variety
of scans in RUMC dataset, almost all of the observed
anatomical landmarks potentially pose correct labels.

5. Discussion

5.1. Qualitative and Quantitative Estimations for
Trained Detection Networks

Fig. 4 illustrates the possibility of including the miss-
ing aortic regions, which has an important effect post-
modifications in the training scheme. We notice that

the N1 network trained on VUMC dataset only cap-
tures the key contrast details of the aorta, disregarding
the presence of associated dilations. From the Tables
1 and 2, we deduce the capability of both networks to
perform supervised learning in their limited spatial con-
text paired with the training samples. The increase in
voxel-level annotations improves the reliability of the
trained network. However, attribution of this significant
improvement goes to the inclusion of thrombus, aortic
arc and ascending thoracic aorta for all patients in the
training subset. Yet, the limited knowledge of vast range
of surface walls in AA (upto 9 cm) and the possible gen-
eration of artifacts in the post-operative CT scans pose
a potential chance to misfit the pipeline.

5.2. Qualitative Estimations for Vertebral Level Predic-
tions

With regards to voxel-level performance of N2 train-
ing scheme, we observe that Lessmann et al. (2019)’s
prediction model produce realistic annotations and get
the desired job done. We deduce that instance-based
segmentation of vertebrae plays a crucial role in enhanc-
ing the chances of generalizing details of AAA, acting
as an important marker for relative positioning with AA.
The end-to-end pipeline makes best use of sharp resolu-
tion of the vertebrae, regardless of structural disparities
in the anatomy of spine. When the qualitative results
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Table 1: Segmentation metrics for the automated end-to-end learning compared with the expert annotations (VUMC dataset paired with annotations
from the radiologists)

Metrics - Foreground Class Mean Score
Average DSC of the ensemble 0.921
DSC in the best configuration 0.935
DSC of all the classes in the best configuration 0.903
Accuracy 0.999
False Discovery Rate 0.048
False Negative Rate 0.079
False Omission Rate 0.0001
False Positive Rate 0.000068473
Jaccard 0.879
Negative Prediction Value 0.999
Precision 0.952
Recall 0.921
Total Positive Reference 49222
Total Positive Test 47989
True Negative Rate 0.999

Table 2: Segmentation metrics for the automated end-to-end learning compared with the manual annotations (RUMC dataset paired with pseudo-
labels updated by the author)

Metrics - Foreground Class Mean Score
Average DSC of the ensemble 0.871
DSC in the best configuration 0.957
DSC of all the classes in the best configuration 0.945
Accuracy 0.999
False Discovery Rate 0.023
False Negative Rate 0.084
False Omission Rate 0.0002
False Positive Rate 0.000078414
Jaccard 0.896
Negative Prediction Value 0.999
Precision 0.977
Recall 0.916
Total Positive Reference 614999
Total Positive Test 590778
True Negative Rate 0.999

4.16



Automated Abdominal Aortic Aneurysm Detection on CT Scans 17

Figure 18: Qualitative assessment of the vertebrae segmentation - retreives the vertebra labels for a diverse set of CT scansa) female patient, b)
thoracic cavity, c) abdominal cavity, d) typical AAA findings in male patients

Figure 19: Comparative analysis of the calculated diameter across the
detected aneurysm by expert-level feedback by the radiologists, qual-
itative conclusions by the author and the maximal diameter measured
by the automated algorithm

are visually compared with the gold standard explana-
tions illustrated by Ali Mirjalili et al. (2012) for our ab-
dominal region of interest, the network excels to fit in
our merging criterion with its equivalent predictions re-
sponsible for the essential characterization.

5.3. Comparative Analysis of Automated AAA Detec-
tion with Radiologists and Final Introspections

The multivariate pipeline results reflect a stark sim-
ilarity while comparing the resultant measurements of

the maximal diameter coming from end-to-end learn-
ing model, the approximate conclusions noted down by
the radiologists speculating the enlargement with their
field-expertise and finally a qualitative assessment on
the original volumes by quantifying the respective max-
imum dilation by the author (Fig. 19). More specifi-
cally, PAAA accounts for less than an average difference
of 0.35 cm among a bunches of five randomly selected
inference samples across the entire detection model. Al-
though the close ties between the measurements, the
proposed technique on occasions seems to overmeasure
the cross-section. The possible reason could be the
strange elliptical structures in the volumes resulting to
a drift in calculations.

5.4. Limitations and Future Work

Analysing the impact of our trained N1 networks, the
raised question of dealing with the non-compliant cases
expects a rather simple solution of adding the case-
specific volumes paired with spatial information (for
instance, the post-operative cases, the patients suffered
from rAAA, very large aneurysm diameters, occasional
sharp contrast of the lumen compared to CTA) in the
training scheme to avoid the encountered failures. This
increases the need of accurately annotating the enlarge-
ments. It is difficult to say the additional contribution of
the metadata (i.e., age, gender, smoking and drinking,
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associated diseases, etc.), although studies do discuss
these risk factors but with limited reliability. We fore-
see to inculcate a first-hand strategy by getting expert
annotations for our cohort and scale the quantitative im-
provements. A certain degree of confidence in the Focal
Loss to (better) help with the struggles of class imbal-
ance might make a difference. In future, the research
looks up to perform the possible characterization of all
the aneurysms across the entire aorta. To enable this
wholesome structure, we will need to include the organs
as landmark references for thoracic, thoracoabdominal
and abdominal aortic aneurysm detection, on top of ver-
tebral labels.

6. Conclusions

To summarize, the authors analyzed an end-to-end
CAD system for automated voxel-level identification of
the abdominal aortic aneurysms on CT images. We
use a combination of an instance-based vertebra seg-
mentation network and a post-processing pipeline to
extract the characteristics of aneurysms in the abdom-
inal aorta with excellent specificity using the unique
automated nnU-Net setup. We demonstrate the bril-
liance of the self-configuring CNN architecture, which
is based on a set of forth heuristic rules and their respec-
tive ways of pre-processing and post-processing patient-
cases, demonstrating that it is a powerful tool for deal-
ing with domain diversity and enhancing CNN perfor-
mance with minimal effort towards the endless hassle of
hyperparameter tuning.

The first component of supervised learning utilizing
the VUMC dataset combined with detailed delineations
was used to implement our proposed model on 398
RUMC cases. On the previous validation set, the train-
ing scheme achieves an average dice score coefficient
of 93.5%. It moves further to synthesize the pseudo
labels on the second dataset and carefully update the
annotations to work along the problem statement. On
the validation subsets, the CAD system exhibits a note-
worthy average dice score coefficient of 95.7 % for the
training of the RUMC dataset now paired with hand de-
lineations on the anticipated labels. Given the expert
radiologist and manual delineations, there appears to be
a moderate agreement between the two training coun-
terparts, suggesting a high capacity to generalize across
the domain from a small number of training samples.
The two training implementations’ metrics are aligned,
indicating that the flexible design decisions made auto-
matically by the nnU-Net framework were successful.

To our understanding, the integration of prediction
outputs in conjunction with anatomical surface land-
marks to detect abdominal aortic aneurysms on CT
scans is the first of its kind, trained only using updated
pseudo-labels and textual guidances from the radiology
reports for a comparative study to confirm its legitimacy.

The groundbreaking findings of this study encourage re-
searchers to conduct research on holistic CAD systems
that can be deeply intertwined into the clinical work-
flows, channeling the need of clinical expert involve-
ment and assisting in the early diagnosis of aneurysms
before the fateful event of rupture.
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F.G., Rink, J.S., 2021. Automated screening for abdominal aortic
aneurysm in CT scans under clinical conditions using deep learn-
ing. Diagnostics 11, 2131. doi:10.3390/diagnostics11112131.
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Lareyre, F., 2020. Artificial intelligence in abdominal aor-
tic aneurysm. Journal of Vascular Surgery 72, 321–333.e1.
doi:https://doi.org/10.1016/j.jvs.2019.12.026.

Renapurkar, R.D., Setser, R.M., O’Donnell, T.P., Egger, J.,
Lieber, M.L., Desai, M.Y., Stillman, A.E., Schoenhagen, P.,
Flamm, S.D., 2012. Aortic volume as an indicator of dis-
ease progression in patients with untreated infrarenal abdomi-
nal aneurysm. European Journal of Radiology 81, e87–e93.
doi:10.1016/j.ejrad.2011.01.077.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolu-
tional networks for biomedical image segmentation, in: Navab, N.,
Hornegger, J., Wells, W.M., Frangi, A.F. (Eds.), Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015,
Springer International Publishing, Cham. pp. 234–241.

Sokol, J., Nguyen, P.K., 2022. Risk prediction for abdominal aortic
aneurysm: One size does not necessarily fit all. Journal of Nuclear
Cardiology doi:10.1007/s12350-021-02680-0.

Taubin, G., Zhang, T., Golub, G., 1996. Optimal surface smoothing as
filter design, in: Buxton, B., Cipolla, R. (Eds.), Computer Vision
— ECCV ’96, Springer Berlin Heidelberg, Berlin, Heidelberg. pp.
283–292.

Teng, P.y., Bagci, A.M., Alperin, N., 2011. Automated pre-
scription of an optimal imaging plane for measurement of cere-
bral blood flow by phase contrast magnetic resonance imaging.
IEEE Transactions on Biomedical Engineering 58, 2566–2573.
doi:10.1109/TBME.2011.2159383.

Ulyanov, D., Vedaldi, A., Lempitsky, V., 2017. Improved texture net-
works: Maximizing quality and diversity in feed-forward styliza-
tion and texture synthesis. doi:10.48550/ARXIV.1701.02096.

Wanhainen, A., Verzini, F., Van Herzeele, I., Allaire, E., Bown, M.,
Cohnert, T., Dick, F., van Herwaarden, J., Karkos, C., Koelemay,
M., Kölbel, T., Loftus, I., Mani, K., Melissano, G., Powell, J., Sze-
berin, Z., ESVS Guidelines Committee, de Borst, G.J., Chakfe, N.,
Debus, S., Hinchliffe, R., Kakkos, S., Koncar, I., Kolh, P., Lindholt,
J.S., de Vega, M., Vermassen, F., Document reviewers, Björck, M.,
Cheng, S., Dalman, R., Davidovic, L., Donas, K., Earnshaw, J.,
Eckstein, H.H., Golledge, J., Haulon, S., Mastracci, T., Naylor, R.,
Ricco, J.B., Verhagen, H., 2019. Editor’s choice – european soci-
ety for vascular surgery (esvs) 2019 clinical practice guidelines on
the management of abdominal aorto-iliac artery aneurysms. Eu-
ropean Journal of Vascular and Endovascular Surgery 57, 8–93.
doi:https://doi.org/10.1016/j.ejvs.2018.09.020.

Wolf, I., Vetter, M., Wegner, I., Böttger, T., Nolden, M., Schöbinger,
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Appendix A. Voxel-Based Centerline Extraction

The experimented pipeline initiates its processing by
taking the binary segmentations of aorta as input, and
applying the distance transformation to generate the dis-
tance fields, namely : single-seed (SS) seeded field
and boundary-seed (BS) seeded field for each aorta
(Teng et al., 2011). The SS field approximates the
shortest path between aorta voxels and the aortic root,
whereas the BS field approximates the shortest distance
between aorta voxels and the aortic boundary surface.
The method intrinsically expects manual intervention to
mark the seed points on the nodes of the aorta for ex-
tracting the centerline. Instead, we induced our proposi-
tion to automate the schedule using the two-dimensional
shape measurements detected for the first and last slices
with predicted pixel presence (typically, the central po-
sition of the maximum inclosing circle in shape [x,
y] suggested by Kroell (2021)) along the axial plane.
The pixel selection has a fundamental flaw in this ap-
proach, as it tends to ignore the ascending thoracic aorta
and aortic arc because the goal is to indicate the end
nodes of aorta, namely the aortic annulus, not the aor-
tic arc’s curvature point. For a better visual representa-
tion of the centerline, the extracted skeleton of the aorta
is smoothed using cubic smoothing spline (de Boor,
2001). This processing has been disregarded in the final
implementation to adopt an efficient method.

Figure A.20: Centerline extraction using distance transform
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Abstract

Mammography is the mainstay imaging technique used for breast cancer screening and diagnosis, despite having rec-
ognized limitations it is applied worldwide to detect suspicious findings on breasts. Convolutional Neural Networks
(CNNs) have been the de facto approach for automated medical image detection and diagnosis in the last decade. How-
ever, in recent years vision transformers have emerged as an alternative to CNNs. Particularly the Shifted Windows
(Swin) transformer, a general purpose backbone capable of constructing hierarchical feature maps, yields interesting
properties that could prove beneficial in medical imaging tasks.

In this work we investigate the potential of Swin Transformer as a backbone for mass detection in Full Field Digital
Mammograms (FFDM). We mainly propose the use of Representative Points (RepPoints) and Deformable Detection
Transformer (DETR) with Swin Transformer serving as a feature extractor for detecting masses on mammograms
from the OPTIMAM Mammography Image Database (OMI-DB). The best transformer-based model obtained a True
Positive Rate (TPR) of 0.903 at 0.8 False Positives per Image (FPpI) and an area under the Free Receiving Operating
Characteristic (FROC) curve of 0.852 on FFDMs from Hologic scanners, outperforming previous work on OMI-DB
and a competitive performance of 0.882 TPR at 0.8 FPpI and 0.812 area under the FROC curve, from our implemented
baseline model.

Furthermore, we present an approach to combine predictions from the proposed models using Weighted Box Fusion
(WBF), which achieves a meaningful improvement over single model performances. Finally, we propose applying this
method to combine transformer and convolutional-based models predictions, further improving their performances.
The TPR obtained by this last approach is 0.934 at 0.8 FPpI with an area under the FROC curve of 0.878.

Keywords: Mammography, Breast Cancer, Convolutional Neural Networks, Transformers, Mass detection

1. Introduction

1.1. Breast Cancer

In 2020 female breast cancer (BC) was the most com-
monly diagnosed cancer, with an estimated 2.3 million
new cases (11.7%) and 685,000 deaths globally. World-
wide, BC also represented the leading cause of cancer
deaths among women. (Sung et al., 2021).

Approximately half of breast cancers develop in
women who have no identifiable BC risk factor other
than gender (female) and age (over 40 years) (World
Health Organization, 2022). Nonetheless, it is known
that certain factors increase the risk of BC, including
hormonal, lifestyle, and environmental changes (De-
Santis et al., 2015).

Breast cancer arises in the epithelium of the ducts
or lobules in the glandular tissue of the breast. Ini-
tially, it is confined to the duct or lobule where in gen-
eral doesn’t cause symptoms and has minimal poten-
tial to spread. Over time, these cancers may progress
and invade the surrounding breast tissue, then spread to
the nearby lymph nodes or to other organs in the body
(World Health Organization, 2022).

BC treatment can be highly effective, therefore, when
detected and treated early, the chances of survival are
very high. Treatment of BC often consists of a combi-
nation of surgical removal, radiation therapy and medi-
cation (hormonal therapy, chemotherapy and/or targeted
biological therapy) to treat the microscopic cancer that
has spread from the breast tumor through the blood.
Such treatment, which can prevent cancer growth and
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spread, can thereby save lives.

1.2. Imaging modalities

The development and improvement of imaging tech-
nologies has significant value for the early detection of
BC. Imaging modalities for diagnosis and staging of BC
include mammography, ultrasound (US) and Magnetic
Resonance Imaging (MRI).

Mammography is the base imaging technique used,
by most developed countries, for BC screening and di-
agnosis in women over the age of 40 years (CDC, 2022).
Mammography is a process that utilizes low-energy X-
rays, the standard screening consists of mediolateral
oblique (MLO) and craniocaudal (CC) views of each
breast and aims to detect suspicious findings. Studies
have shown a mortality reduction of about 40% (Nick-
son et al. (2012), Sankatsing et al. (2017), Broeders
et al. (2012)) after mammography screening. However,
with an overall sensitivity and specificity of 54.5% and
85.5%, as mentioned in the work of Aristokli et al.
(2022), it has limitations, especially in women with
dense breasts where cancer could be hidden in mam-
mography. Therefore, women at increased risk for
breast cancer are recommended to undergo additional
screening with breast MRI.

Ultrasound is not often used as a primary diagnos-
tic tool, but rather as a tool to further study a mammo-
graphic anomaly, to identify whether a soft tissue mass
is solid or cystic and to distinguish benign from malig-
nant masses in patients who present clinical symptoms.
It is also employed if the patient has a clinical complaint
or palpable abnormalities despite a negative mammo-
gram.

Preoperative staging, response assessment to neoad-
juvant therapy, evaluation of patients with cancer of un-
known primary and screening of high-risk patients are
some of the clinical indications for MRI in breast imag-
ing (Mann et al., 2015). Dynamic contrast-enhanced
MRI (DCE-MRI) provides high-resolution breast mor-
phology and enables the depiction of both physiologic
and morphological changes by obtaining MRI images
before, during, and following the injection of a contrast
agent, usually gadolinium-based. During DCE-MRI, tu-
mors demonstrate rapid, intense enhancement followed
by a relatively rapid washout compared to normal tis-
sue making DCE-MRI the most sensitive modality for
breast cancer detection (Hodler et al., 2019).

Each imaging technique has its own set of limitations
and benefits, therefore they should be used in combina-
tion to aid in breast cancer staging and treatment.

1.3. Masses

In mammography, a mass is a space-occupying le-
sion seen in two separate projections and identified by
its shape and contour. According to the BI-RADS sys-
tem (Breast Imaging Reporting and Data System) by

the American College of Radiology (ACR), a mass is
characterized by its shape, contour, density with respect
to normal fibroglandular tissue, association with other
anomalies and its evolution over time, which can be ob-
served when past mammograms are available (D’Orsi
et al., 2018). A mass can fall in a BI-RADS category
from 0-6 depending on its characteristics, where cate-
gory 2 represents typically benign masses such as cir-
cumscribed masses with macrocalcifications or masses
of fatty or mixed density; and category 5 corresponds to
malignant masses, which are usually spiculated masses
(Berment et al., 2014).

As previously mentioned, most circumscribed masses
are benign. Nevertheless, due to specific histological
characteristics, certain malignant lesions or lesions with
a risk of malignancy may appear in the mammography
in this falsely reassuring form and in rare cases, cer-
tain benign lesions may appear in the form of spiculated
masses (Berment et al., 2014).

1.4. Computer Aided Systems
Computer-Aided Detection (CADe) and Computer-

Aided Diagnosis (CADx) are the two types of Computer
Aided systems. In our context, CADe primarily assists
in the detection and localization of masses or anomalies
that are present in medical imaging, leaving interpreta-
tion to the radiologist. CADx, on the other hand, assigns
a classification to the masses and assists the radiologist
in making decisions about the anomalies (Hassan et al.,
2022).

Although mammography has recognized limitations,
it is still the mainstay of BC screening due to its simplic-
ity, fast acquisition and cost-effectiveness, especially
compared to its high sensitivity counterpart DCE-MRI.
Researchers and clinicians have implemented multiple
strategies to improve mammography’s performance, in-
cluding doublereading (review of mammograms by two
specialists), yearly screenings, obtaining two views per
breast and analyzing previous mammograms for com-
parison. However, since mass detection is primarily
a manual and difficult process, mainly dependent on
the experience of physicians, a significant proportion of
breast masses can be missed due to multiple reasons in-
cluding visual fatigue and loss of attention (Wang et al.,
2014).

Studies on the efficiency of using CADe systems
as second opinion systems reveal that they can benefit
even experienced radiologists by increasing their sen-
sitivity from 77% to 85% and beginner radiologists by
raising their sensitivity from 62% to 86% (Balleyguier
et al., 2005). Thus the importance of developing precise
CADe systems capable of behaving as a second opinion
to aid physicians and support their decisions about the
detection of masses in mammograms.

With significant advancements in the development
of deep learning technologies over the last ten years,
CADe systems have been predominantly built using
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Convolutional Neural Networks (CNNs). CNNs are
powerful networks for analyzing images because of
their capability of preserving the image’s spatial fea-
tures and have been the de facto approach to automated
medical image diagnosis in the past decade. However,
the tremendous success of transformer architectures in
the Natural Language Processing (NLP) domain has led
researchers to explore its adaption to the computer vi-
sion field where it has emerged as a viable alternative to
CNNs, delivering state-of-the-art performances in nu-
merous computer vision tasks such as image classifica-
tion, object detection (Zhang et al., 2022) and seman-
tic segmentation (Liu et al., 2021a) to name a few, this
while also demonstrating a number of interesting fea-
tures that could be useful for medical imaging tasks.

Therefore, after the inception of Vision Transformers
(ViT) in the work of Dosovitskiy et al. (2020), the med-
ical imaging community has witnessed an exponential
growth in the number of transformer-based approaches
as seen in Figure 1. Nevertheless, for the problem of
medical image detection, transformer-based techniques
are less common than for segmentation and classifi-
cation, as mentioned in Shamshad et al. (2022), and
are mainly based on the detection transformer (DETR)
framework (Zhu et al., 2020).

1.5. Our work
The main goal of our study is to explore the use

of transformers as a backbone architecture for mass
detection in mammography, investigating that way its
potential for use in CADe systems and comparing
its performance to CNNs. Additionally, we propose
combining the detection predictions of the developed
transformer-based models, their convolutional counter-
parts and both, in order to enhance the models strengths
and mitigate their weaknesses achieving an overall im-
proved performance and the development of a robust,
effective CADe system. In spite of the fact that the use
of transformers in medical images has grown in the past
year, to the best of our knowledge this would be the first
study to use a fully transformer-based architecture as a
backbone for detection.

The remaining of this paper is organized as follows.
Section 2 summarizes the existing work on mass detec-
tion in mammography including the data base used in
this study. Section 3 presents the methods and networks
used in this project along with the dataset. The key re-
sults obtained in the most relevant experiments are ex-
posed in Section 4, and Section 5 presents the respective
discussion of the results. Finally, in Section 6 the con-
clusions are given.

2. State of the art

From the early 1990s, academic and business circles
have set off a research to develop computer-aided detec-
tion and diagnosis technology that can act as a second

opinion or helper for radiologists. This research began
with the use of traditional computer vision techniques,
based on conventional machine learning and image pro-
cessing techniques.

Ke et al. (2010) proposed a detection system based on
texture features. They used bilateral comparison to de-
tect the mass and the center of region of interest (ROI),
followed by the calculation of fractal dimension and
two-dimensional entropy as the texture features. Lastly,
the type of ROI was classified by Support Vector Ma-
chine (SVM) as mass or normal region. The method
achieved a sensitivity of 85.11% at 1.44 false positives
per image (FPpI), in a total of 106 mammograms. Pa-
tel et al. (2019) presented an effective approach to detect
masses in breast using Modified Histogram based Adap-
tive Thresholding (MHAT) method, tested it on more
than 100 mammograms obtaining a true positive rate
(TPR) of 98.3% at 0.78 FPpI. Years later, in the work
of Mughal et al. (2017), texture features were also used
along with color features to detect and classify masses.
Methods, such as region growing were also proposed as
in Punitha et al. (2018). The work uses an optimized
region growing technique where the initial seed points
and thresholds are optimally generated using a swarm
optimization technique called Dragon Fly Optimization
(DFO). Features are then extracted from the detected
masses and passed to a Feed-Forward Network for clas-
sification. The approach achieved sensitivity of 98.1%
Specificity of 97.8%, using 300 images from the Digital
Database for Screening Mammography (DDSM).

Recently, many promising deep-learning models em-
ployed in computer vision, such as CNNs, transfer
learning and deep learning-based object detection mod-
els, have shown considerable improvements in the per-
formance of CAD systems. Therefore, several tech-
niques for CAD systems have been presented based on
the use of deep learning models.

Ribli et al. (2018), used fast R-CNN on a subset of
the INbreast database with lesions, to classify and de-
tect the malignant and benign lesions. They obtained
0.90 TPR at 0.30 FPpI. We can also find the work of Cao
et al. (2021), who proposed a novel model for mass de-
tection along with a new data augmentation technique to
overcome overfitting, based on local elastic deformation
which enhanced the performance of their model; how-
ever, its calculation speed is slower compared to the tra-
ditional augmentation techniques. This approach uses
an enhanced, anchor free version of RetinaNet named
FSAF (Zhu et al., 2019) for mass detection. As a result,
the model achieved an average of 0.495 false-positive
rate (FPR) per image for the INBreast dataset, while for
the DDSM dataset each image has 0.599 FPR. Aly et al.
(2021) proposed an end-to-end CAD system based on
You Only Look Once-V3 with k-means generated an-
chors, which is an improved version of the network pro-
posed by Redmon et al. (2016).

5.3



Mass Detection in Full Field Digital Mammograms with Multiscale Transformers 4

Figure 1: (Left) The pie-charts show statistics of the papers included in the survey presented by (Shamshad et al., 2022), according to medical imag-
ing problem settings and data modalities. The rightmost figure shows consistent growth in the recent literature (for year 2021). Seg:segmentation,
Class: classification, Recons: reconstruction, Reg: registration, Synth: synthesis, Det: detection, Rep: report generation, US: ultrasound.

2.1. Benchmark on OMI-DB

Agarwal et al. (2020), presented the benchmark of the
performance of deep learning on the OPTIMAM Mam-
mography Image Database (OMI-DB). In their work,
a framework based on Faster R-CNN object detection
model (Ren et al., 2015), using the whole FFDM (in-
stead of patch-based strategy) for training and testing
is proposed. A total of 7,245 images, obtained with
Hologic scanners, originated from 2,042 positive cases
with abnormalities and 842 normal cases, e.g. without
any abnormalities, were used. The proposed framework
achieved a True Positive Rate (TPR) of 0.87 at 0.84
FPpI on the test data.

3. Materials and methods

3.1. Dataset

OMI-DB is an extensive mammography image
database composed of more than 2.5 million images
from over 170,000 women, that were collected from
three UK breast screening centres (Halling-Brown et al.,
2020). It provides unprocessed and processed FFDMs,
in DICOM format, from detected cancers along with
normal and benign screening cases. The database also
includes experts annotations and clinical data related to
the images.

The database contains images from different scanner
manufacturers such as Hologic Inc., Siemens, Philips
and General Electric Medical Systems. For this study
images from Hologic Inc. scanners were selected, as
they represented the vast majority of images in the
dataset. Since the focus of this work is detection of
masses, our dataset referred to as OMI-H, consists of
a total of 7,626 processed FFDMs from 1,945 patients,
with both detected masses (positive images) and with-
out abnormalities (negative images). Careful inspection
of the overall selected images was performed, ensur-
ing to discard images with artifacts or unwanted objects
such as implants, marker clips or bands across the im-
age. Furthermore, each case in the dataset may contain
multiple images from the same patient.

3.2. Data preparation and pre-processing

The OMI-H dataset was divided into training, valida-
tion and test sets on patient basis to ensure that images
from a particular case belonged exclusively to one of
the three subsets. The division is performed, following
the approach of Agarwal et al. (2020), on a 70-10-20 ra-
tio for training, validation and test with a total of 1,361,
195 and 389 cases, respectively. Details on the number
of images are provided in Table 1.

The mammograms were originally in DICOM for-
mat and were therefore converted to PNG (Portable Net-
work Graphics) format for further use. The images on
the dataset had pixel resolutions ranging from approxi-
mately 64 µm to 108 µm and sizes from 2,000 to 4,000
pixels.

In order to feed the network useful information only,
the mammograms were cropped to contain the breast
area of the image. This was done by applying trian-
gle binarization to the original image followed by the
extraction of the largest connected component yielding
the mask of the breast, then the bounding box contain-
ing the mask was found and applied to crop the image
as shown in Figure 2. Finally, due to computational lim-
itations, the cropped images were downsampled to 200
µm pixel resolution.

It is worth mentioning that even though the amount of
images and patients in our dataset is close to that of the
work of Agarwal et al. (2020), it is not an exact match.
Therefore, we can not ensure the same patients and im-
ages are part of our dataset.

Figure 2: Breast area cropping : a) Original image b) Breast mask
after breast-air segmentation c) Breast area cropped.
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Number of
cases

Number of
images

Positive
Images

Negative
Images

OMIDB-H 1945 7626 3526 4100
Train 1361 5339 2478 2861

Validation 195 766 349 417
Test 389 1521 699 822

Table 1: Description of dataset used in this work and its correspondent
division.

3.3. Methodology

Our study is organized in three main stages. First,
three object detection methods are trained using a novel,
general purpose vision transformer backbone as feature
extractor on its smallest variant. Second, we select two
promising object detection methods and train them with
a bigger variant of the backbone as well as with convo-
lutional corresponding backbones for comparison. Fi-
nally, the predictions of the selected object detection
methods, are combined into an ensemble to investigate
whether convolutional-based and transformer-based de-
tectors can complement each other and provide an over-
all boosted detection performance.

In addition to these steps, we train a baseline object
detector to reproduce the work of Agarwal et al. (2020)
since, as mentioned earlier, we can not ensure that pre-
vious work on OMI-DB Hologic mammograms works
with the exact same images.

In the sections below, we describe the selected back-
bone, the object detection methods included in this
study, the training process of our deep learning models,
the bounding boxes fusion and the evaluation metrics
used to assess the performance of the models.

3.3.1. Swin Transformer

Swin (Shifted window) transformer is a vision trans-
former capable of serving as a general purpose back-
bone for computer vision proposed by Liu et al.
(2021b). Previously existing transformer-based mod-
els such as ViT directly conduct global self attention
between all the fixed scale, non overlapping, medium-
sized (16×16) image patches, which is unsuitable for
high resolution images and dense tasks like image de-
tection and segmentation, and is limited by its quadratic
complexity. In contrast, Swin proposes a window shift-
ing approach that limits the computation of self atten-
tion among small (4×4) patches within non overlapping
local windows while also allowing cross window con-
nection, thus achieving linear complexity to image size,
making it suitable for dense vision tasks as well.

Overall Architecture

Firstly, the Swin Transformer architecture splits the
input image into small non overlapping patches, of 4 × 4
pixels, by a patch splitting module. The raw pixel values
of each patch are concatenated into feature vectors, of

dimension 4×4×3 = 48 and referred to as “tokens”. The
tokens are then passed to what are called stages 1, 2, 3
and 4 of the architecture.

• Stage 1.- At this stage, the tokens are projected to
an arbitrary dimension “C” by a linear embedding
layer. These tokens are passed to a pair of con-
secutive Swin transformer blocks. The first block
processes tokens with a modified, shifted window
based self attention, where attention is limited to a
window that contains M × M neighboring patches
and the second repeats the process, after displacing
the window by ([ M

2 ], [ M
2 ] ), such that patches that

were part of different windows and couldn’t attend
each other can now do so.

On Figure 4 we present two successive Swin trans-
former blocks, where each consists of a shifted
window based multi-self attention (MSA) module,
followed by a 2-layer MLP with GELU activation
in between. A normalization layer is applied be-
fore each MSA module and each MLP, also a resid-
ual connection is applied after each module.

• Stage 2.- Following Stage 1, tokens are merged by
a patch merging layer, which concatenates tokens
of 2 × 2 neighboring patches and forwards them
to a linear layer that acts as a dimensionality re-
ducer, where 4C-dimensional concatenated tokens
are downsampled to 2C dimensionality. Several
Swin Transformer Blocks are applied afterwards
for feature transformation. This process is repeated
in Stage 3 and Stage 4, with different resolutions
since tokens pass through the patch merging layer
and with different number of Swin Transformer
Blocks.

These stages together create a hierarchical represen-
tation with the same feature map resolutions as tradi-
tional CNNs such as Resnet (He et al., 2016). An
overview of the Swin Transformer architecture is pre-
sented in Figure 3, which illustrates the base model.

Architecture Variants

The Swin base model, called Swin-B, was built to
have similar size and computation complexity as ViT-
B. Three variants of the base model were introduced:
Swin tiny (Swin-T), Swin small (Swin-S) and Swin
large (Swin-L) which have around 0.25×, 0.5× and 2×
the complexity and size of Swin-B respectively. For our
study, Swin-T and Swin-B have been used.

The default window size in all variants of Swin is set
to M=7 and the query dimension of each head is d=32.
The architecture hyper parameters are presented on Ta-
ble 2.

3.3.2. Object Detection Methods
In this study we used three object detection meth-

ods: RepPoints (Representative Points), Sparse R-CNN
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Figure 3: Architecture of Swin Transformer (Swin-Base)

Figure 4: Two successive Swin Transformer Blocks : a) Swin trans-
former block with window self attention computation b) Swin trans-
former block with self attention computation on a shifted window. c)
Ilustration of a window partitioning scheme where MSA is computed
within each window. d) Ilustration of the resulting shifted windows
where MSA is computed on the new windows.

Model Embedding
dimension “C”

Layer
numbers

Swin-T 96 {2, 2, 6, 2}
Swin-S 96 {2, 2, 18, 2}
Swin-B 128 {2, 2, 18, 2}
Swin-L 192 {2, 2, 18, 2}
Table 2: Model variants architecture hyperparameters.

and Deformable Detection Transformer (DETR). The
first two were used by the developers of Swin Trans-
former, to evaluate its performance on the COCO object
detection challenge achieving promising results, there-
fore chosen by us, while deformable DETR is a novel
transformer-based object detection model, which we be-
lieve could yield interesting results if combined with a
transformer-based backbone. Additionally, RetinaNet
was used but only with a convolutional backbone in or-
der to have our own baseline by possibly replicating the
performance of Agarwal et al. (2020) on our dataset.

RepPoints
RepPoints, illustrated in Figure 5, is an anchor free

object detector which proposes a representation of ob-

jects as a set of sample points, suitable for both local-
ization and recognition (Yang et al., 2019). The repre-
sentative points learn to automatically organize them-
selves in a manner that bounds the spatial extent of an
object and highlights semantically meaningful local ar-
eas when ground truth localization and recognition tar-
gets are given for training.

The training of RepPoints is driven jointly by object
localization and recognition targets, such that the Rep-
Points are tightly bound by the ground-truth bounding
box and guide the detector toward correct object classi-
fication.

Figure 5: Reppoints

Sparse R-CNN
The work of Sun et al. (2021) presents Sparse R-

CNN, a purely sparse method for object detection in im-
ages where a predetermined sparse set of learned object
proposals are fed to an object recognition head for clas-
sification and location. As shown in Figure 6, a fixed
small set of learnable bounding boxes, represented by
4-d coordinates, are given to object candidates which
are used as proposal boxes to extract the ROI feature by
ROIAlign.

The learnable proposal boxes are the statistics of pos-
sible object location while the 4-d coordinate is a rough
object representation. Another important concept in-
troduced on this work is proposal feature, which is a
high-dimension (e.g., 256) latent vector expected to en-
code the rich instance attributes better than the rough
bounding box. Proposal feature, in particular, gener-
ates a set of tailored parameters for its unique object
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recognition head. Proposal boxes and proposal features
are both randomly initialized and optimized, along with
other network’s parameters.

Figure 6: Sparse R-CNN

Deformable DETR
Carion et al. (2020) proposed DETR, an end-to-end

object detection framework mainly characterized by the
use of a set-based global loss which enforces unique
predictions via bipartite matching and a transformer
encoder-decoder architecture. While DETR removes
the need of hand designed components such as anchor
generation, which directly encodes our prior knowledge
of the task, it also suffers from limited feature spatial
resolution and slow convergence.

Deformable DETR aims to mitigate DETR’s is-
sues by combining the best of deformable convolu-
tion’s sparse spatial sampling and Transformers’ rela-
tion modeling capability. It also proposes a deformable
attention module, which attends to a restricted number
of sample locations as a pre-filter for significant key
components out of all the feature map pixels, the mod-
ule can be extended to aggregate multi-scale features.
Deformable DETR replaces transformer attention mod-
ules processing feature maps by multi-scale deformable
attention modules.

3.3.3. Network Training
Our first and main proposed task was the training of

different object detection methods using Swin Trans-
former as a feature extraction backbone. Our work fo-
cuses on the use of Swin-T and Swin-B as backbones
to assess also the impact of a smaller and deeper trans-
former backbone respectively. In addition, the detection
frameworks were trained with convolutional backbones
for further analysis and comparison, the chosen CNNs
were Resnet 50 and Resnet 101.

In this study we use MMDetection (v.2.24.1), a
PyTorch-based open source object detection toolset,
presented by Chen et al. (2019), to train all the pro-
posed frameworks. It is worth mentioning that, Liu
et al. (2021b) conducted their experiments on COCO
2017 for object detection and instance segmentation us-
ing this toolset and therefore it was also selected by us
to run our experiments.

Pre- processing pipeline

Our dataset sub division was closely balanced be-
tween mammograms with masses and negative mam-
mograms among training, validation and testing sets.
The image pre-processing pipeline consists, for all three
frameworks, of replicating the single channel informa-
tion into 3 channels, multi-scale training achieved by
resizing the input images such that the shorter side is be-
tween 480 and 800 while the longer side is at most 1333
pixels and setting to true the ’keep aspect ratio’ param-
eter, followed by the normalization to the default mean
and standard deviation used in the pre-trained setup.
Due to memory and computational limitations, in the
case of Deformable DETR the images were resized be-
tween 362 to 600 on the shorter side and 1000 pixels at
most on the longer side.

Data augmentation

Although Swin doesn’t require large-scale training
datasets (i.e., JFT-300M) as ViT to achieve high per-
formances, to the best of our knowledge it could benefit
from more data. Therefore several data augmentation
policies were added to the pipeline using MMDetec-
tion’s AutoAugment class, which is an implementation
of the data augmentation strategies proposed by Zoph
et al. (2020).

AutoAugment is provided with a list of “policies”
where each component is a specific augmentation pol-
icy, and can be composed by several augmentations and
a probability of being applied. When AutoAugment is
called, a random policy in “policies” will be selected
and applied to augment images with a certain proba-
bility, if given. The list of policies used in our study
consists of:

• Horizontal flip, applied with a probability of
p=0.5.

• Random crop.

• Contrast transformation, with magnitude values of
[0.4,0.8,1.5] and a probability of p=0.5.

• Brightness transformation, with magnitude values
of [0.3,0.7,1.3] and a probability of p=0.5.

For deeper backbones (Swin-B and Resnet 101), the
probabilities are increased to p=0.6 and for training
RetinaNet the only augmentation applied was horizon-
tal flip as in the reference work of Agarwal et al. (2020).

Training

MMDetection provides a collection of pre-trained de-
tection models, which includes models pre-trained on
MSCOCO dataset (Lin et al., 2014). Pre-trained mod-
els of our selected object detection methods with a Swin
Transformer backbone were not available, thus for train-
ing we use the pre-trained Imagenet weights of Swin,
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Method Backbone Learning rate Optimizer Epochs

RepPoints Swin-T 1.25e-05 AdamW 19
Swin-B 1.25e-05 AdamW 32
Resnet50 1.00e-04 SGD 22
Resnet101 1.00e-04 SGD 16

Deformable DETR Swin-T 1.25e-05 AdamW 28
Swin-B 1.25e-05 AdamW 18
Resnet50 1.25e-05 AdamW 24
Resnet101 1.25e-05 AdamW 24

RetinaNet Resnet50 7.81e-05 SGD 13
Sparse R-CNN Swin-T 3.13e-06 AdamW 23

Table 3: Training parameters

provided by the authors, along with our object detection
methods pre-trained with CNNs for fine-tuning. Pre-
trained models of the object detection methods were
available with convolutional backbones and were there-
fore used to fine-tune the convolutional models.

Training of all models was done using two 16 GB,
NVIDIA Tesla V100 GPUs, with a batch size of two
distributed across them. During fine-tuning the epoch
with the highest mean Average Precision (mAP) over
IoU thresholds from 0.1 to 0.5 (step 0.05) was saved and
selected as the best model, this metric was also used to
monitor the training of the models, and early stop if nec-
essary. All models converged before epoch 36. Table 3
presents additional settings used in the fine-tuning of the
models. For RetinaNet we follow the recommendation
in Agarwal et al. (2020) for the anchor boxes scales.

3.3.4. Weighted Boxes Fusion
Weighted boxes fusion (WBF) is a method for merg-

ing predictions from several object detection models,
proposed by Solovyev et al. (2021). Ensemble methods
have been widely used in machine learning, since com-
bining predictions from different models usually yields
more accurate results than a single model and has the
potential of better generalization .

Unlike Non-Maximum Suppression (NMS) and soft-
NMS methods that discard part of the predictions, WBF
uses the confidence scores of all proposed bounding
boxes to generate the averaged boxes as shown in Figure
7.

In this study we use the authors implementation,
available on their GitHub repository. To give as input to
the WBF method, we produce a list of predictions from
the trained models, a second list with their respective
scores and a third one with the labels of the predictions.
Since our models have single class predictions (Mass),
the labels list is an array of ones of the same length as
the previously mentioned lists.

Each model has to be given a weight, to define such
weights we applied a grid search on weights between
0.1 and 2 with a step of 0.3, for each model using their
predictions on the validation data. The weights that
achieve the highest area under the FROC curve, with
FPpI computed on negative images, are then used to
perform WBF on the test data. The selected weights

Model Backbone Weight

RepPoints Swin-T 2.0
Swin-B 1.3
Resnet50 1.7
Resnet101 1.3

Deformable DETR Swin-T 1,7
Swin-B 0.4
Resnet50 0.4
Resnet101 0.1

Table 4: Weights assigned to models after applying grid search.

Figure 7: Schematic illustration of NMS and WBF outcomes for an
ensemble of inaccurate predictions (Blue – different models’ predic-
tions, yellow – ground truth).

are presented on Table 4. Another needed parameter is
the IoU threshold, which is set to 0.05.

It is worth mentioning that the predictions fed to
the WBF method are NMS processed outputs from the
models, in the case of deformable DETR which doesn’t
have NMS as part of its post-processing pipeline we
apply our own implementation of NMS to its predic-
tions. Authors of WBF previously experimented apply-
ing their method on raw model outputs without NMS
and concluded that WBF works well for combining
boxes of relatively accurate models, however, it per-
forms worse than NMS when there are a large number
of overlapping boxes with varying confidence levels.

WBF is applied on a selection of models with Swin
backbone only, models with convolutional backbones
only and finally a combination of both. This is done
to see whether this method might help boost models’
individual performance and foremost assess if combin-
ing convolutional and transformer-based models can en-
hance their strengths while mitigating their weaknesses.

3.4. Evaluation Metrics

The True Positive Rate (TPR), also known as sensi-
tivity or recall, is a widely used metric to evaluate the
performance of CADe systems in breast mass detection.
TPR is commonly reported in a range of 0.75 to 0.85
FPpI in commercially available CADe systems , thus
we provide the TPR on different FPpI values (0.75, 0.8,
0.85).

To assess and compare approaches, the area under the
curve (AUC) of the Free-response Receiver Operating
Characteristic (FROC) curve is also employed. As an
output of the network the confidence score of the pre-
dicted bounding boxes is obtained and used to plot the
FROC by considering the bounding boxes above a given
threshold, which is increased from 0 to 1 in intervals of
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0.05. To calculate the AUC we consider the TPR in a
range of FPpI ∈ [0,1].

The TPR is computed using equation 1, where TP
and FN stand for true positives and false negatives per
image. A prediction bounding box is considered a true
positive when its Intersection Over the Union (IoU) with
the ground truth is equal or greater than 10 %, this value
was chosen following the recommendations of Agarwal
et al. (2020). Since our dataset contains certain cases
with multiple masses, the IoU is computed for each
ground truth and follows the same criteria to determine
if they are TPs, if they remain undetected they are con-
sidered FNs and the predicted bounding boxes which
don’t have a IoU greater than the assigned threshold are
considered FPs. In the case of normal images, all pre-
dictions are considered FPs.

T PR =
T P

T P + FN
(1)

The FPpI is calculated by computing the amount of
FPs found in the images and dividing it by the total
of images. In the benchmark work, the FPpI is deter-
mined using both positive and negative images, in order
to compare our baseline model we follow the same eval-
uation approach. Nevertheless, after establishing the
baseline model we compute the FPpI in negative im-
ages only, to assess how our models perform in mam-
mograms without masses.

4. Results

In this section, the performances of the trained mass
detection models are presented in four separate sections,
firstly we present our baseline, the second and third sec-
tions present results according to the models’ feature
extraction backbone and the fourth which presents the
performance of WBF applied to different models.

4.1. Baseline
Our first experiment has the goal of serving as a base-

line for our dataset, for this purpose we trained a Reti-
naNet with a Resnet50 backbone. It can be seen in
Figure 8 that our model’s FROC curve closely approx-
imates the FROC curve presented by Agarwal et al.
(2020) on the test data, furthermore authors reported
achieving a TPR=0.87 at 0.84 FPpI and our model
reaches a TPR=0.88 at 0.84 FPpI. The FPpI is computed
on both positive and negative images for fair compari-
son, then we also recalculated the FROC with FPpI on
negative images only, to be consistent with the rest of
the experiments.

4.2. Object detection methods and Swin transformer
4.2.1. RepPoints, Deformable DETR and Sparse-

RCNN with Swin-T
As the first attempt of this set of experiments, Rep-

Points, Deformable DETR and Sparse R-CNN are

Figure 8: Free-response Receiver Operating Characteristic (FROC)
curves of (a) Agarwal et al. (2020) (b) RetinaNet-Resnet50 (FPpI
computed on all images) and (c) RetinaNet-Resnet50 (FPpI computed
on negative images) on test data.

trained with a Swin-T backbone. Their performance is
evaluated using the FROC on validation and test data as
well as their respective TPRs at 0.75,0.8 and 0.85 FPpI.

Table 5 presents the TPR of the models at the pre-
viously mentioned FPpI values, on validation and test
data. The FPpI is calculated using negative images only.

RepPoints and deformable DETR are selected for
further experiments as their performance at the FPpI
range of interest is consistently better on both valida-
tion and test data. Figure 10 presents the plotted FROC
curves of these two models, where it can be observed
that they already outperform our baseline model, with a
TPR=0.908 at 0.85 FPpI (RepPoints-Swin-T) compared
to a TPR=0.884 (RetinaNet-Resnet50).

Table 6 contains the area under the FROC curve
achieved by these models, in which it can be seen
once again that RepPoints-Swin-T surpasses the base-
line model’s performance. In Figure 9 examples of mass
detection results given by these 3 models are shown.
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Validation data Test data
Model Backbone TPR at 0.75 TPR at 0.8 TPR at 0.85 TPR at 0.75 TPR at 0.8 TPR at 0.85

RepPoints Swin-T 0,887 0.893 0.896 0.899 0.903 0.908
Swin-B 0.875 0.878 0.886 0.901 0.903 0.905
Resnet50 0.893 0.896 0.900 0.901 0.906 0.910
Resnet101 0.887 0.892 0.896 0.898 0.902 0.907

Deformable DETR Swin-T 0.875 0.875 0.879 0.872 0.876 0.880
Swin-B 0.867 0.868 0.868 0.883 0.886 0.889
Resnet50 0.810 0.811 0.812 0.825 0.825 0.825
Resnet101 0.837 0.839 0.839 0.862 0.864 0.865

Sparse R-CNN Swin-T 0.866 0.868 0.869 0.867 0.869 0.869
RetinaNet Resnet50 - - - 0.881 0.882 0.884

Table 5: True positive rate values on different FPpI values. (FPpI calculated on negative images)

Validation data Test data
Model Backbone AUC FROC AUC FROC

RepPoints Swin-T 0.830 0.847
Swin-B 0.832 0.852
Resnet50 0.829 0.842
Resnet101 0.8258 0.844

Deformable DETR Swin-T 0.816 0.805
Swin-B 0.811 0.825
Resnet50 0.771 0.781
Resnet101 0.781 0.808

RetinaNet Resnet50 - 0.812

Table 6: Area under FROC curves of trained models.

Figure 9: Mass detection results obtained by RepPoints, Deformable
DETR and Sparse R-CNN with Swin transformer backbone.(yellow:
GT box, purple,blue and orange: each models respective prediction
boxes.The numbers shown correspond to the confidence score)

4.2.2. RepPoints and Deformable DETR with Swin-B

The following experiments use the previously se-
lected object detection methods with a Swin-B back-

Figure 10: FROC curves of RepPoints and Deformable DETR with
different backbones (Swin-T, Swin-B, Resnet 50 and Resnet 101) on
(a) Validation and (b) Test data.

bone, with a higher probability on the data augmenta-
tion policies. The results obtained by these models are
presented on Table 5 where it can be observed that the
TPR values on 0.75-0.85 FPpI are very similar to those
achieved by the same methods with Swin-T backbone.
Nevertheless, the area under the FROC curves of the
Swin-B versions are slightly higher as shown in Table
6. The plotted FROC curves can be observed on Figure
10.

4.3. RepPoints and Deformable DETR with CNNs

As mentioned in section 4.2.1, RepPoints and De-
formable DETR were chosen as the object detection
methods to use for further experiments. To have equiv-
alent convolutional-based models for comparison, we
train the detection heads with Resnet 50 and Resnet 101
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Figure 11: Comparison of the FROC curves of the best performing
transformer and convolutional-based models with the baseline model.

Test data
Model Backbone TPR at 0.75 TPR at 0.8 TPR at 0.85

WBF (RepPoints+
Deformable DETR) Swin-T+Swin-B 0.922 0.926 0.929

Resnet50+Resnet101 0.920 0.921 0.922

Swin-T+Swin-B+
Resnet50+Resnet101 0.933 0.934 0.936

Table 7: TPR at different FPpI values (computed on negative images)
of WBF of different models.

which are comparable in terms of parameter counts, to
Swin-T and Swin-B.

Results obtained by these models are shown in Ta-
bles 5 and 6. The area under the FROC curves of Rep-
Points with both convolutional backbones as well as the
TPR (0.75-0.85 FPpI) are almost equal to those of their
transformer counterparts. However, Deformable DETR
with the convolutional backbones underperforms when
compared to the transformer-based model.This can also
be appreciated on the plotting of their respective FROC
curves presented on Figure 10.

Figure 11 shows the FROC curves of the best
transformer (RepPoints-Swin-B) and convolutional
(RepPoints-Resnet 101) based models along with our
baseline. The superiority and similarity of both models
can be appreciated through all FPpI values of the curve.

4.4. Weighted boxes fusion

In order to improve our detection predictions, WBF is
applied combining the outputs of all transformer-based
models, all convolutional models and finally both. The
positive impact of WBF can be qualitatively appreci-
ated on the examples presented in Figure 12, where it
gives more accurate prediction coordinates and also dis-
cards wrong predictions. Figure 13 presents the plotting
of the FROC curves of the all the WBF models along
with the best performing transformer and convolutional-
based models and our baseline for qualitative compari-
son.

4.4.1. WBF applied on transformer-based models
Firstly the predictions of RepPoints and Deformable

DETR with Swin transformer backbones are combined.

Figure 12: Weighted boxes fusion results from different models pre-
dictions (a) Gives more accurate coordinates of the prediction box (b)
Discards wrong predictions and outputs an accurate prediction. (yel-
low: GT box, blue: WBF prediction, color boxes:different models
predictions)

Validation data Test data
Model Backbone AUC FROC AUC FROC

WBF (RepPoints+
Deformable DETR) Swin-T+Swin-B 0,859 0,869

Resnet50+Resnet101 0,843 0,863

Swin-T+Swin-B+
Resnet50+Resnet101 0,863 0,878

Table 8: Area under the FROC curves obtained by WBF models.
(FPpI calculated on negative images)

Table 7 presents the TPR values obtained, in which it
can be seen there’s a 2% improvement on the TPR at
0.85 FPpI compared to the highest value reached in-
dividually by a transformer-based model (RepPoints-
Swin-T). The same improvement is reflected on the area
under the FROC curve of this model, shown in Table 8.

4.4.2. WBF applied on convolutional-based models
Results obtained by the fusion of convolutional-based

models are presented on Tables 5 and 8. As in the case
of combined transformer-based models, there is an im-
provement compared to the individual perfomances of
convolutional-based models on a similar proportion.

However, when comparing the results of WBF of
convolutional vs. transformer-based models, the last
obtain slightly better results in terms of TPR and area
under the FROC curve.
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Figure 13: Comparison of FROC curves of baseline model, best per-
forming convolutional and transformer-based models to WBF applied
to transformer-based, convolutional-based and all models.

Test data

Model Backbone IoU AUC FROC
( FPpI neg)

WBF (RepPoints+
Deformable DETR)

Swin-T+Swin-B+
Resnet50+Resnet101 0.1 0.878

0.2 0.873
0.25 0.869
0.3 0.864

Table 9: Area under the FROC curves obtained by applying WBF to
all models predictions and varying the IoU threshold for evaluation.

4.4.3. WBF applied on all models
After observing a significant improvement by com-

bining models of the same type of backbone, they are
all combined to see if further improvement is possi-
ble. As shown in Tables 5 and 8, combining all mod-
els improves the results of WBF applied transformer or
convolutional- based models alone and when compared
to the performance of individual models we can observe
a 2.5% improvement.

On Figure 14 examples of mass detection results ob-
tained by this combination are presented.

Additionally we carried out some experiments to as-
sess the performance of WBF of all models, while modi-
fying the IoU threshold. Previously all trials were evalu-
ated on an IoU=0.1 to define TPs and FPs, on this set of
experiments we increase the threshold to 0.2, 0.25 and
0.3. The obtained FROC curves for these trials are plot-
ted in Figure 15, it can be observed these models still
outperform the baseline and individual performance of
RepPoints-Swin-B. Obtaining a TPR of 0.93, 0.92 and
0.92 at 0.85 FPpI, for a 0.2, 0.25 and 0.3 IoU respec-
tively.

Table 9 presents the area under the FROC curves of
these experiments, with FPpI calculated on both nega-
tive images and all images obtaining very similar values.

5. Discussion

This study focuses on the detection of masses on Full
Field Digital Mammograms using transformer-based ar-

Figure 14: WBF of all models: Mass detection results on test data ,
(a–e) present TP detections, (f, g) show some FP detections on nega-
tive images, (h-j) show TP and FP detections on positive images, and
(k, l) show undetected masses (yellow: GT box, green, orange and
blue: detection boxes). The numbers shown correspond to the confi-
dence scores of the predictions.

Figure 15: Comparison of FROC curves of the baseline model,
RepPoints-Swin-B, and WBF of all models evaluated at different IoU
thresholds.

chitectures. To our knowledge the proposed work is the
first to attempt implementing the use of a transformer
backbone for mass detection in mammograms, result-
ing in models that outperform previous state of the art
methods.

Experiments have shown that achieving good results
on mass detection using transformer backbones is pos-
sible and promising. The results of this work show on
par performances using transformer and convolutional
backbones for object detection methods, even when
convolutional models benefit from pre-trained heads on
CNNs. Based on the achieved results, we believe trans-
formers have the potential to outperform CNNs, on
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this task, considering that the Swin Transformer back-
bone was used unmodified, as proposed by its authors.
Exploring the modification of Swin’s hyperparameters,
such as window size, could lead to extracting better
information for mass detection. Additionally, an im-
proved second version of Swin, capable of handling
higher resolution images, has been released and its use
could lead to improved performances (Liu et al., 2021a).

An interesting result seen on the experiments is the
performance of Deformable DETR with a transformer
backbone in contrast to its convolutional peer. While
RepPoints performs similarly with both backbones, it
seems that the transformer head Deformable DETR spe-
cially benefits from transformer extracted features. This
finding may encourage researchers to utilize this object
detection method with a transformer backbone instead
of a CNN for better results. It is worth mentioning
that Deformable DETR achieves a competitive perfor-
mance although it has been trained with a smaller image
size, which opens the possibility of not only achieving
on par results to RepPoints if possible to train it with
a higher resolution, but also highlights the potential of
this method combined with a transformer backbone.

Additionally the use of weighted boxes fusion has
been proven useful to boost the performance of ob-
ject detection models. As shown, combining only
transformer-based models already achieves a meaning-
ful improvement over the baseline model and even out-
performs the ensemble of convolutional-based models
in respect to the area under the FROC curve and sensi-
tivity. Moreover, further improvement can be achieved
when both convolutional and transformer-based models
are ensembled, which suggests these backbones may ex-
tract different features that complement each other when
combined together. Due to time limitations the grid
search for the optimal weights was performed on a small
set of seven options, this search could be expanded to
possibly find better weights for the ensembles. It also
can be observed that the best weights found, assign a
low weight to Deformable DETR models with convolu-
tional backbones while higher weights are assigned to
its transformer peers, suggesting these models have a
more positive impact when performing the fusion of the
predictions.

Finally, our last experiments showed that the pre-
dictions of WBF, of convolutional and transformer-
based models, can also achieve promising results with
higher IoU thresholds for evaluation. Since it can be
said a IoU= 0.1 is small, considering computer vision
projects use a IoU=0.5 to compute FPs and TPs, we’ve
shown that even with 3× this value it has been possible
to obtain robust predictions in the medical image do-
main. After observing this performance, there is a pos-
sibility similar results can be achieved also combining
transformer-based models only, which could be investi-
gated in future work.

6. Conclusions

This study presents the implementation of RepPoints,
Deformable DETR and Sparse R-CNN models, with
the general purpose vision transformer backbone Swin,
for mass detection in mammograms from a high resolu-
tion, large scale dataset. It was shown that transformer-
based models can be fine-tuned on pre-trained on nat-
ural images models and be successfully adapted to de-
tect masses in mammograms. The implemented models
achieve promising results on this task and show on par,
or even superior, performances to their convolutional
counterparts. Compared to our baseline, which repli-
cates the performance of previous state of the art model
applied on OMI-DB, the proposed mass detection mod-
els achieve higher sensitivity and areas under the FROC
curve.

Additionally, combining the predictions of RepPoints
and Deformable DETR, with both Swin-T and Swin-B
backbones, using weighted boxes fusion results in out-
performing single model predictions and previous state
of the art by a significant 5.7% on the area under the
FROC curve. Furthermore, when combining these mod-
els predictions with those of their convolutional peers,
the performance can be further improved by an addi-
tional 1.1%. The presented frameworks demonstrate the
potential of transformer backbones in detection tasks on
the medical imaging domain.
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F., Helbich, T., Heywang-Köbrunner, S., Camps-Herrero, J., Kuhl,
C., Martincich, L., Pediconi, F., Panizza, P., Pina, L., Pijnappel,
R., 2015. Breast MRI: EUSOBI recommendations for women’s
information. European radiology 25, 3669–3677.

Mughal, B., Sharif, M., Muhammad, N., 2017. Bi-model processing
for early detection of breast tumor in CAD system. The European
Physical Journal Plus 132, 1–14.

Nickson, C., Mason, K.E., English, D.R., Kavanagh, A.M., 2012.
Mammographic screening and breast cancer mortality: a case–
control study and meta-analysis. Cancer Epidemiology and Pre-
vention Biomarkers 21, 1479–1488.

Patel, B.C., Sinha, G., Soni, D., 2019. Detection of masses in mam-
mographic breast cancer images using modified histogram based
adaptive thresholding (MHAT) method. International Journal of
Biomedical Engineering and Technology 29, 134–154.

Punitha, S., Amuthan, A., Joseph, K.S., 2018. Benign and malignant
breast cancer segmentation using optimized region growing tech-
nique. Future Computing and Informatics Journal 3, 348–358.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only
look once: Unified, real-time object detection, in: Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp. 779–788.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards
real-time object detection with region proposal networks. Ad-
vances in neural information processing systems 28.
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Abstract

Time-lapse microscopy of cells is a routinely performed experiment in many biology laboratories, which serve key
importance in many applications, particularly when studying dynamic processes such as drug response and cancer
studies. Some key events occur during the cell cycle under normal or perturbed conditions, including i) Mitosis, ii)
Apoptosis, iii) Multipolar Division, and iv) Failure of Cell Division. Automatic identification and localization of these
events within the videos is of key importance to obtain useful information on many laboratory experiments. Here,
we present a differential interference contrast (DIC) live-cell microscopy dataset consisting of such events with the
goal of localization and classification of these events within the video frames. We propose an object detection-based
approach for the task by treating each event instance as an object. Several object detection algorithms have been
applied to assess the performance for the detection and classification of three key events; i) Early Mitosis, ii) Late
Mitosis, and iii) Apoptosis. YOLOv5 model achieves the best detection results, reaching mAP@0.5 (Mean Average
Precision) scores of 0.943 on the test set.

Keywords: DIC, Object Detection, Time-lapse microscopy, Mitosis, Apoptosis

1. Introduction

Advances in Computer vision, Machine Learning,
and Deep Learning algorithms have made significant
progress in the active field of event detection in videos.
Many techniques have been developed to tackle the var-
ious problems associated with the field, such as abnor-
mality detection for surveillance applications and hu-
man action detection.[Huh (2013)] However, one im-
portant application has not been given its deserved at-
tention - cellular event detection in time-lapse images
from transmitted light cell microscopy.

Time-lapse microscopy imaging is being used in an
increasing number of biological and biomedical stud-
ies to observe the dynamic behavior of cells over time
which help quantify important data, such as the number
of cells and their sizes, shapes, and dynamic interac-
tions across time. These quantitative properties provide
critical insight into the fundamental nature of cellular
function [Jiang et al. (2020)]. Because of this, live-cell
imaging has become a requisite analytical tool in most
cell biology laboratories, as well as a routine methodol-

ogy that is practiced in the wide-ranging fields of neu-
robiology, developmental biology, pharmacology, and
many other related biomedical research disciplines.

One of the major purposes for monitoring a cell pop-
ulation is to study single-cell behavior in response to
physiological or external stimuli and understand the un-
derlying mechanisms. For example, in drug discov-
ery and cancer research, Naso et al. (2020) have used
time-lapse microscopy to look at cell response to anti-
mitotic drugs in terms of cell division and cell death. To
achieve this goal, quantitative information on cell be-
havior needs to be obtained and analyzed. Among var-
ious cell behaviors, the behavior regarding proliferation
and fate are of main importance. All this is usually done
manually with protocols such as Caldon and Burgess
(2019). Therefore, automated systems for detecting cel-
lular events such as mitosis (cell division) and apoptosis
(cell death) are of great interest.

This proposal investigates approaches to automati-
cally localizing and classifying these cellular events
with deep learning algorithms. We more specifically
describe our problems for given time-lapse live-cell mi-
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croscopy images as follows:

• Mitosis detection identifies when (at which frame)
and where (at which x and y positions) cells enter
and end the mitotic state in the time-lapse images.

• Apoptosis detection identifies when and where a
cell death event occurs in the time-lapse images.

• Daughter cell detection identifies when and where
mitotic cells in early mitosis phase divide into
daughter cells (telophase and anaphase) in the
time-lapse images.

• Multipolar division detection identifies when and
where a multipolar division occurs in the time-
lapse images. A multi-polar division occurs when
a single mitotic cell divides into more than two
cells. The most common example of this is the
tripolar case where three daughter cells emerge
from a single mother cell.

• Failure of division detection identifies when and
where abnormal mitosis cases where mitotic cells
fail to divide into daughter cells and go back into
the media as a single interphase cell in the time-
lapse images.

A visualization of all of the above-mentioned events
are presented in Fig. 11 in the form of single-cell se-
quential image patches and in Fig. 3 in the form of in-
dividually identified phenotypes.

Time-lapse live-cell microscopy, such as phase-
contrast microscopy and differential interference con-
trast (DIC) microscopy, enables long-term monitoring
of live and intact cells. Most current high-throughput
microscopy imaging approaches resort to the use of cel-
lular staining, with which only short-term monitoring
of cells is allowed due to the photo-toxicity of reagents
used. One way to minimize this photo-toxicity is to
work with bright-field or transmitted light techniques
rather than fluorescence [Brown (2014)].

1.1. Transmitted Light Microscopy

Transmitted light microscopy is the general term used
for any type of microscopy where the light is transmit-
ted from a source on the opposite side of the specimen
from the objective. The microscopic techniques requir-
ing a transmitted light path include brightfield, dark-
field, Zernicke phase (or just phase), and DIC (or No-
marski) [Lang (1982)] optics. Examples are provided in
Fig. 1.

DIC is an imaging technique for rendering contrast
in transparent specimens used for imaging live and un-
stained biological samples, such as a smear from a tissue
culture. Its resolution and clarity for imaging such bi-
ological samples are unrivaled among standard optical

Figure 1: Different microscopy imaging modalities.

microscopy techniques. Image quality, when used un-
der suitable conditions, is outstanding in resolution and
almost entirely free of artifacts, unlike phase-contrast.

Phase-contrast and DIC microscopy are complemen-
tary techniques capable of producing high-contrast im-
ages of transparent biological phases that do not ordi-
narily affect the amplitude of visible light waves pass-
ing through the specimen [Rosenthal (2009)]. Phase-
contrast produces images with bright objects on a
medium gray background, while DIC produces rela-
tively transparent gray objects in a gray background.
DIC imaging possesses several advantages compared to
phase-contrast in biological, usage of equipment, ab-
sence of artifacts such as the halo effect, and can pro-
duce excellent high-resolution images [Murphy et al.
(2017)].

2. State of the art

Event detection in transmitted light time-lapse mi-
croscopy images is an application still in its infancy.
Although some works have been done to address the is-
sue, there is no so-called state-of-the-art, mainly due to
a lack of sufficient curated and annotated public datasets
and a lack of consensus on the evaluation of these meth-
ods. Furthermore, the task has been broken down into
the detection of specific events individually, such as
mitosis detection or cell death detection, in order to
counter the absence of datasets. Meanwhile, few to no
papers have worked on cases such as multipolar division
or failure of division, even though these events are rou-
tinely detected in laboratory settings and are manually
recorded.

Su et al. (2017) and Mao and Yin (2017) proposed
a convolutional long short-term memory (CNN-LSTM)
network and a Two stream Bidirectional CNN-LSTM
network on sequences of single-cell image patches and
utilized both spatial and temporal information in order
to detect mitosis events. They report an average pre-
cision of 0.96 and 0.98, respectively. However, these
models utilize a large amount of manually annotated
data to train on, and both papers also report a sharp de-
crease in accuracy when testing the model on other cell
datasets.

Lu et al. (2018) put forward a Time-lapse Microscopy
image in Nanowell Grids (TIMING) dataset for label-
free apoptosis classification using CNN and LSTM
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Models. The dataset contained single-cell crops, and
were classified as live or dead cells.

A CNN-LSTM model that learns spatial and tempo-
ral locations of the cells from a detection map in a semi-
supervised manner was proposed by Phan et al. (2019)
for the detection of mitosis in phase-contrast videos.
The method mentions the use of only 1050 annotated
frames to achieve an F1 score of 0.544-0.822 depend-
ing on the video. However, it also mentions the decrease
in performance with the increase in the input sequence
length, which is not ideal for practical situations where
time-lapse experiment’s video sequences may contain
thousands of frames. The method also will only be
able to detect a single event at a time, such as mito-
sis, whereas these events can randomly occur in multi-
ple places in a single frame.

An object detection method was proposed by
Von Chamier et al. (2020) in the paper ”Democratising
deep learning for microscopy with ZeroCostDL4Mic”.
Here the authors detected and localized the events
present in time-lapse microscopy videos using YOLOv2
architecture and were able to achieve a mAP@0.5 of
0.60 for their own presented dataset. The paper reflects
on easing the use of Deep Learning approaches for mi-
croscopic data analysis.

Nishimura and Bise (2020) proposed a method for
multiple mitosis event detection and localization by
estimating a spatial-temporal likelihood map using a
3DCNN architecture (V-Net). In the likelihood map, a
mitosis position is represented as an intensity peak with
a Gaussian distribution, in which multiple mitoses are
represented as multiple peaks. The proposed method
had an average precision of 0.862 on their own dataset.

While the method does take into account the spatial and
temporal information, it is only limited to the detection
of mitosis events and not any other events that may be
associated with mitosis. In order to identify other events
as well, multiple models based on this method would
be needed. Furthermore, usage of this method for other
datasets or cell lines requires the generation of laborious
manual annotations in the form of Gaussian distributed
likelihood maps.

La Greca et al. (2021) demonstrated the use of clas-
sical DL approaches like ResNet over transmitted light
microscopy (TLM) cell death, where they have classi-
fied different cell lines as dead or alive by using com-
plete frames as input images. On images that contained
both alive and dead cells, the model was able to predict
the dead cells, which were localized by looking at the
class activation maps (CAM) that reconstruct heat map-
like visualizations merging the information provided by
the last convolutional layer and the model predictions.
These predictions were compared with human perfor-
mance and were found to largely outperform human
ability.

Table 1 summarizes all deep learning based work
in Cellular event detection. Even though the above-
mentioned methods have several positives, they also
have several issues, among which the major ones can
be listed as:

• Most of the methods base their work on datasets
containing images based on fluorescence mi-
croscopy or phase-contrast techniques where the
cell background contrast is higher, and thus the
cells are easily distinguishable from the back-
ground. The same is not true for DIC images,

Table 1: Comparison of previous works in cellular event detection

Author Method Dataset Image
Modal-
ity

Dataset
Size

Detected
Events

Metric Metric-
values

Su et al. (2017) CNN-LSTM Private PC 2000
event
videos

Mitosis F1-score 0.97

Mao and Yin (2017) TS-BLSTM Private PC 500
event
videos

Mitosis Precision-
Recall

0.98-0.97

Lu et al. (2018) CNN-LSTM Deep-
TIMING
(Not-
available)

PC 72000
cropped
cells

Cell Death Precision-
Recall

-

Phan et al. (2019) Unsupervised
CNN-LSTM

Not available PC 1050
frames

Mitosis F1-score 0.544-
0.822

Von Chamier et al. (2020) YOLOv2 Public DIC 40
frames

Mitosis mAP 0.60

Nishimura and Bise (2020) V-Net CVPR2019
mitosis de-
tection (Not-
available)

PC 1013 im-
ages

Mitosis Precision 0.862

Cell-Death, La Greca et al.
(2021)

ResNet Public PC 14k im-
ages

Cell Death Accuracy 0.64 (for
u2os cell-
lines)
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where the cells are also transparent and seem to be
essentially indistinguishable from the background
upon high confluence.

• The methods usually identify themselves as event
detection but in truth, they are tailored to detection
of only one of the events that may occur, i.e., Mito-
sis or Apoptosis. This may be attributed to the lack
of curated datasets available.

• The datasets used have not been made publicly
available.

• Finally, the models usually are trained for a spe-
cific cell-line which when used for other cell-lines
fail to generalize. Hence, to bring the work into ap-
plication, there is a need to re-train the model with
the new specific dataset. For models that require a
large set of annotated data, this is no feasible.

3. Material and methods

3.1. Dataset

24 raw time lapse microscopy video frames of Hu-
man Bone Osteosarcoma Epithelial Cells (U2OS Line)
based on Differential interference contrast (DIC) mi-
croscopy technique were generated at the Nikon imag-
ing platform at IBPM-CNR of Rome. The videos con-
sisted of multiple events in each frame including Cell
division, Cell Death, Tripolar/Multipolar Division, and
Failure of Cell Division.

Each video has 60-70 frames and each frame can con-
sist from none to seven event instances of interesting
events. Table 2 shows the exact number of videos and
frames present for each event class. The event ”Mitosis”
can be extracted from all the videos as it is a prerequi-
site that the cells undergo early mitotic state and later di-
verge into different fates. Each video within it’s frames
may contain one or more cellular event other than mito-
sis.

Table 2: Number of videos per event

Event No. of videos No. of Frames

Apoptosis 9 598
Tripolar Division 10 542

Failure of Division 5 301
Mitosis All All
Total 24 1441

3.1.1. Image Acquisition
U2OS cell lines seeded in 2-4 micro-slides (Ibitreat)

were observed with an inverted microscope (Eclipse Ti,
Nikon) using a 40× (Plan Fluor, N.A. 0.60, DIC) or a
60× Oil (Plan Apo, N.A. 1.4, DIC) objective (Nikon).

During the whole registration, cells were kept in a mi-
croscope incubator (Basic WJ, Okolab) at 37°C in 5%
CO2. DIC images were acquired every 5 or 7 min using
a DS-Qi1Mc camera (Nikon) or a Clara camera (AN-
DOR technology). Asynchronous cultures were treated
with Aurora kinase inhibitor (MLN8237) to induce mi-
totic defects and cell death.

3.1.2. Image pre-processing
DIC imaging produces positive and negative peaks at

the edges of cell structures, while unchanging structure
results in a gray background intensity similar to that
found outside the cell, where the internal structure of
a cell has the same intensity as the image background
[Furcinitti (2013)].

The gray images were subjected to multiple image
processing techniques to see if the event-associated ob-
jects could be improved visually. However, because of
the nature of the microscopy technique, which provides
bright transparent objects on a bright background, most
techniques failed. Only gamma correction and sharpen-
ing with a high-pass filter from OpenCV were applied to
the images to obtain sharper objects with uniform illu-
mination. Fig. 2 illustrates some example frames from
the dataset before (a) and after (b) pre-processing.

Figure 2: Examples of the DIC microscopy frames present in the
dataset: a) original images and b) pre-processed images with gamma
correction to get uniform illumination and image sharpening with a
high-pass filter.

Contrast enhancement techniques such as CLAHE
[Yadav et al. (2014)] did produce strong objects but it
also resulted in highlighting the interphase cells present
in the background that are not much of interest forward.
Hence, contrast enhancement was not utilized. Further-
more, images provided were of size 400X320p. Neces-
sary padding was done on the images to have a common
height and width to 412X412p.

3.1.3. Data Annotation
For the object detection approach, each event in-

stances present in the video frames were treated as indi-
vidual objects and were annotated with bounding boxes
through an open-source image annotation tool, ”make-
sense.ai” Skalski (2019). The identification of these
events was done based on the morphology of the cell
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Figure 3: Examples of identified cell phenotypes and representative
examples that were hand-labelled to build the training dataset from
bright-field time-lapse videos.

states with the help of an expert biologist. The pri-
mary annotated dataset consists of all the event classes
present except for the ”Failure of Division” class, since
the class cannot be identified through phenotype alone
and requires temporal information as well. An approach
to identify the said event has been discussed in the lim-
itations section 4.2 of the Results and Discussion.

The event instances were annotated as four different
classes; Mitosis as two separate classes i) Early Mito-
sis (Mitotic Circular) and ii) Late Mitosis (Dividing) ,
iii) Apoptosis (Cell Death), and iv) Multipolar (Tripolar
Division). A visualization of these independent event
instances is presented in Fig. 3, while Fig. 4 dis-
plays a frame annotated with bounding boxes for dif-
ferent classes. In order to keep the naming conventions
simple, alternative less technical class names have been
used synonymously throughout this document. The
class names included in the parenthesis represent these
names.

Annotations were obtained in Pascal VOC format
with xml files for each images and were later converted
into other formats such as COCO JSON, YOLO format,
etc as required. The conversions were done using Moore
and Corso (2020) library.

3.1.4. Dataset Preparation
The distribution of the annotated objects per class can

be seen in Fig. 5A. There is a large class imbalance
within the dataset between the largest, Early Mitosis,
and the smallest class, Tripolar Division. Therefore, we
tried to improve the class distribution by class balancing
techniques. Namely, we applied undersampling of the
majority class by removing some of the images includ-
ing objects belonging to the Early Mitosis class. More-
over, we applied oversampling of the minority class,
applying augmentation techniques (i.e., horizontal and
vertical flipping, and rotations) to the images including
objects belonging to the Tripolar Division class. The

Figure 4: One of the frames annotated with bounding boxes to
build the dataset from time-lapse videos. Each frame can consist
of multiple events that occur independently. In this example, we
find four independent events: one Early Mitotic (red box), one Cell
Death/Apoptosis (cyan box), and two Late Mitotic Cells (blue boxes).

resulting class distribution of the complete dataset is
shown in Fig. 5A.

Initial tests were performed on the complete 4-class
dataset using YOLOv5s as a benchmark model (see Ta-
ble 3 for details). The extreme poor performance, not
only concerning the minority Tripolar Division class,
but all the classes, lead us to drop the ”Tripolar Di-
vision” class. Excluding from the dataset all the im-
ages containing this type of event, we obtained a 3-class
dataset consisting of 683 images with a total of 714
Early Mitosis, 290 Late Mitosis, and 531 Cell Death
events.

Furthermore, a number of background images, i.e.,
images with no objects, were also included in the dataset
amounting to approximately 10% of the complete final
dataset in order to reduce False Positive cases

The 3-class dataset was split into different train, vali-
dation and test sets such that the frames from the same
video would not be present in different splits The dis-
tribution of this final 3-class dataset can be seen in Fig.
5B.

3.2. Applied Methods

Based on the literature review of previous work done
for event detection in time-lapse microscopy videos, we
propose using each individual phenotype event present
in the frames as an object, essentially reducing the prob-
lem to a classical object detection and classification
challenge. This approach was chosen with various fac-
tors in mind, especially the small size of the dataset,
lack of annotations on the data, the requirement of re-
fining the dataset, and most importantly, ease of use of
the application by the biologist.

Object detectors today usually can be divided into
two parts, a backbone that is pre-trained on ImageNet
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Figure 5: Distribution of object instances per class in: A) the complete 4-class dataset and B) the 3-class dataset with train-val-test splits.

and a head which is used to predict object classes and
object bounding boxes. The head can be further classi-
fied into two types, one-stage object detectors such as
YOLO, SSD, and RetinaNet, and two-stage object de-
tector such as the R-CNN family. Object detectors in
recent years often include some layers that connect the
backbone and the head, called the neck, which are usu-
ally used to collect feature maps from different stages.
Fig. 6 illustrates the common structure for these ob-
ject detection frameworks. Additionally, there also have
been some other architectures that put an emphasis on
directly building a new backbone or a completely new
model structure.

Several different object detection models were used
to achieve the solution with multiple experiments within
each model.

3.2.1. Faster-RCNN

First proposed by Ren et al. (2015), Faster-RCNN
is the most widely used state-of-the-art version of the
R-CNN family. These networks usually consist of —
a) A region proposal algorithm to generate “bounding
boxes” or locations of possible objects in the image; b)
A feature generation stage to obtain features of these
objects, usually using a CNN; c) A classification layer
to predict which class this object belongs to; and d) A
regression layer to make the coordinates of the object
bounding box more precise. The Faster R-CNN algo-
rithm improves upon the selective search algorithm by
introducing another convolutional network, Region Pro-
posal Network (RPN) to generate the region proposals.
Hence, Faster R-CNN can be summarised as a detection
pipeline that uses the RPN as a region proposal algo-
rithm, and Fast R-CNN as a detector network. A Non-
maxima suppression (NMS) Bodla et al. is also applied
with a threshold. From the top down, all of the bound-
ing boxes which have an IoU of greater than the thresh-
old with another bounding box are discarded. Thus the
highest-scoring bounding box is retained for a group of
overlapping boxes.

3.2.2. RetinaNet
RetinaNet is a one-stage object detection model that

utilizes a focal loss function to address class imbalance
during training. Proposed by Lin et al. (2017) of Face-
book AI Research (FAIR) in the paper titled ”Focal Loss
for Dense Object Detection”, they showcased the ap-
plication of a new loss function called the Focal loss.
Focal loss applies a modulating term to the cross en-
tropy loss in order to focus learning on hard negative
examples. RetinaNet is a single, unified network com-
posed of a backbone network and two task-specific sub-
networks. The backbone is responsible for computing
a convolutional feature map over an entire input image
and is an off-the-self convolutional network. The first
subnet performs convolutional object classification on
the backbone’s output; the second subnet performs con-
volutional bounding box regression. The two subnet-
works feature a simple design that the authors propose
specifically for one-stage, dense detection.

3.2.3. YOLO Architechtures
Models based on YOLO (You Only Look Once) use

a single neural network to process an entire picture,
then separate it into a grid system and predict bounding
boxes and probabilities within each grid. These meth-
ods are “just looks once” at the image in the sense that
they make predictions after only one forward propaga-
tion run through the neural network. They then deliver
detected items after non-maxima suppression.

YOLOv2 Redmon and Farhadi (2017) is a single-
stage real-time object detection model. It improves
upon YOLOv1 in several ways, including the use of
Darknet-19 as a backbone, batch normalization, use of a
high-resolution classifier, and the use of anchor boxes to
predict bounding boxes, and more. YOLOv2 achieved
the state-of-the-art (SOTA) title for general object de-
tection and classification task in 2016 outperforming
the previous SOTA models like Faster-RCNN and Reti-
naNet on the combined COCO 2007 and 2012 dataset
while still running significantly faster.

YOLOv4 is one of the newer additions to the YOLO
series, published in 2020 by Bochkovskiy et al. (2020).
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Figure 6: Object detector frameworks. (Extracted from Bochkovskiy et al. (2020))

This framework introduced what they called ”Bag of
freebies” and ”Bag of Specials” additional methods of
data augmentation Mosaic and Self-Adversarial Train-
ing (SAT). Mosaic creates a mix of four different train-
ing images into one. Self-Adversarial Training operates
in two forward and backward stages. In the first stage,
the network alters the only image instead of the weights.
In the second stage, the network is trained to detect an
object on the modified image.

While YOLOv4 is based on the Darknet framework
written in C, a version of the same algorithm based
on the PyTorch framework was released by Jocher
et al. (2022). This framework is called YOLOv5
and resembles YOLOv4 completely in its implemen-
tation otherwise. YOLOv5 also includes additional
methods, called hyperparameter evolution, that help
to perform hyperparameter optimization on the model.
With these optimized hyperparameters, training a new
model results in increased performance. YOLOv5
within itself contains multiple models, named accord-
ing to their depth and number of parameters: YOLOv5s
(Small), YOLOv5m (Medium), YOLOv5l (Large), and
YOLOv5xl(XLarge).

3.2.4. YOLOX

YOLOX is a single-stage anchor-free object detector
proposed by Ge et al. (2021). It makes improvements on
previous iterations of the YOLO series with introduc-
tion of three fundamental innovations. First, it employs
a decoupled head where classification and localization
operations are separated instead of a coupled head. Next
is the use of anchor-free boxes by reducing the number
of predictions for each location from 3 to 1 and selec-
tion of 1 positive sample for each object. Lastly, it uti-
lizes SimOTA for label assignment where label assign-
ment is formulated as an optimal transport problem via
a top-k strategy. Additionally, YOLOX uses augmen-
tation strategies such as adding Mosaic and MixUp to
boost performance.

3.2.5. VFNet
Introduced by Zhang et al. (2021), VarifocalNet is

a method aimed at accurately ranking a huge number
of candidate detections. It consists of a new loss func-
tion, named Varifocal Loss, for training a dense object
detector to predict the IoU-aware Classficiation Score
(IACS), and a new efficient star-shaped bounding box
feature representation for estimating the IACS and refin-
ing coarse bounding boxes. Combining these two new
components and a bounding box refinement branch, re-
sults in a dense object detector, what the authors call
VarifocalNet or VFNet for short. Varifocal loss is based
on the binary cross entropy loss as well as Focal loss
and is defined as:

VFL(p, q) =


−q(qlog(p) + (1 − q)log(1 − p)) q > 0
−αpγlog(1 − p) q = 0

where p is the predicted IACS and q is the target
score. For a foreground point, q for its ground-truth
class is set as the IoU between the generated bound-
ing box and its ground truth (gt IoU) and 0 otherwise,
whereas for a background point, the target q for all
classes is 0.

3.3. Implementation Details

The above-mentioned models were implemented us-
ing different Python libraries as each model may have its
own implementation workflow. Multiple experiments
were carried out for each model to obtain the highest
metric values possible, but only experiments that re-
flect some insights are mentioned. All models were
trained using pre-trained weights provided by the re-
spective framework used. Multiple experiments were
run for each model at intervals of 30, 100, 200, and 300
epochs to determine the least number of epochs required
to achieve the best metrics. A maximum Batch size was
used for each model, which can be found in Table 4. The
imgaug library [Jung et al. (2020)] was used to augment
the training set images and the bounding boxes by ran-
dom rotation, flipping, and brightness/contrast augmen-
tations for the YOLOv2 and the VFnet models, while
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for the rest of the models, image augmentation was per-
formed using the built-in config files. The transform
probabilities were made sure to be the same in all the
runs.

• The YOLOv2 model was trained based on an
implementation provided by Von Chamier et al.
(2020).

• The Detectron 2 library from Facebook AI Re-
search was used to train RetinaNet and Faster-
RCNN implementations. Faster-RCNN models
were trained with a ResNeXt-101 backbone pre-
trained on COCO dataset, and RetinaNet mod-
els were trained with a ResNet-101 backbone pre-
trained on COCO dataset.

• Both YOLOv5 and YOLOX models were imple-
mented using their official GitHub repositories.
For YOLOv5, from Ultralytics as suggested by
Jocher et al. (2022) and for YOLOX, from Megvii-
BaseDetection as proposed in Ge et al. (2021). Pre-
trained weights from the COCO dataset were used
to initialize both models. On the best YOLOv5
model obtained, hyperparameter optimization was
run for 300 generations using the hyperparameter
evolution method presented in YOLOv5.

• VFnet was implemented through Chen et al. (2019)
MMDetection library from OpenMMLab. The
model was trained with a ResNet-101 backbone
with weights initialized on the COCO dataset.

All experiments were performed either on a machine
with 32 GB RAM and NVidia GeForce RTX 2060 GPU
with 8 GB memory or on NVIDIA P100 with 25 GB of
RAM.

3.4. Evaluation Metrics

Object detection models are usually evaluated using
metrics such as Average Precision (AP) and mean Av-
erage Precision (mAP). Along with precision, the recall
metric is also considered important as it gives insights
into false positives that the model may predict. The MI-
DOG2021 mitosis detection challenge in histopathol-
ogy images in MICAAI 2021 presented by Aubreville
et al. (2022) used F1 score as the main main metric to
evaluate model performance which takes into account
for false positives as well as false negatives and is thus
considered to be a fair metric.

3.4.1. Intersection over Union (IoU)
The IoU metric in object detection evaluates the de-

gree of overlap between the ground (gt) truth and pre-
diction (pd) bounding boxes. IoU ranges between 0 and
1, where 0 shows no overlap and 1 means perfect over-
lap between gt and pd. It is calculated as follows:

IoU =
area(gt ∩ pd)
area(gt ∪ pd)

IoU tresholding can then be used to decide if a de-
tection is correct or not. For a given IoU threshold α, a
True Positive (T P), i.e., a correct positive prediction, is
a detection for which IoU(gt, pd) ≥ α and a False Posi-
tive (FP), i.e., a wrong positive detection, is a detection
for which IoU(gt, pd) < α. A False Negative (FN) is
an actual instance that is not detected.

3.4.2. Precision, Recall, and F1
Precision is the degree of exactness of the model in

identifying only relevant objects. It is the ratio of TPs
over all detections made by the model:

Precision =
T P

T P + FP
Meanwhile, Recall measures proposition of TPs among
all ground truths. It gives the percentage of detected
true positives as compared to the total number of true
positives in the ground truth. Mathematically, It is the
ratio of TPs over all ground truth objects and is defined
as:

Recall =
T P

T P + FN
Using these metrics, generally, a method is consid-

ered good if it reaches high Recall values, without sac-
rificing Precision. The F-measure (F1) is a metric that
combines Precision and Recall, given by their weighted
harmonic mean:

F1 =
2 ∗ Recall ∗ Precision

Recall + Precision

3.4.3. Average Precision & Mean Average Precision
(mAP)

AP@α is Area Under the Precision-Recall Curve
(AUC-PR) evaluated at α IoU threshold. Formally, it
is defined as follows

AP@α =
∫ 1

0
pr dr

AP is calculated individually for each class. This
means that there are as many AP values as the number of
classes (loosely). These AP values are averaged to ob-
tain the mean Average Precision metric. Precisely, mean
Average Precision (mAP) is the average of AP values
over all classes.

mAP@α =
1
n

n∑

i=1

APi for n classes

All of these metrics were calculated on the valida-
tion and test set using evaluation scripts present within
each algorithm as well as a separate evaluation script
from Padilla et al. (2021). All the evaluations were per-
formed on predictions made with a confidence score of
0.25 from each of the models.
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3.5. Application

One of the main goals of the project was to provide
an ease of implementation of the proposed method to
the biologist. After a lot of considerations on the pros
and cons for methods for this purpose, such as GUI
desktop application and web-based Flask implementa-
tion [Grinberg (2018)], a fully customizable google co-
lab notebook was prepared with the best performing
model, keeping in mind the ease of use. This was a
similar approach as the one taken by Von Chamier et al.
(2020), where the biologist would be able to easily to
train the state-of-the-art models on their own dataset.

4. Results

As mentioned earlier, all experiment setups for each
model utilized either the original 4-class dataset or the
3-class dataset, both of which include evaluation on a
validation as well as a test dataset. The presented re-
sults are structured in three subsections: first the results
on the 4-class dataset are shown, then the results on the
3-class dataset are presented, finishing with detailed re-
sults using the best deep learning approach.

4.1. 4-class dataset

On the 4-class dataset with augmentation for the
minority class, the highest mAP@0.5 of 0.680 was
achieved using the YOLOv5m benchmark model. As
suggested by all the performance values, reported in Ta-
ble 3, as well as by the qualitative visualization of the
classification results, the model was not able to perform
well on the 4-class dataset, even when we augment the
minority class, Tripolar Division.

4.2. 3-class dataset

On the final 3-class dataset prepared as mentioned in
section 3, all the methods seem to perform fairly well.
Among the several methods applied, the worst perfor-
mance was achieved by the Faster-RCNN model, while
the highest mAP@0.5 was achieved by the YOLOv5m
with optimized hyperparameters. For this model, the
use of hyperparameter evolution helped increase the
mAP@0.5 score from 0.923 in the default YOLOv5m
model to 0.943. The best performance values obtained
from each model are reported in Table 4. Values for
some of the metrics in the table could not be reported
as some models did not explicitly provide precision and
recall values. The per-class mAP scores are provided in
Table 5. Among all the models, the highest AP achieved
was for the Early Mitosis event class, followed by the
Apoptosis class.

Relatively newer architectures, such as YOLOX and
VFNet, were expected to achieve higher performance
compared to the other models. However, this was
not the case. Both the models, proposed in 2021,

reached a lower F1-score compared to their predeces-
sor, YOLOv5. Although YOLOX models performed
exceptionally well on the validation set compared to
YOLOv5, on the test set the metric values for YOLOX
models decreased.

A quick comparison with the previous works in the
field mentioned in Table 1 reveals that the proposed al-
gorithms, even without any temporal information inclu-
sion, can perform as well as some of the SOTA models
that utilize spatio-temporal information.

Figure 7: Confusion matrix for the YOLOv5m model on the test set
of the 3-class dataset.

Figure 8: Confusion matrix for the YOLOv5m model on the valida-
tion set of the 3-class dataset.

Figures 7 and 8 present the confusion matrices ob-
tained from the best performing model, YOLOv5m, for
the validation and the test dataset, respectively. The
heatmaps represent intense colors when the predicted
and actual results ratio is close to 1. It can be clearly
seen that all the three classes have intense colors rep-
resenting high likeness among the predicted and actual
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Table 3: Performances on the test set for the 4-class dataset

Approach mAP@0.5 Precision Recall F1-score Batch size No. of Epoch

YOLOv5m 0.680 0.451 0.878 0.5959 16 30

Table 4: Comparison between different models on the test set for the 3-class dataset

Approach mAP@0.5 mAP@0.75 mAP@0.5:0.95 Precision Recall F1 Batch size No. of Epoch

Faster-RCNN 0.877 0.5656 0.523 0.8361 0.658 0.736 64 60
RetinaNet 0.897 0.5574 0.5393 0.91 0.743 0.818 64 60
YOLOv2 0.812 - 0.535 0.741 0.88 0.804 32 60
YOLOv5s 0.916 - 0.54 0.949 0.871 0.908 16 30
YOLOv5m 0.928 - 0.553 0.972 0.854 0.909 16 30

YOLOv5m hyp 0.943 - 0.589 0.945 0.911 0.927 16 30
YOLOv5x 0.922 - 0.546 0.916 0.837 0.874 16 30
YOLOX 0.838 0.57 0.53 0.822 0.6028 0.756 16 30
VFNet 0.899 0.5724 0.5315 0.873 0.677 0.762 16 30

Figure 9: Plots showing Precision, Recall, and confidence values for each class obtained from the YOLOv5m predictions on the test dataset: a)
Precision vs. confidence, b) Recall vs. confidence, c) Precision vs. Recall, and d) F1 vs. confidence. The curves represent all classes (Blue), Early
Mitosis/Mitotic Circular (Cyan), Late Mitosis/Dividing (Orange), and Apoptosis/Cell Death (Green).

values for both the validation and the test datasets.
Figures 14 and 15 in Appendix B display the ground

truth and predictions for 16 test images for the best per-
forming model, YOLOv5m.

4.3. Limitations
Presently, a major limitation of the proposed model

is its inability to localize and classify two of the inter-
esting cellular events described in Section 1. A brief
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Table 5: Per-category mAP@0.5 on the test set for the 3-class dataset

Approach Early Mitosis Late Mitosis Apoptosis

Faster-RCNN 0.910 0.851 0.870
RetinaNet 0.902 0.855 0.934
YOLOv2 0.958 0.686 0.792
YOLOv5s 0.945 0.852 0.952
YOLOv5m 0.955 0.882 0.948

YOLOv5m hyp 0.964 0.881 0.982
YOLOv5x 0.927 0.860 0.980
YOLOX 0.923 0.780 0.811
VFNet 0.925 0.835 0.938

discussion on the limitations of the model in detecting
these two classes is presented below.

Detection of Multipolar events: The current model
will not be able to detect Multipolar events, since the
multipolar case was removed by the training set due
to the cited data imbalance problem. If and when
the model encounters an event other than those it was
trained on, needless to say it will identify it as another
event, probably the one that was present in the training
set and is most similar to it in terms of the features ex-
tracted by the model. For example, Fig. 10-a) shows
a Tripolar division event that the model had never en-
countered before. This has been identified as Late Mi-
tosis, the class that is morphologically the closet to the
mentioned scenario. Similarly, another example in Fig.
10-b) and c) shows the presence of an unknown ob-
ject (dark spot) captured during the microscopy experi-
ment, which the model detects as Cell Death/Apoptosis
in frame c) but correctly recognizes as background in
frame b).

Detection of Failure of Division events: Another
limitation of the current approach is the inability to rec-
ognize one of the key events, Failure of Division. As
discussed earlier in Section 3, the event cannot be rec-
ognized based only on cell phenotype or spatial infor-
mation, but requires temporal information. In order
to overcome this problem, an approach could be based
on cell tracking methods utilizing object-ID association
and specific characteristics. A visualization of the event
is present in Fig. 11-d). A specific event characteris-
tic is that the cell undergoes ”Early Mitosis” state for
a quite large period of time and then without any di-
vision event, the cells goes back into the background.
These specific properties of the said event along with
tracked cell ID could be used to identify the cell and de-
tect the event based on the time it remains in the ”Early
Mitosis” class or by introducing another class of ”In-
terphase” cells present in the background and discover
when the cell changes its class, from ”Early Mitosis” to
”Interphase”.

5. Discussion

Among the multiple approaches theorized and ap-
plied for event localization and classification, the usage

of object detection algorithms by treating the individual
event instances as individual objects in each frame was
observed to be highly applicable, as is evident from the
results. In this section, we will investigate the above
results, which led us to the final conclusions.

5.1. 4-class dataset

Several experiments were performed on the complete
primary dataset including the Tripolar Division event
to observe if the effect of class imbalance could be re-
moved. From the 4-class confusion matrix presented
in Fig. 13, it can be seen that the model failed to de-
tect all the Tripolar cases in the test set. This is be-
cause the model confidence values for the predictions
for this class were very low (0.19 max), so that even
a low confidence threshold of 0.25 for the mAP elim-
inated all the predictions for this class, if there were
any. At a lower confidence threshold, the detection
on the test dataset did predict Tripolar division cases,
but this strongly increased the number of wrongly de-
tected objects. Furthermore, it can also be observed
that the model was unable to discriminate between the
two very similar classes, Dividing/Late Mitosis and Cell
Death/Apoptosis. The high recall and low precision
values confirm the results of the system having a large
number of results, but the majority of the predicted la-
bels were indeed incorrect.

Hence, based on these inferences, it was decided to
omit the minority class in order to improve model per-
formance over the remaining event classes. The images
associated with this class were stored for future use,
when more class samples will be available.

5.2. 3-class dataset

The omission of the Tripolar class resulted in the 3-
class dataset that was further balanced using under- and
over-sampling techniques. Subsequent results on this
dataset revealed some interesting points discussed be-
low.

The best results obtained with the YOLOv5m model
with hyperparameter tuning may be attributed to the
model architecture itself, as well as the bag of freebies
and specials which use mosaic images in each batch in-
stead of using single images.

The increase in performance in the hyperparameter-
tuned model of YOLOv5 was to be expected as hyper-
parameters are what guide its training. With optimal
values, the same model performed better than the ini-
tial version. The final list of hyperparameters is listed in
Appendix B, in Fig. 16.

An astonishing result reported was the better perfor-
mance of the YOLOv5 model compared to YOLOX.
However, this result is in accordance with the results
reported by Keles et al. (2022) in the paper titled ”Eval-
uation of YOLO Models with Sliced Inference for Small
Object Detection,” where YOLOv5 models surpassed
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Figure 10: Predictions using the YOLOv5m model on some frame instances: a) with a ”Tripolar Division” event detected as Late Mitosis (”Divid-
ing”); b) with a small artifact (dark spot in the bottom center), correctly identified as a background object; c) with the same dark spot artifact as in
b) still appearing in a subsequent frame of the sequence, in this case detected as Cell Death.

all the YOLOX models on the VisDrone2019Det dataset
[Zhu et al. (2021)].

The performance of YOLOXs was observed to have
been severely impacted from the validation dataset to
the test dataset where it did not perform well. This
might have been a typical example of over-fitting of the
data.

Furthermore, one key factor also may be attributed to
the reporting of False Positives, which are technically
not False positives. There have been some cases where
the model could recognize the events one or two frames
before the event instances actually materialize. These
event instances naturally have not been annotated in the
dataset and thus are marked as False Positives, while in
truth, they are real events that have been detected. A
further investigation is required to discover the actual
cause.

The per-class mAP scores reported were as expected,
high for the Early Mitosis class and lower and equiva-
lent for the other two classes. This may be due to the
fact that the Early Mitotic cells are easily distinguish-
able in the frames as large rounded objects with smooth
contours surrounding them, while the two other classes
are possibly confused with each other given their phe-
notype similarity.

The comparison of the proposed results with the
SOTA results in Table 1 cannot be considered a clear
and fair method since each of them is obtained on a
different dataset. A look limited at the metric val-
ues only reveals that the proposed results are compa-
rable to SOTA metric values. However, it should be
noted that none of the previously mentioned methods
works on the detection of multiple events and that they
mostly focus their proposal on one event. For example,
Nishimura and Bise (2020) focuses on apoptosis and Su
et al. (2017) on the detection of Mitoses. Furthermore,
it also should be noted that most of the previous work
has been based on Phase contrast microscopy, whereas
little to no work has been done in the field for DIC mi-
croscopy, which is equally, if not more important, in

live-cell imaging.
As discussed in Section 3, one of the main goals of

the project is also to look into providing an applica-
tion of the work and make it more accessible. Event
detection is an important problem to tackle not only on
U2OS cell lines but also on other cell lines. As the per-
formance of the model would obviously decrease in the
case the cells do not appear visually similar, we pro-
posed an easy solution of providing customizable train-
ing and testing scripts over Google colab as a mode of
application. This concept is exactly taken from the work
of Von Chamier et al. (2020) for applications of Deep
Learning to Microscopy. This will allow the laboratory
personnel to train detection models on their own anno-
tated data, thereby removing the need to rely on algo-
rithms trained on larger datasets.

6. Conclusions

In the present work, we introduce a stratified dataset
composed of U2OS cells in DIC time-lapse microscopy
videos annotated with bounding boxes for four different
cellular events: Early Mitosis, Late Mitosis, Apoptosis,
and Multipolar Division. We discussed several different
approaches, including spatio-temporal detection using
CNN-LSTM and anomaly-based detection, and finally
demonstrated that an object detection-based approach to
the localization and classification of these events is well-
founded. We also demonstrated the use of several differ-
ent state-of-the-art algorithms on the proposed dataset
and were able to provide a google colab-based pipeline.

The proposition made in this study to treat event de-
tection as a multi-class object detection problem and
then use the current state-of-the-art methods could be
very functional as well as applicable. As discussed,
such an approach could also mitigate the issues related
to the unavailability of large public datasets and depen-
dence on a single pre-trained model. It allows the indi-
viduals to define their own datasets and models and train
them to get an application that removes the issue of the
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inability of the model to perform well with variability in
cell lines as well. We have been able to show through
the study that object detection models pre-trained on
images other than biomedical images can still provide
good results on time-lapse microscopy videos, thus re-
ducing the size of annotated data needed to leverage
deep learning models. Object detection in computer vi-
sion is still an actively worked-on application, and with
new advances in this domain, the analysis of digital mi-
croscopy also proceeds forward.

7. Future Work

Event detection in live-cell images is still a subject
that is being researched. From the point of view of the
proposed work, the future work in the field could be
divided into two sections.

• Downstream Analysis: An important analytical
step in time-lapse microscopy is the calculation of
duration of complete events as well as the dura-
tion of states in which the cell remains within that
event. This could be achieved by tracking the cells
throughout their changes in cell states. One ap-
proach discussed but not completed was to include
an IOU based association or tracking of individ-
ual cells as suggested by between different frames.
Another approach would be to use deep learning
based cell tracking methods. With these tracking
data, change in the class of the cell in new frame
could be used as a change-point in order to perform
various downstream analysis including calculation
of event time, and detection of new events such as
Failure of cell division.

• Alternate Method: An alternate method for de-
tection of cellular events that was looked into but
not approached because of time and data limita-
tions is using anomaly detection as a key tool to
identify abnormal or anomalous cellular events.
Deep learning architechtures such as autoencoders
and variational autoencoders have proved to be vi-
tal in detection of anomalous events in datasets re-
lated to pedestrian, security, and even fraud detec-
tion. The same concept could be utilized in or-
der to detect abnormal cellular events in time-lapse
videos.
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8. Appendix A. Vision Transformer for event classi-
fication

An earlier iteration of this research involved the
application of previous state-of-the-art adaptations in
video classification, such as CNN-LSTM, and newer
adaptations, such as Arnab et al. (2021), in order to clas-
sify the events while taking into account the spatial and
temporal information obtained from the videos. The
proposed method included using sequences of single-
cell image patches of events as input to train the video
classifier. This model would also require a detection or
candidate extraction framework, as suggested in Figure
12.

For this purpose, a dataset of single-cell sequences
was created from the 24 raw time-lapse microscopy
videos where single-cell image sequences of events
were cropped out using a 51X51 window such that
the image would contain only a single cell at a time.
The event sequences were then classified into one of
the 4 different event classes: Normal Mitosis, Apopto-
sis, Multipolar Division, and Failure of Division. The
dataset was built from 10 videos encompassing approx-
imately 15 event instances from the four different event
classes. Each event instance video contained 10-15
frames. Data augmentation techniques, such as hori-
zontal/vertical flipping and random rotation, were used.
The number of epochs and the batch size were set con-
stant at 30 and 2, respectively.

Figure 12: Proposed Network taken from Su et al. (2017)

The dataset was split into ten training event videos
containing at least two videos for each event class and
five testing videos containing at least one event class
each. Spatial data augmentation techniques were then
applied on each individual frame, such as horizontal and
vertical flipping, and rotations at 45, 135, and 225 were
used to increase the dataset size to 5-fold. Two keras-
based video classifiers, CNN-LSTM and a CNN-RNN
consisting of GRU layers, were trained on the dataset
mentioned above. The CNN-LSTM-based model was
able to achieve the a better accuracy of 51.36 among the
two models on the test dataset.

The low accuracy on our dataset compared to other
similar works using CNN-LSTMs may be attributed to
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Figure 11: Examples of single-cell patches of size 51X51 extracted from the raw time-lapse videos to build the training dataset for CNN-
LSTM/Vision Transformer-based classification. The sequences depict the four different events: a. Normal mitosis, b. Apoptosis, c. Multipo-
lar/Tripolar Division, and d. Failure of Division

Table 6: Performances achieved on the single-cell sequence dataset

Approach Accuracy Precision Recall

CNN-GRU 0.25 0.38 0.402
CNN-LSTM 0.5136 0.66 0.66

the lack of enough data at the time of testing this algo-
rithm. The datasets used by Su et al. (2017) and Mao
and Yin (2017) consist of a staggering amount of 2000
and 500 mitotic event sequences, respectively. An effort
to include these individual datasets was also made, but
the datasets were not publicly available.

Furthermore, to the best of our knowledge, there
are currently no available studies that employ a
transformers-based video classification approach for
event classification in time-lapse microscopy videos.
Hence, this approach was discontinued due to time
constraints and a lack of enough data in the form of
independent videos at the time. With enough data, this
approach could have a lot of potential and thus, has
been shelved for a future study. Furthermore, the use
of vision transformers for video classification could
further improve results from previous studies which
used CNN-LSTM for the detection of mitosis.

9. Appendix B. Additional Figures Related to
YOLOv5

Figure 13: Confusion matrix on the test set for the 4-class dataset

Figure 14: Examples of ground truths for 16 test images.
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Figure 15: Predictions made using YOLOv5m on the test images of
Figure. 14.

Figure 16: Final hyperparameter file obtained after hyperparameter
optimization of the YOLOv5m model.

Figure 17: Examples of a training input batch with 16 mosaic images
with different degrees of contrast.
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Abstract

Transformer models have recently started gaining popularity in Computer Vision related tasks. Within Medical Image
Segmentation, segmentation models such as TransUNet have incorporated transformer blocks alongside convolutional
blocks while remaining faithful to the popular U-Net architecture. The rationale behind this is to supplement the local
information obtained from convolutional kernels with the global information obtained from transformer blocks. The
present work examines information flow within transformer blocks of three such segmentation models: (i) TransUNet,
(ii) 2D CATS, and (iii) 2D UNETR. An analysis of attention information reveals that the transformer blocks for the
TransUNet effectively achieve a global receptive field starting from the first block, whereas the 2D CATS and 2D
UNETR achieve it starting from the third block. Based on the analysis, compressed versions of these models are
proposed in which all blocks after the first such block which effectively achieves a global receptive field are discarded
helping reduce the number of parameters to around 40% of the original parameters for 2D CATS and around 25%
for TransUNet and 2D UNETR. With the help of three different datasets (IBSR 18, EMIDEC, Synapse multi-organ),
it is shown that compression can reduce model parameters without seriously sacrificing model performance. For the
IBSR 18, the dice metric drops by a maximum of 0.21% for the 2D UNETR - Compressed, for the EMIDEC dataset
it drops by a maximum of 2.16% for the 2D UNETR - Compressed, and for the Synapse multi-organ dataset it drops
by a maximum of 2.65% for the 2D CATS - Compressed.

Keywords: vision transformer, segmentation, attention maps, model compression

1. Introduction

Following the success of AlexNet (Krizhevsky et al.,
2017), the last decade of Medical Image Analysis has
been dominated by Convolutional Neural Networks
(CNNs). Recently, however, an alternate approach to-
wards image analysis has been proposed which utilizes
transformer blocks.

Transformer blocks differ significantly from convolu-
tional blocks in that they can theoretically learn global
relationships within an image. Convolutional blocks,
on the other hand, can only extract local information.
This difference primarily stems from the fact that a con-
volutional block effectively has a limited field of view
(i.e. receptive field) whereas for a transformer block,
the field of view is essentially the entire image.

Similar to AlexNet, the transformers blocks were

popularized within computer vision in the context of im-
age classification with the proposal of the Vision Trans-
former (ViT) model (Dosovitskiy et al., 2021). Natu-
rally, the application domain soon broadened and trans-
formers were applied to other image analysis tasks as
well. The present study is concerned with one such task
being that of medical image segmentation. Image seg-
mentation is the task of assigning a label to each pixel
of an image. In contrast to image classification which
generally produces a single label as the output for each
image, image segmentation is mostly defined such that
it results in as many labels as there are pixels in the im-
age.

Unlike image classification where the ViT relied
solely on transformer blocks, image segmentation mod-
els incorporating transformer blocks have also tended
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to incorporate convolutional blocks. As far as medical
image segmentation is concerned, the encoder-decoder
based U-Net architecture (Ronneberger et al., 2015) and
its variants have been the relied upon workhorse. This
trend seems to be reflected even in segmentation mod-
els which incorporate transformer blocks. A number of
such models have maintained the basic encoder-decoder
U-shaped architecture. The present study, too, is con-
cerned with this particular family of segmentation mod-
els i.e. U-Net inspired segmentation models which have
incorporated transformer blocks. Three such architec-
tures - each of which modify the standard U-Net archi-
tecture differently - are considered here:

• TransUNet (Chen et al., 2021)

• CATS (Li et al., 2022)

• UNETR (Hatamizadeh et al., 2022b)

For architectures belonging to this family it is gen-
erally argued that the idea behind adding transformer
blocks is to utilize the transformer’s strength of extract-
ing global relations and to complement it with the con-
volution’s strength of extracting local relations (Chen
et al., 2021). The present study investigates this claim
by analyzing how information flows in these models.
Specifically, we can narrow in on the information flow
contributed from the transformer blocks. This allows us
to examine the veracity of the aforementioned philoso-
phy as to whether convolutional blocks and transformer
blocks indeed contribute differently to the overall infor-
mation flow. As such there are three key ideas behind
the following work. The first is to utilize U-Net inspired
segmentation models incorporating transformer blocks
and evaluate them on three medical imaging datasets:

• Synapse multi-organ dataset

• EMIDEC dataset

• IBSR 18 dataset

The second idea is to work with model interpretabil-
ity techniques and investigate the contribution of trans-
former blocks towards information flow in such archi-
tectures. The third idea is to utilize results from this
investigation in order to simplify existing architectures.

2. State of the art

Image classification was dominated by CNNs in the
last decade based on the success of architectures such
as AlexNet (Krizhevsky et al., 2017), ResNet (He et al.,
2016), and EfficientNet (Tan and Le, 2019). Inspired
from Natural Language Processing (NLP), however,
a transformer based model having no convolutional
blocks was proposed in 2020. This was the Vision
Transformer model (ViT) (Dosovitskiy et al., 2021)

which divided an image into patches. Embeddings ex-
tracted from each patch - similar to word token embed-
dings in NLP - were passed on to a series of transformer
blocks before adding a multilayer perceptron to the final
layer for a classification decision. The same paper also
proposed a hybrid model in which instead of the trans-
former blocks directly operating on the original image,
they were applied to a feature representation of the orig-
inal image obtained from a CNN based backbone. Since
they lack the inductive bias already present in CNNs,
transformer models have been known to require a large
amount of data. Vision transformer models were pre-
trained on JFT-300M dataset, and the final models are
available online for transfer learning.

Similar to image classification, image segmentation
was also dominated by CNNs. The encoder-decoder
based U-Net (Ronneberger et al., 2015) was a relatively
popular model inspiring derivatives such as V-Net (Mil-
letari et al., 2016) and U-Net++ (Zhou et al., 2018). At-
tention was also utilized in some derivatives such as the
Attention U-Net (Oktay et al., 2018), Attention Unet++
(Li et al., 2020), and Attention Gated Network (Schlem-
per et al., 2019). The earliest incorporation of trans-
former blocks, however, was done in TransUNet in 2021
(Chen et al., 2021). The idea behind TransUNet was to
replace the bottleneck convolutional layer of a U-Net
(with a ResNet backbone as encoder) with transformer
blocks.

Following TransUNet, other segmentation models in-
corporating transformer blocks were also proposed such
as the TransBTS (Wang et al., 2021) which expanded
upon TransUNet to be directly applicable to 3D images,
LeViT-UNet (Xu et al., 2021) which replaced the ViT
transformer in TransUNet with LeViT, CoTr (Xie et al.,
2021) in which the transformer blocks were applied not
only to the bottleneck layer but to the remaining layers
of the multi-scale feature map as well, Swin UNETR
(Hatamizadeh et al., 2022a) in which the U-Net encoder
was replaced by Swin transformer blocks, etc.

Many of the proposed models follow the encoder-
decoder based U-Net architecture and incorporate trans-
former blocks on the encoder side. While TransUNet
replaces the bottleneck layer with transformer blocks,
other models such as CATS (Li et al., 2022) intro-
duce a transformer based parallel path, the information
from which is fused with that coming from the convolu-
tional path before getting passed on to the decoder. An-
other model is the UNETR (Hatamizadeh et al., 2022b)
which gets rid of all convolutional blocks within the en-
coder - barring one - and replaces them with transformer
blocks.

In addition to solving computer vision tasks such
as classification and segmentation, another important
field of research has been that of model interpretabil-
ity. Model interpretability often involves examining the
flow of information in order to understand how a model
arrived at its eventual decision. For CNNs, multiple
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such techniques exist such as Class Activation Mapping
(CAM) (Zhou et al., 2016) which is based on obtain-
ing a linear combination of the activation maps given
the output category one wishes to inspect. CAM gave
rise to multiple techniques such as Grad-CAM (Sel-
varaju et al., 2020) which utilizes gradient information
in order to find the linear combination coefficients and
Ablation-CAM (Desai and Ramaswamy, 2020) which
utilizes masking of feature maps in order to find the lin-
ear combination coefficients.

For vision transformer models, information flow of-
ten involves the inspection of attention values. Due to
the nascency of vision transformers there are relatively
few techniques which exist in this domain. (Samira and
Willem, 2020) proposed two such techniques, one be-
ing Attention Rollout which is based on recursive ma-
trix multiplication, and the other being Attention Flow
which is based on the maximum flow problem from
graph theory. Both of these techniques attempt at quan-
tifying the propagation of attention values from ear-
lier blocks to the later blocks. Attention Rollout was
also utilized in the vision transformer paper (Dosovit-
skiy et al., 2021) in order to interpret the results. Other
techniques have also been proposed such as the one by
(Chefer et al., 2021), which utilizes relevance propaga-
tion and instead of just focusing on transformer blocks,
takes the entire network into account.

3. Material and methods

3.1. Transformer

The transformer model was initially proposed in the
context of machine translation (Vaswani et al., 2017).
The self-attention based transformer model can essen-
tially be thought of as a representation learning mech-
anism for sequential data. With every successive trans-
former block, the representation of individual sequence
units is modified taking all other sequence units into ac-
count. This is in stark contrast to the Recurrent Neu-
ral Networks or the 1D Convolutional Networks which
only explicitly focus on a neighborhood around a par-
ticular sequence unit in order to modify its existing rep-
resentation.

An individual transformer block generally consists of
two layers, a self-attention layer and a multilayer per-
ceptron. The input to the transformer block is an input
sequence of length N, with each unit of the sequence be-
ing represented by an embedding of size D. In order to
inject positional information into the model, a positional
embedding is added to each input embedding. These
positional embeddings can either be pre-determined or
learnt during the training process. For each input em-
bedding, three vectors of size dk representing the “key”,
“query”, and the “value” are obtained via a simple ma-
trix multiplication involving the input embedding and
the key, query, and value matrices respectively. These

matrices are learnt during the training process. For each
input unit, it is determined as to which input units (in-
cluding itself) should contribute towards its next repre-
sentation. This is achieved by taking a dot product be-
tween the query vector of the concerned input unit and
the key vector of all units in the input sequence. A soft-
max is then applied to a scaled version of this dot prod-
uct representing the importance of each unit towards the
unit in question. The representation is then formed us-
ing a linear combination of value vectors such that the
results of the softmax form the coefficients of the linear
combination. This completes the self-attention mecha-
nism. Self-attention can be applied in a single step for
the entire sequence as expressed in the following equa-
tion:

Attention(Q,K,V) = so f tmax(
Q · KT

√
dk

) · V (1)

Where Q,K,V represent the query, key, and value
representations of the entire sequence, each of shape
N × dk.

In order to allow for multiple useful representations,
instead of using a single self-attention mechanism, a
multi-head self-attention mechanism is utilized. Put
simply, self-attention is repeated multiple times for
each unit, and the eventual representations are concate-
nated to obtain a final representation. Following self-
attention, the representations are passed through a mul-
tilayer perceptron whose weights are shared between all
units of the sequence.

In addition to the two layers, each transformer block
also makes use of layer normalization and residual con-
nections. Both self-attention, and multilayer perceptron
are preceded with layer normalization, and succeeded
with residual connections. The entire workflow of a
self-attention based transformer block (Figure. 1) can,
thus, be expressed in the following set of equations:

z
′
l = MS A(LN(zl−1) + zl−1 (2)

zl = MLP(LN(z
′
l)) + z

′
l (3)

Where MS A refers to multi-head self-attention, MLP
refers to multilayer perceptron, zl−1 represents the rep-
resentations from the preceding block, and zl represents
the representations from the current block.

3.2. Vision Transformer

Following the success of transformers in the field of
Natural Language Processing, (Dosovitskiy et al., 2021)
successfully applied them in the field of Computer Vi-
sion, particularly image classification. Since images,
unlike textual data, are not inherently sequential, the au-
thors proposed two simple ways in which image data
can be made compatible with transformers:
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Figure 1: Input representations pass through layer normalization,
multi-head self attention, residual connection, a second layer
normalization, multilayer perceptron, and a second residual

connection before being passed on to the next transformer block (the
total being L) (Dosovitskiy et al., 2021)

• Raw image patches

• Hybrid architectures

3.2.1. Raw Image Patches

A straightforward approach would be to simply con-
sider each image pixel as an individual input unit to the
transformer block. However, owing to the squared com-
putational cost within the self-attention block, this is not
feasible. Consequently, the authors propose splitting
the image into non-overlapping image patches. Each
patch is then flattened, and passed through an embed-
ding layer. The sequence of these input embeddings is
what forms the input to the transformer model. Conven-
tionally, for an image of size 224 × 224, the patch size
is taken to be 16 × 16 leading to 14 × 14 patches which
form 196 input tokens.

In addition to this, since the model is also required to
make a classification decision, an extra token is added
in the beginning of the sequence - referred to as the
“CLS” token. With each transformer block the repre-
sentation of the input embeddings keep getting modi-
fied, and from the last transformer block, the represen-
tation corresponding to the “CLS” position is passed
through a simple multilayer perceptron followed by a
softmax to get a classification decision.

A pictorial representation of the process can be seen
in Figure. 2.

Figure 2: Non-overlapping patches of size 14 × 14 are extracted from
the image which are then flattened and linearly projected. Positional

embeddings are then added to each representation, and an extra
”CLS” vector is added in the beginning before being passed on to the

transformer blocks. Output representations corresponding to the
”CLS” location are then fed to a multilayer perceptron from which
the final classification output is extracted (Dosovitskiy et al., 2021)

3.2.2. Hybrid Architectures
An alternative to raw image patches is to avoid ap-

plying the transformer model directly to the input im-
age. Instead, the authors propose passing the input im-
age through a Convolutional Neural Network, and the
transformer model can then be applied to the output of
an intermediate convolutional layer. The authors uti-
lize the ResNet family of architectures as their back-
bone Convolutional Network. The rationale behind this
method can be two-fold. Firstly, the spatial dimensions
of the intermediate feature maps would have decreased
considerably by then, allowing the transformer to be ap-
plied such that each pixel position be considered as an
individual input. Secondly, this allows for the convo-
lutional network to provide the transformer with an al-
ready rich feature representation as its input.

3.3. U-Net inspired Segmentation Models incorporat-
ing Transformers

ViT’s success has led to the application of trans-
former models into domains other than image classifi-
cation, a prime example being that of Image Segmen-
tation. In recent years, Medical image segmentation
has been dominated by the famous U-Net architecture
(Ronneberger et al., 2015) [Figure. 3] which has, since
then, also inspired multiple successful derivatives. U-
Net is essentially an encoder-decoder based fully con-
volutional architecture. In the encoding path the image
passes through a series of convolutions and max pool-
ings which successively reduces its dimensions. Once
the dimensions have been satisfactorily reduced, the in-
termediate output is passed to the decoding path where
it passes through a series of upsamplings and conven-

7.4



Compressing U-Net inspired Transformer based Segmentation Models using Information Flow 5

Figure 3: U-Net architecture - the encoder side processes the image
using convolutional blocks followed by max-pooling blocks, the
decoder side upsamples the output from the encoder bottleneck,

concatenates it with the corresponding encoder output and repeats
the process until a final convolution is applied corresponding to the

number of classes N to segment. The numbers in the figure represent
the channels from each stage of the process

tional convolutions which successively increase its di-
mensions. The idea of the encoding path is to construct
a global representation of the image whereas the idea
of the decoding path is to generate the final segmenta-
tion map using that representation. However, since the
global representation lacks the local information, U-Net
adds skip connections between corresponding down-
sampling and up- sampling layers so as to include the
local information as well as the global information in
order to produce the final output.

Interestingly, many transformer based image segmen-
tation models also seem to be inspired by the U-Net
architecture, and closely follow the encoder-decoder
based construction supplemented with skip connections.
Presently, the focus will be on three such architectures
each of which modify the encoder portion of the U-Net
in a different manner:

• TransUNet - replaces the bottleneck convolutions
of the encoder with transformer blocks

• CATS - runs the image through both transformer
blocks and convolutions separately and combines
the information at each encoder step

• UNETR - replaces the convolutional part of the en-
coder entirely with transformer blocks barring one
convolutional layer

Figure 4: TransUNet architecture - the encoder side - a ResNet-50
based backbone - processes the image gradually decreasing its spatial
dimensions. Once the spatial dimensions reach 14 × 14, the features
are processed by a transformer, the output of which is passed on to

the decoder which performs the process of upsampling and
concatenating skip connections from the corresponding encoder

output. The numbers in the figure represent the channels from each
stage of the process

3.3.1. TransUNet

Introduced in 2021, TransUNet (Chen et al., 2021)
was one of the first segmentation models which utilized
vision transformers. The idea behind TransUNet was
to replace the bottleneck portion of the encoder part
with a transformer model. In order to utilize available
pre-trained architectures, TransUNet makes use of a hy-
brid vision transformer model introduced in (Dosovit-
skiy et al., 2021). Assuming a 224 × 224 sized image,
the encoder part consists of feature maps obtained from
three blocks of a ResNet based backbone having spatial
dimensions of 112× 112, 56× 56, and 28× 28. Follow-
ing that, the output from the ResNet block has spatial
dimensions of 14 × 14 which are then fed to a trans-
former block as a sequence of length 196. There are
a total of 12 transformer blocks, the output of each of
which is 196×768 where 196 is the sequence length, and
768 is the representation dimension for each sequence
unit. The output of the final transformer block is then
reshaped back to 14 × 14 × 768, followed by a convo-
lutional layer, and an upsampling layer. This is con-
catenated with the corresponding feature map from the
ResNet backbone, and the process continues until the
desired image dimensions are reached as can be seen in
Figure. 4. It is worth noting that a major difference be-
tween this transformer model and the transformer mod-
els used in image classification is the lack of an extra
input token in the beginning as we are not interested in
a classification decision, but are only interested in utiliz-
ing the representations obtained from the transformer.
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3.3.2. CATS

Figure 5: 2D CATS - the encoder side is composed of two parallel
pathways. One is composed of a convolutional backbone - a

ResNet-50 in this figure - which processes the image by gradually
decreasing its spatial dimensions. The other one is composed of a
pre-trained ViT which works on 196 (14 × 14) non-overlapping

patches (size 16 × 16) from the original image and the output from
each of its blocks can be reshaped to a spatial dimension of 14 × 14.

The output from the third, sixth, and ninth transformer blocks are
passed through a series of upsamplings before being added to the

corresponding convolutional backbone output. The output from the
twelfth block is passed through a convolutional block, added to the
corresponding backbone convolutional output and passed on to the

decoder which performs the process of upsampling and
concatenating skip connections from the corresponding encoder

output. There is also an independent convolutional branch
connecting the image directly to the final decoder layer. The numbers

in the figure represent the channels from each stage of the process

Introduced in 2022, CATS (Li et al., 2022) retains
the original convolution based U-Net encoder. How-
ever, it adds an additional path in which the original im-
age is passed through a transformer model. The infor-
mation from the convolutional pathway and the trans-
former pathway is then fused using simple addition be-
fore flowing on to the decoder part. While the orig-
inal CATS paper proposed a network for 3D images,
the present work presents a slightly modified version
which is supposed to work for 2D images. Further-
more, the CATS architecture utilized a convolutional
encoder branch similar to the one proposed in the orig-
inal U-Net whereas in the modified architecture, most
convolutional backbones such as the ones available in
PyTorch image models library (Wightman, 2019) can
be utilized. Lastly, the CATS architecture does not use
a pre-trained transformer model whereas the proposed
architecture utilizes a pre-trained ViT.

Assuming an original image of spatial dimensions
224 × 224, the image is passed through a convolu-
tional pathway and a transformer based pathway sep-
arately. The convolutional pathway can consist of a
conventional U-Net based encoder or pre-trained fea-
ture extractors belonging to architectural families such
as ResNet, DenseNet (Huang et al., 2017), Efficient-
Net, etc. For the present example, assuming ResNet-

50 as the convolutional backbone, the spatial dimension
goes from 224 × 224 to 112 × 112, 56 × 56, 28 × 28,
and 14 × 14. For the transformer pathway, this work
assumes a pre-trained ViT-B/16 architecture consisting
of 12 transformer blocks. The representation obtained
from each block is a sequence of length 196 with each
input token having an embedding size of 768. The rep-
resentation from the third block is reshaped to a spa-
tial dimension of 14 × 14 followed by three upsam-
pling operations and a convolutional block to bring the
spatial dimension to 112 × 112. This is then added
to the corresponding ResNet-50 representation. Simi-
larly, representation from the sixth block is reshaped,
and followed by two upsampling operations and a con-
volutional block before being added to the correspond-
ing ResNet-50 representation. Representations from the
ninth and twelfth block follow a similar pattern, except
that the twelfth block needs no upsampling operation
as its spatial dimensions are already 14 × 14. In addi-
tion to these two pathways, there is also a convolutional
layer which connects the input image directly to the fi-
nal decoding step via a skip connection. The detailed
architecture can be seen in Figure. 5.

3.3.3. UNETR

Figure 6: 2D UNETR - the encoder side is composed of a pre-trained
ViT which works on 196 (14 × 14) non-overlapping patches (size
16 × 16) from the original image and the output from each of its

blocks can be reshaped to a spatial dimension of 14 × 14. The output
from the third, sixth, ninth, and twelfth transformer blocks are passed

through a series of upsamplings. The upsampled output from the
twelfth block is passed on to the decoder which performs the process

of upsampling and concatenating skip connections from the
corresponding encoder output. There is also an independent branch

connecting the image directly to the final decoder layer. The numbers
in the figure represent the channels from each stage of the process

Introduced in 2021, UNETR (Hatamizadeh et al.,
2022b) attempts to make an encoder almost entirely
based on transformer blocks. Similar to CATS, in the
present work the original architecture has been modi-
fied such that it works for 2D images instead of 3D, and
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it utilizes a pre-trained ViT model instead of randomly
initializing the transformer blocks.

Assuming an original image of spatial dimensions
224×224, the image is passed through a pre-trained ViT-
B/16 architecture consisting of 12 transformer blocks.
Similar to CATS, the representations from the third,
sixth, ninth, and twelfth block are reshaped, upsampled,
and passed through convolutional blocks. The represen-
tations obtained from the encoder pathway end-up hav-
ing spatial dimensions of 112 × 112, 56 × 56, 28 × 28,
and 28×28. Additionally, the input image is also passed
through a convolutional layer connecting it to the final
decoding step via a skip connection. The detailed archi-
tecture can be seen in Figure. 6.

Figure 7: 2D all-trans-UNETR - the encoder side is composed of a
pre-trained ViT which works on 196 (14 × 14) non-overlapping

patches (size 16 × 16) from the original image and the output from
each of its blocks can be reshaped to a spatial dimension of 14 × 14.
The output from the first, third, sixth, ninth, and twelfth transformer
blocks are passed through a series of upsamplings. The upsampled

output from the twelfth block is passed on to the decoder which
performs the process of upsampling and concatenating skip

connections from the corresponding encoder output. There is no
independent convolutional branch operating on the image. The

numbers in the figure represent the channels from each stage of the
process

Since UNETR has an encoder which does make use
of a single convolutional layer, another architecture is
also experimented with which removes that convolu-
tional layer and instead utilizes the reshaped representa-
tions from the first transformer block followed by four
upsampling operations and a convolutional block. The
detailed architecture can be seen in Figure. 7. This
modified architecture represents a U-Net based segmen-
tation model where the encoder is entirely transformer
based.

3.4. Information Flow
Unlike classical machine learning models which can

generally be implemented in a single layer, Deep Learn-
ing models are usually many layers deep. Analyzing
the flow of information in such models is often useful

to determine what kind of information is being learnt
in each layer of the model. This is often necessary for
interpretability but can also be useful if one wishes to
modify the model architecture.

For transformers, instead of focusing on activation
maps, it is often more useful to look at the attention val-
ues in order to know where attention was being paid in a
particular transformer block. The present work consid-
ers two approaches for this task. A relatively simple ap-
proach is to observe the raw attention values from each
block whereas another approach as proposed by (Samira
and Willem, 2020) attempts to trace attention values as
they propagate from one transformer block to the next.

3.4.1. Raw Attention Values
Transformer models afford us the possibility to not

just observe feature maps, but to also observe how much
each patch in any block was attending to the other
patches (including itself). This can be achieved by visu-
alizing the raw attention values obtained from the dot-
product of key and query matrices.

3.4.2. Rollout
While raw attention values can be used to analyze at-

tention within a particular block, (Samira and Willem,
2020) proposed a technique which can be used to infer
how attention values propagate from one block to the
next. This can essentially be utilized to observe how
much attention a patch from the original image is being
paid to in a later transformer block. The idea is to sim-
ply multiply the attention matrices recursively starting
from an earlier block and going towards a later block.
In order to take the residual connections within a trans-
former model into account, an identity matrix is added
at each step followed by an averaging of the two. Math-
ematically, this can be represented as follows:

A =
Watt + I

2
(4)

˜A(li) =


A(li) ˜A(li−1) i > j
A(li) i = j

(5)

Where ˜A(li) is the quantification of the attention roll-
out, and A(li) refers to the averaged identity and atten-
tion matrices for a particular block. j is taken to be 0.

For the present work, the final result is slightly mod-
ified by suppressing the rollout matrix diagonal which
would otherwise overshadow the other values in the ma-
trix.

3.5. Datasets

This work experimented using three different medical
image segmentation datasets. The first one is the IBSR
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18 dataset1. It contains the T1-weighted brain MRI im-
ages for 15 patients. 10 patients were used for train-
ing and 5 for validation leading to 1280 2D slices for
training and 640 for validation. The labels are Cere-
brospinal Fluid (CSF), Gray Matter (GM), and White
Matter (WM).

The second dataset is the Synapse multi-organ
dataset2. 30 cases of abdominal CT scans are provided,
18 of which are used for training and 12 for validation
leading to 2211 2D slices for training and 1568 for val-
idation. The labels are Aorta, Gallbladder, Spleen, Left
Kidney, Right Kidney, Liver, Pancreas, and Stomach.

The third dataset is the EMIDEC Challenge dataset
(Lalande et al., 2020)3. 100 cases of delayed-
enhancement cardiac MRI are provided, 80 of which are
used for training and 20 for validation leading to 558 2D
slices for training and 180 for validation. The labels are
Myocardium, Infarction, and NoReflow.

3.6. Pre-processing

The datasets were normalized with each image vol-
ume ending up with zero mean and unity standard de-
viation. For the Synapse multi-organ dataset, dataset is
obtained from the TransUNet authors in which, prior to
normalizing, the images were clipped within a range of
−125 and 275. For the EMIDEC dataset, center crop-
ping was performed with a size of 96 × 96. Eventually,
each slice from all images is resized to 224 × 224.

3.7. Training Configuration

All models were trained with an AdamW optimizer
(Loshchilov and Hutter, 2019) with a learning rate of
1e − 04 without any weight decay. For the IBSR 18 and
Synapse multi-organ datasets, 80 epochs were utilized
whereas for the EMIDEC dataset, 100 training epochs
were utilized. In each case, the batch size was 12. The
loss function in each case was an average of dice loss
and cross-entropy loss.

3.8. Analyzing Information Flow

3.8.1. Attention Information
In order to analyze attention flow for each model,

raw attention maps were visualized for all transformer
blocks. In general, at each step there is a sequence of
length 196, and each unit of that sequence pays atten-
tion to each other unit implying 196 attention values per
unit. For every unit, an attention map of size 14×14 can
be obtained, and since there are 196 units, each of these
14 × 14 attentions maps can be displayed on a 14 × 14
grid. In each case raw attention maps from the first, sec-
ond, third, and sixth transformer block are visualized.

1http://www.nitrc.org/projects/ibsr
2https://www.synapse.org/#!Synapse:syn3193805/

wiki/217789
3http://emidec.com/dataset

An analysis of raw attention maps for TransUNet
(Figure. 8) reveals that, generally, starting from the first
transformer block, patches start paying attention to the
remaining patches irrespective of their spatial proximity
to those patches. For example, for a shape of 14 × 14,
position (1, 1) can potentially pay attention to a patch at
position (14, 14). This trend continues for the remaining
transformer blocks as well.

Analyzing the raw attention maps from the 2D UN-
ETR (Figure. 9) reveals an interesting pattern. Un-
like the TransUNet, in the first block, patches do not
pay attention to the remaining patches. In fact, in the
first block each patch mostly seems to be paying at-
tention only to itself. For the second block, attention
maps reveal that each patch is mostly paying attention
to patches which are within close proximity. This be-
haviour strongly resembles that of a convolutional ker-
nel passing over an image. From the third block on-
ward, however, each patch seems to be paying atten-
tion to other patches without any preference to spatial
proximity. For the 2D UNETR which is purely based
on a transformer encoder and has had its convolutional
branch removed, the behaviour is similar (Figure. 10).

The 2D CATS architecture also behaves similar to
the 2D UNETR (Figure. 11). In the first block, each
patch mostly pays attention to itself, in the second block
each patch attends to patches within close proximity,
and starting from the third block, patches start paying
attention without particular concern for spatial proxim-
ity.

In addition to raw attention maps, attention rollout is
also visualized on a 14 × 14 grid with each unit on the
grid corresponding to a 14 × 14 attention rollout infor-
mation. Unlike raw attention maps, only rollout from
the first three blocks is visualized.

The conclusions are similar to the ones drawn from
raw attention values. For the TransUNet (Figure. 12,
attention propagation displays no concern for spatial
proximity with respect to the transformer block. For the
2D UNETR (Figure. 13 and the 2D CATS (Figure. 14),
attention propagates from the first to the second block
with a strong emphasis on local proximity whereas in
the third block (and onward), spatial proximity plays no
particular role.

3.9. Model Compression
An analysis of attention maps as well as attention

rollout indicate that the architectures under consider-
ation might be simplified by departing from the con-
ventional U-Net style. In a conventional U-Net, an en-
coder contains multiple convolutional blocks primarily
because as one goes from one block to the next, the re-
ceptive field of the model increases and hence more con-
text can be incorporated. If one contrasts it with the at-
tention information obtained from the 2D UNETR and
2D CAT models, it can be seen that starting from the
third transformer block, attention maps already seem to
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Figure 8: TransUNet - raw attention maps for a sample image from Synapse multi-organ dataset. Image reads from left to right and top to bottom.
Maps for the first (top-left), second (top-right), third (bottom-left), and sixth (bottom-right) transformer blocks are plotted
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Figure 9: 2D UNETR - raw attention maps for a sample image from Synapse multi-organ dataset. Image reads from left to right and top to
bottom. Maps for the first (top-left), second (top-right), third (bottom-left), and sixth (bottom-right) transformer blocks are plotted
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Figure 10: 2D UNETR - all trans - raw attention maps for a sample image from Synapse multi-organ dataset. Image reads from left to right and
top to bottom. Maps for the first (top-left), second (top-right), third (bottom-left), and sixth (bottom-right) transformer blocks are plotted
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Figure 11: 2D CATS - raw attention maps for a sample image from Synapse multi-organ dataset. Image reads from left to right and top to bottom.
Maps for the first (top-left), second (top-right), third (bottom-left), and sixth (bottom-right) transformer blocks are plotted
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Figure 12: TransUNet - attention rollout for a sample image from
Synapse multi-organ dataset. Image reads from top to bottom.
Rollout for the first (top), second (middle), and third (bottom)

transformer blocks is plotted

Figure 13: 2D UNETR - attention rollout for a sample image from
Synapse multi-organ dataset. Image reads from top to bottom.
Rollout for the first (top), second (middle), and third (bottom)

transformer blocks is plotted
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Figure 14: 2D CATS - attention rollout for a sample image from
Synapse multi-organ dataset. Image reads from top to bottom.
Rollout for the first (top), second (middle), and third (bottom)

transformer blocks is plotted

Figure 15: 2D CATS - Compressed - only the first three transformer
blocks from the original 2D CATS are retained. The convolutional

backbone - a ResNet-50 in this figure - processes the image by
gradually decreasing its spatial dimensions until they reach 14 × 14.
This is added to a convolved output from the third transformer block

and then goes through a series of upsamplings. The unsampled
output is then passed on to the decoder which performs the process

of upsampling and concatenating skip connections from the
corresponding encoder output. There is also an independent

convolutional branch connecting the image directly to the final
decoder layer. The numbers in the figure represent the channels from

each stage of the process

Figure 16: 2D UNETR - Compressed - only the first three
transformer blocks from the original 2D UNETR are retained. The

output from the third block is passed through a series of
upsamplings. The upsampled output from the third block is passed
on to the decoder which performs the process of upsampling and
concatenating skip connections from the corresponding encoder

output. There is also an independent branch connecting the image
directly to the final decoder layer. The numbers in the figure

represent the channels from each stage of the process

indicate a global receptive field. While theoretically, a
transformer model should be able to indicate a global
receptive field even within the first block, this is not
what is observed in the present case. Taking this infor-
mation into account, compressed versions of both 2D
CATS and 2D UNETR are proposed as can be seen in
Figures. 15 and 16 respectively.

While transformer blocks from four to twelve can
potentially provide more complex representations, they
don’t seem to be more informative in terms of recep-
tive field. Hence, in both the proposed models, only the
first three transformer blocks are retained and the rest
discarded.

For the TransUNet, attention maps seem to indicate
that spatial proximity plays no role even in the first and
second transformer blocks. Hence, two compressed ver-
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Figure 17: TransUNet - Compressed architecture - there is no change
in the convolutional blocks in either the encoder or the decoder. The
only change is in the number of transformer blocks. In one case, the
number of retained transformer blocks is three, and in another case it
is one. The numbers in the figure represent the channels from each

stage of the process

sions are proposed. In the first version, instead of hav-
ing twelve transformer blocks, the model has only three.
In a second version the model is further compressed to
have only one transformer block.

3.9.1. Attention Information in Compressed Models

Visualization of attention maps reveals that similar to
the original TransUNet (Figure. 18), starting from the
first transformer block, patches pay attention to other
patches without being affected by the spatial proximity
of those patches.

Similarly, the compressed 2D UNETR model (Fig-
ure. 19) closely follows the behaviour of the uncom-
pressed one in that patches primarily only pay attention
to themselves in the first block, extend attention to those
patches within close proximity in the second block, and
finally start paying attention to patches irrespective of
spatial proximity in the third block.

For the compressed CATS model (Figure. 20), atten-
tion maps seem to follow the behaviour of the uncom-
pressed model in the first block but not in the second.
Whereas in the uncompressed model, patches pay atten-
tion to those within close proximity, in the compressed
model, patches start paying attention without any spe-
cific regard for spatial proximity starting from the sec-
ond block.

Figure 18: Compressed TransUNet - three transformer blocks - raw
attention maps for a sample image from Synapse multi-organ dataset.

Image reads from top to bottom. Maps for the first (top), second
(middle), and third (bottom) transformer blocks are plotted
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Figure 19: Compressed 2D UNETR - raw attention maps for a
sample image from Synapse multi-organ dataset. Image reads from
top to bottom. Maps for the first (top), second (middle), and third

(bottom) transformer blocks are plotted

Figure 20: Compressed 2D CATS - three transformer blocks - raw
attention maps for a sample image from Synapse multi-organ dataset.

Image reads from top to bottom. Maps for the first (top), second
(middle), and third (bottom) transformer blocks are plotted
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4. Results

The dice metrics for the uncompressed and the com-
pressed models can be seen in Table. 1 for IBSR 18
dataset, Table. 2 for EMIDEC dataset, and Table. 3 for
Synapse multi-organ dataset.

In addition to the dice metrics, the tables also indi-
cate the percentage change in model performance going
from an uncompressed model to a compressed one:

% Change = 100 × PC − PuC
PuC

(6)

Where PC is the performance of the compressed
model and PuC is the performance of the uncompressed
model.

Lastly, the table also indicates the percentage sav-
ing in model parameters going from an uncompressed
model to a compressed one:

% Change = 100 × #uC − #C
#uC

(7)

Where #C are the number of parameters in the com-
pressed model and #uC are the number of parameters in
the uncompressed model.

5. Discussion

Results seem to indicate it is indeed possible to com-
press segmentation models incorporating transformers
without a drastic drop in performance. In addition to
this, an analysis of information flow - particularly atten-
tion maps - can be utilized in order to steer this com-
pression process.

The compressed versions of all three original mod-
els (TransUNet, 2D CATS, 2D UNETR) have less than
50% of the original parameters. The compressed ver-
sion of 2D UNETR and the single block TransUNet
have, in fact, less than one-third of the original param-
eters. In addition to this, it should also be noted that
the choice of backbone architecture in the 2D CATS
model can also influence the parameter saving pro-
cess. The backbone utilized for the EMIDEC dataset
was ”ResNet-34”, for IBSR 18 dataset it was ”ResNet-
50”, and for the Synapse multi-organ dataset it was
”DenseNet-121”.

Model compression can be useful in multiple ways. It
can help minimize computing resources while training.
This, in turn, implies a reduction in energy consumption
which has been highlighted as a major concern since
the inception of the transformer model. Additionally,
compressed models also stand a better chance when it
comes to being deployed on mobile devices such as the
Raspberry Pi which are generally low when it comes
to storage. Lastly, whereas conventional transformer
based models often limit the participation of the average
AI researcher due to a lack of resources, model com-
pression is a potentially useful step towards increasing

participation in transformer based research, essentially
contributing towards the democratization of AI.

6. Conclusions

An analysis of raw attention maps and attention roll-
out revealed that for 2D CATS and 2D UNETR, in the
first and second blocks, transformers behave similar to
convolutional filters in that attention depends strongly
on spatial proximity of patches. From the third block
onward, this behavior changes and the transformer be-
havior can be characterized as having achieved a global
receptive field. For the TransUNet, however, starting
from the first block, attention behaves such that it is not
limited by spatial proximity, and can be characterized as
already having achieved a global receptive field.

Based on this analysis, model compression was per-
formed such that all blocks after the first such block
which achieves a global receptive field were discarded.

Based on the compressed models it can be argued that
attention information from transformer blocks is helpful
not only towards analyzing information flow, but it can
also influence architectural decisions leading to model
compression without seriously sacrificing model perfor-
mance.
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Model Transformer
Blocks

Dataset Size CSF Gray Matter White Matter Average Dice % Dice Change
(Compressed

vs Uncompressed)

% Parameter Saving
(Compressed vs
Uncompressed)

TransUNet 12 1200 0.816 0.894 0.870 0.860 - -
TransUNet - Compressed 3 1200 0.809 0.897 0.874 0.860 0 60.59
TransUNet - Compressed 1 1200 0.828 0.896 0.873 0.865 0.58 74.06

2D CATS 12 1200 0.820 0.893 0.873 0.862 - -
2D CATS - Compressed 3 1200 0.812 0.902 0.877 0.864 0.19 61.15

2D UNETR 12 1200 0.815 0.901 0.883 0.866 - -
2D UNETR - Compressed 3 1200 0.814 0.902 0.877 0.864 -0.21 75.12

2D UNETR - all trans 12 1200 0.809 0.900 0.875 0.861 - -

Table 1: Dice metrics for IBSR 18 dataset. For the 2D CATS and 2D CATS - Compressed models, the backbone utilized was ResNet-50

Model Transformer
Blocks

Dataset Size Myocardium Infarction NoReflow Average Dice % Dice Change
(Compressed

vs Uncompressed)

% Parameter Saving
(Compressed vs
Uncompressed)

TransUNet 12 558 0.846 0.654 0.774 0.758 - -
TransUNet - Compressed 3 558 0.853 0.676 0.749 0.760 0.25 60.59
TransUNet - Compressed 1 558 0.859 0.680 0.767 0.769 1.46 74.05

2D CATS 12 558 0.855 0.569 0.674 0.699 - -
2D CATS - Compressed 3 558 0.846 0.661 0.652 0.720 2.90 65.42

2D UNETR 12 558 0.841 0.593 0.723 0.719 - -
2D UNETR - Compressed 3 558 0.830 0.617 0.663 0.703 -2.16 75.12

2D UNETR - all trans 12 558 0.846 0.574 0.743 0.721 - -

Table 2: Dice metrics for EMIDEC dataset. For the 2D CATS and 2D CATS - Compressed models, the backbone utilized was ResNet-34

Model Transformer
Blocks

Dataset Size Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach Average Dice % Dice Change
(Compressed

vs Uncompressed)

% Parameter Saving
(Compressed vs
Uncompressed)

TransUNet 12 2212 0.873 0.662 0.869 0.826 0.944 0.612 0.912 0.843 0.818 - -
TransUNet - Compressed 3 2212 0.878 0.667 0.874 0.842 0.948 0.665 0.891 0.826 0.824 0.73 60.59
TransUNet - Compressed 1 2212 0.881 0.643 0.859 0.831 0.947 0.618 0.916 0.836 0.816 -0.15 74.05

2D CATS 12 2212 0.848 0.664 0.857 0.818 0.935 0.626 0.893 0.838 0.810 - -
2D CATS - Compressed 3 2212 0.862 0.671 0.855 0.803 0.939 0.567 0.879 0.732 0.788 -2.65 63.12

2D UNETR 12 2212 0.853 0.693 0.861 0.773 0.947 0.603 0.903 0.768 0.800 - -
2D UNETR - Compressed 3 2212 0.853 0.656 0.832 0.760 0.950 0.568 0.888 0.783 0.786 -1.72 75.12

2D UNETR - all trans 12 2212 0.836 0.587 0.855 0.814 0.938 0.590 0.852 0.756 0.778 - -

Table 3: Dice metrics for Synapse-multiorgan dataset. For the 2D CATS and 2D CATS - Compressed models, the backbone utilized was
DenseNet-121
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Abstract

Light microscopy of post-mortem brain sections is a prime image acquisition procedure for microscale brain tissue
analysis. Over the last decade, 3D Polarized Light Imaging (3D-PLI) has been one of the most successful procedures
for revealing the organization of nerve fibres inside brain microscopy samples (Axer et al., 2011). Thanks to the bire-
fringence property presented in the myelin sheaths surrounding the axons, the polarization microscope can measure
the nerve fiber orientation while a polarized light beam passes through the brain sections. Such a procedure reveals the
orientation description of the fiber tracts at the sub-millimeter level (mesoscale). One advantage of 3D-PLI acquisition
is that it does not require tissue staining. Therefore, it is ideally suited for multi-modal analysis by combination, e.g.,
with staining for cell bodies after the 3D-PLI measurement. Nevertheless, the acquisition process of such multi-modal
data is challenging and time-consuming, enabling access to only a limited number of samples. This study aimed to
investigate which cytoarchitectonic features are already inherent in the 3D PLI data, circumventing the costly data
acquisition, using scalable unsupervised deep learning methods like Variational Autoencoders (VAE) and Conditional
Generative Adversarial Networks (GAN). This research method uses the parameter maps of 3D PLI images to fore-
cast the light microscopic cytoarchitectonic image via a progressive process from Variational Autoencoders to region
mutual information-based conditional GAN. The results of this thesis, both qualitative and quantitative, show that the
proposed method has a lot of potential for predicting Cytoarchitectonic images from 3D-PLI images. Between the real
and generated cytoarchitectonic images, the Mean Squared Error, Universal Quality Index, Average Log-Likelihood,
and Maximum Mean Discrepancy(with RBF kernel) exhibit correlated results.

Keywords: 3D Polarized Light Imaging, Cytoarchitectonic Structure, Fiber Tract Orientation, Variational
Autoencoder, Deep-Learning, Region Mutual Information, Conditional GAN.

1. Introduction

1.1. Image Modality Transfer

Image to image transfer, also known as image modal-
ity transfer, is a relatively new study area in medical im-
age analysis with a wide range of potential applications.
In general, image to image transfer can be used for stan-
dard modality translation (e.g., PET to CT), motion cor-
rection, denoising(Armanious et al., 2020), (Zhou et al.,
2020), radiation reduction, artifact correction(Vey et al.,
2019), better image acquisition/estimation(Wang et al.,
2018), data augmentation(Sorin et al., 2020) among
other applications.

The purpose of this study is to use 3D-PLI to predict

the cytoarchitecture of brain sections. The main goal is
to find if image modality transfer can predict reasonable
cell distributions from 3D-PLI, which is used to identify
fiber orientation in brain sections.

1.2. Motivation

One of the most significant problems with micro-
scopic images is the deformation of cells and tissues
during sectioning and histological processing. The
ultrastructural features of cells are extremely difficult
to retain, and there is currently no method for doing
so. This phenomenon causes some inaccuracy in the
analysis of brain cell structure and during the creation
of brain atlases.(Axer et al. (2011), Wilson and Bacic
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(2012)).

Performing microscopic image acquisition of two
different modalities from the same section could involve
many problems with the samples, given the amount
of manipulation that is involved in handling the tissue
from one modality to another. Staining microscopy
is a tedious and lengthy process. After the image
acquisition by 3D-PLI microscopy unmounting from
the PLI imaging stage, cleaning, staining, re-measured,
and then again registering to the PLI is a long-time con-
suming process. Such manipulation, could inevitably
damage the tissue. Therefore, having an alternative way
to predict a modality from another constitutes is a time,
energy, and money-saving approach.

These facts were the driving force for this study,
which used PLI images to construct Cytoarchitectonic
images. The primary goal is to determine whether
the PLI images had enough information to predict
Cytoarchitectonic images using the generative models.

As 3D-PLI performs multiple image acquisitions at
different polarization angles, we investigated if such
data contains information about the cell density present
in brain samples(Axer et al., 2011). To accomplish such
a task, we leverage the recent advances in image gener-
ation performed by Conditional Generative Adversarial
Networks (cGANs).

It could be useful to make a synthetic backup copy of
the PLI dataset’s Cytoarchitectonic images. Moreover,
it will be useful in case tissue is damaged lost or cannot
be stained.

1.3. Microscopy Modalities
This work uses two modalities of post-mortem vervet

monkey brain section images. The 3D-Polarized Light
Images acquired as described in Axer et al. (2011)
at Forschungszentrum Jülich, and another modality is
stained light microscopic histology images, also known
as Cytoarchitectonic images. Both the modality images
were acquired from the same vervet monkey brain and
of the same corresponding sections.

1.3.1. Polarized Light Image
Brain’s structure and function are deeply entwined at

different levels of brain tissue interconnection. Obtain-
ing a precise image of postmortem brain sections to in-
vestigate their 3D fiber structure and fiber tract orienta-
tion is thus challenging. Axer et al. (2011) developed
a novel image acquisition technology for postmortem
human brain sections utilizing 3D polarized light as a
result of the perception to address these issues. When a
polarized light beam passes through the myelin sheath
around the axons, this approach utilizes the birefrin-
gence property of the myelin sheath, see Figure 1.

Figure 1: Basic neuron parts. From left to right: dendrites, which
collect other neuron impulses; the cell body, where the nucleus is al-
located; the axon, the channel that sends the information to the post-
synaptic cell; and finally the synapse, the union between the two cells
needed for the communication(Grau-Moya (2011)). The birefrin-
gence property shown by the cylindrical coating of Myelin sheaths(red
font in the image) around the Axons are the main basis of Axer et al.
(2011)’s 3D-PLI imaging technique.

The regular distribution of lipids and proteins in
the myelin sheath causes birefringence in nerve fibers,
which results in specific optical anisotropy. The net
birefringence of the neurofilaments inside the axon and
the radially oriented lipid chains of the myelin sheath
can be explained by a single axis of optical anisotropy,
which produces uniaxial negative birefringence and
hence reflects the fiber’s spatial orientation (de Cam-
pos Vidal et al., 1980).

Image Acquisition Setup:
The physical configuration for the 3D PLI image acqui-
sition method as described in Axer et al. (2011) is shown
in Figure 2. A monochromatic green LED light source
was employed as light source. After the LED, a first
polarizer is placed, which converts the incoherent light
into polarized light. The imaging brain section was then
held on a specimen stage. Then, a retarder and another
polarizer for experimenting with birefringence charac-
teristics and setting the reference at various polarizing
angles.

Image Acquisition Methodology:
The configuration of Polarizing Microscopy in Axer
et al. (2011) is explicitly designed to obtain the image
for various retarder or polarizer rotation angles. The ro-
tation angle, ρ, was adjusted by rotating the retarder in
10◦ increments from 0◦ to 170◦. As a result, there were
a total of 18 photos for 18 various rotation angles.

This study used the brain of a vervet monkey, labeled
as monkey-1818 (male, 2.4 years old) described in
Takemura et al. (2020). A polarimetric microscopy
arrangement based on a Köhler lit (wavelength spec-
trum: 550 nm± 5nm) bright field microscope fitted with
two polarizing filters and a moving specimen stage as
described in Reckfort et al. (2015) was used to perform
microscopic imaging referred to as 3D-PLI in Axer
et al. (2011). The monochromatic CCD camera had a
field of view of 2.7 x 2.7 mm2 and a 1.3µm in plane
pixel resolution.
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Figure 2: (A) Optical stup diagram of PLI image acquisition process. (B) The optical fiber model is depicted in this diagram. An elliptically
shaped oblate surface, the refractive index ellipsoid or indicatrix, describes the refractive index of a negative uniaxially birefringent medium, such
as a myelinated axon (gray mesh). A single axon’s myelin sheath (black line) reacts locally with a beam of linearly polarized light (blue trace),
causing the light beam to phase shift. The light becomes elliptically polarized, and it can be used to determine the indicatrix’s orientation or
the predominant local fiber orientation. The in-plane direction angle ϕ and the out-of-section inclination angle α in the frame coordinate system
determine this orientation.(Axer et al., 2011)

Therefore, imaging entire brain sections with vast ar-
eas needed tile-wise scanning with 1mm (coronal se-
ries) overlaps. During the measurement, unstained sec-
tions were exposed to linearly polarized light, and the
intensity of the transmitted light was collected using a
circular analyzer(Takemura et al., 2020). However, in
this study we have used 9(out of 18) of these rotation
angle images at 20◦ apart to save memory during the
training process.

Therefore, according to Reckfort et al. (2015) the in-
tensity profile IT (ρ) of a PLI measurement, given IT0 is
the transmitted intensity of light after passing through
the tissue and ρ different polarization angles can be de-
scribed as:

IT (ρ) =
IT0

2
[1 + sin (2ρ − 2ϕ)r], (1)

where, with Section Thickness(t), Myelin
birefringence(∆n), and light wavelength(λ) the r
represents by,

r =
∣∣∣∣ sin

(
2π

t∆n
λ

cos2 α
)∣∣∣∣ (2)

After the 3D-PLI image acquisition, the following pa-
rameter maps were obtained by performing signal anal-
ysis:

The Transmittance map: This is a measure of light
attenuation after passing through the polarimeter and
brain tissue, and represents the pixel-wise average map
of all PLI raw images.

The Retardation map: It describes the extent of the
phase shift induced to the light wave due to interaction
with the birefringent by approximating the normalized
amplitudes of the light intensity profiles.

The Direction map: It specifies the in-section direc-
tion angle of each fiber, i.e. the x–y orientation.

The fiber inclination map: It refers to the vertical
component of each fiber’s out-of-section angle.

The map images can be calculated with discrete har-
monic Fourier analysis(Glazer et al., 1996); (Axer et al.,
2011).

Hence, We can parameterize equation (1), and we get,

IT (ρ) = a0 + a1 sin (2ρ) + b1 cos (2ρ) (3)

with,

a0 =
IT0

2
; a1 =

IT0

2
r cos (2ϕ); b1 = −IT0

2
r sin (2ϕ).

(4)

These coefficients(a0, a1, b1) are computed for each
pixel of the image from the measured intensity set
IT (ρi). Thus, for N = 9 samples data points from 9 rota-
tion angles(ρ) we get,

a0 =
1
N

N∑

i=1

IT (ρi); a1 =
2
N

N∑

i=1

IT (ρi) sin (2ρi); (5)

b1 =
2
N

N∑

i=1

IT (ρi) cos (2ρi)

Therefore, for each pixel of the image, we can retrieve
the light retardation, light transmittance, and the quan-
tified fiber orientation(α, ϕ) by combining these afore-
mentioned Fourier coefficients(Reckfort et al. (2015)).
Hence, we get the following three parameter maps,
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Figure 3: According to Axer et al. (2011), a typical PLI raw image
data collection consists of 18 images with equidistant rotation angles
ranging from 0◦ to 170◦. In this study a selection of 9 coronal sec-
tion images are used(images for each 20◦ increment). Given here,
with the sketched arrow indicating one example pixel per image. The
measured light intensities are examined pixel-by-pixel as a function
of discrete rotation angles ρ to derive the fiber orientation. The de-
veloped physical model ties the sine phase to the direction angle phi
and the amplitude to the inclination angle alpha, and offers a precise
mathematical summary of the data (continuous blue line). The data
points that have been highlighted in red correspond to the images that
have been chosen.

Transmittance,IT0 = 2a0 (6)

Retardation, r =
(a2

1 + b2
1)

1
2

a0
(7)

Direction, ϕ =
1
2

arctan 2(b1,−a1) +
π

2

=
1
2

arg(a1 + ib1) (8)

As we have three different parameterized maps for each
section, it motivated our research work to investigate
further to find if 3D PLI images preserve the informa-
tion necessary to predict the cytoarchitectonic image for
each corresponding section of the brain. The parameter
map images are shown in Figure 4

1.3.2. Cytoarchitectonic Image
The spatial structure of neuronal cells in the brain, in-

cluding their arrangement into layers and columns with
respect to cell density, orientation, and the presence of
specific cell types, is referred to as cytoarchitecture. It
allows for the segmentation of the brain into cortical and
subcortical nuclei, as well as the linking of structure,
connection, and functions (Schiffer et al. (2021)).

Myeloarchitecture is the term for the organization of
nerve fibers. The cytoarchitectonic and the myeloarchi-
tecture as well organization of the brain is separated into
six sections, as depicted in Figure 5

Cytoarchitecture Acquisition: After flushing the
brain with phosphate buffered saline and perfusion fix-
ing with 4 percent paraformaldehyde. The brain tis-
sue was then soaked in 20% glycerin, deep frozen, and
preserved at -70◦ Celsius. Monkey 1818’s brain was
sectioned coronally. A large-scale cryostat microtome
with a 60 µm thickness was used to do serial section-
ing(Takemura et al., 2020).Then the 3D-PLI imaging
was performed. After the 3D-PLI image acquisition,
cresyl violet Nissl staining was performed on brain sec-
tions. The stained section was then examined under a
camera lucida microscope, and the boundaries between
the cellular layers were delineated according to Braak
(1980).(Zeineh et al., 2017) The acquired cytoarchitec-
tonic image is shown in Figure 6.

2. State of the art

2.1. Image Modality Transfer

In a broad sense, the imaging modality refers to a pro-
cess by which an image was acquired, as well as the
various appearances of images obtained through differ-
ent imaging techniques, such as images captured with a
digital camera, a celluloid camera, a heat camera, an
infrared camera, satellite footage, or even computer-
generated or hand-drawn illustrations. In the medical
imaging domain, here on the other side, imaging modal-
ities are frequently classified by the physical principle
by which images are generated: ultrasound, radiation
such as x-rays, MRI among others. Every form of image
has its own common features. Each imaging modality
has its common features, which defines different prop-
erties such as, colour spectrum, contrast, shape or reso-
lution(Jacques and Christe, 2020).

Therefore, image modality transfer refers to the pro-
cess of creating an image from one modality to another.
Creating a map from an aerial view, converting a ze-
bra image to a horse, or generating a Computed To-
mography (CT) image from a Positron Emission To-
mography (PET) image are examples of image modality
transfer. For computer vision engineers, this is a critical
tool for saving money and time. It even assists doctors
with prognosis or follow-up tests in the medical imaging
sector, as well as researchers studying animal or plant
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Figure 4: Representation of (A)Transmittance map, (B)Retardation map, and (C)Direction map of 3D-PLI image of a Vervet-monkey’s brain
coronal section-539.

tissues in new research dimensions.((Armanious et al.,
2020)

2.1.1. On Non-medical Image Dataset
In the computer vision field, image modality transfer

is currently a hot topic. A considerable amount of
work on Generative Adversarial Networks(GAN) is
being conducted for modality transfer. At the outset of
this research, we considered all of the significant past
publications relevant to our work to form a common
understanding.

Figure 5: A Comparative illustration of different layers in cytoarchi-
tectonic and myeloarchitectonic structure of brain. The Roman num-
ber indicate the layers in Cytoarchitecture and the Arabic numbers
represent in Myeloarchitecture.(Zilles et al., 2015)

The mapping of every image object’s key features, as
well as the ambiguity of the mapping, are both hidden in
a low-dimensional latent vector of any image modality.
Zhu et al. (2017) have demonstrated how the ambiguity
of the mapping can be randomly altered and sampled in
a variety of ways, resulting in particular changes in the
feature map changing the modality of the input image.
A generator effectively learns to map the supplied in-
put image to the output using the latent coding. The in-
vertivibility of the output image to the original input im-
age must be preserved for the model to prevent many-to-
one prediction. They used Conditional Variational Au-
toencoder GAN(cVAE-GAN), Conditional Latent Re-
gressor GAN(cLR-GAN), and BicycleGAN to demon-
strate how one-to-many modality transfer can be mod-
ulated. They’ve also displayed a comparison of their
results. However, They were unable to fully control the
output modality aspects. They discovered the same ob-
ject’s latent space in another modality, but they didn’t
disclose how to control the output in any of the latent
spaces; instead, all of the outputs were generated at ran-
dom.

Figure 6: The stained microscopic image of the Vervet-monkey’s
brain section-539.
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A shared latent distribution exists between images of
the same object from two different modality (for ex-
ample, a picture of a cat from two different breeds).
A given set of (Cat1,Cat2) from a joint distribution
PCat1,Cat2 (Cat1,Cat2) are used in supervised learning.
Liu et al. (2017) have found the marginal shared dis-
tributions in the Gaussian latent space using two differ-
ent GANs that were entirely unsupervised (So the resul-
tant marginal distribution is PCatGeneral = PCat1 (Cat1) ∩
PCat2 (cat2).
To shift the modality of the images, Liu et al. (2017)
used a Gaussian latent space assumption on this gener-
alized distribution. They were, however, constrained by
two major factors. The training was unstable due to the
saddle point finding challenge, and the translation was
unimodal due to the assumption. As a result, the gener-
ated images include a lot of artefacts.

According to the requirements of our research, we must
predict an image of a specific modality (Cytoarchitec-
ture). Therefore, we must set up certain conditional pa-
rameters. In Isola et al. (2017), as seen in Figure 7, they
used a condition x to generate an image y from a latent
noise vector z.
Equation (9) is Isola et al. (2017) model’s loss function.
Although the Generator(G) seeks to minimize the objec-
tive versus an adversary Discriminator(D) that wants to
maximize the objective, the conditional vector x directs
both the G and D to train on a specific condition.

LcGAN(G,D) = Ex,y[log D(x, y)]
+Ex,z[log(1 − D(x,G(x, z)))] (9)

Isola et al. (2017) also have used the L1 distance with
the adversarial loss as L1 encourages less blurring ef-
fect. This way the discriminator’s job stays identical,
but the generator must not only deceive the discrimina-
tor, but also be get close to the ground truth output in an
L1 distance sense.

LL1(G) = Ex,y,z[||y −G(x, z)||1] (10)

Therefore, the final goal of the model can be expressed
as following.

Figure 7: Training a conditional GAN to map edges→photo. The
discriminator, D, learns to classify between fake (synthesized by the
generator) and real edge, photo tuples. The generator, G, learns to fool
the discriminator. Unlike an unconditional GAN, both the generator
and discriminator observe the input edge map.(Isola et al. (2017))

G = arg min
G

max
D
LcGAN(G,D) + λLL1(G) (11)

We adopted much of the concepts from Isola et al.
(2017) paper in our own research, though they used
noise as an input, which we didn’t use. Rather we have
used the style transfer approach.

2.1.2. On Medical Image Dataset
As previously stated, current research on modality

transfer in medical image analysis is context-specific.
Image translation techniques have mostly been used to
transfer an image from one modality to another, as well
as for denoising, motion correction, and other purposes.
The lack of sufficient data, as well as the high accuracy
and efficiency (callback) necessary in medical domain
research, are the bottlenecks in this study field(Xie et al.
(2021)). Additionally, brain image analysis at the cell
level necessitates a significant amount of computational
power, which continues to be a barrier in this field of
this research(Shen et al. (2017)).
Xiang et al. (2018) attempted to create synthetic CT
scan images from T1-weighted MRI scans for both
brain and prostate imaging. They made use of the Deep
Embedded Convolutional Neural Network (DECNN)
idea. They created feature maps from MRI scans first
and then converted these feature maps using Deep CNN.
They claimed that their model outperformed the state-
of-the-art models mentioned in their research. How-
ever, their research was based on the images’ higher-
level features such as contrast, edges, shapes. In con-
trast, our work is more focused on the lower level de-
tailed features as well as the higher level feature maps,
as we have to predict the cytoarchitecture from 3D-PLI
images, preserving the regional information of the brain
tissues from the different brain parts.
In Wei et al. (2019), they used multimodal MRI imaging
such as Magtizing Transfer Imaging (MTI MRI), Diffu-
sion Tensor Imaging of T1-weighted, Radial Dissusiv-
ity, and Fractional Anistropy (DTI-T1, DTI-RD, DTI-
FA) to predict PET-demyelination. They used 3D-U-
net architecture to construct a feature map from differ-
ent four modalities, and then used an adversarial net-
work to predict the PET. However, using 9/10/11 - D
picture inputs, we used their concept of employing a
U-net-based auto-encoder. Although their findings are
promising, they are incompatible with cell-level accu-
racy. They were effective in obtaining higher-level PET
images.
Armanious et al. (2020) detailed how they combined
non-adversarial loss with the adversarial loss for image
prediction in another modality in the MedGAN article.
They’ve launched a new Generator architecture known
as CasNET, which is fundamentally a Resnet-based U-
net architecture with skip connections. They planned
for the Generator to be a general-purpose application
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rather than a task-specific one. However, this approach
limits the purpose of our study because it loses a lot of
the image’s detailed description during modality trans-
fer. They used the Discriminator network as a train-
able feature extractor, which was used to train both the
Generator and the Discriminator using perceptual loss.
They demonstrated the use of their network in PET to
CT modality transfer, MRI motion noise correction, and
PET image denoising. However, in our circumstance,
we require an application-specific model with a high
cell-level detail accuracy.

3. Material and methods

3.1. Description of the Dataset

The 3D-PLI image (taken using the approach de-
scribed in Axer et al. (2011)) and related cytoarchitec-
tonic images of Vervet monkeys were used in this study.
In terms of memory and size, the 3D-PLI image and
cytoarchitectonic image sets that we analyzed in our re-
search are massive. As a consequence, we generated
a small segment of the main dataset for the part of de-
veloping a functional deep learning model for the ex-
periment. Once a solid deep learning model was devel-
oped, we proceeded to train the models with the main
large dataset to improve the model’s accuracy. Using
the main dataset, for example, to only discover the opti-
mum operational deep learning model will be computa-
tionally exorbitant (even for the supercomputing facility
available in Forschungszentrum Jülich).

3.1.1. Original Dataset
The 3D-PLI image and Cytoarchitectonic image

pairs of each brain section available at Forschungszen-
trum Jülich are multidimensional Big data. Hence,
they are stored in Hierarchical Data Format version 5
(HDF5) format.

Polarized Light Image:
The dimension for 3D-PLI images varies for different
sections. In this study each 3D-PLI image for a single
section has the dimension of (17715, 22865, 9) which is
a downsampled version of the original 3D-PLI by factor
2 at resolution of 2.6 µm. where it represents(#rows
of pixels, #columns of pixels, #images for different
rotation angles) and each image size in terms of
memory is around 3 GigaBytes(GBs). The original
dataset contains 9 3D-PLI, Cytoarchitectonic image
pairs. Hence, the Total raw dataset size becomes around
3×9 = 27GBs for 3D-PLI images.

Cytoarchitectonic Images:
The original in pair Cytoarchitectonic images for
the 3D-PLI images were obtained a higher resolu-
tion 1µm than the PLI images. Each corresponding

Cytoarchitectonic image is downsampled such that
they also have the same dimension of (17715, 22865)
as (#rows of pixels, #columns of pixels) occuping
about 2 GBs in memory size. Therefore, total size
for the cytoarchitectonic dataset is about 9 × 2 = 18GBs.

Additional Parameterized Map Images and Masks :
Moreover, After the preprocessing, we created the mask
images for each PLI image to train the model with-
out the background of the images which is also of
the same dimension as cytoarchitectonic images(17715,
22865) and each mask takes a memory size of about
400MegaBytes(MB). The Transmittance, Direction and
Retardation maps of the same dimension of approx.
3GB each.
Therefore, we have additional training data of Total
400MB × 9 = 3.6 GB for the mask images, 3 × 9 =
27GB of Transmittance images, 3 × 9 = 27GB of Retar-
dation images, and 3 × 9 = 27GB of Direction images.

For the Deep Learning model training, we have divided
the total 9 images into 3 subsets of 5 images as Training
Set, 2 images as Validation Set, and other 2 images as
Testing Set.

3.1.2. Developing Dataset
Polarized Light Image:
A small but equivalent (to the large dataset) subset was
generated for the developing purposes. Since the main
objective of predicting cytoarchitectonic images is to
train the neural network on how to distinguish between
different types of cells and the border regions, a total of
5 patches of the dimension (4096, 4096, 9) were picked
from a full 3D-PLI section including information about
all types of brain cells for the experimental dataset.
Each patch of 3D-PLI images was about 1.5 GB in
memory size. Hence, the total size of the experimental
3D-PLI sections was approx. 1.5×5=7.5 GB.

Cytoarchitectonic Image:
For the training using the 5 3D-PLI patches, corre-
sponding Cytoarchitectonic pictures of (4096 × 4096)
dimension have also been used. Each patch takes up
roughly 30 MB of memory. As a result, cytoarchitec-
tonic data was roughly 30 × 5 = 150 MB in total.
Additional Parameterized Map Images and Masks :
The 3D-PLI patches were taken in such a way that they
did not contain any background for the experimental
training. For the experimental training, there were no
mask pictures.
Each image of the Transmittance, Retardation, and Di-
rection maps took up around 86MB of memory. For
each map category of Transmittance, Retardation, and
Direction map image, we had 86×5=430MB of image
data.

For the Deep Learning model training, we have divided
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the total 5 patches into 2 subsets of 4 patches as Training
Set, and 1 image as Validation Set. We have decided to
use the Testing set of the main Large data to test the
trained model.

3.2. Data Pre-processing

3.2.1. Calculating The Transmittance, Retardation, and
Retardation Map Images

Using Axer et al. (2011)’s approach, we initially only
acquire the rotation angle images (a total of 9 images
in our case) for each brain section. The raw 3D-PLI
data can be characterized using equations (1) and (2).
The raw data was then processed to discrete harmonic
Fourier analysis, which transferred it from the spatial
domain to the Fourier domain (equation (3)), and the
Fourier coefficients were estimated using equation (4)
and (5). Then, using equation (6), (7), and (8), we com-
puted the Transmittance map, Retardation map, and Di-
rection map images respectively from these raw 3D-PLI
data converted to the Fourier domain.

3.2.2. Data Normalization
Since the intensity ranges of various modalities dif-

fer. Normalization is therefore essential, both to ensure
that the model assigns equal weights to each variable at
the start of the training and to lessen the computing load
during neural network training. As a result, no single
variable may influence the model’s learning in a certain
way.
We identified the maximum and lowest intensity values
for each of the raw rotation angle images for all 9 rota-
tion angles and over all 9 images in the dataset. Then
we used min-max normalization to rescale all of the in-
tensity values in the [0, 1] range while maintaining their
inter-image intensity ratio.
We only have one image per section for the cytoarchi-
tectonic data. So, for these images, we used min-max
normalization to scale the intensity level in the range of
[0, 1] while maintaining the inter-image intensity level
ratio by determining the maximum and minimum val-
ues across all 9 cytoarchitectonic images.
During the calculating procedure, the images of the
Transmittance , Retardation and Direction map were al-
ready normalized. As a result, no further normalization
was required for these images.

3.2.3. Hybrid data Creation from 3D-PLI, Transmit-
tance map, Retardation map, and Direction map
for testing Redundancy

The Transmittance, Retardation, and Direction maps in
the 3D-PLI images were generated or calculated from
the 9 rotation angle images. As a consequence, it ap-
pears that including them in deep neural network train-
ing is redundant. Nonetheless, we performed a study to
see the effect of including the maps in addition to the
9-channel calibrated PLI image.

As a result, we’ve tried three different strategies by com-
bining these rotation angle images with various maps.
To train the deep learning network, the first strategy was
to use only 9 rotation angle images. Then we stacked
the Retardation map images on top of them. As a result,
each section’s image dimension became (# of rows of
pixels, # of columns of pixels, 10). We also stacked the
Direction map images to the rotation and Retardation
map images as a third technique, changing the dimen-
sion to (#of rows of pixels, #of columns of pixels, 11).
Despite the fact that it appeared to be redundant at first,
the trained models produced diverse outputs.

3.2.4. Registration of 3D-PLI and Cytoarchiteconic
Dataset

Despite the fact that we have 3D-PLI and cytoarchi-
tectonic images as a pair, they are not aligned as a re-
sult of different scanning procedures. Therefore, the
data was not immediately ready for performing domain
transfer. It was also necessary to apply image registra-
tion in order to align the 3D-PLI and cytoarchitectonic
images.
To register the cytoarchitectonic image to the 3D-PLI
image, we used a landmark-based affine transformation.
We used a GUI-based application called ”Cyto Tilt”
developed at Forschungszentrum Jülich to obtain land-
marks in both 3D-PLI and cytoarchitectonic pictures.
For all the image pairs in the dataset, we have annotated
at least 250 landmarks for 3D-PLI and cytoarchitectonic
images.
We utilized the OpenCV package in Python to generate
the Homography matrix and perform the warping after
noting the landmarks and their corresponding coordi-
nated values as shown in Figure 9.

Performing the warping, we got the results presented
in Figure 11. The same procedure was followed for all
the images in the dataset.

3.2.5. Data Augmentation
We opted to train the model using (256, 256) pixel
patches to ease the computation of the U-net model. As
a result, we’ve taken a larger crop with a ratio of

√
2,

Figure 8: A brain section pair (Section-539) of (A) Transmittance map
of the 3D-PLI image, and (B) unregistered cytoarchitectonic image
from the dataset.

8.8



Learning Cytoarchitectonic Structure From 3D Polarized Light Imaging 9

Figure 9: The registration of the landmarks. The red dots are for the
fixed 3D-PLI image, and the green dots are for the cytoarchitectonic
images after performing the registration.

yelding pathces of (362, 362) for each arbitrary patch
to ensure that no information is lost throughout the aug-
mentation process.

We used the Albumentation.ai package built by Bus-
laev et al. (2020) for data augmentation. To augment
our dataset, we employed the procedures listed below.

• Affine Rotation, performed for all the im-
ages(100%), It performs the affine transformation
on the images to rotate them from -180◦ to 180◦

randomly with -30◦ to 30◦ random deformation
preserving translation percentage within 10% in
both column and rows.

• Center Crop, performed for all the images(100%),
Scales the images uniformly (keep the aspect ratio)
so that both of its dimensions (width and height)
are equal to or greater than the view’s correspond-
ing dimension (minus padding). After that, the im-
age is centered in the view.

• Horizontal Flip, performed for 50% of the images.
It flips the images Horizontally.

Figure 10: A typical brain section pair of (A) 3D-PLI image, and (B)
unregistered cytoarchitectonic image from the dataset with annotated
landmarks(The red dots in the 3D-PLI image and the blue dots in the
cytoarchitectonic image.).

Map Image Network Loss Function

Transmittance
Transmittance
+Retardation Resnet18 L1 MSE(L2) RMI Loss

Transmittance
Transmittance
+Retardation Resnet34 L1 MSE(L2) RMI Loss

Transmittance
Transmittance
+Retardation Resnet152 L1 MSE(L2) RMI Loss

Transmittance
Transmittance
+Retardation Densenet121 L1 MSE(L2) RMI Loss

Transmittance
Transmittance
+Retardation Densenet161 L1 MSE(L2) RMI Loss

Transmittance
Transmittance
+Retardation InceptionV4 L1 MSE(L2) RMI Loss

Transmittance
Transmittance
+Retardation EfficientB0 L1 MSE(L2) RMI Loss

Transmittance
Transmittance
+Retardation EfficientB4 L1 MSE(L2) RMI Loss

Table 1: Appled different approaches to find the optimum working U-
net model.

• Vertical Flip, performed for 50% of the images. It
flips the image Vertically

3.3. Computing Resources

3.3.1. JURECA (for Training on Developing Data)
We used the Jülich Research on Exascale Architectures
(JURECA) supercomputing facility to train the deep
learning model with experimental data. We used one
NVIDIA Quadro RTX 8000 GPU with 46080 MB of
RAM, clock speeds ranging from 1395 to 14000 MHz,
and a bandwidth of 672.0 GB/s.

3.3.2. JUWELS Booster (for Training on Original
Data)

We used the Jülich Wizard for European Leadership
Science (JUWELS) supercomputing facility to train the
deep learning model with original data. We employed
four NVIDIA A100 Tensor Core GPUs with 40960MB
of memory, a clock speed of 1095 MHz to 1410 MHz,
and a bandwidth of 1,555 GB/s apiece for large data
training. After parallel processing of the neural network
model over all four GPUs, the total compute capability
rose fourfold.

3.4. Modality Transfer

We have employed PyTorch developed by Paszke et al.
(2019) with the wrap-up libraries of PyTorch Lightning
built by Falcon et al. (2020), which are also based on
vanilla PyTorch libraries, for our deep learning model
training.

3.4.1. U-net based Autoencoder
U-net-based autoencoder models were our first choice
for transferring the modality. We used Yakubovskiy
(2020)’s library to make implementing various types of
deep learning pre-trained models at the encoder path as
simple as possible.
The model is depicted in Figure 12
We used a variety of map images as inputs, networks
in the encoder path, and Loss functions to discover the
highest performing pre-trained model in the U-net ar-
chitecture, as shown in the Table. 1.
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Figure 11: The warping stages of the 3D-PLI and Cyto pair. Image (A) is the 3D-PLI image with landmarks (red dots), image (B) is the cytoarchi-
tenctonic image before the warping with landmarks (blue dots), image (C) is the cytoarchitectonic image without the landmarks, and image (D) is
the registered(warped) cytoarchitectonic image.

Therefore, in total we have ran 2X8X3=48 U-net model
training with all the possible combinations. For our
training, the resnet18 pre-trained model in the encoder
with Transmittance + Retardation map images as in-
put image in pair with cytoarchitectonic images and

Figure 12: The diagram for the network we intended to use for Varia-
tional Auto encoder training. The inputs were 3D-PLI images, and the
cytoarchitectonic images. At the encoder path we have used different
pre-trained Deep Learning models.

the Region Mutual Information(RMI) Loss worked best.
Hence, for initiating the adversarial loss to implement
the Conditional Generative Adversarial Network, we
used this RMI loss and Resnet18 architecture.

3.4.2. Using Region Mutual Information(RMI) Loss
The dependencies between pixels in an image are ig-
nored by pixel-wise loss algorithms like L1 or MSE.
This pixel-wise loss computation method produces un-
satisfactory results because our datasets are not pre-
cisely aligned and come from different modalities. As
a result, we started the Zhao et al. (2019)-described re-
gion mutual information loss. Instead of using a single
pixel to calculate the loss, an estimating kernel uses a
collection of pixels as a single quantity, as shown in the
Figure 13.
Then, the entropy and variance are calculated for each
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group and compared. The calculation of the Region Mu-
tual Information Loss is based on this principle.
In practice, perfect calculation of mutual information
is nearly impossible as they flactuate a lot across the
different groups. They first downsampled the image
and then calculated the mutual information to maximize
their similarity to avoid the loss of variation.

3.4.3. Conditional GAN with RMI Loss Func-
tion(Initiating Adversarial Loss)

To improve the output of the U-net, we decided to in-
corporate adversarial loss, hence an adversarial network
was established. We used the previously generated U-
net model as the Generator and a predesigned Pytorch
lightning-bolt classifier network as the Discriminator in
this new Generative Adversarial Network setup. We can
control the discriminator network’s smartness by alter-
ing a hyperparameter called ”feature maps” in this Dis-
criminator setup. As the value of ”feature maps” rises,

so does the discriminator network’s intelligence. Fur-
thermore, we employed the RMI loss function and a
regularization parameter RMIλ to control the impact of
the conditional GAN configuration on the training. As a
result, we may compare our work to Isola et al. (2017)’s
work by comparing Figure 7 and Figure 14. Instead of
using noise, we define the conditional GAN using the
U-net generated image as input and the RMI loss func-
tion as our conditions (cGAN).
Conditions(RMI Loss and Adversarial Loss) to train
the Generator and Discriminator
In our deep learning model, we used U-net generated
images in place of noise(z), the RMI Loss as our con-
ditioning parameter with the RMIlambda parameter to
adjust its impact on the training(x), and the output im-
age(y) is our Cyto image, as compared to the way pro-
vided in Isola et al. (2017). When we compare our pa-
rameters to equation (9), we get the following,

LcGAN(G,D) = ERMIλ∗RMILoss,CytoImage[log D(RMIλ ∗ RMILoss,CytoImage)]
+ERMIλ∗RMILoss,GeneratedImage[log(1 − D(RMIλ ∗ RMILoss,G(RMIλ ∗ RMILoss,GeneratedImage)))] (12)

As a result, when compared to equation(11), our exper-
iment’s purpose is as follows:

G = arg min
G

max
D
LcGAN(G,D) + λLRMIλ∗RMILoss(G)

(13)

As a result, in order to attain the optimum performance
according to equation(13), we explored a variety of
ways by altering the RMIλ and feature map parameters
to govern the network for the best results. The different
parameterized training approaches is described in Table.
2.
With RMIλ=1.0 and Feature Map=64, the best perform-
ing outcome was observed after training the models
with different 6X5 = 30 parameter setup.

Figure 13: A typical multi-dimensional point that corresponds to an
image region. An image can be converted into a multi-dimensional
distribution of multiple high-dimensional points that encode the rela-
tionship between pixels using the same technique.

Figure 14: The illustration of the final deep learning model.

4. Results

4.1. U-net based Autoencoder
The results we obtained from the U-net based autoen-

der is shown in Figure 15

Generator Discriminator

RMIlambda Trainable
Parameters Feature Map Trainable

Parameters
0.0; 0.2; 0.4; 0.6; 0.8; 1.0; 14.3M 8 44.4K
0.0; 0.2; 0.4; 0.6; 0.8; 1.0; 14.3M 16 174K
0.0; 0.2; 0.4; 0.6; 0.8; 1.0; 14.3M 32 693K
0.0; 0.2; 0.4; 0.6; 0.8; 1.0; 14.3M 34 2.8M
0.0; 0.2; 0.4; 0.6; 0.8; 1.0; 14.3M 128 11M

Table 2: The different parameters used to find the best performing
deep learning model.
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Figure 15: Random patch sets: Output of the U-net autoencoder with
resnet18 as encoder, and using L1, MSE, and RMI Loss. The RMI
was the best performing one. Hence, we used this RMI loss for further
training with adversarial loss.

4.2. Conditional GAN with RMI Loss Func-
tion(Initiating Adversarial Loss)

The obtained results from Conditional Generative
Adversarial Network with RMI Loss function is shown
in Figure 16

4.3. Evaluation
For the time constrain, we chose to apply the model
trained on the developing data to the large dataset’s

Figure 16: The training batch size was8. This the illustration of the
patched from the last epoch for Input PLI, Cyto Image and The Gen-
erated Cyto Image.

testing set. The outcomes appear to be intriguing and
promising.

4.3.1. Evaluation: Qualitative
The testing set of the large dataset have 2 sec-

tion(coronal) of the vervet monkey’s brain. The qual-
itative results are shown in Figure 17 and 18.

4.3.2. Evaluation: Quantitative
For the Quantitative analysis we have used a few eval-

uation metrices that have commonly been applied to
other image modality transfer.(Armanious et al., 2020)
The results for the testing set are shown in Table(3):

5. Discussion

5.0.1. Discussion on Expected and Obtained Progres-
sive Results

U-net based Autoencoder
The basic U-net autoencoder deep learning structure
downsamples an input image to a low-dimensional
latent distribution and then upsamples it to the original
dimension. The image, on the other hand, is deformed
from the original and is based on a low-dimensional
latent representation. As a result, it contains the
image’s fundamental data. It actually tries to forecast
the nearest low-dimensional distribution that can reflect
the input using a loss function. Initially, we used the
L1 and MSE(L2) losses to estimate this distribution

Figure 17: Section No.548. (A) Original Cytoarchitectonic Image and
a sample patch, (B) Generated Cytoarchitectonic Image and a sample
patch.
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Evaluation Metrics Section-548 Section-559 Remarks Reference Ideal Value
Mean Squared Error(MSE) 0.028 0.028 ↑↑ ≈0
Root Mean Squared Error(
RMSE) 0.17 0.17 ↑ ≈0

Structural Similarity Index
(SSIM) 0.44 0.35 — ≈1

Peak Signal to Noise Ratio
(PSNR) 63.63 63.57 ↑ ≈100%

Universal Quality Index(UQI) 0.95 0.94 ↑↑ ≈1
Erreur Relative Globale
Adimensionnelle de Synthesis
(ERGAS)

4074 5998 ↓↓ ≈0

Spatial Correlation Coefficient
(SCC) 0.009 0.008 ↓↓ ≈1

Spectral Angle Mapper(SAM) 0.22 0.29 ↑ ≈0
Visual Information Fidelity(VIF) 0.15 0.09 ↓↓ ≈1
Mutual Information 0.72 0.70 ↑ ≈1
L2 Distance 3327 3289 ↓↓ ≈0
Average Log-Likelihood -367M -354M ↑↑ -∞
Maximum Mean Discrepancy
(with Linear Kernel) 173.36 32.12 ↑ ≈0

Maximum Mean Discrepancy
(with Radial Basis Functional Kernel) 0.0001 0.0002 ↑↑ ≈0

Table 3: Applied different Evaluation metrices’ results for Section-548 and Section-559, with a reference value. The Remark column uses the
following nomenclature: ↑↑, Near 80-100% of Ideal Value; ↑, Near 60-80% of Ideal value; —, near 40-60% of Ideal Value; ↓↓, Near 20-40% of
Ideal Value; and, ↓, Near 0-20% of Ideal Value

Figure 18: Section No.559. (A) Original Cytoarchitectonic Image and
a sample patch, (B) Generated Cytoarchitectonic Image and a sample
patch.

in our experiment. Later, we applied the Region
Mutual Information RMI Loss function, which has
demonstrated promising results by attempting to build a

connecting bridge between the PLI and the lower level
latent distribution of the Cytoarchitectonic image.

Using Region Mutual Information(RMI) Loss
As previously stated, the information contained in
the kernel-sized patches of an image is calculated
using a kernel rather than a single pixel in Region
Mutual Information(RMI) loss. Figure-14 shows that
the RMI Loss may extract more mutual information
from the Cytoarchitectonic and 3D-PLI images in
our application. We then opted to use this RMI loss
as the conditional parameter to create a Conditional
Generative Adversarial Network for further training
with Adversarial Loss (cGAN).

Conditional GAN with RMI Loss Func-
tion(Initiating Adversarial Loss)
The results have been improved significantly after
starting adversarial training with RMI loss as the
conditional parameter to create a Conditional Gener-
ative Adversarial Network (cGAN) and doing a lot
of hyperparameter tunning such as regulating RMIl-
ambda, Feature maps, Training Size, and using different
metadata as input. Figure 15 shows that the model has
learnt the shades of different locations and can also
predict cells from 3D-PLI images, as demonstrated by
the patches. Although the patches have a wavy shape,

8.13



Learning Cytoarchitectonic Structure From 3D Polarized Light Imaging 14

perceptual loss is predicted to remedy the problem.
We were unable to add that to our model due to a time
constraint. As a result, we’ll be working on this project
right away to eliminate the wavy artifacts.

5.0.2. Reliability of the generated Cytoarchitectonic
Data

On the test set of the main large dataset, we ran the
Deep Learning model that was trained on small data.
The results of calculating the cytoarchitectonic image
from the 3D-PLI are displayed in Figure-16(Section-
548) and Figure-17(Section-559), as the qualitative
analysis. The images are intriguing since the model can
accurately predict gray matter and, more importantly,
cells in the gray matter region, particularly glial cells.
We had 5 patches of a brain section in the experimen-
tal limited data, and all of those patches were collected
from the gray matter border region of the brain. As a
result, this result was obvious, given that the model was
meant to learn the gray matter correctly.

There was no information on the subcortical areas in
the small training set. As a result, it’s understandable
that the model’s prediction of white matter regions
wasn’t perfect. As a result, it projected the presence of
some cells in the white matter regions (albeit a small
number). The model did a good job of predicting L1
regions.

From the evaluation metrices we have used to
evaluate the generated image quantitavely, we have
received very good accuracy(near to 80-100% of the
ideal value) from Mean Squared Error(MSE), Uni-
versal Quality Index(UQI), Average Log-Likelihood,
and from Maximum Mean Discrepancy(with Radial
Kernel). It was expected as in MSE, it consideres the
overall mean of the squared value. Similarly according
to Wang and Bovik (2002) in UQI, it measures the
quality index from the standard deviation of overall
distribution of two images. For Average log-likelihood,
it measures the likelihood between two images from
the difference of their average. If the difference is very
small then applying logarithm we get a negative value.
As this negative value is close to -∞, the results is good.
For our case, we have obtained a big negative number
for both the images. And, according to Rabanser
et al. (2019) MMD with radial kernel also gives an
discrepancy measure for a radial kernel.
For Root Mean Squared Error(RMSE), Peak Signal to
Noise Ratio(PSNR), Spectral Angle Mapper (SAM),
Mutual Information, and MMD with Linear kernel we
have obtained good results(60-80)% of the ideal value.
According to Wang et al. (2004), PSNR uses the signal
noise ratio of two different image by adding noise, and
blurriness to measure the similarity. It found better
than average similarities in our real cytoarchitectonic
and generated cytoarchitectonic images. In Yuhas et al.
(1992) they have described a method to find the relative

change in an image of earth taken from space before and
after by changing the viewing angle mathematically.
In our case, as our images are very large scale image,
it can be evaluated with their evaluation. It shows a
got perception of recongnizing the same portions from
the cytoarchitectonic and generated images. And for
the MMD with Linear Kernel as described in Rabanser
et al. (2019) it was calculating the discrepancy with
the linearly situated neighbouring pixels of the two
images. Thus, result was good but less than with
the Radial Basisi Functional kernel. With Structural
Similarity Index(SSIM), it applies different filtering for
performing the evaluation(Wang et al., 2004). SSIM
became confused between the evaluation, and have
given a nearly confusing result(Neither good, nor bad).

With Erreur Relative Globale Adimensionnelle de
Synthesis (ERGAS)described in Renza et al. (2013),
Spatial Correlation Coefficient (SCC) as described in
Zhou et al. (1998), Visual Information Fidelity(VIF) de-
scribed in Sheikh and Bovik (2006), and L2 Distance,
we have received a bad result as all of them mainly per-
forms pixel to pixel evaluation method. Our Cytoarchi-
tectonic imaging brain sections had some unavoidable
distortion in tissues during staining process after 3D-
PLI imaging. Hence, those images required registra-
tion. We have applied the warping as registration, but
still there was error between pixel to pixel positioning
in between the 3D-PLI and Cytoarchitectonic images
in the testing dataset. So the pixel to pixel evaluation
methods were not suitable for our work. Moreover, our
model had some wavy shape structure on the predicted
images.

5.0.3. Future Possible Extension of the Work
The outcome of the project has shown great potential

in evaluation results. Next we will perform the training
with the large dataset. Also to avoid the wavy structures
we will try applying the Perceptual loss as described in
Johnson et al. (2016) and Wasserstein loss described in
Frogner et al. (2015) to reduce this wavy effect and to
increase the performance. Moreover, as pixel to pixel
evaluation techniques are not suitable in our case, they
idea of Gray Level Index as described in Kiwitz et al.
(2020) can be applied for both training and evaluating
the project outcome.

6. Conclusions

6.1. Achievements
The main goal of this thesis study was to find out

if the 3D-PLI image data contains enough information
to predict or create synthetic Cytoarchitecture images.
Throughout our research we found a potential positive
outcome infers that Cytoarchitecnic images can be pre-
dicted from transferring the modality of a 3D-PLi im-
age. The resultant images show a feasible visual result.
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Furthermore, the evaluation metrics present a promising
score. At the end of the present study, we have found
that 3D-PLI contains promising amount of latent image
information to generate synthetic cytoarchitectonic im-
ages.

6.2. Future Work

The future work is intended to use more data and im-
prove the loss functions to improve the results. Our
training was completed on the developing data and from
out experimentation, we pointed out a few potential ap-
proaches such as intiating perceptual loss, wasserstein
loss, using the GLI indexing etc. to improve the results.
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Abstract

Cine-bSSFP MRI sequence is widely used in clinical routine for assessing cardiac volumes. Such routine use fostered
the development of automated and semi-automated solutions for segmenting Cine MRI sequences. Late Gadolinium
Enhancement (LGE) MRI is nowadays a well-established sequence for myocardial scar evaluation in various disease
conditions including myocardial infarction. While LGE can successfully highlight the scar tissue, the quantification of
its exact size in clinical practice is still a semi-automated process depending on the expertise of the radiologists.. In this
study, we present a transfer learning approach from cine toward LGE images for left ventricular myocardial segmenta-
tion in the setting of acute myocardial infarction, Convolutional neural networks for regression or segmentation-based
approaches are trained on the large-scale databases of Cine MRI and the learning weights of the best model are used
to train the same model on LGE MRI data. The methods are evaluated on an LGE-MRI database of 127 patients with
whole heart coverage, varying size of myocardial infarction. Our best method delineates the left-ventricular cavity
and myocardium with a Dice score of 93.4% ± 6% and 90.0% ± 4% respectively, and was relatively robust to slice
position, imaging center as well as infarct size, highlighting its potential usefulness as a promising approach towards
segmenting LGE MRI.

Keywords: Cardiac MRI, Cine-bSSFP, Late Gadolinium Enhancement, Myocardial Infarction, Transfer Learning

1. Introduction

Cine MRI images are quite abundant as such se-
quence is systematically acquired during cardiac MRI
exams in clinical routine as well as in clinical research
protocols . Such images have high resolution and high
contrast and offer a full temporal and spatial coverage
since they are acquired at multiple time phases through-
out the cardiac cycle, while covering the heart from its
base to its apex. The left ventricle is systematically seg-
mented of such MRI images in clinical routine to eval-
uate heart volume and function through volume-derived
indices such as ejection fraction and stroke volume,
playing a major role in the diagnosis of heart disease.

Late Gadolinium Enhancement (LGE) MRI se-
quences, also known as Delayed-Enhancement MRI,
are mainly used to detect replacement or dense my-
ocardial fibrosis in various disease settings including
: myocardial infarction, hypertrophic cardiomyopathy
and myocarditis. These sequences are ECG triggered

to be acquired during the diastolic phase, when the
heart has a stable volume. A gadolinium-based con-
trast agent is injected to the patient and the MRI sig-
nal is acquired 10 to 20 minutes after injection. LGE
MRI enables the delineation of regions of dense fibrosis
within the myocardium due to changes in the washout
patterns through myocardial regions, with a combina-
tion of reduced perfusion and delayed washout in the re-
gions with fibrosis. Amount of LGE has a high progno-
sis value and allows a strong prediction of heart function
recovery after revascularization. Similar to Cine MRI,
analyzing LGE MRI images also requires the segmenta-
tion the manual delineation of the myocardium prior to
the application of clustering or thresholding techniques
to segment and quantify the amount of dense fibrosis.
(Kachenoura et al., 2008) (Baron et al., 2013)

While manually delineating the ventricles and my-
ocardium in Cine MRI is challenging in itself, it is an
even more challenging task in LGE MRI images due to
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(a) (b) (c)

Figure 1: (a) Cine MRI, (b) corresponding LGE MRI and (c) cardiac MRI short-axis view schematic

their lower quality and contrast (especially between LV
cavity and the adjacent sub-endocardial scar area).

The large amount of available annotated Cine MRI
data allowed for the development of numerous fully au-
tomated deep learning-based algorithms, which could
be applied on the smaller LGE datasets through trans-
fer learning strategies. Accordingly, the specific aim of
this internship was to evaluate the value of such transfer
learning strategy from cine MRI towards LGE images
for myocardial segmentation in the setting of chronic
myocardial infarction.

2. State of the art

2.1. Literature Review

In the existing methods for the delineation of the left-
ventricular cavity and the myocardium in LGE MRI se-
quences, some pertain to segmenting the myocardium
as a whole while others focus on scar quantification and
segment those regions separately from the rest of the
healthy myocardium. Since our focus is on segment-
ing the whole myocardium region, we will focus on the
methods for the former approach more. Indeed, once,
myocardium is segmented from LGE images, cluster-
ing can be applied to further quantify the infarct volume.
(Kachenoura et al., 2008)(Baron et al., 2013)

In the context of deep learning, there has been many
attempts so far on using some form of domain adap-
tation from Cine and T2 sequences towards the LGE
MRI. In fact, there are only sparing previous works us-
ing a dataset based only on the LGE MRI sequences for
the segmentation of the whole myocardium. (Yue et al.,
2019) used a shape reconstruction and spatial prior
constraints-based network (SRSCN) on LGE MRI from
45 patients resulting in a Dice score of 75.8% for my-
ocardial segmentation. Most of the deep learning-based
domain adaption work for the LGE MRI on the delin-
eation of the whole myocardium region comes from
the STACOM MS-CMRSeg 2019 challenge (Zhuang
et al., 2020). The challenge dataset has Cardiac MRI
for 45 patients in the Cine(bSSFP), T2-weighted and
LGE MRI images. In the training dataset, Cine and
T2-sequences are provided from all the patients (with

the last ten not being labeled). Labeled LGE MRI im-
ages, however, come only from 5 patients for valida-
tion purpose. The results for this challenge are listed in
Table ??. The design of the challenge encourages do-
main adaption. The participating teams of the challenge
mostly have a two-step solution where the first step
uses some supervised or unsupervised form of augmen-
tative and generative technique while the second step
focuses on a segmentation network. LGE stylized im-
ages are fundamentally synthesized from the other two
provided modalities focusing on multi-modal image to
image translation, two parameter-sharing segmentation
networks and classical image processing techniques to
change the image features of the source modalities to
the target modality i.e LGE MRI sequences. The av-
erage results from the selected methods on the chal-
lenge are Dice scores of 89.1% and 76.6% on the left-
ventricular cavity and myocardium, respectively.

One might highlight (Vesal et al., 2019) approach
which is the only participating team using the main-
stream transfer learning technique of deep learning
where the learning weights of one model are used to
boost a second model that is being trained on a different
dataset. In their implementation, they train one U-Net
based model on Cine and T2w MRI sequences. Once a
model with good performance is achieved, a second U-
Net based model using LGE MRI sequences from the
four patients in training dataset is trained while being
initialized with the learning weights of the first model.
For their validation data, they used the LGE MRI se-
quences from the remaining patient out of the five and
get Dice scores of 87.1% and 74.9% of dice on the left-
ventricular cavity and myocardium, respectively. On the
test dataset from the challenge, however, their perfor-
mance goes up to Dice scores of 91.2% and 78.9% on
the left-ventricular cavity and myocardium. Their re-
sults clearly show an improvement in performance us-
ing the transfer learning technique.

The MICCAI EMIDEC 2020 challenge (Lalande
et al., 2021) is also worth mentioning here. For the
dataset for this challenge, there are LGE MRI images
from 150 patients with one third of the patients having
myocardial infarction and no reflow. The dataset is fur-
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Reference Method Dice Score (%) Hausdorff Distance (mm)
Left Ventricle Myocardium Left Ventricle Myocardium

Yue et al. (2019) Shape Reconstruction and Spatial Priors Constraints U-Net (SCSRN) 91.5 ± 5.2 81.2 ± 10.5 11.04 ± 5.818 12.25 ± 6.455
Chen et al. (2019a) Multimodal Unsupervised Image-to-Image Translation + Cascaded U-Net 91.9 ± 2.6 82.6 ± 3.50 10.28 ± 3.376 12.45 ± 3.142
Wang et al. (2019a) Attention U-Net with Group-Wise Feature Re-Calibration Module 89.6 ± 4.7 79.6 ± 5.90 13.59 ± 5.206 15.70 ± 5.814

Ly et al. (2019) Threshold Connection Layer Network (TCL-Net) 87.0 ± 5.1 70.5 ± 11.5 41.74 ± 7.696 42.79 ± 13.26
Wang et al. (2019b) Selective Kernet U-Net (SK-UNet) 92.6 ± 2.8 84.3 ± 4.80 9.748 ± 3.280 11.65 ± 4.002

Campello et al. (2019) CycleGAN + U-Net 89.8 ± 4.5 81.0 ± 6.10 10.78 ± 4.066 11.96 ± 3.620
Vesal et al. (2019) U-Net with Trasnfer Learning 91.2 ± 3.4 78.9 ± 7.30 11.29 ± 4.569 12.54 ± 3.379
Roth et al. (2019) Multi-Atlas + Anisotropic Hybrid Network (AH-NET) 89.9 ± 4.3 78.0 ± 4.70 11.58 ± 7.524 16.25 ± 6.336
Liu et al. (2019) Residual U-Net 88.4 ± 0.7 75.1 ± 11.9 14.30 ± 8.170 14.75 ± 7.823

Chen et al. (2019b) U-Net with Discriminator 82.4 ± 6.8 61.0 ± 10.2 23.69 ± 14.66 24.62 ± 12.66

Table 1: Results on Whole Myocardium Segmentation

Reference Method Dice Score (%)
Myocardium Infarction NoReflow Average

Zhang (2020) 2D U-Net Variant + 3D U-Net Variant 87.9 ± 2.70 71.2 ± 26.8 78.5 ± 39.3 79.2
Feng et al. (2020) 2D U-Net with Dilated Convolution 83.6 ± 12.4 54.7 ± 34.0 72.2 ± 43.2 70.2

Yang and Wang (2020) 2D U-Net with SE and SK blocks 85.5 ± 2.70 62.8 ± 31.5 61.0 ± 46.3 69.8
Hüllebrand et al. (2020) 2D U-Net Variant +Mixture Models 84.1 ± 5.10 37.9 ± 29.6 52.3 ± 48.3 58.1
Camarasa et al. (2020) 3D U-Net Variant 75.7 ± 11.1 30.8 ± 28.0 60.5 ± 48.5 55.7

Zhou et al. (2020) 2D U-Net with Attention 82.5 ± 5.70 37.8 ± 30.9 52.0 ± 48.7 57.4
Brahim et al. (2020) 2D U-Net with Attention and IRB + 3D U-Net Variant 79.1 ± 5.00 26.4 ± 37.9 64.1 ± 47.9 56.5
Girum et al. (2020) 2D U-Net with SE Block 80.3 ± 5.70 35.0 ± 47.4 78.0 ± 41.4 64.4
Brahim et al. (2022) Inclusion and Classification Prior InformationU-Net (ICPIU-Net) 87.6 ± ?.?? 73.3 ± ?.?? 81.3 ± ?.?? 80.8

Table 2: Results from Literature on the EMIDEC2020 Dataset

ther divided into 100 patients for training dataset and 50
patients for testing dataset representing equal propor-
tions of healthy and diseased patients. The challenge
is targeted for the segmentation of the myocardium into
three classes including healthy, infarcted and no-reflow
regions. While, it has been mentioned that some partic-
ipants segmented the myocardium and left-ventricular
region first before segmenting the infarcted and no-
reflow regions, no specific algorithms and results for
such a task are given. This renders the comparison of
our findings against the EMIDEC challenge not very
straightforward, unless if we consider that the entire
myocardium is a union of all the above mentioned three
classes. Table 2 gives the results on the EMIDEC test-
ing dataset along with the methods used by the teams.
Due to the relatively large training dataset this time, the
methods listed here do not employ any use of domain
adaptation or transfer learning and focus on the segmen-
tation models. The segmentation models being used are
all based on U-Net architecture and its variants.

With the STACOM MS-CMRSeg 2019 challenge, we
can see that these methods are clearly plagued by the
lack of a proper and labeled LGE MRI dataset. It also
seems that a generic deep-learning based solution for
segmentation of the whole myocardium and the left-
ventricular in the LGE MRI is lacking as the methods
mentioned here are working with the Cine and T2w
modalities to extract the solution for the corresponding
LGE modality. While MICCAI EMIDEC 2020 chal-
lenge does solve the issue regarding the availability of
relatively larger datasets on the LGE MRI sequences,
we believe evaluating robustness of algorithms on LGE
data acquired in different centers and different MRI
scanner is still needed in the present literature. While

the challenge article(Lalande et al., 2021) does men-
tion that the one third ratio of healthy to diseased my-
ocardium as seen in the challenge dataset is analogous
to what is seen in real life, we believe that larger datasets
with varying amounts of infarcted myocardium can be
beneficial for improving the deep-learning based meth-
ods. Indeed, each patients had anyway few slices free of
myocardial infection offering the algorithm a sufficient
domain to learn how to manage LGE free images. The
idea of domain translation that is lacking in the meth-
ods used for the EMIDEC 2020 challenge also seems a
promising aspect to explore even with relatively larger
LGE MRI dataset now being available. Lastly, a con-
tour regression-based deep learning approach in com-
parison with segmentation-based approach is also a pos-
sible venue to explore as such implementations would
allow gain in computation power and processing time
but are still lacking in literature.

2.2. Contribution

In this study, we present a method for the delin-
eation of left-ventricular cavity and myocardium in the
LGE MRI images based on the transfer learning tech-
nique used in deep learning. We train and evaluate
our meth- ods on a diverse LGE MRI dataset which
comes from multiple vendors and is acquired using MRI
scan- ners from Siemens, General Electric as well as
Philips. Our dataset features 127 patients who have
varying level of myocardial infarction, with 12 slices
per patient on average. In sum- mary, we observe the ef-
fects of deep learning-based transfer learning from Cine
to LGE MRI sequences. We also compared the per-
formance of regression-based meth- ods against 2D and
3D segmentation-based methods. Within segmentation-
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Figure 2: (clockwise) LV schematic from basal to apex, (a) stack of cine short axis images covering the heart from base to apex, (b) mid left
ventricular slice throughout the cardiac cycle

(a) Cine MRI Dataset
Dataset Patients Slices Spatial Depth Temporal Depth Pathology Remarks

Private

71 10396

Full

Healthy
30 2245 One Basal CVD61 12471 One Mid-Ventricular

116 9061 One Apical HCM
208 24465 MI

ACDC2017 100 1808 Full ES & ED Healthy +MI + DCM + RV + HCM
LVQuan2018 145 2900 Middle MI + DCM + HCM

(b) LGE MRI Dataset
Private (24 Centers) 127 1511* Full ED MI

Table 3: Description of available data from (a) Cine and (b) LGE MRI sequences in terms of number of patients and number of annotated images
[*1511 = 427 Basal + 640 Middle + 444 Apical Slices].
ED & ES: End Diastole and Systole, CVD: Cardiovascular Disease, MI: Myocardial Infarction, RV: Right Ventricular Cardiomyopathy DCM:
Dilated Cardiomyopathy, HCM: Hypertrophic Cardiomyopathy

based methods, we explore different architectures from
standard U-Net to more recent transformer-based hybrid
U-Net and report our findings.

3. Material and methods

3.1. Dataset

The dataset used in this study pertains to two differ-
ent cardiac MRI sequences, namely Cine MRI and Late
Gadolinium Enhancement (LGE) MRI. Both datasets
comprised subjects coming from local private datasets
(constituted at Laboratoire d’Imagerie Biomédicale
(LIB) in collaboration with European Hospital Georges
Pompidou and The Pitié-Salpêtrière Hospital) or from
publicly available datasets. Of note, patients in the pri-
vate datasets were acquired within clinical research pro-
tocols approved by the local ethics committee.

Cine MRI datasets had two types of depth: a spa-
tial depth to cover the heart from its base to its apex,
Figure 2(a); a temporal depth, since for each of these
slices, the heart is imaged throughout the cardiac cy-
cle Figure 2(b). For all Cine MRI images coming from
the local private datasets, annotations cover the com-
plete temporal depth (entire cardiac cycle) on one basal,
one mid-ventricular and one apical slice in terms of spa-
tial depth. This can be explained by the fact that these
patients were analyzed in the setting of strain analy-
sis using a feature tracking algorithm, restricting the

functional estimates to 3 representative slices in com-
pliance with the left ventricular American Heart Asso-
ciation segmentation. The publicly available datasets
(ACDC2017 (Bernard et al., 2018) and LVQuan2018
(Xue et al., 2021) challenges) only had annotations on
extreme phases (end diastolic and end systole phases)
in terms of temporal depth, in compliance with vol-
umes and ejection fraction estimation. The ACDC2017
dataset has complete spatial depth whereas we only
have the mid-ventricular slices for LVQuan2018. To
summarize, we had about 63,346 images from about
631 patients for cine MRI Table 3(a).

LGE MRI only had a spatial depth since LGE acqui-
sition is performed during diastasis, when the motion of
the relaxing heart is minor. Indeed, these images are ac-
quired 10 to 15 minutes after injection of Gadolinium
contrast agent to capture areas of myocardial scar and
micro-vascular obstructions. We therefore apply a full
coverage of the left ventricle from its base to its apex,
while positioning continuous short axis slices. In terms
of quantity, we have about 1511 images from 127 pa-
tients coming from a local private dataset Table 3(b).
Accordingly, one might note that the Cine MRI dataset
is forty times larger as compared with the LGE MRI
dataset.

In the private database, LGE left ventricular myocar-
dial contours were all traced manually by an experi-
enced radiology technician while varying and tuning in-
tensity windowing while Cine MRI images were ana-
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lyzed using a custom feature tracking software (Lamy
et al., 2018) with visual supervision of the heart con-
tours delineation. Our dataset for LGE MRI sequences
also had the diseased regions in the myocardium anno-
tated but due to our task being focused on segmenting
the myocardium region as a whole, we only used them
for analyzing the quality of our results in varying ratio
of infarcted to healthy regions as will be seen in the re-
sults section. For further details on both the Cine and
LGE MRI datasets, please refer to Table 3

For the regression-based method, we have used a con-
tour extraction algorithm to get the contours of the left-
ventricular endocardium and epicardium in case of the
publicly available datasets used as we only have the
ground truth masks for the regions of interest instead
of a contour. More details on this are present in Section
3.2 on regression-based methods.

In order to have a robust model and to fine-tune the
hyperparameters of the model, both datasets were split
into three parts in proportions of 70-20-10% for train-
ing, validation and testing datasets, respectively. To
make these splits, features related to the dataset such
as the pathology of the patient, the clinical centers and
the MRI machines that the data were acquired on are
accounted for in equivalent proportions for each split.
It allows for a good representation of all the diverse
features of the data to be learned by the model. Once
the dataset was split, we used 442, 126 and 63 patients
for training, validation and testing, respectively, in Cine
MRI dataset. In LGE MRI dataset, we use 88, 25 and 12
patients for training, validation and testing, respectively.

3.2. Regression-Based Method

In this study, we tested both regression-based and
segmentation-based methods. Although the focus has
been on segmentation-based methods, for a more nat-
ural and intuitive flow, we will start by describing the
regression-based method that have been used in the
present work. For this method, Cardiac MRI images
are given as input data whereas the target outputs are
the left-ventricular myocardial contours, or more pre-
cisely, the endocardial and epicardial contours. We
used boundary points (Du et al., 2018) representation
for the contours in order to prepare a target vector for
this regression-based approach that can be processed by
the model.

3.2.1. Boundary Points Representation
The myocardial boundaries are represented by a set

of discrete points and these points are described by their
coordinates:

vi = (xi, yi)|(i=1,...,n) (1)

where vi is the ith boundary point’s coordinate and n is
the number of discrete points of each boundary which
depends on the interval between every two adjacent

points. Smaller interval sizes lead to bigger n and pro-
vide more realistic and smoother representation of the
boundary, with a higher precision. The discrete bound-
ary points are obtained using the spline method. The
first point intersecting the boundary and horizontal cen-
ter line is taken and the remaining n-1 points are sam-
pled clockwise along the boundary, evenly and succes-
sively. The process is repeated for each boundary (left
ventricular endocardium and epicardium in our case).
Since we are in discrete domain already, we use the full
pixel resolution available to us for each contour. How-
ever, since every image has its own extent of epicardium
and endocardium contour, we first find the maximum
and minimum limit of both the coordinates of the epi-
cardium and endocardium contours and do padding.
Figure 5 shows a straight line towards the end of each
of the four plots corresponding to the contours of the
epicardium and the endocardium depicted in the graph.

Since the left-ventricular cavity and myocardium can
have unique shape variations specific to each patient
and pathology and the acquisition source of the MRI,
the boundary points representation provides a more ro-
bust structure compared with other conventional meth-
ods like PCA shape (Cootes et al., 1995). Indeed com-
pared to PCA, thes representation avoids a learning step
and the need to build a training set distinct from the one
used for the DL training.

3.2.2. Architecture
To achieve this regression task, we used standard

deep convolutional neural network models such as
VGG, ResNet and DenseNet. While these networks are
normally used for classification-based tasks, we can ex-
tend their functionality for regression-based tasks, by
modifying the final classification layer from the num-
ber of classes to be predicted, into the length of the tar-
get vector representing the boundary points for the con-
tours to be predicted. While we experimented the dif-
ferent variants of the aforementioned architectures, for
the purpose of illustration, we can see the default VGG
architecture in Figure 3 to briefly summarize how the
model works.

3.2.3. Transfer Learning in Regression-Based Method
The networks discussed in the previous section can

all be used in their pre=trained form i.e using the
weights these models learned for the ImageNet (Deng
et al., 2009) dataset challenge. Since we have already
mentioned that we change the last layer to represent
the length of our target boundary vector, this is already
a form of transfer learning. Although the ImageNet
dataset is not similar to the cardiac MRI dataset, the
weights corresponding to the learning of low-level fea-
tures like boundary and edge detection remain relevant.
To use a pre-trained model with a new dataset, several
options can be employed. One of these options con-
sists in modifying a single last layer for our desired out-
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Figure 3: VGG19 architecture with output layer modified for our regression task (Simonyan and Zisserman, 2015)

Figure 4: Step-by-step depiction of transfer learning starting from a pre-trained CNN model with imagenet weights, converting the last layer for
regression and retraining on the source (Cine MRI) dataset. In the last step, the last layer is again converted to suit the target output size of the
target dataset i.e LGE MRI and the model is retrained again with weights from the model trained on Cine MRI
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Figure 5: Getting Boundary Points Representation from Contours.
The x-axis in Boundary Points Representation is the location of the
x and y coordinates of both the endocardium and the epicardium con-
tour as indicated in the legend

put and keep the rest of the layers frozen during train-
ing. We can also keep them all or only keep a combina-
tion of them frozen. Since, the model learns low level
features in the initial layers and high-level features in
the last layers, retraining the deeper layers on the new
dataset would intuitively result in better performances.
In the context of using deep learning models with med-
ical imaging datasets, retraining on all the layers has
been seen to give better performance. (Kim et al., 2022)
(Yu et al., 2019)

Using this approach, our first model was trained on
Cine MRI dataset. Once we had a successful model,
we used the weights from this model to initialize the
training of our second model on the LGE-MRI dataset.
Again, the final layer for both the Cine MRI and LGE
MRI will be different depending on the size of the tar-
get vector for the boundary points representation of the
myocardial contours.

3.3. Segmentation-Based Methods: 2D-Based Segmen-
tation

In this section, we will discuss models that use
segmentation-based techniques. The goal is to predict
a segmentation mask from the input image by assigning
a probability to each pixel in the image corresponding
to the different classes to predict. In our case, the seg-
mentation masks comprised left ventricular cavity and
the myocardium. Since both 2D based methods using
individual MRI slices and 3D-based methods, using 3D
volumes were previously proposed to predict the seg-
mentation masks, we will discuss each method in the
following sections:

3.3.1. U-Net Architecture (Ronneberger et al., 2015)
This is the most standard architecture used for most

of the segmentation tasks and has been extremely pop-
ular in medical imaging domain. This architecture uti-
lizes a contracting and expanding path to assign a label
to each pixel in our input image. The contracting path
uses an encoder-based architecture which is basically
the part of the same architecture that is described in
Section 3.2.2 for its use in the regression-based method.
This makes sense because in the contracting path, our
goal is to understand how to recognize the region of in-
terest inside the input image and learn the associated

features. For the localization part, we have the expand-
ing path which serves as a decoder. The skip connec-
tions as indicated in the figure x are used to keep the
spatial information intact in order to be able to place
the detected labels in the original coordinates in the in-
put image. In the end, we get a probability map for
each pixel in the input image for which class label it
might belong to. We use a softmax activation function
to get the class labels with the highest probability for
each pixel in the input image.

3.3.2. U-Net++ with Attention (Li et al., 2020)
In this slightly modified version of the standard U-

Net, we used attention gates in the decoder phase of the
network.

This architecture is the combination of U-Net with
Attention (Oktay et al., 2018) and U-Net++ (Zhou
et al., 2018). Both of them were designed to improve
the retention of information through the skip connec-
tion paths. In U-Net++, dense convolutions are per-
formed between the corresponding encoder and decoder
through the skip connection path. Each dense block is
fused with the up-sampled output of the lower dense
block bringing the semantic level of the encoded feature
closer to that of the feature maps waiting in the decoder.
This makes optimisation easier when semantically sim-
ilar feature maps are received.

This U-Net++ model was further modified by Li
et al. (2020) to incorporate attention based U-Net (Ok-
tay et al., 2018) into the U-Net++ architecture. This
is also aimed at improving the performance in the skip
connections of U-Net by applying attention gates. At-
tention gates help in capturing a sufficiently large re-
ceptive field in contrast with CNNs and thus, capture
semantic contextual information. Attention gates being
incorporated with the skip connections are depicted in
Figure 8

3.3.3. TransUNet Architecture (Chen et al., 2021)
Transformer based architectures, while initially used

for sequential data and Natural Language Process-
ing (NLP), have also been recently introduced to im-
age recognition and segmentation related problems
(Dosovitskiy et al., 2021). One main advantage of a
transformer-based architecture over a convolutional one
is its receptive field. While the view of a convolutional
neural network is limited to very local information, a
transformer block basically sees the entire image. Intu-
itively, the transformer-based architecture makes up for
a very good encoder. TransUNet (Chen et al., 2021) is
a transformer-convolution hybrid architecture where the
main contrast with the standard U-Net is that the bottle-
neck part of the encoder is replaced by a transformer
block.
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Figure 6: U-Net Architecture (Ronneberger et al., 2015)

Figure 7: U-Net++ Architecture (Zhou et al., 2018)

Figure 8: U-Net++ with Attention (Li et al., 2020)

3.4. Segmentation-Based Methods: 3D-Based Segmen-
tation

In this method, we used the 3D volumes (contiguous
slices for MRI) directly instead of using a slice by slice
approach. This kept spatial information intact. Hence,
this method is not adapted to part of our Cine MRI
dataset which did not have any spatial depth.

3.4.1. UNETR Architecture (Hatamizadeh et al.,
2022b)

UNETR is also a transformer-convolution hybrid ar-
chitecture similar to the TransUNet. Its main differ-
ence with the TransUNet is that the whole encoder
block has been converted from convolutional blocks to
transformer blocks with the exception of a single layer.
Again, the motivation here is to have more powerful en-
coder blocks. UNETR is a fairly new architecture but
has seen some success in its use in the medical imaging
domain (Rai et al., 2021) (Hatamizadeh et al., 2022a).
Hence, we also wanted to observe its performance on
Cardiac MRI segmentation.

3.5. Transfer Learning in Segmentation-Based Meth-
ods

Transfer Learning in Segmentation-Based Methods
The transfer learning procedure here is very similar
to what was discussed in Section 3.2.3 where transfer
learning was discussed for regression-based method. In
the figure x, we are looking at a simplified version of an
encoder-decoder based architecture denoting the archi-
tectures we have encountered in this section. In the first
stage, a model is trained on the Cine MRI dataset. After
having a successful model, the weights from each of the
layer are transferred to initialize the model that is to be
used for segmenting the LGE MRI Dataset.
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Figure 9: TransUNet architecture with transformer layer depicted where the encoder bottleneck block has been replaced (Chen et al., 2021)

Figure 10: UNETR architecture with the transformer layers used in the encoder part indicated. (Hatamizadeh et al., 2022b)

Figure 11: Transfer Learning as seen in U-Net based architectures for segmentation
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3.6. Pre-processing
Our first step of pre-processing constitutes of focus-

ing on the region of interest i.e the left ventricle and the
myocardium of the human heart. Since the cardiac MRI
has information besides this region of interest (as seen
in Figure 12), the goal here is to move the region of in-
terest to the center of the image and then to crop out or
remove any excess part of the MRI outside of this region
of interest.

The motivation for this is two-fold. The first case is
empirical as we see the model being less vulnerable to
the excess information besides the region of interest ex-
perimentally hence reducing the false positives. Sec-
ondly, from the study of the interpretability of the net-
works (Selvaraju et al., 2017)(Janik et al., 2021), we de-
termine that it is indeed the ROI that the model needs to
see and that the excess information does not contribute
to the final predictions.

There are several methods to accomplish this, both
segmentation as well as regression based (similar to
what was described in Section 3.3.1 and Section 3.2.2,
respectively). In the segmentation-based method, a deep
learning based binary model is trained to detect the re-
gion of interest (left heart in our case) in the image. Us-
ing the binary mask of each input image, classical image
processing is used to compute the centroid as well as a
bounding box for the foreground i.e. ROI. The image
is then translated to have the centroid at its center while
the bounding box information is used to crop off the ex-
cess background. The size of the bounding box is em-
pirically determined to be as small as possible without
losing parts of the structure of interest. The regression-
based methods are more straightforward in this case, a
model is trained to simply predict the centroid and the
main corners of the bounding box or even the anatom-
ical landmarks of the heart. The same can be achieved
using deep reinforcement learning. In our case, we used
the segmentation-based method for this step.

Since the region of interest is not of the same size
for all the patients/slices, once this step is complete, the
input images are padded and center-cropped appropri-
ately to have the uniform size of 224x224. The main
motivation for using this specific resolution is to benefit
from pre-trained weights in the encoder part of the used
models.

Other pre-processing steps include the zero-one nor-
malization which is implemented per image and volume
for 2D and 3D-based methods, respectively. To tackle
the contrast and noise related issue in the dataset, we
also used contrast enhancement and additive Gaussian
noise. This step is implemented as augmentative trans-
forms to ensure varying level of contrast and noise ad-
justment for more robust results.

3.7. Training Configuration
All the experiments use Adam optimizer with a learn-

ing rate of 1e-04 and a batch size of 16.

Figure 12: Labeled Cardiac MRI:- 1: Right Ventricle, 2: Left Ventri-
cle, 3: Diaphragmatic Fat, 4: Paracardiac Fat, 5: Chest Wall, 6: Liver,
7: Stomach, 8: Left Lung, 9: Right Lung

Figure 13: Pre-processing Steps

3.7.1. Segmentation-Based Methods
For the Cine MRI dataset, the number of epochs used

are up to 30 with about one and a half hour of training
time per epoch whereas for the LGE MRI dataset, the
number of epochs used are up to 300 with about half
a minute per epoch. For loss function, we tested Dice
Loss, Generalized-Wasserstein Dice Loss (Fidon et al.,
2017), Cross Entropy Loss and their combinations and
results did not vary significantly. We thus used a cus-
tomized version of the Dice Loss to account for miss-
ing labels as the standard dice loss function registered
a complete loss (0% Dice Score) in cases of missing
labels even where our model has successfully avoided
the false positives. For the backbone architecture to be
used in the encoder part of our segmentation based mod-
els, U-Net++ used VGG19 architecture with batch nor-
malization. This was based on performance exploratory
analysis and was seen in literature pertaining to medical
imaging. (de la Rosa et al., 2021) (Jia et al., 2018)

3.7.2. Regression-Based Methods
For the Cine MRI dataset, the number of epochs used

are up to 20 with about twenty minutes of training time
per epoch whereas for the LGE MRI dataset, the num-
ber of epochs used are up to 500 with about twenty sec-
onds of training time per epoch. For loss function, we
used both L1(Mean Squared Error) and L2 (Mean Ab-
solute Error) Loss depending on their performance for
each particular case. The pre-trained deep CNN model
used for the task was VGG19 architecture with batch
normalization for the same reasons as mentioned in Sec-
tion 3.7.1
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3.8. Evaluation Metrics
The main evaluation metric being used is the Dice

Score Coefficient(DSC) metric which is being supple-
mented by the Hausdorff Distance. The Dice score
measures the global overlap of a predicted contour area
(As) with the ground truth contour area (Ar). The value
ranges between 0 and 1 (or 0 to 100%) with larger
value indicating higher consistency between the pre-
dicted segmentation area and the ground truth.

Figure 14: Graphic illustration of dice metric and Hausdorff distance.
(a) Red (Am) and green areas (Aa) are manually and automatically
segmented, respectively. The intersection is represented by Ama. (b)
M and A denote manual and automated contour, respectively.

DS C(As, Ar) = 2Asr/(As + Ar) (2)

On the other hand, the Hausdorff Distance (HD) mea-
sure the local agreement between to segmentation. Min-
imum distance is calculated between each point (p) on
the ground truth mask or contour (R) to its nearest point
(p′) in the predicted mask or contour (S )

d(p, S ) = min(p′ϵM) ∥ p − p′ ∥ (3)

Now, for all points in R and P, maximal distance d(p, S )
and d(p′,R) using (3) is calculated. Hausdorff distance
is the maximum of these two distances. The value
ranges between 0 and∞, with smaller value indicating a
higher consistency between the predicted segmentation
area and the ground truth.

HD(AS , AR) = max(max(pϵR)d(p, S ),max(p′ϵS )d(p′,R))
(4)

4. Results

As mentioned in Section 3.7, the results for
regression-based methods were obtained using VGG19
architecture with batch normalization. For the sake of
brevity, the results pertaining to 2D-Based segmenta-
tion come from U-Net++ with VGG19bn as backbone
encoder as it gave better results than the TransUNet ar-
chitecture. For quantitative results, see Table 4. More
detailed quantitative analysis(see Figure 17) come from
the model that performed the best. In this case, it is the
2D-based segmentation model used i.e U-Net++ with
VGG19bn as the back bone encoder. In qualitative re-
sults, Figure 15 and 16 give example results from one
basal, one middle and one apical slice. The good ex-
amples are cases where the model performs well on a

challenging image from the test dataset. The difficult
examples are challenging cases from the test dataset that
the model struggles with.

5. Discussion

It was expected that, due to the relatively much
smaller and lower quality of the LGE MRI dataset, the
preliminary results before transfer learning would not
be very good, in line with literature findings (Romero
et al., 2019). However, as can be seen from Table 4, our
model performed very well even before the use of trans-
fer learning. One way to explain this would be that our
model complexity allows us to capture what is needed
from the dataset irrespective of its size. Another way
to look at this would be that the size and variety (sites,
quality, MI extent) of our LGE dataset i.e 1500 im-
ages was sufficient for a model to be trained with from
scratch.

Transfer learning from the widely used cine SSFP to-
wards LGE images induced a slight increase in perfor-
mance independent of the used method. Such increase
in performances came with a faster models’ conver-
gence. Since the LGE MRI dataset is acquired towards
the end diastolic phase, we experimented transfer learn-
ing while focusing on the relevant time phases of Cine
MRI, namely from diastasis to end-diastolic phase. This
restriction to relevant time phrases, and accordingly to
relevant heart shape had no significant effect regardless
of the size of the data used. This suggested that the size
of the source dataset used for training the first model in
transfer learning might not always be relevant in terms
of learning weights that the second model for the target
dataset could benefit from.

Nonetheless, in general, we do have a successful
segmentation of the left-ventricular cavity and the my-
ocardium from LGE MRI images. As expected, seg-
mentation performances were slightly lower in the api-
cal slices as they are the most difficult to segment due
to a very small amount of LV cavity present as well as
to the higher presence of partial volume within the my-
ocardial class. Tests of our model according to slice
position, clinical centers where MRI exams were ac-
quired and myocardial infarction reveals that our model
has given quite robust results despite some outliers for
which we believe the segmentation can be further im-
proved using some post-processing techniques. From
the qualitative results in Figure 15, we see that our
model correctly predicted the segmentation masks de-
spite the left-ventricular epicardium and endocardium
boundaries being. The case from the apical slice in Fig-
ure 15c is a particularly difficult slice to segment. In
figure 16, we see some challenging cases from the test
dataset that the model has struggled with. These are
slices mostly from the basal and apical positions.

In terms of model architecture from Table 4, at least
for our case, we also observe that standard U-Net++
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(a) Cine MRI
Transfer Method Dice Score (%) Hausdorff Distance (px)
Learning Average LV Myocardium Average LV Myocardium

n/a
Contour Regression 87.9 ± 3 91.5 ± 4 84.3 ± 4 2.54 ± 1.93 2.43 ± 1.84 2.66 ± 2.50
2D Segmentation 93.2 ± 2 94.8 ± 4 91.6 ± 3 1.83 ± 1.68 1.72 ± 1.39 1.95 ± 2.04
3D Segmentation 85.4 ± 4 90.5 ± 6 80.4 ± 5 2.99 ± 2.10 2.85 ± 1.59 3.14 ± 1.95

(b) LGE MRI
Contours Regression 86.6 ± 4 89.4 ± 5 83.7± 4 2.76 ± 2.10 2.54 ± 1.63 2.98 ± 2.31

No 2D Segmentation 91.3 ± 3 93.1 ± 6 89.5 ± 4 2.51 ± 1.43 2.24 ± 1.18 2.78 ± 2.08
3D Segmentation 85.1 ± 4 90.3 ± 4 80.0 ± 3 3.05 ± 1.83 2.89 ± 1.81 3.22 ± 2.13

Contours Regression 86.8 ± 4 89.7 ± 5 84.0 ± 4 2.63 ± 2.02 2.46 ± 1.71 2.81 ± 2.24
Yes 2D Segmentation 91.6 ± 3 93.4 ± 6 90.0 ± 4 2.64 ± 1.28 2.28 ± 1.23 3.01 ± 1.62

3D Segmentation 85.3 ± 4 90.6 ± 4 80.1 ± 3 3.01 ± 1.61 2.91 ± 1.75 3.12 ± 2.01

Table 4: Quantitative Results for (a) Cine MRI and (b) LGE MRI

(a) (b) (c)

Figure 15: Example Good Case in (a) Basal, (b) Middle and (c) Apical Slice

(a) (b) (c)

Figure 16: Example Difficult Case in (a) Basal, (b) Middle and (c) Apical Slice

9.12



Transfer Learning from Cine to LGE MRI for Myocardial Segmentation in Patients with Myocardial Infarction 13

Figure 17: Box-Plots of the segmentation-based model performances through slice levels (left), imaging centers (middle) and infarct size (estimated
as the scar to healthy myocardium ratio)

model with VGG19 encoder and batch normalization
still outperforms transformer-based hybrid segmenta-
tion architectures. We also observe that although it had
been an interesting and insightful approach regression-
based methods are outperformed by the segmentation-
based methods in the context of our task.

6. Conclusions

In this study, the significance of transfer learning ap-
proach from Cine MRI to LGE MRI was investigated.
We performed regression and segmentation-based anal-
ysis and did a performance comparison between con-
volutional and transformer-based segmentation models.
In conclusion, we perform well in segmenting left-
ventricle and myocardium in the LGE MRI dataset but
the contribution from transfer learning using Cine MRI
was only minor in our data.
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Abstract

At present, chest x-ray (CXR) is considered the primary tool for the detection and monitoring of lung abnormali-
ties (Bradley et al., 2019). In the recent years, the main lung disease of interest is COVID-19, which is a new type
of pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Wang et al., 2020b).
Monitoring lung opacity level is of great importance as it helps in determining the appropriate treatment and respira-
tory support for infected patients. The analysis of CXR by a trained radiologist is a time consuming and challenging
task that involves inter-rater variability. Hence, AI can play an effective role in in automatic assessment and moni-
toring of lung severity using CXR. Brixia score (Borghesi and Maroldi, 2020) is a semi-quantitative multi-regional
scoring system that proved a significant prognostic value in assessing lung severity from CXR in Italy during the pan-
demic. With the release of a large dataset of almost 5,000 CXR annotated with Brixia scores by only one experienced
radiologist on the shift, automated solution can take part in reducing inter-rater variability and aiding radiologists
especially during peak hours. The aim of this study is to explore the existing clinical and deep learning knowledge for
developing automated solution to monitor lung involvement in pneumonia patients in general, including in COVID
patients. Single-stage training and multi-stage training networks have been developed and experimented in this work
using three datasets. The results seem promising in terms of consistency and robustness on the different datasets.

Keywords: Opacity, Brixia, Multi-stage, Single-stage, Pneumonia

1. Introduction

CXR is the most commonly performed radiolog-
ical exam for evaluating the airways, pulmonary
parenchyma and vessels, mediastinum, heart, pleura and
chest wall (Pahiju and Thapa, 2017). It aids doctors
in the diagnosis and monitoring of different lung con-
ditions such as pneumonia, emphysema, and cancer.
When X-ray passes through the body, different tissues
absorb X-ray at different amounts. Air absorbs the least
amount and appears black on CXR. When lungs are in-
fected, the air filling the alveoli is replaced by a for-
eign substance (e.g. pus or blood) and appears white
or opaque on CXR as shown in figure 1. These areas
with increased densities are referred to as lung opaci-
ties (Lewis and Czum, 2013). Although, lung opacity
does not indicate the pathological nature of lung abnor-
mality, quantifying lung opacity from CXR can help in
monitoring disease severity.

In December 2019, a novel viral pneumonia outbreak

caused by the severe acute respiratory syndrome coro-
navirus2 (SARS-CoV-2) started in Wuhan, China (Zhu
et al., 2020). With the fast spread of the disease, similar
cases were reported in different parts of the world (Yasin
and Gouda, 2020). High-resolution Computed Tomog-
raphy (CT) was critical for investigating the novel coro-
navirus pneumonia especially in the early stage of the
disease (Omar et al., 2020). However, the rising num-
ber of cases, the need to move infected patients around,
high cost, and lack of experienced radiologists made it
challenging to use CT especially in countries with lim-
ited resources. Consequently, CXR was the first-line
triage substitute to aid in the diagnosis and prognosis
(Harahwa et al., 2020). It’s relatively cheap and mobile
CXR can be easily brought to patient’s bed including to
the emergency departments. Although, CXR is not con-
sidered sensitive for the detection in early-stages (Jiang
et al., 2020), it can be very useful in monitoring the
rapid changes in lung abnormalities in COVID-19 pa-
tients, particularly in critical patients admitted to inten-
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sive care units (Borghesi and Maroldi, 2020). The most

Figure 1: Bilateral lung opacities which appear more evident in the
peripheral areas on CXR (Lomoro et al., 2020).

common radiologic findings in COVID-19 pneumonia
are lung opacity changes (consolidations and/or ground-
glass opacities), which are typically bilateral, periph-
eral, and located primarily in the lower fields (Chamorro
et al., 2021). The wide range of possible disease mani-
festations from CXR and wide variability between radi-
ologists in assessing lung involvement make lung opac-
ity quantification very challenging (Litmanovich et al.,
2020). For that reason, a precise quantification matrix
of the severity and progression of lung aberrations is
needed to determine the appropriate treatment and allo-
cate hospital resources.

A new scoring system, Brixia (Borghesi and Maroldi,
2020), have been recently designed explicitly for
COVID patients to map radiologists’ findings to numer-
ical values, leading to a more objective assessment and
improved communication among specialists (Signoroni
et al., 2021). According to Borghesi et al, Brixia scoring
is very useful in ranking the stratification risk of COVID
patients based on the severity of cases. However, the
growing numbers of cases and limited number of expe-
rienced radiologists to assign Brixia score call for an au-
tomated solution for Brixia score prediction from CXR.
In this research, various deep learning (DL) based ap-
proaches for predicting Brixia score were explored with
the goal to quantify lung opacity in general.

2. State of the art

2.1. Scoring Systems
Given that radiographic findings are neither sen-

sitive nor specific for COVID-19 detection as they
overlap with other infections and pulmonary edema,
CXR can be more valuable for assessing pulmonary
infection severity (Li et al., 2020). Various semi-
quantitative scoring systems have been proposed to re-
duce inter-rater variability among physicians in assess-
ing the severity and progression of lung opacity. The
most known and researched scoring systems are Brixia
and Radiographic Assessment of Lung Edema (RALE)
(Warren et al., 2018).

RALE score was developed to evaluate the degree
and density of alveolar opacities on chest radiographs
(Zimatore et al., 2021). It is determined by dividing the
radiograph into four regions, defined vertically by the
vertebral column and horizontally by the first branch of
the left main bronchus, as shown in figure 2. Each quad-
rant is assigned a consolidation score from 0–4 based on
the opacification percentage of the region and a density
score from 1–3 (1=hazy, 2=moderate, 3=dense) based
on the densities of the alveolar opacities. The final
RALE score in the range [0,48] is calculated by sum-
ming the product of the consolidation and density scores
for each quadrant (Warren et al., 2018). RALE was ini-
tially designed for lung edema, but has been adopted
to quantify the severity of lung involvement in COVID
pneumonia. It has been used in Queen Mary Hos-
pital, Hong Kong; Pamela Youde Nethersole Eastern
Hospital, Hong Kong; The University of Hong Kong;
Shenzhen Hospital, Shenzhen; and University Hospital
Careggi (Setiawati et al., 2021).

Figure 2: Example for RALE scoring system on two different cases
(Homayounieh et al., 2020).

On the other hand, Brixia score was designed by
the Radiology Unit 2 of ASST Spedali Civili di Bres-
cia (Borghesi and Maroldi, 2020). It has been al-
ready implemented in routine reporting in Tongji Hos-
pital, Wuhan and Azienda Socio Sanitaria Territoriale,
Spedali Civili of Brescia, Italy (Setiawati et al., 2021).
With this score, each lung is subdivided into three re-
gions as shown in Figure 3. Each region is assigned a
score:

• 0: no lung abnormalities

• 1: interstitial infiltrates

• 2: interstitial and alveolar infiltrates, interstitial
dominant

• 3: interstitial and alveolar infiltrates, alveolar dom-
inant

A final global score in the range [0,18] is calculated by
summing the six scores.

Brixia scoring system has more detailed and complex
indicators compared to RALE in scoring CXR to moni-
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tor COVID-19 pneumonia. It has better localization ca-
pacity (Borghesi and Maroldi, 2020). The most impor-
tant difference between the two scoring systems is that
RALE can be assigned by a general practitioner due to
its simplicity while Brixia has to be done by a trained
radiologist (Setiawati et al., 2021). For that reason, au-
tomated solutions are helpful to aid inexperienced radi-
ologists in assigning such scoring system. Automated
solutions, in particular DL-based approaches, have high
potentials to expand the role of chest imaging beyond
diagnosis, to disease progression monitoring and risk
stratification (Kundu et al., 2020).

Figure 3: Lungs are first divided into six zones [A-F]. The upper line
is drawn at the level of the inferior wall of the aortic arch. The bot-
tom line is drawn at the level of the inferior wall of the right inferior
pulmonary vein (Maroldi et al., 2021). An example of Brixia scoring
system

From previous work on COVID classification (Tahir
et al., 2022) and severity quantification (Signoroni et al.,
2021), it is found that some deep learning architec-
tures perform segmentation and alignment before clas-
sification. so in the following three subsections, differ-
ent state-of-the-art methods in segmentation, alignment,
and classification will be reviewed.

2.2. Segmentation

Over the past few years, DL demonstrated consid-
erable capabilities in medical image segmentation and
many algorithms have shown promising results on vari-
ous segmentation tasks (Hesamian et al., 2019).

U-Net (Ronneberger et al., 2015) is the state-of-the-
art in many biomedical image segmentation applica-
tions. It is formed by 2 main parts; an encoder to extract
high-order abstract features from the data while reduc-
ing the spatial size of input images and a decoder that
progressively recovers the original matrix size of the in-
put image. Skip connections are used between the same
levels on the encoder and decoder to retrieve fine details
that were lost during the pooling operation (Çallı et al.,
2021).

U-Net++ (Zhou et al., 2018) is a variant of U-Net in
which skip connections are redesigned to enable feature
aggregation at the varying-scale feature maps of the en-
coder and decoder sub-networks.

Another deep learning architecture that has achieved
the state-of-the-art performance for medical imaging

object detection and semantic segmentation is the fea-
ture pyramid network (FPN) (Lin et al., 2017a). With
its top-down architecture with lateral connections, it can
extract high-level semantic feature maps at all scales(Li
et al., 2021).

Although the previously mentioned networks give ac-
curate results, they have relatively larger number of pa-
rameters compared to LinkNet. LinkNet (Chaurasia and
Culurciello, 2017) was proposed to mitigate the prob-
lem of increased number of parameters and hence pro-
cessing time. It decreases processing time by bypassing
spatial information from encoder directly to decoder.
LinkNet resembles the U-shape structure of U-Net but
is different than U-Net in in the way that it replaces or-
dinary convolution structure with residual module and
uses adding instead of stacking as a feature synthesis
method.

On the other hand, Oktay et al. proposed a simple
and effective solution, attention gates(AGs) modules,
for segmenting ROI with various sizes and shapes with
minimal computational overhead. AGs modules can
improve the model sensitivity and prediction accuracy
while preserving computational efficiency (Gaál et al.,
2020). It can be easily inserted in Convolutional Neural
Network (CNN) architectures such as U-Net where it
implicitly learns how to highlight relevant task features
and suppress irrelevant regions (Oktay et al., 2018).

2.3. Alignment

The most widely used DL-based registration methods
are an encoder–decoder CNN, a Spatial Transformer
Network (STN) (Jaderberg et al., 2015), and a Gener-
ative Adversarial Network (GAN) (Chen et al., 2021).
An encoder-decoder network, U-Net, can be used for
image registration by taking the moving and fixed im-
ages as inputS and predicting the deformation field.

Figure 4: The architecture of a spatial transformer module (Jaderberg
et al., 2015).

On the other hand, STN is a differentiable module
that can be inserted anywhere in the network, giving the
network the ability to spatially transform an image or
feature map without extra training supervision (Jader-
berg et al., 2015). It has been used in most DL image
registration methods, especially unsupervised/weakly-
supervised methods. As shown in figure 4, STN con-
sists of three parts: a localisation network, a grid gen-
erator and a sampler. The localization network is a
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simple CNN that learns the transformation parameters.
With the output from the localization net, transforma-
tion parameters, grid generator generates a sampling
grid, T(G), which is applied to the input by the bilinear
sampler to produce the warped output (Jaderberg et al.,
2015).

GAN-based image registration combines a U-Net and
an STN as a generator to warp the moving image. The
discriminator differentiate between the warped moving
image and the fixed image to aid the generator in pre-
dicting a high-similarity warped moving image to the
fixed image.

2.4. Classification

Medical image classification has been improved and
accelerated by the advent of Transfer Learning (TL). TL
can improve the performance on a new task by leverag-
ing the knowledge learned in advance of similar tasks.
Given that, TL is effective in overcoming data scarcity.
Pretrained VGG-16 (Simonyan and Zisserman, 2014),
ResNet50 (He et al., 2016), Inceptionv3 (Szegedy et al.,
2016), EfficientNet (Tan and Le, 2019) are widely used
in research and industry for image classification.

Another CNN architecture that has shown the-state-
of-the-art is RetinaNet (Lin et al., 2017b). It was in-
tially designed for object detection task, but has been
adopted as a baseline for classification problems. The
architecture of RetinaNet consists of ResNet34-Feature
Pyramid Network and two subnetworks for classifica-
tion and bounding box regression.

Vision Transformer (ViT) has demonstrated excellent
results compared to state-of-the-art CNN while requir-
ing substantially fewer computational resources to train
(Dosovitskiy et al., 2020). In ViT, the image is inter-
preted as a sequence of patches of fixed size. A lower-
dimensional linear embedding is created from the vec-
torized patches using trainable linear layer. To retain
the positional information of the patches, position em-
beddings are added to patch embeddings. The resulting
sequence of vectors is fed to the ViT encoder.

2.5. Severity Assessment

Short after the pandemic breakout, many researchers
shifted their focus to chest imaging in managing
COVID. Most of the proposed systems aimed to de-
tect COVID or classify it against other lung diseases in
either CXR or CTs. Table 1 summarizes the DL ap-
proaches that will be discussed in this section in details.

One research group designed a deep convolutional
neural network, COVID-NET, to classify between
normal, COVID infection, and non COVID infec-
tion leveraging residual architecture design princi-
ples. COVID-Net network architecture is made up of
lightweight residual projection-expansion-projection-
extension (PEPX) (Wang et al., 2020a) design pattern
which consists of:

• 1×1 convolutions for projecting input features to a
lower dimension

• 1×1 convolutions for expanding features to a
higher dimension

• Efficient 3×3 depth-wise convolutions for learning
spatial characteristics to minimize computational
complexity while preserving representational ca-
pacity

• 1×1 convolutions for projecting features back to a
lower dimension

• 1×1 convolutions that finally extend channel di-
mensionality to a higher dimension to produce the
final features

It was the first open source code of a network de-
signed for COVID-19 detection from CXR images and
first release of a large public dataset containing 13,800
chest X-ray images on 13,645 patients. Their net-
work reached accuracy of 92.4% for COVID classifica-
tion. This study paved the way for other researchers to
propose other networks for COVID detection in CXR.
Some other studies utilized pretrained networks such
as ResNet50, InceptionV3, and VGG16, and fine-tuned
them on COVID datasets or used ensambling of mul-
tiple modified versions of them after fine-tuning (Gour
and Jain, 2022) (Pham, 2020) (Kumar et al., 2022).

Another group built on COVID-NET and named their
network COVID-NET S in which they replaced the last
layers of COVID-Net with a set of dense layers (a 128
neuron dense layer, a 3 neuron dense layer, and a sin-
gle output score prediction layer) (Wong et al., 2021).
Data consisted of 396 CXRs that are annotated by two
board-certifed expert chest radiologists (with 20+ years
of experience) and a 2nd-year radiology resident. The
scoring system consisted of geographic extent and opac-
ity extent adapted from (Wong et al.10) and (Warren et
al.11) for each lung.

Geographic Extent:

• 0: no involvement

• 1: 25% involvement

• 2: 25–50% involvement

• 3: 50–75% involvement

• 4: 75% lung involvement

Opacity extent:

• 0: no opacity

• 1: ground glass opacity

• 2: mix of consolidation and ground glass opacity
(less than 50% consolidation)

• 3: mix of consolidation and ground glass opacity
(more than 50% consolidation)

• 4: complete white-out
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100 versions of the network were independently
trained (50 to predict geographic extent scoring and 50
to predict opacity extent scoring) using random subsets
of CXRs from the study and the network was evalu-
ated using stratifed Monte Carlo cross-validation exper-
iments. The network achieved R2 of 0.739 and 0.741
between predicted scores and radiologist scores for ge-
ographic extent and opacity extent respectively.

Another study leveraged the use of pretrained
Densenet models on 7 non-Covid public datasets to ex-
tract general representations about lungs and other as-
pects of CXRs (Cohen et al., 2020). Then, they used
linear regression to predict the severity scores from 96
Covid CXR. The severity scores were performed by
three blinded experts: two chest radiologists (with 20+
years of experience) and a radiology resident on 96
CXR. The scoring system was similar to (Wong et al.,
2021) as it combined extent of lung involvement with
ground glass opacity or consolidation and opacity ex-
tent score for each lung. However, their opacity extent
score ranged from 0-3 instead of 0-4 (0 = no opacity; 1
= ground glass opacity; 2 = consolidation; 3 = white-
out).

Another research group introduced the idea of using a
pretrained convolutional Siamese neural network–based
algorithm. In Siamese neural network, two input im-
ages are passed through identical subnetworks with
shared weights and then a euclidean distance is calcu-
lated between the final two layers of the network. In
that way, one image of interest can be compared to a
pool of healthy CXR and the disease severity can be
estimated as the median of those Euclidean distances,
named PXS score (Li et al., 2020). The model was
pretrained on approximately 160,000 anterior-posterior
images from CheXpert and transfer learned on 314
COVID-19 frontal chest radiographs. The algorithm
was evaluated on 167 radiographs and PXS scores were
correlated with modified RALE assigned by two tho-
racic radiologists and one in-training radiologist. The
PXS score and the direction of change in PXS score
in follow-up agreed with the assigned modified RALE
score.

The most related previous work to our research is
from (Signoroni et al., 2021). In this paper, they intro-
duced an end-end deep learning pipeline named BS-Net
designed to handle different tasks (segmentation, spa-
tial alignment, and score estimation) and trained “from-
the-part-to-the-whole” on different datasets (three pub-
lic datasets for segmentation, synthetic dataset for align-
ment, and their own collected Brixia dataset). They used
U-Net++ (Zhou et al., 2018) for segmentation, Spatial
transformer (Jaderberg et al., 2015) for alignment, and
Retina classifier for Brixia scores estimation. Their sys-
tem predictions outperformed single human annotators
in terms of accuracy and consistency.

From the literature review, it is noticed that the cur-
rent research is focused on the binary classification and

detection of lung diseases more than quantifying sever-
ity of the disease. Hence, in this work, we are quan-
tifying lung opacity using Brixia scoring system. Al-
though some recent studies have investigated how AI
can aid radiologists in lung opacity quantification, they
are limited in their scope due to the lack of multi-reader
datasets and the absence of ablation studies or com-
parisons of their models. To address these limitations,
in this study, several state of art techniques have been
tested and harmonized to form automated solution for
Brixia score predictions. We propose a single-stage and
multi-stage networks and compare their performance on
different datasets to understand the effect of segmenta-
tion and alignment on the classifier performance in pre-
dicting Brixia scores. In addition, we study the effect of
using ViT vs CNN classifiers for producing consistent
predictions of Brixia scores on different datasets anno-
tated by multiple radiologists.

3. Datasets

3.1. Segmentation Datasets

Three public datasets were combined and used for
training the segmentation module. Montgomery County
(Jaeger et al., 2014) dataset consists of 128 X-ray im-
ages with 80 healthy lungs and 58 diseased ones by tu-
berculosis. Data has been acquired by the Department
of Health and Human Services, Montgomery County in
Maryland, USA. JSRT databases (Shiraishi et al., 2000)
was released by Japanese Society of Radiological Tech-
nology (JSRT). It contains 247 images with 154 cases of
lung nodules and 93 healthy cases. Shenzhen Hospital
(Gordienko et al., 2018) was acquired from Shenzhen
No. 3 People’s Hospital in Shenzhen, China. It is also
a tuberculosis X-ray images; however, lung masks are
only available for 566 cases which will be used in this
study. X-ray images in the three combined set were re-
sized to 512x512 and standardized using min-max nor-
malization. Dataset was divided into 223 (first 50 of
Montgomery County and Shenzhen Hospital and orig-
inal split of JSRT (123 test)) images for test and 728
images for training.

3.2. Alignment Dataset

The same images used for segmentation were used
for generating the alignment dataset. As shown in ta-
ble 2, different image transformations were applied to
masks of the segmentation dataset using albumentations
library to generate synthetic alignment dataset.

3.3. Brixia Dataset

The Brixia dataset includes 4,707 CXR images of
COVID-19 subjects for both triage and patient moni-
toring in sub-intensive and intensive care units. It is
collected between March 4th and April 4th 2020 of pan-
demic peak at the ASST Spedali Civili di Brescia. All
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Method Dataset Performance Task
COVID-Net 13,975 CXRs Accuracy: 93.3% COVID classification

Modified COVID-Net (Transfer Learning)
396 CXRs
13,975 CXRs

R2: 0.739 and 0.741 between predicted scores and
radiologist scores for geographic extent and opacity extent Severity Assesment

Siames Neural Network
160,000 CheXpert
314 COVID patient set R: 0.86 between PXS score and RALE Severity Assesment

BS-Net
4,703 CXRs Brixia
192 CXRs Chohen

MAE: 0.471 Brixia
MAE: 0.490 Cohen Severity Assesment

Table 1: Summary of existing Severity Assesment and COVID classification work

Figure 5: Samples from the Brixia dataset from different manufacturers with their corresponding Brixia scores.

Transformation Operation Parameters Probability
Rotation 25 degree 0.8
Scale 10% 0.8
Shift 10% 0.8
Elastic transformation alpha=60, sigma=12 0.2
Grid distortion step=5, limit=0.3 0.2
Optical distortion distort=0.2, shift=0.05 0.2

Table 2: Synthestic dataset transformation parameters (Signoroni
et al., 2021)

Parameter Value
Modality CR (62%) - DX (38%)
View Position AP (87%) - PA (13%)
Manufacturers Carestream, Siemens , Agfa

Table 3: Brixia dataset details (Signoroni et al., 2021)

images in Brixia dataset are annotated by the radiologist
on the shift who is part of about 50 radiologists in the
hospital with extensive years of experience. Each im-
age has six scores in the format of a string of six digits.
The global score can be calculated by simply summing
the six scores. The age and sex of subjects is provided as
well. The dataset is anonymized and approved by the lo-
cal Ethical Committee (NP4121) for research purposes
usage. Three images from three different manufacturers
with their corresponding labels are shown in figure 5.
Details about manufacturers, modalities and view posi-
tion are shown in table 3.

Brixia dataset comes in dicom format, so images
were first imported from the DICOM files. Preprocess-
ing of the data followed the original paper preprocess-

ing (Signoroni et al., 2021). Image pixel values were
mapped between 0 and 1. Then, data normalization was
achieved by applying an adaptive histogram equaliza-
tion (CLAHE, clip:0.01) to adjust image contrast, a me-
dian filtering to mitigate noise (kernel size: 3), and a
clipping outside the 2nd and 98th percentile to drop the
outliers.

Figure 6: Score distribution of the radiologist on the shift annotations
for Brixia dataset

3.4. Cohen Dataset
To test the final model robustness and generalization

capabilities, a well known COVID public dataset (Co-
hen et al. (2020b) was used. It is collected in differ-
ent centers all over the world. The Brixia score of this
dataset was provided by two board certified radiologists
with 22 and 2 years of experience. In the process of
labeling, few hard cases were discarded due to too low
resolution or significant mispositioning. The final an-
notated dataset contains 192 CXRs of positive or sus-
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pected COVID patients. Figure(7) shows the distribu-
tion of the senior annotations while figure(8) shows the
distribution of the junior radiologist respectively.

3.5. Consensus Dataset

This subset is publicly available with the Brixia
dataset. To make this set, four different radiologists
were asked to annotate a subset of 15 CXRs from the
Brixia dataset to assess the inter-rater variability. Three
of the chosen radiologist are with 9, 15 and 22 years of
experience and one is at 2nd year of training. The mode
of the four radiologists with the radiologist on shift an-
notations was provided as the new label for this subset
and the distribution of the final annotations is shown in
figure 9.

Figure 7: Score distribution of the senior radiologist annotations for
Cohen dataset

Figure 8: Score distribution of the junior radiologist annotations for
Cohen dataset

Figure 9: Score distribution of the mode of five radiologists annota-
tions for consensus dataset

4. Material and methods

4.1. Data Augmentation

Data augmentation helps segmentation and classifi-
cation models to generalize results to unseen data as it
adds variations in limited training data and thus helps
to avoid overfitting. In addition, it is very applicable in
lung segmentation and classification tasks since it can
help in handling CXR variability resulted from image
acquisition settings such as patient positioning and dose
variation. In the segmentation part, different combina-
tions of random rotations, shifts, blur, brightness, and
contrast were applied using the fast Albumentations li-
brary where the probability of applied transformation
can be specified using the P parameter. Table (2) shows
the different ablumentations tested. For the classifi-
cation part, same transformations were tested without
the horizontal flip because the labels will need to be
changed as well with respect to the flip. However, ro-
tation with 25 degrees was tested because it can resem-
ble incorrect positioning of patients in real life and also
does not require changing the ground truth labels.

4.2. Segmentation

Detecting the region of interest (ROI), that is the
lungs, is crucial to have accurate diagnosis and prog-
nosis of the diseases. The main challenge is that lung
fields are opacified due to pneumonia. These opaci-
ties frequently alter the intensity values of the lungs,
so lung masks can be incorrectly predicted by segmen-
tation models leading to inaccurate lung segmentation
(Souza et al., 2019). Taking this into consideration, the
segmentation training datasets were chosen to have lung
opacities, so that segmentation models can learn how
to segment the opacified lungs from the target Brixia
dataset used in inference.

Several state-of-the-art segmentation models (U-Net,
U-Net++, FPN, LinkNet, Attention U-Net, and Atten-
tion ResU-Net) have been evaluated to choose the best
performing one as the first module for the final end-to-
end network. To have a fair comparison among these
models, preprocessing, augmentation, and hyperparam-
eters were maintained throughout the segmentation ex-
periments. Models were trained for 50 epochs with
batch size 8 and adam optimizer. The losses used for
optimize segmentation models are the dice loss and
the binary focal loss. This combination mitigates the
class imbalance between foreground and background
and the easy and hard to classify examples. For quanti-
tative assessment of the different segmentation models,
Dice similarity coefficient metric (DSC) and intersec-
tion over union (IoU) metric were used on the segmen-
tation dataset since they have ground truth masks.

DS C =
2|GT | ∩ |S |
|GT | + |S | (1)
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IoU =
|GT | ∩ |S |
|GT | + |S | (2)

On the other hand, different models were only quali-
tatively analyzed on the target dataset, Brixia, since it
does not have masks.

4.3. Alignment

Image alignment is a crucial step to establish optimal
correspondence within images taken at different times
across different patients and to enable direct compar-
isons between multiple scans of the same patient (Gaál
et al., 2020). Since Brixia scores are classified per lung
region, lung alignment is even more important to locate
the correct lung field in the six regions of interest. Since
we did not have a fixed reference image, STN was the
optimal solution for alignment in our project. STN was
experimented twice; as a differentiable module and as a
separate model. In one experiment, it was inserted be-
tween convolution layers where it was applied on the
backbone feature maps and trained with the classifica-
tion part. In another experiment, a pretrained STN (Sig-
noroni et al., 2021) on the synthetic dataset described in
section 3 was combined with segmentation and classifi-
cation as a separate pretrained block. To train the STN
as a separate model, the synthetic masks (transformed)
are used as the images and original masks are used as
the ground truth masks. Then, STN is trained on dice
loss to learn how to align the transformed masks to the
original masks.

4.4. Brixia Classification

For the final scoring module, ResNet, FPN, and ViT
were investigated. ResNet was tested alone as a base-
line classifier. Then, it was combined with alignment
and segmentation in which the same encoder used for
segmentation was used for classification with weights
transferred from segmentation task and fine-tuned by
Brixia dataset. The second classifier experimented was
inspired by RetinaNet architecture. The multi-scale fea-
ture maps from the segmentation backbone were en-
hanced with top-down pathway and lateral connections
of FPN and then convolution layers or fully connected
layers were attached to different FPN levels for Brixia
score predictions. A more sophisticated classifier, ViT,
has been tested since it has shown better performance
for COVID-19 detection over CNNs (Park et al., 2021).
However, it requires huge amount of data if trained from
scratch. Instead, hybrid ViT has shown better perfor-
mance in small-sized data set. Hybrid ViT (Park et al.,
2021) utilizes a CNN backbone that extracts initial low-
level feature embedding which is used later for training
the transformer. So, the backbone used in segmentation
was used to extract the intial features that was used after
to train ViT-B/16. The classification models were com-
pared with respect to the mean absolute error (MAE).
Classification models were optimized using the cross

entropy loss function and were trained for 80 epochs
with 8 batch size and adam optimizer.

4.5. Merging: Final Architectures

After experimenting each block, three different ar-
chitectures were developed and compared against each
other.

The FPN-based multi-stage network is shown in fig-
ure 10. The preprocessed input image passes through
ResNet (He et al., 2016) backbone, a series of convolu-
tion blocks that extracts feature maps at different scales.
Since the aim is to have end-to-end framework, the same
ResNet18 backbone is used for the classification branch
with weights transferred from the segmentation task.
For segmenting the lungs, FPN with ResNet18 back-
bone is used as it produces feature maps that can be
both semantically and spatially strong. The output from
the segmentation block is used as an input to the align-
ment block to estimate the transformation parameters
that is used after by the resampler to align the feature
maps of ResNet18 backbone and align the mask. The
aligned mask is then multiplied by the aligned features
to give attention to the lungs. Then, ROI pooling mod-
ule is applied on the aligned feature maps to extract six
lung regions with a vertical overlap of 25%. This pool-
ing module provides the network with prior information
about the location of the six Brixia score regions. The
output from ROI is passed after to the classifier to pre-
dict the Brixia score. The classifier block utilizes an-
other FPN where the higher level, semantically stronger
feature map is exploited for the final predictions. The
shape of the output predictions is 3x2x4 where 3x2 is
the six regions of the lung and 4 is number of classes of
Brixia score.

In ViT multi-stage architecture, ViT was placed be-
tween the FPN and dense layers and segmentation and
alignment were the same exact ones used in the previ-
ous architecture. The output from ViT passes through a
dense layer to produce the final predictions.

The ViT single-stage network is shown in figure12.
The architecture consists of a ResNet backbone, ViT,
ROI pooling, and a dense layer. The main difference
between this architecture and the previous two architec-
tures is that this network is trained at once and does not
have a segmentation block or alignment blocks.

5. Results

In this section, we first evaluate the performance
of the segmentation block and visualize the results on
Brixia dataset. Then, we study the effect of adding seg-
mentation, pretrained STN, and FPN blocks to the base-
line ResNet18 backbone to form the final FPN based
network. After that, we show the difference in perfor-
mance when using pretrained STN, STN trained with
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Figure 10: FPN-based multi-stage model

Figure 11: Segmentation masks from the four highest performing models on an image from Brixia dataset

Model Backbone IoU DSC # Parameters
VGG16 0.940 0.967 19.315M
EfficientNetB0 0.943 0.971 8.790M

FPN ResNet18 0.945 0.972 15.569M
VGG16 0.940 0.969 19.037 M
EfficientNetB0 0.946 0.972 10.114M

U-Net ResNet18 0.943 0.970 14.334M
VGG16 0.935 0.966 26.147M
EfficientNetB0 0.940 0.968 14.274M

U-Net++ ResNet18 0.942 0.970 18.267M
VGG16 0.944 0.971 15.603M
EfficientNetB0 0.946 0.972 6.095M

LinkNet ResNet18 0.943 0.971 11.515M

Table 4: Performance of different segmentation models in terms of DSC, IoU, and number of parameters
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ResNet18 ResNet18+Segm ResNet18+Segm+Allign ResNet18+Segm+Allign+FPN
Brixia Dataset

A 0.571±0.723 0.557±0.685 0.507±0.642 0.527±0.628
B 0.620±0.650 0.657±0.678 0.593±0.645 0.571±0.628
C 0.723±0.709 0.716±0.726 0.655±0.697 0.591±0.639
D 0.525±0.732 0.525±0.720 0.484±0.668 0.448±0.626
E 0.746±0.734 0.755±0.796 0.665±0.722 0.661±0.687
F 0.712±0.716 0.842±0.795 0.7186±0.743 0.725±0.709
Global 2.431±1.987 2.426±0.795 2.309±1.962 1.983±1.704

Table 5: Brixia score predictions performance in terms of MAE and STD when adding blocks to the baseline ResNet18 model to reach the final
FPN-based model(ResNet18+Segm+Allign+FPN)

Figure 12: ViT single-stage model

STN layer STN block Without STN
MAE

A 0.490±0.618 0.433±0.59 0.4947±0.648
B 0.701±0.733 0.544±0.640 0.557±0.662
C 0.689±0.725 0.529±0.614 0.601±0.654
D 0.429±0.631 0.399±0.584 0.439±0.632
E 0.731±0.781 0.586±0.703 0.597±0.689
F 0.755±0.711 0.652±0.692 0.655±0.697
Global 2.665±2.223 2.02±1.73 2.124±1.853

Table 6: Brixia score prediction performance in MAE and STD
when using pretrained STN,when training STN with classification,
and when removing STN from the architecture

Brixia Dataset Consensus Dataset
MAE

A 0.463±0.617 0.293±0.497
B 0.576±0.644 0.447±0.606
C 0.478±0.586 0.420±0.545
D 0.422±0.596 0.293±0.523
E 0.616±0.600 0.433±0.570
F 0.650±0.667 0.553±0.678
Global 2.0789±1.743 1.733±1.765

Table 7: Perfomance of ViT single-stage model on Consensus and
Brixia datasets in terms of MAE and STD

Brixia Dataset Consensus Dataset
MAE

A 0.431±0.618 0.46±0.639
B 0.550±0.653 0.547±0.606
C 0.518±0.582 0.540±0.607
D 0.450±0.647 0.440±0.627
E 0.533±0.631 0.527±0.574
F 0.614±0.655 0.587±0.613
Global 1.945±1.647 2.087±1.68

Table 8: Perfomance of ViT multi-stage stage model on Consensus
and Brixia datasets in terms of MAE and STD

Brixia Dataset Consensus Dataset
MAE

A 0.527±0.628 0.340±0.540
B 0.571±0.628 0.413±0.624
C 0.591±0.639 0.393±0.576
D 0.448±0.626 0.293±0.560
E 0.661±0.687 0.493±0.651
F 0.725±0.709 0.440±0.616
Global 1.983±1.704 1.520±1.753

Table 9: Perfomance of FPN-based multi-stage model on Consensus
and Brixia datasets in terms of MAE and STD

zone MAE
Senior and Junior

A 0.391±0.558
B 0.417±0.562
C 0.417±0.589
D 0.339±0.515
E 0.411±0.552
F 0.469±0.637
Global 1.943±1.777

Table 10: MAE and STD between senior and junior labels for Cohen
dataset
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Figure 13: Segmentation mask before and after alignment using STN

Figure 14: confusion matrices of ViT single-stage model(left), ViT multi-stage model(middle), and FPN-based model (right) for consensus dataset
predictions on lung regions score values (top [0-3]) and on Global score values (bottom [0–18])
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Figure 15: confusion matrices of ViT single-stage model(left), ViT multi-stage model(middle), and FPN-based model (right) for Cohen dataset
predictions with respect to senior predictions

the classifier, and without STN on the FPN-based net-
work. Finally, we compare the performance of single-
stage ViT against multi-stage ViT and FPN-based net-
works on Brixia, Cohen, and consensus datasets to ex-
amine consistency and generalization of the different
networks.

For the segmentation block, different architecture-
encoder combinations were compared in terms of DSC
and IoU on the segmentation test set and visually as-
sessed on Brixia dataset. Attention U-Net and At-
tention ResU-Net had low DSC and IoU, so they
were excluded from the rest of the experiments. As
shown in table 4, all models have very similar per-
formance with ResNet18+FPN, ResNet18+U-Net++,
efficientnetb0+U-Net, and efficientnetb0+LinkNet pro-
ducing slightly higher DSC and IoU values on the seg-
mentation test set. So t-test was performed between the
four models to test if the difference between them is
significant. The t-test of the four models compared to
each other was above 0.05. The performance of the four
models was also visualized on the Brixia target dataset
since it has more hard to classify examples compared to
the segmentation dataset. Figure 11 illustrates the dif-
ference in performance among the four models in one
of the hard to classify cases from Brixia dataset.

After the performance of segmentation block was an-
alyzed, we started building the multi-stage network by
combining segmentation, pretrained STN, and classifi-
cation blocks as shown in table 5. Figure 13 is a visu-
alization of the effect of applying transformation matrix
from pretrained STN on the segmentation mask from
Brixia dataset. For classification, We first started with
a baseline ResNet18 classifier as all in one network.
Then, segmentation, alignment, and FPN-based classi-
fier were added one by one. Adding the segmentation
block reduced MAE in some regions and increased it in
other regions while adding alignment and FPN reduced
the MAE in all regions except region F.

To test the effect of STN, Table 6 lists the MAE
and STD of STN as a pretrained block and as a train-

able module with the classification block and without
STN. Pretrained STN block outperformed STN train-
able module and had lower MAE compared to without
using any alignment in the network. The STN experi-
ments were done using the FPN-based multi-stage net-
work.

When the final FPN-based network was built, FPN
was replaced with a ViT, but the MAE increased over
all regions compared to the FPN-based model on Brixia
dataset. So, ViT was added between the FPN and dense
layer and MAE over all regions decreased compared to
FPN-based model as shown in table 8 & 9.

To study the contribution of segmentation, alignment,
and FPN to the ViT, a single-stage ViT model without
alignment and segmentation modules was examined and
the results are reported in table 7. The results were com-
parable with the multi-stage ViT on Brixia dataset and
better on consensus subset.

To assess the inter-rater variability of the three devel-
oped pipelines, MAE and STD were evaluated on con-
sensus dataset in which the labels are the majority vot-
ing(mode) of five radiologists. For better understanding
of the inter-rater variability, MAE and STD between se-
nior and junior labels for Cohen dataset were calculated
and reported in table 10.

Figure 14 shows the confusion matrices of the three
networks with regional scores predictions[0:3] at top
and global scores predictions[0:18] at the bottom on the
consensus dataset. FPN-based model showed the most
correct and consistent predictions along the four scores.
On the other hand, multi-stage ViT model had sparse
predictions compared to single-stage ViT. As shown
in tables 7, 8, and 9, although ViT models had better
performance on Brixia dataset, FPN-based model sur-
passed ViT multi stage model and had comparable MAE
with ViT single-stage model on the consensus dataset.

For testing generalization capabilities of the three
models, models were evaluated on Cohen dataset. All
models were more correlated with the senior predictions
than the junior predictions, so only the confusion matri-
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ces with respect to senior labels are displayed in figure
15. ViT single-stage had the most consistent predictions
compared to multi-stage ViT and FPN-based networks;
however, ViT multi-stage had more correct predictions
for three scores compared to single-stage model. FPN
–based model had more correct predictions on the ex-
treme scores 0 and 3.

6. Discussion

In this study, clinical and deep learning knowledge
were exploited for developing automated solution for
brixia score predictions and testing robustness and gen-
eralization on different datasets. In this section, the
clinical findings association with Brixia dataset distri-
bution and deep learning models evaluation will be dis-
cussed first. Then, the performance of each block of
the multi-stage model will be investigated. After that,
performance of multi-stage and single stage models on
cohen and consensus datasets will be analyzed.

The brixia distribution shown in figure 6 was consis-
tent with the radiologists findings about the most dis-
eases zones of COVID patient lungs. Different stud-
ies indicated that the lower parts of the lungs are more
frequently involved and that the involvement is usually
bilateral (Yasin and Gouda, 2020). In figure 6, zones
C and F, which are the lower zones in Brixia system,
has higher severity scores compared to the upper zones.
Also, the bilateral pattern between bilateral zones scores
distribution is clearly visible (e.g. zone A and D, up-
per zones have similar distribution). On the other hand,
figure 7 and 8 are the distribution of Brixia scores for
two board certified radiologists with different years of
experience. The difference in score distributions, espe-
cially in regions D and F, affirm the inter-rater variability
among radiologists in classifying lung severity. AI can
play a crucial rule in having a more consistent scoring
assessment; However, most of the algorithms are trained
on datasets that lacks multireader assessment and that
was the main purpose of evaluating our models with re-
spect to the consensus and cohen datasets. During our
discussion with Dr. Annemiek snoeckx, head of radi-
ology department at Antwerp University Hospital, she
said that radiologists are looking for a more objective
and consistent quantification of lung opacity and that
automated solutions will be very useful for pulmonary
patients especially in the intensive care unit, ICU. Given
that information, we believe that the best model is not
only the one producing the lowest error, but also the
one that shows a consistent performance among differ-
ent datasets and along the six zones and four scores. To
achieve the goal of automated lung opacity quantifica-
tion, multi-stage and single stage models were devel-
oped and evaluated on Brixia, Cohen, and consensus
datasets mentioned in section 3.

In multi-stage model, segmentation was the first step
to extract the region of interest and the results of dif-

ferent backbone-encoder combinations of the state-of-
the-art are shown in table 4. After analyzing segmen-
tation results, it is found that the highest performing
models in terms of DSC and IoU are ResNet18+FPN,
ResNet18+U-Net++, efficientnetb0+U-Net, efficient-
netb0+LinkNet; nevertheless , the statistical t-test for
the four models with respect to each other was greater
than 0.1 which means that they are falling in the same
distribution and that the difference in DSC and IoU is
not statistically significant. However, when the four
models were visually evaluated on Brixia dataset which
has more hard to segment examples, U-Net and LinkNet
included regions outside the lung fields in their predic-
tions as shown in figure 11, so the final model chosen
was FPN since it has lower number of parameters com-
pared to U-Net++ and has comparable visual masks.

For the alignment module, removing STN or using it
as a differentiable layer increased the MAE. We assume
that is because pertained STN is specifically trained for
the task of aligning and zooming the lung masks as
shown in figure 13 which is critical for pooling the cor-
rect six lung zones. In the classification module, uti-
lizing ResNet18 backbone as the only feature extrac-
tor for the Brixia prediction task had the highest MAE
on Brixia dtaset and hence it was excluded from rest
of the experiments on consensus and cohen datasets.
Adding pretrained STN lowered the MAE as it aligns
and zooms into the ROI which is important for the pool-
ing step. Adding FPN to ResNet18 backbone also low-
ered the MAE as FPN enhances the extracted feature
maps exploiting the idea of multi-scale feature maps fu-
sion. Using Backbone-ViT in multi-stage and single
stage slightly lowered the MAE of the six regions on
brixia dataset; however, the performance was very dif-
ferent with FPN model when tested on cohen and con-
sensus datasets.

For having a more reliable reference for evalua-
tion, models were tested on consensus dataset. ViT
single-stage and FPN-based model outperformed the
ViT multi-stage by a big difference in MAE which indi-
cates that those two model are robust to different radiol-
ogists scoring on Brixia dataset.

When testing on Cohen dataset, the three models
were agreeing more with the more experienced radiol-
ogist (senior: 20+ years of experience) in terms of a
lower MAE and better confusion matrix. In addition,
ViT-based models were more consistent along the four
scores compared to the FPN-based model as shown in
figure 15. FPN-based model had bias towards the ex-
treme scores, 0 and 3.

Given that, we believe that ViT alone or combined
with segmentation and alignment is more robust and
consistent compared to CNN classifiers. Furthermore,
ViT can eliminate the necessity for segmentation and
alignment which is useful in having one stage training
and optimization. It also converges faster compared to
the multi-stage model which is adding more value in re-
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ducing the training time.
An interesting future work to investigate is to pretrain

transformers with large CXR dataset (e.g. cheXNet),
fine-tune it with the Brixia dataset, and evaluate it on
the three datasets used in this research. Another in-
teresting approach is to evaluate the models designed
for Brixia score on other scoring systems dataset (e.g.
RALE dataset) and investigate the correlation between
the two scoring systems.

7. Conclusions

The motivation of this research was the strong clin-
ical need of a consistent, automated solution for lung
severity assessment. The availability of large dataset
of 5,000 annotated CXRs and other small datasets an-
notated by several radiologists helped in analyzing the
inter-rater variability and generalization problem. In ad-
dition, Brixia dataset allowed to apply data hungry ar-
chitectures like ViT. Three different models were de-
veloped and compared against each other in terms of
consistency and robustness on different datasets. FPN-
based multi-stage model consisted of segmentation us-
ing FPN, alignment using STN, and classification us-
ing another FPN. IN the second model, ViT multi-stage,
ViT was inserted between FPN and dense layer and ev-
erything else remained fixed. The third model was a
single-stage ViT model in which ResNet backbone was
combined with ViT and trained at once as a single unit.
The results from the ViT models on the three different
datasets were promising and consistent which is encour-
aging for more investigations about how ViT can aid
radiologists with more generalized and consistent auto-
mated scoring systems.
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Abstract

The facial nerve (FN) is not only important for cochlear implant (CI) surgery, but it is also one of the most well-
known and common concerns of the treatment, with Facial Nerve Stimulation (FNS) possibly occurring as a result of
its closeness to some of the implant’s electrodes. FN is responsible for controlling expressions and facial movements
so when this nerve is stimulated because of the proximity to the electrodes then it can cause temporary or permanent
damage to expressions. Knowing the FN location, as it passes through the cochlea structure might help prevent this
stimulation, which can cause severe involuntary motion. The detection and segmentation of the FN is a complex
and time-consuming procedure, also, measuring its closeness to the electrodes based on preoperative computed to-
mography (CT) scans automatically has not been done before. The absence of contrast in CT scans makes the neural
structures look extremely similar to other types of tissue. We propose an automatic pipeline of segmenting the cochlea
and facial nerve from the preoperative CT scans. We then find the distances of electrodes to the nearest point of the
facial nerve in order to identify and prevent facial nerve stimulation (FNS).

Keywords: Facial Nerve Stimulation, 3D Image Segmentation, Cochlear Implant

1. Introduction

Hearing is an important ability for humans. As so-
cial beings, we communicate with one another, which is
important for our proper growth. The universe of expe-
rience can be significantly hampered by partial injury or
an absence of this sense. The most common sensory de-
ficiency in humans is hearing loss. Sensorineural hear-
ing loss (SHNL) is the most prevalent kind of hearing
loss in adults, accounting for over 90% of all occur-
rences of hearing loss (Smith et al. (2005)). Cochlear
implants (CI) were developed to help people with SNHL
who have lost their hearing abilities due to congenital or
acquired causes.

A cochlear implant is a medical device (also devel-
oped by Oticon Medical) that helps restore the hearing
capacity of people who suffer sever to profound. It helps
to send signals to the brain by stimulating the auditory
nerve in the cochlea. An external sound processor and

an inside cochlear implant make up a cochlear implant.
The antenna is magnetically connected to the skin im-
mediately above the internal section. The exterior part
includes a behind-the-ear sound processor and a lead
that links the processor to the antenna. Internally, a re-
ceiver is surgically slipped beneath the skin on the tem-
poral bone. The electrode array in the cochlea is part of
the receiver.

A conventional cochlear implant procedure starts by
making a small incision behind the ear, drilling out a
portion of the mastoid bone (mastoidectomy), carefully
avoiding critical structures such as facial nerve, chorda
tympani and vessels until the round window is revealed
and inserting the electrode array into the scala tym-
pani via either round window or cochleostomy. Oticon
Medical has developed an image analysis tool that ex-
tracts clinically relevant information about the cochlea
that is useful to determine the optimal surgical approach
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and electrode array, and to reduce trauma during inser-
tion. The route must pass via a 1-3.5 mm area, near the
branching of the FN and chorda tympani. An illustra-
tion of this procedure is shown in Figure1. Damage to
this nerve might result in facial paralysis (Noble et al.
(2008)).

Figure 1: Representation of cochlear implant in CT on left and struc-
tural representation on right

Not only is the placement of this nerve critical for im-
plant surgery, but it is also one of the most well-known
and common concerns of the CI procedure: FN activa-
tion may be a result of its closeness to part of the im-
plant’s electrodes (see Figure 2) as literature has sug-
gested.

Figure 2: In high-resolution temporal bone CT scan of a patient,
where he reported reported FNS (eye twitching) caused by electrodes
9-13 (Fang et al. (2017))

Knowing the exact location of the FN and calculat-
ing the distance from cochlea before surgery might help
us prevent it from happening. Even for specialists, lo-
cating and segmenting the nerve is challenging due to
its curved form and lack of contrast, which makes the
nerve tissues look quite similar to soft tissue structures.
We aim to develop and implement methods capable of
automatically segmenting the structures of interest and
finding their distance from electrodes. The electrodes
are placed during the surgery. The distance between
FN and electrodes can be used to prevent FNS (Polak
et al. (2006)) by proper surgical planning i.e., adjust-
ing the intensity of electrodes during the fitting pro-
cedure. Facial nerve stimulation can frequently be re-

solved with minimal changes in speech processor fitting
but, in some cases, this can lead to a reduction in the
outcome.

1.1. Clinical background
Hearing involves sound waves traveling through our

ears. Our ears are complex structures having three parts.
The inner ear is the focus of our investigation. Both of
the structures of interest (FN and Cochlea) are found
in this area to some extent and some part in middle
ear. These structures, their architecture, and their sig-
nificance will be discussed in the following sections.

1.1.1. Facial Nerve
The seventh Cranial Nerve is the facial nerve accord-

ing to its location, from the front to the back of the
brain. The FN’s route is complicated; there are several
branches that provide sensory, motor, and parasympa-
thetic information. It is responsible for:

• Facial expressions

• Chorda tympani which originates from it controls
taste

• Salivation

• Eyelid closure

• Auditory reflex

The FN’s path (Figure 3) may be divided into two
parts: intracranial and extracranial. After entering the

Figure 3: Facial Nerve structure and shape (Campbell (2020))

inner ear the proximity between the FN and certain
structures of the ear as the cochlea, vestibule or staples
can be observed in the different views (Figure 4).

Figure 4: On right we can see the location of the facial nerve and on
the left other structures in CT scan (Beek and Pameijer (2020))

The roots escape the internal auditory meatus within
the temporal bone and enter the facial canal. The two
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roots converge in this area to produce the FN, which
gives rise to the geniculate ganglion (genu) (see Fig-
ure 5). The larger petrosal nerve, which controls the
lacrimal gland and the mucous glands, emerges from
this ganglion. The chorda tympani is formed by the
FN and contains sensory fibers for the tongue’s ante-
rior two-thirds as well as parasympathetic fibers for the
submandibular and sublingual glands.

Figure 5: Internal anatomy of ear (de Castro and Marrone (2021))

1.1.2. Cochlea
Cochlea is also another important structure in hearing

(Elliott and Shera (2012), Baker (2008)). The cochlea is
snail-shaped organ present in the temporal bone that is
about 8-10 mm wide and has 2.5 turns in humans typi-
cally. Because of its contrast and snail-shaped structure
(Figure 2), it is relatively easy to segment and spot even
while manually annotating the structures. In fact while
manually annotating other structures, it can be a guiding
tool for finding those other structures (see Figure 6).

Figure 6: Inner ear structures in clinical CT. In this blue arrow, we see
the cochlea, the red arrow shows semicircular canals and green shows
ossicles

2. State of the art

The literature on the FN, Cochlear segmentation, and
measurement in clinical CT scans was reviewed and
summarized in this section.

2.1. Segmentation

Previous research on facial nerve was mostly focused
on atlas-based segmentation, deformable models, a mix
of these two approaches, and segmentation based on
landmark predictions. A summary of these methods can
be seen on Table 1.

In early study, Noble et al. (2008) offered the first
automated atlas-based strategy, which merged atlas
methodology and a minimal cost pathfinding algorithm.
The atlas was utilized to generate a spatially vary-
ing cost function that included geometric information,
which was then used to determine the nerve centerline’s
minimal cost route. The entire structure was extracted
with this route as seed. Result shows that atlas-based
methods alone are ineffective. Mainly because the regis-
tration transformations deform the structures more than
what is physically possible because they are very elas-
tic. Due to fluctuations in pixel values in the neuronal
structure and a lack of contrast, pathfinding algorithms
relying only on intensity didn’t work as well in this pa-
per.

Then Voormolen et al. (2012) created a semiauto-
matic segmentation technique for a larger part of the
FN in CT called NerveClick. Here an expert surgeon
is needed to manually set two markers in specific posi-
tions of the FN anatomy. They also created a statistical
and texture model based on the centerline of 40 man-
ually segmented examples’ facial nerves. They itera-
tively deform the model using this model and the man-
ual landmarks as seeds until the convergence conditions
are met. Firstly, this approach still required external in-
put for initialization and still when applied in patients
with cranial base tumors and/or severely disturbed tem-
poral bone structure, the statistical model was not strong
enough, resulting in worse performance. 26 percent of
the centerlines in their testing set were deemed to be
off-center.

Powell et al. (2017) created an atlas-based automatic
segmentation system that included the cochlea, ossicles,
and semicircular canals, and other structures from the
temporal bone CT scans. The atlas and the several ROIs
that surround each anatomical feature were developed
using six bones. The FN was segmented using three
distinct masks, one in the tympanic area and the other
two in the mastoid region, following registration. Then
they eroded the segmentation by one voxel in each slice
and followed the segmented object with the closest cen-
troid along the length of the FN. The performance was
still limited because of the FN’s shape and poor contrast
in CT scans, especially in the tympanic area.
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The first deep learning approach was used by Fauser
et al. (2019) where they used a shape-regularized deep
learning approach for segmenting small structures based
on the anatomy. Like us, they were also segmenting
these structures for trajectory planning in CI operations.
Instead of utilizing the 3D nature of CT scans, they
used 2D slices in their method. So the predictions done
were for each slice of a specific view. Multiple U-Nets
predictions were merged to create the initial segmen-
tation. The results showed a lot of artifacts and miss-
ing segmentations mainly because of the class imbal-
ance (as these are small structures). Probabilistic ac-
tive shape models (PASM) were created to address these
challenges and give some 3D form regularization. This
made it more flexible but they only focussed on some
part of FN which is important in the surgery of Cochlear
Implant.

Then Gare et al. (2020) created a multi-atlas-based
FN segmentation using nine samples from different seg-
mentations. These samples were chosen in a way to
maximize the variance between individuals. As a result,
this method segmented additional portions of the FN.
However, still here the expert has to manually set four
landmarks in exact places making it difficult to segment
automatically. Based on these landmarks, a centerline
is created, which is then used to select the optimal reg-
istration from the atlas. Then the results may be fine-
tuned later using B-splines registration and deformation
limits.

López Diez et al. (2021) worked on segmentation
of FN and cochlear nerve in pre-op CT Scans of pa-
tients. Their pipeline had two main stages: the predic-
tion of seven landmarks by reinforcement learning from
CT scan and then using shortest path algorithm Dijk-
stra to join those landmarks for segmenting the struc-
tures. They did this by first annotating the dataset with
seven critical landmarks and succeeded in locating the
landmarks in the CT scans yielding to 96.10% of cor-
rectly located landmarks in the test set. However, when
there are changes in anatomy, such as between children
and adults, the approach may not perform well as shown
in Reda et al. (2011). Also, there was inconsistency in
placement of the landmarks because it is just a point on
a straight-ish curve and suffers from the aperture prob-
lem as shown in Figure 7

Year Authors Method Inputs Training size Testing size Region Segmented

2008 Nobel
Atlas + Deform.
models 10 param

12CT
(15 ears)

7CT
(10 ears) Facial Recess

2012 Voormolen Deform. models 2 Landm. 40 CT 120 CT IAC to SF
2017 Powell Atlas-based None 6 20 IAC to SF

2019 Fauser DL+PASM None Not specified 24 CT
IAC to
2nd Genu

2020 Gare Multi-Atlas 4 Landm.
37 micro
CT(dead)

28 CT
(alive) IAC to SF

2021 Paula
Reinforcement
learning + Dijkstra None 96 CT 23 CT

Cochlear Nerve
+ Facial Nerve

Table 1: Comparison of FN segmentation techniques with their re-
spective datasets

A medical specialist may quickly distinguish certain
anatomical structures from their three-dimensional de-

Figure 7: Landmarks’ location within the FN and CN. A) An overview
of the 7 landmarks B) Close-up of the 4 initial landmarks and the
labyrinthine segment C) Close-up of the 5-7 landmarks and the tym-
panic segment (López Diez et al. (2021))

piction since they have a consistent form. This is true of
brain regions like the liver and kidneys.

Its segmentation from CT images of the temporal
bone is difficult due to the low resolution of those im-
ages in comparison to the anatomy of the cochlea: the
cochlea dimensions are about 8.5x7x4.5 mm³, whereas
the typical CT voxel size is larger than 0.2 mm, mak-
ing the fine structures of the chambers barely visible. In
addition, the cochlea is filled with fluids that are similar
in appearance to those nearby structures on CT scans.
In many circumstances, Deep Learning is an effective
method of picture segmentation or processing. Many
studies in the field of inner ear CT imaging analysis have
shown outstanding findings (Wang et al. (2021), Banala-
gay et al. (2021), Lv et al. (2021), Hussain et al. (2021),
Nikan et al. (2020), Neves et al. (2021), Heutink et al.
(2020), Zhang et al. (2019), Ruiz Pujadas et al. (2018),
Demarcy (2017), Gerber et al. (2017), Kjer et al. (2015),
Noble et al. (2011), Abeysinghe et al. (2008)), but each
had a number of drawbacks. To begin with, developing
dataset annotations takes time, which may limit the pro-
duction of large training datasets. A well-trained ENT
surgeon would take at least 10 minutes to segment each
3D cochlea volume in the instance of the cochlea. These
methods perform well and some use shape models for
further regularization. Since they are not using a com-
mon dataset, their direct comparison is challenging. We
summarize their performance in Table 2.1. In this thesis,
we show that significant improvements can be obtained
using more recent network architectures.

2.2. Distance calculation

Currently, there is no automatic pipeline of measur-
ing the distance from the facial nerve to the electrodes
or the cochlea before or after insertion, measurement
calculation regarding the CT images to the best of our
knowledge. Only method used by Jonathan (Hatch et al.
(2017)) was done manually. To the best of out knowl-
edge, this is the first work that automatically computes
the FN nerve distance to the CI and is the primary focus
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of this thesis. These measurements can help us reduce
the chance of facial nerve stimulation during or after the
CI surgery.

3. Material and methods

For making this work, we use a substantial amount
of material and we evaluate a large number of methods.
Following are the details.

The overall processes taken throughout this thesis are
summarized below with a flowchart and the details of
each step are afterwards mentioned.

Figure 8: Pipeline of our evaluation methodology

3.1. Dataset

A dataset’s size, diversity and quality are critical for
Deep Learning DL techniques, since they represent the
backbone of the training process and they are hence
critical to the model’s success. A dataset with tempo-
ral bone structures labeled in good resolution is hard
to find. Two datasets were mainly used. One dataset
which was openly available. OpenEar (Sieber et al.
(2019)) contains 3D models of temporal bone struc-
tures based on CT and micro-slicing. And the other
was the data provided by Oticon Medical. The Open-
Ear dataset is utilized for familiarization and anatomical
detail analysis, whereas the Oticon Medical data set has
been labeled and divided for training, validation, and
testing. This Oticon Medical dataset is created by merg-
ing datasets from different hospitals and from different
countries. There was no labeled data with important in-
formation on the FN or the other structures accessible

for the development of this project. As a result, the first
step of this project was annotating a significant number
of examples from the data. During the data analysis,
this was taken into consideration.

3.1.1. OpenEar Dataset
The dataset (Sieber et al. (2019)) contains high qual-

ity coloured models of the human temporal bone (see
Figure 9). This dataset is publicly available with 3D
models of structures for robotic surgery, development
of segmentation algorithms etc.

Figure 9: On the left there is the CBCT scan, the segmentation of it in
the middle and on right there is the 3D model of the structures (Sieber
et al. (2019))

This dataset was created using 8 human temporal
bone specimens from four adult participants. The Han-
nover Medical School’s Institute of Pathology gener-
ously supplied temporal bones. Each of the scans had
good resolution with 0.125 mm voxel spacing. The di-
mensions varied a lot in each of the scans from 150-
850 also across different axis (see Figure 10 for an ex-
ample). Also the contrast ranges were from -2500 to
4000 Hounsfield units which also needed adjusting. Al-
though, it is opensource but even this dataset had prob-
lems in some scans. It shows that we have to do some
preprocessing to remove these artifacts. The names of

Figure 10: Example from the OpenEar dataset as being annotated in
ITK-SNAP for facial nerve and chorda tympani

these are given on mathematical symbols like alpha,
beta, theta as all the metadata related to the patient was
stripped from this dataset.

3.1.2. OticonMedical dataset
CT images of patients before surgery from the Oticon

Medical database are used. It contained 80 CT scans of
different patients’ inner ear (including right or left la-
beled). The CTs have been cropped in the area of in-
terest and come from a variety of imaging systems from
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different hospitals from different countries and well rep-
resent the real-world clinical image appearance diver-
sity. As a result, the dataset is typical of patients with
normal anatomy and real-world imaging to which clin-
icians have access for diagnosis and intervention plan-
ning.

3.1.3. Data challenges of the OticonMedical dataset
Here the range of scans are similar to what other rel-

evant studies but there are several challenges that we
face.

• The resolution of these CT scans is not the same in
all the images (see Fig. 11).

Figure 11: Left and Right CT scans showing different resolutions

• Example from the OpenEar dataset as being an-
notated in ITK-SNAP for facial nerve and chorda
tympani.

• Some images have a considerable large amount of
noise and some images have large invalid regions.

• There is also a considerable difference in tissue
contrast (Figure 12), owing to the images’ varied
origins (imaging equipment).

Figure 12: Differences in same tissue contrast values and their his-
tograms. Left part of image shows is one 3D volume from our dataset
and on right is another. Both have different intensity value for cochlea
area.

• There are also scans with various forms of distor-
tions (see Figure 13).

3.1.4. Annotating the dataset - OticonMedical
So even with all these challenges we annotated the

dataset to generate the images and the segmentation

Figure 13: Artifacts and distortions present in original scans due to
low resolution thus, preventing accurate delineation of small struc-
tures

masks together. For annotating the dataset, we used
ITK-SNAP (Yushkevich et al. (2006)). It is a software
for 3D medical image visualization and segmentation as
it has some functions which are very useful for it. The
paintbrush tool was used to place “seeds”. These seeds
are the points which belonged to a respective class and
that will guide the segmentation in its favor. The la-
bels were chosen using Quick Label Picker and then
the marks were placed. (see Figure 14) After place-
ment, this tool provides a 3D view that continuously
updates the segmentation and provides a visualization
of the nerves structures.

Figure 14: After placement of seed points for facial nerve

We then used Active Contour tool (Yushkevich et al.
(2006)) for filling in the empty space from seeds (see
Figure 15). First, we set a lower and upper threshold de-
pending on the image intensity values to be more exact.
The seeds that we initialized can be used as seeds for ac-

Figure 15: Contrast threshold to use specific region. Blue color repre-
sents the region to exclude and white represents the region to include

tive contour and we run it for some iterations (typically
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6-10). This way we could get a rough segmentation of
the facial nerve and then we modify it by adjusting the
boundaries according to our knowledge. We used this
process to annotate 70 images by first checking if they
were in good quality and their FN is clear enough for us
to segment.

3.2. Preprocessing of datasets

To address the above mentioned challenges, we used
several strategies which are illustrated on Figure 16.

3.2.1. Preprocessing Pipeline

Figure 16: Preprocessing pipeline of CT scans

In summary, the obtained CT scans and annotated
masks are resampled to make their spacing equal to each
other. Then removed the artifacts to some extent from
the images and similarly the same portion of image from
the masks (even though it can be all background) re-
moving invalid pixels. To make their sizes similar, ap-
plied padding and/or cropping to the images and masks
alike. Then images are normalized to make their inten-
sity range to 0-1 range and active contour is applied to
labels to make them smooth.

3.2.2. Resampling
Some scans had significant anisotropic spacing across

the three coordinates. Also, it was observed that very
few samples also had really high spacing at .3 mm for all
three coordinates. Apart from new spacing, the images
were geometrically identical. To make it consistent,
the scans were resampled with linear interpolation us-
ing SimpleITK (Johnson et al. (2013)) while the masks
were interpolated with nearest neighbour technique. All
the rest of the information like direction, origin were
kept in accordance with the input images.

3.2.3. Label Active Contour
Due to interpolation, the labels now had block-like

structure which is not good for training segmentation
models. So for that in ITK-SNAP, Yushkevich et al.
(2016), use active contour to make it more smooth
around the corners and more similar to the real struc-
ture.

3.2.4. Invalid Voxel Removal
Clinical CTs contain often invalid voxels marked

with large negative intensity regions at the outer space
around the true image content. We pick values at the im-
age corners and estimate the invalid voxel mask. This
is done by first estimating the invalid voxel value (the
minimum intensity of all 8 corners of the image) and
region growing from all of them at the same time. This
way, the artifacts with invalid values in capturing the CT
scans can be removed. The function here returns a mask
and we can take out the good part of the image from it.

3.2.5. Cropping (from segmentation center point)
Scans had different sizes (and simplify batching for

the DL algorithms) we chose a fixed size of 256 voxels
across all three axes. The correct part of the scan still
had inconsistencies depending on the scan. So using the
segmentation, we found out the centers of these images
and cropped them accordingly to the size.

3.2.6. Intensity rescaling
The intensities of the CT scans can range from -3000

to +4000 Hounsfield Units (HU) or even more. Not all
values in these range are useful for us. In fact, the inten-
sities on the upper and lower bound are mostly irrelevant
for our application. Implants made from metallic com-
ponents typically have very high Hounsfield units (typi-
cally significantly greater than 4000) which we will see
later in post-op images to be extremely bright. HU are
obtained with reference to attenuation coefficient of wa-
ter and divide by same value of water for normalization.
Later this value is multiplied by a thousand resulting
in huge values of intensity as observed by us. So first
we clipped the scans from lower 2% to upper 98%. We
used percentages because every scan had different range
so it should be dynamic. And then we normalized these
intensities so the values range from 0 to 1.

3.2.7. Padding
After intensity rescaling, there were some images

where the size was less than our given size so we ap-
plied zero padding to them to make their size equal to
the others and usable.

After all this, we had 70 scans out of which 40 are for
training and 15 each for validation and testing.

3.2.8. Transformations
For data augmentation, we applied some transforma-

tions to our dataset. We used the MONAI framework
(Diaz-Pinto et al. (2022)) for our pipeline of data aug-
mentation. As we are well aware that contrast is very
important in CT scans so we used transformations that
made changes while keeping contrast almost constant.
All the transformations we used were the dictionary
transformations provided by MONAI. They are much
easier to implement than others but require a specific
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format to be followed for them to work. They are good
as we can apply some transformations to both image and
its mask to keep consistency.

After experimentation, we end up with using trans-
formations such as:

• Random affine transform with 20 degree rotations,
scaling 0.1 and translations with probability of 0.2

• Random flip along axial, sagittal and coronal axis
separately with 0.2 probability

• Resized with interpolation nearest area for CT scan

• Resized with interpolation nearest neighbour for
CT segmentation mask

3.3. Technical Background
In our approach we used deep learning for segmen-

tation of the structures because other relevant research
shows state of the art to be achieved through deep learn-
ing given enough data. For deep learning we used some
models with pure CNN and some which were a com-
bination of CNN and transformer architectures and will
compare them. Each of them have a lot of differences in
all their architectures.

3.3.1. Network Architecture
When it comes to medical image segmentation, U-

Net (Ronneberger et al. (2015)) is one of the most com-
monly used and best-performing architectures, as it per-
forms state of the art, or near, in most applications. It
was developed with the goal of performing biomedical
(microscopy) image segmentation. U-Net is a convolu-
tional neural network that has two parts which are an
encoder and decoder. The encoder compresses and ex-
tracts features from the image, arriving at the last layer
having vector representation. The decoder reconstructs
the segmented image through a series of up-scaling lay-
ers. It also has concatenation layers which help in this
reconstruction process. The main feature of this archi-
tecture is that the concatenations that happen are on the
same level, i.e., between the encoder and the decoder,
as it can be seen on figure 17

3.3.2. UNEt TRansformers (UNETR)
Transformers achieved great success in NLP because

of long-range sequence learning. Despite its effective-
ness, purely convolutional neural networks’ capacity to
learn long-range spatial relationships is limited by their
number of layers and their receptive field.

Like the Vision Transformers, UNETR (Hatamizadeh
et al. (2022)) employs a transformer-based encoder but
the decoder is CNN based. UNETR uses a transformer
as the encoder. This encoder then learns sequence rep-
resentations given the 3D medical scan and successfully
captures global multi-scale information. Then skip con-
nections are used to connect the encoder to the decoder

Figure 17: General architecture of UNET (Ronneberger et al. (2015))

similarly to the process of UNET. It separates 3D scans
into patches, which are then linearly projected into to-
ken embeddings. Similar to Vision Transformers, the
tokens are then handled by the self-attention block. The
patch taken is huge (e.g. 16 x 16 x 16) to keep the com-
plexity less as this will prevent the series length of input
to be too lengthy. 18 As a result, Multi-dimensional CT

Figure 18: General architecture of UNETR (Hatamizadeh et al.
(2022))

scan is given as input to this model. It projects it into a
1D sequence of non-overlapping patches. As we know
transformers cannot work on data in more than one di-
mension. Here, we can also see skip connections joining
encoder to the decoder. The positional values are en-
coded with the input and passed further in the pipeline.

3.3.3. UTNETV2
Gao et al. (2022) claim the best performance in med-

ical image segmentation. It obtained state-of-the-art re-
sults. In their architecture, they made three contribu-
tions

• Depth-wise Separable Convolution to make it
translation invariant. Depth-wise convolution
works by dividing the convolution in two parts, i.e.,
Filtering stage and combination stage. in filtering
stage the convolutions are applied to 1 channel per
kernel and in combination stage the convolution is
applied to the whole result of filtering stage
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• Bi-directional Attention to reduce the complexity
and compress large token maps to small semantic
maps

• Multiscale features fusion of those small semantic
maps. This is an important feature for us because
in medical images sizes vary greatly.

This model was the good choice for us because it per-
forms well with small dataset even if there are transla-
tions and size differences (as our source of images were
different so highly likely)

Figure 19: The complete architecture of UTNETV2 (Hatamizadeh
et al. (2022))

UTNETV2, like other transformer based architec-
tures, makes token embeddings of the image features
by convolution block. These are then downsampled four
times. Also, these features are given to the decoder side
through skip connections. The Bi-directional attention
unit reduces unnecessary tokens by projecting a com-
pact semantic token map from the high-resolution token
map as a semantic summary at every level using depth-
wise separable convolution.

Later in the decoder, we use upsampling layers and
the info given by skip connections from the encoder part
so it can combine the features and produce the segmen-
tation result. (see figures 19,20).

Now after segmentation, we needed to find the dis-
tance, and for that we need to know the position of the
electrodes from a real case scenario. This positions from
the electrodes can be extracted through Nautilus.

3.3.4. Nautilus
Nautilus (Margeta et al.) provides a comprehensive

collection of research tools for pre- and post-operative

Figure 20: Modified version of Bi-directional multihead attention
(Hatamizadeh et al. (2022))

CT scans. This examines cochlea automatically by im-
age processing and also provides interactive visualiza-
tion via a web browser for CI implantation (see fig 22,
21).

Figure 21: Electrodes insertion in same example but from different
views in CT scan

Figure 22: Visual representation of electrodes and insertion in Nau-
tilus

It segments the cochlea from pre-operative images
and extracts electrode locations from a postoperative
CT image using CNNs and geometrical inference be-
fore registering the information to compute metrics such
as cochlear size and shape, characteristic frequencies at
each contact, distance of electrodes to estimated basi-
lar membrane position, and other metrics useful to sur-
geons, audiologists, and statisticians.

So here we can observe that the electrode placement
with the segmentation model of cochlea.
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Figure 23: Left image is a post-operative CT scan showing white in-
tensities as points of actual electrodes insertions and image shows the
electrodes positions estimated within a 3D model of cochlea estimated
from the segmentation

From this platform, we obtained the electrode place-
ment coordinates of the test scans to compute their dis-
tance from the facial nerve. This distance will be used
in finding out its significance in facial nerve stimulation
(FNS).

4. Results

To compare all the above mentioned architectures,
and evaluate the performance on our problem we used
several metrics and plot the loss function evolution.

4.1. Loss functions

In deep learning, loss functions find out the difference
between actual value and the predicted value. This is an
optimization problem so it wants to minimize this value.
In our experiments we used these loss functions. The
value computed is used to adjust the weights during the
backpropagation.

All the experiments below will be done on UNET
with learning rate of 3e-4 and Adam optimizer (Kingma
and Ba (2014)).

4.1.1. Cross-entropy loss function
It basically penalizes the wrong output by a very large

number as it is the log of that number. So if we predict a
probability of 0.2 while the actual value is 1 then it will
give us penalization.

Lcross−entropy =
∑M

i=1 yi log(pi)) (1)

Where i ranges from 1 to total number of classes. In our
case it was a good starting point but the performance
was sub-optimal and only predicted the cochlea. The
reason is that we have unbalanced data more in favor
of Cochlea than Facial nerve. Here we can see a re-
ally good prediction of the cochlea but no signs of facial
nerve. (see figure 24)

Figure 24: Prediction done on a validation image

4.1.2. Dice loss with cross-entropy(equal weights)
Cross-entropy is used to compute similarity between

two images. However when we have the problem of
class imbalance then it is much better to use Dice loss.
Cross-entropy is a suboptimal loss function when the
data data distribution is not balanced (Maier-Hein et al.
(2022)) as is the case of fine structures we are dealing
with. For experimentation we tried to use both the loss
functions together. But even then cross-entropy made
it more difficult for the model to learn the structure of
facial nerve. So we had a similar prediction for our in-
put.(see figure 25) Here we can see although the loss

Figure 25: Loss curve and (1-loss) curve

is decreasing yet it is not giving us a good representa-
tion of how it is performing in reality. This achieved
these numbers with just segmenting cochlea without fa-
cial nerve.

4.1.3. Dice loss
Now we evaluated the convergence of our model us-

ing only Dice loss (see figure 26). The formula for dice
loss is shown where p true is the actual probability for
a voxel to belong to a class and ppred is the predicted
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probability of the respective voxel.

Ldice =
2∗∑(ptrue∗ppred)∑

p2
true+

∑
p2

pred
(2)

We can see that the loss on the test data is similarly de-
creasing so that means we are not overfitting to the train-
ing set much. But this experiment seems rather biased
with one dominant class.

Figure 26: Loss curves and (1-loss) curve

Here the prediction was good for the train set (see
figure 27) but in the test set(see figure 28,29), it was
mixing cochlea label with the facial nerve.

Figure 27: Segmentation result with Dice Loss of training set

Figure 28: Segmentation result with Dice Loss of testing set

Here, we even checked the predicted probability map
and evaluated different thresholds but still it was con-

Figure 29: Another example of segmentation result with Dice Loss in
testing set. We see that cochlea segmentation region is split into two
which is not expected.

cluded by us that the model is confused about the struc-
ture of the facial nerve.

Figure 30: Probability map of the prediction with the scan on left side

(see figure 30) Here we can see that even changing
the threshold does not change the fact that the prediction
is not accurate. (see figure 31) This problem was on
all the slices so it was not independent of any axis or
slices. Also, showing there is no problem in the labeling
of scans

4.1.4. Generalized Dice Loss
Generalized Dice loss (Maier-Hein et al. (2022))

gives weights to each class according to the label fre-
quencies. So, we evaluated this loss function that is
designed to work even better incase of an unbalanced
dataset which we imagine is still the case. Using all the
same settings we got (see figure 32,33)

Here the predictions were much more accurate but it
was giving us the wrong boundary to the facial nerve
because it is very near the cochlea. This problem is im-
portant for us because we are looking to calculate the
distance for the facial nerve stimulation so boundaries
are very important for us.

4.1.5. DiceFocal Loss
Focal loss is a modified version of cross entropy loss

as it also handles class imbalances with another pa-
rameter which gives more weights to hard examples.
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Figure 31: Slice by slice of single scan along with its real labels and
predictions

Figure 32: Loss curves and accuracy curves

Figure 33: Prediction results on test image. Here we see that FN
segmentation gets covered with cochlea label so possible solution can
be to have more diverse training data or more augmentations to better
cover the FN appearance variations.

This means to compute Dice loss and focal loss and re-
turns the equally weighted sum of both(Diaz-Pinto et al.
(2022)). Here we can change the weights of each loss.

L f ocal = −(1 − pi)γlog(pi) (3)

Where pi is the probability of a voxel to belong to a
class. And γ is a hyperparameter that decides how much
weights to give to a minority class.

LDice f ocal = 0.5 ∗ L f ocal + 0.5 ∗ Ldice (4)

This loss performed the best especially for the impor-
tant boundaries. This is what we will use with different
architectures. (see figure 34)

Figure 34: Loss curves and accuracy curves

4.2. Dice-Focal loss with UNETR

Here we tried different parameters because of de-
manding hardware resources required because of the
huge architecture. We tried changing parameters but
found out that the best results were noticed when using
default parameters. (see table 2)

Parameter Exp 1 Exp 2
imgsize 224 256
hiddensize 768 512
numheads 12 8
featuresize 16 8
mlpdim 3072 1536
posembed ’conv’ ’conv’
convblock True True
resblock True True
normname ’instance’ ’instance’

Table 2: Overview of parameter values for UNETR.

Although many more experiments can be done to
achieve the best results. (see figure 35,36)
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Figure 35: Loss curves and accuracy curves with experiment 1 param-
eters

Figure 36: Loss curves and accuracy curves with experiment 2 param-
eters

4.3. Dice-Focal loss with UTNETV2

Here we have a lot of parameters to optimize but due
to hardware limitations and time constraints we went
with the parameters used by the original authors in their
research paper. (see figure 37)

Figure 37: Loss curves and accuracy curves of UTNETV2

4.4. Evaluation

For evaluation we used three metrics which are as fol-
lows:

• Dice Coefficient (F1 Score): (Shamir et al. (2019))
explains the Dice coefficient. Basically, two times
the intersecting area divided by the total number of
pixels in both scans is the Dice Coefficient.

• Hausdorff distance: (Dubuisson and Jain (1994))
defines the metric as the distance of the maximum
difference between two distinct points between 3D
segmentation prediction and our 3D annotated la-
bel

• Volumetric difference: It is the surface distance,
computed as absolute value of real segmentation
minus predicted, divided by total.

4.4.1. Quantitaive Results
Here we represent our results on Validation and Test

data. (Figures 38,39,40,41,42,43)

Figure 38: UNET Results on Validation data. Dice coefficient is good
for both cochlea and FN but HD is high for both structures.

Figure 39: UNETR Results on Validation data. Dice coefficient is
good for both cochlea and FN. HD is low for both structures.

Figure 40: UTNETV2 Results on Validation data. Dice coefficient is
good for both cochlea and FN. HD is low for both structures but it is
higher than that of UNETR.
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Figure 41: UNET Results on Test Data. Dice coefficient is good for
both cochlea and FN but HD is high for both structures.

Figure 42: UNETR Results on Test data. Dice coefficient is good for
both cochlea and FN. HD is low for both structures.

Figure 43: UTNETV2 Results on Test data. Dice coefficient is good
for both cochlea and FN. HD is low for both structures but it is higher
than that of UNETR.

4.4.1.1 Comparisons of cochlea segmentation

Here are all the research papers results published till
now on cochlea segmentation. (see table 3). These re-
sults are discussed in detail in section 5.

Average
Symmetric
Surface
Distance

ST (mm)

MaxSu-
-rface
Dist.
error ST(mm)

Mean
Surface
dist.error undiff.
cochlea

MaxSu-
rface
dist. error undiff.
cochlea

Cochlea
- DICE

Ours 2022 - - - - 0.95
Nautilus 2022/02/10 - - 0.86
Wang et al. (2021) 2021 0.22 0.50 - - -
Banalagay et al. (2021)et al. 2021 0.11 0.87 - - -
Lv et al. (2021)et al 2021 - - - 0.25 0.9
Hussain et al. (2021) 2021 - - - - 0.9
Nikan et al. (2020)et al. 2021 - - 0.27 - -
Neves et al. (2021) 2021 - - - - 0.91
Heutink et al. (2020)et al. 2020 - - - - 0.9
Zhang et al. (2019) 2019 0.08 - - - -
Ruiz Pujadas et al. (2018)et al. 2018 - - 0.11 0.58 -
Demarcy (2017)et al. 2017 0.12 0.92 - - -
Gerber et al. (2017)et al. 2017 - - - - 0.88
Kjer et al. (2015)et al. 2015 - - 0.22 -
Noble et al. (2011) 2011 0.21 0.8 - - -
Abeysinghe et al. (2008) 2008 - - - - 0.72

Table 3: Overview of cochlea techniques and their results.

4.5. Postprocessing

The segmentation results were generally satisfactory.
But in some of the cases there needed to be improve-
ments as we know in CT scans, the contrast values are
very similar so there were artifacts included in predic-
tions.

4.5.1. Connected Component
For removing these artifacts, we just had to keep the

largest area structure for each label. For the task we
employed the approach of connected components. (see
figure 44)

Figure 44: Example of output on left and post-processed output on
right. Red the cochlear segmentation, in green the FN segmentation

4.5.2. Distance calculations
Our main objective was to find how close the elec-

trodes are from the FN. So, we used the same origin
and direction as the original scan while obtaining our
segmentation. We then calculate the Maurer distance
map on this segmented output. The electrode distances
are extracted from our web-based solution, Nautilus.
We extracted the electrode positions of the test scans
to compute the distances in them.
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4.5.3. Maurer Distance
Here we take one label as a base and produce a dis-

tance map for that specific label. In our case, we took
the label of facial nerve. This map is zero on the bound-
aries and inside the more you go away from the bound-
ary, it becomes negative and outside the boundary the
more you go away the larger the distance. (see figure
45)

Figure 45: An example of the test CT scan with both CT scan and its
distance map on left and right and our models prediction overlaid on
top for better understanding.

Using this map, we can find out the distance be-
tween electrodes to the FN by just looking at the in-
tensity value at those coordinates. In calculating this
map, we made sure that the header content was accu-
rately mapped to the header in Nautilus so the coordi-
nates correspond correctly. (see figure 46)

We also performed manual checking with ITK-SNAP
and it corresponded with our measurements. (see figure
47)

Figure 46: An example of the test CT scan with both CT scan and its
distance map on left and right and our models prediction overlaid on
top for better understanding.

5. Discussion

We can see from our results that our method seems
to work much better than previous studies (up to five
percent or 5% on the test set) (of our best model).

Figure 47: Final output of our pipeline. CSV file shows the electrodes
coordinates along with their distances from facial nerve

Choosing the correct loss function was critical for ob-
taining our results. In general, loss functions are only
used to optimize the model but they are not a good way
to compare different architectures. Our experiments
proved that dice loss will work for us but noticed that
Dice in addition with Focal loss, with equal weights,
worked even better. Dice loss works on class imbalance
problem between easy and difficult examples but over-
looks the imbalance between hard and easy scans. And
Focal loss is a better version of Crossentropy loss that
handles class imbalance by assigning more weights to
hard or easily misclassified examples.

Before performing experiments, we assumed that UT-
NETV2 will perform better than other networks be-
cause according to literature it performs well with small
datasets even if there are translations and size differ-
ences (which was indeed our case). Also, in their paper,
they were able to get better results than UNETR. But we
ended up getting better Dice scores with UNETR which
could be possible due to hyperparameters being used.
The parameters used for UNETR have been tested and
validated by MONAI (Diaz-Pinto et al. (2022)) with dif-
ferent datasets whereas the hyperparameters we used for
UTNETV2 were the ones from the research paper for
specific dataset (different from ours). Hyper-parameter
search was out of scope for this project. We believe we
can obtain a better performance by optimizing the pa-
rameters.

In the table of results, for Facial Nerve, Dice score
will not be much reliable as it is a small structure. The
related segment is both the narrowest (< 0.7 mm di-
ameter) and shortest (3–5 mm length) segment of the
FN (Gupta et al. (2013)). So we notice that the max
Hausdorff distance to FN is very high for (UTNETV2).
This is because in one of the scans it predicted FN to
be far from original location but in others, it was satis-
factory which is why the mean HD is 1.8-1.9 mm. This
was because the resolution of that scan was very low
before preprocessing so interpolation may have caused
wrong prediction of FN. The other two architectures
perform more consistently across all scans. Therefore
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we should compare the architectures based on the 95%
value. Overall, the UNETR performs better than the
other two.

Regarding Cochlea, again the best results were with
UNETR. If we observe closely to the values of Haus-
forff distance of cochlea than it is 0.6mm and 0.8mm
for validation and test set respectively which are sat-
isfactory and shows that we can use these predictions.
Similarly the same case with UTNETV2. But incase of
UNET they are almost 2.0 mm which is not good con-
sidering the whole structure of Cochlea is of 8-10 mm
wide. So 2 mm means 20% error.

In this thesis, we worked on segmenting the part of
facial nerve which is near to cochlea and then used that
part of segmentation for our applications. After com-
pleting the goal of this thesis we proceed to segment the
facial nerve completely (also near the chorda tympani).

Chorda tympani originates from the mastoid segment
of the facial nerve. Like the previous work, this part
is really important during the surgery for CI. When
the surgeon inserts the electrodes, he/she has to pass
through a triangle-shaped V-like neural branching in or-
der to enter cochlea through the round window without
harming the nerves. This is the tricky part because there
are very few voxels corresponding to the chorda tyam-
pani and as in CT the contrast is a poor indicator for
finding out nerves, it has not been done yet.

Currently, we have two more datasets one of CBCT
and one of microCT both by Oticon Medical and some
microCT scans from OpenEar dataset. Some additional
scans of this dataset provided by Oticon Medical were
again labeled by us by using the same strategies ex-
plained in this paper. (see figure 48)

Figure 48: One example with labeled facial nerve and chorda tympani

Normal methods for segmentation were not working
for this so we came up with an intelligent patch based
approach which firstly identifies a region of interest in
the CT scan and then divides it into patches. And now
we can feed these patches for Unet based segmentation.
(Figure 49,50)

For annotations, we used ITK-SNAP and did it man-
ually for every scan after learning how radiologists
see and figure our the structures in CT scans. There

Figure 49: Patches extracted from CT example

Figure 50: Corresponding masks of the patches extracted

is active-learning-based annotation tool MONAI Label
(Diaz-Pinto et al. (2022)). It basically has segmenta-
tion models that are always running and are pretrained
on some medical imaging datasets. It works with 3D
Slicer (Pieper et al. (2004)) tool with an active learn-
ing MONAI label (Diaz-Pinto et al. (2022)) plugin. So
this way we upload the scan on the network and also to
Slicer and when we are labeling the scans we are also
teaching the model about the anatomy of some nerve.
So after few scans, models trained with MONAI Label
can give some initial predictions which we can correct
and the models continue to learn with more data. Using
this tool can require fairly significant computational re-
sources and there is a trade-off between using the given
resources for exploration of new architectures and an-
notating more data. In the future, we plan to use this
tool to label more scans with Chorda Tympani.

Evaluating more segmentation models and using
them in an ensemble using a voting or similar strategy
could bring even further performance gains. Also, when
there are changes in anatomy, such as between children
and adults, the approach may not perform well (Reda
et al. (2011)). A dataset containing paediatric scans will
be needed to validate of the tool on non-adult scans.

6. Conclusions

The initial goal of this thesis was to create an auto-
mated workflow to segment fine structures (facial nerve
and cochlea) from the dataset of 3D CT scans. Despite
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the fact that the soft tissue is notoriously difficult to seg-
ment in CT images, the created pipeline accurately char-
acterizes both structures in the region of interest. The
major objective is to deliver an end-to-end solution that
will allow doctors to save time while still having access
to important and trustworthy information for their diag-
noses. This pipeline might help doctors and researchers
study if and how the facial nerve stimulation is related to
the distance to the cochlear implant within the cochlea.

The ability to segment the FN without requiring hu-
man intervention is a significant benefit, as this area is
notorious for being difficult to characterize. We believe
that this pipeline will enable doctors to determine its
closeness to the cochlear structure in this vital location,
allowing them to avoid FN stimulation caused by this
proximity. This thesis also presents a method for au-
tomatically locating the FN in the region, where locat-
ing the FN might be problematic. Overall, we believe
that the developed technology will be extremely use-
ful to doctors to better understand the FNS and develop
mitigation strategies. Using the feedback from doctors
on the collected characterizations, and working on the
points explained in the discussion, more breakthroughs
might be made, and further improvements might be
achieved.
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Abstract

Laparoscopic cholecystectomy (LC), a minimally invasive surgery that aims to remove the gallbladder, is the most
widely performed laparoscopic procedure today. The shift towards the minimally invasive procedure has, however,
coincided with an increased rate of bile duct injury (BDI) which results in severe health and economical complications
for the patients. The critical view of safety (CVS) approach has been shown to effectively prevent BDI; however,
CVS is not always achieved for a variety of reasons. Recent works have begun to explore automated assessment of
CVS from surgical video to drive increased CVS assessment rates. In this research, we propose two deep learning
approaches to evaluate CVS, specifically focusing on spatio-temporal modeling. Our first approach incorporates
temporal layers on top of the DeepCVS model, while our second approach foregoes the DeepCVS model, instead
modeling a surgical video clip as a spatio-temporal region graph. This graph representation enables explicit modeling
of individual anatomical structures and tools as well as their interactions over space and time, which in turn improves
assessment of the CVS. Results show that both proposed models outperform the single frame DeepCVS baseline
with mean average precision (mAP) = 60.92% and 59.55%, and balanced accuracy = 72.62% and 70.19% on the
Endoscapes dataset for the spatio-temporal model and the spatio-temporal graph model respectively.

Keywords: Computer-Assisted Intervention, Laparoscopic Cholecystectomy, Critical View of Safety, Deep
Learning, Spatio-Temporal Graph

1. Introduction

Computer-assisted intervention (CAI) is an emerging
discipline that aims to improve the quality and preci-
sion of surgical procedures. Various building blocks for
CAI have been developed, including models for surgical
phase recognition (Kadkhodamohammadi et al. (2022),
Cheng et al. (2022), Czempiel et al. (2021), Czempiel
et al. (2020)), tool detection (Kondo (2021), Shimizu
et al. (2021)), tool segmentation (Zhang et al. (2021),
da Costa Rocha et al. (2019)), full scene semantic seg-
mentation (Monasterio-Exposito et al. (2022), Alap-
att et al. (2021)),and detection of anatomical structures
(Owen et al., 2021). A natural next step is to develop
interventional tools that can positively impact surgical
safety.

A potential safety application of CAI is the preven-
tion of bile duct injury (BDI) in laparoscopic cholecys-
tectomy (LC), the most frequently performed laparo-

scopic procedure today. While LC offers numerous ad-
vantages over open surgery which include decreased in-
cisional pain, smaller open wounds or incisions, shorter
hospitalizations, and faster recovery, it is associated
with increased BDI rates. BDI in turn results in severe
health Schreuder et al. (2020) and economical Halle-
Smith et al. (2019) complications for patients, includ-
ing longer recovery time, follow-up surgeries, degraded
quality of life, and in some cases death. These compli-
cations additionally impose a significant economic bur-
den to healthcare systems, to the tune of 1 billion dollars
in the United States alone (Berci et al., 2013).

To tackle increasing BDI rates, Strasberg (1995) in-
troduced the critical view of safety (CVS) approach, and
later, Strasberg and Brunt (2010) introduced its ratio-
nale as the clear appearance of (1) cystic duct and cys-
tic artery, (2) hepatocystic triangle, and (3) cystic plate.
The CVS approach has become the standard for safe
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LC wherein surgeons are instructed not to proceed with
the resection of the cystic duct and artery before achiev-
ing the CVS criteria (Pucher et al., 2015),(Conrad et al.,
2017). However, over the past decades, BDI rates have
remained more or less stable Törnqvist et al. (2012), due
to ineffective levels of CVS achievement.

Mascagni et al. (2020) and Mascagni et al. (2022)
established a series of work exploring the feasibility
and potential clinical value of automatic assessment of
CVS in boosting CVS achievement rates and as a result,
reducing potential BDIs. The latter introduced Deep-
CVS, an artificial intelligence (AI) model to automati-
cally identify CVS from endoscopic images utilizing the
formalization of the CVS criteria defined by (Mascagni
et al., 2020).

While DeepCVS illustrates the clinical feasibility of
deep learning for CVS assessment, it is not quite com-
prehensive with regard to recent advancements in surgi-
cal video analysis; for instance, it does not include tem-
poral information, which has become standard for var-
ious tasks in surgical video analysis (e.g. phase recog-
nition) (see Sec. 2 for further limitations). The primary
purpose of this work is to fill these gaps; to this end, we
first begin by leveraging larger training and evaluation
datasets and extending DeepCVS with several state-of-
the-art temporal models. Then, observing that CVS cri-
teria assessment is a fine-grained recognition task that
relies on accurate identification of anatomical structures
as well as their relationships in space and time, we in-
vestigate a novel approach using region graphs to model
the surgical scene, using this region graph representa-
tion for downstream CVS assessment.

In summary, our contributions are as follows:

1. A spatio-temporal model to evaluate the critical
view of safety in LC.

2. A novel multi-task framework for fine-grained
spatio-temporal surgical video understanding us-
ing a Region Graph representation.

3. Improved validation of CVS prediction models by
replacing a small hand-picked dataset of frames
with a larger dataset of unsampled LC videos.

2. State of the art

2.1. Surgical Video Analysis
Surgical video analysis is crucial for intra-operative

CAI systems and image-guided surgery. Recent works
have focused on surgical phase recognition (Cheng et al.
(2022), Czempiel et al. (2021), Gao et al. (2021),
Guédon et al. (2021)), surgical tool recognition (Xue
et al. (2022), Namazi et al. (2022), Liu et al. (2022),
Alshirbaji et al. (2021)), surgical tool segmentation (Ni
et al. (2022b), Yang et al. (2022), Sestini et al. (2022),
Ni et al. (2022a), Zhao et al. (2022)), full scene semantic
segmentation (Monasterio-Exposito et al. (2022), Alap-
att et al. (2021)), detection of key anatomical structures

Owen et al. (2021), as well as instrument usage antic-
ipation Yuan et al. (2021). Moreover, surgical action
recognition (Nwoye et al. (2022b), Nwoye et al. (2020),
Nwoye et al. (2022a)1, Li et al. (2022)) has gained a
lot of attention as it could help in modeling the interac-
tion between surgical instruments and tissues at a fine-
grained level which, in turn, could foster surgical moni-
toring systems and surgical safety Sharghi et al. (2020).
The desire of improving surgical safety makes the crit-
ical view of safety (CVS) assessment an emerging task
to be investigated.

2.2. Existing work in surgical safety

Even though the surgical safety is an emerging dis-
cipline in today’s healthcare systems, very few meth-
ods have been proposed to tackle surgical safety chal-
lenges. The surgical safety applications require fine-
grained analysis as they rely on the accurate recogni-
tion of anatomical structures. Recent work have focused
on Go-No Go zones Madani et al. (2022), critical land-
marks identification Tokuyasu et al. (2021), as well as
the critical view of safety assessment (CVS) Mascagni
et al. (2022). The latter developed the DeepCVS model
which is designed to evaluate the criteria defining the
CVS in laparoscopic cholecystectomy, yet they lever-
aged less amount of labeled data, and they designed
their model for single frame predictions without con-
sidering the relationship among neighboring frames in
the endoscopic videos. Furthermore, DeepCVS does
not explicitly model fine-grained spatial and semantic
relationships between anatomical structures, which is
fundamental for accurate CVS assessment.

2.3. Existing work in graph-based methods

Scene graphs are semantically rich representa-
tions that model an image as a collection of ob-
jects/components and their semantic relationships. Prior
work has focused on scene graph prediction Chen et al.
(2019), image generation from scene graphs (Mittal
et al. (2019), Johnson et al. (2018)), and scene graph
generation Yang et al. (2018) among numerous other
tasks. Recent works have also used graphs for spatio-
temporal modeling (Wang and Gupta (2018), Khan and
Cuzzolin (2021)), using them for downstream action
recognition tasks. In the surgical domain, Islam et al.
(2019), Seenivasan et al. (2022) investigate scene graph
prediction in synthetic surgical video, but (1) do not ex-
plore the effectiveness of the predicted graphs for down-
stream tasks and (2) do not explore spatio-temporal
graph approaches. In this work, we tackle these key
limitations, extending the method of Wang and Gupta
(2018) by using the region graph representation for CVS
prediction rather than activity recognition.

1https://cholectriplet2021.grand-challenge.org/
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3. Material and methods

3.1. Dataset
In this work, we use the Endoscapes dataset from

Alapatt et al. (2021). Endoscapes is a dataset of 201 LC
videos wherein one frame every 30 seconds (0.03 fps) is
annotated with segmentation masks of anatomical struc-
tures and surgical tools (29 classes, 1,933 frames in to-
tal), and one frame in every 5 seconds is annotated in-
dependently by three experts with the three CVS crite-
ria identified in Mascagni et al. (2022) (11090 frames in
total). For the purposes of this work: (1) we define the
ground-truth CVS annotation as the majority vote of the
three annotators. Figure 1 shows the balanced accuracy
between each annotator’s assessments and the majority
vote. (2) we utilize only 7 segmentation classes (includ-
ing the background) that are associated with CVS pre-
diction as introduced in (Alapatt et al., 2021).

Figure 1: Balanced accuracy between each annotator with the derived
majority annotation.

Dataset Split. We follow the splits used in Alapatt
et al. (2021), separating the 201 videos into 120 training,
41 validation, and 40 test; Table 1 shows the resulting
number of samples (frames) in each split.

Table 1: Number of samples in each split of the Endoscapes dataset.
Training Set Validation Set Test Set
6,960 2,331 1,763

Class Distribution. The dataset is characterized by
significant class imbalance (see Fig. 2) with regard
to CVS achievement for two reasons: (1) CVS is not
achieved in all videos and (2) once the cystic duct
and artery are clipped, which occurs soon after CVS
achievement, CVS is no longer defined, and there are

therefore few frames where CVS is fully achieved by
nature. We describe our approaches to handle this class
imbalance during training in Section 3.5.

Figure 2: Class distribution (Training Set) for the 3 CVS criteria C1,
C2, and C3. The last 2 right hand side bars (CVS) represent the class
distribution when the 3 criteria are positive.

Temporal dataset. Since our dataset is sparsely an-
notated with CVS (only 1 labeled frame every 5 sec-
onds), we assign the label of the frame at time t to the
previous 4 frames (t − 1, t − 2, .., t − 4). We refer to this
dataset as the Temporal Dataset.

3.2. Single frame baseline (DeepCVS)

DeepCVS (Mascagni et al., 2022) is the current state-
of-the-art model for predicting CVS achievement in LC
video. This model was trained on a subset of the En-
doscapes dataset containing 2854 images annnotated
with CVS of which 402 were also annotated with seg-
mentation masks. DeepCVS is designed for single
frame predictions from endoscopic images.

DeepCVS architecture. DeepCVS is composed of
two networks, a DeepLabV3-plus Chen et al. (2018)
segmentation model and a shallow hand-designed
CNN. The DeepLabV3-plus segmentation model is first
trained to predict segmentation masks. Then this model
is frozen and leveraged for CVS prediction as follows:
the input image is first resized to 240 × 427 × 3, rep-
resenting height, width, and channels respectively, and
passed through the segmentation network to obtain a
240×427×7 output containing the segmentation proba-
bilities of each of the 7 semantic classes. This predicted
mask is concatenated with the original input image
along the channel dimension to generate a 240, 427, 10
input, which is finally forwarded to a CNN to predict
CVS labels.
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Figure 3: Spatio-Temporal DeepCVS Architecture

Reproducing DeepCVS. To enable fair compar-
isons, we retrain all components of DeepCVS using the
complete Endoscapes dataset.

DeepCVS limitations. As DeepCVS is a single-
frame model, it fails to leverage temporal information,
which as noted by Mascagni et al. (2020), can be crucial
for proper CVS assessment. In the following sections,
we propose several approaches to tackle this critical lim-
itation.

3.3. Two-Stage Spatio-Temporal Models

To incorporate temporal context for CVS predic-
tion, we extend DeepCVS by replacing the final fully-
connected (FC) layer with a temporal model, following
several prior works in surgical workflow recognition.
There are two approaches to train the resulting archi-
tecture:

• Single-Stage Training: Train the temporal Deep-
CVS model end-to-end, backpropagating the gra-
dient to the temporal layers as well as the shallow
CNN.

• Multi-Stage Training: First train the DeepCVS
model, freeze all weights, and only train the tem-
poral layers, thus limiting gradient backpropaga-
tion to the temporal layers.

To limit computational complexity and enable longer
temporal windows, we adopt the multi-stage train-
ing, additionally illustrated in Figure 3. For the tem-
poral model, we investigate using LSTM (Twinanda
et al., 2016), TCN (Czempiel et al., 2020), Transformer
(Czempiel et al., 2021), RNN, and GRU. Importantly,
we consider only causal models as the ultimate goal is
real-time prediction.

We train the overall models as follows:
Stage 1. We first train the DeepCVS model to predict

CVS labels using the annotated frames only. Then, we
freeze the model’s weights and remove the final fully
connected (FC) layer from the DeepCVS to produce
feature maps of shape B ×C × T × H ×W, where B, C,
T , H, W denote batch size, number of channels, time,
image height, and image width, respectively. Since the
DeepCVS is a single frame model, the time dimension
is always 1. We then forward these feature maps to an
average-pooling layer, which averages the spatial fea-
tures and produces B × 1 ×C features.

Stage 2. The B × 1 × C features are computed for
each frame in a clip, and then concatenated along the
time dimension to produce a B×T ×C features. Finally,
these features are forwarded to the aforementioned tem-
poral models, which outputs spatio-temporal features of
shape B × C. These features are forwarded to a fully
connected layer to predict 3 labels of shape B × 3, cor-
responding to each CVS criterion, for the last frame of
the clip.

3.3.1. Temporal Model Architecture Details
In this subsection, we explain the configuration de-

tails of each temporal layer. Note that we did not incor-
porate all the recurrent layers in a single model. Instead,
we compared the performance of incorporating each re-
current layer with DeepCVS individually. A thorough
comparison between the recurrent layers has been con-
ducted by Chung et al. (2014).

Recurrent Neural Networks. RNNs (see Figure 4A)
are a class of neural networks to model sequential data.
We examine their capability to capture temporal depen-
dencies for the task of CVS prediction. We use a single
RNN layer which takes an input of shape B×T ×C and
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Figure 4: Recurrent Layers: A) RNN: where xt is the input vector, ht is a hidden layer vector, ot is the output vector, and tanh is the activation
function. B) LSTM: where ht ,Ct are hidden layer vectors, xt is the input vector, and σ, tanh are activation functions. C) GRU: where ht is the
hidden layer vector, xt is the input vector, and σ, tanh are activation functions.

then outputs features of shape B×C which contains the
temporal information of all the T frames. We use 256
RNN units with tanh activation function. The kernel is
initialized from a uniform distribution. The bias is ini-
tialized to zeros. We do not use any regularizers neither
for the kernels nor for the bias.

It is well known that RNNs are limited in their ability
to model long temporal sequences, due to phenomena
including vanishing and exploding gradients. There-
fore, we also investigate additional temporal models that
can better handle these issues.

Long Short-Term Memory. The LSTM, shown in
Figure 4.B, addresses the aforementioned limitations of
RNNs by (1) incorporating a memory cell that maintains
information for longer time and (2) incorporating gating
layers (input and forget gates) which allow each LSTM
layer to modulate the flow of temporal information, thus
helping preserve long-range relationships. To initialize
the LSTM, we use the same general configuration and
initialization as with RNNs (256 LSTM units, tanh ac-
tivation, etc.). We additionally use a Sigmoid activation
function and include a bias term for the forget units.

Gated Recurrent Unit. The GRU, illustrated in
Figure 4.C, is another temporal model that addresses
the gradient flow issues of RNNs, but is faster and
more parameter-efficient than the LSTM. It incorpo-
rates two gates: (1) The Update Gate which determines
the amount of previous information that should be for-
warded to the next state. This gate makes the GRU able
to mitigate the problem of vanishing gradient. (2) The
Reset Gate which controls the previous state either by
keeping or eliminating the old information. We follow
the same configuration as with the RNN and the LSTM.

Temporal Convolutional Networks. TCNs (Bai
et al., 2018) have shown to perform better than
LSTM/GRU specifically for modeling long-range se-
quences. Compared to recurrent layers, some advan-
tages of TCNs are: (1) convolutions can be done in par-
allel, unlike RNNs, where predictions for later timesteps
must wait for their predecessors to finish. This is be-
cause each layer uses the same filter. As a result, rather
than processing a long input sequence sequentially as in
RNN, a long input sequence can be handled as a whole

in TCNs for both training and evaluation. (2) TCNs, un-
like recurrent layers, have a backpropagation path that is
independent of the sequence’s temporal direction. As a
result, TCNs are robust to the exploding/vanishing gra-
dients problems, which is a fundamental difficulty with
RNNs that led to the development of LSTM. (3) Recur-
rent layers may consume a lot of memory storing par-
tial results for their numerous cell gates, especially with
long input sequences. In TCNs, however, the filters are
shared across layers, and the backpropagation direction
is solely determined by the network depth. As a result,
TCNs utilize less memory than recurrent layers when
dealing with long sequences.

We use a single TCN layer with kernel size = 3, num-
ber of filters in the convolutional layers = 64, and a list
of the dilations = (1, 2, 4, 8, 16, 32), Moreover, we use
ReLU activation function, a single residual block with
skip connection from the input to the residual block, and
causal padding in the convolutional layers.

Transformers. Transformers (Vaswani et al. (2017))
have shown to be effective not only in natural language
processing, but also in computer vision problems (Khan
et al., 2021). The self-attention mechanism is utilized
by the transformer encoder and decoder. The fundamen-
tal idea of this mechanism is built on the assumption that
not all the model’s input data contain significant fea-
tures based on which the model can make a prediction.
Instead, the model should pay more attention to the rel-
evant input features which help in making accurate pre-
dictions while paying less attention to other irrelevant
features. This is similar to the intuition of Max-Pooling
layer.

The Transformer encoder block is formed by multi-
head attention layers which are an extra tweak to the
self-attention mechanism (Tunstall et al., 2022). The
“multi-head” name refers to factoring the output space
of the self-attention layer into independent sub-spaces
that are learned independently. Each subspace is called
a “head”. Three independent sets of dense projections
are used to process the initial query, key, and value
which results in three separate vectors. Additionally,
neural attention is used to process each vector. The out-
puts are concatenated together to form a single output
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sequence.
The self-attention layers are order-agnostic, and thus,

the order of the frames in a clip is neglected. However,
since the frames’ order information is crucial, we have
to ensure that our Transformer model considers the or-
der of the frames within a clip . In order to achieve this,
we use a positional embedding layer before the multi-
head attention layer in which the position of each frame
within a clip is encoded and added to the precomputed
feature maps.

We adopt 1 single attention head in the training of
our transformer encoder. The output of the multi-head
attention layer is forwarded into a normalization layer.
Then, the output is forwarded into a dense layer. Fol-
lowing that, the dense layer output is forwarded into a
normalization layer. Finally, the results are pooled using
a global max pooling layer, and forwarded into a fully
connected layer for the CVS prediction.

3.4. Spatio-Temporal Region Graph Model

In this section, we describe, in detail, our proposed
architecture for CVS prediction using spatio-temporal
region graphs.

The aforementioned spatio-temporal models (e.g.
LSTM) are able to capture the information encoded over
time. Nonetheless, explicit fine-grained modeling of the
surgical scene is a key limitation of these models. More-
over, the reasoning about spatial and semantic relation-
ships between anatomical structures is fundamental for
accurate CVS assessment, which is not explicit in our
spatio-temporal models.

To address these limitations, we propose to utilize
spatio-temporal region graph model which helps in
modeling the surgical scene over time in a fine-grained
manner. Our spatio-temporal surgical region graphs
model is inspired by the work of Wang and Gupta
(2018) where the authors developed a framework for
video actions recognition.

The main components of the spatio-temporal region
graphs architecture are as follows:

1. Inflated 3D CNN (I3D) for extracting spatio-
temporal features.

2. Region Proposals Network (RPN) for extracting
object proposals from each frame.

3. Region of Interest Pooling (ROI Pooling) for ex-
tracting ROI features from the I3D feature maps
using the RPN proposals. These ROI features are
nodes in the graph.

4. Two approaches to construct adjacency matrices
relating these nodes, forward-backward graph and
similarity graph.

5. Graph Convolutions Networks (GCNs) to process
these graphs.

3.4.1. Region Proposal Network
The first step in building the graph is to extract can-

didate objects from each frame. In order to achieve
this, Ren et al. (2015) proposed a Region Proposal Net-
work (RPN) which helps to extract region proposals
from a single image. We adopt the implementation of
this method from Wu et al. (2019). Unlike the work of
Wang and Gupta (2018), we have to retrain the RPN on
our surgical dataset.

RPN Ground Truth. Our dataset ”Endoscapes” con-
tains only segmentation masks and CVS labels. How-
ever, to train an RPN network, we need to have bound-
ing boxes ground truth. Therefore, we generate the
bounding boxes ground truth based on the segmenta-
tion masks that we have using OpenCV and Numpy as
follows:

1. Create a zero matrix (M) with size equal to the size
of the segmentation mask.

2. Iterate through all labels except the background.
3. Copy the mask of the current label, referenced by

the iteration loop, to M so that M contains only the
segmentation mask of the current label (as ones)
with zeros elsewhere.

4. Find the connected components in M so that we
generate different bounding boxes for objects from
the same class but are not connected spatially (e.g.
the tool may have two instances in the same im-
age).

5. Get the position of the pixels which contain the
current label in the form (x1, y1, x2, y2), where x1,
y1, x2, y2 denote for the upper-left, upper-right,
lower-left, and lower-right position.

6. Save these bounding boxes in the dataset to repre-
sent our bounding boxes ground truth.

RPN training. Using the generated ground truth
labels, we finetune a ResNet-50 pretrained RPN. The
RPN outputs a number of region proposals from a single
image ordered by the likelihood that the proposal is an
object (objectness score). As a result, this allows us to
limit the number of proposals used for our downstream
tasks by taking the proposals whose objectness scores
are above a certain threshold or by taking N proposals
which have the highest objectness score.

3.4.2. Inflated 3D CNN
In order to extract feature maps from a clip, we use an

Inflated 3D CNN (I3D) model Hara et al. (2018) which
takes a clip as an input, and outputs feature maps of
shape B ×C × T × H ×W, where B, C, T , H, W denote
batch size, number of channels, time, image height, and
image width, respectively.

Furthermore, we utilize an inflated 3D CNN which
was previously pre-trained on ImageNet as a 2D CNN,
and then inflated into 3D CNN and trained on Kinetics
video dataset Kay et al. (2017). Our full I3D model
architecture is illustrated in Figure 5.
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Figure 5: The architecture of the I3D model.

Clip Augmentation. We use the same image aug-
mentations used in the training of the single-frame mod-
els. However, we apply the exact augmentation to all the
frames within the same clip. We ensure this by random-
izing the augmentation parameters before transforming
the clip. Figure 6 visualizes the augmentation of 2 clips.

3.4.3. Region of Interest Pooling
Our I3D feature maps contain the features of the

whole frames within a clip. However, we are only inter-
ested in some regions of these frames which are defined
by the RPN proposals. The problem is that our RPN
outputs objects bounding boxes in the resolution of the
original images (e.g. 240×427), and our I3D model out-
puts feature maps that are down-sampled (e.g. 8×14).
As a result, Ren et al. (2015) proposed a method called
”Region of Interest Pooling (ROIPooling)” in which we
can pool the ROI features from the I3D feature maps
(low resolution) using the RPN bounding boxes (higher
resolution) to a pre-defined size (e.g. 7×7). In this case,
we obtain features of size B×T ×N ×C where B, T , N,
C denote the batch size, time, number of proposals, and
number of channels, respectively. To improve the preci-
sion of ROIPooling, He et al. (2017) proposed a similar
approach called ”ROIAlign” which avoids the quantiza-
tion done by ROIPooling.

We adopt ROIAlign to extract features from each re-
gion of interest (ROI) which results in C×7×7 features
from each ROI. After that, we forward these C×7×7

features into an average-pooling layer to output C×1×1
features.

3.4.4. Building the Graph
Having extracted object proposals and their features,

we can now build our graph. Our graph is composed
of nodes and edges where each node represents an
object proposal, and each edge represents a connec-
tion/relationship between two nodes. In our case, the
edge is represented by a value between [0,1] to describe
if two nodes are connected in the graph.

To construct the edges in our graph, we follow two
approaches, as introduced in Wang and Gupta (2018) as
follows:

Forward-Backward Graph. This graph aims to link
an object at time (t) with another object at time (t + 1)
which guarantees that the connected objects are not only
close to each other spatially, but also temporally. To
build this graph, we utilize only the RPN object pro-
posals by measuring the overlap between an object in
a frame at time (t) with all other objects in a frame at
time (t + 1). We can rely on the Intersection over Union
(IoU) metric as formulated by Equation 1.

IoU =
Area of Overlap
Area of Union

(1)

In this equation, A is the first bounding box, B is
the second bounding box. However, if we do not have
an overlap between an object A in a frame at time (t)
with any other object in the following frame, the IoU
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Figure 6: Illustration of similar augmentations being applied to all the frames within each clip.

value between the object A with the other objects will
be 0 regardless of how far these objects from the ob-
ject A. In this case, we will not be able to link this
object with the closest one because there is no overlap.
To address this, we propose to use a new variant of this
metric namely ”Generalized IoU (GIoU)” (Rezatofighi
et al., 2019) which considers the distance between the
two bounding boxes not only the overlap. This, how-
ever, allows us to build an edge between 2 objects even
if they do not overlap. The GIoU is formulated in Equa-
tion 2.

GIoU =
|A ∩ B|
|A ∪ B| −

|C\(A ∪ B)|
|C| = IoU − |C\(A ∪ B)|

|C|
(2)

Here, C is the smallest convex hull that encloses both
bounding boxes A and B.

We build this graph as follows:

1. Create a (M×M) zero matrix namely ”adjacency
matrix”, where M is equal to the number of all ob-
ject proposals within a clip. Each row corresponds
to the edges values between an object with all other
objects within a clip.

2. For each object proposal in a frame at time (t), cal-
culate the GIoU score between that object with all
other objects of the frame at time (t + 1).

3. Link the object at time (t) with the object at time
(t + 1) whose GIoU score is greater than 0 by a
direct edge in which we assign the GIoU score to
the edge value (the intersection of the two objects
in the adjacency matrix).

Additionally, we normalize each row by dividing
each row by the sum of the row values. At the end, the
obtained (M×M) matrix is used by our Graph Convolu-
tional Network (GCN) as the adjacency matrix which is
explained in Section 3.4.5. Furthermore, to enrich the
graph representations, we also construct another graph
similar to this one but the difference is that we move
backward starting from the last frame within a clip. In
other words, we compare the GIoU of an object at time

(t) with all other objects at time (t − 1)). We refer to the
first graph as the forward graph, and this graph as the
backward graph.

Similarity Graph. This graph aims to link an object
in a frame at time (t) with the most similar object (based
on a similarity measurement) in any frame within the
same clip. In order to construct this graph, we utilize the
pooled features (in the latent space) of each ROI to build
an affinity matrix. Equation 3 describes our method of
constructing this matrix, which is then used as the adja-
cency matrix of the GCN.

F
(
xi, x j

)
= ϕ (xi)T ϕ′

(
x j

)
(3)

Here, ϕ and ϕ′ are two different transformations of
the ROI features and can be obtained by ϕ(x) = wx and
ϕ′(x) = w′x. x denotes the ROI feature, whereas the
weight parameters w and w′ can be trained with back-
propagation.

To implement this equation, we use 2 separate Multi
Layer Perceptrons (MLPs) in which we forward the
(B×M×C) features to both MLPs which results in 2 dif-
ferent tensors of the updated features with the same in-
put shape (B×M×C), then we transpose the second ten-
sor to obtain (B×C×M) tensor, and multiply both ten-
sors to obtain a single (B×M×M) tensor. This resulting
matrix is our affinity matrix containing the edge values
of our proposals. However, the edge values at this point
are not scaled to a consistent range. One way to do this
is using a Softmax layer such that the sum of all edge
values between a proposal at time (t) with all other pro-
posals is equal to one.

This process results in an (M×M) adjacency matrix
which connects two semantically related objects with
each other regardless of their temporal location within a
clip. In other words, an object in a frame at time (t) may
be linked with another object in a frame at time (t + 4).

3.4.5. Graph Convolutional Networks
After we build the graphs, we obtain 3 adjacency

matrices obtained from the forward graph, backward
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graph, and the similarity graph in which the relation-
ship between an object in a frame at time (t + 4) with
all other objects within a clip is quantified by the edge
values. By looking at one of these matrices, one can re-
alize that there is a relationship between an object with
another object whose edge value is the highest. In this
case, we can recognize similar objects even though they
are far away from one another spatially and temporally.
This brings us to the question: Can we train a model
that takes into consideration the adjacency matrix to
consider only the related objects and ignore unrelated
objects? Fortunately, the answer is yes, we can utilize
Graph Convolutional Networks (GCN) which operates
on graphs. To design our GCN, we adopts the model
proposed by Kipf and Welling (2016) which takes as
an input the ROI features of shape (B×M×C) and out-
puts the refined features with the same input shape
(B×M×C).

3.4.6. Spatio-Temporal Region Graph Architecture
After building and preparing all the aforementioned

components of our architecture, we connect these com-
ponents as illustrated in illustrated in Figure 7. Besides
the GCNs features, we also pool the I3D features and
concatenate both features and forward them into a fully
connected (FC) layer for CVS prediction. Addition-
ally, we also incorporate a segmentation head in which
we utilize the DeepLabV3+ decoder for segmentation
masks prediction. As a result, our model can be trained
in a multi-task manner for the objective of both CVS
and segmentation as well as in a single-task manner for
the objective of CVS only by detaching the segmenta-
tion head.

3.5. Loss Function

We use the binary cross entropy (BCE) loss as our
loss function which measures how far or close the pre-
dicted logits from the true labels. BCE is formulated in
Equation 4.

LBCE = −1
n

n∑

i=1

(
Yi · log Ŷi + (1 − Yi) · log

(
1 − Ŷi

))

(4)
Here, n denotes the number of samples, Y the true

labels, and Ŷ the predicted labels.
To mitigate the class imbalance, we calculate the

class weights we used inverse frequency balancing to
compute class weights (Ahmed et al., 2020).

Label C1 C2 C3
Positive 3.15 4.32 2.57
Negative 0.59 0.56 0.62

Table 2: The weights of the positive and negative classes of each label
(C1, C2, and C3).

This process results in 2 vectors each with length
equal to the number of classes 3 × 1 which contain the
weights of the positive/negative labels for each class
as shown in Table 2. After that, the vector contain-
ing the positive weights is forwarded to the BCE loss
function to consider the class imbalance by penalizing
the positive predictions with respect to the precomputed
weights.

Multitask Loss Weights. We tune the weights
of both classification and segmentation loss functions
which results in using 0.25 for the classification loss
and 1 for the segmentation loss. Therefore, the final
loss function is formulated in Equation 5.

L f inal = 0.25 × Lclass + Lseg (5)

RPN Loss Functions. We use two loss functions to
train our RPN network as follows:

1. Objectness loss: we adopt BCE loss to minimize
the error of the objectness prediction of the pro-
posals.

2. Localization loss: to localize objects, we use L1
loss function as formulated by Equation. 6 which
helps to minimize the error by computing the sum
of all the absolute differences between the true la-
bel and the predicted label. This loss is computed
only when the ground truth objectness score is 1
(foreground).

L1 =
n∑

i=1

∣∣∣ytrue − ypredicted
∣∣∣ (6)

3.6. Training setup

The training of the models is performed on 1 sin-
gle NVIDIA 24 GB RTX 6000 GPU. We train each
model for 100 epochs. Adam optimizer is selected with
a learning rate of 1e-4. The batch size is 8. The input
frames are resized to 240×427. We adopt the same data
augmentation performed by the original work (Deep-
CVS baseline) which include (Random Crop, Random
Resize, Random Brightness with brightness factor =
0.2). The image channels are normalized to zero mean
and standard deviation = 1 by subtracting and dividing
each input channel by (0.5).

3.7. Implementation Details

I3D training. We train our I3D backbone on the En-
doscapes dataset (the Temporal dataset) using the fol-
lowing strategies:

• Single-task CVS prediction using the 11090 CVS
labels (I3D-CVS).

• Single-task segmentation masks prediction using
the 1933 segmentation masks (I3D-Seg).
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Figure 7: The architecture of our proposed Spatio-Temporal Region Graph Model.

Table 3: Results of the CVS prediction (mAP (%) for CVS, Macro F1 (%) for Segmentation). ST-DeepCVS refers to the DeepCVS with a GRU
layer.

Method Training
Objective

Test Performance

CVS Seg
Single Frame baseline (DeepCVS) CVS

CVS + Seg
39.60
54.07

-
68.57

Spatio-Temporal (ours) ST-DeepCVS CVS + Seg 60.92 68.57
I3D CVS

Seg
CVS + Seg

38.71
-
57.37

-
65.81
65.24

Region Graphs CVS + Seg 59.55 68.80

• Multi-task CVS and segmentation masks predic-
tions using the 1933 segmentation masks and their
counterpart 1933 CVS labels (I3D-MT).

• Multi-task CVS and segmentation masks predic-
tions using the 11090 segmentation masks and
their counterpart 11090 CVS labels. Since we
have only 1933 segmentation masks, we gener-
ate pseudo labels using our trained DeepLabV3+
for the missing 9157 segmentation masks (I3D-
Pseudo-MT).

The highest performing model is chosen to be used
in our proposed method. When our training objective is
the CVS prediction, we ignore the segmentation head.
Similarly, we ignore the classification head when our
training objective is predicting segmentation masks. We
only use both heads (segmentation and classification)
with multi-task training.

Spatio-Temporal Region Graph Model training.
In the beginning, we freeze the RPN and the I3D model

to train the GCN, the Similarity Graph module (con-
sidering that our Similarity graph is learnt by training
unlike the forward and backward graphs), and the fully
connected layer for 10 epochs with 1e-3 learning rate.
Following that, the I3D model is unfrozen and trained
with the full network end-to-end but we still keep the
RPN weights frozen. At this stage, we train the model
with a learning rate = 1e-5.

3.8. Ablation study setup
Sequence Length. In all of our experiments with

spatio-temporal models, we adopt 5 frames at 1fps for
each clip. Now, we conduct experiments while increas-
ing the number of frames within a clip to (10, 15, 50,
100, 200, 500). This means that we will consider the
temporal dependencies of more frame to predict CVS
labels. We use zero-padding for the clips at the begin-
ning of each video to satisfy the clip length. Further-
more, we consider also increasing the frame rate from
1fps to 5fps and 25fps.
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Table 4: Results of the I3D model (mAP for CVS, Macro F1 for Seg-
mentation)

Training Strategy Training
Samples

Test
Performance
CVS Seg

I3D-CVS 11090 38.71 -
I3D-Seg 1933 - 65.81
I3D-MT 1933 41.61 64.36
I3D-Pseudo-MT 11090 57.37 65.24

Frame Rate In our experiments, we adopt 1 frame
per second. However, we also examine the frame rate
choice by performing experiments on the I3D model
with different frame rates (1fps, 5fps, and 25fps).

3.9. Metrics and Assessment

The models’ performance is evaluated following the
evaluation done by the state-of-the-art for each task.

CVS criteria prediction. We rely on the mean av-
erage precision (mAP) and the balanced accuracy met-
ric to compare our algorithms against state-of-the-art.
The mean average precision has shown to be optimal
for multilabel classification tasks, and is formulated by
Equation. 7.

mAP =
∑

n

(Rn − Rn−1) Pn (7)

In this formula, R is the recall (Equation. 8), and P
is the precision (Equation. 9), and n is the number of
samples.

Recall =
True Positive

True Positive + False Negative
(8)

Precision =
True Positive

True Positive + False Positive
(9)

Since our dataset is characterized with significant
class imbalance, we also rely on the balanced accuracy
metric. It is calculated by computing the average of re-
call obtained on each class.

Segmentation . We test the performance of our seg-
mentation results based on macro F1 score that balances
the precision and recall on the positive class as shown in
Equation 10. The IoU score is also adopted by the state-
of-the-art to assess the segmentation results. However,
since our main objective is the CVS assessment, we ig-
nore this metric and rely only on the F1 score.

F1 = 2 × Precision × Recall
Precision + Recall

(10)

Table 5: Segmentation Results of the I3D model with different frame
rate per second

Frame Rate 1 fps 5 fps 25 fps
Macro F1 65.81 62.42 62.54

4. Results

4.1. Quantitative Results
We evaluated the performance of each model on the

test set of the Endoscapes data set using the metrics ex-
plained in Section 3.9. Table 3 shows the results of
each model for both CVS prediction and hepatocystic
anatomy and tools segmentation. On the other hand,
Figure 8 compares the performance of each temporal
layer within the ST-DeepCVS model against the clip
length.

Table 4 shows the results of the I3D model using dif-
ferent training strategies with different training objec-
tives. Table 5 shows the results of the I3D model trained
in a single-task manner for the objective of segmenta-
tion only when using more frame rate per second.

Furthermore, the detailed performance of our pro-
posed methods on each CVS criterion based on the aver-
age precision and balanced accuracy is shown in Table
6.

4.2. Qualitative Results
The proposed models are also evaluated qualitatively

by visualizing the models’ predictions. Figure 9 illus-
trates the CVS prediction labels of 3 random samples
from the the Endoscapes’ test set and compares these
predictions with the ground truth.

Furthermore, we also evaluated the performance of
some components of our ST-Graph model such at the
region proposal network (RPN), the construction of the
forward and backward graphs. Figure 10 illustrates the
object proposals extracted by the RPN from 2 different
test images, whereas Figure 11 shows both the forward
and backward graphs built using the RPN object pro-
posals for 1 clip composed of 5 frames.

5. Discussion

5.1. Training Objective
The Endoscapes dataset contains CVS labels and

segmentation masks of the hepatocystic anatomy with
surgical tools. The assessment of the critical view
of safety in laparoscopic cholecystectomy can be per-
formed by identifying anatomical landmarks from the
surgical view. Table 3 demonstrates the importance
of identifying hepatocystic landmarks (using hepatocys-
tic segmentation masks) to achieve more accurate CVS
prediction as we obtain mAP of 39.60% when training
DeepCVS for the objective of CVS only whereas we ob-
tain 54.07% when training for both CVS and segmenta-
tion objectives (14.47% boost). Moreover, training with
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Figure 8: The performance of the temporal DeepCVS models with different clip length.

Table 6: Detailed CVS performance of St-DeepCVS and ST-Graph.
Criterion AP (%) Balanced Accuracy (%)

ST-DeepCVS ST-Graph ST-DeepCVS ST-Graph
C1: Two Structures 62.56 61.87 75.89 73.22
C2: Hepatocystic Triangle 54.76 55.25 70.79 69.31
C3: Cystic Plate 65.44 61.55 71.19 68.05
Overall 60.92 59.55 72.62 70.19

the segmentation also helps the I3D model (18.66%
boost).

5.2. ST-DeepCVS

In this study, spatio-temporal deep learning models to
evaluate the criteria defining the critical view of safety
are developed. As shown in Table 3, utilizing the tem-
poral information encoded over time is helpful as it can
be seen that the mAP improves from 54.07% when us-
ing the single frame DeepCVS model to 60.92% by just
incorporating a single recurrent layer (6.85% boost).

Additionally, Figure 9 demonstrates that our ST-
DeepCVS model was able to correctly predict all of the
CVS criteria for 3 random samples from the dataset.

5.3. Clip Length

One of the most significant hyper-parameters in se-
quence models is the sequence length. In our study,
we adopt 5 frames per clip in the training of most of
our spatio-temporal models. However, we also exam-
ined the performance of increasing the clip length as
illustrated in Figure 8. We can see that TCN was the
most robust model to clip length increase. On the other

hand, we realize a significant drop in performance in
the Transformers model. We attribute this drop in per-
formance to the fact that Transformers require signifi-
cant tuning comparing to recurrent layers (e.g. LSTM).
Moreover, we can see that most temporal models were
close to each other (by ≈ 1 - 4% mAP) when using
(5-15) frames unlike RNNs which appear to perform
poorly in the CVS prediction even with short clip length.

5.4. Inflated 3D CNN

5.4.1. Training with pseudo-labels
Table 4 demonstrates that by increasing the training

set from 1933 to 11090 by utilizing the segmentation
pseudo-labels in a semi-supervised manner when train-
ing the I3D model, we are able to improve the perfor-
mance of the CVS prediction from 38.71% to 57.37%
(18.66% boost). This highlights the effectiveness of
semi-supervised learning when the training data as lim-
ited.

5.5. Frame Rate

To ensure the proper frame rate, we examined the
performance of the I3D model with different frame
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Figure 9: Comparison between our proposed models with the baselines in CVS prediction for 3 different input endoscopic images (To be replaced
with the actual values later).
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Figure 10: Qualitative results of the RPN.

rate. Table 5 demonstrates that the spatio-temporal
model (I3D) performs better with 1 fps than 5 fps or 25
fps which indicates that more relevant information are
learnt by the model with 1 fps. Therefore, we maintain
this frame rate in our future experiments.

5.5.1. RPN
The qualitative results of our RPN shown in Figure

10 demonstrate that we are able to obtain relevant pro-
posals of the region of interests which can help building
robust graph. We also realize from the top-right image
that one of the tools was not detected by the RPN which
can be simply solved by increasing the number of pro-
posals as we only visualized 6 proposals but during the
training of our graph-based model we extract 16 propos-
als.

5.6. Building the Graph

The visualization of the forward and backward graph
in Figure. 11 shows that we can link the same objects

in different frames. However, we realize that this ap-
proach is not efficient when we have overlapped bound-
ing boxes that are bigger than the object’s bounding box.
As a result, we should investigate a proper approach to
tackle this limitation.

5.7. ST-Graph
As shown in Table 3, our ST-Graph model outper-

formed the DeepCVS baseline in both CVS prediction
(5.48% boost) and segmentation (0.23% boost). Com-
paring with the I3D-Seg model, we realize that building
the graph has improved the segmentation performance
by (2.99%).

utilizing the temporal information encoded over time
is helpful as it can be seen that the mAP improves from
54.07% when using the single frame DeepCVS model
to 60.92% by just incorporating a single recurrent layer
(6.85% boost).

Furthermore, we can see from Figure 9 that our ST-
Graph model was able to correctly predict all of the
CVS criteria for 3 random samples from the dataset.

5.8. CVS Criteria
We realize from the detailed performance of our pro-

posed methods, shown in Table 6, that the Hepatocys-
tic Triangle criterion was more challenging (scoring less
mAP) for our methods to predict.

6. Conclusions

In this study, two deep learning approaches to eval-
uate the critical view of safety were developed, specifi-
cally focusing on spatio-temporal methods. Our first ap-
proach incorporates temporal layers on top of the Deep-
CVS model to extract spatio-temporal features from
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Figure 11: Qualitative results of the Forward and Backward Graphs. We show the edge of only 1 object for simplicity. Other objects are linked by
direct edges in the same way.

Endoscopic clips. The second approach builds spatio-
temporal region graphs to model the LC surgical scene
which, in turn, helps in understanding the surgical scene
at a fine-grained level and has improved the segmen-
tation performance. Both proposed methods outper-
formed the baseline in CVS prediction. Further exten-
sion of this work may involve building different graphs
to address the limitations of the graph building ap-
proaches and improve the performance.

7. Future Work

In this section, we present the future experiments that
will be conducted to further validate our approaches.

I3D Backbone. After selecting the best training strat-
egy for our I3D model, it is interesting to also exper-
iment architectures such as MobileNet or InceptionV3
other than the ResNet-50. We leave this experiment for
future work due to the limited time we have.

Spatio-Temporal Graph Model. Since we utilize 3
types of graphs, it is interesting to check how much each
graph helps in CVS prediction by training the model
each time with one graph. Furthermore, it is also in-
teresting to examine the performance of our ST-Graph
method when trained for a single task with the objective
of CVS prediction.

Acknowledgments

We would like to thank the whole CAMMA team
members for their suggestions and discussions during
our weekly meetings. We extend our special thanks

to Deepak Alapatt for his invaluable insights and sug-
gestions. Husam Nujaim would also like to show his
deep appreciation to his supervisors Adit and Nico-
las for their significant guidance and support which
helped him finalize this thesis. Husam Nujaim holds an
Erasmus Mundus Scholarship (2020-2022) funded by
the European Education and Culture Executive Agency
(EACEA) of the European Commission. This work was
supported by French state funds managed by the ANR
under the reference ANR-10-IAHU-02 (IHU Stras-
bourg).

References
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Abstract

Color consistency in clinical skin images is important because it allows dermatologists to monitor the evolution of skin
conditions over time, to follow-up a medical treatment, to evaluate if the patient’s skin needs treatment, among other
reasons. Color variability may be originated from both the acquisition and visualization device which can be solved by
calibrating both devices. Even though both devices are calibrated, there can be color variability because the devices’
technical characteristics, different environment conditions (sunlight or variability of the scene illumination), etc. ICC
color profiles are useful to perform an end-to-end calibration, this paper presents a pipeline which integrates a method
for calibrating the color of images into an ICC workflow to maintain color consistency between different devices. The
evaluation to determine how the ICC color profiles perform is done based on the equation CIE DeltaE2000 metric.

Keywords: Color management, Color consistency, Color profile, Medical photography, Medical imaging

1. Introduction

Color is a phenomenon of light, an interaction be-
tween light, object and viewer; it is one way how peo-
ple differentiate identical objects. Color in images can
evoke different emotions which is why many companies
in different industries dedicate resources to research and
develop new techniques to take advantage of colors,
such as marketing (X-Rite, 2004).

Light is an electromagnetic wave, a form of radia-
tion. There are different types of electromagnetic waves
with different properties, such as X rays, microwaves
or radio waves (Sliney, 2016). Different organisms can
see different types of waves, spiders can see ultraviolet
and reptiles infra-red light, the type of electromagnetic
wave humans can see is called visible light (CJ Kazilek,
2009).

The visible light is an electromagnetic wave, the
range of wavelengths within this visible spectrum is
from about 400 to about 750 nm (Sliney, 2016). Hu-
mans only see this range of wavelengths because of the
cells in our eyes, cone-shaped cells, which act as re-
ceivers for only that band of the spectrum. There are
three types of cones with different sensitivity to light of
different wavelengths: short (S), medium (M) and long
(L), referred as ”blue”, ”green”, ”red” (Dale Purves,

2001).

Figure 1: Representation of a beam of white light through a prism (X-
Rite, 2004).

The combination of different wavelengths of light
gives as result different colors. One example is passing
a beam of white light through a prism which disperses
the light, humans see different colors because our eyes
respond to each individual wavelength (Leelakrishnan,
2022). Another example is one of the demonstrations
James Clerk Maxwell did where he used red, green and
blue filters and black and white pictures of colorful ob-
jects. When he projected the pictures through the filters,
the original colorful objects could be seen; not only red,
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green and blue showed up, but the oranges and yellows
and purples as well. The last example also explains how
color photography works, both film-based and digital
(Sack, 2016).

As told, the object has an important role on the colors
humans see along with a specific feature of the light,
reflection. When light hits a surface of an object, de-
pending on the material, some of the light is absorbed
and the rest is reflected. All light that hits the eye is
reflected light and the wavelength of the reflected light
determines the color humans perceive (X-Rite, 2004).

The purpose of photography is to capture the images
our eyes perceive, either physically with paper or digi-
tally with computer files. This is achieved by mimick-
ing the functioning of the eye with a device well known
by everyone, the camera. Through the years, like ev-
erything, the camera has evolved from big and fixed
devices to very small and portable devices which can
be components of other devices, such as smartphones.
Not only the physical characteristics have changed, but
also the functional ones. The cameras used to capture
a fixed scene in minutes, now are capable of capturing
a sequence of scenes which are called videos; or scenes
which for the human eye may be impossible to visual-
ize, such achieved by high-speed cameras (Rick, 2013).

Figure 2: Basic diagram of how a camera mimics the human eye
(Plaza, 2013).

Just as human eyes, cameras are different from each
other. They might be the same model, but each cam-
era captures the light in a different way. Acquisition
variability will be the combination of the variability of
the acquisition device and the variability of the scene,
mainly caused by variability of the scene illumination.
Regardless of the acquisition variability, one main detail
of cameras is not being able, yet, to capture the same

range of colors as humans see, different cameras can
capture different range of colors (Dunlop, 2022).

Not only the characteristics of the camera will define
how the scene will be seen, but the method we use to vi-
sualize it, for example an image printed on paper or dis-
played on a screen. Just as cameras, devices or methods
used to display an image will affect how humans per-
ceive the image. The screens have very important con-
tributors such as the range of colors they can display,
contrast, ambient light, maximum luminance, because
there is no device which can display the same range of
colors that humans can see.

Technology advances have made possible to have dif-
ferent devices for different purposes, in order to vi-
sualize the information we need. Nowadays they are
coming in different sizes for different devices, such as
tablets, smartphones, laptops, smart watches, etc. The
variety of devices generates the visualization variabil-
ity mentioned before. R. Sharan and Iyer describe the
displays as not being able to stand on their own, but a
part of an information system and give a brief explana-
tion of how the display has evolved from the Cathode-
Ray-Tube (CRT) invented by Braun in 1897 to some of
today’s technologies depending on the device, like TV,
cell phone or computer.

Figure 3: Example of how many displays can be used at once (Paul,
2022).

Gandhi (2015) explains briefly various display tech-
nologies. LCD displays generate an image from an in-
ternal light source through a liquid-crystal material to
either block or transmit light. Plasma displays work by
filling the region between two glass plates with a combi-
nation of gases; a series of firing voltages cause the gas
to break down into a glowing plasma of electrons and
ions. LED displays are a matrix of diodes arranged to
form the pixel positions in the display. Flexible displays
are flexible OLED, based on flexible substrate which
can be either plastic, metal or flexible glass. Gandhi
(2015) also suggests using the technology based on the
necessity because each one of them has its own advan-
tages and disadvantages.

Due to those differences of technologies, capabilities
and people’s needs, companies like Barco (2022) offer
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a wide variety of display technologies for different sec-
tors based on the needs such as entertainment with pro-
jectors or health sector with medical displays, etc.

Figure 4: Comparison between color spaces and the visible spectrum.

Another aspect to take into consideration is the range
of colors the device can display, which is referred to
as the color gamut of the display. Color space can be
defined as a consequence of the different range of col-
ors, or gamut, a device can handle on a visual plane,
such as sRGB, Rec2020, etc. It can be also defined as
a tridimensional space used to represent and character-
ize color, such as CIEXYZ, CIELAB, etc. The organi-
zation accepted as the international authority on color,
color spaces, on light and illumination is the Interna-
tional Commission on Illumination (CIE for its French
name, Commission Internationale de l’éclairage). CIE
is recognized by different organizations, such as Inter-
national Standardization Organization (ISO) or Interna-
tional Commission for Weights and Measures (CIPM),
as an international standardization body. Within the
CIE’s objectives is to develop standards and procedures
of metrology in the fields of light and lighting. To pre-
pare and publish standards, reports and other publica-
tions related to the fields of light and lighting (CIE).

In 1931, CIE defined the relationship between visible
spectrum and the human perception of color as color
space. In the same year, the CIE also created two color
spaces, CIE 1931 RGB color space and CIE 1931 XYZ
color space. Each one with different characteristics with
the purpose to standardize how the color spaces are
used. Due to their weaknesses, such as having a neg-
ative part for the spectrum of the red primary of the
CIE RGB, different color spaces have been created like
CIELUV in 1976 (CIE).

Nowadays, different color spaces exist which allow
us to handle color in different ways. Even though the
CIE has worked to standardize procedures in the field of
light and lighting, the problem remained for devices be-

cause each one of them has different characteristics and
handles different gamut. Making it difficult to match
color spaces between devices, such as camera and a
printer or a screen. In 1993, the International Color
Consortium (ICC) was formed by eight vendors with
the purpose of promoting the use and adoption of open,
vendor-neutral, cross-platform color management sys-
tems.

The primary goal of the ICC was to develop and ad-
minister a standard color profile, the founding members
committed to support these color profiles in their operat-
ing systems, platforms and applications; since then, the
consortium has expanded to over 60 members from dif-
ferent industries. These color profiles provide a cross-
platform profile format to create and to interpret the
color data. They can be used to translate the color data
between different color encodings, from one device into
another device’s native color encoding. For example,
a printer company creates a single profile for multiple
operating systems and applications.

Figure 5: Color management with color profiles (Consortium, 2010).

The workflow of the color profiles is to obtain
the color data and translate it into a reference color
space, also known as Profile Connection Space (PCS).
This workflow allows transformations between different
color encodings, used by different devices. For years,
the ICC has been improving the specifications needed
to create color profiles based on the specifications of the
CIE and ISO. As result, there are different versions of
the ICC color profiles; the current work is based on the
ICC color profile version 4, which is the most widely
used today, specifically the revision 4.3 (Consortium,
2010).

The PCS contains in a reference color space all the
necessary color data to reproduce the viewing condi-
tions from the device. The reference color, according
to the ICC specifications, can be represented using ei-
ther CIEXYZ or CIELAB; the first one was chosen for
this project. It is possible with a sample of these values
to define the color appearance for a specified state of
viewer adaptation. Due to several standards defined by
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the CIE, the ICC had to restrict these options so it could
be possible to have an unambiguous color specification
system for a particular application (Consortium, 2010).

The problem of the color spaces defined by the ICC
lies on the CIE system not being able to contain the
information about the illumination or the effect of the
surrounds of the sample measured, both affect the ap-
pearance. To overcome this problem, the ICC first de-
fined the PCS to be always chromatically adapted to
CIE standard illuminant D50, assuming the state of the
chromatic adaptation of the viewer. Second, the use of
rendering intents which describe the colorimetry of an
image (Consortium, 2010).

Chromatic adaptation is a transform which Green and
Habib (2019) define it as a method to predict corre-
sponding colors viewed under a different adapting il-
luminant. In this project, the illuminant source is con-
sidered to be D65 which is why the chromatic adap-
tation must be applied to fulfill the ICC specifications
of the PCS to be D50 illuminant. Bradford transform
was the method chosen and, according to Green and
Habib (2019), little better to CAT16 transform. They
also explain the adaptation as a transform from XYZ
colorimetry into cone space, performing the adaptation
by applying ratios of cone excitations for the source and
destination illuminant, and converting back to XYZ.

Figure 6: MacAdam ellipses in the CIE 1931 Diagram (Michael Nölle
and Boxleitner, 2013).

The ICC specifications version used in this work de-
scribes models which perform the transformation be-
tween color encoding and can be used according to the
user’s needs. Each one of the models provides trade-offs
in memory, color quality and performance (Consortium,
2010).

The lutBToAType model, Figure 23, is the model
with more processing elements, without taking into con-
sideration the multiProcessElementsType model, 5 ele-

ments, which can include an arbitrary number of ele-
ments. The fact that the lutBToAType contains more
elements than the other models gives more control to
process the data and allows to achieve a better perfor-
mance at the expense of higher memory consumption
and calculation complexity.

Badano et al. (2015) refer to color consistency as
the ability of the device to produce image data with an
identical perceptual response in human response. David
MacAdam (1942) was one of the first to determine how
the human color perception system works. He con-
ducted experiments on a representative population to
define 25 ellipses in which two colors may be consid-
ered by an average eye as the same, these ellipses have
different sizes and orientations.

Several formulas have been proposed by the CIE
over the years to measure the color difference. The
CIELAB color space is the color space where the color
differences are measured as the Euclidean distance be-
tween two samples’ coordinates. The CIE DELTA 2000
(CIEDE2000) is the result of iterative improvement of
the original Euclidean distance which addresses the
”elliptical” perception of color difference, between a
sample color and a reference color. It is defined as:
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)

(Gaurav Sharma, 2004)
The details of the formula can be found in section 7.

The math defines an ellipsoid around a standard
color, the ellipsoid corresponds to the attributes of hue,
chroma and lightness. A CIEDE2000 value equal to
or less than 1 means the actual color and the standard
or reference color difference is not visible to the hu-
man eye. A CIEDE2000 value between 2 and 4 means
the difference is hardly visible to the human eye. Any
CIEDE2000 value higher than 5 is clearly visible to the
human eye (Gaurav Sharma, 2004).

The health sector is an area where the color in images
is very important too. Especially dermatology which
studies the skin, the biggest organ in our body. Nowa-
days with technology so easy to acquire, dermatologists
prefer to have a record of their work by taking pictures
of their patients’ skin so they can analyze them or have
them as evidence before and after a treatment.

Figure 7: Representation of the ”elliptical” perception (X-Rite, 2004).
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One example is the whole-body photographs and de-
tailed close-up pictures of the skin, where one of the
things they require is to have a consistent color render-
ing to avoid erroneous conclusions. Since the purpose
of having a digital picture is to be able to see it using
any device, such as laptops or displays, it is important
to maintain the color consistency through the different
devices.

The purpose of this document is to present a pipeline
which shows how a color profile helps to maintain the
color consistency through different devices, for example
from a camera to a display.

2. State of the art

Xi Chen MM and PhD (2020) provides a review of
dermoscopy based on published literature; different de-
vices are presented for different diagnostic methods of
dermoscopy. Their applications extend from initial dif-
ferential diagnosis to general dermatology, including
nail and hair abnormalities or diseases related to in-
fection and inflammation. Depending on the goal of
the physicians is going to be the method and device
to use. The devices reviewed are in a wide range of
features, ranging from prices to sizes for different di-
agnostic methods, such as: handheld dermoscopy, vio-
dermoscopy, fluorescence-advanced videodermoscopy,
polarized transilluminating dermoscopy and digital der-
moscopy.

For digital dermoscopy, Diricx and Kimpe (2019)
refer to the importance of having an end-to-end sys-
tem. The same work quantify color variability origi-
nated from different sources. Diricx et al. (2022) present
the advantages of leveraging the DICOM standard to en-
able both standardadization of dermoscopic meta and
image data to tackle the increasing need to exchange
clinical skin images.

Figure 8: Schematic diagram of interface (Meng-Yao Cui and Lu,
2022).

Artificial Intelligence (AI) has also been imple-
mented on pipelines which allow the users to edit the
colors based on their own aesthetics, such as Meng-
Yao Cui and Lu (2022). Their research proposes a
stage where it learns the color distributions for different
objects in the real world by generating color palettes.
It also proposes a second stage where the AI recog-
nizes the object category to later recommend realis-
tic candidate colors, the approach uses Mask-RCNN,

Kaiming He and Girshick (2017), trained on the COCO
dataset. The last stage is where the interface provides
a 3D diagram with color points, they correspond to a
palette. The user can change the palette and the object
will be recolored, Figure 8 shows the results obtained
with different palettes applied to a bird. Even though
AI is only used for segmentation, this is an example of
how AI can be applied in different stages for different
purposes.

The color is an essential component for the patholo-
gists who rely on immunohistochemical stains and col-
ored histochemical to identify structures within the le-
sion area. As Yagi (2011) described, the major rea-
sons for color variation are the thickness of the tis-
sue, staining, scanner, viewer and display; along with
the different protocols and practices in histology labs.
Technologies in whole slide imaging (WSI) have been
improved in the last years, John Gilbertson and Yagi
(2005), giving the professionals the opportunity to use
them for several purposes like: remote diagnosis, ed-
ucation, conferences, also to develop artificial intelli-
gence. Due to those situations, the FDA launched for
the first time in May 2013 a workshop to discuss color
standardization in medical imaging, specifically digital
microscopy, endoscopy, medical photography, display
and telemedicine, although the discussion remains for
different fields.

As Inoue and Yagi (2020) described, there are differ-
ent methods which try to achieve color standardization.
One of the methods mentioned is called color correc-
tion in which the conversion of the color space is in-
volved. Another possible method is proposed by Nek-
tarios A Valous and Allen (2009) doing the correction
in the linear RGB color space instead of the CIE XYZ
color space to perform a CIE color characterization us-
ing a computer vision system based on digital photog-
raphy.

Another method is using a target slide, as the FDA
(2016) recommends. The target must contain mea-
surable and representative color patches with the pur-
pose of analyzing the difference and do the correction
through a transformation matrix.

A similar method is suggested on the display side,
display a color standardization slide and compare be-
tween the colors physically and the colors displayed. If
any difference, a calibration should be done with a dis-
play calibration device.

Society continues to diversify, which is why re-
searches need effective strategies for assessing skin in
ways that are socially meaningful. Rachel A. Gordon
and Nunez (2022) apart from mentioning the need for
new strategies, they examined two most widely used
skin tone rating scales (Massey-Martin and PERLA)
and two handheld devices. Each one of those scales was
created for specific purposes, but through the years they
were implemented in other studies because of the varia-
tions of skin tones.
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Figure 9: PERLA scale (of California, 2008).

For the physical measurement of skin color, the
Labby and Nix Mini handheld devices were chosen
based on their different features, such as price and their
functionality. Labby is a spectrophotometer (captures
the full visible spectrum of light), Nix is a colorimeter
(captures certain wavelengths).

The goal of Rachel A. Gordon and Nunez (2022) is
to know how consistent and how comparable their four
measures of skin color are, apart from knowing if the
measurements are socially meaningful.

The consistency was examined using the intraclass
correlation going from 0.60 to 0.74 for good and 0.75
to 1.0 for excellent. The comparability was examined
cross-device comparability for the devices and cross-
scale comparability for the scales. The comparability
between devices and scales was examined by graphing
the average of the scales’ ratings against the average
CIE Lab values. Statistics were used to evaluate mean-
ingfulness, such as standard deviation, mean and their
ratio.

Figure 10: Massey-Martin scale (Massey and Martin, 2003).

The results show excellent consistency between de-
vices, higher than 0.90 intraclass correlation points. The
consistency of the scales was also excellent, between
0.83 and 0.91 intraclass correlation points. The compa-
rability between devices were highly linearly related, as
well for the scales. Comparability between devices and
scales shown a consistently linear association between
CIE L values and the scales’ values. After analyzing the

results from the statistics to evaluate meaningfulness,
they concluded grater variation among black skin tones
than white skin tones when classifying the photos.

Medical displays are also evolving to improve im-
age quality through greater efficiency, higher accuracy
and more functionality. As the display technology im-
proves, the evaluation of the display gets more complex
too. J Penczek and Sriram (2021) focus on the test con-
ditions which these conditions require considering the
intended application to get a better performance. Due to
the workflow of capturing an image with a device like a
digital camera, process it and image rendering, the per-
formance of the displays depends on the image. The
OLED displays and LCD displays are an example of
technologies which the contrast ratio will vary depend-
ing on how much content is rendered on the display. The
display industry recognizes the content-dependent per-
formance which is why based on different guidelines,
the industry is adopting RGBCMYW multi-color test
patterns, as Figure 11 shows.

Figure 11: Example of multi-color test pattern (J Penczek and Sriram,
2021).

The color gamut is another condition mentioned by
J Penczek and Sriram (2021). sRGB is the most com-
mon color space used by devices like cameras and office
monitors also used when color accuracy is important, so
when the image does not contain information about the
color space, it is assumed to be sRGB. However, the
sRGB color space is not able to represent many colors
from the visible spectrum as the CIE indicated. That is
why the color space Rec.2020 or BT.2020 has been re-
cently introduced which covers more colors within the
visible spectrum, even though it requires narrow band-
width light sources.

The last condition mentioned which will affect the
chromaticity is the environment where the images are
visualized. The chromaticity area shrinks as the am-
bient illumination increases. This condition will affect
especially portable devices such as smartphones and ta-
bles.

The DICOM GSDF has been adopted because it en-
sures consistency only for grayscale images regardless
of the device and time. Tom Kimpe and Xthona (2016)
proposed an extension of DICOM GSDF, referred as
Color Standard Display Function (CSDF), which in-
creases the perceptual linearity of visualized colors.
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The algorithm was tested on consumer displays, profes-
sional displays and medical grade displays giving good
results on images with color and remained compliant
with DICOM GSDF standard.

3. Material and methods

Barco NV has a method to detect a ColorChecker
Passport and to calibrate an image, so the goal of this
project is integrate it into an ICC color profile to make
the method widely applicable maintaining the perfor-
mance obtained with Barco’s method.

The color management module chosen for the project
was Little CMS because apart from being open source,
it uses the ICC standard, providing the necessary tools
to enconde the data and to connect color profiles. Fig-
ure 12 shows an example of the pictures used for the
project. The pictures were taken under different condi-
tions to simulate how dermatologists work. The pictures
captured a region of skin to analyze and a ColorChecker
Passport which is used to calibrate the colors according
to the reference values from the ColorChecker.

One important step to ensure end-to-end color con-
sistency is to define to which device the color profile
belongs to. Due to this, the ICC defined as a manda-
tory tags the one called device class. The next two sub-
sections, input device and display device, refer to the
device assigned for each one of the color profiles.

Figure 12: Example of pictures used.

3.1. Input device

The reason to use the lutBtoAType model is because
it allows different combinations to process the color, this
must be adjusted to the needs of the user. The second
reason is because the 3D LUT was calculated to cal-
ibrate the image. For this project, the pipeline used
was to set the ”A” curves and ”B” curves to be iden-
tity functions while the Multi-dimensional lookup table,
”M” curves and matrix were adjusted. The Profile Con-
nection Space (PCS) was set to CIE XYZ.

Two color spaces were implemented, sRGB and
Rec.2020. The first one because, as explained before,

is the color space widely used among display devices.
Rec.2020 or BT.2020 was also implemented because it
covers a wider space in the visible spectrum so it can
be possible to not only cover more colors, but the input
devices generating colors outside of the sRGB gamut.

Figure 13: ICC profile inspector interface.

The ICC provides several useful documents, ICC pro-
file files and tools to build, understand and explore ICC
profiles which can be found on its website. The ICC
profile inspector is one of those tools used in the project
too.

The ICC Profile Inspector is free software which
opens ICC profiles and makes the content readable. Fig-
ure 13 shows the interface of the software showing the
information from one of the sRGB color space profiles
found in the ICC website.

All the profiles must have a header and a tag table.
The content of these two requirements will depend on
the choices and needs of the user. The ICC specifies
mandatory and optional tags, they depend on the device
to profile and the architecture to use.

For an input device, the list shows the mandatory tags
with the current values chosen for the project:

• Profile version: 4.3

• Device class: ’scnr’ (Input device)

• Color space of data: ’RGB’

• PCS: ’XYZ’

• Rendering intent: Relative intent

• Profile creator signature

• Profile description Tag

• Copyright Tag

• Media white point tag: D50

• Chromatic adaptation tag: matrix from RGB to
CIE XYZ

• A to B tag: this tag should be changed in case the
architecture is a different one from the LUT model
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Based on Figure 23, three components are adjusted
based on the picture and the color space (sRGB or
Rec.2020).

”M” curves contain three tone response curves, one
per color channel (red, blue and green), the response
curves are the same for both color spaces and identical
for the three color channels (R, G, B):

Clinear =



Csrgb

12.92 , Csrgb ≤ 0.04045.(Csrgb+0.055
1.055

)2.4
, Csrgb > 0.04045.

(1)

The matrix is the last part of the pipeline which goes
from linear RGB to CIE XYZ D50, just as the ICC spec-
ifications requests for the PCS. Unlike the ”M” curves,
matrices are different for each one of the color spaces
because they are computed based on the chromaticity
coordinates of the color space.

3.2. Display device
Display profiles with the PCS set to CIE XYZ were

investigated, but without success. The display profiles
found in the ICC website have the PCS set to CIE Lab.
Because of that reason, two display profiles were cre-
ated, both profiles simulate an additive model; one pro-
file is with an sRGB color space, the other is set to
Rec.2020.

As before, every stage for the display profiles were
created and encoded to the corresponding data with the
Color Management Module Little CMS with the follow-
ing mandatory tags for a display device:

• Profile version: 4.3

• Device class: ’mntr’ (Display device)

• Color space of data: ’RGB’

• PCS: ’XYZ’

• Rendering intent: Perceptual intent

• Profile creator signature

• Profile description Tag

• Copyright Tag

• Media white point tag: D50

• Chromatic adaptation tag: matrix from RGB to
CIE XYZ

• A to B tag

• B to A tag

The initial approach was to use a software which al-
lows to set the color profile of the images, like GIMP.
However, it was not possible to review the values after
the PCS with this approach. The goal of having dis-
play profiles is to have more control on the workflow
using Little CMS, to be able to review all the values af-
ter stages on the display side as well.

3.3. Profiles connection

Little CMS provides the necessary tools not only to
create, but to connect different profiles, as long as they
fulfill the ICC specification 4.3. Little CMS creates
transforms between profiles, from a profile to the PCS,
or from PCS to a profile.

In order to evaluate in a better way, the workflow pre-
sented in this paper, different connections were made as
the next list shows, the connections were done for both
color spaces, sRGB and Rec.2020:

• Input profile to PCS: to evaluate if the profile con-
verts from RGB to CIE XYZ with the chromatic
adaptation set to D50.

• PCS to display profile: to evaluate if the profile
converts from CIE XYZ to RGB with the corre-
sponding chromatic adaptation.

• Input profile to display profile: to evaluate the
end-to-end workflow.

Figure 24 shows the stages performed to analyze the
pipeline. The first two stages were performed on the av-
erage values of the patches from the ColorChecker, to
calculate the DeltaE 2000 value. The third stage was
performed on the average values of the patches. When
the results were promising, the whole image was trans-
formed to evaluate the results qualitatively.

The evaluation was performed on every stage men-
tioned previously, but the results presented in this work
will only show the ones from the end-to-end pipeline
from the calibration before creating the profile and af-
ter connecting the input profile to the display profile.
Only those results because the purpose of the project is
to confirm the calibration is done with the color profiles
and to know how much difference there is between the
reference values from the ColorChecker Passport and
the average patches’ value. If so, to know if the differ-
ence is going to be perceptible for the human eye or not
based on CIE DeltaE 2000 value.

3.4. Pipeline to generate input ICC profile

Everything was done using C++ in Visual Studio
2019, with different scripts created to have a better con-
trol and structure of the code. As Figure 25 shows, there
are 5 scripts to control the workflow. The main script
only requests from the user the name of the uncalibrated
image to process, it also contains two key components:

Chart detection: it acquires the information of the
color patches from the ColorChecker Passport

Chart profiler: it runs the corresponding scripts
from the diagram to generate the profile
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The chart profiler script calls to the Camera Calibra-
tor which is in charge of creating the 3D LUT based on
the CIE Lab reference data and the RGB observed data.
After the 3D LUT is created, the chart profiler object
sends to the Input Icc Profile Calculator:

• 3D LUT

• C++ structure containing the chromaticity from
the primary colors, the white and black from the
color space in which is being created

• The points of the tone response which the ”M”
curves contain

• Extra information as name of the file and a boolean
to indicate if the profile is going to be saved

The Input Icc Profile Calculator will calculate and
populate the mandatory and some optional tags. This
information will be sent to Input Icc Profile who is in
charge of encoding all the information according to the
ICC specifications with the help of Little CMS. This in-
put profile can be connected with a display profile or
can be inspected with the software from the ICC web-
site, ICC Profile Inspector.

4. Results

The results will be presented for 2 color spaces,
sRGB and Rec.2020. The presented workflow was ap-
plied on several images to confirm performance gener-
alizes properly. Further reporting in this work is limited
to four images, for clarity purposes.

The ColorChecker Passport has 24 patches. The
DeltaE 2000 values are going to be presented in sec-
tion 7: 6 neutral patches and 6 color patches (red,
green, blue, yellow, magenta and cyan) to train the cal-
ibration and 12 color patches used for validation with
the corresponding average measured value from all the
patches. In this section only the average from all the
color patches are going to be presented.

The DeltaE 2000 values were calculated as explained
in the section 1 between the reference values from the
ColorChecker Passport and the final average values of
the patches once they go through the pipeline. All the
tables have three rows where the first one, uncalibrated
stage, contains the DeltaE 2000 values between the ob-
served patch values and the reference values without ap-
plying the color calibration profiles. The second row,
Barco’s method, contains the DeltaE 2000 values be-
tween the reference values and the final observed patch
values when only the calibration algorithm is applied.
The third row, end-to-end pipeline, contains the DeltaE
2000 values between the reference values and the final
observed patch values when the input profile is applied
and connected to the display profile.

4.1. sRGB color space

In this subsection, the averages will be presented set-
ting the color space to sRGB for the input profile, along
with the original image and the result from connecting
the input color profile to the display color profile. The
average time to perform the profile connection per pic-
ture was ≈2 seconds.

4.1.1. Image A

Stage Average
Uncalibrated patches 8.05015

Barco’s method 1.65525
End-to-End pipeline 1.68369

Table 1: Results from image with sRGB color space.

Figure 14: Original image.

Figure 15: Result after connecting profiles.

4.1.2. Image B

Stage Average
Uncalibrated patches 3.51231

Barco’s method 1.13778
End-to-End pipeline 1.15333

Table 2: Results from image B with sRGB color space.
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Figure 16: Original image.

Figure 17: Result after connecting profiles.

4.1.3. Image C

Stage Average
Uncalibrated patches 4.51846

Barco’s method 1.65254
End-to-End pipeline 1.67711

Table 3: Results from image C with sRGB color space.

Figure 18: Original image.

Figure 19: Result after connecting profiles.

4.1.4. Image D

Stage Average
Uncalibrated patches 6.62284

Barco’s method 1.88348
End-to-End pipeline 1.91435

Table 4: Results from image D with sRGB color space.

Figure 20: Original image.

Figure 21: Result after connecting profiles.

4.2. Rec2020 color space
In this subsection, only the averages will be presented

without the result of the images because they are in a
different color space and they would be seen as if they
did not have the necessary quality, this is the conse-
quence of trying to visualize images in a display with
a different color space. The average time to perform the
profile connection per picture was ≈3 seconds.

4.2.1. Image A

Stage Average
Uncalibrated patches 8.05015

Barco’s method 2.29279
End-to-End pipeline 2.28687

Table 5: Results from image A with Rec.2020 color space.
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4.2.2. Image B

Stage Average
Uncalibrated patches 3.51231

Barco’s method 1.99159
End-to-End pipeline 1.99032

Table 6: Results from image B with Rec.2020 color space.

4.2.3. Image C

Stage Average
Uncalibrated patches 4.51846

Barco’s method 2.37119
End-to-End pipeline 2.38938

Table 7: Results from image C with Rec.2020 color space.

4.2.4. Image D

Stage Average
Uncalibrated patches 6.62284

Barco’s method 2.78993
End-to-End pipeline 2.78841

Table 8: Results from image D with Rec.2020 color space.

5. Discussion

Regardless of the color space, the connection be-
tween profiles maintain the consistency obtained with
the color calibration method provided by Barco. Even
though the color spaces and chromaticity change dur-
ing the profile connection, the results show there is not
only color calibration when the color profile is applied
but also color consistency which is needed when the im-
ages have to be displayed in different devices.

Not only the architecture for the profile can be modi-
fied, but the calibration algorithm can be adjusted to the
profile builder’s needs too. It will depend on what the
objective is, but the color will be consistent with the
current pipeline through different acquisition devices,
display devices or different conditions, such as ambient
light.

Qualitatively, the images with the profiles connected
have better color quality compared to the uncalibrated
image since they are already calibrated, the skin has a
better appearance and the details in the skin can be an-
alyzed much closer to the reality in any display. The
colors do not seem saturated any more as on the origi-
nal images.

As future work, it can be implementing the same
pipeline with different sizes of ColorCheckers. As the
images show, the ColorChecker Passport is big and half

the picture shows the ColorChecker when the goal is to
show mainly the skin. Even though the ColorChecker is
used once to create the profile and then the ICC profile
can be reused with other pictures, a smaller color ref-
erence product can be used to make easier the work for
the dermatologists and the patients, who hold the object
in what may not be a comfortable position.

Another possible future work is to implement the
pipeline without any known object in the scene. It may
be thought of as relying on the acquisition device au-
tomatic white balance and will likely correspond to the
uncalibrated image in this work.

IccMax is the newest profile version, 5.0, approved in
2019. It is intended to extend version 4 by providing the
benefits of:

• Allow different illuminants for the PCS

• Handles high-precision (32 bit)

• It has five types of inter-profile connections

– Named

– Colormetric

– Spectral

– Material

– BRDF

Using the newest version will allow to increase the
precision at every stage in the profile generation, reduc-
ing the rounding errors presented in the connection of
the profiles. These rounding errors are considered to be
the main cause of the difference between the Barco’s
method and End-to-End pipeline average values in sec-
tion 4. The use of this version will also help to avoid
conversion of illuminants in the PCS which will main-
tain the original one through all the pipeline.

The reason for not using this version in the current
project is due to limited industry adoption. The Ic-
cMax CMM is intended to be completely backward-
compatible, will recognize and correctly process v2 and
v4 profiles. However, IccMAX profiles are not expected
to be compatible with v4 CMMs. (Consortium, 2019)

Figure 22: Sierra glass slide (FFEI, 2022).

The method presented in this paper can be applied
not only for dermatology, but to other areas within the
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health sector, like histopathology. This can be achiev-
able by using a glass slide with the corresponding color
patches and their reference values with the purpose of
ensuring consistency of color for WSI (Whole Slide
Imaging). An example of a glass slide can be the one
developed by FFEI: The Sierra Slide.

It is a standard size glass slide with 55 biologically
stained patches. The importance of knowing the true
color from the tissue in the glass slide is so high that
there are many models for scanners, each one with dif-
ferent characteristics, without mentioning the amount
of displays present in the market to visualize the WSI.
Therefore, there must be a bridge between all the vari-
ety of visual devices and the color profiles are the ideal
tool to keep the consistency of colors. (FFEI, 2022)

One example, histopathology, has been presented of
the fields where the workflow of this paper can be im-
plemented, but it does not mean it is the only one. As we
have seen, the health sector is expanding and improving
very fast, that is why methods like the one presented
here or standards should be established so the physi-
cians do not have problems when sharing or analysing
the information with different devices.

6. Conclusions

From the clinic to a conference, the physician can be
sure the consistency will be kept with the corresponding
color profile. Since there is still no standard or a right
bridge between different devices, the proposed pipeline
can help to share not only the image but also the color.
The color is something which is getting more impor-
tant for the health sector that the institutions, like the
International Color Consortium, are taking into consid-
eration its needs to improve its functionality. The algo-
rithm to calibrate the colors in the image can be adjusted
to every manufacturer’s needs, but the presented work-
flow to create ICC color profiles will work as long as
the devices work with a Color management framework
to handle and adjust the color displayed.
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7. Annexes

7.1. Annex A

Figure 23: lutBToAType Model (Consortium, 2010).

7.2. Annex B

∆E =
√(

∆L′
KLS L

)2
+

(
∆C′

KCS C

)2
+

(
∆H′

KHS H

)2
+ RT

(
∆C′

KCS C

) (
∆H′

KHS H

)

Where:

L̄′ = (L1 + L2)/2

C1 =

√
a2

1 + b2
1

C2 =

√
a2

2 + b2
2

C̄ = (C1 +C2)/2

G = 1
2

(
1 −

√
C̄7

C̄7+257

)

a′1 = a1(1 +G)

a′2 = a2(1 +G)

C′1 =
√

a′21 + b2
1

C′2 =
√

a′22 + b2
2

C̄′ = (C′1 +C′2)/2

h′1 =


arctan(b1/a′1), if arctan(b1/a′1) ≥ 0.
arctan(b1/a′1) + 360◦, otherwise.

h′2 =


arctan(b2/a′2), if arctan(b2/a′2) ≥ 0.
arctan(b2/a′2) + 360◦, otherwise.

H̄′ =


(h′1 + h′2 + 360◦)/2, if |h′1 − h′2| > 180◦.
(h′1 + h′2)/2, otherwise.

T = 1 − 0.17 cos(H̄′ − 30◦) + 0.24 cos(2H̄′) + 0.32 cos(3H̄′ + 6◦) − 0.20 cos(4H̄′ − 63◦)
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∆h′ =



h′2 − h′1, if |h′1 − h′2| ≤ 180◦.
h′2 − h′1 + 360◦, else if |h′1 − h′2| > 180◦ and h′2 ≤ h′1.
h′2 − h′1 − 360◦, otherwise.

∆L′ = L2 − L1

∆C′ = C′2 −C′1

∆H′ = 2
√

C′1C′2 sin(∆h′/2)

S L = 1 + 0.015(L′−50)2√
20+(L′+50)2

S C = 1 + 0.045C̄′

S H = 1 + 0.015C̄′T

∆θ = 30 exp
{
−

(
H̄′−275◦

25

)2
}

RC = 2
√

C̄′7
C̄′7+257

RT = −RC sin(2∆θ)

KL = 1de f ault

KC = 1de f ault

KH = 1de f ault

Details of CIE Delta formula (Lindbloom, 2017).

7.3. Annex C

Figure 24: Diagram of how the different stages were evaluated.
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7.4. Annex D

Figure 25: Diagram with the pipeline to create the color profile.
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Abstract

Delayed enhancement magnetic resonance imaging (DE MRI) is particularly useful to evaluate the state of the
heart after myocardial infarction (MI). To measure the relative extent of MI and helps assess the myocardium tissue
viability, automatic segmentation of the myocardial border is necessary. In the last decade, Deep learning methods
have reached quite good results for medical image segmentation, however, more precision and robustness are still
required for future practical clinical use. In this work, we focus on the use of combined information from both
kinetic MRI (CINE) and delayed enhancement MRI (DE) modalities for left ventricle segmentation, and its impact
on DE myocardium segmentation. In this study, we introduce a newly constructed dataset CINEDE, that contains
MRI volumes of 124 patients for both modalities. Different multi-modal fusion strategies are presented that we can
summarize in three categories : early fusion, late fusion and intermediate fusion. In total, five different strategies
are investigated whose architectures are all U-Net based. Image registration of CINE images to DE is introduced to
study its impact on the results. Furthermore, heart localization using Mask R-CNN is used to guide the registration
process towards the structure of interest. The results show that registration helps improving the the segmentation in
multi-modal fusion.
In comparison with single modality segmentation, the intermediate fusion architectures, particularly DualUNet, seem
to be more robust and more precise for the myocardium segmentation on the test set, as it obtained a Dice score of
0.81 in compared to 0.77 for single modality. Furthermore, the fusion based models have the advantage of providing
good results on the CINE modality, which gives additional information to help the heart viability evaluation. On
the other hand, simple fusion schemes did not reach the performance of single modality. Preliminary results using
ROI detection before the segmentation indicate that multi-modal fusion potentially helps in the localization of the left
ventricle.

Keywords: Deep multi-modal segmentation, fusion strategies, myocardium infarction, MRI, CINE, DE, registration,
localization.

1. Introduction

Myocardial infarction (MI) is the most common man-
ifestation of ischemic heart disease (IHD). Colloquially
called “heart attack”, it can be defined as the death of
the myocardial cell secondary to prolonged lack of oxy-
gen supply (ischemia). Prognosis estimation after MI

relies heavily on the evaluation of the considered seg-
ment from cardiac MRI.

Magnetic resonance imaging (MRI) is the most fre-
quently used modality for non-invasive cardiac imaging
assessment.MRI provides information about the cardio-
vascular system structure and function, for this purpose
multiple acquisition techniques exist. In the presented
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study two of them are used :

• Kinetic magnetic resonance denoted as CINE-MRI
generally used to capture motion, wall thickening
and volumes of the left ventricle in diastole and
systole.

• Delayed enhancement MRI denoted as DE-MRI,
that is also known under the name of late gadolin-
ium enhancement (LGE) as the acquisition is based
on the use of gadolinium contrast agents which
captures abnormal myocardial regions related to
the difference uptake of the agent. On these im-
ages, the normal myocardium appears dark and the
diseased area bright.

The analysis of MRI images helps in diagnosis, treat-
ment and monitoring of several heart conditions in-
cluding myocardial infarction. Cardiac segmentation
is considered as one of the most important methods to
this end, since it allows to have medically interpretable
measurements.The anatomical structures of interest for
this task are typically the heart chambers: left ventricle
(LV), the right ventricle (RV), the left atrium (LA) and
the right atrium (RA). Because of its greater function
and medical interest, most of the cardiac segmentation
work in the literature is focused on the left ventricle.
The main parameters for evaluation of the cardiac via-
bility are the wall thickness and thickening from CINE
MRI and the extent of abnormal area from DE MRI. Ob-
taining these parameters requires the knowledge of the
myocardial contours.
The standard segmentation of the LV consists in
defining two boundaries and two regions, the endo-
cardium boundary that separates the cavity from the
myocardium, and the epicardium that separates the my-
ocardium from the surrounding tissues. This segmen-
tation allows to compute cardiac parameters like sys-
tolic and diastolic volumes, ejection fraction, wall thick-
ness and thickening and myocardium mass when using
the CINE modality (Bernard et al., 2018). Most im-
portantly, it allows the quantification of the MI exten-
sion using DE modality (Lalande et al., 2022). The lo-
cal and global study of the cardiac function could in-
form on the severity of the condition and the potential
recovery of the myocardium. As stated, delayed en-
hancement MRI is generally used for the assessment
of the myocardial segment viability and is the stan-
dard reference for the detection of myocardial infarc-
tion (MI) (KIM et al., 1999). Accordingly, the pre-
cision of the myocardial borders detection is a deter-
mining factor to estimate the extension of MI. Chal-
lenges like EMIDEC (automatic Evaluation of My-
ocardial Infarction from Delayed-Enhancement Cardiac
MRI, http://emidec.com/) showcased the potential of
automatic methods on DE MRI in clinical use for prog-
nosis evaluation after a myocardial infarction. Despite
the promising results, performance and robustness im-

provements are needed to have clinically reliable auto-
matic models. On the other hand, automatic methods
work efficiently on CINE MRI modality for the my-
ocardium segmentation (Bernard et al., 2018), due to a
better contrast between the cavity, myocardium and sur-
rounding tissues. This work will study the possibility
of segmentation improvement on DE MRI using the in-
formation of CINE and DE images obtained during the
same exam.

Compared to a previous study made on this topic
(Hadadi, 2021), this work will focus on several inter-
mediate fusion strategies that can be applied when using
two image modalities in addition to input and output fu-
sions. Comparing the outcome with the single modality
performance will allow to evaluate how much the CINE
information could be useful in the segmentation task of
DE MRI.
Indeed, we know that both CINE and DE segmentation
are complementary in providing helpful measurements
for pathology diagnosis or treatment planning by radi-
ologists. Specifically, for MI prognosis, evaluation of
the CINE images is used for heart volume, accurate de-
lineation, and contraction information while the one of
DE images is used for quantification of the injured my-
ocardium. Therefore, we explore a multi-task approach
in this work, in order to obtain segmentations for each
modality at once, to benefit from the complementary in-
formation.

2. Literature Review

2.1. DE segmentation

In magnetic resonance imaging, left ventricle seg-
mentation faces a lot of challenges such as poor contrast
between the myocardium and the surrounding struc-
tures, gray level inhomogeneities, relative poor reso-
lution, partial volume effect and other misleading arte-
facts. However, manual delineation of cardiac MRI per-
formed by experts remains the reference for clinical ap-
plications, it is especially time consuming as it takes up
to 20 minutes for CINE images (half this time for DE
images) to draw the boundaries on one volume (C. Petit-
jean, 2011). In addition, manual annotation is sensitive
to inter- and intra- observer variability. Thus, in recent
years the automation of cardiac segmentation has be-
come of great research interest and where deep learning
based methods have reached considerably high perfor-
mances in cardiac segmentation tasks. This section will
focus more on automatic segmentation for DE modality
as it allows not only to delineate the myocardium but
also the extension of a potential infarction. Still, it is
important to mention that the CINE MRI segmentation
was widely addressed in this field (Bernard et al., 2018).

A first international challenge organized in 2012 was
dedicated for DE segmentation (R. Karim et al., 2016),
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during which several automatic and semi-automatic tra-
ditional image processing and machine learning meth-
ods were proposed. Later with the EMIDEC challenge
(Lalande et al., 2022), more up-to-date automatic meth-
ods were introduced to the task, relying mainly on deep
neural networks.

In medical imaging, the most frequently used deep
learning models for semantic segmentation are encoder-
decoder based architectures. The reference model for
this task is the U-Net introduced in 2015 (Ronneberger
et al., 2015). Several novel architectures that were in-
troduced in DE segmentation challenges are based on
the generic U-Net architecture, introducing additional
blocks or other slight modifications. For instance, at-
tention blocks (Oktay et al., 2018) are now commonly
used in medical imaging segmentation to focus on the
most significant features at the skip connections stage.
(K. Brahim et al., 2021) proposed a novel architec-
ture for the myocardial segmentation on DE images
that incorporates attention modules into the U-Net ar-
chitecture. Other works constructed models that mod-
ify the reference encoder and decoder blocks of a U-
Net. (Hu J., 2018) applied squeeze and excitation block
(SE) at the encoder part replacing the usual convolution-
pooling architecture. He et al. (K. He et al., 2016)
on the other hand tried to integrate residual blocks into
the architecture. According to the latest review for the
EMIDEC challenge (Lalande et al., 2022), the best per-
formance for the myocardium and the infarction delin-
eation was accomplished by the model introduced in the
work of (Y. Zhang et al., 2021). This model consists of a
cascade of two U-Nets, a 2D U-Net that gives coarse re-
sults followed by a 3D U-Net that takes into account the
original volume and the output of the first U-Net at the
input stage. This latter model reached an average Dice
score of 87,9% and 13.01 mm for Hausdorff distance
which remains unsatisfactory for a clinical application.

2.2. Deep multi-modal scene segmentation
In high level computer vision tasks such as segmen-

tation, deep learning methods have reached excellent
performances. Nevertheless, automatic methods still
struggle with complex environments. Hence, multi-
modal deep learning was introduced to help increase the
segmentation performance especially using data from
multiple sensors that enables the combination of dif-
ferent information from the exact same scene, making
for more robust models. (Y.Zhang et al., 2021) have
summarized in their work the different deep learning
based fusion approaches in scene segmentation using
different datasets and modality (RGB-Depth, RGB-NIR
etc). The first attempt of deep multi-modal fusion was a
simple input fusion that consists of concatenation into
multiple channels (Couprie et al., 2013), this fusion
approach is generally classified as an early fusion ap-
proach as the fusion of the modalities is prior to feeding
the network. Another attempt of fusion was introduced

with FuseNet (Hazirbas et al., 2017) for RGB-Depth se-
mantic scene segmentation. The key idea of this recent
approach is to fuse simultaneously at each resolution
stage the features maps obtained from the latent space
of the encoder into the encoder-decoder network seg-
menting the RGB. FuseNet motivated the apparition of
several new fusion approaches including RFBNet (Deng
et al., 2019) that introduces a residual fusion unit block,
which consists of two modality-specific residual units
and one gated fusion for an interactive fusion explor-
ing interdependence between the encoders’ information.
Another fusion category is the late fusion that consists
of concatenating the information at a late stage of the
training process or at the end of it. For example, (Cheng
et al., 2017) proposed a gated module fusion to adap-
tively merge Depth and RGB score maps according to
their weights contribution. Another late fusion approach
is introduced in (A. Valada, 2017), where feature maps
are extracted separately from both modalities and then
before the computed maps are summed up for joint rep-
resentation, followed by a series of convolutional layers
to give a final prediction.
In the latter presented works, while the strategies helped
the segmentation performance, they might not satisfy
the requirements of robustness and accuracy. Thus,
other strategies were explored like intermediate or hy-
brid fusion networks. Some of these approaches com-
bined early and late fusion perspectives, for instance
(Guo et al., 2019) presented a network combining a
fully convolutional neural network of RGB-D (DFCN)
and a depth-sensitive fully-connected conditional ran-
dom field (DCRF). They stated that the DFCN module
can be considered as an extension of FuseNet while the
DCRF module is used to refine the preliminary predic-
tion (Y.Zhang et al., 2021). Another recent work on
multi-modal fusion is the model presented in (Valada
et al., 2019), tackling the problem of fusion by introduc-
ing a self supervised modal adaptation (SSMA) module.
It dynamically adapts the fusion of multi-scale repre-
sentations. The network is composed of a ResNet-50
based encoder and an efficient atrous spatial pyramid
(eASPP) module that links the encoder to the decoder.
Its advantage is to further learn multi-scale features and
capture long range context. This latter approach per-
formed the best on Cityscapes dataset and ranks in top 5
in other databases. It is therefore considered as the state
of the art fusion method in multi-modal scene seman-
tic segmentation (Y.Zhang et al., 2021). The conclu-
sion that we can make from this bibliographic research
is that multi-modal images captured from different sen-
sors give complementary information for the segmenta-
tion task, and while there are several fusion strategies
it is hard to conclude about an optimal fusion since the
results differ depending on the dataset and that the ex-
periments are not always comparable (Y.Zhang et al.,
2021).
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2.3. Deep multi-modal segmentation in medical imag-
ing

With the development of medical imaging acquisition
systems, multi-modal image analysis has been signifi-
cantly growing for a number of applications. One of
these applications is automatic segmentation. We can
find several works in the literature applying comple-
mentary modalities from different systems (for instance
: Computed tomography (CT) and positron emission to-
mography (PET)) or from the same imaging device, (ex:
T1, T2 weighted images in MRI) for the segmentation
task. (Guo et al., 2019)’s work demonstrates the supe-
rior performance of using multi-modal information in-
cluding MRI, CT scans and PET images for the segmen-
tation of lesions in soft tissue sarcomas compared to the
same architectures trained on a single modality. This
work also concluded that the fusion at the layers stage
performed better than the output fusion strategy. (Zhou
et al., 2019) published a review paper on deep learning
for segmentation using multi-modal images. The work
investigated DenseNet architectures and Generative Ad-
versarial Networks (GAN) based strategies among oth-
ers, and three fusion approaches : input fusion, layer
level fusion and output fusion. The experiments were
made using different combinations of modalities fusion
between MRI T1, T2, Flair and CT for brain imaging.
The comparison of the different fusion strategies high-
lighted that the output fusion worked better than the
input fusion, which can be explained by the fact that
this technique trains two networks experts on the two
modalities,which requires however more computational
resources. On the other hand, the layer level DenseNet
based fusion approach outperformed the other strate-
gies as the network can better learn the complex rela-
tionships between the two modalities used, thanks to
the dense connections among the layers (Zhou et al.,
2019). From previous studies, the main problems in
multi-modal segmentation in medical imaging remains
the lack of data and lack of generalization ability (i.e.
robustness when segmenting unseen data). These tasks
along with the complex deep neural networks require
large amounts of data so that the inquiry of the fusion
choice would be resolved more efficiently, conducting
to reliable results.

In the work of (Hadadi, 2021), where the dataset used
was limited to 76 patients in total, experiments of CINE
and DE segmentations were carried out for input and
output fusion. Results using cross validation showed
that multi-modal segmentation after registration helps
the myocardium segmentation on DE MRI. Addition-
ally, the work concluded that output fusion tends to give
better results than the input fusion. It is also necessary
to mention that in this study, due to the small amount of
data, the results achieved with single modality segmen-
tation were not comparable to the results found in the
literature.

3. Material and methods

3.1. CINEDE Dataset

The CINEDE dataset was built from a previous
dataset composed of the exams from 76 patients
(Hadadi, 2021), which was enlarged along this work up
to 124 patients. Images are acquired at the University
Hospital of Dijon, using two MRI scanners of differ-
ent magnetic field strength (1.5 T - Siemens Area and
3.0 T - Siemens Trio Tim, Siemens Medical Solutions,
Germany). The name CINEDE refers to the two MRI
modalities CINE and DE, as it contains 124 CINE MRI
volumes and their 124 corresponding DE MRI volumes,
the ground truth (i.e. the expert annotations) is also pro-
vided for both modalities separately. Each MRI volume
is composed of several slices (6 to 11) acquired from
a short axis view of the left ventricle from the base to
the apex of it. Short axis view is used for acquisition
as it gives an excellent cross sectional view of the left
ventricle of the heart (see Figure 1).

Figure 1: Short axis view MRI acquisition - two slices example
(Marchesseau et al., 2016)

The resolution of the MR images varies between and
within modalities. For the CINE modality, the range
of the image resolution starts from 1.21 (mm) to 1.64
(mm), with a mean value of 1.38 (mm) and a median
value of 1.37 (mm). Meanwhile, the resolution for
the DE modality ranges from 1.45 (mm) to 2.19 (mm),
with a mean value of 1.82 (mm) and a median value of
1.87 (mm). All in all, DE images have poorer resolu-
tion compared to CINE images. This resolution will be
harmonized between and within the modality as a pre-
processing step.

In total, number of slices in the CINEDE dataset is
984 2D slices for each modality. It has the particularity
of being very heterogeneous, because the volumes are
from different patients, a number of them suffer from
several cardiac pathologies. The cases can be grouped
in the following categories :

• Myocarditis : it consists of the inflammation of the
heart muscle.

• Dilated cardiomyopathy : it is a disease that causes
the heart chambers to thin and stretch, growing
larger.

• Hyperthrophic cardiomyopathy : The walls of the
heart chambers become thicker.
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• Myocardial infarction : It happens when blood
flow to the coronary arteries of the heart decreases
or stops.

• Other pathologies : They are different rare patholo-
gies such as amyloidosis, or Tako Tsubo syndrom
... with a modification of the heart shape. Their
low presence in the dataset is the reason they are
grouped in one category.

• Normal exams.

In CINE and DE MRI, the left ventricle cavity have
higher gray levels than the surrounding myocardium
(with DE images brighter than CINE images). Since
DE MRI is acquired 10 minutes after the injection of
the contrast agent (gadolinium based), the traces of this
contrast agent are visible only in pathological zones.
Therefore, unlike in CINE MRI, MI is translated by a
hyper signal in the DE modality (see Figure 2). This
tends to make myocardium segmentation a harder task,
compared to the other cases where the intensities are
more homogeneous along the myocardium.

Figure 2: Myocardial infarction in DE VS in CINE modalities

3.2. Software and Hardware details

This project was developed using Python 3.9.1,
CUDA 11.4 and PyCharm 2021.3.2 IDE. To read and
manipulate NIFTI data, the nibabel 3.2.2 library was
used. For image processing tasks, we remained on
OpenCV 4.5.5 and Pillow (PIL) 9.0.1. SimpleITK
2.0.2, a registration and segmentation toolkit available
in Python, was used for image registration in the pre-
processing part. Medical Open Network for Artificial
Intelligence (MONAI : https://monai.io/) provided
ready to use loss functions for the segmentation task.

The networks were trained on one of the 4 Nvidia
DGX GPUs with 32 GB of builit-in RAM each, pro-
vided by Mésocentre de calcul, Besançon.

3.3. Preprocessing

In deep multi-modal networks segmentation, con-
tradictory information from complementary modalities

may affect the model performance considerably. As
mentioned in the presentation of the CINEDE dataset,
delayed enhancement images are not acquired at the
same time as CINE images, and since the acquisition
are made in apnea, the heart localization often differ
from one apnea to another. Thus, the views may not
match in the position of the heart, and even in the con-
tent since one modality might contain more of the sur-
rounding or heart tissues than the other one. To help
tackle this problem and other usual image analysis prob-
lems, some pre-processing steps were introduced before
the training phase that will be elaborate point by point
in this section.

Before introducing the main preprocessing steps,
some initial modifications made on the dataset are worth
mentioning :

• Data normalization : The intensities of the CINE
and DE images were normalized to range be-
tween 0 and 255, using the min-max normalization
mehtod.

• Reorientation : The orientation of CINE and DE of
the same case happens to be too different , there-
fore manual reorientation of one of the modality in
some cases was needed.

• Cleaning : The dataset was cleaned from the slices
that were not provided with the ground truth in one
or both modalities, resulting in 984 2D slices after
this step.

3.3.1. Image resolution adjustment and zero-padding
The two modalities have different voxel spacing,

however it is important to adjust the spatial resolution
so that a pixel in a slice represents the same spatial in-
formation in another slice and in the other modality. For
this purpose and since the DE MRI is considered as the
target modality, all the data was resized to correspond
to the median spatial resolution of the DE images (1.87
mm) (in 2D). Zero-padding was then applied for the
smallest volume of each couple of data (DE and cor-
responding CINE), to have the same image size.

3.3.2. Contrast enhancement
MR images tend to need contrast enhancement for

a better visual quality. In our case, Contrast-Limited
Adaptive Histogram equalization (CLAHE) was ap-
plied. This method is a variant of the ordinary adaptive
histogram equalization for contrast improvement that
prevents noise amplification. In CLAHE method, the
contrast enhancement is local and based on regions with
a predetermined size (neighborhood). Additionally, the
histogram is clipped at a predefined value named ”clip
limit”, this will limit the slop of the transformation func-
tion, consequently it prevents the over-amplification of
the contrast. We applied CLAHE on 2D DE images with
a clip limit of 2 and a neighborhood of 8 x 8.
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3.3.3. Image registration
Image registration can be defined as the process of

aligning two or more images using a specific geometri-
cal transformation. The aim of an image registration al-
gorithm is to find the optimal transformation that aligns
the structures of interest of the moving image to those
of the fixed image. The main registration categories in-
clude rigid transformations that use simple operations
such as translations, rotations and scaling, as well as
more complex transformations with higher degrees of
freedom such as affine transformation or deformable
spline models. As previously mentioned, the CINEDE
dataset contains two modalities with considerable shifts
in the localization of the structure of interest (left ven-
tricle of the heart). To address this problem, image reg-
istration is applied where the moving image is the CINE
modality and the fixed image is the DE modality. Due
to the complexity of the task, high degree transforma-
tions were omitted as the resulting deformations were
too consequent and also because no deformation should
be needed after the spacing is harmonized. Therefore,
only a simple translation transformation was applied in
the final registration pipeline to help better align the LV
structures on the two modalities. Describing the trans-
formation between a CINE image and a DE image by
a translation transformation corresponds to the clinical
perspective. Indeed, during the exam, CINE and DE
are not acquired at the same moment (between two ap-
neas). Even though the positioning should be the same,
a translation in the images is expected due to a differ-
ence in acquisition time (i.e. different apnea). More-
over, the different acquisition time also results in slides
not totally corresponding to the same heart regions for
both modalities. The registration process aims to correct
these problems.

The use of segmentation is very common in a medical
image registration processes as it helps guide the regis-
tration on aligning the structures of interest. However,
since segmentation is the end goal of our pipeline and
we can not assume to have it at this early step, a region
of interest (ROI) detection is applied in replacement of
segmentation. The ROI detection aims to help focus
the registration on the left ventricle region and guide
the transformation towards LV correspondence in both
modalities. Details of the ROI detection are explained
next.

• ROI detection using Mask-RCNN :

Mask-R CNN (He et al., 2017) is a convolutional
neural network whose aim is to perform instance
segmentation. This model outputs a class, a sur-
rounding bounding box and a segmentation mask
for each object in a given image. As in Faster-
R CNN (Ren et al., 2015), it adopts two stages,
the first stage is called a region proposal network
(RPN) that proposes candidate object bounding
boxes. The second stage consists of extracting fea-

tures from each candidate box to output the class,
the bounding box offset and the mask (see Fig-
ure 3).

Figure 3: Mask R-CNN architecture

To detect the left ventricle on both CINE and
DE MR images, a Mask-R CNN model from
the torchvision library pretrained on the COCO
dataset was fine-tuned using the training sets of
both modalities, separately. Some customizations
on the dataset were made to be able to run the train-
ing: the classes were narrowed down to 2 classes
(object or no object), and bounding boxes were
taken from the GT masks (including both cavity
and myocardium as one object).

After the training phase, only the bounding boxes’
coordinates outputs are considered. The LV re-
gion is then defined by applying a 10% margin
on the bounding box with the highest prediction
score since Mask-R CNN could detect more than
one bounding box in the image.

• Application of the registration : After the ROI de-
tection, A pixel based matching registration is ap-
plied which consists in finding the best transforma-
tion matrix (translation along x and y in our case, in
order to avoid excessive deformations) that aligns
the ROI of CINE to the ROI of DE. The interpola-
tor used in the procedure is linear, and both Mattes
mutual information and mean squares error metrics
were tried, the better performance being reached
using the latter one. For the optimization, a regular
gradient descent optimizer was employed. Results
and impact of the registration will be further dis-
cussed.

3.4. Fusion strategies
Multiple fusion strategies were investigated using 2D

U-Net based architectures. The number of encoder-
decoder blocks and number of filters were fixed for all
the different architectures. There are 5 encoder blocks
starting with 64 filters and ending with 1024 channels in
the latent space. The input shape was also fixed to 256
by 256 grayscale images.
All architectures are defined by two outputs at the deci-
sion level, one output for the CINE segmentation mask
and the other one is for the DE segmentation mask.
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3.4.1. Input Fusion
Input fusion or FIUNet, is the simplest fusion ap-

proach. The architecture (Figure 4) consists of a sim-
ple concatenation of CINE and DE images at the input
level. The remaining part of the network is a classic 2D
U-Net architecture.

3.4.2. Output Fusion
In the output fusion architecture, unlike the first ap-

proach, two separate 2D U-Nets are trained each on one
modality, and it is only at the decision level, before
the last convolution layer that the feature maps from
both modalities are concatenated, as it is illustrated in
Figure 5. We will also designate this architecture by
FOUNet in the next parts.

3.4.3. LFUNet
Layers fusion U-Net or LFUNet was inspired by

FuseNet (Caner et al., 2016). The network consists of
two identical encoders, one for the CINE modality and
the other for the DE modality. The feature maps result-
ing from these two encoders are concatenated at each
stage, where we concatenate at each stage the feature
maps, meaning that at each resolution level the result-
ing feature maps have the shape of 2N x X x Y, where
N is the original number of filters at each convolution
level, and (X,Y) are the size depending on the encoder
layer. In order not to change the decoder architecture,
the number of convolutional filters after each concate-
nation remains the same, this way the expected number
of feature maps is preserved. Figure 6 gives the general
idea of this architecture.

3.4.4. Intermediate Fusion - DualUNet
This network was inspired from the work done in

(ref), where T1 and T1 flipped MR images were used
as the two inputs in a encoder-decoder architecture for
brain tumor segmentation. In our case the inputs are re-
placed by our two cardiac MRI modalities. We can con-
sider the fusion approach here as an intermediate stage
fusion as it comes later on than the LFUNet (Figure 7).
The fusion block (Figure 8) outputs fusion features that
are going to be given at the start of the decoder path and
at the skip connections levels. It works as follows: at
each encoder level, we take the two outputted feature
maps of size N x X x Y, where N is the number of con-
volutional filters and (X,Y) the size depending upon the
encoder stage, and we stack them adding an extra di-
mension to have a shape of N x 2 x X x Y. The fusion
is then made using a 2 x 1 x 1 3D convolution that will
produce an output shape of N x 1 x X x Y. This output
is squeezed to recover the original feature maps shape.
The decoder part of the network is kept identical to the
original U-Net.

3.4.5. Self Supervised module adaptation fusion - SS-
MAUNet

In SSMAUNet, the fusion is based on the self super-
vised model adaptation fusion scheme mentioned pre-
viously in the multi-modal scene segmentation section
(Valada et al., 2019). The architecture of this model is
composed of two identical U-Net encoders and one de-
coder. The fusion is made at the skip connections level
and at the input of the decoder by using the SSMA mod-
ule (Figure 9). The SSMA module aims to model the
correlation between the two modality specific feature
maps, it is a convolutional path made of 2 convolutions
of the stacked maps, the first one followed by a ReLu ac-
tivation function and the second by a sigmoid activation
to scale the dynamic range of activations between 0 and
1, the resulting output of this path is then multiplied by
the original stacked feature maps which will enable the
network to weight the features element-wise according
to the spatial information and the channel depth (Fig-
ure 10), similar to classic spatial and channel attention.

3.5. Training details

3.5.1. Dataset split
For the experiments, the dataset was split into 3 sets :

• The training set : composed of 70% of the dataset,
i.e. 84 patients which results in 667 slices for each
modality.

• The validation set : It is used to monitor the train-
ing, composed of 20% of the dataset, i.e. 26 pa-
tients that results in 202 slices.

• The test set : It is used after the training phase to
test the generalization ability of the model. It is
composed of the remaining 10% of the dataset, ie.
14 patients that give 114 slices.

3.5.2. Optimization
Training deep neural networks requires tuning the

hyper-parameters. Several trials were run to decide on
an ensemble of fixed values of hyper-parameters used
on all trials for the different architectures.

• Loss function: The loss function is responsible for
quantifying the difference between the expected
and the predicted outcome, and it is used by the
optimizer to gradually update the network parame-
ters through the training process. It is used to eval-
uate the performance on the validation set as well.
For the segmentation task, multiple losses and their
combinations were tried out such as cross entropy
loss, dice loss, focal loss. At the end, the Monai
DiceFocalLoss was used as it obtained the best re-
sults.

The Dice Focal loss computes the Dice Loss and
the Focal Loss and returns a weighted sum of the
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Figure 4: FIUNet architecture, where the two modalities are concatenated at the very input of the model (Hadadi, 2021)

Figure 5: FOUNet architecture, where the two modalities are concatenated before the last convolution (Hadadi, 2021)
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Figure 6: LFUNet architecture: feature maps are concatenated through all the resolution levels from one encoder to the other

Figure 7: DualUNet architecture: The feature maps from the two encoders are fused through a fusion block before the decoder step

Figure 8: Fusion Block for resolution level i
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Figure 9: Modality fusion in SSMAUNet : The feature maps from the two encoders are fused through the SSMA block before the decoder step

Figure 10: SSMA unit topology that adaptively fuse modality-specific feature maps based on the inputs. η denotes the bottleneck compression rate
(Valada et al., 2019).
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two losses. In our experiments, the same weight is
given.

• Optimizer: The adaptive Moment Estimation
(ADAM) (Diederik et al., 2015) optimizer was
used with a learning rate of 10−4 and a weight de-
cay of 10−5.

• Batch size: Both 16 and 8 batch sizes were tried,
and although the difference was not really signif-
icant, a batch size of 8 gave overall better results.
Higher batch sizes could not fit the GPU memory
for the fusion models.

• Early stopping: The models were trained without
a limitation of epochs, but with an early stopping
method monitoring the training over the validation
loss with a patience of 10 epochs.

3.5.3. Data augmentation
Basic data augmentation was applied while training

using the PyTorch DataLoaders. The transformations
used were reduced to random orientations and random
flips of the images and their corresponding masks. Ran-
dom cropping and contrast changes were tried but did
not provide better results.

3.6. Evaluation Metrics

3.6.1. Intersection over Union
The intersection over union (IOU) illustrated in Fig-

ure 11, is an index ranging between 0 and 1 computed
by dividing the intersection area by the union of areas
of two bounding boxes.
This metric was used to evaluate the ROI detection per-
formance.

Figure 11: IOU

3.6.2. Dice Score
The Dice score (DSC) is the most frequently used

metric for semantic segmentation evaluation. Consid-
ering GT as the ground truth area and S as the predicted
area, the DSC is calculated as follow :

DS C =
2|GT | ∩ |S |
|GT | + |S |

Dice score was used to evaluate the segmentation per-
formance for the two classes (cavity and myocardium),
but it also provided information about the registration
performance by calculating the DSC between the DE
mask and the new CINE mask.

4. Results

This section is divided in three parts. The first part
showcases the results of the LV ROI detection while the
second part is dedicated to the registration results. The
third part of the section is the main part of the work, it
will focus on showing the segmentation results of the
left ventricle on both CINE and DE modalities accord-
ing to the fusion strategies.

4.1. ROI detection results
Table 1 displays the IOU measurements on the test

set for both modalities (DE and CINE), obtained using
Mask-RCNN to localize the heart region (specifically,
the LV) :

IOU

CINE 0.921
DE 0.916

Table 1: Intersection over union results on the test set

Some of the visual results of the bounding boxes
for both modalities are shown in Figure 12 for CINE
modality and Figure 13 for DE modality. The blue cor-
responds to the predicted bounding box by the Mask
R-CNN, as for the green color, it corresponds to the
ground truth bounding box taken from the GT masks.

4.2. Registration results
The DSC was used for the registration evaluation.

The Dice score is calculated between the CINE mask
and the DE mask for both classes (Left ventricle cavity
and the myocardium). Table 2 displays the results
of DSC before and after the registration. A definite
improvement is observed after the translation.

Before After

CV 0.52 0.84
MYO 0.24 0.65

Table 2: DSC score before and after registration - CV : left ventricle
cavity, MYO : myocardium.

Figure 14 shows the overlaying of the CINE masks on
the DE images before and after the registration on two
cases, one per line. We can see that after the registration
process, the CINE mask became corresponding to the
DE image, independently of the initial displacement.
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Figure 12: Mask R-CNN ROI detection on CINE modality(Apex slice- Middle slice - Basal slice), Green color refers to the GT and Blue to the
predicted bounding box

Figure 13: Mask R-CNN ROI detection on DE modality(Apex slice - Middle slice - Basal slice), Green color refers to the GT and Blue to the
predicted bounding box

Figure 14: CINE mask applied on DE images after and before reg-
istration for two different initial displacements - Red: left ventricle
cavity, Green: myocardium.

4.3. Segmentation results

This section will showcase the results of the differ-
ent experiments, starting from the segmentation results
using single modality (CINE and DE) to the different
fusion strategies with and without registration. Finally,

the last experiment studies the impact of an ideal ROI
detection.
We will emphasize on the DE segmentation results over
the CINE modality as it is the main modality of interest
in our work.

4.3.1. Single modality
The first two experiments were consists in using the

conventional U-Net for the segmentation of both DE
and CINE modality separately. Mean Dice score and
standard deviation results are shown in Table 3.
These results will be used for comparison purposes in
the next section.
The acronym ”CV” refers to the left ventricle cavity, and
”MYO” to the myocardium.

Validation Test

CINE CV 0.95 ± 0.02 0.95 ± 0.02
MYO 0.85 ± 0.03 0.83 ± 0.04

DE CV 0.94 ± 0.02 0.90 ± 0.05
MYO 0.84 ± 0.04 0.77 ± 0.10

Table 3: Mean Dice score and standard deviation (std) for sin-
gle modality segmentation - CV : left ventricle cavity, MYO : my-
ocardium.

From Table 3, we can observe that the results on the
validation set are close for CINE and DE MRI. How-
ever, the drop of performance is considerably higher in
the test set for DE MRI.
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4.3.2. multi-modal segmentation
Similar training experiments were conducted on

the non registered dataset using the five different
fusion models.Results of the mean 3D Dice score and
its corresponding standard deviation can be found in
Table 4 for the validation set, and Table 5 for the test set.

The same experiments were made using the regis-
tered dataset. Results of mean DSC and its standard
deviation for the five different fusion approaches are
shown in Table 6 and Table 7, for validation and test
sets respectively.

For the first group of experiments exploiting non
registered data, FOUNet obtained the lowest Dice
scores among all the fusion methods.
On the test set, DE Dice score is 0.63 ± 0.26 for the
cavity and 0.57 ± 0.10 for the myocardium. The best
performance was achieved by DualUNet, an intermedi-
ate fusion strategy, reaching a DE Dice score of 0.91 ±
0.05 for the cavity and 0.78 ± 0.10 for the myocardium.
DualUNet is followed by SSMAUNet and LFUNet that
were very close to the best model in terms of qualitative
results.

From Table 6 and Table 7, we can observe the impact
of the registration on the segmentation results. The
performance of FOUNet encountered a considerable
jump after registration. The DE Dice score went up
to 0.90 ± 0.05 for the cavity, 0.71 ± 0.06 for the
myocardium. Correspondingly with the first group
of experiments, DualUNet obtained again the best
qualitative results considering both mean Dice score
and standard deviation with 0.93 ± 0.03 for the cavity,
and 0.81 ± 0.06 for the myocardium. On every model,
registration helped to increase the accuracy and robust-
ness of the segmentation, as is best observed on the test
set scores.

Even though the results of the models LFUNet, Du-
alUNet and SSMAUNet are very close, the selected
model used for additional qualitative results display, and
comparisons is DualUNet as it holds the highest perfor-
mance overall, and for both modalities.
Figures 15, 16 and 17 show segmentation masks pro-
duced by DualUNet overlayed on the DE images and
with the corresponding ground truths. The figures dis-
play different examples from low performance to high
performance. In addition, different regions of the heart
are selected : apex slices (Figure 15) , middle slices
(Figure 16) and basal slice (Figure 17).

To further investigate the potential advantage of
multi-modal data on the myocardium segmentation on
delayed enhancement MRI, we selected cases with less
than 0.70 of DSC to isolate the worst cases on the single
modality.

Figure 15: DualUNet results on DE apex slices according to perfor-
mance, Green: left ventricle cavity, Red: myocardium.

Figure 16: DualUNet results on DE middle slices according to perfor-
mance, Green: left ventricle cavity, Red: myocardium.
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FOUNet FIUNet LFUNet DualUNet SSMAUNet

CINE CV 0.69 ± 0.20 0.93 ± 0.03 0.95 ± 0.02 0.95 ± 0.01 0.95 ± 0.01

MYO 0.66 ± 0.06 0.80 ± 0.05 0.85 ± 0.03 0.85 ± 0.03 0.85 ± 0.03

DE CV 0.70 ± 0.25 0.93 ± 0.03 0.94 ± 0.02 0.95 ± 0.02 0.95 ± 0.02

MYO 0.64 ± 0.09 0.79 ± 0.05 0.84 ± 0.04 0.85 ± 0.03 0.85 ± 0.04

Table 4: Validation set mean DSC and std results for multi-modal segmentation without registration - CV : left ventricle cavity, MYO : myocardium.

FOUNet FIUNet LFUNet DualUNet SSMAUNet

CINE CV 0.74 ± 0.15 0.93 ± 0.02 0.94 ± 0.02 0.95 ± 0.01 0.95 ± 0.01

MYO 0.64± 0.06 0.77 ± 0.07 0.82 ± 0.05 0.83 ± 0.04 0.82 ± 0.04

DE CV 0.63 ± 0.26 0.88 ± 0.06 0.90 ± 0.06 0.91 ± 0.05 0.91 ± 0.05

MYO 0.57 ± 0.10 0.69 ± 0.12 0.75 ± 0.12 0.78 ± 0.10 0.77 ± 0.12

Table 5: Test set mean DSC and std results for multi-modal segmentation without registration - CV : left ventricle cavity, MYO : myocardium.

FOUNet FIUNet LFUNet DualUNet SSMAUNet

CINE CV 0.90 ± 0.03 0.94 ± 0.02 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01

MYO 0.79 ± 0.05 0.81 ± 0.04 0.84 ± 0.03 0.85 ± 0.03 0.85 ± 0.03

DE CV 0.92 ± 0.03 0.92 ± 0.03 0.94 ± 0.02 0.95 ± 0.02 0.95 ± 0.02

MYO 0.78 ± 0.06 0.80 ± 0.07 0.85 ± 0.04 0.86 ± 0.04 0.86 ± 0.04

Table 6: Validation set mean DSC and std results for multi-modal segmentation with registration - CV : left ventricle cavity, MYO : myocardium.

FOUNet FIUNet LFUNet DualUNet SSMAUNet

CINE CV 0.91 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.95 ± 0.01 0.95 ± 0.01

MYO 0.78 ± 0.04 0.79 ± 0.06 0.82 ± 0.04 0.83 ± 0.03 0.83 ± 0.04

DE CV 0.90 ± 0.05 0.90 ± 0.05 0.92 ± 0.04 0.93 ± 0.03 0.93 ± 0.04

MYO 0.71 ± 0.06 0.75 ± 0.12 0.80 ± 0.06 0.81 ± 0.06 0.80 ± 0.09

Table 7: Test set mean DSC and std results for multi-modal segmentation with registration - CV : left ventricle cavity, MYO : myocardium.

Table 8 shows the Dice score performance on the 2
worst cases, using single modality (U-Net) and Du-
alUNet (as it is the selected model). As can be seen,
with the DualUNet segmentation, the Dice score of the
myocardium went from 0.63 to 0.72 for case 1, and from
0.51 to 0.70 for case 2.

Case 1 Case 2

Single CV 0.88 0.84
MYO 0.63 0.51

multi-modal CV 0.92 0.91
MYO 0.72 0.70

Table 8: Dice score for the two worst cases using U-Net and Du-
alUNet - CV : left ventricle cavity, MYO : myocardium.

Representative visual results of these two hard cases,
for both single modality and DualUNet, can be seen in
Figure 18 for case 1, and in Figure 19 for case 2.

Figure 20 illustrates the box-plots for the my-
ocardium Dice scores on the test sets, on all the five fu-
sion strategies in addition to the single modality model
(U-Net). From the distributions, we observe that the in-
termediate fusion models are more robust, particularly
DualUNet where the mean is the highest, and the vari-
ation is the lowest among all the models. FOUNet has
the worst results in terms of Dice values, however the
length of the box-plot is shorter than the one of single
modality, which is a marker of more robustness.

As stated before, the CINEDE dataset contains cases
of different pathologies. Even though not all of them
are included in the test set, we summarized in Table
9 the average Dice score obtained with single modal-
ity and DualUNet according to the existing pathologies
in the test set. We notice that the performance on the
normal and myocarditis cases is quite similar for both
models. However, with DualUNet, there is a consider-
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Figure 17: DualUNet results on DE basal slices according to perfor-
mance, Green: left ventricle cavity, Red: myocardium.

Figure 18: Single and multi-modal segmentations for Case 1, Green:
left ventricle cavity, Red: myocardium.

able increase in the cases of MI, particularly in the my-
ocardium Dice score that goes from an average of 0.72
to 0.78. We can also observe a slight improvement of

Figure 19: Single and multi-modal segmentations for Case 2, Green:
left ventricle cavity, Red: myocardium.

the cavity segmentation in case of dilated cardiomyopa-
thy (CMD).

Normal MI CMD Myo-C

Single CV 0.96 0.89 0.90 0.95
MYO 0.87 0.72 0.80 0.86

DualUNet CV 0.95 0.92 0.93 0.95
MYO 0.86 0.78 0.80 0.87

Table 9: Average Dice score according to existing pathologies in the
test set, with CMD refering to dialted cardiomyopathy, MI to myocar-
dial infarction and Myo-C to myocarditis - CV to left ventricle cavity
and MYO to myocardium

Segmentation after ROI detection :

The last experiment was made to explore the poten-
tial performance improvement when limiting the area of
the interest to the left ventricle region. We selected Du-
alUNet according to the previous results for this part.
For ROI detection, two trials were run :

• Using ideal ROIs extracted from the groundtruth
with a margin of 10% dedicated to fully preserve
the edges.

• Using ROIs extracted from Mask-RCNN, with a
15% margin.

In both trials, resizing the ROI into 256 x 256 makes
the image too pixelated. Thus, we resized the ROI to
128 x 128 and completed with zero padding to recover

14.15



Fusion strategies for multi-modal left ventricle segmentation 16

Figure 20: Box-plot illustrating the distribution of the myocardium Dice scores on the test set for all models

the model input size of 256 x 256.
Figures 21 and 22 show the input images after an ideal
ROI detection and Mask R-CNN ROI detection respec-
tively. These figures also demonstrate that when us-
ing Mask R-CNN the cropped heart region may vary
between CINE and DE modalities for the same case.
These variations occur also within the DE slices and the
CINE slices of a same volume.

Ideal ROI Mrcnn ROI

CV 0,94 ± 0.04 0.91± 0.04
MYO 0.86 ± 0.04 0.78± 0.07

Table 10: UNet test set Dice score results using ideal and Mask R-
CNN ROI - CV : left ventricle cavity, MYO : myocardium.

Ideal ROI Mrcnn ROI

CINE CV 0.96 ± 0.01 0.94 ± 0.01
MYO 0.86 ± 0.01 0.83 ± 0.03

DE CV 0.94 ± 0.03 0.91± 0.04
MYO 0.86 ± 0.04 0.79± 0.08

Table 11: DualUNet test set Dice score results using ideal and Mask
R-CNN ROI - CV : left ventricle cavity, MYO : myocardium.

Table 10 shows the Dice scores obtained on the test
set with the single modality (DE), when using both ideal
ROI and Mask R-CNN detected ROI. Additionally, Ta-

Figure 21: Example of DE and CINE slices with ideal ROI detection

Figure 22: Example of DE and CINE slices with Mask R-CNN ROI
detection

ble 11 summarizes the test set results for both CINE
and DE images. These latter results show an improve-
ment of performance when using an ideal ROI, but this
does not apply to the results using Mask R-CNN ROI
detection. Moreover, the DualUNet seems to have very
similar results with the single modality approach , im-
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plying that intermediate fusion has a similar effect on
DE segmentation than a pre-localization of the heart.

5. Discussion

In this work, we investigated several fusion strategies
of CINE and DE MRI for left ventricle (LV) segmenta-
tion. The first experiments aimed at providing reference
results when segmenting both CINE and DE separately
using the conventional U-Net. From Table 3, we can
see that the overall performance was similar on DE and
CINE for the validation set, however, for the test set, the
Dice score on DE dropped significantly by 5% for the
cavity and 7% for the myocardium compared to the val-
idation. We also note that the standard deviation is sig-
nificantly higher for the DE modality. These first results
imply that a good generalization is harder to achieve on
the DE modality than the CINE, using data provided
from the same exams. This is may be due to a higher
variability in the DE images because for example of
the presence of myocardial infarction. This established
generalization ability difference can be considered as a
valid motive to use multi-modal fusion strategies to per-
form DE left ventricle segmentation.

Given the differences between the DE slices and their
corresponding CINE slices, such as slices orientation
but mainly different displacements of the heart region
on the images. We conducted experiments on five
different fusion strategies using the CINEDE dataset
before and after registration. Table 4 and Table 5 sum-
marized all the results of the five fusion strategies on
the non registered CINEDE. Output fusion (FOUNet)
gave the worst results among all methods, followed by
the input fusion (FIUNet). Their efficiency however,
improved using the registered dataset, especially when
it comes to FOUNet (Table 6 and Table 7). This can
be explained by the fact that in output fusion, there are
two independent segmentation paths, as the fusion of
the two modalities is made at the last step through a
single and last convolution operation. Consequently,
if the positions of the heart do not correspond on both
modality, the network will tend to produce confusing
segmentation masks. As the variation of the heart
placements from both modalities is not controlled, the
underlying relation between the two modalities would
be harder to exploit with the output fusion scheme.
In addition, we attest that the registration impact is
notable for all other methods but less significant than
for the output fusion. Overall , we can conclude that
applying registration on the Dataset before training
leads to producing better segmentation results, and
more particularly, to a better generalization.

Comparing the different strategies, we find that the
performance of the output fusion is very close but less
good than the one of the input fusion. This finding con-
tradicts the study (Zhou et al., 2019) that implies that

fusion at the output would more frequently be a better
strategy than the fusion at the input, considering that in
this case we have separate CNN expert on each modal-
ity, and that the second modality comes as additional ex-
ternal information. This contradiction may come from
the misalignment of the information between the two
images.

Additionally, both simple fusion strategies (i.e. input
and output fusions) lead to worse performance than
single modality. However, this does not imply that the
information of the CINE in this case is not relevant for
the segmentation task of DE but rather that it is not
straightforward. Based on the higher results of ideal
ROI segmentation (Table11), where a nearly perfect LV
localization is used, and on the results summarized in
Table7, improving the registration can be considered in
order to improve the results for fusion models, includ-
ing simple fusion strategies. However, a non rigid or
a deformable registration would not be a wise choice
from a clinical point of view. Hence, the main lead
for such improvement come to improving the local-
ization and adding data augmentation to reduce outliers.

According to both Table 6 and Table 7, the interme-
diate fusion models DualUNet and SSMAUNet and
the fusion at the encoder level LFUNet outperformed
the simple fusion strategies. This is in agreement
with the work previously done (Zhou et al., 2019) and
(Y.Zhang et al., 2021) which demonstrated that a layer
level fusion is more effective and robust than input
and output fusions. Furthermore, these models often
gave better results than the single modality. For the
best selected model DualUNet, the mean Dice score is
better than the single modality for both validation and
test sets. On top of that, the standard deviation of the
myocardium DSC is lower for DualUNet. From the
latter results, we can point out that the addition of the
CINE MRI may bring more generalization ability and
stability to the segmentation task. However, further
experiments should be run to conclude on this.

In general, whether it is the single modality or multi-
modality strategy, the hardest cases of DE myocardium
segmentation are the ones including a myocardial in-
farction. Because of their strong clinical interest, these
cases are especially taken into consideration. According
to the results in Table 8, the best multi-modal strategy
(DualUNet) seems to improve the performance on the
worst cases (we note that both cases are MI cases). We
can observe from the box-plot figure that overall, the
performance of the myocardium segmentation is more
robust in DualUNet than in the conventional U-Net.
These latter results are promising and they indicate that
by adding the CINE information, the myocardial border
tends to be better detected, particularly in case of MI.
This would coincide with the hypothesis made as the
research motive of this study
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From Table 9, we notice an improvement of my-
ocardium segmentation in case of MI with DualUNet.
Thus, we can conclude that multi-modality tends to help
the myocardium segmentation in presence of MI. Ad-
ditionally, according to the same table, multi-modality
potentially helps the left ventricle cavity segmentation
in case of dilated cardiomyopathy, which is a pathology
that changes the heart shape.
In this work, the split of the data was made according to
available information on pathologies but since we now
had recovered the information for all the cases, a more
balanced split of the data is intended for future experi-
ments.

Finally, in the last experiment, results with ideal ROIs
found in Table 10 and Table 11 show a robustness im-
provement. Indeed, the Dice score rises up to 0.86 for
the myocardium on the test set. However, it has to be
duly noted that these scores were calculated with re-
spect to the cropped images, hence the average Dice
is expected to drop going back to the original resolu-
tion. Furthermore, unlike the case with whole images
as inputs, results from single and multi-modal strate-
gies seem to be more or less similar in terms of av-
erage Dice and standard deviations. Additional trials
need to be made to conclude solidly on this point. On
the other hand, results using the Mask R-CNN detected
ROIs did not improve the results, on the contrary the
average Dice score dropped slightly from the whole im-
ages trial. As we can see in Figure 21 and Figure 22 ,
the ROIs detected on DE and CINE may not represent
the exact same heart region (unlike ideal ROIs taken
from the ground truth). This could be a significant factor
in the drop of the segmentation performance compared
to ideal ROIs segmentation. Finally, results using Du-
alUNet on the whole images are not that far behind the
results obtained on ideal ROIs. This would suggest that
multi-modality could help to better localize the heart in
the segmentation task, and replace the step of LV local-
ization. Future work will focus more on this particular
part. Optimizing the Mask R-CNN ROI detection and
using different resizing methods using ROIs are poten-
tial changes.

In all the experiments made, the evaluation relied on
the average Dice score and its standard deviation on top
of visual results. Dice score is a reliable measure, espe-
cially when it comes to strategies comparisons, yet it is
interesting to introduce a more local measure such as the
Hausdorff distance (HD) to better evaluate the resulted
automatic delineation.

6. Conclusions

This work was conducted in order to use two MRI
modalities for DE segmentation improvement , there-
fore the evaluation was made on a private new dataset.
The clinical use of the CINE segmentation led the re-
search to focus on a multi-task segmentation. DualUNet

gave promising results in both DE and CINE segmenta-
tion, as the metrics of the validation set are comparable
to those found in the literature. Moreover, DualUNet
seems to improve the segmentation of the myocardium
particularly in MI cases. For the myocardium segmen-
tation on DE, DualUNet achieved 0.86 mean DSC when
the state of the art from the EMIDEC challenge (using a
dataset of 150 patients) is at 0.879. However, this latter
result dropped notably on the test set. This drop could
be explained by the limited amount of data, and the het-
erogeneity of the CINEDE dataset, as the dataset con-
sists of several pathological cases in addition to normal
ones, in opposite to the EMIDEC dataset that includes
only normal and MI exams.

Presence of MI in the DE images make the my-
ocardium segmentation more challenging. In addition,
there is a significant presence of noise and other arti-
facts due to the acquisition. In order to improve the re-
sults, data augmentation can be further investigated by
introducing synthetic cases of MI produced from mod-
ifications of normal cases among the dataset. Overall
performance improvement is a part that we want to look
into as well, by making modifications on the base U-Net
architecture. 3 D and 2.5 D models are also potential
modifications that we would like to inspect in our future
work.
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Pennec, X., Sermesant, M., Isensee, F., Jäger, P., Maier-Hein,
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Abstract

Even though dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is the most sensitive modality
for detecting breast cancer, there is no artificial intelligent system currently available in clinical practice that supports
the radiologist by augmenting accuracy and increasing productivity. In this dissertation, we propose a three stage
pipeline capable of detecting malignant lesions with high sensitivity at a low number of false positives. At the first step,
fibroglandular and fatty tissue are segmented by 3D U-Net and UNETR architectures for performance comparison.
The output volumes are then used to report the density values and mask the breast area in the second stage. In this
step, a Retina-Unet is implemented to detect malignant lesion candidates on the relative enhancement volume. Finally,
the classification stage utilizes information from other sequences in breast MRI to assign a probability of malignancy
for each candidate, also working as a false positive reduction method. The use of a ResNet18 or Vision Transformer
pre-trained in a Self Supervised Learning approach is discussed at this stage. Overall, the pipeline achieves a CPM
score of 0.932(0.89-0.964), outperforming the previously proposed methods on a similar dataset. This exploratory
work provides the basis for the development of an automatic CADe system that could be clinically deployed.

Keywords: DCE-MRI, Segmentation, Detection, Classification, Density, U-Net / UNETR, Retina-Unet, ResNet18,
ViT, SSL, Occlusion sensitivity

1. Introduction

Cancer is a leading cause of death worldwide, ac-
counting for nearly one in six deaths. According to the
World Health Organization (WHO), breast cancer is the
most common type of cancer in women with a total of
2,261,000 cases and 685,000 deaths worldwide in 2020
(Sung et al., 2021). Breast cancer occurs because of the
abnormal growth of cells in the breast. The malignant
tumors (cancerous) can be in-situ or invasive carcinoma.
Ductal carcinoma in situ (DCIS) solely affects the mam-
mary duct lobule system and remains confined to the
layer of cells where it began. But the most harmful type
of breast cancer, invasive carcinoma, can spread to other
organs (Nassif et al., 2022). The benign tumors are a mi-
nor change in the breast structure (non-cancerous) that
does not metastasize.

To avoid complications, it is vital to discover breast
cancer early and correctly diagnose whether a tumor is
benign or malignant. Medical imaging screening pro-
grams play a major role in reducing mortality and en-

abling easier treatment by detecting breast cancer be-
fore the symptomatic phase. Furthermore, imaging is
also critical for breast cancer diagnosis, treatment and
evaluation.

Digital mammography (DM) is the most popular
breast imaging technique based on X-rays. It is a fast
and easy technique, however, it suffers from the prob-
lem of tissue superposition. Especially in dense breasts
with a high percentage of fibroglandular tissue (FGT),
there are high chances that superposition of FGT hides
or mimics lesions. As described in Mann et al. (2019b)
for women with dense breasts, up to 50% of cancers are
interval cancers, which means that they are detected in
between screening rounds. This is significantly higher
than the percentage in the general population.

High-risk patients are more likely to develop the dis-
ease earlier in life and are thus screened at a younger
age when breast tends to be denser. Given that masses
are more likely to be missed by mammography in this
case, a more sensible imaging technique is needed for
these patients.
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Figure 1: Components of a non fat suppressed breast MRI protocol. In general, there is a non-contrast enhancement T2w and diffusion-weighted
imaging, but in some cases for screening, this protocol may be abbreviated and one or both of them are not acquired. Regardless of the situation, a
T1w and the contrast-enhanced series is acquired.

Dynamic Contrast-Enhanced Magnetic Resonance
Imaging (DCE-MRI) evaluates the permeability of
blood vessels by using gadolinium as an intravenous
contrast agent. The phenomenon behind contrast ab-
sorption by the cancer tissue is related to angiogenesis,
a physiological process of the formation of new vessels.
Since cancer tissue needs nutrients to grow quickly,
it has a different vessel structure with highly perme-
able capillary walls and increased vascularity. When
the tissue takes up the contrast agent, the T1 relax-
ation time shortens leading to a rapid local enhance-
ment. As shown in Figure 1, during 5-7 minutes after
the contrast administration, a series of T1 volumes are
obtained (usually 3 to 5 post-contrast volumes) as the
change of the signal intensity through time gives infor-
mation about the type of lesion. A persistent increase is
most commonly seen in benign lesions, whereas a de-
crease in the late phase is related to malignant lesions
(washout). The common practice is to classify signal in-
tensity curves in the late phase into 3 types: type 1 (per-
sistent), type 2 (plateau) and type 3 (washout). While
the basis relies on the T1-weighted sequence, breast
MRI has evolved into a multiparametric technique, in
which in some cases a T2-weighted and a diffusion vol-
ume (DWI) are performed. The contribution of T2-
weighted is still debatable as several studies have re-
ported that it improves specificity (Arponen et al., 2016)
while other researchers have questioned if this modal-
ity adds any benefit in routine breast MRI(Mann et al.,
2019a).

Although being a relatively expensive method and
requiring intravenous contrast administration, dynamic
contrast-enhanced (DCE) MRI is the most sensitive
modality for any type of breast cancer compared to DM,
digital breast tomosynthesis (DBT) and ultrasound with
similar specificity(Lehman and Schnall, 2005). Accord-
ing to Mann et al. (2019b), the sensitivity ranges be-
tween 81% and 100% in women with various risk pro-
files, which is approximately twice as high as the sensi-
tivity of DM. Aside from that, MRI is very effective in
detecting more aggressive and invasive tumors, which
are more relevant in the clinical field. The high sensi-

tivity is due to the fact that no breast cancer can grow
larger than 2 mm without forming new blood vessels
as the tumor needs to get enough nutrition to develop.
(Mann et al., 2019b).

The interpretation of a 4D dimensional volume as
a DCE-MRI scan is time-consuming and challeng-
ing. With an increasing number of patients undergoing
breast MRI, computer-aided detection (CADe) systems
that support the radiologist by decreasing interpreta-
tion time and oversight mistakes are required (Witowski
et al., 2022). As stated by Yamaguchi et al. (2013), in
the small dataset used in the study, more than half of the
MRI detected cancers could be detected on prior MRI.
Despite the significant impact of artificial intelligence
in breast cancer detection on DBT and DM, there is no
deployment in the clinical practice of an autonomous
breast cancer MRI detection pipeline to our knowledge.

1.1. Paper description

Our goal is to propose an innovative pipeline for
imaging interpretation of breast MRI examinations that
could increase safety and reliability in the future. This
means that the suggested method could be the basis for
an AI system that positively impacts the breast MRI
clinical practice. Our vision is to assist radiologists dur-
ing their examinations, by reducing the workload and
increasing the overall detection performance.

This study proposes a complete deep learning
pipeline of malignant lesion detection in non-fat sup-
pressed MRI, exploring both the DCE volumes and
extra sequences (T2 and ADC). As shown in Figure
2, the pipeline is divided into three stages: segmen-
tation, candidate detection and classification. For the
first part, the well-known 3D U-Net (Ronneberger et al.,
2015) and the 3D UNETR (Hatamizadeh et al., 2022)
were trained in a patch based approach and compared.
Having the breast segmentations, the volumes can be
masked and cropped, allowing less computational costs
for the rest of the pipeline and reducing false posi-
tives by removing detections outside the breast. The
3D Retina-Unet (Jaeger et al., 2020) architecture was
used for the candidate detection stage. Finally, in our
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Figure 2: General overview of three stage pipeline: segmentation, candidate lesion detection and classification of each candidate.

classification method, we implemented a 3D Resnet18
to classify each candidate lesion as either malignant or
non-malignant, and to examine the impact of the dif-
ferent modalities in the AUROC. Also, first registering
the volumes is considered as a way of correcting pa-
tient motion during the examination. In addition, we
made a different attempt to tackle this problem by using
a Vision Transformer (Dosovitskiy et al., 2020) with a
self-supervised pre-training method.

This paper is organized as follows. In Section 2, the
current scientific work on breast MRI is summarized.
The dataset and the networks used in each stage are de-
scribed in detail in Section 3. Section 4 and 5 present
the results and discussion, respectively. Finally, Section
6 summarizes the work.

2. State of the art

Because of the high dimensionality, the variety of
protocols and the motion artifacts, automated breast
cancer diagnosis in DCE-MRI is a difficult challenge
and an active area of research. Our work is based on
discoveries in the fields of segmentation, detection and
classification. Unfortunately, there is no benchmark for
comparing the best performing methods due to the lack
of a public complete dataset that includes normal stud-
ies, and the results vary considerably between the dif-
ferent private datasets. This section describes the state
of the art for segmentation, detection and classification
techniques used in breast DCE-MRI.

Gubern-Merida et al. (2014) segmented the breast
by automatically detecting body-breast and air-breast
surfaces, then FGT was segmented using expectation-
maximization. Dalmış et al. (2017) used a 2D U-net to
segment fatty tissue and FGT on axial MRI slices. A 2D
U-Net++ was implemented by Jiao et al. (2020) to gen-
erate breast masks. Due to lower memory requirements,
2D networks can benefit from a larger receptive field.
However, as they do not use 3D information, it is more

likely to have inconsistencies between different slices in
the segmentation. In a recent publication, a plug-and-
play tool for the state-of-the-art biomedical segmenta-
tion called 3D nn-Unet has been widely used. Huo et al.
(2021) implemented a two-stage approach with 2 nn-
Unet architectures: first segmenting the whole breast
(dice: 0.968) and secondly using the masked volume
to segment the FGT(dice: 0.877). Moreover, a single
3D nn-Unet with 3 classes was employed by Samperna
et al. (2022) obtaining dice scores of 0.96 and 0.92 for
the whole breast and FGT respectively.

Regarding MRI lesion detection, the existing meth-
ods fall into two main categories: segmentation or
bounding box prediction (or a fusion of them). Dalmış
et al. (2018) combined a 2D U-Net to generate a lesion
likelihood map with a local maxima algorithm to gen-
erate candidates followed by a classification obtaining
a CPM of 0.64, and Vidal et al. (2022) implemented
a 3D U-Net Ensemble with the same purpose. Zhang
et al. (2020) exploited a Mask R-CNN which outputs
the bounding boxes and the segmented tumors, and for
ultrafast DCE-MRI a modified 3D RetinaNet model that
operates on T1w sequences was implemented by Aya-
tollahi et al. (2021) leading to a CPM of 0.86.

Lastly, classification has been applied locally or glob-
ally. One example of the first would be the work of
Dalmış et al. (2018), who classified the subtraction can-
didates extracted from the detection also taking into
account the symmetry information of the contralateral
breast. Recently, Witowski et al. (2022) implemented a
ResNet18 to make a global classification per breast in
fat-suppressed studies, the input volume was the con-
catenation of the pre-contrast and 2 post-contrast se-
ries on the channel direction of the MRI study. They
achieved an AUROC of 0.920 on their internal dataset
for cancer diagnosis and generalized well on other fat-
suppressed datasets, claiming that it is possible to re-
duce benign biopsies by 20%.

Despite the multiple efforts in the segmentation, de-
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tection and classification fields for breast MRI, to our
knowledge there is no current application of such a
pipeline in clinical practice. Our goal is to design an au-
tonomous CADe that can set the basis of a commercial
product that works with radiologists to decrease false
positives and further increase sensitivity.

3. Material and methods

3.1. Dataset

The dataset used for this study was provided by Rad-
boud University Medical Center (UMC) Nijmegen. Af-
ter a manual inspection, we removed 6 cases due to ap-
parent errors in the annotations. The final dataset in-
cludes 570 studies of a total of 454 women screened
between 2011 and 2013 due to intermediate or high risk
of developing breast cancer. As shown in Table 1, it
consists of 173 normal and 397 abnormal scans from 77
and 377 patients, respectively.

The abnormal cases have a histologically sampled
(malignant or benign) finding in their breast MRI scan
or, based on MRI follow-up, have a lesion with no vis-
ible growth for at least one year later, which is consid-
ered benign. Inflamed cysts, lymph nodes, fibroadeno-
mas, adenosis and hamartoma are among the benign
lesion types included. The annotated benign lesions
were the ones consider difficult by radiologists, which
were cause of biopsy or follow-up. In other words,
there are exams with easily recognized benign lesions
that were not annotated. Due to this limitation of the
training data, our proposed method does not detect be-
nign lesions and concentrates on malignant tumors. The
dataset has bounding box annotations for each lesion as
sets of two 3D coordinates, but does not include infor-
mation about BIRADS score and pathological subtype,
it only has the classification between benign and malig-
nant. The number of lesions per exam varies from one to
five and a study can have malignant and benign lesions
at the same time. Except for a few cases, these stud-
ies contain a T1 weighted (T1w) pre-contrast, at least
three T1w post-contrast, a T2w and an ADC volume.
For the pre-contrast abnormal volumes, we have breast
tissue segmentations of FGT and fatty tissue coming
from a teacher network (3D nn-UNet) trained at Rad-
boud UMC (Samperna et al., 2022).

Besides these cases, there are 173 studies that were
considered normal, meaning no benign or malignant le-
sions were found during the examination and based on
MRI follow-up. For these scans, the segmentations, the
T2 and the ADC volumes are not available. In general,
these studies contain a T1w pre-contrast and at least
three T1w post-contrast.

All DCE-MRI volumes are axial non fat-saturated
gradient echo T1-weighted sequences. The studies
were performed using a 3T MR Siemens magneton
Trio/Skyra scanner with a 16-channel breast coil. The

acquisition parameters were T E = 1.71ms, TR = 5.5ms
and flip angle of 20. Voxel spacing for the DCE volumes
is 0.8 mm×0.8 mm×1 mm (axial direction) and volume
sizes are either 448×448×160 or 448×448×176 voxels
respectively. The volume size of ADC and T2 varies
but was reshaped to match the DCE spacing. An ex-
perienced breast radiologist supervised the annotation
process, and other breast imaging exams, radiological,
and histological reports were available for manually an-
notating 3D bounding boxes.

The 377 patients with abnormal cases were split in
training, validation and testing, following a 60, 20 and
20 percent random split. Those extra cases in which a
patient has multiple studies were added to the group in
which that patient belongs, resulting in 239/77/81 stud-
ies respectively. This was done to avoid having the
same patient in two different sets. The data split was
respected for the segmentation, the candidate detection
and the classification steps. The validation set is used
to choose the best checkpoint after training. For the
normal patients, a random scan split 66/26/81 was done
patient-wise for the classification step. As in the candi-
date detection stage the focus was achieving high sensi-
tivity, the normal scans were not used for training but all
of them were part of the test set for plotting the FROC
curve.

Patients Studies Tr. Val. Test. T2/ADC
Abnormals 377 397 239 77 81 Yes
Normals 77 173 66 26 81 No

Table 1: Summary of the internal dataset and the split in training,
validation and testing.

3.1.1. Manually generated segmentation dataset
At the final stage of the development of this project,

we received from Radboud UMC an unstructured MRI
dataset of pre-contrast images with manual segmenta-
tions of FGT and fatty tissue. After preparing the data,
we ended up with 73 cases in total originated from
more than one protocol and different annotators. Also,
the spacing and size of the volumes are not consistent.
Some volumes are complete, while others were cropped
around the breast zone. This dataset is only used for the
evaluation of our segmentation network on other distri-
butions of non fat-saturated MRI.

3.2. Method
In order to simplify the process of automatically de-

tecting breast cancer in DCE-MRI, we divided it into
three steps as presented in Figure 2. In summary, we
segment the breast tissue, detect candidates of malig-
nant lesions and finally classify each detection individ-
ually. This allows to have a better understanding of how
the implementation works, improve or modify steps in-
dependently and use different input information accord-
ing to the needs of each section.
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3.2.1. Tissue segmentation

The first stage of the pipeline consists of the seg-
mentation of the FGT and the fatty tissue from the pre-
contrast images. The goal is to be able to focus the de-
tection and classification part on the breast area and be
able to output the breast density. For this task, we com-
pared the performance of a well-known 3D U-Net (Ron-
neberger et al., 2015) with a UNETR architecture devel-
oped by Hatamizadeh et al. (2022), who demonstrated
that UNETR has a better capability of learning long-
range dependencies than vanilla U-Net architectures, by
validating its effectiveness on different volumetric seg-
mentation tasks in CT and MRI modalities.

We used a standard 3D U-Net with skip connections
of 5 levels of depth with feature maps of 32, 64, 128,
256 and 512. On the encoder, we applied 2 convolu-
tions per level with kernel size = (3 × 3 × 3), followed
by one max pooling with kernel size = (2 × 2 × 2) and
stride of 2 to downsample the features at each level. For
the decoder, we applied 2 convolutions per level with
kernel size = (3 × 3 × 3) and one transpose convolution
with kernel size = (2×2×2) and stride of 2 to upsample
the feature map. Instance normalization, dropout of 0,2
and LeakyRelu as activation function were also used.
The explained architecture has a total of 22M parame-
ters.

Alternatively, as depicted in the Figures 3 and 4, UN-
ETR is a more complex architecture with 96M param-
eters that utilizes a transformer as encoder to learn se-
quence representations of the input volume and effec-
tively capture the global multi-scale information, while
also following the successful “U-shaped” network de-
sign for the encoder and decoder. The transformer en-
coder is directly connected to a decoder via skip con-
nections at different resolutions to compute the final se-
mantic segmentation output. We used the default imple-
mentation from the authors taking advantage of the CT
pre-trained weights from the BTCV challenge. These
weights were transferred to our network, just leaving
random weights in the last output layers. A dropout of
0.2 is used for the encoder Vision Transformer. To our
knowledge, this is the first time a transformer network
is applied to breast MRI.

We followed the same training and inference proce-
dure for both architectures. We used a weighted aver-
age between cross-entropy and dice score as loss func-
tion. Cross entropy has better properties for the gradi-
ents which makes the training more stable, while dice
is the actual goal of our segmentation. After hyperpa-
rameter tuning, we used for both architectures a learn-
ing rate of 10−4 and weight decay of 10−5. We trained
with the pre-contrast volumes on three classes: back-
ground, fatty tissue and FGT. As we were also interested
in the whole breast mask, we easily calculated it using
the union between the fatty tissue and FGT. For a mea-
sure of breast density for each breast and for both, we

Figure 3: General overview of UNETR. After the image is resized,
the network is trained with patches of 96 × 96 × 96 that are divided
into subpatches of 16×16×16 which are the tokens of the transformer
projected into an embedding space.

resampled the image to 0.8 mm isotropic spacing with
nearest-neighbor approximation, counted the number of
voxels per class and computed the breast density as

Breast Density =
#FGT voxels

#FGT + #Fatty tissue
(1)

As a normalization technique, values from 0 to 320
were mapped to a range from 0 to 1 without clipping.
The values 0 to 320 were chosen after inspecting the
images and the range between 0 to 1 was selected in
order to use the UNETR pre-trained weights from the
BTCV challenge.

The 3D pre-contrast abnormal volumes were resam-
pled in order to have 1mm× 1mm resolution in the axial
plane and 1.5mm in the axial axis. Therefore, input im-
ages were downsampled to increase the receptive field
of the network without increasing the computational
complexity. Rotation, flipping and intensity augmen-
tations (contrast adjustment, scaling and shifting) were
used with a probability of 0.3 each. Both networks were
trained with random patches of 96 × 96 × 96 and a slid-
ing window approach was used at inference time. We
decided to apply overlapping windows (Figure 5) and
compute a weighted average of the predictions giving
more importance to the voxels in the center of the patch
than in the borders (following a Gaussian weighting).
The overlap is a hyper-parameter for inference time that
indicates the amount of overlap between patches for the
sliding window approach.

A post-processing pipeline was implemented to refine
the segmentation results. It includes filling operation,
separating both breasts, finding the two main connected
components, reshaping and saving the images. The pre-
diction labels are:
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Figure 4: Architecture of UNETR. It resembles the “U-shaped” of U-Net with the encoder and decoder. In U-Net the encoder is convolutional,
while UNETR uses a fully transformer encoder whose output tokens are reshaped with deconvolution layers.

Figure 5: Sliding window approach with overlapping patches (i.e.
80%) for inference time. Predictions are averaged giving more weight
to the voxels closer to the center of the patch.

• Background: 0

• Right breast FGT: 1

• Left breast FGT: 2

• Right breast fatty tissue: 3

• Left breast fatty tissue: 4

It is worth mentioning that the ground truth segmenta-
tions coming from the teacher network did not use this
post-processing. Therefore, the breasts are not sepa-
rated between right and left breast and can contain more
or less than two connected components.

3.2.2. Candidate detection
The main goal of this stage is to find candidate lesions

with high sensitivity, considering that the final classifi-

cation step works as a false positive reduction method.
This subsection explains how the dataset was utilized,
the necessary improvements to the bounding box anno-
tations, the architecture employed, and the outputs.

Input volume and normalization
In breast cancer in MRI, the relative enhancement

volume is defined as

Relative enhancement volume =
Post − Pre

Pre + ε
. (2)

Post stands for the first non-registered post-contrast
volume and Pre for the pre-contrast volume and the
variable ε = 10−7 is for numerical stability. The relative
enhancement volume is usually used for finding lesions,
and in this case, it is masked and cropped with the pre-
viously obtained segmentation mask of the breasts. In
order to avoid skin artifacts, the segmentation mask is
eroded with a circular structural element with radius of
2.

The detection approach is trained on the relative en-
hancement volumes of abnormal cases to detect all can-
didate lesions, regardless of being malignant or benign.
As it is known that more information than a subtraction
volume might be needed to differentiate between these
two types of candidates, both of them are included in
a single positive class at this stage. This decision was
made to increase the sensitivity of malignant lesions.
For this stage, normal cases are only used as a test set to
calculate the performance.

Annotation’s variability
A drawback of our dataset is the high intra and inter

variability of the bounding boxes. As seen in Figure 6,
in some cases, the annotations seem to be larger than the
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Figure 6: Examples of bounding box annotations. In some cases, they
are much bigger than the lesion or contain several lesions.

Figure 7: Left to right: result of automatic segmentation of the lesion
and final bounding box used for training.

lesion or they contain multiple lesions in one bounding
box. Therefore, it is not logical to expect the network to
return similar bounding boxes.

To reduce this variability, we decided to automati-
cally perform segmentations from the annotations and
generate new bounding boxes from these masks, this is
illustrated in Figure 7. The traditional method consists
in segmenting the tissue whose intensity values have in-
creased more than 100% (over 1 in the relative enhance-
ment) after the administration of the contrast agent. If
the segmented volume is smaller than a certain thresh-
old, we reduce the intensity increment percentage re-
cursively. We remove the small clusters according to 6
connectivity, but if all of them are small, we leave the
largest one. We also tried Otsu’s method (Otsu, 1979)
and adaptive thresholding, but according to our qualita-
tive interpretation, this simple strategy generates more
robust outcomes.

Architecture: Retina-Unet
Following the steps of Dalmış et al. (2018), we re-

trained our UNETR for lesion segmentation. To obtain
high sensitivity, a low threshold should be chosen on the
probability map that UNETR outputs, which leads to
low precision. Getting bounding boxes with a low num-
ber of false positives requires carefully designed hand-
crafted rules and ad-hoc heuristics when mapping back

Figure 8: The Retina U-Net architecture in 2D Jaeger et al. (2020). Pj
denotes the feature-maps of the jth decoder level, where j increases as
the resolution decreases.

to object-level scores. We concluded that it is better to
have a trainable approach that can be easily fine-tuned
and adaptable to different situations.

One architecture that satisfies our requirements is
Retina-Unet developed by Jaeger et al. (2020). It is
specifically designed for medical image object detection
with the ability to exploit the full pixel-wise supervision
signal. Specifically, we benefit from the segmentation
maps as an extra training task which in a way compen-
sates for the small dataset available. Hence, the network
is trained simultaneously through the segmentation and
the bounding boxes.

As Figure 8 describes, Retina U-Net fuses the Retina-
Net (Lin et al., 2017) one-stage detector with the U-
Net architecture which is widely used for semantic seg-
mentation in medical images. It is based on a Feature
Pyramid Network(FPN) with skip connections for fea-
ture extraction, where two sub-networks operate on the
pyramid levels P2-P6 for classification and bounding
box regression, and the top-down part of the FPN with
high-resolution levels is connected to the segmentation
head. The branches for classification and regression
are applied at 4 different scales and they share weights.
For the classification head, it uses online hard negative
mining with cross-entropy (CE), for the segmentation
(CEloss + Diceloss)/2 and for the bounding box regres-
sion L1. The total loss is the sum of these terms.

Retina-Unet is not maintained anymore by the au-
thors as it is included in the framework nnDetection
(Baumgartner et al., 2021). This is a self-configuring
framework, but the main disadvantage is its extra com-
plexity which makes it difficult to modify the architec-
ture. As we are interested in a more flexible option,
we decided to upgrade the original 3D Retina-Unet im-
plementation of the authors by fixing libraries incom-
patibilities and solving CUDA errors in Non-Maximum
Suppression.

For training, all volumes are reshaped to isotropic 0.8
mm spacing in order to work with the highest resolution
among the three dimensions in the volume. Rotation
and scaling are used as data-augmentation techniques
and 3D patches of 96 × 96 × 96 or 128 × 128 × 128 are
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Figure 9: Example of the output of NMS and WBC for a cluster of
three detections. The final prediction box and score are shown in
green.

used for training. Using a ResNet50 backbone for FPN,
anchor cubes of 8,16,32,64 with aspect ratios of 0.5, 1,
2 for the corresponding pyramid levels P2, P3, P4, P5.
Weight decay is used as a regularization technique.

At inference time, overlapping 3D patches are em-
ployed in a sliding window approach. Building an en-
semble of the different checkpoints and data augmenta-
tion at test time are recommended by Jaeger et al. (2020)
as a way of improving accuracy and robustness. The
best checkpoints for the ensemble are selected accord-
ing to mean average precision performance in the val-
idation set. Rather than directly using Non-Maximum
Suppression (NMS) to obtain the final bounding boxes
from the detections, Weighted Box Clustering (WBC)
is applied. In this case, instead of selecting the high-
est scoring box in a cluster as with NMS, WBC com-
putes weighted averages per coordinate and a weighted
confidence score to output a final prediction box, which
has new coordinates and a new confidence score as in
the example in Figure 9. This calculation takes into
account the intersection over the union (IoU) with the
highest score inside a cluster, the area of each box, gaus-
sian weighting (down-weights prediction boxes close to
the borders of the patch), the scores and coordinates of
each box. Prior knowledge about the expected number
of predictions at a position from the ensemble, test time
augmentations, and patch overlap is also considered.

Performance and output
The Free-response Receiver Operating Characteris-

tic (FROC) curve is computed to evaluate the pro-
posed method. This curve displays the sensitivity versus
the average number of false positives per normal scan,
defining as a true positive when the IoU between the
predicted bounding box and the ground truth is higher
than 0.1 (default value for 3D medical imaging lesion
detection). At exam level, a scan is considered true pos-
itive if the network predicts at least one of the lesions
of that study. This metric is used to determine the best-
performing model. In general abnormal patients of our
dataset have only one lesion, the sensitivity per lesion is
comparable to the sensitivity per scan. Finally, an oper-
ating point with high sensitivity is determined by setting
a threshold on the score. The resulting detections are the
input of the false positive reduction classification step.

Malignants Benigns Normals
Training 214 78 317
Validation 81 23 127
Testing 68 32 308
Total 363 133 752

Table 2: Number of lesions per type and dataset split for the classifi-
cation approach. These are the ones that have at least a pre-contrast
and three post-contrasts. For different volume combinations that we
determine for training, these numbers can vary. The most significant
is that normals do not have T2 or ADC volumes, thus, if we decide
to include those, we will only use the abnormal volumes for training.
Also there can be some other minor changes in the quantities, for in-
stance, there are a few more examples if we considered cases with at
least only one than three post-contrasts.

3.2.3. Classification
Throughout this section, we explain the methodology

for using different registered or non-registered extra se-
quences (post-contrasts, T2 and ADC) with ResNet18
for the final classification. Furthermore, we describe the
use of Vision Transformers. For the classification stage,
three main experiments are carried out:

• The comparison between concatenating volumes
with or without registration using ResNet18.

• The additional value of each sequence in a DCE-
MRI study in terms of the classification perfor-
mance using ResNet18.

• The performance of a more flexible approach
as Vision Transformer when using non-registered
volumes.

Generating input volumes
In the previous step, we detect candidates of malig-

nant and difficult benign lesions (see 3.1) as the positive
class. Detections with a score over 0.25 enter the clas-
sification stage. As seen in Table 2, we added the labels
of malignant, benign or normal for each of them. The
annotated benign lesions in studies which also contain
malignant lesions are removed. We decided to use only
the detections for training instead of using the ground
truth patches. The main reason is for the network to re-
ceive the same input in training as at inference time. As
they are usually similar, we do not expect a significant
gain in also adding the ground truth patches at training
time.

The detection bounding boxes are on the subtraction
volume. Although the volumes are not perfectly aligned
due to patient movement during the procedure or differ-
ences in the modality acquisition as with diffusion im-
ages, we can estimate that the lesion should be found
in a similar position. As a result, we crop a window
of 64 × 64 × 64 around the center of the detection for
each original volume (Figure 10) and concatenate them
to form the input volume. It is important to highlight
that for the normal exams, the T2 and ADC volumes are
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Figure 10: From the center position of the detection a window of
64 × 64 × 64 is cropped from each volume. The resulting patches
are concatenated to generate the input volume.

not available (Table 1). As the bounding boxes output
by the network are accurate per lesion, they are usually
small and this window size is enough to cover the lesion
as well as some contextual information. The idea behind
using a fixed window size is to be able to do inference
with a constant voxel spacing.

Another approach is to first register the volumes us-
ing as the fixed image the pre-contrast and afterward
crop the 64 voxels wide windows. We use Elastix
(Klein et al., 2009) with an algorithm that combines
rigid and non-rigid B-splines transformations in a multi-
resolution scheme developed by Gubern-Mérida et al.
(2015). Stochastic gradient descent optimizer and mu-
tual information are applied. Grid spacing for the B-
splines is set to 160, 80 and 40 mm respectively for the
three resolutions. A coarse spacing is applied to reduce
the deformation of the lesions.

Each patch is normalized before concatenation. For
the DCE sequence, the intensities are divided by the
mean of the fatty tissue in the pre-contrast volume. For
T2w, the mean of the fatty tissue in the T2w volume is
used by applying the same segmentation mask from the
T1w pre-contrast (assuming they are perfectly aligned).
As the diffusion volume is intrinsically different, we
normalize it to the desired range of intensities by di-
viding by 1400. Because the ADC absolute intensity
values are the measure of a physical property, this sim-
ple mapping should not affect it.

Output values
In the last layer of both classification architectures,

the output of the two neurons goes through a Softmax
activation function and the value corresponding to the
positive class is interpreted as the probability of malig-
nancy (0 to 1), which is the classification score.

ResNet18
We used the pre-contrast, first post-contrast and last

post-contrast to do a quick search for the best CNN
architecture for our classification problem. For this,
we trained on the false positives detected on normals

and the true positive benign and malignant lesions.
We classified them into non-malignant and malignant.
The architectures that we examined were DenseNet121,
DenseNet201, SEResNet50, SEResNet101, ResNet18
and ResNet50, all of them in 3D. Without doing an in-
depth study, ResNet18 proved to be among the best per-
formers, so we decided to continue with this model as
in Witowski et al. (2022).

In addition, we implemented the necessary changes in
3D-ResNet18 to match the details describe in their pa-
per. Specifically, the 3D-ResNet18 has a max-pooling
layer before the linear classifier, batch norm, batch size
of 16, dropout of 15% in the fully connected layers,
weight decay as regularization and is trained with Adam
optimizer from scratch in all the cases. As data aug-
mentation techniques, we use flipping, random scale
and shift intensities, 90 degrees rotations in the axial
plane and random crops around the center (not neces-
sarily symmetric) with a minimum size of 483 that are
afterward resized into 643.

For the ResNet18 architecture, the different vol-
umes are concatenated in the channel direction, which
means that the input shape is [channels, 64, 64, 64] with
channels varying from 1 (only pre-contrast) to 6 (pre-
contrast, three post-contrasts, T2 and ADC). Basically,
different models are trained using various combinations
of DCE volumes as inputs. For normal patients the ADC
and T2 volume are not available, therefore, a different
model is trained to classify only between the benign and
malignant lesions using these extra sequences. The idea
of training these different models is to evaluate the extra
value of adding each sequence.

ResNet18 occlusion sensitivity
To see why the network makes a particular decision,

we compute the occlusion sensitivity (Zeiler and Fer-
gus, 2014) on numerous cases from our testing set. Our
main goal is to rule out biases in the dataset by verify-
ing that the model is concentrating on the lesion. We
occlude part of the image and see how the probability
of a given prediction changes. We then iterate over the
image, moving the occluded portion as we go, and in
doing so we build up a sensitivity map detailing which
areas are the most important for that decision. As im-
portant parts of the image are occluded, the probability
of classifying the image correctly will decrease. Hence,
more negative values imply the corresponding occluded
volume was more important in the decision process

Vision Transformer
Vision Transformer (Dosovitskiy et al., 2020) is a

modified Natural Language Processing transformer for
image classification without any convolutional layer.
An image is split into patches (16 × 16 × 16) and put
into a lower-dimensional embedding space. Information
about the relative position of the patch in the images is
added to each vector through positional embedding and
a learnable extra token is added to the entire sequence
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Figure 11: Self Supervised Learning for ViT through proxy task. The learned weights are transferred to the downstream task for the binary
classification.

of vectors to denote the class. The sequence of vectors
is fed to the standard Transformer encoder, which has
been modified with an extra fully-connected layer at the
end for classification.

Instead of concatenating the cropped volumes in the
channel dimension, we concatenate them in the axial
axis. By building relations between all the tokens, the
network learns how to relate the different sequences in-
ternally. This is due to the flexibility that the atten-
tion mechanism in Vision Transformers provides, while
CNNs have a more local receptive field. Therefore, this
architecture does not need registration which avoids the
downsides of this method: higher inference time, le-
sion deformation and in some cases registration does not
conclude in satisfying results.

However, the lack of inductive biases goes along with
a higher number of parameters can be challenging to
train with small datasets. To address this issue, a Self
Supervised Learning (SSL) method as a pre-training
task is applied. As indicated in Figure 11, the pre-
training pipeline uses augmentations to generate two
versions of the volume. There is a ViTAutoEnc that
tries to recover the initial volume for each of them. The
model is trained through reconstruction and contrastive
loss to learn a feature representation of the unlabeled
data.

3.2.4. Preliminary automatic report
Combining the three stages, a basic report is gener-

ated with the density information, the global score and
the detected lesions. The volumetric FGT percentage
is displayed for each breast and for both, together with
the segmentation mask. For visualization purposes the
probabilities of malignancy for each detection are mul-

tiplied by 100 and shown as a number between 0 to
100. The study’s global score (0 to 10) is calculated
by multiplying the highest bounding box probability of
that study by 10.

3.2.5. Statistical analysis
For the segmentation results, the dice scores are re-

ported with the standard deviations. Graphs and ta-
bles of detection and classification stages show the re-
sults with 90% confidence interval using bootstrapping
of 35 samples. To compare if one model is better than
the other, Wilcoxon one-tailed paired signed-rank test
(Wilcoxon, 1992) is used with a critical p value of 0.05.

3.2.6. Framework
The pipeline was implemented with Pytorch ver-

sion 1.10.2 and CUDA 11.3 on a Linux environment.
Pytorch-Lighting, Tensorboard and MONAI were used
with versions 1.5.9, 2.8.0 and 0.8.0 respectively. The
trainings were performed on a Nvidia Titan V GPU with
12GB of memory.

4. Results

4.1. Tissue segmentation
As previously stated, we have defined learning rate,

weight decay, dropout, loss function and data augmen-
tation techniques for the three class segmentation with
UNETR. The U-Net architecture is more robust to these
hyperparameters and the same configuration as with
UNETR works properly. Experiments were performed
with different voxel spacing and patch sizes, concluding
that spacing of 1 × 1 × 1.5 (1.5 in the axial axis) and
patches of 96 × 96 × 96 achieves a good performance.
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Figure 12: Top to bottom: (a) Predicted segmentation, (b) Prediction and ground truth. In colors, output examples of UNETR using overlapping
patches of 80% on the internal dataset, and comparison with ground truth mask in second row. The second example shows the output on a
mastectomy patient.

Model ± SD Overlap Dice FGT Dice Fatty Dice whole breast Time GPU Time CPU
UNETR (binary) 0.8 - - 0.932±0.053 22 sec 620 sec
UNETR 0.8 0.884±0.05 0.940±0.02 0.963±0.014 24 sec 690 sec
UNETR 0.6 0.881±0.05 0.936±0.02 0.960±0.020 11 sec -
U-Net 0.8 0.877±0.06 0.944±0.02 0.966±0.012 46 sec 1600 sec
U-Net 0.4 0.873±0.07 0.939±0.02 0.964±0.018 10 sec -

Table 3: Average dice score and standard deviation over the cases of the testing set. The time refers to the total inference time per volume.

Table 3 presents the performance of 5 different mod-
els. One model was trained for a binary segmentation
between breast and background, resulting in a lower
dice score than other models that segment FGT and fatty
tissue. As expected, an increase in the overlap slightly
improves performance but at the cost of a longer compu-
tational time. Although UNETR and U-Net are very dif-
ferent architectures, they perform very similarly. Some
UNETR segmentation results can be seen in Figure 12;
U-Net segmentation results are not presented because
visually they are almost identical. UNETR performs
slightly better in FGT, while UNET in fatty tissue. At
inference time, UNETR is twice as fast for the same
configuration. When running on CPU without any addi-
tional optimization, both architectures show a large in-
crease in computing time (see Table 3).

Finally, U-Net has the benefit that can be applied to
different input image sizes. Although we trained with
patches, we experiment with predicting the whole vol-
ume in one forward pass. However, because to GPU
memory limits, we decided to do inference with over-
lapping large patches of 256 × 256 × 96 under the same
conditions. As a result, the inference is slightly faster
but the dice score decreased by about 1% for whole
breast, FGT and fatty tissue.

Evaluating on manually generated dataset
Besides the internal testing split, we evaluate the pre-

vious UNETR and U-Net with a sliding window overlap
of 0.8 with the external manual segmentation dataset.
The results are summarized in Table 4. Evidently, there
is a performance drop for this dataset. The standard de-
viation is much higher, meaning that there is more vari-
ability in the performance.

In Figure 13, we show two output predictions of UN-
ETR and U-Net. For example a) both networks receives
low scores, but being lower for the UNETR. In the al-
ternative case, both architectures achieve good segmen-
tation results in terms of dice score.

Model Dice FGT Dice Fatty Dice breast
UNETR 0.68±0.16 0.82±0.14 0.86±0.1
U-Net 0.71±0.16 0.83±0.13 0.88±0.07

Table 4: Average dice score and standard deviation over the cases of
the external manual evaluation set.
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Figure 13: Output examples of two patients from the external manual dataset with UNET and UNETR (0.8 patch overlap). First row presents the
output of our networks in colors and the second row overlaps the predictions with the ground truth. The example a) is a low dice score while b) is
a high dice score result.

4.2. Candidate detection
Once Retina-Unet was implemented, some issues

arose at training the model from scratch. The train-
ing loss was oscillating and not decreasing significantly.
Different hyper-parameters did not solve the problem,
therefore, we decided to start training from the segmen-
tation, similar to a U-Net and, later, added the classifi-
cation and regression heads. When training only from
the segmentation signal, the loss decreased consistently.
The feature maps were already representative, which
made the training of the classification and regression
heads easier. Usually, pre-trained weights are used for
detection networks, but they were not available for the
3D FPN.

To decide which was our best performing model, we
performed 4 experiments:

1. Model of patches of 963 and inference with one
single checkpoint.

2. Model of patches of 963 and inference with an en-
semble of the best three checkpoints.

3. Model of patches of 1283 and inference without
data augmentation.

4. Model of patches of 1283 and inference with four
data augmentations per patch. This means flipping
the patch in three different ways, predicting and, as
usual, the findings were gathered using Weighted
Box Clustering.

Although the positive class consists of benign and
malignant lesions, we calculate sensitivity on malig-
nants as it is our main focus. The FROC curves of the
models are presented in Figure 14. It is important to
take into consideration that using three checkpoints or
four data augmentation triples or quadruples the infer-
ence time, respectively. Therefore, we decided to use
the model with a patch size of 96, with only the best
checkpoint and without test time augmentations.

Figure 15 illustrates the output of the detection net-
work with their respective score values. It can have very
high sensitivity for malignant lesions, but it also finds
many suspicious lesions in normal patients. This is ex-
pected as the network was trained only with images of

Figure 14: FROC of candidate detection models for different patch
sizes, number of checkpoints for ensemble and with or without data
augmentation.

abnormalities, including benign lesions in the positive
class.

We observed that some specific cases have many de-
tections (up to 20) with most of them being false pos-
itives. Thus, we performed some experiments to ob-
serve the changes in the FROC curve when limiting the
number of detections per scan to the top 1, 3, 5 or 10.
Although a limit to three detections generally improves
the results, it only happens when the sensitivity is lower
than 94%. As we are interested in even higher sensi-
tivity values to input to the classification network, we
decided not to include a threshold for the number of de-
tections.

As previously stated, this stage of the pipeline is a
candidate detector that outputs a score for each detec-
tion. To determine the input to the classification stage,
we decided to use a threshold of 0.25 on the score. Ac-
cording to the selected model in Figure 16, the average
false positive per normal exam is 5 and the sensitivity is
over 98%.
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Figure 15: Examples of the predictions in blue of the final candidate detection network in abnormal and normal images. Red boxes refer to
annotated benign or malignant lesions. MIP is the maximum intensity projection in the axial axis.

Figure 16: FROC for final candidate detection model. In red the sen-
sitivity in malignant scans with CPM=0.83 (0.73-0.89), and in blue,
the overall sensitivity for malignant and benign.

4.3. Classification

4.3.1. ResNet18

DCE sequence
To determine the additional value of each volume in

the DCE sequence, the model’s performance when each
volume is added as an extra channel was compared. For
this binary classification, the models were trained on
malignants, benigns and normals, oversampling to com-
pensate for the imbalance by duplicating the malignants
and triplicating the benigns. The AUC for the testing
set can be seen in Figure 17 compared with the models
trained in the same way but on registered images.
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Figure 17: Models trained with normal, benign and malignant lesions
for different volumes of DCE sequence. The chart summarizes the re-
sults of 8 models. Area under ROC for models based of unregistered
volumes are shown in red and blue, and for registered volumes as input
in light colors. AUC refers to malignants versus benigns and normals,
whereas the AUC between malignants and benigns corresponds to the
same model but excluding the normals of the analysis. Pre stands for
pre-contrast while post with the numbers stands for the post-contrasts
sequences used. For instance, Pre+12post corresponds to using the
pre-contrast and the first and second post-contrast volumes concate-
nated in the channel direction.

Extra value of T2 and ADC
For this experiment, we conducted a benign versus

malignant classification since only the abnormal scans
of our dataset have a T2 and ADC volume. Figure 18
displays the performance and the comparison with using
registration. The difference between the blue bars in
Figure17 and the ones in this Figure relies on a different
training set, as normals are not used for training this last
one.

Figure 18: Area under ROC for models with different input sequences
using only benign and malignant cases. Pre stands for pre-contrast
while post with the numbers stands for the post-contrasts sequences
used.

Occlusion sensitivity
Figures 19 and 20 present four examples of occlu-

sion sensitivity maps. The first corresponds to benign
lesions classified in the negative class (non-malignant)
and the second one to malignant lesions of the posi-
tive class. For the malignant cases, the probability of
predicting malignancy decrease when the lesion is oc-
cluded, whereas for the benign ones the probability of

classifying as non-malignant increase by occluding the
lesion.

Figure 19: Occlusion sensitivity for two benign lesions of different
patients using ResNet18 on Pre+123post input volume with mask size
of 8 and stride of 4. Left to right: pre-contrasts, first post-contrast and
occlusion map.

Figure 20: Occlusion sensitivity for two malignant lesions of different
patients using ResNet18 on Pre+123post input volume with mask size
of 8 and stride of 4. Left to right: pre-contrasts, first post-contrast and
occlusion map.

4.3.2. Vision transformer
In order to compare the performance with ResNet18,

we trained a ViT with the same input volumes by con-
catenating, in the channel direction, the pre-contrast and
the first two post-contrasts. As shown in Table 5, chang-
ing the patch size from 163 to 83 resulted in a decrease
in AUC (malignant versus benign and normal) but an
increase in AUC of malignant versus benign. Another
modification was to pre-train the ViT on a proxy task
in a self-supervised approach by using a contrastive and
reconstruction loss function as explained in 3.2.3. This
led to an improvement in performance, and a more sta-
ble and shorter training time. This model does not per-
form as well as ResNet18 for classification between ma-
lignants and benigns, but it performs similarly if the nor-
mals are included in the negative class for the analysis.
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The main goal of using a ViT is to provide the net-
work with enough flexibility to correct motion misalign-
ments. It is evident that by adding the extra sequences
as channels, this is not possible. Therefore, by concate-
nating in the axial direction (only 1 channel), it should
be able to learn the long-distance relations between the
different post-contrasts. The abrupt decrease in perfor-
mance of d) in table 5 indicates that this is not the case.
As with the previous experiments of having three chan-
nels, the pre-training helped to simplify the training but
the results were still not satisfactory.

Model AUC AUC (mal vs ben)
a- PS:16 Ch.:3 0.94(0.92-0.96) 0.66(0.57-0.75)
b- PS:16 Ch.:3 SSL 0.96(0.95-0.97) 0.67(0.57-0.75)
c- PS:8 Ch.:3 0.93(0.91-0.96) 0.71(0.63-0.79)
d- PS:16 Ch.:1 0.66(0.60-0.72) 0.70(0.62-0.78)
e- PS:16 Ch.:1 SSL 0.74(0.68-0.78) 0.65(0.54-0.76)

Table 5: Results for different Vision Transformer models. PS: patch
size, Ch:Number of channels, SSL: with Self Supervised Learning as
pre-training.

4.3.3. Final classification model
Following the analysis of the previously mentioned

models, we selected the ResNet18 trained on pre-
contrast and the first three post-contrasts (Pre+123post)
without registration for our final pipeline. As
seen in Figure 17, it outperforms models using less
post-contrasts (p value< 0.001, Wilcoxon test with
H1:AUCPre+1post < AUCPre+123post ). Although there
is a significant improvement with the use of registration
for the model Pre+123post (p value= 0.044, Wilcoxon
test with H1:AUCw/o reg. < AUCwith reg. ), we decided
not to include registration in the final pipeline due to the
extra computational cost. The ROC curves for this final
classification model are displayed in Figure 21.

Figure 21: ROC curve of the final classification stage using ResNet18
on non-registered Pre+123post.

The detection network score implies the probability
of being benign or malignant, while the output of the
classification is the probability of malignancy. Figure

Figure 22: Comparison of the candidate detection scores of Retina-
Unet with the predicted classification scores using ResNet18 on non-
registered Pre+123post.

22 relates these scores for the different types of lesions
of the testing set.

By combining the candidate detection and classifica-
tion model, it is possible to plot the FROC for the whole
pipeline as shown in Figure 23. There is a clear perfor-
mance improvement due to the reduction in false posi-
tives which shifts the curve to the left part of the plot.

4.4. Final pipeline and preliminary automatic MRI re-
port

The diagram in Figure 24 summarizes the models
used in the pipeline as a result of the experiments. By
doing inference with this pipeline, preliminary auto-

Figure 23: Final FROC curve of the whole pipeline showing impor-
tance of the classification stage for the reduction of false positives.
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Figure 24: Diagram of the models used in the final pipeline.

matic reports are generated and an example for one scan
is shown in Figure 25. The patient information with the
density values, the exam score (0-10) and the segmen-
tation mask is shown in the upper part of the report. We
decided to include an axial MIP of the relative enhance-
ment volume with all the detections whose probabilities
of malignancy are over 5%. In addition, each detected
lesion is marked on its center slice on the subtraction
volume along with the pre-contrast and the three post-
contrast sequences.

5. Discussion

In this study, we developed an automatic CADe sys-
tem capable of detecting breast cancer lesions in DCE-
MRI. To accomplish this purpose, the project was di-
vided into three major tasks. First, segmenting FGT and
fatty tissue, which allows to concentrate on the breast
area and to report the values for density. Followed by
a candidate detection approach using Retina-Unet, and
lastly, a classification per candidate as a false positive
reduction method. For clarity, this section discusses
each stage separately.

5.1. Tissue segmentation

For the internal dataset, UNETR and U-Net output
similar results, which are also very close to the ground
truth. Values of dice score over 0.96 for the whole breast
show that the segmentation task can be considered com-
plete for this dataset. It is important to take into account
that sometimes there is no clear boundary for the breast
on the posterior side and this is the main reason for
disagreement between the teacher and the student net-
works. This can be observed in Figure 12. For the ex-
ternal dataset, this phenomenon is amplified due to the
intra and inter variability of the manual annotations. An
example of the U-Net architecture is displayed in Fig-
ure 13, where the manual ground truth does not include
the posterior sector of the breast. For this case, although
the output segmentation receives a low dice score, it is
debatable if it is indeed a mistake.

As mentioned previously, both networks output sim-
ilar results for the internal dataset, but are slightly bet-
ter for U-Net. We hypothesized that this difference is
because the teacher network is a U-Net architecture,
which makes it easier to mimic its predictions. But this

small difference is amplified with the external manual
dataset, which indicates that U-Net generalizes better to
unknown data distributions. UNETR has more param-
eters which make it more likely to overfit the specific
training data. Although we used dropout and data aug-
mentation, it did not fully compensate for it.

In general, there is a significant decrease with the ex-
ternal manual annotated dataset. In a certain way, it was
expected as the training is performed with a very homo-
geneous set and data normalization is not robust enough,
limiting generalization capabilities. In some cases, the
volumes of the external dataset are cropped to the breast
area, but we believe this is not a problem for our net-
works that work with a sliding window patch approach.
We assume that the reduction of the dice scores is due
to a different intensity distribution and the higher vari-
ability in the annotations. By fine-tuning with part of
the manual dataset, we can improve the results consid-
erably, but our goal for this experiment was to analyze
the generalization capabilities.

In terms of speed, although UNETR has 4 times more
parameters, it is twice as fast at inference time. Due to
the 3D kernels in the encoder part of the U-Net, which
requires a low number of parameters but 3D convolu-
tions are computationally expensive. Linear layers and
dot product attention are faster to compute in this sce-
nario. It is possible to decrease the computational time
for the U-Net by doing inference with larger patches of
256 × 256 × 96, but resulted in a decrease in perfor-
mance. We assume that the large receptive field of the
CNN normally sees padding around the patches, while
with a larger patch size non-zero values are included.

Comparing to the work of Huo et al. (2021) and Sam-
perna et al. (2022) that achieved dice for the breast
of 0.968 and 0.96 respectively, we reached a similar
performance on our internal dataset. It is important
to clarify that we are evaluating on a different dataset
from a teacher network predictions, which may contain
mistakes and simplifications despite being visually re-
viewed. Due to the slightly better performance and the
superior generalization capability of U-Net architecture,
we decided to use this simpler approach with sliding
window overlap of 0.8 for the final pipeline.

Concerning the density estimations, we presented
them in a quantitative manner as the percentage of fi-
broglandular tissue in the breast, while radiologists clas-
sify the breasts into 4 classes in increasing order den-
sity: A, B, C or D. Choosing the correct three thresh-
olds to classify into the different density groups is left
for future work. The advantage of relying in a quantita-
tive method instead of the radiologist is that it standard-
izes the density results, removing the variability of the
reader.

5.2. Candidate detection
One of the problems that we encountered was the

variability of the bounding box annotations. By seg-

15.16



Deep learning pipeline for improved breast cancer detection in MRI 17

Figure 25: Overview of the predictions of our pipeline in a report sheet. The values of density, the segmentation mask, the global malignant score
and all the detected lesions with corresponding score are shown. In this case, annotations of benign and malignant lesions are only displayed for
illustrative purposes.

menting the lesion or lesions and generating new bound-
ing boxes from the connected components, we mitigated
this issue. This allows the network to be trained with
more deterministic data. Moreover, Retina-Unet makes
it possible to also use the extra information of the seg-
mentation task by including an additional head. After a
visual inspection of the predictions, it is evident that on
several occasions the outputs of the network are more
precise to each lesion than the original bounding boxes.

Training detection networks is usually harder than
classification or segmentation ones, and indeed, this was
the case. Although not being mentioned in the Retina-
Unet paper, we found it convenient to train first from
the segmentation branch and once we have meaningful
features maps in the FPN, to add the back-propagation
from the classification and regression heads. We ex-
pect this practice to be useful in other medical image
domains.

Comparing between the model with patch size of
96 and 128, we observed that the one of 96 performs
slightly better. This was not expected, as usually the
larger patches benefit from the larger receptive field.
To clarify, as we are only considering one training ver-
sus one training, the reason can be that the one with
a larger patch size is stuck in a local minimum with
lower performance than the one of 96. Also, because
of the way that the sliding window was implemented
by the authors, the small patch size benefits on average
from a higher overlap. After Weighted Box Clustering

to gather the detections, can slightly boost the perfor-
mance.

Trials with test time augmentations and multiple
checkpoints do not improve performance and make it
slower at inference time. Concerning the first one, sim-
ilar augmentations are used for training, therefore, the
network is robust to them and the results from the en-
semble of augmentations do not vary significantly. We
expect an analogous effect from the multiple check-
points, as they are coming from the same model and
similar in nature, therefore, the ensemble does not pro-
vide a major benefit. An ensemble between more di-
verse models can be considered as future work.

The score threshold of 0.25 is a hyperparameter of
the pipeline. This value was used for training the clas-
sification, but it is not necessary to be the same at infer-
ence. Although we are using the same value, we expect
that lowering the threshold can slightly improve perfor-
mance, but at a cost of higher computational require-
ments. This is because the lower the score threshold,
the higher the number of candidates that should enter
the classification approach.

5.3. Classification

Our first experiment of Figure 17 compares the
marginal increase in the classification performance
when an extra post-contrast is included and the effect
of using registration. It is clear the importance of the
contrast agent injection when we analyze the additional
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value of the first post-contrast. Also, including the
first three post-contrasts has a significantly better per-
formance than only using one (see 4.3.3). We decided
not to concatenate the fourth post-contrast as in general
DCE-MRI has at least three post-contrast but there is no
guarantee that it has more. In terms of malignant ver-
sus benign categorization, the experiments showed that
adding additional post contrasts to incorporate wash-out
information does not improve classification ability sig-
nificantly. It is evident, that a larger benign and malig-
nant dataset would reduce the confidence intervals and
reveal a more distinct trend. Although when using pre-
contrast, first and the last post-contrast, the results look
promising, we opted to exclude this line of work as the
network may learn that normal patients have fewer post-
contrasts on average, which would introduce a bias.

Concerning the use of registration, there is a consis-
tently positive contribution on the AUC values. This
implies that the registration parameters achieve the right
balance in the trade-off between correcting motion arti-
facts and preventing lesion deformation. However, be-
cause it is a time-consuming operation as it should be
performed for the three post-contrasts, we decided not
to use it for our current pipeline.

Regarding the value of T2 and diffusion sequences,
the experiments in Figure 18 show that there is not
enough evidence to refute the null hypothesis that they
modify the classification performance. As the normals
do not have a T2 or diffusion volume, our dataset of ma-
lignants and benigns is small, therefore, drawing con-
clusions is difficult due to the huge uncertainty inter-
vals. In addition, the difficulty of registering diffusion
volumes limits the ability of a CNN to exploit this ad-
ditional information, which does not occur with T2.
Through Deep Learning, we might explore the possi-
ble benefits of T2w with enough data, as its value has
been questioned by Mann et al. (2019a).

Occlusion sensitivity proved to provide valuable in-
formation about which sectors of the candidate patch
are more relevant for the classification. By knowing that
the lesion area affects the output probability the most, it
is possible to rule out certain biases, such as different
intensities distributions between normal and malignant
images.

Besides the ResNet18, we implemented a Vision
Transformer for classification. When the volumes are
concatenated in the channel direction, the results are
comparable to the convolutional architecture. However,
the main goal was to use the extra flexibility of trans-
formers to relate tokens in different positions by using
only one channel and concatenating in the axial direc-
tion. The results show strong evidence that the extra
flexibility is not beneficial, at least for the size of our
dataset. The motion misalignment is small enough to be
able to use non-registered volumes as channels, while a
more flexible technique does not have a clear advantage.
Also, the ViT tokens are large in comparison with the

motion artifacts. We expect the Vision Transformer to
outperform a CNN for adding information of a diffusion
image that is difficult to register. For future works, a
Cross View Transformer (Tulder et al., 2021) that com-
bines the benefits of CNNs and transformers can be con-
sidered.

For our final pipeline, we used the ResNet18 trained
on pre-contrast and the non-registered first three post-
contrasts. In general, every breast DCE-MRI contains
these volumes, and not using registration makes it faster
at inference time. In terms of performance, the AUROC
is 0.964 (0.946-0.978) which value corresponds to those
recently published by Witowski et al. (2022). The AU-
ROC of malignant versus benign is 0.778 (0.683-0.853).
This decrease in performance was expected as benign
annotated were the ones that radiologist have doubts
about being malignants, hence they are consider as dif-
ficult benign lesions. Apparently, it can be reason why
there is no meaningful improvement with the addition
of more than one post-contrast for these lesions.

5.4. Pipeline discussions
In terms of system performance, the classification

step improves it by reducing the false positives (Fig-
ure 23). The final CPM value is 0.932 (0.890-0.964)
outperforming the previous system by Dalmış et al.
(2018) for lesion detection on a similar dataset which
obtains a CPM score of 0.6429. In the field of ultra-
fast DCE-MRI, a recent publication of a CADe based
on a detection 3D RetinaNet achieves a CPM of 0.86
(Ayatollahi et al., 2021). Translating into predicted
values, with a threshold of 5% for the score at a
scan level, we achieve a NPV=0.941(0.892-0.986) at a
PPV=0.634(0.530-0.721) considering benigns and nor-
mals as negatives.

This accomplishment is achieved because of the good
performance in each stage. Segmentation dice scores
correspond to state of the art values for our internal
dataset, allowing for proper masking and cropping. For
the detection stage, we believe a critical factor is the
generation of new bounding boxes for training with less
variability and the capacity of Retina-Unet of benefit-
ing from the lesion segmentations. Finally, for the last
stage, the ResNet18 is specifically designed for clas-
sification by being deeper than the classification head
of the detection network and including residual connec-
tions. In addition, the input of the detection is the rel-
ative enhancement volume while for the classification
is the pre-contrast and the first three post-contrast vol-
umes, therefore, giving more information and flexibil-
ity to the network. Aside from this, there is a subtle
difference worth mentioning. While the detection net-
work uses patches around a malignant lesion as nega-
tive examples for training, the classification only relies
on benign lesions or detections in normal studies for the
negative class. In medical imaging, invasive cancerous
lesions do not have clear boundaries, so training with
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negative patches around a malignant lesion can be mis-
leading. The possibility of using a different and better
curated dataset for the classification step is a key factor
in the performance.

5.5. Limitations and future work
A limitation is the homogeneous dataset used in this

project, which does not allow generalization to other
MRI protocols. Moreover, the wide confidence inter-
vals limit the conclusions we can draw due to the small
dataset. Future research should concentrate on training
and validating similar pipelines on larger multi-protocol
datasets in order to positively impact the clinical prac-
tice. Our method might potentially serve as a basis for
fat-suppressed and ultra-fast protocols as well.

6. Conclusions

In this master thesis, an automated breast lesion de-
tection CADe system for DCE-MRI was designed. Our
final pipeline starts with the segmentation of FGT and
fatty tissue using U-Net, achieving a dice score for the
whole breast of 0.964 ± 0.018 on our internal dataset.
From the segmentation masks, the percentages of FGT
are calculated and reported as density estimations. A
Retina-Unet was implemented for the detection of can-
didate lesions benefiting from the lesion segmentation
signal, followed by a ResNet18 applied on each candi-
date for malignant classification. Our proposed pipeline
achieved a CPM value of 0.932(0.89-0.964) outper-
forming the previous system for a similar dataset and
could be the foundations of a system that supports radi-
ologists in interpreting DCE-MRI studies.
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Abstract

Background: Retinal damage is the ultimate cause of vision loss. Objective: This thesis aims at investigating retina
diseases by analyzing the OCT retina images, targeting the development of a multi-purpose diagnostic tool.

Methods: This research proposes a transfer learning approach with continual learning to perform classifica-
tion in retinal OCT scans. The first part of the work presents an overview of datasets for OCT images and the current
challenges in ophthalmology. Second, several deep neural network architectures are evaluated for classification pur-
poses using the original classes provided in the datasets. Third, it is investigated the possibility to study relationships
between retina alterations and diseases of the central nervous system (for instance, multiple sclerosis), evaluating if it
is possible to take advantage of applying previous knowledge and abilities to novel tasks.

In this work, we use pre-trained CNN architectures such as VGG16, VGG19, ResNet50, MobileNet, Incep-
tionV3 and Xception with the pre-trained weights on the ImageNet dataset to reduce the training time and increase the
performance. The proposed approach was evaluated on two different datasets. The Large Labeled Optical Coherence
Tomography (OCT) Images (LLOCT dataset) and The Multiple Sclerosis and Healthy Controls dataset (MS and HC
dataset) were used for training and testing the approach for OCT classification applying transfer learning.

Results: The results indicate that the proposed method of transfer learning is a very promising tool for classi-
fying multi-class retinal OCT scans. The obtained results demonstrate the best performance on LLOCT dataset which
was achieved by VGG16 with classification accuracy of 96 %.

Keywords: Optical Coherence Tomography, OCT, Retina Images, Deep Convolutional Neural Networks, Transfer
Learning

1. Introduction

In recent years, the number of cases of eye dis-
eases has increased strongly due to many factors such
as diet, lifestyle, increased life span and also genetics.
Today’s statistics show that the number of people with
eye problems is set to increase each year in the next
decade. Overall, around 2.2 billion people have eye
conditions and vision problems. Among them, at least
1 billion people suffer from a vision problem that could
have been avoided. Therefore, there is an urgent need
for practical, high-quality interventions and fast meth-
ods for diagnosing eye diseases. Eye disorders that can
cause vision impairment and blindness are at the front
line of prevention and intervention initiatives (Organi-
zation, 2019).

The WHO World report on the vision from 2016 to
2030 demonstrates that the number of people with eye
conditions will increase in the following years due to
different causes. By 2030 the estimated number of peo-
ple suffering from diabetic retinopathy, glaucoma and
age-related macular degeneration around the world will
reach 95.4 and 243.4 million, respectively. Globally,
the predicted number of persons living with Multiple
Sclerosis (MS) has risen to 2.8 million by 2020. The
estimate is 30% higher than in 2013, when using the
same methods as in 2013. Based on current statistics,
health systems face enormous problems in satisfying
current eye-care demands and the situation is expected
get even worse in the future. Ophthalmological imaging
is a promising and helpful tool in modern ophthalmol-
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Figure 1: Projected number of people worldwide with age-related macular degeneration and diabetic retinopathy (up to the year 2028, World Health
Report on Vision)

ogy. In recent years eye healthcare systems advanced
quickly by applying deep learning algorithms for bet-
ter understanding of eye imaging (Litjens et al., 2017).
Retinal screening for all patients is crucial in today’s
health care systems for the early detection of eye dis-
eases. Most diseases are asymptomatic in the early
stages, which motivated the search for rapid diagnosis
in screening programs, that can help to stop progression
and avoid vision loss if these diseases are detected at an
early stage. There are currently many undiagnosed and
untreated cases of vision pathologies. The demand for
automated analysis for identifying eye images has in-
creased not only due to the scarcity of ophthalmologists
but also to increase the accuracy and efficiency of the in-
time diagnosis. The development of computerized tools
for the analysis of OCT images is a key step in provid-
ing ophthalmologists with a complete examination.

In this study, we aim to classify various pathologies
such as Choroidal neovascularization (CNV), Diabetic
macular edema (DME), and Multiple drusen present in
early age-related macular degeneration (AMD) as well
as Multiple Sclerosis (MS) on OCT images. Each of
these pathologies can be detected on retinal OCT scans.
The main idea of this work is to use existing transfer
learning methods and apply this approach to the most
widely spread vision diseases that are seen on OCT im-
ages. When making a comparison between two modal-
ities, retinal fundus images and OCT, both have advan-
tages and disadvantages. Fundus imaging is a simple,
inexpensive and quick procedure that can be performed
with usual cameras. Previously, fundus imaging was the
most frequently used diagnostic modality for detecting
retinal disorders.

However, OCT imaging is now frequently used for
detecting retinal conditions because of its capacity to
detect even minor changes in the retinal layers (Arabi

et al., 2017). In terms of eye diseases, it is much easier
to use OCT scanning for the detection of conditions that
influence the layer thicknesses and structure of retina.

1.1. Retinal OCT & Diseases
Optical coherence tomography (OCT) is a non-

invasive diagnostic imaging method that uses optical
characteristics to reconstruct cross-sections of tissues.
It is commonly used in ophthalmology to image the an-
terior eye and retina structure for diagnostic purposes.
OCT gives histological details and can be called an op-
tical biopsy. The main advantages of OCT are the fast
procedure, non-invasiveness and its reproducibility.

The basic principle of OCT is the estimation of the
tissue depth. OCT has many applications but retinal
imaging is one of the most common and important uses
of OCT. Retinal imaging is employed for the detection
and diagnosis of retinal diseases. Many serious diseases
can be present in the retina and have their origins in the
eye or brain. The most common diseases can be stud-
ied using eye imaging and image processing. OCT is
similar to ultrasound imaging, except that it detects re-
flections of near infrared light instead of sound. It uses
infrared light to provide a high-resolution 3D view of
living tissues with a depth of a few hundred microns. It
generates 2D and 3D images using low coherence inter-
ferometry (Eladawi et al., 2018).

Hundreds of eye disorders and vision impairments
exist. The one in the following list are among the
most frequent eye conditions that result in vision loss
or blindness.

Diabetes mellitus is diagnosed if a patient has a fast-
ing plasma glucose of over 7.0 mmol/l according to the
World Health Organization (WHO). The causes of this
disease can be very different from genetics to a seden-
tary lifestyle. Treatment is a diet change and strict in-
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sulin control. The progressive state of this disorder can
result in diabetic retinopathy, which is a retinal compli-
cation of diabetes.

Diabetic Retinopathy (DR) is the leading cause of
complete or partial blindness among people with dia-
betes mellitus. DR can be diagnosed early with the iden-
tification of retinal lesions on the surface of the eye. In
the eye, hyperglycemia damages the retinal vessel walls,
which can lead to ischemia or breakdown of the blood-
retinal barrier.

Age-related macular degeneration (AMD) is the
most common cause of visual loss. It has become a
rapidly growing public health problem over the past
years. Possible treatments include dietary supplements
that can help to slow down the disease.

Glaucoma is the third leading cause of blindness.
This disorder can be characterized by gradual damage
to the optic nerve and resultant visual field loss. Early
diagnosis and optimal treatment can minimize the risk
of visual loss.

Cardiovascular diseases can be seen in the retina in
different ways. Hypertension and atherosclerosis cause
changes in the ratio between the diameter of retinal ar-
teries and veins. Even direct retinal ischemia can occur
because of hypertension, leading to visible retina dam-
age spots.

Central nervous system diseases (CNS) including
Alzheimer’s disease (AD), Multiple sclerosis (MS) and
cerebrovascular disorders were shown to have patho-
logical changes in the retina. Ophthalmic examinations
can analyze the retina and the optic nerve of the central
nervous system (Landau and Kurz-Levin, 2011). Vari-
ous studies have shown that neurological illnesses may
cause changes in the retina. Several investigations, for
example, have shown that thinning of retinal layers oc-
curs in Alzheimer’s disease. Still, these studies are lim-
ited by the lack of a consistent imaging procedure that
would allow for more quantitative analyses. Further-
more, the mechanisms with retinal changes in neuro-
logical illnesses are still not fully understood.

2. State of the art

Convolutional Neural Networks (CNNs) are a type
of artificial neural network that evolved from standard
artificial neural networks and has showed promise in
image classification, object recognition and image seg-
mentation. In ophthalmology, CNN has recently been
used to detect diabetic retinopathy and macular fluid in
fundus images. CNNs should be able to extract informa-
tion for retinal classification from OCT scans. A con-
volutional neural network uses a local connection and
weight sharing strategy, which simplifies the network’s
parameters and model complexity, making the deep net-
work easier to modify. CNNs combine approaches for
feature extraction and feature classification in an end-
to-end approach.

The CNN is an end-to-end feature learning method
that can automatically learn a hierarchy of features from
a given training sample, as opposed to the classical man-
ual (handcrafted) feature extraction processes that often
use a classifier in a second step.

Triwijoyo et al. (2017) worked with retinal images
to diagnose disorders like glaucoma and hypertension in
the eyes. They claim that recognizing vascular irregu-
larities in retinal images can help physicians in diagnos-
ing and treating stroke, cerebral injury, artery disease,
and other conditions early. To recognize retinal images,
they used Convolutional Neural Networks (CNN) as a
classifier. They used the STARE fundus color image
dataset and divided into 15 categories. The CNN model
was shown to have an accuracy of 80.93 percent in the
experiments.(Eladawi et al., 2018)

Luo et al. (2021) proposed a semi-supervised deep
learning method built upon pre-trained VGG-16 and
virtual adversarial training (VAT) for the detection of
retinopathy for automatically diagnosing retinopathy
using only 80 OCT images from the Large Dataset of
Labeled Optical Coherence Tomography (OCT) Images
dataset. As a result the proposed technique achieves
classification accuracies of 0.942 and 0.936, sensitivi-
ties of 0.942 and 0.936, specificities of 0.971 and 0.979,
and AUCs of 0.997 and 0.993, respectively.

Zhang et al. (2019) analyzed OCT scans using a fea-
ture extractor based on a pre-trained ResNet50 from the
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) and support vector regression. Using a data
set of 482 OCT images, they revised and fine-tuned the
network, achieving an accuracy of 0.93.

To identify retinal OCT images, the suggested clas-
sification approach by Li et al. (2019) used an ensem-
ble of four classification model instances, each of which
was based on a residual neural network (ResNet50). On
a developing retinal OCT imaging dataset, the exper-
iment used a patient-level 10-fold cross-validation ap-
proach. At the B-scan level, the proposed approach
achieved a classification accuracy of 0.973 %, a sen-
sitivity of 0.963, and a specificity of 0.985, matching
or exceeding that of ophthalmologists with significant
clinical experience.

Karri et al. (2017) demonstrate an approach for
identifying retinal pathologies on OCT images. Their
method fine-tunes a pre-trained convolutional neural
network (CNN), GoogLeNet, to increase its predic-
tion capabilities and finds responses during predic-
tion to better comprehend learned filter features.Their
model achieved 0.94% classification accuracy for dia-
betic macular edema and dry age-related macular de-
generation.

Wang and Wang (2019) use two separate sources of
OCT datasets to provide an automated method based on
deep learning to classify DME and AMD.The approach
consisted of using CliqueNet, DPN, DenseNet, ResNet,
ResNext neural network on two public OCT datasets.
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On the public OCT dataset 1, the AUC values obtained
by DenseNet, ResNet, DPN, ResNext, and CliqueNet
are all over 0.96, while the average AUC values of three
types are all above 0.97.

Fang et al. (2019) proposed a new lesion-aware con-
volutional neural network (LACNN) method for retinal
OCT image classification, in which the CNN is guided
by retinal lesions inside OCT images to obtain a more
accurate classification.

Naz et al. (2017) worked on identifying DME by
automatically classifying optical coherence tomography
(OCT) pictures. They proposed a realistic and very easy
method for robust DME classification based on OCT
image information and coherent tensors. The features
retrieved from thickness profiles and cysts were tested
using the Duke Dataset, which included 55 sick and 53
normal OCT scans. The support vector machine with
leave-one-out has the maximum accuracy of 79.65 per-
cent, according to the comparisons.

On the basis of CNNs, Rong et al. (2019) proposed a
surrogate-assisted retinal OCT picture classification ap-
proach. To analyze the performance of the proposed
technique at the B-scan level, two databases were used:
a local database and a public database Duke. The re-
sults demonstrate that the proposed method is a very
promising tool for automatically classifying OCT pic-
tures (AUC of 0.9783 in the first dataset and AUC of
0.9856 in the second dataset).

Khan et al. (2022) proposed a continuous learn-
ing that allows deep learning models to effectively
store prior information while adapting to new classes,
datasets and applications. The approach included 9 pub-
licly available and multimodal datasets for three appli-
cations, namely learning classification of items from X-
ray baggage scans, learning to predict pneumonia from
chest X-ray scans and finally classification of retinal
diseases from multimodal imagery (Fundus and OCT
modalities). The proposed framework included class
continual learning as well as dataset continual learning
in the cross-domain learning. The top-1 achieved accu-
racy is 0.9863% and F-1 score of 0.993.

A deep multilayered CNN for eye illness detection
and classification proved to be good approach with high
classification accuracy. The previous methods focus on
typical classes of diseases, not taking into account neu-
rological diseases and their classification. We would
like to take advantage of this opportunity, as compared
to past works and to test transfer learning for typical
eye disease problems like diabetic eye disease, age re-
lated macular degeneration etc. and for multiple scle-
rosis classification in retinal OCT scans. In this way,
we will be able to test how strongly biomarkers of eye
disease are related between each other and if it is pos-
sible to have one tool for classification and detection
of various pathologies. Starting from the most recent
works in literature, the proposed approach is to apply
the transfer learning for the classification. As a re-

sult of the previous investigations, we are considering a
method to this problem for the future work by employ-
ing methodologies from the field of continuous learning
to acquire knowledge across multiple tasks without re-
training. Researchers have used incremental learning
to adjust deep neural networks to learn multiple clas-
sification tasks with a limited number of training data.
By combining this strategy with an incremental learning
framework, classification performance can be expected
to improve.

3. Materials

3.1. Datasets Overview
Large datasets are a vital part for training deep neu-

ral networks, and thus to allow speeding up research
based on health data too. Table 1 presents datasets with
OCT as main imaging modality (Khan et al., 2021). The
total number of publicly available datasets is 17. Of the
17 datasets, we found 6 datasets from USA and 1 dataset
in collaboration between USA and China, 4 datasets
from Iran, 2 datasets from Spain, 1 dataset from India
and 3 datasets with unknown origin country. Ophthal-
mological diseases that are represented in the datasets
include diverse eye conditions, such as age-related mac-
ular degeneration,diabetic eye disease, glaucoma etc.
Some datasets include samples of healthy eyes.

Among the 17 ophthalmological imaging datasets
based on OCT modality, part of the datasets contained 2
dimensional imaging data and the other part contained 3
dimensional imaging data. Most datasets stored images
in MAT, TIFF or JPEG formats (Khan et al., 2021). The
diseases representation is uneven. Diabetic retinopathy,
and age-related macular degeneration were dispropor-
tionately overrepresented in contrast to other eye ill-
nesses.

3.2. Large Dataset of Labeled Optical Coherence To-
mography (OCT) Images

The first dataset used in this work is the Large
Dataset of Labeled Optical Coherence Tomography
(OCT) Images obtained from the University of Califor-
nia San Diego in collaboration with Guangzhou Women
and Children’s Medical Center (Kermany et al., 2018a).

Thousands of validated OCT and Chest X-Ray pic-
tures are included in this dataset, only part of OCT scans
was used in this work. which was reported and analyzed
in ”Identifying Medical Diagnoses and Treatable Dis-
eases by Image-Based Deep Learning”(Kermany et al.,
2018b). Image resolution is 512x496 pixel size. The
images are fully anonymized and do not contain any
personal patient data. The format of the images is JPEG.
The access to the dataset is public available. The dataset
includes 4 different conditions: Choroidal Neovascular-
ization (CNV),Diabetic Macular Edema (DME), Age-
related macular degeneration (Drusen), Healthy eyes
(Normal).
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Dataset name Country Number of Number Eye File
of patients of images disease format

2014 Srinivasan USA 45 3231 Diabetic eye disease TIFF
age-related macular degeneration

healthy eyes
Contact Lens Anterior Spain 16 112 NR JPEG

Segment-OCT
Understanding Dataset

Corneal Heidelberg Iran 15 579 Healthy MAT
OCT eyes

Retinal Fundus Iran 22 44 Various retinal diseases MAT and
and OCT diseases JPEG

2012 Fang USA 17 51 Age-related macular degeneration TIFF
and healthy eyes

Duke OCT USA 384 38400 Age-related macular degeneration MAT
and healthy eyes

Kermany/Guangzhou USA 5319 109312 Diabetic eye disease, JPEG
choroidal

neovascularization
China drusen, healthy eyes

Noor Iran 148 4142 Diabetic eye disease TIFF
Hospital age related macular degeneration

healthy eyes
2015 Chiu USA 10 10 Diabetic eye disease MAT

Healthy OCT NR 50 100 Healthy MAT
and Fundus eyes and JPEG

OCT Glaucoma NR 624 1100 Glaucoma NumPy Array
Detection and healthy eyes File

OCTAGON Spain 213 213 Diabetic eye disease JPEG
and healthy eyes and TIFF

OCT Retinal NR 10 10 Healthy eyes MAT
Image Analysis 3D

Canada OCT India NR 470 Diabetic eye disease, JPEG
Retinal Images healthy eyes

age-related
macular degeneration

macular hole
central serous retinopathy

Retinal OCT Iran NR 165 Diabetic eye disease, MAT
Classification Challenge healthy eyes

2011 Chiu USA 20 220 Age-related MAT
macular degeneration

OCT MS USA 35 1715 Multiple sclerosis VOL
and Healthy Controls Data healthy eyes

Table 1: Publicly available OCT imaging datasets

Class Train Test
CNV 37205 250
DME 11348 250

DRUSEN 8616 250
NORMAL 51140 250

Table 2: Data distribution in Large Labeled Optical Coherence To-
mography (OCT) Images dataset

Kermany et al. (2018a) divided the OCT images into
a training set and a testing set. The training set in-

cluded 108,309 images, comprising 37,205 images of
CNV, 11,348 images of DME, 8,616 images of Age-
related macular degeneration (Drusen), and 51140 im-
ages of a healthy eye conditions. The scan resolution
varied slightly between subjects, the resolution has a 5.7
µm pixel size in LLOCT dataset.

The data was received from big number of patients
for each pathology, for instance with Diabetic Macular
Edema (DME) the total number of testing patients is
709, for Choroidal Neovascularization is 791 patients,
for Drusen is 713 number of patients and the number
of healthy cases is 3548. Patient characteristics such as
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number of patients, age and gender are included in Table
3. It demonstrates the characteristics of patients whose
OCT scans were included in the analysis. This table
represents well in detail the dependence of a particular
disease on age and gender. For instance, in cases with
Age-related macular degeneration which is associated
with the Drusen class the average age of patients is 82
years old.

3.3. OCT Multiple Sclerosis and Healthy Controls
Dataset

As can be seen from the analysis of datasets, the dis-
tribution of diseases is quite uneven, and the represen-
tation of several eye diseases is relatively small. There-
fore, there is a special interest in working with datasets
that have non-typical classes of diseases.

In patients with multiple sclerosis, a thinner layer
of the retina and others unique biomarkers of the dis-
ease are observed. For example, patients with advanced
multiple sclerosis have been found to have thinner lay-
ers of retinal nerve fibers and reduced macular volume
(Petzold et al., 2010).

The OCT Multiple Sclerosis and Healthy Controls
Dataset was used for analyzing the special connection
between the central nervous system and specific retinal
damage (He et al., 2019a).

This dataset was obtained from Johns Hopkins
School of Engineering (He et al., 2019d). The dataset
contains 35 OCT retinal scans using a Spectralis
OCT system (Heidelberg Engineering, Heidelberg, Ger-
many), 21 of the 35 participants had been diagnosed
with Multiple Sclerosis (MS), whereas the other 14
were Healthy Controls (HC) (He et al., 2020). The scan
resolution varied slightly between subjects as well as in
the first dataset.The MSHC dataset has a a mean over
all the subjects of 5.8 µm. The automatic real-time
function is used to acquire the scans from the Spectralis
scanner.

The volume data was exported from the Spectralis
scanner using the.vol file format. Each volumetric OCT
image file has 49 scans. Each scan has a total size of
496x1024. The dataset divided as following the training
set consists of 929 scans for Multiple Sclerosis and 586
for Healthy Controls. For the testing set both classes
have 100 scans each. All scans were checked for mi-
crocystic macular edema (a pathology sometimes found
in MS subjects). The participants’ ages were between
of 20 and 56, with an average age of 39 and received
data was captured from the right eyes(He et al., 2019c).
In this dataset, scans were extracted from a 3D volume
files. For the purpose of preparing the dataset and es-
tablishing format uniformity, it was decided to extract
images from the volume format and convert them into
JPEG format. The process was done in Matlab with pro-
vided scripts allowing to read from raw Spectralis (.vol)
(He et al., 2019b).

4. Methodology

4.1. Data Pre-processing
The classification performance of retinal OCT scans

is affected by artifacts. To remove the artifacts, binary
transformation was applied to the retinal OCT images
using an experimental threshold value. There were sev-
eral stages in the data pre-processing algorithm. Figure
4 demonstrates a flowchart of data pre-processing.

First, simply apply a binary transformation to the in-
put image. Apply a bounding box across the dark pixels
and crop the region inside after converting white pix-
els to complete dark pixels. Finally, resize the image to
150x150 pixels (Sezgin and Sankur, 2004). Each OCT
scan was processed as a 150x150x3 image, where 3 is
the amount of color channels, to retain compatibility
with the CNN-based architecture. Resizing images is
an important pre-processing step. Models are mostly
trained faster on smaller images. Many deep learning
model architectures demand that images have the same
size, despite the fact that raw images may differ. All
images must be resized to a fixed size before being fed
into the CNN. This process helps with less deformation
of the image’s features and patterns during the training
process.

4.2. Image augmentation
The processed image has been resized for use in the

deep CNN architecture.
Deep convolutional neural networks require a large

amount of training data to learn the data representation
and perform effectively without overfitting.

Image augmentation is a popular technique for cre-
ating a powerful model that can be trained with a small
number of training data. Image augmentation employs a
variety of alteration techniques such as random rotation,
flipping, image resizing, and a variety of other augmen-
tation techniques (Yang et al., 2022). Because biomark-
ers and lesions can appear in a variety of orientations,
data augmentation can be useful in OCT scans, leading
to many copies of training samples.

By developing synthetic samples, data augmentation
aims to improve the sufficiency and diversity of train-
ing data. The augmented data can be viewed as coming
from a distribution that is similar to the genuine one.
The following strategies are used for data augmentation:

• Horizontal Flipping is far more common than flip-
ping the vertical axis. This augmentation is one of
the simplest to employ and has shown to be effec-
tive on ImageNet datasets (Shorten and Khoshgof-
taar, 2019).

• Rotation is in between 1° and 359° for rotation
augmentations. The rotation degree parameter has
a significant impact on the safety of rotation aug-
mentations. In this work, slight rotation (10) is per-
formed.
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Figure 2: Samples from Large Dataset of Labeled Optical Coherence Tomography (OCT) Dataset. Panels present images: upper left – choroidal
neovascularization (CNV); upper right – diabetic macular edema (DME); down left– drusen; down right – normal

Figure 3: The data samples from Multiple Sclerosis and Healthy Controls Dataset. Panels present images: left image – healthy control sample,
right image – multiple sclerosis sample

Figure 4: Data Preprocessing
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Diagnosis Diabetic Choroidal Drusen Normal
Macular Edema (DME) Neovascularization (CNV)

Number of Patients 709 791 713 3548
Mean Age (years) 57 (Range: 20-90) 83 (Range: 58-97) 82 (Range: 40-95) 60 (Range: 21-86)

Gender
Male 38.3% 54.2% 44.4% 59.2%

Female 61.7% 45.8% 55.6% 40.8%

Table 3: The additional dataset information with patients analysis

Figure 5: Data augmentation

Class Train Test
Multiple Sclerosis (MS) 929 100
Healthy Controls (HC) 586 100

Table 4: Data distribution in Multiple Sclerosis and Healthy Controls
Dataset

• Rescaling (1./255) is to transform every pixel value
from range [0,255] to [0,1]. The advantages in-
clude treating all photos the same way and employ-
ing a standard learning rate. Some images have
a wide pixel range, while others have a narrow
pixel range. All of the photos have identical model,
weights, and learning rate. The image with an ex-
tensive range produces a stronger loss, whereas the
image with a low range produces a lesser loss.

• Zoom is by using a value to specify the zoom-in
value. The zoom was given as [0.7, 1] during data
augmentation, which means 70 percent zoom in
and 100 percent zoom out.

• Brightness is used with the goal is for a model to
generalize across images with varying lighting lev-
els. The brightness level set as (0.55-0.9).

• Shifting can help with better localization the object
on the image. During shifting the value for width
and height shifting set as (0.1)

• Fill Mode is used after image rotation. Because

some pixels can migrate outside the image as it is
rotated, leaving an empty region that must be filled
in. In this case fill mode is used and can include
a constant value, nearest pixel values, and so on.
The default value for the fill mode option is ”near-
est” which simply replaces the empty region with
the closest pixel values. Th fill mode was set as
”nearest”.

4.3. Proposed CNN Architectures

For our approach VGG16, VGG19,
ResNet50,MobileNet, InceptionV3 and Xception
were among the base model architectures used. They
have already been trained on the ImageNet database.

VGG16 model was implemented in this work and
was trained on Imagenet data containing 1.2 million
color images and 1000 classes. All kernel sizes are 3x3
in the original VGG16, including 16 convolution layers
using the Relu activation function. A max-pooling layer
with all 2x2 kernel sizes follows each convolution layer.
Convolution layers are used to retain training weights
and act as an automatic feature extraction system. The
final layer as a classifier is made up of three fully con-
nected layers (FC). The weight of the training results
can be stored by the convolution layer and FC, allowing
them to determine the number of parameters(Simonyan
and Zisserman, 2014a).

VGG19 is a convolutional neural network with 19
layers, 16 convolution layers, and 3 fully connected
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layers for classifying images into 1000 object cate-
gories. The ImageNet collection, which comprises a
million images in 1000 categories, was used to train
VGG19. Due to the employment of numerous 3x3 fil-
ters in each convolutional layer, it is a particularly com-
mon method for image classification (Simonyan and
Zisserman, 2014b).

ResNet50 is a pre-trained residual neural network
model that is quite useful. The depth of ResNet is deter-
mined by the number of successive modules employed.
Increasing the network’s depth to achieve better preci-
sion, on the other hand, makes it more difficult to opti-
mize the network.The input layer’s residuals are learned
by the network. Each block is made up of a succession
of layers and a link that connects the block’s input to its
output. ResNet50 is made up of three successive con-
volutions, a 1 × 1, a 3 × 3, and a 1 × 1, as well as a
connection that links the first convolution’s input to the
third convolution’s output. ResNet50 model have a total
of 25,636,712 parameters (He et al., 2016).

MobileNet model is built on depthwise separable
convolutions, a type of factorized convolution that di-
vides a standard convolution into a depthwise convolu-
tion and a pointwise convolution. The depthwise con-
volution’s outputs are then combined using an 11 con-
volution by the pointwise convolution. A conventional
convolution filters and combines inputs to create a new
set of outputs in one step. This is separated into two
layers by the depthwise separable convolution, one for
filtering and the other for combining. MobileNet is a
lightweight network that uses depthwise separable con-
volution to deepen the network and minimize parame-
ters and computation compared to the VGG-16 network
(Howard et al., 2017).

InceptionV3 is a 42-layer deep neural network
with convolutions, max-pooling layers, average pool-
ing, dropouts, and fully linked layers are among the
symmetric and asymmetric building components in the
Inception-v3 model. It’s a widely used image recogni-
tion model that can achieve more than 78.1 percent ac-
curacy on the ImageNet dataset (Szegedy et al., 2015).

Xception model adopted in this research is a pre-
trained ImageNet model provided on Keras that outper-
forms Inception V3 by a small percentage. The Xcep-
tion architecture is a depthwise separable convolution
layer stack with residual connections that are linearly
stacked. The input format for the Xception is a 299x299
RGB image. It has a depth of 126 layers, with 36 con-
volutional layers for feature extraction. To reduce the
number of parameters, a global average pooling layer
is utilized to replace the fully-connected layer, and the
softmax function is employed to output the prediction
(Chollet, 2017).

4.4. Training Methodology
Transfer learning is typically applied in two ways:

the first way is using a pre-trained model and replacing

its last layers with others so that they can learn from the
new data set.

Figure 6: The methodology

CNNs are commonly used for image categorization
because of their strong performance for learning mean-
ingful representations of images.

Our strategy is to use six pre-trained models as it
was mentioned before. The ImageNet dataset was used
to pretrain all of our networks. Specifically, instead of
randomly initializing the parameters, we used parame-
ters learned from the ImageNet dataset to initialize the
parameters of our networks. Our networks were then
fine-tuned to better fit the datasets using their pretrained
parameters.

In Figure 8, you can see the suggested deep multilay-
ered CNN. 13 convolutional layers, 2 fully connected
layers, and 1 SoftMax classifier make up the VGG-16
model architecture. The deep multilayered CNN archi-
tecture was fed the processed images as input. Our input
OCT image has a shape as 150x150x3 image, where 3
is the amount of color channels, to retain compatibility
with the CNN-based architecture.

It passes through 2D convolutional layer, the out-
put is 64 channels and after it another 2D convolutional
layer.A kernel matrix is passed over the input matrix in
the convolutional layer to build a feature map for the
next layer.At this point we have 36928 parameters. The
feature map output of a convolutional layer has the dis-
advantage of recording the exact position of features in
the input.

This means that any tiny adjustments to the input im-
age, such as cropping or rotation, will result in a com-
pletely new feature map. To address this issue, we use
convolutional layer down sampling. A pooling layer can
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Figure 7: CNN architecture

be used to achieve down sampling. In order to reduce
the size of feature maps, we 2D maxpooling and have
a shape of 75x75x64. After it passes through two 2D
convolutional layers again and double the size of filter
from 64 to 128. The parameter number is 147,584 at
this stage.

After maxpooling layer again and the resulting out-
put will be 37x37x128. The the third and fourth convo-
lutional layers a max pooling layer following these two
layers, with stride 2 is applied. In the end, it reaches
to the maxpooling layer and we have final feature map.
We apply droupot of 20% to avoid overfitting. We tested
different numbers for avoiding overffiting but 20% was
optimal.

The output of the last Pooling Layer is used as in-
put to the Fully Connected Layer at the conclusion of a
convolutional neural network. Our dense layer output 4
classes. The activation function is softmax. The outputs
are normalized using the softmax function, which con-
verts them from weighted sum values to probabilities
that equal to one. Each number in the softmax func-
tion’s output is interpreted as the likelihood of belong-
ing to each class.

The used optimizer in VGG16 model is Adam opti-
mizer. It is an optimization algorithm that can be used
to update network weights iteratively based on train-
ing data instead of the traditional stochastic gradient de-
scent procedure. The used loss function is cross entropy.
The difference between two probability distributions for
a given random variable is measured by cross-entropy,
which can be utilized as a loss function while optimiz-
ing classification models.

The training strategy consisted of several steps: the
first stop is to load the pre-trained model and freeze it,
after we made all the model untrainable, we added a
droupout and trained only on dense layer. The training
was made only for 20 epochs.

After that, unfreeze the model with training rate of
0,0001 and 50 epochs. During training we applied early
stopping. Early stopping allows us to stop the model’s
training early if the parameter I’ve specified to moni-

tor in early stopping does not increase. In case there is
no changes in validation loss, the early stopping will be
applied after 5 epochs. It helps to prevent overfitting as
well.

The training of the proposed approach is done in two
phases. The first one is training on LLOCT dataset and
the second one is to test on MSHC dataset with feature
maps of the first dataset. In the first training phase, clas-
sification model is trained to recognize different multi-
class abnormalities such as age related macular degen-
eration etc. from the first dataset. In the second training
phase, we are trying to classify only two different con-
ditions which is multiple sclerosis and healthy controls.

The other five used model architectures presented in
the next following tables so the architecture updates dur-
ing transfer learning can be displayed.

Layer type Output Shape Number
of parameter

VGG19 (None, 512) 20,024,384
Dense (None, 512) 2,359,808

DropOut (None, 512) 0
Dense (None, 4) 32,772

Table 5: VGG19 Architecture Update

Layer type Output Shape Number
of parameter

ResNet50 (None, 512) 23,587,712
Dense (None, 1024) 2,359,808

DropOut (None, 1024) 0
Dense (None, 4) 4100

Table 6: ResNet50 Architecture Update

During network training, a callback function was
added. The Model checkpoint callback was used to save
the network’s weights after each epoch and only if the
loss function decreased.
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Figure 8: VGG16 Proposed CNN architecture

Layer type Output Shape Number
of parameter

MobileNet (None, 1280) 2,257,984
Dense (None, 1024) 1,311,744

DropOut (None, 1024) 0
Dense (None, 4) 4100

Table 7: MobileNet Architecture Update

Layer type Output Shape Number
of parameter

InceptionV3 (None, 2048) 21,802,784
Dense (None, 1024) 2,098,176

DropOut (None, 1024) 0
Dense (None, 4) 4100

Table 8: InceptionV3 Architecture Update

Layer type Output Shape Number
of parameter

Xception (None, 2048) 20,861,480
Dense (None, 1024) 2,098,176

DropOut (None, 1024) 0
Dense (None, 4) 4100

Table 9: Xception Architecture Update

4.5. Evaluation metrics

The classification performance of the models on the
test dataset is estimated using four measures in this
study. The accuracy of a classifier is the number of
times it predicts accurately. The number of correct
predictions divided by the total number of forecasts is

Model Total number Trainable Number
of parameters of parameter

VGG16 14,731,074 16,386
VGG19 20,057,156 32,772

ResNet50 25,689,988 2,102,276
MobileNet 3,573,828 1,315,844

InceptionV3 23,905,060 2,102,276
Xception 22,963,756 2,102,276

Table 10: Parameters

known as accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN

The Confusion Matrix is a performance metric featuring
a mix of expected and actual results. It is useful for
measuring the Recall, Precision, Accuracy, and AUC-
ROC curves.

Precision indicates how many of the cases that were
correctly predicted turned out to be positive in the end.
Precision comes in handy when false positives. The
number of true positives divided by the number of an-
ticipated positives is the precision of a label.

Precision =
TP

TP + FP

Recall describes how many of the actual positive
cases model properly predicted.

Recall =
TP

TP + FN
It includes a summary of Precision and Recall met-

rics. When Precision equals Recall, it reaches its peak.
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F1 = 2x
Precision × Recall
Precision + Recall

4.6. Hyperparameters

Deep learning models use a large number of hyper-
parameters. Tuning the hyperparameters of deep learn-
ing models is critical to achieve good predictive per-
formance. The better these hyperparameters are initial-
ized, the faster the model reaches the global minimum.
The deep neural networks’ hyperparameters, such as
batch size, learning rate, and epoch, were fine-tuned to
achieve the best results.

The learning rate is a hyperparameter that deter-
mines how the network’s weights are modified in rela-
tion to the loss gradient. Slow convergence is caused
by a low learning rate, whereas a high learning rate lim-
its convergence and causes the loss function to oscillate
about the minimum. The learning rate for the retinal
classification was set on the level of 0.001 for LLOCT
scans classification because of the large training set. For
the Multiple Sclerosis and Healthy Controls the learn-
ing rate was set as The learning rate for 0.00001 as the
dataset is much smaller.

Epoch is the number of times the learning algorithm
passes over the training set.For all training, the number
of epoch is set to 50.

Batch size refers to the number of samples that must
run through the model before it is adjusted. All models
have a batch size of 10.

Optimizer is a parameter that is used to adjust the
parameters for a model. Optimizer used for changing
weights and learning rate to reduce the losses. For all
the training purpose using Adam optimizer which is a
first order gradient based stochastic optimization pro-
cess. The Adam optimizer is given by following equa-
tions:

mt = β1mt−1 + (1 − β1) gt (1)
vt = β2vt−1 + (1 − β2) g2

t (2)
Where m and v are moving averages, g is the gra-

dient on the current mini-batch, and betas are the algo-
rithm’s newly introduced hyper-parameters.

Loss function is used to compute the distance be-
tween the true and the model’s predicted labels.

4.7. Implementation

This work was implemented using Python program-
ming language. For the second dataset, image prepa-
ration was performed in Matlab. The models were im-
plemented in Keras, using a GPU NVIDIA Tesla P100.
The CNN architectures employed in this study were
VGG-16, VGG-19, ResNet50, MobileNet, Inception
V3 and Xception, which were all found in Keras Appli-
cations. When a model was created, ImageNet weights
were downloaded automatically during model installa-
tion.

5. Results

In this section, the experimental results are presented
for both LLOCT and MSHC datasets. The results will
be presented in two parts, the first one is the results on
LLOCT dataset, the second one is on MSHC dataset.
The suggested strategy performance was assessed us-
ing standard classification measures. F1-score was em-
ployed to obtain unbiased findings in the imbalanced sit-
uation (particularly with the LLOCT dataset).

5.1. Results with the Large Labeled Optical Coherence
Tomography (OCT) Images dataset

The confusion matrix, which contains the correct
and incorrect classification results for each model, is
used to calculate the performance. From Figure 9 to
Figure 14 the confusion matrices are presented for the
first dataset.

Figure 9: Confusion Matrix VGG16

Figure 10: Confusion Matrix VGG19

The performance of models VGG16, VGG19,
ResNet50, MobileNet, InceptionV3 and Xception on
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Figure 11: Confusion Matrix ResNet50

Figure 12: Confusion Matrix MobileNet

Figure 13: Confusion Matrix InceptionV3

Figure 14: Confusion Matrix Xception

the Large Labeled Optical Coherence Tomography
(OCT) Images dataset was evaluated and compared ac-
cording to accuracy criteria. Figure 15 demonstrates a
comparison of achieved accuracy with LLOCT dataset.
The best performance was achieved by VGG16 with ac-
curacy of 0.96 and the worst result by MobileNet with
accuracy of 0.85. Furthermore, because VGG16 was the
best-performing model in the group, fine-tuning com-
parisons were performed with it.

The performance on the LLOCT dataset is shown in
Table 11.

5.2. Results on The Multiple Sclerosis and Healthy
Controls dataset

Table 12 displays the obtained results on the second
dataset. VGG16 achieved the best model performance
so for the classification prediction on the second dataset
was do by using the weight of the best model. The result
of achieved accuracy on MSHC dataset is 55%.

The suggested method of transfer learning was
tested using 2 publicly available datasets in two different
types of retinal diseases. While VGG16 performed best
on the first dataset, the proposed strategy was also tested
with VGG-19, MobileNet, ResNet50, InceptionV3, and
Xception. The best model was used for multiple sclero-
sis cases.

6. Results and Discussion

The aim of this project was the investigation of reti-
nal diseases by analyzing the OCT scans and to realize
a transfer learning algorithm for processing retinal im-
ages so that we can diagnose various important patholo-
gies in each case accurately. The goal of these types
of methodologies is to develop a tool that can assist in
multi-classification and may also be useful to ophthal-
mologists.
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Figure 15: Comparison of achieved accuracy on the the Large Labeled Optical Coherence Tomography (OCT) Images dataset

Class Precision Recall F-1 Score
VGG16

CNV 0.91 1.00 0.95
DME 0.99 0.99 0.99
DRUSEN 1.00 0.87 0.93
NORMAL 0.96 1.00 0.98

VGG19
CNV 0.84 1.00 0.91
DME 1.00 0.97 0.98
DRUSEN 1.00 0.81 0.90
NORMAL 0.97 1.00 0.98

ResNet50
CNV 0.85 1.00 0.92
DME 0.99 0.98 0.99
DRUSEN 1.00 0.80 0.95
NORMAL 0.96 1.00 0.98

MobileNet
CNV 0.74 0.98 0.84
DME 0.99 0.92 0.96
DRUSEN 0.99 0.51 0.67
NORMAL 0.82 1.00 0.90

InceptionV3
CNV 0.86 1.00 0.92
DME 1.00 0.98 0.99
DRUSEN 1.00 0.79 0.88
NORMAL 0.94 1.00 0.97

Xception
CNV 0.82 1.00 0.90
DME 1.00 0.98 0.99
DRUSEN 0.99 0.76 0.86
NORMAL 0.96 1.00 0.98

Table 11: Classification Results on the the Large Labeled Optical Co-
herence Tomography (OCT) Images dataset

Convolutional neural networks were tested in this
study for predicting retinal abnormalities using OCT
retinal scans. The performance of VGG16, VGG19,
ResNet50, MobileNet, InceptionV3 and Xception con-

Figure 16: Confusion Matrix VGG16 on The Multiple Sclerosis and
Healthy Controls dataset

Class Precision Recall F-1 Score
Multiple Sclerosis 0.53 0.89 0.66
Healthy Controls 0.66 0.21 0.32

Table 12: Classification Results of VGG16 on The Multiple Sclerosis
and Healthy Controls dataset

volutional neural networks in publicly available OCT
dataset with different pathologies is evaluated and dis-
cussed based on our methodology.

First, the intended goal was to do testing across four
different retinal conditions on the first dataset using six
different pre-trained models and after to apply the best
model on the second dataset for classification of an-
other eye condition . With a 96 % accuracy, the sug-
gested framework was able to achieve best performance
in transfer learning on LLOCT dataset. In the work,
we dealt with an issue of decreased performance on the
second dataset. Table 12 demonstrates that obtained re-
sults are significantly decreased. The VGG16 on MSHC
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dataset achieved a 55% classification accuracy. The
considerable difference in these scores is partly due to
the fact that the difference between the two datasets is
probably more than expected.

The important component of this work is the con-
firmation that transfer learning may be used to classify
OCT images of choroidal neovascularization (CNV);
diabetic macular edema (DME); drusen; normal classes
using suitable CNN-based models with associated al-
gorithm hyperparameters. According to the findings of
this study, the training set in retinal classification with
the first dataset performed better, however the training
in the second dataset classification with classes associ-
ated with multiple sclerosis performed worse. Because
classification outcomes are strongly dependent on the
used data.

The possible causes of that low performance can be
difference in the images between two datasets, a few
MS cases since the second dataset is much smaller, big-
ger differences in the pathology than expected previ-
ously. It’s possible that the problem with performance
on the second dataset is due to a lack of samples. In fu-
ture development, the performance could be enhanced
with a larger training dataset is expected to improve the
model’s accuracy.

7. Future work

As a further step for future work, we expect to re-
ceive additional data from the University of Padova
(Italy). The laboratory is focused on studying degen-
erative neurological diseases such as multiple sclerosis
and dementia.

The future work will be focused on detecting ill-
ness such as Multiple Sclerosis and the classification of
biomarkers. The continual learning aim combines and
displays complex representational connections between
prior and new knowledge. Continual learning is used
for networks that can continuously acquire knowledge
across multiple classes without having to retrain. The
future work will include further experiments with neu-
rological diseases and its biomarkers in eyes.
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Abstract

X-ray mammography is the gold standard for diagnosing early signs of breast cancer, while Artificial Intelligence is
a modern method that enables detecting suspicious lesions and classifying them in terms of malignancy. This thesis
aimed to investigate mass detection with three Transfer Learning settings in the early screening and mass classifica-
tion in a large-scale OPTIMAM (OMI-DB) dataset with 6000 cases and extracted more than three thousand images
with masses in the mammograms of Hologic manufacturer. The methodology of the detection step is to train the
RetinaNet architecture of three ResNet50, ResNet101, and ResNet152 backbones with three types of the initialization
by ImageNet, COCO weights and from scratch. The dataset was pre-processed to generate two types of input with
entire mammograms and patches, which are stated as the first and the second approaches. Received results show that
in the first approach, RetinaNet of ResNet50 backbone with ImageNet weights and ResNet152 with the same weights
performed 0.944 and 0.959 True Positive Rate (TPR) at 0.84 False Positive Per Image (FPPI), respectively, RetinaNet
with ResNet50 and COCO weights reached 0.938 TPR at 0.84 FPPI. We showed that RetinaNet with ResNet152
initialized ImageNet weights achieved state-of-the-art results in the first approach with entire mammograms. In the
classification step, we applied the Transfer Learning approach with fine-tuning by adding L2-regularization and class
weights to balance class distribution in the datasets. The classification step demonstrated high precision, recall, F1-
score and accuracy.

Keywords: Breast cancer, Mass detection, Mass classification, Transfer learning, OPTIMAM, OMI-DB, Artificial
Intelligence

1. Introduction

Radiologists accept that X-ray mammography has
become the gold standard of early breast cancer diagno-
sis for women. Usually, early screening is taken from
40 to 70 age every two years (Sechopoulos et al., 2021).
However, last two years, several countries reported
decreasing screening rates due to the Coronavirus
restrictions. The pandemic has affected all areas of
human life, especially the medical field, where the
patient was forced to choose between not getting in-
fected with the coronavirus and timely treatment of the
disease. It also affected breast cancer due to quarantine,
increased patient service time, and routine procedures.
Additional measures such as disinfection after each
patient, restriction of people and staff in waiting and
medical rooms, and redeployment of medical resources
have also caused a drop in the number of screenings

for early detection of breast cancer (Monticciolo et al.,
2021).

Many countries claimed a significant drop in the
screening test rate during the pandemic. For instance,
in Italy, Battisti et al. (2022) evaluated it at around
40%, French radiologists determined it by 10% (Le Bi-
han Benjamin et al., 2022), Catalonia region in Spain
reported a decrease from 21% to 37%, and almost 20%
in the first year of the pandemic (Ribes et al., 2022).
Moreover, Italian researchers observed a decline of up
to 15% of the patients participating in breast cancer
screening (Battisti et al., 2022). The number of routine
procedures in the United Kingdom (UK) also declined
by 40% in 2020 compared to the previous year (Gathani
et al., 2022). 26% of Spanish patients with the already
diagnosed disease are exposed to high lethal risk and
malignancy in the next few years (Ruiz-Medina et al.,
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2021). Scientists specify that after two years of the
pandemic, there is a gap in breast cancer detection
despite the return of regular screenings and the growth
of undetected cancer (Le Bihan Benjamin et al., 2022),
(Ribes et al., 2022).

Researching breast cancer preserves its importance,
especially during the pandemic and other times.
Successful investigations can decrease mortality and
disease severity through early diagnosis and efficient
treatment. Modern methods can detect and diagnose
tumors by Artificial Intelligence (AI). AI can help speed
up the detection and diagnosis of disease to overcome
such difficulties as physician fatigue, diagnostic errors,
and time-consuming annotation, which aggravated due
to COVID in recent years and catch up on the delay
due to the pandemic. Physicians worldwide collaborate
with researchers to develop automatic systems for ab-
normalities detection, classification, segmentation, and
other tasks in breast cancer diagnosis. Such systems
could help avoid human and diagnostic errors, manual
reading, and overlooked lesions due to radiologists’
fatigue. However, there are challenges in preparing data
for the AI methods, such as artifacts, noise, and manual
labeling by experts requesting medical knowledge and
time.

Many algorithms in the medical domain were devel-
oped using Transfer Learning as one of the AI methods
and reached state-of-the-art results. Breast cancer
disease has been investigated by many researchers who
applied different methods, for instance, Convolutional
Neural Networks (CNN) to detect abnormalities in
mammograms (Elia et al., 2008), (Bria et al., 2016),
(Marrocco et al., 2005), (Savelli et al., 2020). This the-
sis proposes a computer-aided diagnosis system (CAD)
to detect and classify masses as benign and malignant
on the full-field digital mammograms (FFDM) of the
OPTIMAM (OMI-DB) dataset using Transfer Learning
in order to speed up the screening process.

This study aimed to investigate how the Trans-
fer Learning approach affects the performance of a
system for breast cancer detection and classification.
In particular, it was considered a detector based on
RetinaNet with two different Transfer Learning settings
(ImageNet and COCO) and trained it from scratch. The
classification is based on fine-tuning Transfer Learning
by adding L2-regularization.

Moreover, two approaches to the input to the Reti-
naNet model were compared. The first approach was
based on using the pre-processed image by down-
sampling and cropping the entire FFDM as the input.
In the second approach, we generated patches of 500
× 500 pixels from the entire FFDM due to the large
size of the original mammograms. It has been proved

that pre-processing step can improve detection results;
however, it was also investigated that CNN architectures
detect abnormalities efficiently without pre-processing
step (Bria et al., 2018), (Marchesi et al., 2017). Both
approaches can be accepted, and the pre-processing
step was applied to Transfer Learning with pre-trained
models in detection and classification tasks in this re-
search. Masses were predicted using the RetinaNet
model with different backbones trained with weights.
Also, we compared the results with fitting the model
from scratch. Mean Average Precision (mAP) was cho-
sen as the primary metric to evaluate models during the
training process on the validation subset. Test subsets
were evaluated with a True Positive Rate (TPR) at False
Positive Per Image (FPPI), which helped us compare re-
ceived results with a state-of-the-art. The classification
step used an approach of Transfer Learning, unfreezing
all layers, fine-tuning by adding L2-regularization lay-
ers. The contributions of this work are as follows:

1. We detected masses using the RetinaNet model
with three types of the backbones ResNet50,
ResNet101, and ResNet152 with two approaches
of entire mammograms and patches. The number
of the models is 18 in two approaches together.

2. To the best of our knowledge, this thesis is the
first where three backbones were trained with two
types of weights (ImageNet and COCO) and from
scratch.

3. The model RetinaNet was applied to OMI-DB
dataset with two approaches of input: entire mam-
mograms and patches while other authors used
only one of the methods in their research.

4. We implemented two tasks of the detection and
classification in this research. Predicted bounding
boxes were classified into benign and malignant tu-
mors using the Transfer Learning method.

5. We classified highly-imbalanced datasets with the
distribution of the minority class of 10% versus
90% of the majority class.

The thesis is organized as follows: ”State-of-the-art”
describes the current mass detection and classification
situation, considers methods, datasets, and achieved
results by other researchers. The following section,
”Materials”, includes information about the employed
OMI-DB dataset, image distribution, and parameters,
pre-processing for detection and classification steps.
”Methods” contains two approaches of the detection
methods with their details and classification steps.
”Results” presents the achieved results in terms of
the metric and comparison with the state-of-the-art.
Finally, we discuss the research value, its usefulness,
and obtained results.
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2. State of the art

Majority of papers directed at breast cancer highlight
only detection or classification steps simultaneously.
A rare paper can be found which implemented two
tasks together and predicted abnormalities transferred
to the classification model. This section presents two
subsections of state-of-the-art mass detection and
classification using Transfer Learning over the past few
years.

2.1. Breast mass detection

Agarwal et al. (2020) characterize their paper as the
first paper, in which the AI method Deep Learning was
applied to the OMI-DB dataset (Halling-Brown et al.,
2021). The authors received a subset of the large-scale
OMI-DB dataset with 4750 cases, where 2145 cases
were with cancer from two manufacturers of Hologic
Inc. (OMI-H) and General Electric (OMI-G). From
these cases, they extracted images with masses, and
the total numbers in two selected subsets were 2042
positive with 842 normal cases of OMI-H and 103 with
104 cases of OMI-G. Moreover, an additional dataset
INbreast was utilized with 50 positive and 65 normal
cases (Moreira et al., 2012). However, the amount of
benign and malignant images caused an imbalance
distribution of 485 versus 3048, respectively. As the
pre-processing step in the OMI-H and OMI-G subsets,
original mammograms were down-sampled due to the
large size of the original FFDMs, normalized, and
rescaled to 8 bits. Agarwal et al. (2020) marked that
they used the entire mammogram as an input to the
algorithm. As a primary model, the authors applied
Faster R-CNN, a two-step model with regression and
classification networks (Girshick, 2015). InceptionV2
backbone pre-trained on the COCO dataset was chosen
as a feature extractor. Region Proposal Network (RPN)
predicted bounding boxes of all possible objects,
evaluated with a confidence score of an overlapping
predicted object with groundtruths. The RPN consists
of two classification and regression networks, where
a predicted bounding box is classified as mass or
non-mass, in other words, foreground or background.
In terms of the classification results of mass, the
coordinates are redefined in the regression network
with the probability of closeness to the groundtruth.
OMI-H dataset was trained on the pre-trained COCO
weights by Faster R-CNN with 0.87 TPR at 0.84 FPPI
on the testing subset. Furthermore, to predict masses
in OMI-G and INbreast datasets, the trained model on
OMI-H, was fine-tuned and demonstrated 0.91 TPR
at 1.70 FPPI in OMI-G and 0.99 TPR at 1.17 FPPI in
INbreast datasets.

Sulaiman et al. (2021) as well as Agarwal et al.
(2020) investigated breast cancer with two mass detec-

tion and classification tasks by applying Faster R-CNN.
However, as materials, the authors chose two datasets
of MIAS and the Curated Breast Imaging Subset
of Digital Database for Screening Mammography
(CBIS-DDSM) (Sawyer-Lee et al., 2016). According
to Agarwal et al. (2020), the whole FFDM was used
as an input to the detection step. Both datasets were
augmented and pre-processed to eliminate artifacts on
the images by multi-threshold peripheral equalization
and resized to 256 × 256 pixels. MatConvNet as feature
extractor showed the top 97.04% accuracy.

Lotter et al. (2021) developed the classification and
detection CAD system, which works with 2D and 3D
mammograms. As datasets, DDSM (Mammography
et al., 2001) and OMI-DB were used as 2D data of
FFDMs and characterized as strongly-annotated by
experts, unlike 3D images of weakly-labeled Digital
Breast Tomosynthesis due to a high number of the
slices. Additionally, three private datasets were used
for training. In the OMI-DB datasets, images of two
manufacturers, General Electric and Hologic Inc., were
extracted. The OMI-DB dataset consists of 5233 posi-
tive studies and 16887 negative studies. The algorithms
started from the first step of the patches classification
of 275 × 275 pixels from two datasets. As a result, it
generated two million patches of the balanced distri-
bution of positive and negative patches. These patches
were classified with a pre-trained ResNet50 model with
ImageNet weights to four abnormalities and no lesion,
which were input to the RetinaNet detection model.
The results of the paper present 0.963 AUC in the
OMI-H dataset.

2.2. Breast mass classification
The classification task is investigated more frequently

in breast cancer research than the detection task. It
is connected with the complexity of the architectures,
training process, and the need for computing power to
predict bounding boxes as a regression problem than
to perform binary or multiclass classification. The
majority of papers limelight classification reaching
standalone results with different models and approaches
of Transfer Learning.

Valerio et al. (2019) aggregated two datasets DDSM
and the VIENNA dataset, to MAMMOSET, with 3339
total mammograms. Unlike other papers, the authors
solved an 11-class classification task according to
the Breast Imaging Reporting and Data System (BI-
RADS). Before data augmentation, the distribution of
the classes in the combined MAMMOSET was highly-
imbalanced. The total number of the images summed
up more than 10 thousand, which were balanced by
data augmentation. The paper compared handcrafted
features with traditional classifiers of Machine Learning
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and in-depth features of Transfer Learning. Researchers
concluded that the best performance was demonstrated
in-depth features with the CNN model of the augmented
dataset, and the NASNet-Large model demonstrated a
maximum of 93.40% accuracy.

In contradistinction to Valerio et al. (2019), Falconi
et al. (2020) predicted 6-class classification according
to the BI-RADS and generated patches of 399 x 399
pixels of the INbrest dataset’s FFDMs. The authors
compared three pre-trained models, where NASNet
Mobile used the Transfer Learning approach. At the
same time, two VGG16 and VGG19 were fine-tuned
by adding Global average pooling directly before the
dropout layer. In contrast, in Transfer Learning, Global
average pooling came before the last fully-connected
layer with the following dropout layer. Fine-tuned
models showed 0.885 and 0.909 accuracies, respec-
tively.

Yu and Wang (2019) detected abnormalities on the
mammograms with the pre-trained model ResNet18 of
Transfer Learning. Material for the algorithms was a
public mini Mammographic Image Analysis Society
(MIAS) dataset (Suckling et al., 2015) with 322 images
from 161 patients with breast images where physicians
labeled bounding boxes for the abnormalities. The
authors used a patch-based approach to generating
regions of interest. Images without abnormalities un-
derwent pre-processing with morphological operations
and binarization with a selection of the largest area,
and positive images were cropped out according to the
labeled ground truths. They compared three ResNet
models such as ResNet18, ResNet50, and ResNet101,
as feature extractors and froze layers before the last
fully-connected (FC) layer, and retrained three layers of
FC, softmax, and classification layer. Achieved results
showed that ResNet18 classified mammograms with
95.91% of mean accuracy.

Alruwaili and Gouda (2022) selected the MIAS
dataset as materials to classify mammograms as benign
and malignant. As standard pre-processing steps of
data augmentation, image enhancement, rescaling, and
normalization were applied to exclude overfitting and
increase performance. NASNet-Mobile and ResNet50
were chosen as pre-trained models in the Transfer
Learning approach with 89.5% accuracy of the residual
network. Khamparia et al. (2021) also proved that
pre-trained models, for instance, VGG16, by fine-
tuning and adding data augmentation, could help reach
86.9% accuracy in the classification of pathological and
non-pathological samples.

Several papers developed hybrid models with
classifiers of Machine Learning (Mahmood et al.,
2021) or other Deep Learning Networks (Altaf, 2021).

Mahmood et al. (2021) extracted features using six
pre-trained models VGG19, VGG19, GoogLeNet,
MobileNetV2, ResNet50 and DenseNet121. Extracted
features of each pre-trained model were fitted with the
Support Vector Machine (SVM) classifier of Machine
Learning. As a result, VGG19+SVM showed 93.5%
accuracy. Altaf (2021) deployed a hybrid model based
on Pulse-Coupled Neural Networks (PCNN) and Trans-
fer Learning pre-trained models. The authors stated
that researchers could train entire images without the
segmentation and pre-processing to generate image sig-
natures and obtain high results. About data, Mahmood
et al. (2021) merged three datasets, trained, and showed
an accuracy of 98.9% with the GoogLeNet model. In
contrast, Altaf (2021) with PCNN, which generated
image signatures invariant to acquisition quality and
transformations, showed 98.72% of accuracy.

3. Materials

The challenge in the medical domain is the avail-
ability of large datasets to train Deep Learning models
effectively. Many researchers combine several public
datasets to operate with more data and obtain robust
algorithms based on state-of-the-art analysis. In this
thesis, we use a large-scale OMI-DB dataset as Agarwal
et al. (2020) and Lotter et al. (2021). Additionally,
these authors tested the algorithms on public datasets
and subsets of different manufacturers. Unlike them,
we analyzed only the OMI-H subset and tested our
algorithms on it.

The OMI-DB dataset collected over 2.5 million
FFDMs during the UK’s National Health Service
Breast Screening Program from more than 170 thou-
sand women (Halling-Brown et al., 2021). However,
most papers indicated a various number of cases, im-
ages distribution, and manufacturers. Such differences
suggest that other authors and we were provided with
distinct subsets due to the high number of images in
the original large-scale mammography dataset. The
OPTIMAM steering committee considers requests
for data sharing depending on the various research
aims. Our dataset includes 6000 cases with 148,461
processed and unprocessed FFDMs. A case is assumed
to be a patient examined for some time, and each
case contains studies with time intervals where the
examination images were kept. The annotation infor-
mation describes modality, breast view, screening date,
abnormalities type, expert’s labeling in the presence of
abnormalities and malignancy (benign or malignant),
and other information regarding the screening, patient,
and image parameters. The labeling was provided as
bounding box coordinates where one or several lesions
were located.
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Figure 1: Manufacturers’ distribution in the OMI-DB dataset with
images number which is marked as abnormal.

The ratio of the manufacturers in the OMI-DB is
shown in Figure 1, demonstrating images with any
abnormalities of four manufacturers. As it is seen that
the dataset is highly imbalanced in terms of the man-
ufacturers, and General Electric, Philips, and Siemens
were presented as a minority, hence we selected only
6787 images of Hologic Inc.

All images in the OMI-H subset are performed in two
projections for left and right breasts: the mediolateral
oblique (MLO) of 2560 × 3328 pixels and craniocaudal
(CC) of 3328 × 4048 pixels (Figure 2). The OMI-H
contains samples with various abnormalities such as
architectural distortion, calcification, focal asymmetry,
mass, and others. However, we considered only a mass
abnormality and the final number of the positive images
with masses made up 3524 images and 4100 negative
images without masses. All images were split into
training, validation, and test subsets with 70%, 10%,
and 20%, respectively. We converted original grayscale
DICOM mammograms with a 16-bit range of intensity
to png with 8 bits.

As it was analyzed in the literature review, Agarwal
et al. (2020) used entire mammograms as inputs to the
detection algorithm, while Lotter et al. (2021) devel-
oped patch-based architecture with 275 pixels in height
and width. In this thesis, we conducted the research
of two approaches, where entire mammograms and
extracted patches are performed as inputs to the models.

The first approach requires taking all images as they
are. Due to the mentioned original size of MLO and CC
views, AI models can not process such huge images as
it demands enormous computational resources. We fol-
lowed the same pre-processing steps as Agarwal et al.
(2020). However, Agarwal et al. (2020) down-sampled
all images to 200 micrometers; we chose the lowest res-

Figure 2: Example of mammogram views: a) Right CC b) Left CC c)
Right MLO d) Left MLO.

Figure 3: The workflows of the pre-processing steps for the first and
the second approaches.

olution and down-sampled them to 70 micrometers to
keep the proportions and coordinates of the bounding
boxes. Moreover, we cropped out the breast area ac-
cording to segmented masks obtained from unprocessed
mammograms with a high contrast of the breast and air.
As a result, the total number of benign and malignant
samples was composed of 362 and 3162 images, re-
spectively. The workflows of the pre-processing steps
for both approaches are performed in Figure 3.

The second approach is based on the extracted
patches from the original images. A sliding window
creates patches with the horizontal and vertical step
of 250 pixels that runs through the entire image to
generate patches. Each patch is 500 × 500 pixels with
bounding box coordinates, and the total number of
patches is 500616. In this thesis, we consider only
positive images. Hence, we selected patches only
containing masses coordinates, and the total number
of the images made up 2690 benign versus 25396
malignant. The splitting ratio to train, validation and
the test subsets was left as in the first approach. The
workflow of the pre-processing steps for the second
approach is also shown in Figure 3.
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Figure 4: Benign and malignant images are distributed in training,
validation, and test subsets of a) the first and b) the second approaches.

After getting the results of the detection model,
predicted bounding boxes had to be classified as
benign and malignant. We cropped predicted bounding
boxes to obtain only masses, however, their size varies
significantly. Some images labeled with several masses,
which all were cropped out from the images and
patches and pre-processed. The pre-processing step
was directed to increase the neighborhood pixel space
of the objects to 250 pixels in height and width. If the
height or width equals to 250 and more, we left them
as they are. As a result, the minimal size of the image
with masses inside is 250 × 250 pixels. The training
and validation subsets distributions are the same as the
detection step and it underwent the same pre-processing
step by increasing the size of around the mass to 205
pixels as the predicted masses. Figure 4 demonstrates
the distribution of the classes inside two datasets of two
approaches in terms of the training, validation, and test
for the classification task.

4. Methods

State-of-the-art shows that Transfer Learning as a
method of AI can reach high results in the detection

and classification of the medical domain. Especially
in the medical domain, that distinguishes significantly
from other datasets having specific images and objects.
Transfer Learning recommended itself to be one of the
leading AI methods in this field, transferring knowledge
from large-scale datasets of ImageNet (Deng et al.,
2010) and COCO to small and specific data (Lin et al.,
2014). Transferring the knowledge from one domain
to another saves training time and computational
resources and gives good results.

ImageNet is a large-scale database with 14 million
images with 1000 categories. During ImageNet Large
Scale Visual Recognition Challenge, developers trained
models on the ImageNet datasets and shared their mod-
els with ImageNet weights (Deng et al., 2010). On the
other hand, COCO weights were trained using COCO
datasets with 328 thousand images of 80 categories
(Lin et al., 2014). To get the weights, ResNet50 was
fitted on the COCO dataset. The pre-trained weights
help provide a starting point to the own training model
and reach convergence in fewer epochs.

4.1. Breast mass detection
As a detection method, Agarwal et al. (2020) and

Sulaiman et al. (2021) utilized the Faster R-CNN model
with two regression and classification networks with
different datasets. As a backbone, Agarwal et al. (2020)
chose InceptionV2 with COCO pre-trained weights as
a feature extractor, and Sulaiman et al. (2021) selected
MatConvnet from MATLAB. On the contrary, Lotter
et al. (2021) detected abnormalities with the RetinaNet
detection model of ResNet50 backbone with ImageNet
weights. In this thesis, we detect masses with the
RetinaNet model, but unlike Lotter et al. (2021), we
extracted features with three models of backbones:
ResNet50, ResNet101, and ResNet152 and compared
the results. Each pre-trained model was initialized with
ImageNet and COCO weights and trained from scratch.

Two-stage detectors, for instance, R-CNN (Girshick
et al., 2014), Faster R-CNN (Girshick, 2015), Feature
Pyramid Network (FPN) (Lin et al., 2017), consist of
two stages, where the first stage is Region Proposal
Network (RPN) to extract regions of objects and the
second one is classification to get the object’s class and
refine the localization. However, two stages are trained
separately, making it time- and resource-consuming.
On the other hand, RetinaNet is a one-stage detector of
two regression and classification subnets, which operate
simultaneously. It is recognized that RetinaNet detects
objects well with different scales. Due to this, architec-
ture has become valuable and essential in the medical
domain. For instance, it helps detect various lesions
(Zlocha et al., 2019), (Chen et al., 2022), (Swinburne
et al., 2022), (Adachi et al., 2020). RetinaNet consists
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Figure 5: RetinaNet architecture: a) the first approach with the input of the entire mammogram b) the second approach with the input of patches c)
ResNet50, ResNet101, and ResNet152 backbones with ImageNet, COCO weights, and from scratch initializations, and Feature Pyramid Networks,
d) two subnetworks of the classification and regression.

of ResNet and FPN backbones. ResNet plays a role
as a feature extractor, while FPN creates a multi-scale
feature pyramid, scale-invariant, and comprises two
subnetworks of classification and regressions. The
regression subnetwork predicts bounding boxes, while
the classification subnetwork determines the object’s
class (Lin et al., 2017). In this research we investigate
three ResNet50, ResNet101, ResNet152 backbones.

Figure 5 shows the architecture of the detection step,
where Figure 5 (a) and (b) perform two approaches
with entire mammograms and patches, fed to three
backbones with different initialization modes in Figure
5, c (Lin et al., 2017). The weights initialization
yields advantages in the starting point, training speed,
and higher results. Three pre-trained models of the
ResNet extract features are input to the FPN from
bottom to up. In each scale, the last layer of the model
creates feature maps based on the feature pyramid.
FPN is made in the top-down pathway, merged with a
respective backbone scale. ResNet models play a role
of a feature extractor, while FPN creates a multi-scale
feature pyramid, scale-invariant, and comprises two
subnetworks of classification and regression (Figure
5, d). The regression subnetwork predicts bounding
boxes, while the classification subnetwork determines
the object’s class (Lin et al., 2017).

The challenging problem in object detection is fore-
ground and background class imbalance. In two-stage
detectors, the background classes are narrowed to 1000-
2000, while RetinaNet enumerates 100000 predicted
objects, spreading densely distributed in the spatial
domain and ratios (Lin et al., 2017). The imbalance of
negative and positive objects is solved with Focal Loss
proposed by Lin et al. (2017), increasing the training
efficiency.

ResNet models are deep convolutional networks
where the vanishing/exploding gradients problems
during backpropagation were solved by adding residual
blocks. The layer’s output is fed to the next in the
traditional architecture. In ResNet, the layer is provided
into the next layer and directly into layers located
at about 2–3 hops. Also, ResNet50, ResNet101 and
ResNet152 have 50, 101 and 152 layers in depth,
respectively.

In this study, we train our dataset with the RetinaNet
model of ResNet50, ResNet101, and ResNet152
backbones with ImageNet, COCO weights initializa-
tion, and from scratch in two approaches with entire
mammograms and patches. In this case, the ImageNet
and COCO weights act as initialization to speed up the
training process, extracted from a large amount of data
and transferred to the required small dataset, reaching
high effectiveness. Training the model from scratch is
a time- and resource-consuming challenge. However,
we trained our models from scratch to compare three
variants of the initializations.

4.2. Breast mass classification

Several authors apply the first approach of Transfer
Learning. The last FC layer is replaced, and three layers
of FC, softmax, and classification layers are retrained
while all layers are frozen (Yu and Wang, 2019), (Va-
lerio et al., 2019). The standard workflow of Transfer
Learning consists of three main steps: to load the
model architecture and pre-trained weights on the large
ImageNet database with 1000 classes, to replace the last
fully-connected layer with a task-specific classification
of the dense layer with softmax activation function, and
the class number, in our case, benign and malignant,
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and the last step is to train the compiled model. This
thesis fine-tuned the model, adding L2-regularization,
and trained the model with a minimal learning rate.
We unfroze the model and added regularization where
it was possible to do it to exclude overfitting, enhance
the model’s generalization, and yield more accurate
predictions.

L2-regularization penalizes large weight values and
transforms them to close to 0 but not equal. It means
that less significant features will have a minor influence
over the final prediction while L1-regularization shrinks
weights to 0, and features become obsolete. In this case,
the L2-norm characterizes as a non-sparse solution with
non-zero values and does not act as a feature selector
as L1. It helps consider all features to classify masses
as benign and malignant. The main difference between
L2 and L1 is that L2 penalizes the sum of the square of
the weights, while L1 penalizes the sum of the absolute
values of the weights.

In the materials section, we investigated that our
datasets in the classification step are highly imbalanced.
We balanced the class distribution by adding weights
to the minority class to overcome this challenge. Class
weights compensate limited distribution of the minority
class to the majority by adding weight values to the
minority class. For instance, we have a 9.9 weight of
the benign class, where each sample calculated the loss
proportionally to the weights during the training, and
the benign class did it with a higher contribution at 9.9
times. This balancing method preserves the algorithm
from predicting the prevalent class because of its
dominance. If we leave the class distribution in two
approaches as it is, in this way, applying the Transfer
Learning by replacing the last fully-connected layer
with two classes works improperly and learns nothing.

As pre-trained models, we selected four models,
ResNet50, InceptionV3, VGG19, and Efficient-
NetV2M, to compare the classification results.
Following two approaches to the detection step, we
trained two datasets with different inputs of the entire
mammograms and patches. The predicted bounding
boxes were cropped out and pre-processed according to
the described steps in the previous sections.

5. Results

This section presents our results regarding all the 18
models trained with two approaches and then classified
as benign and malignant. The mass detection method
comprises a training RetinaNet model with three
backbones and three initialization modes. We chose
as backbones ResNet50, ResNet101, and ResNet152,
which were trained with ImageNet, COCO weights,

Table 1: Models mAP on the validation subset indicating the best
epoch in the first approach.

Models Epoch mAP
The first approach

RetinaNet+ResNet50+ImageNet 40 0.704
RetinaNet+ResNet50+COCO 17 0.709
RetinaNet+ResNet50+Scratch 57 0.569

RetinaNet+ResNet101+ImageNet 25 0.714
RetinaNet+ResNet101+COCO 81 0.656
RetinaNet+ResNet101+Scratch 93 0.570

RetinaNet+ResNet152+ImageNet 21 0.715
RetinaNet+ResNet152+COCO 13 0.000
RetinaNet+ResNet152+Scratch 3 0.000

The second approach
RetinaNet+ResNet50+ImageNet 14 0.521

RetinaNet+ResNet50+COCO 12 0.519
RetinaNet+ResNet50+Scratch 78 0.515

RetinaNet+ResNet101+ImageNet 18 0.531
RetinaNet+ResNet101+COCO 100 0.532
RetinaNet+ResNet101+Scratch 83 0.493

RetinaNet+ResNet152+ImageNet 13 0.531
RetinaNet+ResNet152+COCO 2 0.000
RetinaNet+ResNet152+Scratch 1 0.000

and from scratch. The weights initialization yields
advantages in the starting point, training speed, and
higher results. The mAP was utilized as a metric to
monitor the training process on the validation subsets,
and during the training, we saved a snapshot of each
epoch. The total number of epochs in each approach
and initialization is 100, and the batch size is 4, with
676 steps in the first approach and 5013 steps in the sec-
ond approach with Adam optimizer and a 1e-5 learning
rate in both approaches. The number of steps depends
on the number of images. Due to the dataset size with
patches, the number of steps is more significant than the
first approach. Additionally, data were augmented with
affine random transformations. We trained the same
models in two approaches; however, the input differed.
As was described in the “Dataset”, we extracted whole
mammograms and patches of 500 × 500 pixels and
selected them only with masses for training.

The prediction of the bounding boxes of the masses
is the same in two approaches. We took each 10th
epoch and predicted test datasets with 11 different
variants from 10 to 100 epochs, including the best
epoch. The best epoch is defined with the highest mAP
on the validation subset during the model’s training.
We forecasted bounding boxes for each epoch and
calculated the TPR at the FPPI metric for all models.
Moreover, selected models from the detection step
are classified by four pre-trained models in terms of
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malignancy. The results of the classification step are
evaluated with precision, recall, F1-score, and accuracy.

5.1. Breast mass detection results
We fitted the RetinaNet model with three backbones

initialized with ImageNet, COCO weights, and from
scratch with two approaches. The training process of
each model was evaluated by the highest mAP, which
could be reached in the epochs. Table 1 shows the
performance of mAP for each model, indicating the
best epoch in both approaches. As a result, in the first
approach, almost all the models showed mAP above
0.7, though in the second approach, mAP is around
0.5. In two approaches, two last RetinaNet models
with ResNet152 backbones initialized with COCO
weights and from scratch showed the 0-value of mAP
and stopped training. According to Table 1, in the first
approach, the model RetinaNet of ResNet152 backbone
initialized with ImageNet weights demonstrated the
maximum 0.71498 mAP and convergence in 21 epochs,
while RetinaNet+ResNet101 backbone initialized with
the same weights showed the same comparable mAP
of 0.71364 at 25 epochs. The fastest convergence was
reached by RetinaNet with Resnet50 backbone and
COCO weights at 17 epochs and illustrated one of the
top mAP of 0.70894 and two models above. Other
models demonstrated lower mAP, and it took more
epochs and time to perform their top mAP. Despite
the convergence at the best epoch, we trained all 100
epochs in each model, saving the snapshot of every
epoch.

In the second approach, where the patches are the
input to the networks, the best results of mAP are shown
by three models of ResNet101 backbone with ImageNet
and COCO weights and ResNet152 backbone with the
first type of the weights (Table 1). They illustrated more
than 0.53 mAP with the convergence before 20 epochs
in the first and third models. Moreover, the second
model (RetinaNet+ResNet101+COCO) demonstrated
the 0.532 mAP at 100 out of 100 epochs. The further
training of these variants is not considered in this thesis.
We can assume that if we train this model more, it can
give some interesting results. In contradistinction to the
first approach, the models from scratch in the second
approach displayed comparable results with models
initialized weights.

Table 2 presents the results of each ten epochs and
predictions on the test datasets from 10 to 100 epochs,
including the best epochs for two approaches. To
compare the results of the detection step, we evaluated
our results with TPR at the FPPI metric, where TPR
refers to sensitivity and recall. According to the
accepted metric, True Positive masses are detected if
the IoU is greater than 10%. It means that the predicted

bounding box overlaps its groundtruth by 10%. False
Positives are considered if the IoU is less than 10%. We
calculated the TPR metric at FPPI for eleven chosen
epochs in all approaches’ models. Table 2 displays that
we achieved 0.938 TPR at 0.84 FPPI in the RetinaNet
model with ResNet50 backbone initialized with COCO
weights in 50 epochs of the first approach. At the same
time, ResNet101 with ImageNet weights demonstrated
0.944 TPR at 0.84 FPPI, which is 0.006 higher than
COCO weights. The model with ResNet152 and
the same initialization as the abovementioned model
demonstrated a top 0.959 TPR at 0.84 FPPI. Further-
more, the ResNet152 backbone with ImageNet weights
was the best model with the highest TPR at 0.84 FPPI
in the best epoch. Therefore, the RetinaNet with three
backbones and weights initialization can be used as the
top model in the following classification step of the first
approach. In contrast, models from scratch showed the
lowest TPR among those initialized by weights, and
the models with the highest mAP showed the top TPR
parameters. As a result, we determined the predicted
masses of three models to classify them with whole
mammograms. They are RetinaNet+ResNet50+COCO
at 50 epochs, RetinaNet+ResNet101+ImageNet and
RetinaNet+ResNet152+ImageNet at the best 25 and 21
epochs, respectively.

Along with the first approach, we compared all
training models in the second approach in terms of
the metric of TPR at 0.84 FPPI (Table 2). The second
approach presented uncompetitive results at ResNet50
backbone from scratch with 0.913 at 0.84 FPPI at 100
epochs and ResNet101 backbone initialized by COCO
weights with 0.918 at 0.84 FPPI at 50 epochs. At the
same time, the ResNet50 backbone with ImageNet
initialization performed 0.905 TPR at 0.84. The top
0.918 TPR at 0.84 FPPI in the second approach was
established at 50 epochs, while in the first approach,
it was 21 epochs. As a result, according to the TPR
at 0.84 FPPI, we selected two models, RetinaNet of
ResNet50 backbone from scratch at 100 epochs and
ResNet101 with COCO weights initialization at 50
epochs to the classification step.

Additionally, we plotted the FROC curves from 10
to 100 epochs with a step of 10 epochs with the best
epochs. The best epoch was chosen with the best mAP
of the validation dataset during the training. The FROC
curve shows the relationship between TPR on the y-axis
and FPPI on the x-axis. We plotted the FROC of seven
models and epochs with a range of confidence degrees
of two approaches (Figure 6 (a-g) and Figure 7 (a-g)).
Figures 6 (h) and 7 (h) perform the FROC with the cho-
sen epochs of top TPR in two approaches to visually
compare curves among the models.
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Table 2: Performance comparison of mass detection models of the first approach in epochs with step 10. The metrics correspond to the True
Positive Rate (TPR) at 0.84 False Positive Per Image.

Model TPR at 0.84 FPPI
Epoch 10 20 30 40 50 60 70 80 90 100 BEST

The first approach
RetinaNet+
ResNet50+ImageNet

0.915 0.921 0.934 0.932 0.920 0.912 0.918 0.914 0.908 0.920 0.932

RetinaNet+
ResNet50+COCO

0.912 0.919 0.923 0.923 0.938 0.929 0.926 0.922 0.929 0.910 0.923

RetinaNet+
ResNet50+Scratch

0.776 0.884 0.831 0.854 0.870 0.865 0.866 0.867 0.867 0.868 0.867

RetinaNet+
ResNet101+ImageNet

0.938 0.934 0.931 0.935 0.922 0.902 0.916 0.905 0.894 0.900 0.944

RetinaNet+
ResNet101+COCO

0.790 0.812 0.852 0.867 0.861 0.871 0.879 0.883 0.890 0.887 0.883

RetinaNet+
ResNet101+Scratch

0.847 0.867 0.866 0.890 0.838 0.846 0.825 0.850 0.882 0.873 0.855

RetinaNet+
ResNet152+ImageNet

0.936 0.934 0.930 0.897 0.901 0.908 0.931 0.896 0.914 0.891 0.959

The second approach
RetinaNet+
ResNet50+ImageNet

0.866 0.865 0.870 0.887 0.890 0.897 0.858 0.815 0.771 0.776 0.905

RetinaNet+
ResNet50+COCO

0.878 0.896 0.892 0.873 0.877 0.882 0.872 0.857 0.851 0.855 0.890

RetinaNet+
ResNet50+Scratch

0.847 0.844 0.836 0.842 0.884 0.881 0.891 0.892 0.899 0.913 0.910

RetinaNet+
ResNet101+ImageNet

0.844 0.897 0.860 0.892 0.879 0.839 0.833 0.812 0.878 0.859 0.893

RetinaNet+
ResNet101+COCO

0.857 0.853 0.906 0.908 0.918 0.904 0.899 0.910 0.918 0.917 0.917

RetinaNet+
ResNet101+Scratch

0.792 0.808 0.844 0.875 0.873 0.875 0.870 0.874 0.880 0.911 0.904

RetinaNet+
ResNet152+ImageNet

0.890 0.877 0.839 0.857 0.838 0.849 0.799 0.843 0.791 0.795 0.824

5.2. Breast mass classification results

The obtained results of the detection step are used in
the classification task. We received predicted masses
in two approaches from the whole mammograms and
patches and selected 3 models in RetinaNet of ResNet50
backbone with COCO weights at 50 epochs, ResNet101
and ResNet152 backbones with ImageNet weights ini-
tialization at the best 25 and 21 epochs, respectively, in
the first approach. In the second approach, we opted
for two models of ResNet50 backbone from scratch and
ResNet101 with COCO weights initializations at 100
and 50 epochs. The original test subsets, extracted from
the original OMI-DB dataset and predicted in the de-
tection step, consist of 776 and 5767 masses in two ap-
proaches, respectively. Table 3 shows the distribution
of benign and malignant classes in the original and pre-
dicted test subsets. It is seen that subsets are imbalanced
with the majority of the malignant class.

Moreover, due to the different number of the pre-
dicted masses in the detection step, the size of the test
subsets varies. All models were chosen with 0.5 of
the confidence degree of the predicted masses. Table
3 presents the results of the detection step, where in the
first approach, RetinaNet+ResNet50+COCO predicted
54 benign masses out of 82 of the original test subset
and 583 malignant out of 694. The last model predicted
only 70.3% of benign and 67.1% of malignant from the
original masses. In the second approach, only 270 be-
nign masses out of 670 and 2361 out of 5097 malignant
were predicted in the RetinaNet+ResNet50+Scratch
model, while the next model forecasted 266 and 2440
benign and malignant masses respectively. However,
only predicted masses were classified, while unpre-
dicted masses were discarded.

We implemented fine-tuning Transfer Learning by
unfreezing all layers, adding L2-penalty, and retraining
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Figure 6: Free-response Receiver Operating Characteristic curve of RetinaNet model with three types of the initialization in the first approach:
a) ResNet50 with ImageNet weights, b) ResNet50 with COCO weights, c) ResNet50 from scratch, d) ResNet101 with ImageNet weights, e)
ResNet101 with COCO weights, f) ResNet101 from scratch, g) ResNet152 with ImageNet weights, h) FROC curves of all models in the first
approach with the highest TPR parameter

Table 3: Class distribution of the selected models of the first and sec-
ond approaches

Model Benign Malignant
The first approach

Original Test subset 82 694

RetinaNet+ResNet50+
COCO at 50 epochs 54 583

RetinaNet+ResNet101+
ImageNet at BEST (25) epochs 54 632

RetinaNet+ResNet152+
ImageNet at BEST (21) epochs 38 466

The second approach
Original Test subset 670 5097

RetinaNet+ResNet50+
Scratch at 100 epochs 270 2361

RetinaNet+ResNet101+
COCO at 50 epochs 266 2440

the model with class weights using four pre-trained
models. The algorithm was described in the “Method-
ology” section. We evaluated the results with precision,
recall, F1-score, and accuracy (Table 4). The highest
precision, 0.95, was conducted with the ResNet50 and
EfficientNetV2M pre-trained model, which means that
95% of masses were classified correctly. Simultane-
ously, the precision in the VGG19 model is a maximum
of 0.93. The precision in all datasets and pre-trained
models was more than 0.92.

The recall metric, also known as sensitivity, ranges
between 0.61 and 0.98. The recall metric shows how
many samples are identified with the correct class
according to the total number of images. The highest
0.98 recall of RetinaNet with ResNet152 backbone with
ImageNet demonstrates that 98% are predicted cor-
rectly in VGG19 and EfficientNetV2M models. Models
of the second approach RetinaNet+ResNet50+Scratch
and RetinaNet+ResNet101+COCO showed the highest
0.90 and 0.93 recall in ResNet50 and EfficientNetV2M
respectively. The maximum 0.96 F1-score showed
RetinaNet with ResNet152 backbone with ImageNet
weights trained with the ResNet50, VGG19, and
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Figure 7: Free-response Receiver Operating Characteristic curve of RetinaNet model with three backbones and initializations in the second ap-
proach: a) ResNet50 with ImageNet weights, b) ResNet50 with COCO weights, c) ResNet50 from scratch, d) ResNet101 with ImageNet weights,
e) ResNet101 with COCO weights, f) ResNet101 from scratch, g) ResNet152 with ImageNet weights, h) FROC curves of all models in the second
approach with the highest TPR parameter

EfficientNetV2M models. F1-score is the combination
of precision and recall, which is helpful in the imbal-
anced datasets across benign and malignant samples,
balancing the overall score based on them.

According to the results in Table 4, we con-
clude that the best results were obtained with three
pre-trained models, such as ResNet50, VGG19,
and EfficientNetV2M, with the dataset of Reti-
naNet+ResNet152+ImageNet in terms of the
precision, recall, F1-score, and accuracy. Two
models of the second approach from the detec-
tion step (RetinaNet+ResNet50+Scratch and Reti-
naNet+ResNet101+COCO) presented the lowest
recall, F1-score, and accuracy values. As a result,
we selected the EfficientNetV2M model of the Reti-
naNet+ResNet152+ImageNet as the best performance
in all metrics in the classification step.

5.3. Qualitative results

Figure 8 illustrates the qualitative results of the pre-
dicted bounding boxes of masses on the entire mam-
mograms of the OMI-H dataset of two approaches in
the detection task. They performed examples from all

the five models with three types of the predicted bound-
ing boxes: predictions with high confidence (80%-90%
and higher) (Figure 8, a), predicted wrong (Figure 8,
b), and undetected masses (Figure 8, c). We take the
same color parameters of the bounding boxes visualiza-
tion as Agarwal et al. (2020): green bounding boxes are
groundtruths, yellow – True Positives, and red – False
Positives. The confidence score is displayed above True
Positive predictions.

6. Discussion

Agarwal et al. (2020) utilized two subsets of OMI-
DB with Hologic and General Electric manufacturers.
As a detection model, they utilized Faster R-CNN
with InceptionV2 backbone as a feature extractor with
COCO weights achieving 0.87 TPR at 0.84 FPPI. On
the other hand, Sulaiman et al. (2021) and Lotter et al.
(2021) developed two tasks of mass detection and clas-
sification. Sulaiman et al. (2021) applied Faster R-CNN
as Agarwal et al. (2020), though to the combination
of the MIAS and CBIS-DDSM datasets with VGG19,
InceptionV3, and MatConvNet to extract features.
In this study, we utilized RetinaNet detection model
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Table 4: Classification step evaluation of the two detection approaches: precision, recall, F1-score, and accuracy
Model ResNet50 InceptionV3 VGG19 EfficientNetV2M

Precision
RetinaNet+ResNet50+COCO 0.93 0.93 0.93 0.93
RetinaNet+ResNet101+ImageNet 0.94 0.93 0.93 0.94
RetinaNet+ResNet152+ImageNet 0.95 0.93 0.93 0.95
RetinaNet+ResNet50+Scratch 0.92 0.93 0.93 0.95
RetinaNet+ResNet101+COCO 0.93 0.93 0.92 0.93

Recall
RetinaNet+ResNet50+COCO 0.95 0.92 0.97 0.96
RetinaNet+ResNet101+ImageNet 0.95 0.90 0.98 0.95
RetinaNet+ResNet152+ImageNet 0.97 0.92 0.98 0.98
RetinaNet+ResNet50+Scratch 0.90 0.80 0.88 0.61
RetinaNet+ResNet101+COCO 0.90 0.81 0.88 0.93

F1-score
RetinaNet+ResNet50+COCO 0.94 0.92 0.95 0.95
RetinaNet+ResNet101+ImageNet 0.94 0.91 0.95 0.94
RetinaNet+ResNet152+ImageNet 0.96 0.93 0.96 0.96
RetinaNet+ResNet50+Scratch 0.91 0.86 0.90 0.74
RetinaNet+ResNet101+COCO 0.92 0.86 0.90 0.93

Accuracy
RetinaNet+ResNet50+COCO 0.89 0.86 0.90 0.90
RetinaNet+ResNet101+ImageNet 0.89 0.84 0.91 0.90
RetinaNet+ResNet152+ImageNet 0.92 0.87 0.92 0.93
RetinaNet+ResNet50+Scratch 0.84 0.77 0.83 0.62
RetinaNet+ResNet101+COCO 0.85 0.77 0.83 0.88

as Lotter et al. (2021), however with three different
backbones of ResNet50, ResNet101 and ResNet152,
while Lotter et al. (2021) used only ResNet50. More-
over, unlike Lotter et al. (2021) which initialized the
detection model with ImageNet weights, we obtained
results with ImageNet and COCO weights and from
scratch. Considering the FFDMs size, only Lotter
et al. (2021) extracted patches from the mammograms,
while other authors fed entire images to the models.
Compared with state-of-the-art papers in the detection,
we implemented two approaches, entire mammograms,
and patches.

Agarwal et al. (2020), Lotter et al. (2021), and our
thesis used the same OMI-DB dataset. However, the
cases with images were not identical due to different
subsets of the OMI-DB being provided. On the one
hand, our investigation detected masses in the images
produced by Hologic manufacture. However, Agarwal
et al. (2020), on a par with Hologic processed images of
Siemens, General Electric, and Philips manufacturers,
unlike Lotter et al. (2021) with Hologic and General
Electric images. At the same time, the distribution of
benign and malignant images in OMI-H of Agarwal
et al. (2020) paper seems almost similar. Agarwal
et al. (2020) extracted 2042 malignant and 842 be-
nign images. In our case, we selected 3524 images
with masses, 3162 malignant and 362 benign, which

is 90% versus 10% in the percentage ratio in our dataset.

According to Table 5, many papers used INbreast,
mini-MIAS, and DDSM datasets to implement mass
detection methods. For instance, Kozegar et al. (2013)
reached 0.87 TPR at 3.67 FPPI and 0.91 TPR at 4.8
FPPI in two datasets. Akselrod et al. (2017) and Shen
et al. (2020) utilized private datasets in line with the
INbreast dataset, where they performed 0.93 TPR at
0.56 FPPI and 0.879 TPR at 0.5 FPPI, respectively.
Many papers applied their method to the public datasets
and their merge, which are available with free access to
obtain larger datasets, fine-tune models, and implement
more robust methods. Not many articles use the
OMI-DB dataset to detect mammogram abnormalities
with different methods. We implemented our pipeline
using the Transfer Learning method with the RetinaNet
model as a baseline and different backbones initiated
by ImageNet, COCO weights, and from scratch in two
approaches.

This research aimed to investigate how a Transfer
Learning approach affects the performance of a system
for breast cancer detection. In particular, we considered
a detector based on RetinaNet with two different
Transfer Learning settings (ImageNet and COCO) and
trained from scratch. The top model RetinaNet of
ResNet152 backbone with ImageNet weights showed
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Figure 8: Qualitative results of the mass detection in OMI-H dataset,
the 1st row demonstrates the results of RetinaNet+ResNet50+COCO,
the 2nd row RetinaNet+ResNet101+ImageNet, the
3rd row RetinaNet+ResNet152+ImageNet, the 4th
row RetinaNet+ResNet101+COCO, the 5th row Reti-
naNet+ResNet101+Scratch: a – True Positive detections with
high objectness score; b – False Positive detections; c – undetected
masses. The numbers shown in the images correspond to the
confidence of being mass. The color of bounding boxes: green –
groundtruths, yellow – True Positives, red – False Positives.

Table 5: Comparison of the mass detection between the proposed
framework and the published results

Method TPR at FPPI Dataset
Kozegar et al. (2013) 0.87 at 3.67

0.91 at 4.8
INbreast
mini-MIAS

Akselrod-Ballin et al.
(2017)

0.93 at 0.56
0.90 at 1.0

INbreast
Private

Shen et al. (2020) 0.879 at 0.5
0.948 at 2.0

INbreast
Private

Anitha et al. (2017) 0.935 at 0.62
0.925 at 1.06

mini-MIAS
DDSM

Te Brake et al. (2000) 0.55 at 0.10 DDSM

Dhungel et al. (2017) 0.90 at 1.30 INbreast

Ribli et al. (2018) 0.90 at 0.30 INbreast

Jung et al. (2018) 0.94 at 1.30 INbreast

Agarwal et al. (2019) 0.98 at 1.67 INbreast

Agarwal et al. (2020) 0.87 at 0.84 OMI-H

Proposed framework:
RetinaNet+
ResNet50+COCO

0.938 at 0.84 OMI-H

RetinaNet+
ResNet101+ImageNet

0.944 at 0.84 OMI-H

RetinaNet+
ResNet152+ImageNet

0.959 at 0.84 OMI-H

0.959 TPR at 0.84 FPPI, while Agarwal et al. (2020)
reached 0.87 TPR at 0.84 FPPI (Table 5). Table 5 com-
pares the papers on mass detection and reached results
in different datasets, and we proposed our framework
with three backbones and two types of initialization.

Furthermore, predicted masses in the detection step
were classified as benign and malignant. Minority of
papers implement detection and classification tasks si-
multaneously. Mainly they are developed separately or
considered for future work in many cases. Most pa-
pers of the classification task performed in Table 6 used
the public datasets in the detection step for classify-
ing masses into benign and malignant, pathological and
non-pathological and etc., while scarcity of papers with
OMI-H classifying masses is observed. This thesis pre-
sented our results using Transfer Learning fine-tuning
approach by adding L2-regularization, which gave us
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Table 6: Comparison of the classification between proposed frame-
work and the published results

Method Model Acc. Dataset
Valerio et al.
(2019)

Inception-
ResNet-v2

94.34% MAMMO-
SET

Falconi et al.
(2020)

VGG19 90.9% INbrest

Yu and Wang
(2019)

ResNet18 95.91% mini-
MIAS

Alruwaili and
Gouda (2022)

ResNet50 89.5% MIAS

Khamparia et al.
(2021)

VGG16 86.9% MIAS

Mahmood et al.
(2021)

VGG19+
SVM

97.8% MIAS,
INBreast,
Private

Altaf (2021) PCNN+
GoogLeNet

98.72% DDMS

Proposed framework:
RetinaNet+ ResNet50 92% OMI-H

ResNet152+ VGG19 92% OMI-H

ImageNet Efficient-
NetV2M

93% OMI-H

92%-93% accuracy with ResNet50, VGG19 and Effi-
cientNetV2M. However, we faced the problem of the
highly imbalanced distribution of two classes in the
datasets. These results were obtained using the bound-
ing boxes predicted from the whole mammograms from
the detection step.

7. Conclusions

In conclusion, the mass detection task was efficiently
investigated using Transfer Learning with different
learning settings. We compared three initialization
modes in three backbones, where the model with
weights showed state-of-the-art results while models
from scratch demonstrated lower results. Moreover, we
compared two approaches where entire mammograms
and extracted patches were used as input to the models,
where the first approach reached the highest TPR
values.

The classification pipeline was also implemented us-
ing pre-trained models of Transfer Learning. How-
ever, the challenge was to train the model classifying

a highly-imbalanced dataset, where we found a solu-
tion to fine-tune the model by adding regularization and
class weights to the minority class. The results showed
that the entire mammogram approach could efficiently
predict masses with bounding boxes and classify them
as benign or malignant.
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Abstract

Thyroid nodule is a type of disease that affects the thyroid gland, a small gland at the base of the neck that produces
hormones. In clinical routine, thyroid nodules are usually detected manually by expert physician or radiologists.
Manual classification of nodules by physician has several drawbacks: it is time consuming, inaccurate and tends to
expose patients to unnecessary fine needle aspirations (FNA). It also suffers from inter-and intra-observer variabili-
ties. Manual classification also is time consuming, less accurate and exposes to unnecessary fine needle aspiration
(FNA) biopsies, which brings a lot of stress to patients. Thus, it is of considerable interest to develop an automatic
and accurate thyroid nodule classification system. However, automatic methods struggle in presence of noise, artifact
and low contrast, all characteristics of ultrasound imaging. In this paper, we propose an automatic computer Aided
Diagnosis System CAD for the classification of thyroid nodules using a fine-tuned Deep Learning model based on
Densenet121 architecture in which an attention module is incorporated (Densenet-Attention). This CAD was devel-
oped using 595 thyroid nodule images that were fully annotated based on the Bethesda scores established from the
biopsy. Out of these samples, 252 images were annotated as positive and 342 were annotated as negative. 51 images
are used as test set to validate our proposed method. Several image enhancement methods were applied, such as his-
togram equalization, artifacts removal, and range scaling. We augmented the dataset with synthetic images obtained
with label-preserving transformations and added a convolutional block appended with an attention module to extract
global feature maps and forward them as inputs to the decision layers. Two attention modules (Channel and Spatial)
were integrated in this proposed architecture, aiming to help the network focus on the most important feature maps and
locations. Our method used a focal loss to encourage prediction accuracy by penalizing the misclassified examples.
Moreover, we demonstrated explainability of the decision using Gradient-weighted class activation maps(Grad-cam)
to identify the most substantial region of the images. The proposed method is evaluated on datasets acquired from
Hospitals in Bastia and Dijon. On the test set, our best approach achieved an average accuracy of 90.70%, F1-score
of 92.16% and sensitivity of 96.42%, which compares favorably to the state-of-the-art. The proposed method also
outperformed similar methods and demonstrated that integrating attention modules improves the classification result.

Keywords: Thyroid nodule, EU-TIRADS, Ultrasound Image, Interoperability, Classification, Deep Learning,

1. Introduction

Thyroid nodules are irregular overgrowth of tissues
in the thyroid gland. Most thyroid nodules are not con-
sequential and do not cause symptoms. Some people
have one nodule, while others have many. According
to the American Cancer Society, there are still numer-
ous deaths due to malignant thyroid nodules. While a
moderate percentage of thyroid nodules are cancerous
(between 3 and 7% (Hambly et al., 2011)), the death

rate for thyroid cancer tends to increase: it augmented
by 0.6% per year between 2009 to 2018 according to
the Key Statistics for Thyroid Cancer. Autopsy studies
have reported incidental thyroid nodules subjectivity up
to 50%.

In consequence, early detection and treatment of ma-
lignant nodules are very significant. Ultrasound (US)
imaging techniques have become an important diagnos-
tic tool in the assessment of thyroid nodules. Though

18.1



Classification of malignant nodules from 2D ultrasound thyroid images using Deep Convolutional Neural Networks2

US images are faster to acquire and effective to anal-
yse thyroid nodules, computed tomography(CT) and
Magnetic resonance imaging(MRI) can also be used as
imaging tools (Peng et al., 2017). Thyroid ultrasonog-
raphy has the advantages of being a noninvasive, low-
priced procedure widely used to detect and evaluate thy-
roid nodules risk of being malignant. It plays an im-
portant role in providing information such as the nod-
ule positions, dimensions, orientation, and pathologic
changes. All in all, it is a highly tactful and core modal-
ity for the detection of malignant nodules, though its di-
agnostic value varies from study to study. Identification
of malignancy level is dependent on the quality of the
exam, that in turn depends on the physician. Therefore,
inter-observer variability exists for the assessment of
thyroid nodules. The experience of the sonographer to
properly acquire and label the image is substantial, ba-
cause an inaccurate US capture of a nodule might result
in unnecessary fine-needle aspiration (biopsy). Hence,
an accurate automated diagnosis system is required to
avoid unnecessary punctures.

Table 1: European Thyroid Imaging Reporting and Data System

Category Score Tirads Eu-TIRADS

0 – –

1 1 EU-TIRADS1

2 2 EU-TIRADS2

3 3 EU-TIRADS3

4 4-6 EU-TIRADS4

5 7 & more EU-TIRADS5

Several ultrasound features have been found to be
associated to an increased risk of thyroid nodule can-
cer, the main ones being a cystic composition, a pre-
dominantly solid composition, hypo-echogenicity, size,
shape (taller-than-wide), margin and the presence of
micro-calcification (echogenic foci). Each features are
assigned points ranging from 0-3 and the summation of
these features’ points determine its risk level. In order
to standardize the ultrasound report that describes and
evaluates thyroid lesions, an agreement which is called
an European-Thyroid Imaging Reporting and Data Sys-
tem (EU-TIRADS) has recently established, see table
(table 1 for more details. From table 1), one can study
how nodules range according to the European-Thyroid
Imaging Report And System-1 (benign) to European-
Thyroid Imaging Report And System-5 (highly suspi-
cious to be cancerous). A high score implies strong
suspicion an the need for FNA (Tessler et al., 2018).
Usually, thyroid nodules are heterogeneous, composed
of various internal echo patterns that are confusing even

to experts. Eu-Tirads is a precondition for the Bethesda
score system, a reporting system of thyroid cytopathol-
ogy, which categorizes the nodules as benign, proba-
bly benign and malignant based on biopsy features, as
shown in table 2).

The TIRADS score determines the risk level from US
images, and helps making the decision on whether to
perform a fine needle aspiration on the nodule or not.
In clinical routine, if the TIRADS score is above the
risk threshold, a fine needle aspiration process is taken
on the thyroid nodule, and the Bethesda score, which
is the most influential criteria in making the decision
to perform surgery on the nodule or not, is calculated
from the biopsy features. Stratification and estimating
the Bethesda score manually is a tiresome and prone to
variability task. Hence, we propose to build a Com-
puter Aided nodule diagnosis system based on Bethesda
scores to level the risk and avoid unnecessary surgical
process on the patient.

Knowing the orientation of thyroid nodule ultrasound
images is one of the important phases in 2D echography
analysis. The orientation of a growing nodule is catego-
rized as parallel (when the anteroposterior diameter of a
nodule is equal to or less than its transverse or longitudi-
nal diameter) or non-parallel (when the anteroposterior
diameter of a nodule is longer than its axial or sagittal
diameter). The orientation is categorized according to
the relationship between the long axis of a nodule and
the long axis of the thyroid gland, regardless of the nod-
ule shape (Shin et al., 2016). For our local ultrasound
images, we have two thyroid nodule orientation since
two orthogonal views per case are acquired (sagittal and
axial). Moreover, we made sure each image acquired
contains only one nodule (Fig.1.

In this work, we proposed to develop a deep learn-
ing algorithm that uses thyroid nodule US images to
decide whether a thyroid nodule should undergo a
biopsy and to compare the performance of the algo-
rithm with the performance of physicians who adhere
to the European-Thyroid Imaging Reporting and Data
System (TI-RADS). It is classically composed of four
main stages, (I) Pre-processing, (II) Data augmentation,
(III) Feature extraction and (IV) automatic classification
of benign or malignant. The CAD system should ulti-
mately eliminate the weaknesses of expert dependency,
effort, time spend on investigation of nodule and lack of
accuracy.

Our work has the following main contributions: 1)
We proposed several pre-processing methods that help
to enhance the image quality. The pre-processing steps
that were implemented are noise removal, cropping, re-
sizing, histogram equalization, and removing artifacts
from the images. 2) We demonstrated that generat-
ing synthetic images can improve the detection result.
3) We integrated attention modules to the Densenet
deep learning architecture, which brought substantial
improvement to the classification results. The incorpo-
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Table 2: The Bethesda System for reporting thyroid Cytopathology

Bethesda Category Description Risk of malignancy% Managements

0 Benign 0 Normal

I Undetermined 1 - 2 Repeat FNA

II Benign 3 - 5 Follow-up

III Follicular lesion 5 - 15 Follow-up

IV Follicular neoplasm 15 - 30 follow-up

V Suspicious malign 60 - 75 Surgical lobectomy

VI Malignant 97 - 100 Total Thyroidectomy

Figure 1: Illustrative example showing the two orientations of thyroids nodules in ultrasound images. The white arrow points at flat shape that
indicates in (A) a longitudinal view, while in (B) they point at round structures which are associated to a transversal view nodules respectively.

rated attention module specifically helps the network to
focus on the strong features while estimating the malig-
nancy. 4) We showed that computing focal loss with au-
tomatic assignment of loss weights based on the sample
distribution of classes enables to overcome the data im-
balance problem and improves the model performance
with little rise for the computational cost. 5) We have
compared several deep learning methods to overcome
our dataset’s main limitations which are its low image
quality and its small size. 6) We illustrated interpretabil-
ity of the classification of benign and malignant task us-
ing heat maps derived from Grad-CAM.

2. State of the art

A significant number of studies was carried out on
this thematic area scientifically (Frates et al., 2005).
Nodule detection studies can be classified into two main
categories: non-machine learning based and machine
learning based techniques. The non-machine learn-
ing are usually standard image processing approaches

with semi-automatic methods. It is mainly focused on
thresholding the risk level by physicians. Most Machine
Learning CADs are aimed to outperform experts’ as-
sessment accuracy. Basically, the studies involve the
comparison of Computer Aided Diagnosis systems with
the manual classification of the nodules by experts. We
discuss hereafter the state-of-the-art for methods related
to our work.

2.1. Classical machine learning algorithms for the de-
tection of malignant nodules

In recent years, few machine learning methods have
been proposed to diagnose the malignancy risk of nod-
ules. In (Peng et al., 2017), the authors investigated the
feasibility of applying the first order texture features to
diagnose thyroid nodules in Computed tomography im-
age (CT). A total of 284 thyroid CT images from 113
patients were used in this study. Their method involved
the following steps: first, regions of interest (ROIs) were
extracted manually by a physician. Second, some stan-
dard filters like median filtering were applied to reduce

3
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photon noise before feature extraction. Third, a sup-
port vector machine (SVM) algorithm was applied to
predict the classification task. The results of this pa-
per work were measured using accuracy and sensitivity
scores of 0.880, 0.821 respectively. Chi et al (Chi et al.,
2017) presented a CAD system to identify as many ma-
lignant nodules as possible. The images used in this
research work were from the following two datasets:
Database 1 is a publicly available thyroid ultrasound
image database proposed by (Pedraza et al., 2015), con-
sisting of 428 thyroid ultrasound images 1. Database
2 is a private database, consisting of 164 thyroid ultra-
sound images. A pre-trained GoogLeNet deep learning
approach was used for feature extraction and a Cost-
sensitive Random Forest as classifier to identify the ma-
lign nodule.

2.2. Deep learning algorithm for detection of malig-
nant nodules

Deep learning design has showed a visible improve-
ment in diagnosis of malign cancer from nodules. Most
of the methods that have been implemented in this area
use B-mode ultrasound images 2, as we do. (Buda
et al., 2019) tackled the classification problem using
their local dataset and a deep learning algorithm to pro-
vide management recommendations for thyroid nod-
ules observed on ultrasound images, and compared its
performance with physicians. They used 1278 nod-
ules for training, and 99 nodules for testing. Their
method used three main stages to accomplish the task
using a Faster R-CNN network: First, they extracted
the region of Interest (ROI) based on caliper mark-
ers localization. Secondly, they predicted the risk of
malignancy using a multi-task CNN. Lastly, they built
a stratification into risk level using the model. They
showed that the performance of the algorithm was sim-
ilar to that of the consensus of three expert readers. On
the test set, deep learning achieved an Area under the
curve (AUC) of 0.87 (95% Confidence Interval (CI):
0.76, 0.95), which is close to that of expert consen-
sus (0.91; 95% Confidence Interval(CI): 0.82, 0.97).
(Wu et al., 2016)’s study consists of 970 radiographi-
cal proven thyroid nodules from 970 patients. In this
related work, a radial basis function (RBF)–neural net-
work (NN) method was used as classifier. The deep
learning method under-performed with respect to the
experienced experts. Identification of malignancy by
the experienced experts achieved the highest predic-
tive accuracy of 88.66% with a specificity of 85.33%.
whereas the radial basis function (RBF)–neural net-
work (NN) achieved the accuracy of 84.74% with speci-
ficity of 76%. (Koh et al., 2020)’s research diagnoses

1https://www.kaggle.com/datasets/dasmehdixtr/

ddti-thyroid-ultrasound-images
2http://cimalab.intec.co/?lang=en&mod=project&id=

31/

thyroid nodules from ultrasound images by ensemble
of convolutional neural networks (CNNs). They col-
lected datasets from multiple center, which amount to
15,375 US images of thyroid nodules. CNNs demon-
strated higher area under the curves (AUCs) to diag-
nose malignant thyroid nodules (0.898–0.937 for the
the internal test set and 0.821–0.885 for the external
test sets) than the physician. AUC was significantly
higher for CNNE2 than the one from physician deci-
sions on their test set (0.932 vs.0.840). Recently, a few
studies have been proposed to better classify nodules
by involving an unsupervised learning method, called
Generative adversarial deep learning network (Hang,
2021). This research work diagnoses thyroid nodules
using images by the fusion of conventional features
and residual-generative adversarial network (Res-GAN)
features. Training sets come from an open-source thy-
roid nodule image dataset named ”database of thyroid
ultrasound images” (TDID). Most GANs nowadays are
based on the Deep Convolutional Generative Adver-
sarial Networks (DCGANs) architecture. The method
which involves the combination of the deep features
with the conventional features gives a promising per-
formance in the model.

Focal Loss is a loss function that addresses class im-
balance during training in tasks like image classifica-
tion. It applies a modulating term to the cross entropy
loss in order to focus learning on hard to classify exam-
ples (Lin et al., 2017). It is a dynamically scaled cross
entropy loss, where the scaling factor decays to zero
as confidence in the correct class increases. It has two
hyper-parameters which are called alpha-α and gamma-
γ. The focal loss introduces one new hyper-parameter,
the focusing parameterγ, that controls the strength of
the modulating term. When γ = 0, the loss is equivalent
to the cross entropy(CE) loss. We define the focal loss
in Eq. 1:

FL(pt) = −(1 − pt)γlog(pt) (1)

Where FL is the focal loss, and hyper-parameter γ
ranges from 0 to 5.

Attention Mechanism: It is well known that atten-
tion plays an important role in human perception, and
so does it in artificial neural networks. The main pur-
pose of the attention module is to automatically choose
the most important intermediate features, and to care-
fully refine the best feature maps through the network.
There are two well-known convolutional attention mod-
ules. The two sequential sub-modules are called chan-
nel and spatial attention. Channel Attention utilizes
the inter-channel relationship of features maps. Every
channel of a feature map is considered as a feature de-
tector (Zeiler and Fergus, 2014). Channel attention mul-
tiplies the output after max-pooling or average-pooling
with a shared network coefficients to scale feature maps.
Spatial Attention creates a spatial attention map by ex-
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ploiting the inter-spatial relationship of features on the
input images. The difference with channel attention is
that spatial attention focuses on the locations where lot
of information found, rather than on pondering whole
feature maps.

3. Material and methods

3.1. Objective
Our objective was to develop an automatic thyroid ul-

trasound image classification system to prevent unnec-
essary fine needle aspiration (FNA). Benign-malignant
nodule classification at early stage is a crucial step to
prolong patient survival. The aim of this study is to pro-
pose a method for predicting nodule malignancy based
on deep biopsy features. We came to achieve this gen-
eral objective by tackling three main challenges. First,
we have a small dataset to carry out the process of build-
ing a computer aided detection system. It is a challenge
for classification due to the fact that a diagnosis task
is very sensitive and usually needs plenty of datasets
to train on. Second, the Image format is Joint Pho-
tographic Experts Group(JPEG). Since it applies lossy
compression to images, this can result in a significant
reduction of quality on the images. Also we do not have
access to the image resolution as we would with Nifti
or DICOM images. Hence, the dataset needs to be pre-
processed in order to get important features from the
images. Third, the target classes show uneven distri-
bution of observation, as the negative (benign) class has
more observation than the positive (malign) label.

3.2. Dataset
In this proposal, we used 595 US images of thy-

roid nodules in Joint Photographic Experts Group for-
mat coming from two sources. Private Dataset: It con-
tains a set of thyroid Ultrasound images that includes a
complete annotation and diagnostic description of thy-
roid lesions, using the Bethesda score (biopsy features)
interpretation criteria. The images are labeled by ex-
perts from the Hospitals of Bastia and Dijon. Hence, the
annotation criteria might be affected by inter-observer
variation. The private database consists of 534 thyroid
ultrasound images. 294 images from the aixplorer ven-
dor have a size of 1440 × 1080, while 240 images have
a size of 1280 × 960 as they come from the CANON
vendor. 191 images in the database are labeled positive
(with Bethesda score III to VI), while 343 images are
labelled as negative (with Bethesda score = 0 or II).

Public Dataset is a publicly available and 61 thy-
roid ultrasound images has been used in our research
from the public link mentioned on the footer. 3.The im-
ages are in Joint Photographic Experts Group(jpg) for-
mat with different dimensions. All the cases are labeled

3https://www.kaggle.com/datasets/dasmehdixtr/

ddti-thyroid-ultrasound-images

as malignant (positive) and it is an open access resource
for the scientific community projects.

We split the validation set from the training set ran-
domly. Out of these images, 473, 71 and 51 images
are used as a training set, validation set and test set, re-
spectively. The test set are chosen carefully from both
vendors. For more details, see table 3 below.

3.3. Pre-processing

Images are collected from different ultrasound ma-
chines, leading to imbalance in exposure, size and other
parameters. Before undertaking feature engineering, we
should pre-process the raw images by including noise
reduction and image enhancement in order to feed the
model with better quality of images. Image enhance-
ment is the procedure of improving the quality and in-
formation content of original digital images data before
processing. We introduce several commonly used im-
age enhancement techniques for our experiment, which
are cropping, resizing, interpolation, histogram equal-
ization, adding variability, normalization, removing ar-
tifact from images, and Gamma correction.

3.3.1. Normalization
Feature scaling is one of the most important data pre-

processing step, the intensity of every patient image is
normalized to have zero-mean and unit-variance. Algo-
rithms that compute the distance between features are
biased towards numerically larger values if the data is
not scaled, so calibrating the details of images from dif-
ferent sources to the same scale is consequential.

3.3.2. Cropping and resizing
The images were firstly cropped and resized to have

the same resolution which is the physical space repre-
sented by each pixel in the image, as shown in figure
2.

Figure 2: Ultrasound Image with noise and artifacts covering the tex-
tures.White arrow: indicates noises that appear on the images.Yellow
arrow: indicates artifacts on the images
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Table 3: The distribution samples in training, validating and testing groups of the dataset (I=Images), positive-samples =Bethesda -Score: 3, 4,5
and 6: negative-Samples =Bethesda-Score =0 and 2

Dataset Samples (Bastia
and Dijon)

Positive-
Samples

Negative-
Samples

Training 544 I 231 I 343 I

Val-Split 71 Random Random

Testing 51 I 21 I 30 I

Figure 3: Pre-processed thyroid Ultrasound image and Details of how
bounded by the red rectangle to remove the artifact

3.3.3. Histogram Equalization (HE)
HE usually increases the global contrast of many im-

ages, especially when the image is represented by a nar-
row range of intensity values. Through this adjustment,
intensities can be better distributed on the histogram,
utilizing the full range evenly. If most pixels are con-
centrated in the low gray area, the image will appear
completely dark, but if they are concentrated in the high
gray area, it will appear bright. Histogram equalization
is therefore applied to elevate the contrast of the im-
age, thus improving the visual effect of the image (Patel
et al., 2013).

3.3.4. Removing Artifacts
In this step, we implemented an opening morpholog-

ical operation to discard artifacts on the images. Ar-
tifacts are characteristics which appears in an image
and which are not present in the original imaged object.
They usually appear at the center or corners of medical
images. A rectangle method was used to make bound-
ing boxes around artifacts via an anchor point xy and
its width, height and 4-connectivity method. We used
a bounding box in order focus the kernel in some part
of the images, otherwise we may loose essential infor-
mation if this method is applied for the entire image.
Following this, morphological opening was applied to
remove small white thin lines from an image while pre-

serving the shape and size of larger objects in the image.
We used a small structuring element to maintain the tex-
ture information, as shown in figure 4.

3.4. Data Augmentation

As mentioned above, one of the big challenge for this
thesis work is to overcome the limitations of the dataset.
We employed on-the-fly data augmentation, which al-
lows transformed images to be produced from the orig-
inal images with very little computation as the trans-
formed images are not stored on disk. We used the Ten-
sorFlow ImageDataGenerator class to augment the im-
ages. Each generated image is randomly different from
the original in certain aspects depending on the augmen-
tation techniques. We do this by extracting random 800
× 600 patches from the various size of the images, and
train our network on these extracted patches. At ev-
ery iteration, batch size of transformed images are gen-
erated with different parameters like shifting, rotating,
flipping, etc... Such image augmentation techniques not
only expand the size of the dataset but also incorporate a
level of variation in the dataset which allows the model
to generalize better on unseen data,to observe the pro-
duced images, See (Fig. 5).

Figure 4: Ultrasound Image after pre-processing

3.5. System and Running

Recently, boosting the training to a satisfactory ex-
tent was achieved by using Graphics processing unit

6
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Figure 5: data augmentation: A source image is used to synthe-
size images like synthesized 1(rotation-range), synthesized 2(shift-
range), synthesized 3(shear-range and shift-range) so on.US image
respectively

(GPU)(Chen et al., 2014). This enhancement allowed
us to efficiently utilize computational resources of the
available GPUs and other software package tools in
Imagerie et Vision Artificielle (ImViA). We have used
persistence-m nvidia type of GPU with 12GB size of
memory and CUDA version of 11.6 to launching the
training for 320.40 min. We have used Ubuntu 20.04.4
LTS operating system and virtual environment with
python version of python3.9 programming language.

3.6. Proposed Pipeline

The proposed pipeline consists of US image as in-
puts, pre-processing, data augmentation, deep learn-
ing based feature extraction, interpertability and thy-
roid nodule classification, as illustrated in (Fig.6). We
compared several deep learning networks using this
pipeline to different learning schemes. In our approach,
the pipeline consists of an additional module. The
module(attention and conv block) is incorporated with
Densenet to extract features and classify malignant nod-
ules, as can be seen from the figure see(Fig.6). The at-
tenton module are integrated between convoutoinal lay-
ers. The conv block are appended at the attention mod-
ule in the end for providing the output of the classifica-
tion task.

3.6.1. Network Architecture
Convolutional neural networks have become the

dominant machine learning approach for object classi-
fication (LeCun et al., 1989). We implemented three
different deep learning techniques to tackle ultrasound
thyroid image classification. First, we built a simple
convolutional neural networks, and evaluated it on our
dataset. Second, we implemented fine-tuned deep con-
volutional neural networks like Resnet-18, Efficient-
netB0, and Densenet121. Lastly, we employed the

proposed deep learning architecture that incorporate an
attention-conv module and Densenet. inside of it. The
different architectures details are discussed as follow af-
terwards.

3.6.2. Convolutional Neural Network models
We first built a simple CNN model with twenty

five (25) layers and let the neural network learn from
scratch. This section briefly discusses the role of some
components in CNN architectures. Convolutional lay-
ers are composed of a set of convolutional filters where
each neuron acts as a feature detector and extracts fea-
ture pattern. Pooling layer: Once features are extracted,
its exact location becomes less important as long as
its approximate position relative to others is preserved.
Pooling or down-sampling is an operation that sums up
similar information and outputs the dominant response
within this local region in order to compress information
spatially. LeakyRelu Activation Function It is how the
weighted sum of the input is transformed into an out-
put from a node or nodes in a layer of the network.It
adds non-linearity to the transformed outputs of lay-
ers. Batch normalization is used to address the issues
related to the internal covariance shift within feature
maps. The internal covariance shift is a change in the
distribution of hidden units values which slows down
the convergence(Ioffe and Szegedy, 2015). Data are
scaled not only before entering training, but continues to
stay scaled while it is training. Dropout introduces reg-
ularization to the network, which ultimately improves
generalization by randomly skipping some units or con-
nections with a certain probability. Fully connected
layers are mostly used before the output for the final
decision. It is a global operation and takes input from
feature extraction stages to globally analyses the output
of all the preceding layers. Softmax Activation func-
tion is used as the activation function in the output layer
of neural network models in order to predict a binomial
probability distribution.

3.6.3. Deep Convolutional Neural Network
DCNNs are a type of Neural Networks, which have

deep layers and have shown exemplary performance
on several competitions related to Computer Vision.We
have used fine-tuned deep CNN architectures where lay-
ers are added to the trained model to adapt it for our
task. We have tried different deep learning architec-
tures that have been already trained on the ImageNet
database(Deng et al., 2009). Hence, we got an oppor-
tunity to compare the architectures performance based
on the result with our proposed methods. We have also
confirmed that fine-tuned models work better than the
model that we built and learn from scratch,See 5 for
more details. The following pre-trained deep Convo-
lutional neural network models have been used to per-
form classification in our task. Residual Networks,
or ResNet-18 is a convolutional neural network that
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Figure 6: Proposed pipeline:Deep convolutional neural networks model for image classification, 800x600x3: The dimension of image samples
and its channel, US:Ultrasound image given as input for the model

is 18 layers deep. we have implemented the ResNet-
18 architecture in two steps in the Tensoflow frame-
work(Pang et al., 2020). we first discarded layers after
the 18th in ResNet-50, then we added a block that we
have designed to fit our problem and train the model.
The block is composed two layers( ReLU activation
function and GlobalMaxPooling2D) and one classifier
function. ResNet-18 helps to overcame the vanishing
gradient problem issue by introducing a so-called skip
connections-that leaps over one or more layers(He et al.,
2016). Some Layers were frozen to prevents the weights
from being modified and random seed method is used to
controlling random initialization of weights. Efficient-
netB0 is a deep convolutional neural network architec-
ture with 237 layers. It uses a scaling method that uni-
formly scales all dimensions of depth/width/resolution
using a compound coefficient. Unlike conventional
practice that arbitrary scales these factors, the Efficient-
NetB0 scaling method uniformly scales network width,
depth,and resolution with a set of fixed scaling coef-
ficients. EfficientNetB0 is a well known neural net-
work architecture for compound model scaling methods
though it does not work well for our task due to over-
fitting. In other words, scaling every dimensions bal-
ance all dimensions of the network depth, width, res-
olution and improves model performance (Tan and Le,
2019). We have set drop-connect-rate =0.4 during our
demonstration.We happened two layers and one classi-
fier function to this architecture to adapt the model to

our task.
Densenet121:It consists of 427 layers with 120 Con-

volutions and 4 average pooling layers. This network
was designed to address the problem of vanishing gra-
dient by directly connecting each layer to every other
layer in a feed-forward fashion. For each layer, the
feature-maps of all preceding layers are used as in-
puts, and its own feature-maps are used as inputs into
all subsequent layers and further exploits the effects of
shortcut connections. Unlike residual neural networks
(ResNets), the feature maps received from previous lay-
ers are concatenated not summed. Other than tack-
ling the vanishing gradients problem(?). And also, a
DenseNet network has translation layers between adja-
cent block and uses to update the size of feature-map
through convolution and pooling layers. By knowing
these all features of Densenet pre-trained model, We
fine-tuned this model to our specific task and outper-
form other models that we mentioned them in this sec-
tion. Hence, we propose an approach that integrated
Densenet and module for the betterment of the result.

3.6.4. Proposed Architecture
We implemented several deep learning architecture

to detect the malignant nodule.Densenets are efficient
for classification tasks, because they have skip con-
nections and better transmission of features across the
network. Hence, we propose a method that incorpo-
rates Densesnet121 and module(attention+convolution
block) for further improvement of the result. we chose

8
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Densenet121 for further improvement for two reasons:
First, Densenet architecture gave the the highest result
comparing with the other models. Second, this net-
work does not suffer with the problem of vanishing
gradient. One simple interpretation of this is that the
output of the identity mapping was added to the next
block, which might impede information flow if the fea-
ture maps of two layers have very different distribu-
tions(Simonyan and Zisserman, 2014). We proposed
an approach that incorporates a module(attention+conv
blok) to Densenet121’s architecture, intending to en-
hance the performance of the networks. There are two
types of attention module 2, and we have arranged them
in a sequential manner(Woo et al., 2018). We have used
channel attention first and then spatial attention,as il-
lustrated in (Fig.7), because of this arrangement gave
the better result, than the spatial-first chain. The at-
tention modules are integrated between convolutional
layers to refine the most important feature maps, as il-
lustrated in figure(Fig.9). Channel attention helped the
proposed model to concentrate the substantial informa-
tion of the input US image. Spatial attention brings fo-
cus to specific parts of spatial information, pondering
feature maps to enhance regions of interest on the im-
ages. The attention module down-sampled feature maps
using average and max-pooling operations.Therefore,
the attention mechanism played a great role in guiding
the networks to concentrate on the most important fea-
ture maps.

We have also add a block that consists the succes-
sion of layers: Separable convolution, batch Normal-
ization, GlobalMaxpooling2D, rectified linear activa-
tion unit, dropout, a fully connected layer and finally
a Softmax classifier function. See the whole network in
(Fig.??). separable convolution is a kernel in which
a single convolution can be divided into two or more
convolutions to produce the same output with a much
lesser computation cost. GlobalMaxpooling2D used to
reduce the dimensionality of the feature maps and give
one maximum value for a whole region to strongly com-
press information.The rest layers have been explained
in this(Sec 3.6.2) section. Basically, We appended the
block to the proposed network to minimize the covari-
ance shift problem and let the network learn represen-
tation pattern our dataset. Because, the block con-
tains batch normalization, separable conv,etc Therefore,
the proposed method includes: Densenet121, attention
module and convolutiona blocks and a classifier func-
tion.

4. Optimizer

We used the adaptive moment estimation (ADAM)
optimizer to monitor the training and optimize the con-
vergence when training the model.

4.0.1. Loss Function
We used loss function to optimize the parameter val-

ues in the proposed neural networks. Basically, It is a
method of evaluating how well our model get well with
the the given input data. As an objective function, we
have used two different loss functions to evaluate our
model by computing the error. Categorical Cross En-
tropy Loss is the probability value among the given
classes for a classification task. Cross-Entropy calcu-
lates the average difference between the predicted and
actual probabilities, as explained in this (Eq. 2) equa-
tion.

L = −
N∑

i=1

yilogŷi (2)

where L is loss, N is output-size the output size, ŷi is
the i-th scalar value of the model output, yi is the corre-
sponding target value, and the output size is the number
of scalar values in the model output. Categorical Cross
Entropy Loss is not recommended to be used as error
optimizer for imbalanced dataset. Hence, we proposed
another loss function which is called focal loss, for more
detailed, (Sec 2) section. Focal loss is the modification
of cross entropy loss and have two hyper-parameters.
while α balances the importance of positive/negative ex-
amples, γ tries to penalize the misclassified examples.
As γincreases, the shape of the loss changes so that easy
examples with low loss get further discounted. We tried
γ values from 1 to 5 and observed that model’s classi-
fication accuracy increases with γ values. However, It
became almost constant after γ reached 3.5 in our case.
According to our experiment, Focal loss works well and
helps diminishing the impact of data imbalance com-
pared to Categorical Cross Entropy Loss, see (table 4)
for more detail.

4.1. Performance Evaluation Metrics

After applying the deep learning algorithms, evaluat-
ing the model is very important to know how the system
behaves on unseen data. A tool which is called a metric
is introduced to measure the accuracy of the models. In
this paper, we use several common metrics for classi-
fication problems to obtain valuable information about
the performance of algorithms and to run a comparative
analysis. These metrics are accuracy, f1-score, confu-
sion matrix and classification report. We rarely used
sensitivity and specificity in the evaluation mechanism
as confusion matrices are easier to interpret.

4.1.1. Accuracy
It is the most used and maybe the first choice for

evaluating an algorithm performance in classification
problems. It can be defined as the ratio of accurately
classified data items to the total number of observa-
tions, see (Eq. 3). Despite the widespread usability,
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Figure 7: Proposed DenseNet Architecture with concatenated attention module and block

Figure 8: Convolutional block that consists of six top layers

accuracy is not the most appropriate performance met-
ric in some situations, especially in the cases where tar-
get variable classes in the dataset are unbalanced (Vakili
et al., 2020).

Accuracy =
T P + T N

T P + FP + T N + FN
(3)

T P, T N, FN and FP represent the True Positive, True
Negative, False Negative and False Positive of predicted
image respectively. Basically,It is the summation of
T P and T N which are correctly classified over the to-
tal datasets.

4.1.2. F1-score
This metric, which is also known as f-score or f-

measure, takes both precision and recall into consider-
ation in order to calculate the performance of an algo-
rithm(Goutte and Gaussier, 2005). Mathematically, it is
the harmonic mean of precision, see (Eq. 4a) and recall,
see (Eq. 4b) formulated as follows (Eq. 5):

precision =
T P

T P + FP
(4a)

Recall =
T P

T P + FN
(4b)

F1 − score = 2 × precision × recall
precision + recall

(5)

We observed that accuracy metric does not work well
with data imbalance condition, Since it does not distin-
guish between the numbers of correctly classified im-
ages of different classes. F1-score is a proper measure
when working on classification tasks in which the data
points are imbalanced.

4.1.3. Confusion Matrix
This matrix is one of the most intuitive and descrip-

tive metrics used to find the accuracy and correctness of
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Figure 9: Attention module integrated with in a DenseBlock in DeseNet Densenet architecture, F indicates the refined outputs feature map

a machine learning algorithm. Its main usage is in clas-
sification problems where the output can contain two or
more types of classes (Townsend, 1971). We can com-
pute sensitivity focusing on the True positive rate and
specificity focusing on the false positive rate from the
confusion matrix.

4.1.4. Classification Report
Classification report is an evaluation metric in deep

learning machine learning. It is used to display preci-
sion, recall, F1-score and support for the trained model
as package. Support is the exact number of occurrences
of each class in the specified testing dataset.

4.2. Thyroid Nodule Risk Level Assessment
The estimation of the risk level from ultrasound

imaging of thyroid nodules is extremely difficult. In this
thesis work, we provided a probability expressed in per-
centage( 0% to 100%) to represent the malignancy level.
This would be very helpful for physician to take deci-
sion in the need for fine needle aspiration. For instance,
there are some images that obtain a score between 40%
and 60%, which we call ”gray zone” associated to an
uncertain prediction, and which would need strict fol-
low up of treatment. If the image get a score above 61%
of benignity, it is in normal status. Otherwise, it might
be needed to take a serious measurement or follow up at
the patient.

4.3. Interpretability
Deep neural networks have been widely-known for

their magnificent performance in playing with differ-
ent machine learning tasks. However, because of their
exceeding-parameterized ”black-box” nature, it is usu-
ally back-breaking to understand the prediction re-
sults of deep models(Dong et al., 2017). Interpretabil-
ity(Explainability) is the degree to which a human can
realize the cause of a decision and outputs can be de-
scribed in the way that make sense to deal with deep
understanding how a model makes prediction. It also
helped us to debug the network. In our proposed

method, we have used the gradient-weighted class acti-
vation map (Grad-CAM) to give insights on the decision
making (Selvaraju et al., 2017). Grad-CAM uses gradi-
ents to give a coarse localization map highlighting the
most substantial regions in the input image when pre-
dicting the result. The class activation map simply in-
dicates the discriminative region in the image which the
CNN uses to classify that image in a particular category.
We can identify the importance of the image regions by
projecting back the weights of the output layer on to the
convolutional feature maps. A graphical representation
which is called heatmap method is responsible for high-
lighting the discriminative region used by the model.

4.4. Training

Weights were initialized using He normal initializa-
tion method (He et al., 2015). It draws samples from
a truncated normal distribution centered on 0 The op-
timization of the weights are done using Adam as the
optimizer with learning rate of 0.0001. The mini-
batch size was 8, because a small batch size is recom-
mended for small datasets. The models were trained
until convergence for various numbers of epochs includ-
ing depending on the model. We empirically selected a
weighting factor of 0.50 for α, and 3.50 for γ, the hyper-
parameter in of the focal loss. For above 200 epochs,
we were using α =0.50 and γ =2.0, as the fact γ hyper-
parameter has reciprocal relationship with number of
epochs. We used the programming language Python and
the library Tensorflow to implement the deep learning
models. We fixed the random seed to 42 to set the inte-
ger starting value used in generating random numbers.
Setting random seed to fixed value is very important so
as to get stable or gives reproducible result with Tensor-
Flow framework.

In order to avoid over-fitting, we adopted three tech-
niques: dropout, early stopping and data augmentation.
Dropout is a regularization technique where randomly
selected neurons are dropped during training. The ig-
nored neurons will not have contribution during a for-
ward and backward propagation. Dropout reduces over-
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fitting by preventing complex co-evolution on the train-
ing data. In our all experiments, we used dropout with a
probability of 0.25.

During training, the training and validation losses de-
crease, usually in the staring the training and validation
loss decreases. As the number of epochs increases, the
training loss will continue to decrease but the validation
loss will slowly diverge over time. This phenomenon in-
dicates overfitting, which does not generalize well to un-
seen data. To monitor this, we used early stopping tech-
niques, which triggers when the validation loss starts to
increase. The training immediately stops after certain
number of epochs, to give the possibility to the valida-
tion loss to decrease again, in case the training curves
are noisy. In our experiments, the patience parameter
for the early terminating of the training process was 20
epochs.

The last techniques that we employed to handle over-
fitting is data augmentation. A lot of similar images
were synthesized synthesized applying transformations
such as shearing, rotating,zca-whitening,etc. This helps
to artificially increase the dataset size, which helps
avoiding over-fitting. The reason for it is that, as we
generate more data,the model can not learn by heart the
training data and is forced to learn generalizable fea-
tures and give good performance on unseen data.

5. Experiment and results

We conducted experiments with the models, and
training schemes previously mentioned in the methodol-
ogy section,(Sec (3). The proposed network outperform
other networks. To evaluate the classification results of
thyroid nodule, we used Accuracy, F1-score, confusion
matrix, specificity and sensitively metrics. To evaluate
our models, we split the dataset between train, valida-
tion and test sets, as done traditionally. The validation
set is drawn from the training data, it is kept aside the
optimization to set hyper-parameters and to detect over-
fitting. Train-validation-test evaluation methods as well
as a validation set that are separate section from the
training dataset to get evidence how well the model is
performing on images that are not being used in train-
ing.

To evaluate the effect of pre-processing in our
method, we compared the results with and without the
mentioned pre-processing steps. when we say Unpro-
cessed image, images are given as raw data and not
scaled for the proposed method. This direct classifica-
tion of malignancy from the full-sized unpre-possessed
thyroid ultrasound images(Fig.2). our method yielded
accuracy and F1-Scores of 0.772 and 0.813 respectively.
The model suffer from overfitting problem due to the
noisy and unrepresentative training data. In the sense
that model is learning a detail of noise in the training
data to the extent of it negatively impacts the perfor-
mance of the model on aw data. However, when we

employed pre-processing, our method achieved an im-
proved accuracy and F1-scores of 0.9007 and 0.9216 re-
spectively.

We can observe the effect of changing the loss func-
tion by looking at the diagram in (Fig13), and (table
4). We can see that the Focal Loss helps to deal with
a limited and imbalanced dataset. Especially, the loss
curves are less noisy with focal loss than with cross en-
tropy loss function. Focal loss is used often with hyper-
paramaters of α = 0.50 and γ = 2.0. but we used other
values after tuning which ranges from γ = 1 to γ = 5.

Table 4: Quantitative comparison of loss functions using accuracy
and F1-score with proposed approach, ±:shows small variation of the
value per training

Loss Function Accuracy F1-Score

Cross-entropy 0.850 ± 0.030 0.840 ± 0.045

Focal Loss 0.8700±0.0250 0.9005±0.0216

We also demonstrated that adding synthesized images
improves the performance of the model effectively. The
results of the proposed model with and without data
augmentation, and with a batch size of 8, are shown in
this table (Table5).

Table 5: Classification results of the proposed architecture, ±: shows
small variation of the value per each training

Metrics Proposed w/o
augmentation

Proposed with
augmentation

Accuracy 0.701 ± 0.041 0.870 ± 0.021

F1-Score 0.750 ± 0.037 0.900 ± 0.021

Specificity 0.694 ± 0.036 0.850 ± 0.022

Sensitivity 0.802 ± 0.028 0.9300±0.0342

We compared our proposed approach with four differ-
ent networks regarding training time and performance.
We can see that the proposed architecture works better
than the other architectures on a number of the same ex-
periments, see(table 6). Hence, Densenet incorporated
with our attention module outperforms other neural net-
works when considering all metrics.

For the 51 test nodules, the proposed deep learning
algorithm outperform the reported results of the previ-
ous related research works, as can be seen in this table
(Table 7). Taking into account the inter-observer varia-
tion of manual identification of malignancy, the overall
accuracy of the proposed deep learning method for thy-
roid nodule biopsy recommendations is better than the
experts, as shown in (Sec 2). These results, however
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Figure 10: Qualitative comparison of loss functions on monitoring the proposed model during training. A) Cross-Entropy loss, B) Focal loss

promising, were obtained on a small dataset, and can
not be compared directly to other studies.

We compared the proposed method with fine-tuned
Densenet121 network, and three other networks which
employed in the same pipeline except the modules. The
module(attention-conv block) has only integrated with
the proposed approach. The hyper-parameters were set
to fixed value during the comparison. But, we got differ-
ent results from each approach due to variation in size,
behaviour and structure of the network architecture. We
observed that significant changed can be achieved in the
result by modifying the networks. The new method is
proposed on a little modification of Densenet architec-
ture, which is consolidating a module within it. The
proposed method outperform others in all experiments.
This is due to the fact that attention method and con-
block are playing good role in extracting the most im-
portant features. The comparison has been done both
quantitatively and qualitatively,as shown in (table 6 and
( Fig. 11 respectively. EfficientNet did not perform
well on both classes comparing with the other models
due to the degradation problem. We obseved that Ef-
ficientNet model tried to ends up memorizing the data
patterns and put up with random fluctuations. We can
say that this model is suffering with gradient vanishing
problem when it trained with our dataset. Hence,it has
low performance on the test set with average F1-score
of 0.7418. The model which is built and learnt from
scratch has performed well, but a bit less than ResNet-
18. Because, the model sufferers with model complex-
ity due to the huge number of parameters. ResNe-18
has good performance on the on the classification task
due to its size and special structure for handling gradi-

ent vanishing issue, but it is biased to positive samples.
Well, its overall result is not promising like Densenet,
and the proposed method. Densenet is very efficient in
handling and reusing features maps with dense connec-
tions. And also, it has a translation layers that helps
to update the size of feature-maps through layers. It
performs well next to the the proposed method. We
added very important module to the Densent that con-
sists attention and conv block. The main task of this in-
corporated module, is to guide the architecture to focus
on the most substantial features. The output of feature
maps from dense convolutional layer is given as input
for these module to downscale and forward as output
for the next convolutinal layers, as illustrated in (Fig 9).
The proposed method showed high performance with
accuracy of .9007 and F1-score of 0.9216. We made
qualitative comparison between the fine-tuned Densenet
and proposed technique, illustrated here(Fig 13).

As shown in (table 6), we also compared the number
of trainable parameters of the architectures. ResNet-18
has the lowest number of trainable parameters which is
0.25 million. The proposed method have has 0.75 mil-
lion parameters. While the CNN has the highest num-
ber of parameters with 15.4 millions, which can be ex-
plained with the high numbers of parameters for fully
connected layers. On top of that, the proposed method
can be used to estimate the malignancy risk as illustrated
on (Fig 16) by exploiting the non-binarized output. As
we can see from the (Fig: 17), the confidence interval
is 91% percentage. This indicates that the nodule is in
normal condition (not cancerous). This estimation gives
an important information for the physician to interpret
the automatic prediction and to take the required treat-

13

18.13



Classification of malignant nodules from 2D ultrasound thyroid images using Deep Convolutional Neural Networks14

Table 6: Accuracy and F1-Score comparison of various methods for thyroid nodule classification

Methods Accuracy F1-Score No of Parameters

CNN 0.750 ± 0.045 0.770 ± 0.034 15.4 million

EfficientNetB0 0.760 ± 0.014 0.740 ± 0.018 4.7 million

ResNet18 0.840 ± 0.020 0.800 ± 0.034 0.25 million

Densenet121 0.880 ± 0.024 0.860 ± 0.019 7.1 million

Proposed Method 0.870 ± 0.037 0.900 ± 0.0216 0.75 million

Figure 11: Comparison of models using barplots with maximum value
scored by the models

ment on the patient. This is done based on the proba-
bility distribution of being cancerous from 0% to 100%
using outputted by the softmax activation classifier, as
this score can be interpreted as the model’s certainty in
its prediction.

The model is classifies the images by looking at some
parts of the image. For some images, it is able to
look at the centre part of the images, except in a few
benign images. In this thesis work, We illustrated a
Visual explanations of deep Networks using gradient
weighted class activation maps. We observed that the
model made classification by extracting the informa-
tion from center region of the image as might be ex-
pected. See(Fig.18) By the using gradient-weighted
class activation maps(Grad-Cam), we are able to inter-
pret the reason behind the misclassified images, which
is really wonderful and gives a substantial hints for fur-
ther amendment of the network. The localization of in-
stance has done from the final convolutional layer. The
model is not looking at the right part of the the images,
See(Fig.19). The reason may be because the nodules are
a lot bigger in these images than on the usual ones. This

may further be improved by adding more cases such as
these.

6. Discussion

In this thesis work, we evaluated our proposed
pipeline and proposed method network for classifica-
tion task on compressed ultrasound image which has
two orientations per case. The dataset is very small (595
images) and has poor quality (contains a lot of noise and
artifacts), which however corresponds to what experts
use.

We found in our experiments that the distribution of
image cases (malignant vs benign) in the training group
was imbalanced. Therefore, we fused two databases
(Private and public) to have enough training samples for
both classes. To overcome these limitations, we pro-
posed a pipeline that consists of pre-processing, aug-
mentation, feature extraction, and classification task.
Image pre-processing proved to be effective in improv-
ing the proposed method: (1) Cropping and resizing the
acquired images in order to remove the different noise
within the images. (2) Discarding of the artifacts uses
to keep away the network from learning meaningless
information and recuperate the textures overlapped by
the markers made by the experts or physician. This is
done using morphological operation using 3 x 3 ker-
nel. (3) Histogram Equalization is contrast adjustments
techniques that effectively spreading out the most fre-
quent intensity values throughout the image. (4) the im-
age normalization that adjust the details of images from
different sources imaging techniques to the same scale.
And also, we have added a contrast variability to the im-
ages. Then, the images are well cleaned and have good
quality for further process.

As mentioned in Section (3), one of the main problem
was the size of the dataset. In spite of getting training
examples with higher quality of extracted features, the
millions of parameters available 6 to be tuned for the
network still need a huge number of examples to prevent
the over-fitting. We came to solve it with image data
generation techniques. The input image size was 800 x
and 600, and we augmented the image to have enough
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htb

Figure 12: Qualitative comparison of different models on classification of thyroid nodules. A: Confusion matrix of CNN with 10 misclassified
examples, B:Confusion matrix of Resnet-18 with 7 misclassifications, C: Confusion matrix of Densenet121 with 6 misclassifications, D: Confusion
matrix of the proposed method with 4 misclassified examples

number of training samples. The performance of the
model might be affected due to cropping technique of
the images.

From our experiments, the proposed method proves
to have the advantage of needing less training samples
to generate a CAD system based on deep learning net-
works. The system can help in minimizing the time,
effort of physician and avoids unnecessary fine needle
aspiration on patients. Regarding the use of loss func-
tion, the pipeline achieved better result with focal loss in
terms of Accuracy and F1-Score comparing with cate-
gorical cross entropy loss. This indicates that how fo-
cal loss can improve the result by reducing the false
positives, false negative and mitigating the class imbal-
ance problem between training samples. Focal loss is
efficient to classify the hard examples using penalized
learning method. This the most recommend loss func-
tion for a research work that involves with data imbal-
ance problem. Automatic assignment of weight to each
class play good role in handling of class imbalance as
well. We have tried two way of class weight assign-
ment methods. 1) manually assignment high weights for
the minority class. 2) automatic assignment of weights
based on the distribution of dataset. According our
demonstration, the second method works well and can
be an hypothesis to tackle unbalanced data. Our re-
search work was restricted in only classifying of thy-
roid nodules from Ultrasound images (US) into two
classes of probably malignant and benign. We do not yet

have enough examples with all the 7 different Bethesda
scores(0-VI) to attempt a model that can make predic-
tion per each class. The dataset we have used are labeled
by experts. Having this in mind, our classification task
is still highly dependant on the experience of the experts
and their subjectivity in interpreting ultrasound images
of thyroid nodules. Our method could have a significant
benefit in helping experts during the annotation process.

The performance of the proposed method based on
deep learning networks is much improved in compare
with state of the art and other deep learning architec-
tures in classification of thyroid nodule task. In this
(table 6), we did a comparison of our approach with
other deep learning schemes. EfficinetNetB0 had the
worst classification performance. The main reason is
that it became overfitted the on the small dataset very
fast. The proposed method that uses the added module
to focus on the most relevant feature maps achieved bet-
ter its results. We also compared the number of trainable
parameters. Resnet-18 has the lowest number of param-
eters due to the reason that is has fewest layers than oth-
ers. Densnet encourages feature reuse which substan-
tially reduces the number of parameters, but still has
high parameters due to its huge structure size. From
this research work, We can suggest that our computer
aided diagnosis tool can be used in Integrated Health-
care system(IHS) to help physician to early and accurate
classification of nodule. we had some challenges and
can be hypothesized in some way for further investiga-
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Figure 13: Qualitative comparison of loss functions fine-tuned Densenet and Proposed method monitoring the model during training:A) Loss
function of Proposed model, B) Loss function of Densenet model

Table 7: Comparison of different CAD system in classifying benign and malignant thyroid nodule images

Methods Learning Algorithm Accuracy Sensitivity

(Buda et al., 2019) Faster R-CNN 83.00% 87.00%

(Wu et al., 2016) (RBF)–neural network 84.74% 92.31%

(Peng et al., 2017) SVM(Kernel=RBF) 88.00% 82.10%

(Koh et al., 2020) InceptionResNetv2 85.00% 91.80%

Proposed model Attention-
Densenet121

90.70% 96.42%

tion. We do not know where the nodules are exactly on
the labeled images. So, the annotation of ground truth
can be done directly on the images with help of experts.
This could give a comfortable environments to extract
the region of interest(ROI) from the images. This could
improve the performance of the our CAD syetem. And
also, semi-supervised techniques can be used to anno-
tate unlabeled US images In spite of data acquisition for
this classification task is in ingrowing, auxiliary clas-
sifier Generative Adversarial Network(acGAN) can be
used to generate synthetic training samples as it re-
quired. Future improvement that involves providing of
the thyroid nodules which are transversal and longitudi-
nal to the deep learning algorithm as it could provide ad-
ditional gains in performance and classification results.
This task could be incorporated with Generative adver-
sarial network(GAN) to have enough two view training
samples.

7. Conclusion

In this work, we proposed a deep learning based
Computer aided diagnosis system for automatic classi-
fication of thyroid nodule disease from ultrasound im-
ages.We demonstrated several deep learning approaches
and able to compare them in our method in same
dataset. Our method uses incorporated module within
the DenseNet architecture,and we showed that adding
this module to the fine-tuned Densenet121 substantially
improves the classification result. We have shown that
pre-processing and augmenting effectively improved the
the performance of our proposed model. Despite hav-
ing a small size, heterogeneity, unbalanced, low image
quality, our approach obtained overall good result on the
test set achieving an accuracy 0.9007 and a F1-score of
0.9216 for detection of nodules, which is higher than the
performance reached on recent studies on this thematic
area. This method could be used to predict nodule ma-
lignancy in clinical practice two reasons where it could
bring the following benefits. First, it can eradicate the
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Figure 14: Prediction of malignancy with 96% confidence

Figure 15: Prediction of benignity with 91% confidence

substantial inter-reader variability, and subjectivity that
have been noticed for this task even when a standard
Interpretation criteria is used. Second,the proposed ap-
proach could reduce the time and effort that is required
for analyzing thyroid nodules, which would be of great
help for clinical experts.

Furthermore, We have used Gradient-weighted class
activation maps(Grad-cam) method to provide an ex-
plainable heat map of the primary regions of interest
used by the model of the proposed technique. It helps to
visualize how the model make decision during the pre-
diction.
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Abstract

Current clinical assessment of scoliosis, a lateral deformation of the spine, involves manual measurements of spinal
x-rays from experts to guide intervention. Cobb angles are the gold standard in the assessment of scoliosis, measures
as the angle between vertebrae. However, manual measurement of Cobb angles are time consuming and are subject to
high inter-observer variability. Recently, many Deep Learning algorithms have been developed to automatically assess
scoliosis but lack the potential to be implemented in clinical practice, mainly due to limitations in public datasets for
scoliosis. In this work, a model designed with the focus to be implemented in clinical practice is developed consisting
of three main blocks. The first one is composed by a Feature Pyramid Network with an EfficientNetB7 backbone
to perform vertebrae segmentation. The second part of the proposed algorithm is to fit the endplates to the previous
vertebrae masks using a connected components analysis and least squares fit method. Finally, the Cobb angles are
measured following the current clinical practice. The algorithm predicts accurately the vertebrae masks and endplates
fitting. The Cobb angles variability of the proposed method of the proposed method is 2.22º, considerably reducing
the inter-observer variability found in clinical experts (3º-10º). Moreover, the generalization potential of the method
is exploited by adding a generalization network to the algorithm, expanding its use in very different x-rays datasets.
Visual assessment of the Cobb angles was performed in 4 different testing datasets, and feedback received from
clinicians highlight the potential of the method to be implemented in clinical practice.

Keywords: Scoliosis, Cobb angle, Deep Learning, Vertebra segmentation

1. Introduction

The spine is the central bone of the human body to
which all other bones are connected, participating in
essential activities such as weight-bearing, movement
or shock absorption. It is usually composed by 33
bones called vertebrae, divided in five regions along the
spine. From top to bottom, the spine is divided in cer-
vical (7 vertebrae), thoracic (12 vertebrae), lumbar (5
vertebrae), sacrum (5 vertebrae) and coccyx (4 verte-
brae) regions. The upper 24 vertebrae are connected
through intervertebral discs, articulated with high mo-
bility whereas the lower nine are fused in adults (Ken-
neth, 2020).

Normal development and shape of the spine is crucial
in the development of essential organs and other bones.
The most prevalent disease related to the spine in chil-
dren and adolescents is scoliosis, with a prevalence of

0.47%-5.20% (Konieczny et al. (2013)) . This spine
condition is characterized by the deviation in coronal,
sagittal and axial planes, named lateral curvature, tho-
racic lordosis (inward rounding of the back), and ver-
tebral rotation (Kouwenhoven and Castelein (2008)).
Instead of straight line, spines with scoliosis condi-
tion, usually have either C-shaped or S-shaped spines
as shown in Figure 1.

The Scoliosis Research of Society defined scoliosis
as a lateral deviation of minimum 10º in the spinal x-
rays Bloch et al. (2012). Scoliosis is diagnosed as Id-
iopathic if no other condition is present such as con-
genital, neuromuscular or mesenchymal. Adolescent
Idiopatic Scoliosis (AIS), accounts approximately for
90% of cases of idiopathic scoliosis in children be-
tween ages of 11 and 18 years (Konieczny et al. (2013)).
Therefore, special focus is places on AIS in the devel-
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Figure 1: C-shaped (a) and S-shaped (b) common scoliosis curves

opment of clinical tools to automatically asses scoliosis.
Nearly 0.1% of scoliosis patients require surgery and

around 10% require some kind of intervention ((Tambe
et al., 2018)). Surgery is justified under the cases for
which the lateral deviation is higher than 50º, since it
may likely progress into the adult life, back pain, car-
diopulmonary issues and psychosocial concerns. Sur-
gical treatments include vertebral fusion, using screws
and rods, and vertebral tethering aimed to stop compli-
cation rates and long-term consequences (Tambe et al.
(2018)). Non-surgical treatments include scoliosis-
specific exercise, or bracing.

Clinically, the diagnosis, treatment and follow-up of
scoliosis is done using x-rays and a subsequent mea-
surement called Cobb angle. The Cobb angle is nowa-
days the most common quantification used in scolio-
sis, originally proposed by the American orthopedic sur-
geon John Robert Cobb (Cobb (1948)) in 1948. Cobb
angle is used to asses the degree of severity in scoliosis
(as shown in Table 1).

Table 1: Scoliosis severity ranges and their Cobb angles
Severity Cobb angle
Not scoliosis <10º (Lau (2013))
Mild scoliosis 10º-30º (Bloch et al. (2012))
Moderate scoliosis 30-45º (Bloch et al. (2012))
Severe scoliosis >45º (Bloch et al. (2012))

Cobb angle method involves the identification of the
upper and lower endplates of the two most tilted verte-
brae (shown in Fig 2). The angle between these end-
plates is denoted as the Cobb angle. The vertebrae in-
volved in the Cobb angle measurement are highly im-
portant since they are used in future analysis for follow-
up patients. Scoliosis in follow-up patients is assessed

by measuring the angle between the same vertebrae
used in previous studies to check the angle progression.

Figure 2: Cobb angle measurement (Horng et al., 2019)

The spinal column vertebrae can be generally
grouped, from top to bottom, into proximal thoracic
(PT), main thoracic (MT) and thoracolumbar/lumbar
(TL/L) regions. Therefore, complete assessment of sco-
liosis using the Cobb angle technique involves the cal-
culation of 3 angles, representing the 3 curves in the
spine (PT, MT and TL/L). While conventionally mea-
sured by protractor, Cobb angle measurement are nowa-
days calculated digitally mainly (Wills et al. (2007)).
This process involves the manual location of each ver-
tebra landmark on the relevant endplates and later auto-
matic calculation of the Cobb angle.

However, Cobb angle measurement is time consum-
ing and presents a high level of intra- and interobserver
variability. This uncertainty is created by selection of
different end vertebrae, drawing of the endplates and
measurement of the angles (Gstoettner et al. (2007)).
Usually, an interobserver variability between 3-5º is
present in cases with mild scoliosis and can increase in
cases of severe scoliosis up to 10º (Scholten and Veld-
huizen (1987)). Moreover, the use of 2D x-rays inher-
ently shows an incomplete view of the 3D nature of sco-
liosis and may yield an underestimation in the true Cobb
angle of the patient. However, 2D x-rays remain the
standard technique in clinical assessment of scoliosis.

2. State of the art

This section will review public datasets available for
scoliosis assessment as well as recent works within the
last three years involving Deep Learning techniques to
asses scoliosis using 2D spinal x-rays. These methods
will be broadly divided into two groups: landmark de-
tection and image segmentation.
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2.1. Datasets for scoliosis assessment

In the past few years, there have been different
challenges in computational methods and clinical ap-
plications for spine imaging (xVertSeg, IVDM3Seg
and computational challenges on CSI). In MICCAI-
CSI2014, for instance, two challenges were developed
on ”Spine and Vertebrae Segmentation” and ”Vertebrae
Localization and Identification”. The commented chal-
lenges mainly focus on the analysis of vertebrae fracture
and vertebrae localization in CT and MRI.

As part of the MICCAI-CSI2019, the first and the
only (up to date) challenge was proposed for accurate
automated spinal curvature (AASCE-2019 challenge).
A total of 707 anterior-posterior (AP) x-ray spinal im-
ages for training and testing collected from London
Health Sciences Center in Canada using EOS medical
imaging system. These data was IRB approved. Train-
ing and testing datasets contain 609 and 98 x-ray im-
ages, respectively. Landmarks were provided by two
professional doctors in London Health Sciences Center
and are available publicly 1. Since cervical vertebrae
are rarely involved in spinal curvature (O’Brien et al.
(2008)), 17 vertebrae (12 thoracic and 5 lumbar) are re-
ported by specialists. Each vertebra is reported by four
landmarks representing the four corners resulting in 68
points per image. The Cobb angles are also included as
part of the dataset calculated from the landmarks.

Table 2 shows the relevant information of the AASCE
challenge dataset for training images.

Table 2: Information of the AASCE dataset
Specification Train
Number of images 609
Physical units (Dots Per Inch, DPI) 72
Pixels dimensions (SI units, micron) 144
Length of images (pixels) [min-max] [973-3755]
Width of images (pixels) [min-max] [355-1427]
Value of the Cobb angle (º) [min-max] [0-56.39]
Number of not scoliosis (<10º) 20
Number of mild scoliosis (10º-30º) 190
Number of moderate scoliosis (30º-45º) 205
Number of severe scoliosis (>45º) 194

The main clinical limitation from this dataset is that
the ground-truth Cobb angles are calculated using just
one angle per vertebra (represented as the central line)
instead of using the upper and lower endplates of the
upper and lower vertebrae involved in the angle, as done
in clinical practice. Figure 3 shows better the difference
between calculating the Cobb angle using one line per
vertebra (as done in the AASCE challenge) or using two
endplates per vertebra (as done in clinical practice).

1https://spineweb.digitalimaginggroup.ca/

Figure 3: Two possible ways of measuring the PT, MT, TL/L Cobb
angles. Left: using both upper and lower endplates for each vertebra,
as done in clinical practice. Right: using one central line, as done in
the AASCE challenge

2.2. Landmark detection algorithms

Boostnet (Wu et al. (2017)) is a neural network aimed
to detect 68 landmarks (four corners of each vertebra)
corresponding to 17 vertebrae (12 thoracic and 5 lum-
bar) in AP X-rays. Traditional ConvNet performance
was improved by the addition of a BoostLayer, to re-
move outlier features, and a Spinal Structured Multi-
Output Layer, to analyse spatial dependencies between
different landmarks. These improvements yielded to
a Pearson correlation coefficient of 0.94 between the
ground-truth and the predicted landmarks. Even though
the network predicted landmarks accurately, assessment
of Cobb angle accuracy was not studied in this work.
Data used in this study was part of the public database
released for AASCE-2019 challenge.

Boostnet authors developed further the analysis of
scoliosis assessment and published later the multi-view
correlation network (MVC-Net) (Wu et al. (2018)) and
multi-view extrapolation network (MVE-Net) (Chen
et al. (2021)). These models measure Cobb angles us-
ing both coronal and sagittal 2D X-rays. In MVC-Net,
authors predicted landmarks using a multi-view con-
volutional layer to exploit dependencies between both
views in order to overcome the challenge caused by ob-
struction by the ribcage in the lateral view. In MVE-
Net, landmarks are learnt using the previous multi-view
convolutional layer as well as using each view indepen-
dently. Each landmark prediction from these two meth-
ods are then combined using an inter-correction layer.
Cobb angles were later calculated using the predicted
landmarks. MVE-Net showed considerable better re-
sults than MVC-Net and Boostnet. The network was
trained using 526 images (263 frontal and 263 lateral
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x-rays) from a private dataset. Despite its promising re-
sults, these methods can only be applied if both frontal
and lateral spinal x-rays are present for a patient, which
is not the reality in clinical practice, since only frontal
x-rays are acquired for most of the patients.

In Galbusera et al. (2019), a landmark detection net-
work is applied to calculate landmarks not only to asses
scoliosis but many other clinical parameters relevant in
spinal disorders such as kyphosis, lordosis, pelvic inci-
dence, sacral slope and pelvic tilt. A private database
of 493 frontal and 493 lateral x-rays were used in this
work. Even though predicted outputs strongly corre-
late with the ground-truth, the method suffers from a
high standard error. Nevertheless, the model applies
for a broad range of spinal disorders and in scoliosis
specifically, other relevant clinical parameters such as
the pelvic tilt or the trunk shift are also reported. There-
fore, different clinical parameters should be considered
in developing a clinical tool for scoliosis assessment.

2.3. Image segmentation algorithms
In Tan et al. (2018), authors used U-Net for image

segmentation to classify each pixel in the image either
as background, or vertebra. Ground-truth masks were
obtained using a private dataset and due to data limita-
tions, only the lumbar vertebra were considered in the
study, therefore restricting the method to the lumbar re-
gion of the spine. From each individual vertebra mask,
minimum bounding rectangle and least square methods
were used to fit the upper and lower endplates of each
vertebra. Predicted masks had a 98% accuracy with
respect to the ground-truth masks. Cobb angle assess-
ment was done using just one angle, as opposed to the
full-spine PT, MT, TL/L standard Cobb angle measure-
ment. A mean deviation of 1.7º was reported between
predicted and manually calculated angles. Even though
it showed promising results, the lack of analysis of the
full spine segmentation restricts its potential implemen-
tation in clinical practice.

Similarly, in Horng et al. (2019) a U-Net is also ap-
plied for vertebral segmentation. However, instead of
predicting all the vertebrae segmentation at once, U-
Net is applied to segment each vertebra individually.
From the original full frontal x-rays, spinal column is
isolated from skull, limbs and hips using pixel inten-
sity histograms in the horizontal and vertical directions.
Each vertebra is then detected using polynomial fitting
and histogram analysis. The area of each vertebra is
the input to the neural network for segmentation. The
work compared U-Net with Residual U-Net and Dense
U-Net to perform the segmentation task. Then, mini-
mum bounding rectangle was also used to fit endplates
to each vertebra. However, the method was restricted
to one endplate per vertebra (in the central part), as op-
posed to the clinical standard of two endplates per ver-
tebra (upper and lower). Moreover, Cobb angle estima-
tion was also limited to the maximum angle, instead of

the PT, MT, TL/L standard. The model was trained on
35 x-rays from a private database. The lack of data may
impact in the ability of the network to generalize in real-
world x-rays differing from the ones used in the private
dataset.

DU-Net (Tu et al. (2019)) was proposed to segment
the full spine mask instead of individual vertebra. The
model combines an algorithm for spine detection with
U-Net segmentation. 100 images were used for training
and 10 for testing from a private database. The proposed
DU-Net yielded better results in segmentation metrics
than baseline U-Net. A 6th order polynomial was then
fitted to the spine mask and Cobb angle was calculated
using tangents to the curve. Again, a single angle was
used to assess the Cobb angle calculation, as opposed to
clinical practice, with the largest deviation from ground-
truth angle of 5.4º. Even though its accurate results,
this algorithm is far from being incorporated into clini-
cal practice since vertebral endplates are not considered,
restricting also its use to assess scoliosis in follow-up
patients, as vertebrae involved in the Cobb angle should
also be reported.

2.4. State of the art conclusion

Even though the previous analyses algorithms
showed promising results in terms of accuracy in the
tasks of landmark detection, image segmentation and
eventually Cobb angle estimation, they are far from hav-
ing the potential to be implemented in clinical practice.
for scoliosis assessment. Landmark-based methods are
extremely sensitive to noise. A small deviation in one of
the predicted landmarks, may impact considerably the
Cobb angle measurement. Moreover, the output of these
methods are restricted to predicting the same number of
vertebra. Therefore, its capabilities for generalization
are limited, and a manual step of cropping the input im-
ages in cases with more vertebra is needed, which limits
its potential to be fully automated. On the other hand,
image segmentation techniques are more robust to small
deviations from ground-truth and the influence in pre-
dicting a wrong Cobb angle is reduced. However, data is
the main limitation, as no public dataset contains spine
or vertebra segmentations. Moreover, private datasets
used in image segmentation, are restricted in number of
samples and field-of-view (only lumbar section, for in-
stance).

Implementation in clinical practice of reviewed algo-
rithms are also limited by the following reasons. Some
algorithms rely on the spine segmentation, losing in-
formation about which vertebra are involved in the re-
ported angles. Some other algorithms, predict directly
the Cobb angles, losing the interpretability about the re-
sults, which usually is the main limitation for clinical
implementation. Finally, most of the algorithms report
just the maximum angle, instead of the clinical scolio-
sis assessment standard of PT, MT, TL/L Cobb angles.
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Moreover, clinical experts consulted in this study sug-
gest that measuring the Cobb angle using a central line
per vertebra instead of upper and lower endplates, is not
a valid method for clinical use. Therefore, all the works
compared against the ground-truth Cobb angles of the
AASCE dataset are not clinically valid.

2.5. Contribution of this work

To overcome the aforementioned pitfalls, we propose
to the best of our knowledge, the first algorithm to assess
scoliosis in a fully automatic manner with the potential
to be implemented into clinical practice. The algorithm
will be divided in three main parts to automatically re-
port the PT, MT, TL/L Cobb angles in an interpretable
way for radiologists, reporting not only the angles, but
a visual guidance to highlight the vertebrae involved in
each Cobb angle, allowing follow-up patients to be eas-
ily assessed.

To overcome the main limitation of landmark regres-
sion methods, the landmarks from the AASCE dataset
are transformed into vertebra segmentations. Moreover,
the ground-truth Cobb angles were recalculated, using
the provided landmarks, considering two endplates for
each vertebra (Figure 3 (a)), as opposed to the AASCE
ground-truth Cobb angles, calculated using one line per
vertebra (Figure 3 (b)).

Firstly, a Deep Learning model will be used to seg-
ment the vertebrae. Then, two endplates will be fitted
for each segmented vertebra accounting for different an-
gles per endplate. Finally, using the fitted endplates the
three Cobb angles will be measured in the same way as
it is done in clinical practice (Bloch et al. (2012)).

The proposed algorithm will not only be evaluated
using the AASCE test dataset, but using three other pri-
vate datasets to assess the generalization capabilities of
the algorithm against different datasets. To account for
the domain-shift problem, a novel approach will be con-
sidered.

3. Material and methods

The proposed framework for fully automatic assess-
ment of scoliosis based on spinal AP x-rays consists of
three phases: vertebra segmentation, endplates fitting
and Cobb angle calculation.

3.1. Data pre-processing

AASCE ground-truth landmarks are converted to ver-
tebra masks to avoid the main limitations of landmark
regression algorithms.

3.1.1. Landmark errors correction
Some errors were present in the landmark coordi-

nates of the AASCE challenge, including inconsistent
ordering of the landmark coordinates, labelling of only

2 corners for some vertebrae and small spatial devia-
tions from the vertebra corner. These errors may not be
obvious when exploring the dataset but they suppose a
limitation when designing an algorithm for creating the
vertebra masks. About 10% of the training images were
corrected for some errors. Therefore, any algorithm de-
veloped using the AASCE dataset will inherently con-
tain errors associated with incorrect ground-truth land-
marks, if not corrected.

3.1.2. From landmarks to vertebra masks
Figure 4 depicts the process used to convert the ver-

tebrae landmarks to segmentations. Starting from the
corrected landmarks (Figure 4 (a)), initial edges are con-
sidered as lines connecting the landmarks (Figure 4 (b)).
For each of the 4 edges, vectors perpendicular to the
edge are drawn for every pixel in the edge. Then, max-
imum change in intensity from bright to dark is stored
in each perpendicular vector (Figure 4 (c)). Then, a 6th

order polynomial is fitted for all the points in the edge
(Figure 4 (d)). The process is repeated for every edge
in the vertebra (upper, lower, left and right). Finally, all
the fitted polynomials are connected using the boundary
(MathWorks (2014)) MATLAB function. This function
returns the boundary for a set of 2D points with a shrink
factor parameter between 0 and 1. If 1, the function re-
turns the Convex Hull transformation of the points and,
if 0, it returns the compact boundary of the set of points.

Figure 4: Process of converting AASCE dataset landmarks to verte-
brae masks
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3.2. (I) Vertebrae Segmentation
In this section, four of the most used Deep Learn-

ing models (U-Net (Ronneberger et al. (2015)), Linknet
(Chaurasia and Culurciello (2017)), FPN (Feature Pyra-
mid Network) (Lin et al. (2017)) and Pyramid Scene
Parsing Network (PSPNet) (Zhao et al. (2017))). These
models are combined with 12 different backbones in or-
der to find the best combination of model-backbone for
vertebra segmentation.

3.2.1. Data pre-processing
All the images present in the training set from the

AASCE challenge (609 images with 20 non-scoliosis,
190 mild scoliosis, 205 moderate scoliosis and 194 se-
vere scoliosis), were normalized in the range of (0, 1)
and resized to a common size of 256x512 pixels. More-
over, the images were processed using contrast lim-
ited adaptive histogram equalization (CLAHE). Adap-
tive histogram equalization tends to overamplify noise
in regions with similar contrast where the histogram
is highly concentrated. In contrast, CLAHE limits the
contrast amplification to reduce noise amplification.

This dataset was separated into training, validation
and test sets using 70%, 15%, 15% of the dataset. This
split was done so that all the sets are balanced in terms
of number of images of different scoliosis types. To
overcome the problem of limited number of samples
in the training set, data augmentation was performed
to randomly rotate the images with a random angle be-
tween -15º to 15º and random horizontal flip with prob-
ability of 0.5. Adding random Gaussian noise was ex-
plored but it did not improve the training result, there-
fore it was not considered in data augmentation.

Inspired by Xu et al. (2017), ground truth vertebra
segmentations were added an extra channel: vertebrae
masks edges. These masks were obtained by eroding
the vertebrae masks with disk a structuring element of
size 7 pixels and subtracting from the original vertebrae
masks image. The idea of adding edges as another chan-
nel has been proven to bring the predicted segmentation
closer to the true edges of the vertebrae. Finally, a third
channel, the spine mask, was added to discard poten-
tial wrong segmentations in regions outside the spine
where the model could identify vertebrae, such as the
skull, limbs, or hips. The spine mask was calculated us-
ing the algorithm depicted in Figure 4 considering all
the vertebrae as one single vertebra. Even though the
prediction of the DL models will be a 3-channel output,
only the vertebrae channel will be kept. The addition
of the other channel was done to improve the prediction
of the vertebrae masks channel. Figure 5 shows the pre-
processed input image together with the 3 channels used
as ground-truth to train the Deep Learning models.

3.2.2. Deep Learning model selection
In this work, four different models are used: U-Net,

Linknet, FPN and PSPNet. Structurally, all the mod-

Figure 5: Modified AASCE dataset used for training the different DL
models.

els architectures are similar, with an encoder-decoder
shape where the encoder captures high-level hierarchi-
cal features from the input image while decreasing the
matrix size of the image, and the decoder makes use
of these features to create the final segmentation while
recovering the original matrix size (Hu et al. (2019)).
Therefore, it is the method of combining information
from the encoder and decoder, the factor that differenti-
ates the different models architecture. In case of U-Net,
the encoder is used for multi-level feature extraction and
the decoder combines these features with original en-
coder information through concatenations, using both
features and spatial information into account. In the
case of Linknet, modifies the basic U-Net architecture
changing the fusion of high-level features and original
encoder information. Instead of concatenation, the fu-
sion technique is addition. PSPNet model creates a vari-
able pooling layer from the lowest downsampled block
of the encoder, resembling a pyramid. In this way, a
vast collection of spatial resolutions are used to enrich
the high-level features. Finally, FPN is similar to U-Net
with the difference of applying 1x1 convolution layer
to the encoder information and adding it to the differ-
ent decoder layers. Finally,a double 3x3 convolution
layer is applied to each block in the decoder and up-
sampled to the highest resolution. All the information
is concatenated and a final 3x3 convolution is applied to
get the output of the network. Figure 6 show visually
the different architectures of the previously commented
models.

12 backbones were selected as encoders for each
of the four models. The backbones selected are
VGG19, ResNet101, SE-ResNet101, ResNeXt101,
SE-ResNeXt101, SENet154, DenseNet201, Inception-
ResNetv2, MobileNetv2, EfficientNetB0, Efficient-
NetB3 and EfficientNetB7. The backbones were se-
lected to account for a wide and broad range.

Architecture hyperparameters used in this work are
present in Table 3.

Each experiment was trained for 70 epochs with a
mini-batch size of 16 images. Adam optimisation was
employed and the weights from the epoch yielding the
lowest validation loss were saved. Learning rate was
set to 0.001 with a scheduler function that reduces the
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Figure 6: DL models used in this work. (a) U-Net, (b) Linknet, (c)
PSPNet, (d) FPN). Parmar et al. (2020)

Table 3: Architecture hyper parameters for the different models

Model
Encoder

depth Batch Norm Various

U-Net 5 Yes (dec)
filters per block=

(16, 32, 64, 128, 256)

Linknet 5 Yes (dec)
filters per block=

(16, 32, 64, 128, 256)

FPN 5
Yes

(enc+dec)
pyramid filters=256
segment filters=128

PSPNet 5 No output filters=512

learning rate by a factor of 10 after 10 consecutive
epochs with no decrease in validation loss. For each
backbone, weights were initialized using weights from
trained models with ImageNet. Each model was trained
using the Keras Deep Learning framework with Tensor-
flow backend using a Tesla V100 GPU.

DL experiment 1. On the choice of loss function. To
choose the most appropriate loss function to train the
models, a basic U-Net with hyperparameters shown in
Table 3 was used with no backbone and random weight
initialization. For this experiment, three different losses
were considered: focal loss, dice loss, Tversky loss
(Salehi et al. (2017)) and a combination of Tversky and
focal loss, where focal loss is weighted by a factor β.

Focal loss is defined as

FL(pt) = −αt(1 − pt)γ log(pt)

where y represents the ground-truth label, p represents
the predicted probability,

pt =


p if y = 1
1 − p if y = 0

and

αt =


α if y = 1
1 − α if y = 0

Focal loss is a function derived from the cross-
entropy with two additional parameters (α and γ). α
handles the class imbalance problem, and γ helps the

training focusing on misclassified pixels. Empirically,
they are set to 0.25 and 0.2, respectively.

Dice loss is defined as

DL(y, ŷ) = 1 − 2yŷ + 1
y + ŷ + 1

where y represents the ground-truth label, ŷ represents
the predicted label and 1 is an added factor to account
for edge cases where ŷ = 0 and y = 0.

Tversky loss is a generalization of Dice loss defined
as

T L(y, ŷ) =
yŷ

yŷ + β(1 − y)ŷ + (1 − β)y(1 − ŷ)

where y represents the ground-truth label and ŷ repre-
sents the predicted label. This loss weights differently
FP (false positives) and FN (false negatives) with the
help of the β coefficient.

The baseline U-Net was trained using focal loss, dice
loss, Tversky loss with different β parameter value (0.2,
0.5 and 0.7), and combined Tversky and focal losses
with an optimal Tversky β factor obtained from the pre-
vious teste and a focal loss weighted β of (0.2, 0.5, 0.7
and 1).

DL experiment 2. On the choice of optimum model-
backbone combination. Using the optimal loss function
obtained from 3.2.2, each of the four models are trained
with all the different backbones commented in 3.2.2.

DL experiment 3. On the choice of training hyperpa-
rameters. Using the optimal model-backbone combi-
nation obtained from 3.2.2, several comparisons will be
made to explore the effect of different hyperparameter
selection. The comparisons made will be using Ima-
geNet weights initialization vs random weights initial-
ization, constant learning rate vs scheduled learning rate
and complete encoder/decoder training vs decoder train-
ing.

3.2.3. Data post-processing
Post-processing is applied to the vertebra masks

channel from the optimal model output. This processing
includes outlier removal from pixels mistakenly classi-
fied as vertebrae, including objects that are significantly
smaller than other predicted vertebra and spatial out-
liers. Moreover, to separate vertebrae that are fused by
the network prediction, a combination of erosion, wa-
tershed segmentation and dilation is used.

3.2.4. Validation of vertebra segmentation
In order to validate each of the DL experiments per-

formed to select the optimal model-backbone network
and training hyperparameters, both test metrics such as
Dice and Jaccard indices as well as training evolution
will be used to compare the different tests.

19.7



A Fully Automatic Algorithm for Scoliosis Assessment. Towards a clinical implementation 8

Once the optimal model is trained, vertebra masks
will be isolated from the output of the model (since
it also contains the vertebra mask edges and the spine
mask). To compare the predicted vertebra masks to the
generated ground-truth vertebra masks, both the Dice
Coefficient (overlap between predicted and ground-truth
masks) and the Balanced Accuracy Rate (average of
the proportions classified correctly for each individual
class) will be calculated. These metrics will be evalu-
ated before and after the post-processing step to check
its influence. Moreover, qualitative assessment of the
predicted vertebral segmentation will be done.

3.3. (II) Endplates fitting

Figure 7 depicts the process of fitting the endplates
to a vertebra segmentation. From the vertebrae seg-
mentation obtained from the network output, connected
component analysis is performed to label each individ-
ual vertebrae as a different component. Then, for each
vertebra, the centroid and the angle of its principal axis
is calculated (Figure 7 (b)). The vertebra is rotated
the same angle around its centroid. A horizontal line
is drawn across its centroid and the intersection with
the rotated vertebra is measured as the width. Then, a
search area is established whose right limit is the right
vertebra edge - 15% of the vertebra width and the left
limit is the left limit edge + 15% of the vertebra width.
This shrink is done to avoid the influence of irregu-
lar lateral edges of the rotated vertebra (Figure 7 (c)).
Across the search area and for every pixel, a perpendic-
ular vector to the horizontal line is drawn and points be-
longing to either upper or lower edges are saved (Figure
7 (d)). For all the upper and lower points, the endplates
for the rotated vertebra are fitted using least squares fit
(Figure 7). Finally, the upper, lower endplates and the
vertebra are rotated back to the original orientation (Fig-
ure 7 (f)).

An outlier analysis is performed after all the upper
and lower endplates are fitted to reduce the influence of
a mistakenly predicted endplate. Once identified, the
endplate is replaced by a weighted average of the end-
plates of its neighbours.

3.3.1. Validation of endplates fitting
The proposed fully automatic segmentation may

yield to a different number of vertebra, not the 17
present on the ground-truth AASCE dataset. Therefore,
when the number of predicted and ground-truth verte-
brae are different, predicted and ground-truth endplates
are resized to a common size that yields to the minimum
absolute difference. In this way, endplates are compara-
ble.

The metrics chosen to compare ground-truth and
predicted endplates are the Mean Absolute Difference
(MAD) and the Pearson correlation coefficient. MAD

Figure 7: Process of fitting both upper and lower endplates from a
segmented vertebrae

measures the magnitude of the expected deviation be-
tween both methods, while the Pearson correlation coef-
ficient reflects the linear correlation between both meth-
ods. Apart from these quantitative metrics, other plots
will be shown to analyse any possible bias in the pre-
dicted endplates.

3.4. (III) Cobb angle measurement

From the upper and lower endplates calculated from
the previous part of the algorithm, the PT, MT and TL/L
Cobb angles are measured automatically as done in clin-
ical practice. The three curves are calculated as follows:

1. The apex of the MT curve is defined as the verte-
bra between T6 and T11 whose centroid is most
horizontally deviated from the average centroid of
vertebrae T1-T11.

2. The two vertebrae located upper and lower with re-
spect to the MT apex that yield the highest angle
are defined as the upper and lower vertebra of the
MT curve, and the MT Cobb angle as this highest
angle.

3. The upper vertebra of the MT curve is automati-
cally defined as the lower vertebra of the PT curve.
Then, the vertebra located upper with respect to
this vertebra that yield to the biggest angle, is de-
fined as the upper vertebra of the PT curve and this
angle is defined as PT Cobb angle.
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4. The lower vertebra of the MT curve is automat-
ically defined as the upper vertebra of the TL/L
curve. Then, the vertebra located lower with re-
spect to this vertebra that yield to the biggest angle,
is defined as the lower vertebra of the TL/L curve
and this angle is defined as TL/L Cobb angle.

Figure 8 shows a demonstration of these three Cobb
angles.

Figure 8: PT, MT and TL/L Cobb angles (Group (2017))

3.4.1. Validation of Cobb angle measurement
The metrics chosen to compare ground-truth and pre-

dicted Cobb angles are the Mean Absolute Difference
(MAD) and the Pearson correlation coefficient. Apart
from these quantitative metrics, other plots will be
shown to analyse any possible bias in the predicted end-
plates.

To better assess the inter-observer variability of Cobb
angle measurement, a Saphiro-Wilk test is developed to
assess the assumption of normality of the inter-observer
difference. This normality analysis is later assessed us-
ing a Q-Q plot.

3.5. Generalization of the algorithm

One of the main limitations of the algorithms trained
with the AASCE dataset is that the training data is
cropped to only the spine region, restricting its use
to other datasets where skull, limbs or pelvis are also
present. This requires an added pre-processing manual
step where the spine region should be cropped. This re-
flects a clear pitfall towards clinical implementation of
scoliosis assessment algorithms, at least fully automatic
ones. To overcome this limitation, this work introduces

a novel approach where first, a more robust segmen-
tation is performed (lung segmentation) and using this
mask, a spine ROI is automatically calculated and con-
sidered as the input for the vertebra segmentation net-
work.

3.5.1. Dataset
A public dataset containing 800 AP x-rays with lungs

segmentations obtained from the tuberculosis control
program of the Department of Health and Human Ser-
vices of Montgomery County, MD, USA (Candemir
et al. (2013)).

3.5.2. Lung segmentation model
Baseline U-Net (same configuration as in 3.2.2 was

used) was selected as the lung segmentation model, due
to its simplicity and accurate results. Different back-
bones were analysed: SE-ResNeXt50, ResNet34 and
DenseNet121. Data was separated into training, vali-
dation and testing using 70%, 15% and 15% rule, re-
spectively. Training hyperparameters were selected as
in 3.2.2.

Post-processing was applied to the output of the lung
segmentation network. Connected component analysis
was applied to keep only the two components with high-
est area.

3.5.3. Cropping of input image
Using the lung segmentation, a minimum bounding

rectangle function is applied to both lungs mask. Up-
per and lateral edges of the minimum bounding rectan-
gle were considered as the upper and lateral edges of
the spine ROI. To calculate the lower edge of the spinal
ROI, the height of the minimum bounding rectangle is
multiplied by a factor of 1.7, accounting for the ratio
between spine height and lungs height. This value was
set empirically.

3.5.4. Final vertebra segmentation
The spine ROI is passed to the vertebrae segmenta-

tion network. An empty array of the same size as the
original image is created and the vertebrae segmenta-
tion is placed in the spinal ROI, in this way reverting
the cropping. Figure 9 show the overall process to seg-
ment the vertebrae in cases where the field-of-view is
not the same as in the AASCE dataset.

3.5.5. Validation of the generalization of the algorithm
Trained lung segmentation models will be compared

using the Dice Score Coefficient. Since the generaliza-
tion algorithm is aimed to expand the vertebrae segmen-
tation network to other datasets where no ground-truth
is present, no quantitative measurements can be com-
puted. Therefore, only visual inspection on the quality
of the algorithm will be assessed.
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Figure 9: Process for segmenting the vertebra in different datasets with an increased field-of-view

4. Results

4.1. (I) Vertebrae segmentation

4.1.1. DL experiment 1. On the choice of loss function
Figure 10 shows the training evolution assessed using

the validation dice score for different losses.

Figure 10: Training evolution assessed using the validation dice score
for different losses

Figure 10 (a) shows the training evolution using dif-
ferent values of β for the Tversky loss. A value of
0.7 shows slightly faster training convergence and a fi-
nal validation Dice score considerably higher than the
rest of the cases. Values of 0.2 and 0.5 show simi-
lar behaviour in terms of convergence and final vali-
dation Dice score. Taking into account the imbalance
of vertebra pixels with respect to background pixels
(around 10% and 90% approximately), it is expected
that a higher value of β will yield to better results.

Figure 10 (b) shows the training evolution using dif-
ferent values of β for the combined loss using Tversky
loss (with a β value of 0.7) and focal loss. A value of
0.5 yields the fastest convergence, while 0.2 yields the
slower training. In terms of performance, all the values
yield to similar final validation Dice score.

Figure 10 (c) shows the training evolution using Tver-
sky loss (with a β value of 0.7), focal loss, Dice loss and
combined loss (with a β value of 0.5). Optimized Tver-
sky and combined losses yield to both fastest conver-
gence and higher final validation Dice score. Focal loss
is the worst loss in terms of convergence and final val-
idation metric. Since focal loss is a distribution-based
loss, different segmentations could yield to similar dis-
tribution, so it is not suitable for segmentation tasks on
its own. The optimal loss is selected as the combined
loss between Tversky (β of 0.7) and focal loss, weighted
by a factor of 0.5. Since focal loss is a distribution-based
loss and Tversky a region-based loss, combination of
both optimize both distribution and overlap simultane-
ously, yielding to the optimal loss function.

4.1.2. DL experiment 2. On the choice of optimum
model-backbone combination

Figure 11 show the Dice and Jaccard indices for each
of the four main models (U-Net, Linknet, PSPNet and
FPN) trained using 12 different backbones for the test
set. U-Net performs the best of the four models in
terms of metrics and standard deviation. FPN performs
closely to U-Net in terms both of metrics ans robustness.
PSPNet yields the worst results overall.

Figure 11: Dice scores (left) and Jaccard indices (right) for the test set
grouped by models

Top-5 best backbone-model configurations test dice
metrics are shown in Table 4. The top-5 best networks
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perform extremely similar in terms of test dice, differ-
ing in just 0.005. Even though generally Linknet yields
lower metrics than U-Net or FPN, it is the 4th best model
when combined with EfficientNetB7 backbone. It is
worth mentioning that not only FPN and U-Net mod-
els have a trend of better segmentation performance, but
also the backbones. EfficientNetB7 is present in 3 of the
top-5 best models.

Table 4: Top-5 model-backbones combination according to Test Dice
Model Backbone Test Dice
U-Net SE-ResNext101 0.7999
FPN DenseNet201 0.7957
U-Net EfficientNetB7 0.7954
Linknet EfficientNetB7 0.7944
FPN EfficientNetB7 0.7941

Due to this similarity, choice of best model is diffi-
cult to perform. Therefore, visual inspection of some
difficult test cases was performed to assess the optimal
network. Figure 12 show one of these examples. From
this comparison, it is clear that FPN and EfficientNetB7
yields the best vertebra segmentation in terms of not-
merged vertebrae and regular vertebrae shape.

Figure 12: Visual comparison of the top-5 best model-backbone com-
bination

From this comparison, the optimal model was defined
as FPN with EfficientNetB7. Figure 21 shows a visual
representation of the optimal network designed for ver-
tebra segmentation.

4.1.3. DL experiment 3. On the choice of training hy-
perparameters

Figure 14 shows the training evolution assessed using
the validation dice score for different training hyperpa-
rameter configurations.

Figure 14 (a) shows the training evolution assessed
using the validation dice score for using static vs sched-
uled learning rate. Even though the convergence is very
similar, the final validation Dice is slightly higher using
a scheduler learning rate.

Figure 14 (b) shows the training evolution assessed
using the validation dice score for training both the
encoder-decoder or only the decoder. Training the full
network achieved slightly faster convergence as well as
improved final validation Dice score.

Figure 14 (c) shows the training evolution assessed
using the validation dice score using ImageNet pre-
trained backbone weights, or random initialized weights
. Using pre-trained weights yields a slight faster conver-
gence and a better final validation Dice metric.

4.1.4. Vertebra segmentation results
Table 5 shows the Dice score and Balance accu-

racy rate between ground-truth and predicted verte-
brae masks before and after post-processing. Post-
processing yielded to a considerable increase of both
metrics. These results prove that the post-processing
designed in this work improves considerably the seg-
mentation output. It is worth mentioning that these met-
rics were performed solely on the vertebra mask chan-
nel from the output of the network, as opposed to the
previous, section, where the metrics were calculated for
the 3 channels of the network output (vertebra masks,
vertebra masks edges and spine mask).

Table 5: Vertebra segmentation metrics before and after post-
processing

Metric Raw output
Post-processed

output
Dice Score 0.8473 0.9130
Balanced

Accuracy Rate 0.9273 0.9415

Visual assessment of the vertebrae segmentation step
can be shown in Figure 15. A special remark should
be placed in the fact that ground-truth vertebra masks
are not real ground truth provided by experts, but a gen-
erated one from the landmarks. Therefore, there is an
inherently error in the segmentation from the data used.
However, Figure 15 shows how the prediction of the DL
model actually adjusts much better to the true vertebra
edges than the generated ground-truth.

4.2. (II) Endplates fitting

4.2.1. Quantitative analysis
Table 6 shows MAD and Pearson correlation coef-

ficient comparing fitted endplates to ground-truth end-
plates.

Table 6: Metrics comparing fitted endplates vs ground-truth endplates
Metric Value

Mean Absolute Difference 1.7315º ± 1.8079º
Pearson correlation coefficient 0.9817

Figure 16 (a) shows a strong linear correlation be-
tween predicted and GT endplates with no observable
bias. The absence of bias in the prediction of endplates
is also shown in Figure 16 (c), with a mean difference
between the methods of 0.02º and a expected deviation
using a 95% confidence interval of 0.02±4.9. Figure 16
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Figure 13: Optimal network (FPN model with EfficientNetB7 backbone) for vertebra segmentation

Figure 14: Training evolution assessed using the validation dice score
for different training hyperparameters

(b) show the how close the difference distribution is to
a normal distribution centered at 0 with a low variance,
as desired.

Figure 15: Visual assessment of the vertebrae segmentation prediction
compared to the ground-truth one for two different cases

4.2.2. Qualitative analysis
Visual assessment of the endplates fitting step can be

shown in Figure 17.

4.3. (III) Cobb angle measurement

4.3.1. Quantitative analysis
Table 7 shows MAD and Pearson correlation coeffi-

cient comparing predicted Cobb angles to ground-truth
ones. It is worth mentioning that achieved variability
(around 2º) is much lower than the inter-observer vari-
ability of experts (between 3º to 10º). However, as com-
pared to endplates fitting, metrics indicate a slightly
more variation. This is expected, as small variations
of the fitted endplates could yield to bigger variations
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Figure 16: From (a) to (c), GT vs fitted endplates, difference between
GT and fitted endplates and Bland-Altman plot

Figure 17: Visual assessment of the endplates fitted compared to the
ground-truth ones for two different cases

in the Cobb angle measurement. It is also worth men-
tioning that this is not a real-world comparison, as the
ground-truth angles were calculated from the landmarks
and it would be desirable to compare against radiolo-
gists’ manual measurement. This issue, limits to a cer-
tain degree the interpretation of this comparison. How-
ever, these results may yield an insight into the magni-
tude difference.

Table 7: Metrics comparing predicted vs ground-truth Cobb angles
Metric Value

Mean Absolute Difference 2.2188º ± 2.0263º
Pearson correlation coefficient 0.9843

Figure 18 (a) shows a strong linear correlation be-
tween predicted and GT Cobb angles with no observ-

able bias. The absence of bias in the prediction of Cobb
angles is also shown in Figure 18 (c), with a mean dif-
ference between the methods of 0.85º and a expected
deviation using a 95% confidence interval of 0.85±5.65.
Figure 18 (b) show the normality of the difference be-
tween both methods.

Figure 18: From (a) to (c), GT vs predicted Cobb angles, difference
between GT and predicted Cobb angles and Bland-Altman plot

4.3.2. Normality in the inter-observer difference in
Cobb angles

The Saphiro-walk test was applied to formally test the
hypothesis that the difference between predicted and GT
Cobb angles follows a normal distribution. The test con-
cludes that the normality hypothesis should be rejected
at the 95% confidence interval, as shown in Table 8 .

Table 8: Sapphire-Walk test for normality of the difference between
predicted and GT Cobb angles

Metric Value
W statistic 0.96

p-value 1.18x10−5

Normal distribution
hypothesis False - rejected

Saphiro-Wilk test is very sensitive to small changes
from normality, especially in the case with high num-
ber of samples. In this case, 3 angles per image in a
total of 91 test images, yield to 273 data points in to-
tal, a relative high number. Therefore, further analysis
to test the normality of the difference between predicted
and GT Cobb angles was done. Figure 19 depicts a Q-
Q plot to this purpose. A r2 value of 0.960 indicates
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that 96% of the variation in differences follows a nor-
mal distribution. Therefore, even though small changes
from normality are present, the hypothesis of normality
holds as true.

Figure 19: Q-Q plot of the difference between predicted and GT Cobb
angles

4.3.3. Qualitative analysis
Visual assessment of the Cobb angles calculation step

can be shown in Figure 20. Vertebrae involved in each
Cobb angle are also reported, as well as the apical ver-
tebra and labelling of the vertebrae.

Figure 20: Visual assessment of the predicted Cobb angles compared
to the ground-truth ones for two different cases

It can be noted that vertebrae segmentation network
may output a different number of vertebra, yielding an
inherent error present in the Cobb angle measurement.
In the first case of Figure 20 (left), this effect can be
observed. In this case, instead of segmenting a different
number of vertebrae, the sacrum is wrongly detected as
a vertebra, therefore, yielding to a different TL/L Cobb
angle.

4.4. Generalization of the algorithm
4.4.1. Lung segmentation

Table 9 shows the different test dices for the three
trained models for the lungs segmentation task. Best

metrics are reported for the SE-ResNeXt model. There-
fore, this model is chosen to be the lungs segmentation
network.

Table 9: Test dice for different models to segment the lungs
Model Test Dice

SE-ResNeXt 0.8979
ResNet34 0.8712

DenseNet121 0.8725

4.4.2. Qualitative assessment
Figure 21 shows the whole automatic scoliosis as-

sessment algorithm for different datasets. Row (a)
shows a case from the real test set of the AASCE
dataset. It is worth mentioning that, en though it was
asked to the researchers that organize the challenge for
the test set ground-truth, no response was obtained.
Therefore, only visual assessment can be performed.
Rows (b) - (d) show the full algorithm performance on
different private datasets. It is worth mentioning that ad-
dition of the apical vertebra and label of the segmented
vertebrae included in the visual output of the model,
adds an extra value for the clinical implementation of
the algorithm. Moreover, addition of the lung segmenta-
tion network, makes the follow-up of scoliosis patients
possible, since the labels of the segmented vertebra will
be consistent through different x-rays over time. This
potential of clinical implementation was highlighted by
different clinicians consulted in the development of this
work.

5. Discussion and conclusion

The model presented in this work is as far as we
know, the first potential attempt for fully automated sco-
liosis that could be implemented in clinical practice.
First, an overview of the state-of-the-art algorithms was
done to detect and highlight potential pitfalls in the clin-
ical translation of these methods to the real-world. The
proposed method solves these limitations, summarized
as: converting the only publicly available dataset for
curvature estimation to generate ground-truth vertebrae
masks, redefining ground-truth Cobb angles taking into
account the upper and lower endplates as advised by ex-
perts in the field consulted, addition of a generalization
module to expand the model to new datasets and eval-
uation of the model in 4 different and diverse test sets.
This generalization module could also be used to gen-
erate more training data far from the current AASCE
dataset, improving the quality and size of future training
data that could be used to train better segmentation mod-
els. In this work, no advanced DL model was explored,
only U-Net, Linknet, FPN and PSPNet. While more
advanced DL methods require bigger dataset, AASCE
dataset contain just few hundred of images and these
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Figure 21: Optimal network (FPN model with EfficientNetB7 backbone) for vertebra segmentation
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simple models have been proven to output highly accu-
rate results.

The proposed model is presented in a modular algo-
rithm, allowing for future development and improve-
ment of individual blocks. Moreover, it restricts the DL
part to segmentation uniquely, keeping the clinical ex-
plainaibility in the rest of the blocks, facilitating clinical
implementation. The parts of the proposed algorithm
are: vertebrae segmentation using a FPN model with
an EfficientNetB7 backbone, endplates fitting and Cobb
angle calculation. This work narrows considerably the
gap between research and clinical reality. Up to know,
feedback was received from different hospitals suggest-
ing the potential of the algorithm for its clinical use. It
is expected that a prototype could be used by different
experts in the following weeks.

5.1. Limitations and future work
Even though the proposed method is claimed to be

fully automatic, the generalization module contains a
parameter that should be tuned for each patient: the
multiplier factor of the lungs height to get the lower
edge of the spine ROI. Empirically, this value was set
to 1.7, working well with roughly 90% of the tested im-
ages. However, the ratio between spine height and lung
height is dependent on each patient, so a model capa-
ble of tweaking automatically this parameter should be
developed.

As it is designed, the proposed algorithm will mistak-
enly detect the apical vertebra for Cobb angle measure-
ment in bending x-rays or images with a high pelvic
tilt. Since it is calculated as the most horizontally de-
viated vertebra form the lumbar ones. in these cases,
the apical vertebra will be considered as the top verte-
bra wrongly. Therefore, algorithms accounting for an
analysis of the endplates evolution should be developed
to automatically find correctly the apical vertebra and
therefore, measuring the Cobb angle as in clinical prac-
tice.

With the proposed method, tools to automatically as-
sess the scoliosis progression in patients could be eas-
ily developed, since vertebrae labelling is consistent
through different x-rays, thanks to the lung segmenta-
tion module and a follow-up angle could be measured
using the same vertebra as the previous examination.
Moreover, a method to convert the vertebra labelling
used (starting from 0, from top to bottom) into anatom-
ical vertebrae labelling could be developed. Moreover,
other clinical metrics relevant to the scoliosis disease
can be incorporated into the last part of the algorithm
such as trunk shift, pelvic incidence or pelvic tilt. The
later could be used to automatically correct x-rays ex-
ams where the patient adopts a wrong position and the
pelvis is tilted.

Finally, a clinical validation for Cobb angle measure-
ment is still needed since the ground-truth data for the
Cobb angles were generated. To this end, collaboration

with different scoliosis experts are being carried out and
is expected to have some valuable feedback towards this
clinical validity in the following weeks.
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Abstract

Optoacoustic imaging is a high optical contrast biomedical modality combined with high ultrsound spatial resolution
in deep tissues. The contrast is created by pulsed laser beam directed into a tissue, where an image is reconstructed
by a sensor data of induced ultrasound waves. One of the limitation of this technology is abundance of reflection
artifacts that could cause an image misinterpretation and be an obstacle for correct quantification of functional infor-
mation. Reflection artifacts appear when down-propagating ultrasound waves meet difference in acoustic impedance
and reflect back. Thus, in optoacoustic images we could notice structures that are completely artificial.

In this work we introduce two novel approaches in reflection artifact detection and removal. First method is a
segmentation deep learning approach trained on manually annotated artifacts. Overall, 166 anatomical regions for
six participants were labelled, which correspond to a set of 4176 images. Due to varying borders and reflection
appearance on different pulse wavelengths, the specificity is 0.949; We also obtained promising qualitative results.
We found that network trained with weak supervision may over-perform the annotator.

In the second part, we generated pairs of sinograms with and without skin reflection artifacts. We trained a net-
work that maps a sinogram containing an artifact to one without. We obtained almost perfect removal results on a
synthetic test set; however, the results for a real in-vivo inference were poor. The domain adaptation was a problem
for generalization.

Keywords: Optoacoustic imaging, reflection artifact, synthetic data, deep learning, ultrasound simulation, in-vivo
imaging

1. Introduction

The history of optoacoustic (OA), also referred as
photoacoustic, technology goes all the way back to
Alexander Graham Bell. In 1880, he observed that
when beam of light is projected onto different materi-
als, they are, in return, capable to emit acoustic vibra-
tions (Bell, 1880). He used this effect to create photo-
phone - a telecommunication device that transmit acous-
tic messages through the light. It was also found that the
same concept could be successfully used for a biomed-
ical imaging purposes. Recently, research in this field
emerged significantly.

In optoacoustic imaging infrared light, usually be-
tween 650 and 1200nm, is directed toward biological
tissue, the tissue absorbs optical energy and increases
in temperature, the resulting thermo-elastic expansion
leads to ultrasound (US) emission. Generated ultra-

sound waves are read with sensors in a transducer ar-
ray, similarly to US imaging. In general, these modal-
ities are closely related. Whereas for a contrast US is
dependant on impedance differences (either caused by
discrepancies in mechanical density or sound velocity),
optoacoustic imaging relies on optical properties of a
tissue. In addition, major difference is the magnitude of
received ultrasound waves.

At different laser wavelengths chromophores
(hemoglobin, melanin, lipids, water, etc) have different
absorption spectrum. Therefore, with multiple pulses
that last up to 100nm and mathematical unmixing of
the received ultrasound waves at these wavelengths , it
is possible to obtain functional information about the
photoabsorbers (Ntziachristos and Razansky, 2010).

The application of the optoacoustic technology are
extensive. It allows to quantify oxydized and de-
oxidized hemoglobin in non-invasive manner, hence the
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OA imaging could be used for cancer detection in the
breast or skin imaging using handheld probe (Beard,
2011). OA imaging is also used for pharmacokinetics
research in small animals. To generate a whole-body to-
mographic image, usually a rodent is placed inside the
machine and images are acquired live.

There are several challenges of OA imaging that pre-
vent mass adaption of technology: unknown optical pa-
rameters of biological structures, Cox et al. (2009), as
well as occurrence of reflection artifacts. They are an
artificial structures that do not correspond to any real
tissues. The artifacts usually produced by bounced back
ultrasound waves generated by photoabsorbers. It could
lead to mistakes in quantification of functional measure-
ments and misrepresentation of structural anatomy.

More precisely, underlying principle is showed in
Fig. 2. First, an excitation pulse is emitted from the
transducer (a). Once the laser beam reached an ab-
sorber, the absorber undergoes photoacoustic effect (b)
and generated ultrasound wave is propagated to all di-
rection (c). US waves that were propagating up are
read by the scanner (d). They represent the real ab-
sorber in the reconstructed image. However, waves that
were spreading deeper into the tissue meet difference
in densities, which leads to impedance mismatch. This
mismatch acts as a mirror and the reflected ultrasound
waves move up and read by the scanner(e). Thus, the
absorber appear second time on the reconstructed op-
toacoustic image.

Acoustic impedance (Z) is a physical property that
defined by resistance a tissue encountered by ultrasound
wave propagation. The formula is following:

Z = ρ ∗ c, (1)

where Z stands for impedance, ρ is mechanical density
and c is speed of sound. Therefore, if mechanical den-
sity rises, so does impedance.

Figure 2: Physical principle of reflection artifact. Pul - pulse. Tra -
transducer. Las - laser beam. Med - medium. Z1 and Z2 - acoustic
impedance. Pho - photoacoustic effect. Wav - ultrasound wave. ToF -
time of flight, RA - reflection artifact. Image credits: iThera Medical
GmbH

The Fresnel equations describe the reflection and
transmission light between two optical media (Fig. 3).


R =

(
Z2cos(θi) − Z1cos(θt)
Z2cos(θi) + Z1cos(θt)

)2

T = 1 − R,
(2)

where M1 and M2 represent two media, T and R are
transmission and reflection coefficients, respectively. Z1
and Z2 are impedance. θi and θt are incident and trans-
mission angles.

The artifact appear almost on every OA image with a
different magnitude. Most frequent sources of reflection
artifacts are skin and superficial vasculature. The exam-
ple of the skin reflection could be seen in Fig. 1. In this
work, we attempted two different methods to identify
and tackle the artifacts. The first method is detection
based on the segmentation of reflections, which were
manually annotated by the optoacoustic specialist. In
the second part, we tried to remove reflections in sig-
nal domain based completely on synthetically generated
data.

Figure 1: Reflection artifact example. Ultrasound image (a), OA image (b-c). Yellow arrows point to the skin reflection artifact. Red dotted line
shows the photoabsorber that is the source of reflected ultrasound wave. Blue dashed line depicts the impedance mismatch that act as a reflector.
Beige dashed line indicates the reflection artifact. For display purposes only, all of optoacoustic images are processed with CLAHE and ultrasound
images were clipped between -20 and 20.
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Figure 3: Refraction and specular reflection

2. State of the art

There were proposed many methods to tackle reflec-
tion artifacts. Jaeger et al. (2009) proposed a technique,
where in a series of OA images, by manually apply-
ing pressure (palpation), it is possible to decorrelate re-
flections in deforming tissues. However, this approach
works only in soft tissues and extensive training is still
required. Petrosyan et al. (2018) suggests to use US fo-
cused beam to localize tissue vibration. Therefore, it is
possible to differentiate the artifact by comparing im-
ages before and after deformation.

Photoacoustic-guided focused ultrasound (PAFU-
Sion) is a method that uses focused US pulse acquisi-
tions to replicate reflection artefacts in OA signal (Singh
and Steenbergen, 2015). It is only feasible to identify
reflections in focal zone of US beam and there is no real
time application of the method.

Nguyen et al. (2018) suggested to identify reflection
artifacts on multi-wavelengths OA images, taking into
account the spectral response of an absorber and it’s
corresponding reflection. Later, the proposed the same
approach, but utilizing only two wavelengths excitation
Nguyen and Steenbergen (2020). These methods are
not automatic and require prior knowledge of reflection
source.

Deep learning based approach is also one of the meth-
ods that was used to combat the reflection artifacts.
There are a limited number of papers, which focus on
this topic. In general, below mentioned works are not
generalizable and constrained to specific areas of in-
terest, such as artifacts generated by point-like targets
(needle tip) or focusing on OA images of human fin-
gers.

Allman et al. (2018) used convolution neural net-
works to locate point-targets that produce reflection ar-
tifacts. In an in-vivo environment such point-like targets

could be cross-sectional tips of the needle, catheters,
or brachytherapy seeds. Training data was completely
generated synthetically and the reflection itself was
mimicked by shifting the real source wavefront deeper
in signal domain. They implemented Region-Based
Convolution Neural Network (R-CNN), an object detec-
tion deep learning algorithm, which is able to locate the
region of interest. Thus, they were able to classify and
detect a source and a reflection in the sinogram. There
are some limitations to this approach. First of all, the
work is restricted only to point-like hyperechoic struc-
tures and it could not be extended for frequently appear-
ing skin reflections.

In their work, Shan et al. (2019), used convolution
neural networks primarily to accelerate OA image re-
construction, as well as removing reflection artifacts.
The main idea of the work was to map the first itera-
tion of a reconstruction algorithm to the last one using
deep learning, hence accelerating the process, skipping
the mid-iterations. They assumed that reference algo-
rithms remove reflection artifacts using numerical meth-
ods. But the reflections they were referring are cloud-
like noise and it does not extend to the superficial struc-
tures like reflections of skin.

Agrawal et al. (2021) proposed a reflection removal
approach that focuses on OA images of human fingers.
They simulated a dataset of realistic digital phantoms
of human fingers and applied a convolution neural net-
work, U-net that mapped B-mode image with artifact to
the reflectionless twin image. In order to obtain a train-
ing dataset they randomly generated anatomically plau-
sible images of human fingers on a simulation software
that they proposed earlier. After developing the U-net
algorithm they qualitatively evaluated it using physical
phantoms and in-vivo samples. The main limitation of
this method is that it does not expand beyond a human
finger.

3. Material and methods

3.1. Reflection artifact detection using annotated data

In this part of the project, we annotated reconstructed
OA images for reflection artifacts. We developed a seg-
mentation deep learning model using the annotated data.

3.1.1. Data for the annotation
For this part, data was taken from the work of Dehner

et al. (2022). The dataset consists of acquired in-vivo
images and synthetically generated manifold images
and respective sinograms. All of the images were recon-
structed using physical characteristics of MSOT Acuity
Echo scanner, iThera Medical GmbH.

Overall, for in-vivo image set multiple anatomical re-
gions were obtained, such as scans from biceps, carotid,
etc. Those regions were also scanned in different probe
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Figure 4: Developed user interface of annotation software, where reflections are enclosed in polygons on the OA image in the right window. On
the left window a corresponding US image is shown for the reference

orientations. For each sample, 29 laser wavelengths
ranging between 700nm and 980nm were examined.
Acquired sinograms were band-passed and cropped to
correct for device specific noise. They were recon-
structed with iterative-model-based to 416 by 416px,
which correspond to 4.16 by 4.16cm. In total, about
4800 in-vivo images were used.

3.1.2. Annotation
For the network training data, custom software was

developed from scratch to minimize specialist’s work
on annotations. The software was written using PyQT5
library, a Python based Qt GUI framework, and PyQt-
Graph plotting software that complements functionality
of PyQT5.

The user interface is shown on the Fig. 4. Since re-
flections are created from the impedance mismatch, it
was necessary to display US for reflection validation.
Therefore, the screen was divided into two windows -
ultrasound and optoacoustic image. For display pur-
poses, image could be processed with contrast-limited
adaptive histogram equalization (CLAHE) or the value
of contrast could be clipped using a vertical slider on the
most right of the interface. In order to enclose reflec-
tions, one should place a consecutive green handles us-
ing left click button to create a region of interest (ROI).
It is possible to delete last handle or the whole ROI. The
position of the handles is then saved in the CSV file that
plays the role of back-end database. Data of the file is
displayed on the left-most side. The table contains in-
formation about the participant’s anatomy, wavelength,
position of the handles, as well as paths of the images.
While annotating, a specialist must point out whether

to include image to the training dataset or not, due to
image corruption. The main reason of the corruption
is the hair, they populate an image with numerous re-
flection artifacts. Therefore, the hair checkbox was also
included. The annotator could leave a comment in the
white box below that will be registered in the CSV file
as well.

The annotation process was done by a single special-
ist in optoacoustic imaging with an experience of more
than five years. The annotation was focused on the skin
generated artifacts; however, several other structures,
like probe membrane and hair reflections, were bounded
as well. ROIs were annotated only on each image with
wavelength of 700 nm.

For each anatomical region, there are 29 self-
registered images of wavelengths 700 to 980 nm. Due
to optical absorption, tissues have different appearance
on an reconstructed image that depends on correspond-
ing pulse wavelength. Reflection artifacts may also
have different manifestations depending on the absorp-
tion spectrum of the source. For skin reflections, the
source is usually a melanin, which is contained in epi-
dermis. The comparison of reflection artifacts on differ-
ent wavelengths is depicted on the Fig. 6.

Thus, 144 unique annotations were done. Out of
these 144 anatomical regions 16 did not had any labeled
reflections, hence in this data set almost 90% of images
contain reflections to some extent. For each annotation
there was 29 images of different wavelengths with over-
all of 4176 images. Data per participant is shown in
Table 1. The process took 3 hours.

After a qualitative analysis of the annotation, we re-
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Figure 5: Conversion from polygon annotation to mask

Figure 6: Comparison of OA images of same anatomical region with
different wavelength spectrum: 700 and 980nm. In low wavelengths
reflection are crisp, while on high wavelength reflections are blurred
and wide. Red polygons indicate bounded reflection artifacts

alized that significant number of reflections were not la-
beled. Since most of the images include reflection ar-
tifact to different magnitude and scale, it was possible
that the optoacoustic specialist missed them. Hence, we
believe that obtained dataset was weakly labeled. The
examples of mislabeled data are seen in Fig. 7.

The end goal of the project is to segment the out-
line of the reflections, the polygons were filled and con-
verted to binary masks. Samples with no labeled reflec-
tions were converted to uniform image with intensity
value of 0. The example is shown in Fig. 5.

3.1.3. Deep learning
Our main objective was to detect reflections on the

image. For this purpose we decided to pursue with seg-
mentation task.

After several iterations, Unet model with Resnet34
as an encoder was chosen. The implementation of this
model was used from the ”segmentation models” li-
brary for PyTorch (Yakubovskiy, 2020). For the model
bias term was enabled; kernel size was set to 5 × 5 with
2 × 2 padding. Encoder weights were randomly initi-
ated. Decoder depth was set to 3 layers and number of
filters on the first one was 128. The activation function
for the output was set to sigmoid.

In OA images skin is usually hyper-intense. To ac-
count for this high intensity images were clipped be-
tween 0 and 255 and later normalized between 0 and 1.

Participant
Number of
anatomical

region

Total number of
images with
a reference

01 17 493
02 20 580
03 29 841
04 27 783
05 32 928
06 19 551

Table 1: Annotated data description

Figure 7: Mislabel of artifacts. Yellow arrows indicate missed reflec-
tions during annotation

Moreover, due to limited sample size several aug-
mentation techniques were used with the help of Albu-
mentation library developed by Buslaev et al. (2020).
It was necessary to preserve the structure of the re-
flections, hence no warpping techniques were used.
Hence, HorizontalFlip and ShiftScaleRotate (shift limit
of ±0.05 and rotation limit of ±20) augmentations with
the same probability of 0.5 were picked.

For the optimizer, Adam was chosen with Learning
rate of 0.001 and LR scheduler with step size of 1, as
well as gamma of 0.99. For the loss we chose Mean
Squared Error or MSE.

For the reported results cross validation was used,
where six participant permutations of 4-1-1 train-val-
test split was carried out. The test scores were shown
from the epoch with the highest Dice score on valida-
tion set.
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3.1.4. Evaluation metrics
We evaluated segmentation results using different

metrics:
Specificity =

TN
TN + FP

, (3)

Recall (Sensitivity) =
TP

TP + FN
, (4)

Precision =
TP

TP + FP
, (5)

Accuracy =
TP + TN

TP + TN + FP + FN
, (6)

Dice score =
2TP

2TP + FP + FN
, (7)

where TN is true negative, TP is true positive, FN is
false negative, and FP is false positive. Specificity is
a percentage of negative values, which were identified
correctly. Recall or sensitivity is a percentage of pos-
itive values, which were identified correctly. Precision
is a measure of the quality of a positive prediction. Ac-
curacy is a percentage of correctly predicted labels and
dice score is a measure of similarity.

3.2. Synthetic data-based artifact removal
In this project, which is separate from the reflec-

tion annotation project mentioned in section 3.1, we de-
signed a pipeline, where we would remove skin reflec-
tion using a deep learning algorithm trained completely
on simulated data in signal domain.

We decided to remove artifacts in sinogram domain,
because there are multiple number of image reconstruc-
tion algorithms that are used both in production and re-
search. Therefore, it will be convenient to use the arti-
fact removal model for several parties.

There are 3 main steps in this project: 1) Using sim-
ulation software we created a dataset which contains
pairs of images: sinograms (signal channels) with the
artifact and ones without but with exactly the same
background content. 2) We developed an algorithm that
learns to map sinogram containing the artifact to one
that does not have reflections. Thus, the algorithm is
able to learn and produce the artifact-free image if it
would be given a new sinogram with a reflection. 3)
The most important step of the development is the eval-
uation of the algorithm. The in-vivo data is taken from
section 3.1.

3.3. Simulation setup
The main objective is to obtain a sinogram with phys-

ically realistic reflection artifact in it. k-Wave software
was chosen for this task. K-Wave is an open source,
third party, Matlab toolbox developed to simulate the
acoustic waves (Treeby and Cox, 2010). It was chosen
because it allows to generate reflection artifacts by ma-
nipulation of mechanical density. Since reflections, e.g.

in in-vivo OA images, are produced by sudden change
of impedance between tissues, this is a crucial function-
ality that is absent in several other simulation software.

Thus, in K-wave it is possible to setup acoustic pres-
sure field that is developed after the photoacoustic ef-
fect. In order to be more generalizable we decided to
use general images that depict real-world objects and
patterns from The PASCAL Visual Object Classes Chal-
lenge 2012 (VOC2012) (Everingham et al., 2012). This
way, we try to capture diverse feature representations
for background. However, in order to fit the domain
of in-vivo images, it is necessary to use the machine
model-based operator (Rosenthal et al., 2014). We took
these processed images from DeepMB dataset (Dehner
et al., 2022).

To this image we added a modelled structure that
anatomically resembles a skin. We generated a random
line using 4 component FFT and placed it over the im-
age for initial pressure. The inserted skin exceeds the
maximum pressure value of the background image by
1.5-4 folds. The width of the line varies between 1 to
4 pixels. A Gaussian filter with random standard devia-
tion was also applied to the synthetic skin line.

To generate a reflection artifact, impedance mismatch
should be designed. For this, we set binary mechanical
density over the medium grid with random phase. The
density mismatch line was modelled similarly to skin
line and placed deeper, with respect to the transducer,
than skin line. An example could be seen in Fig. 11. For
the reference image, we set homogeneous mechanical
density.

Figure 8: Example of image from DeepMB dataset

The simulation medium was set to 2D grid of 864px
by 864px with resolution of 100−6m. The Field Of View
(FOV), which represents the the later reconstructed im-
age, was centred inside this k-Wave grid with the pixel
grid of 416 by 416. That can be also translated to
4.16cm by 4.16 cm. The simulation grid could be seen
in Fig. 9a and Fig. 9d.

Thus, the physical pressure value of minimum inten-
sity in the image for the pressure field was set to 0 and
the maximum intensity pixels was set to 107 a.u. The
speed of sound was arbitrary picked between 1480 and
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Figure 9: Synthetic data generation pipeline. (a) Simulation setup with homogeneous (uniform) mechanical density. Pink arc portrays illustrates
the transducer (b) Resultant sinogram. (c) Reconstructed OA image that does not have any artifacts. (d - f) A pipeline with modelled mechanical
density that results a sinogram that does have a skin reflection. Yellow arrow points to a reflection artifact

Figure 11: Example of modelled pressure field and Mechanical den-
sity for k-Wave simulation. Yellow arrow points the inserted high
intensity skin imitation, similarly to in-vivo images

1580 m s−1 for whole simulation medium. For the het-
erogeneous mechanical density, lower value was ran-
domly chosen between 800 and 1500 kg m−3 and higher
value was randomly set between 1500 and 2200 kg m−3.
For the homogeneous case, a uniform density was set to
the value between 800 and 2200 2200 kg m−3.

Another step in simulation development is correct
transducer setup. For the algorithm to successfully per-
form on a signal obtained from an OA machine, we had
to transfer the machine parameters of iThera Acuity to
k-Wave software. Thus, 256 transducer elements of size
and width with accurate position were digitally copied

to the simulation with the frequency sampling rate of
40 × 106 Hz. Moreover, electrical impulse response
(Chowdhury et al., 2020) that is specific to the machine
was applied.

Reconstruction of the sinograms in the figures is done
using DeepMB algorithm (Dehner et al., 2022).

Hence, 4000 sinogram pairs were generated using the
simulation. To generate each sinogram it took 2 seconds
using NVIDIA GeForce RTX 3090.

3.4. Deep learning model development

The task in this section is to map a simulated sino-
gram that contain reflection artifact to the simulated
sinogram that does not contain reflection (Fig. 10).
Hence, remove the artifact.

For this, we used a Unet with Resnet34 encoder. Seg-
mentaion library ”segmentation models” for PyTorch
(Yakubovskiy, 2020) was utilized. Bias term was in-
cluded to the network; kernel size was set to 5 × 5 with
2 × 2 padding. Imagenet-based weights were applied
for the incoder. Decoder depth was set to 3 layers and
number of filters on the first one was 128. No activation
function was used. Synthetic signal images were ranged
between 0 and 1 by division of 50.

For the optimizer, Adam was chosen with Learning
rate of 0.01 and LR scheduler with step size of 1, as
well as gamma of 0.99. For the loss we chose Mean
Squared Error.
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Figure 10: Mapping of input sinogram with an artifact to the artifact-free target

The data was divided into train-validation-test by ra-
tio of 0.6-0.2-0.2. The best model for the test set was
chosen by best performing epoch on validation test loss.

4. Results

4.1. Reflection artifact detection using annotated data

After training a 6 different models and testing them
on separate test participant, here are the qualitative and
quantitative results. All the prediction results were
thresholded to 0.5, and results were converted to binary
values.

4.1.1. Qualitative evaluation
Fig. 12 is the example sample of the qualitative per-

formance of the model. The green overlay represent the
reference mask of the annotator and the yellow overlay
stands for the prediction.

Figure 12: Qualitative performance of the network. The top and bot-
tom left images represent the OA and US images. Right images show
the reference and prediction binary masks overlaid on top of corre-
sponding OA image. The US image was given to validate a presence
of reflection artifacts.

Fig. 13 demonstrates the difference in predictions for
low and high wavelength of OA images. As it was dis-
cussed in section 3.1.2, the appearance of skin reflection
artifacts diminishes with increase of wavelength.

Figures 14 - 15 demonstrate network over-performing
labels. The specialist confirmed that the model seg-
ments artifacts that were misannotated.

Figure 14: Network indicating reflections that were missanotated by
specialist on thyroid

The network rarely made a false positive predictions.
The example of such case could be noticed in Fig. 16.
The misslabeling occurred only on two wavelengths of
the anatomical region out of 29. Fig. 17 shows the ex-
ample of the network under-performing the annotator.

4.1.2. Quantitative evaluation
In this section quantitative results are presented. In

Table 2, the results for all the test participants from 6
trained models. The dice score is approximately 3 times
than the random generated mask. The recall and ac-
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Figure 13: The comparison of an OA image predictions for 700nm and 940m. Figures a-b display low and high wavelength OA images with the
same overlaid reference mask, whereas c-d shows correspond to network prediction

curacy values are significantly larger than than the ran-
dom, while precision is on par.

Figures 22 - 21 are showing scores per each wave-
length across all the test participants. The dice and re-

Figure 15: Example of network over-performing the annotator

call scores gradually go down while having slight in-
crease after 900nm. The accuracy and and recall are
approximately staying stable.

Network Random

Specificity mean 0.949 0.907
std 0.046 0.068

Recall mean 0.526 0.093
std 0.308 0.068

Precision mean 0.446 0.441
std 0.276 0.162

Accuracy mean 0.918 0.500
std 0.044 0.001

Dice score mean 0.434 0.147
std 0.247 0.093

Table 2: Overall results for segmentation. Results for randomly gen-
erated masks were also shown for the comparison

Table 3 demonstrates the scores for each test partici-
pant. We can notice that that mean dice score is actually
does not show the score more than 0.5 even among each
participant. The best performing participant is actually
p01, which was trained on four others and validated on
the p06. The worst performing was p05 in terms of dice
and recall scores. Meantime, it should be noted that
amount of samples is the biggest among the six partici-
pants, hence it has less data to be trained on.
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Participant Specificity Recall Precision Accuracy Dice score
mean std mean std mean std mean std mean std

p01 0.952 0.034 0.551 0.223 0.533 0.265 0.919 0.030 0.500 0.207
p02 0.936 0.039 0.510 0.311 0.461 0.294 0.898 0.044 0.459 0.283
p03 0.908 0.059 0.724 0.287 0.366 0.206 0.901 0.053 0.459 0.218
p04 0.961 0.031 0.589 0.312 0.375 0.274 0.947 0.032 0.418 0.259
p05 0.973 0.029 0.330 0.254 0.490 0.323 0.917 0.041 0.364 0.258
p06 0.963 0.036 0.458 0.253 0.505 0.307 0.922 0.037 0.449 0.242

Table 3: Results per participant

Figure 16: Case of false positive segmentation. Pink arrow represents
a misslabelling by network. The impedance mismatch was falsely
predicted only on two OA images with wavelengths 910 and 920

4.2. Synthetic data-based artifact removal

The network mapping on a synthetic sinogram data
was performed with close-to-reference results. The net-

work performance on the real in-vivo images was un-
acceptably poor. In Fig. 23, it could be noted that after
inferring a test sample sinogram, the reconstruction of
the predicted image is closely resembles the target. And
a reflection line was eradicated completely.

However, when the same model is inferred on the real
in-vivo image, the result is mostly focused on skin itself
and does not significantly affect any other structure. The
same trend was noted for other samples as well.

5. Discussion

In this paper, two methods for detection and removal
of the reflection artifacts were suggested. The detec-
tion method based on reflection segmentation achieved
good qualitative results, while the second method based
on simulated sinograms did not work on the in-vivo im-
ages.

5.1. Reflection artifact detection using annotated data

We decided to proceed with segmentation task and
not with object detection, since due to the high num-
ber and incredibly complex shapes of the artifacts, the
predicted bounding box could have bound half of the

Figure 23: Network’s performance on synthetic sinogram. (a-c) Target, input, prediction sinograms, (d-f) respective image reconstructions . Yellow
arrows point to reflection artifact
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Figure 17: False negative case. Pink arrows point to reflection areas
that were not predicted correctly

image. For our purpose, outline of the reflections plays
a huge role, since it is important to identify whether the
artifact intersects the Region-of-interest (artery, tumor,
etc.) or not. That is the reason polygon labels were con-
verted to masks. Hence, there are some limitation to this
method.

The network that was trained on manually labeled ar-
tifacts gave satisfying results. In Fig. 12, it could be
noticed that prediction was able to capture the reflection
structure and enclose them into the segmented area. The
boundaries, however, are varying in width and length

Figure 18: Specificity per wavelength. The y-axis of the plot is scaled
between 0.8 and 1

due to the fact that the exact outline of skin reflections
is not given.

The other limitation is the difference in appearance
between reflections on OA images obtained from low-
wavelength laser pulse and high. Thus, since the reflec-
tion artifact is more obvious on the low wavelength, due
to the absorption spectrum of melanin in skin, it was
decided to annotate only on low wavelength, despite the
fact that for high wavelengths reflection are less pro-
nounced or absent at all. The same reference for all
29 wavelength images for the same anatomical region
may complicate the training procedure, as well as re-
sulted inference scores. In Fig. 13, it is clearly seen that
performance for both high and low wavelength varies
significantly, even though labels are the same.

The other interesting feature of the network is its abil-
ity to over-perform the annotator. In Fig. 14, it cold
be noticed that the number of prediction areas are more

Figure 24: Network’s performance on in-vivo sinogram
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Figure 19: Recall per wavelength

Figure 20: Precision per wavelength

than in the reference made by the OA specialist. How-
ever, those regions are not false positive cases. If you
consider the ultrasound image in the bottom left, it could
confirmed that those predictions are indeed the reflec-
tion artifact, meaning that the network was able to de-
tect reflections that were missed by the annotator. The
same example is showed in Fig. 15, where no reference
labels were given.

After result analysis, we realized that our task closely
relates to the field of machine learning called weakly
supervised learning, which recently gained some more
research traction. Supervised deep learning proved that
it could give high accuracy results (Krizhevsky et al.,
2012), considering large amount of data that was labeled
correctly. However, it is not always possible to gather
a high quality data and especially ground truth annota-
tions. There are could be different factors: competence
of an annotator, limitation in annotation tool or inabil-
ity to make a correct label due to the data complexity
as it was for our annotations. In his paper, Zhou (2017)
gave three types of weak supervision. One of the types
is inexact supervision, where only coarse-gained labels
are provided. As an example, we could consider an ob-

Figure 21: Accuracy per wavelength. The y-axis of the plot is scaled
between 0.8 and 1

Figure 22: Dice score per wavelength

ject detection task, where only image-level labels were
given and not the bounding boxes. Another type is the
inaccurate supervision, where given annotation do not
always resemble the ground truth. And the last type is
the incomplete supervision. Incomplete supervision is
defined by the data set that is to some degree remained
unlabelled. This is exactly the case in this work, where
notable amount of reflection artifacts were not anno-
tated due to its feature intricacy in shape and appear-
ance on different wavelengths. Miller and Uyar (1996)
argues that in such cases unlabeled data could actually
improve results of data-orientated algorithms.

Moreover, after going through the test samples, we
noticed that the network rarely provides a false posi-
tive cases. The example of the false positive case is dis-
played in Fig. 16. The same time, false negative cases
appear more often.

Thus, combination of border approximations during
annotation, as well as wavelengths appearance differ-
ence lead to low scores during the test. Table 2 demon-
strates the overall dice score, recall, precision and ac-
curacy for all 6 test participant combined. The random
generated mask scores were given for comparison. It
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was found that there is a relationship between number of
training data fed to the network and resulted test scores.
Fig. 25 shows this relation.

It is also noted that overall dice score for OA images
is increasing after 900 nm. This is phenomena occurs
due to rising absorption of lipids and water at this level
in the epidermis. Hence, reflection artifacts look more
pronounced.

Figure 25: Number of training samples to test dice score for each
participant

5.2. Synthetic data-based artifact removal
The main obstacle in deep learning is often acces-

sibility to a data. However, recent researches proved
that synthetic data based neural network training, espe-
cially in medical imaging, could elevate the results on
the real samples. (Chen et al., 2021), (Yi et al., 2019),
(Yang et al., 2022). Synthetic data is more accessible,
whereas medical data is highly sensitive and poorly la-
beled. Therefore, generated data is often pre-annotated
and, comparatively, cheap. This was the reason, we de-
cide to approach our problem using the simulation ap-
proach, because there are limited amount of open source
datasets in optoacoustic imaging.

It is helpful to mix the synthetic and real data dur-
ing the training process. This method could also lead
to significant accuracy increase (de Melo et al., 2020).
However, for some types of tasks, there are could be
no labels. Thus, Shi et al. (2022) fused synthetically
designed needles with real photoacoustic in-vivo im-
ages of tissues, obtaining semi-synthetic dataset. After,
they mapped combined images to the simulated image
of needle; hence, segmenting it. In our case we also gen-
erating labels, but without fusing the real and synthetic
data.

The detection of the artifact on manually annotated
data showed promising results, while the synthetic
based artifact approach did not work as good. Over-
all, the trained network showed almost perfect results on
synthetic data. The modelled skin reflection was eradi-
cated closely to flawless. However, when it came to the
inference of in-vivo images from the real human partic-
ipants, the network failed completely. In Fig. 24, as it

was mentioned, on the prediction of the invivo sample,
there were no significant structural changes, except for
some intensity changes.

The explanation to these results could be failure in
domain adaptation. Domain shift is significant limita-
tion of the current state of neural networks (Sankara-
narayanan et al., 2018). It defined by inability of the
models to perform on the data sets that are different
from training set. Therefore, if unseen data have even
slight difference in distribution, deep learning algorithm
fails to generalize. There are could be several reasons
for it; according to Kouw and Loog (2021), they are
bias in sampling, changes in color and intensities, view
angle, different distribution of noise. For our case, we
speculate that there could be a anatomical distinction in
skin artifact representation.

6. Conclusions

Optoacoustic imaging is a promising tool for func-
tional imaging. Due to different optical absorption of
substances, it is possible to differentiate them and quan-
tify. However, if the region of interest, such as artery
or tumor, is overlaid by reflection artifact, it could lead
to misinterpretation of numerical results and could be
detrimental for right diagnosis. Therefore, it is neces-
sary to detect and remove them.

To this day, there are only three works that are fo-
cused on identifying and removing reflection artifacts
using deep learning algorithms. In this paper, we pro-
posed two new approaches for this task. One is a deep
learning framework trained on manually annotated arti-
facts and another removal framework completely based
on simulated data. Even though, the latter did not per-
form at all on real in-vivo samples, the detection net-
work gives promising qualitative results.

From the segmentation method, it was found out that
the network, which was weakly labelled, might over-
perform the annotator in detecting reflection artifacts;
however, in future studies, there should be multiple an-
notators to prove this claim. Moreover, there is a corre-
lation between amount of data that was used for train-
ing and test results. One of the limitations could be
considered the reported metric, it does not capture the
complexity of the data. It was discussed that due to re-
flection appearance through different wavelengths and
varying segmentation boundaries, mentioned scores are
not representative enough.

There are obvious uses for this technology. Firstly, it
is reflection artifact detection tool that is installed into
machine and gives warning when region of interest is
interesting with detected reflection. Secondly, reflec-
tion identification training tool could be developed for
optoacoustic application specialists. Where they could
apply the algorithm to different data to learn features of
the artifacts on given images.
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From the synthetic removal method, we found that
the network is able to remove reflection on the simu-
lated dataset close to flawless. In the future work, novel
domain shift adaptation techniques should be used.
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Abstract

Deep learning (DL) is having an increased impact in different areas of sciences and daily life. Creating a state-of-the-
art Deep Learning model requires collaboration from multiple actors that contribute with high-quality data. However,
some technical, ownership, and data-privacy-related obstacles slow down the free collaboration of datasets.
Federated Learning (FL) was devised to allow decentralized collaboration in the Deep Learning community without
the need for any data samples to leave its institution. In this work, we explore how multimodality impacts Federated
Learning semantic segmentation by creating a new algorithm that allows training an FL system with any number of
modalities, independently from the DL architecture chosen.
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Abstract

Recent advancements in synchrotron X-ray tomography allow for the imaging of structures of the human anatomy
that eluded the medical world in the past. By harnessing the brilliance and coherency of the Swiss Light Source,
scientists have been able to retrieve information about the organization of collagen fibrils and mineral nanocrystals
that make up the innermost organizational units in the hierarchical structure of bone. Small-angle scattering tensor
tomography and ptychographic X-ray computed tomography were used to acquire both large field of view and high
resolution data from the same bone sample volume. In this work, several computational methods are proposed for
solving the problem of registration of the two tomographic volumes that contain real and reciprocal space information,
respectively. Such study provides comprehensive understanding of the mineralized collagen fibrils orientation in the
multi-scale organisation of bone.

Keywords: Nanoimaging, X-Ray ptychography, Small-angle scattering tensor tomography, Orientation, Correlation,
Registration, Deep learning, Fourier analysis

1. Introduction

Bone is a hard biological tissue that constitutes part of
the skeleton of the vast majority of vertebrates. The in-
ner structure of the various types of bone is the result of
evolution as well as adaptive processes that take place
during an individual’s lifetime. The study of bone is
crucial from a medical point of view, understanding the
structural characteristics of bone as well as the different
phases present in this very complex biological material
at different scales can shed new light in the development
of various tools for diagnostic and treatment of numer-
ous pathologies (Verezhak (2016)).

Furthermore, information derived from such scien-
tific inquiries may also serve disciplines other than med-
ical sciences, for example archaeology which concerns

∗Please address correspondence to Mariana Verezhak or
Alexandru-Petru Vasile

Email addresses: alexandru.vasile@psi.ch
(Alexandru-Petru Vasile), mariana.verezhak@psi.ch (Mariana
Verezhak)

itself with bone analysis in several of its sub-disciplines.
Material science and engineering often draw inspiration
from the organization of biological structures and even
architecture benefits from new findings in the study of
bone as could be seen in the works of one of the greatest
architects in European history, Antoni Gaudı́, who drew
heavy inspiration from the skeletal structure of various
organisms in order to achieve some of the most impres-
sive feats of architecture ever designed.

1.1. Hierarchical structure of bone
At the macro-level, bone is seen as an organ (Figure

1 - I), an integral part of the human body with the mor-
phology of long, short, sesamoid, irregular or flat. The
size spectrum of human bones starts at the millimeter
level with small bones such as the the ones in the middle
ear and goes up in the hundreds of centimeters with the
longest bone being the femur. At birth, the bone count
of a human fetus sits at 270 and, at full development, the
human adult boasts 206 bones (Verezhak, 2016). In or-
der to study bones at this scale, a number of modalities
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Figure 1: Bone hierarchy (example of human femur): I - photo of longitudinally cut femur, II - SEM of trabecular and cortical tissue, III - polarized
light optical microscopy of a single trabeculae and osteon, IV - schematic representation of lamella, V - types of suprafibrular organizations (Weiner
and Wagner, 1998), VI - collagen fibril with 67 nm periodicity (pg - proteoglycan molecules), VII - collagen molecules and mineral nanocrystals
with gap (40 nm) and overlap zones (27 nm), CL - cross-links, VIII - molecular and atomic structure of the principal components (Verezhak, 2016).

are routinely used such as absorption X-ray imaging or
light microscopy (LM) (Georgiadis et al., 2016).

At the next hierarchical level of bone (Figure 1 -
II), the cortical or trabecular nature of bone can be
seen. Cortical bone provides strength to the structures
in which it is incorporated as it is a very dense type of
osseous tissue. This is why it can be found in the shell
of long bones and in the extremities of flat ones, pro-
viding these with stiffness and robustness. This being
said, in this work the data used comes from a trabecu-
lar bone sample. By contrast, trabecular bone is more
porous, hence lighter than its cortical counterpart, pro-
viding flexibility and reinforcement to the structures it
is a part of, such as the inner part of flat bones. Tra-
becular bone also often accommodates marrow, where
the process of hematopoiesis (the production of blood
cells) takes place (Verezhak, 2016). For the study of
mesostructure, the following imaging modalities are be-
ing used: LM, X-ray imaging and scanning electron mi-
croscopy (SEM) (Georgiadis et al., 2016).

Further down the structural scale, at the microstruc-
ture level (Figure 1 - III), the structural units of cortical
and trabecular bone can be observed. In the case of cor-
tical structures, these are called osteons and for trabec-
ular bone, trabeculae. Osteons have a cylindrical shape
and accommodate blood vessels and nerve fibers inside
a canal that runs along their central region. Canals from
different osteons are connected to each other and to mar-
row and are surrounded by lamellae. The lacunae are
cavities in which mature osteocytes (bone cells) reside
and they are connected by canaliculi, channels filled
with fluid that provide a network for communication
and nutrition. Trabeculae, on the other hand, arrange
themselves primarily along the direction of the most sig-
nificant mechanical stress in bone. They are making up
a porous network interconnected by canaliculi similar
to their cortical counterparts. Inside the pores of tra-

becular tissue (which generally measure from one to a
few mm) resides bone marrow, bone cells and fat tis-
sue. At this level, the main types of bone cells can also
be differentiated: osteocytes (maintain osseous tissue),
osteoblasts (constitutes the bone matrix), osteogenic
cells (stem cells) and osteoclasts (cells that resorb bone)
(Verezhak, 2016). Light microscopy can no longer be
used to study bone at this organizational level, so SEM
and X-ray modalities become suitable. Among the X-
Ray modalities ptychographic X-Ray computed tomog-
raphy (PXCT) can be used from this organizational level
(Dierolf et al., 2010; Holler et al., 2014), this modality
has a high importance for this project and will be ex-
plained to a greater extent in later chapters.

Woven and lamellar bone can be found at the sub-
microstructural level (Figure 1 - IV). Woven bone is
present during the developmental stages of osseous tis-
sue or during the first stages of repairing process after a
fracture. It is made up of unorganized collagen fibers.
Lamella is a unit of osseous tissue that is created by os-
teoblasts after woven bone is resorbed by osteoclasts.
The process of bone remodeling is crucial for the adap-
tive function of bone that is essential to growth and to
changes that occur as it experiences different types of
stress(Verezhak, 2016). The imaging techniques that are
able to image features at the sub-microstructural level
are the same as in the last organizational level.

At the ultrastructural level of the bone tissue hier-
archy (Figure 1 - V) the architectures in which col-
lagen fibrils organize themselves in become apparent.
Four main types of organizational patterns are proposed
in the work of Weiner and Wagner (1998). These
patterns are called: parallel, plywood-like and radial.
Apart from SEM, for studying bone at this level, co-
herent X-Ray diffraction imaging, transmission elec-
tron microscopy (TEM) and small angle X-ray scat-
tering (SAXS) can be used. As at this organizational
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Figure 2: Small-angle scattering tensor tomography: a) SASTT experimental setup includes focused beam, scanning in xy plane, with rotations
around β and tilts around α, and a characteristic bone small-angle X-ray scattering pattern (Liebi et al., 2018); b) mineralized collagen fibrils with
characteristic gap and overlap zones; c) orientation of bone ultrastructure (Liebi et al., 2015).

level one can directly image the orientation of collagen
fibrils, several orientation-specific techniques are com-
monly used: polarized light microscopy (PLM), polar-
ization sensitive second harmonic generation imaging
(pSHG), SAXS/WAXS (small/wide-angle X-ray scat-
tering), SASTT (small-angle scattering tensor tomogra-
phy) (Liebi et al., 2015), electron diffraction, etc (Geor-
giadis et al., 2016).

Mineralized collagen fibrils can be found at the up-
nanostructural level (Figure 1 - VI). Individual fib-
rils are routinely visualized at this level by bright-field
TEM, presenting a specific periodic bright-dark con-
trast that comes from the gap-overlap zones of the min-
eral population. The SAXS and X-ray crystallography
(XRD) are also providing practical information about
the collective average size and orientation of the fibrils
(Georgiadis et al., 2016).

The mineral nanocrystals and collagen molecules can
be differentiated at the level known as the nanostruc-
ture (Figure 1 - VII). The molecules are comprised
of polypeptide chains that form a right-handed triple-
helical structure and have a dimensionality of 300 nm
in length and 1.5 nm in thickness. Nanocrystals appar-
ent at this scale have sizes that vary according to the
arrangement of the collagen molecules around them,
the anatomical location of the tissue they are a part
of, the species, age, diet and even various patholo-
gies (Verezhak, 2016). Imaging structures at this level
is very challenging and a few examples of such work
can be found using automated crystal orientation map-
ping (ACOM) TEM (Verezhak et al., 2018), coher-
ent diffraction imaging (CDI) (Verezhak, 2016),(Jiang
et al., 2008), XRD, SAXS, pair distribution function
(PDF) analysis (Verezhak, 2016).

The last organizational level considered in this frame-
work is the molecular and crystalline level(Figure 1 -
VIII), which contains information on the structure of
the collagen and nanocrystals mentioned in higher orga-
nizational levels from a molecular and crystallographic
point of view. At this level, concepts such as the de-
gree of crystallinity, mineral crystal phases and crystal-
chemistry aspects can be investigated as well as possi-
ble defects within the lattice. This can be achieved with
PDF analysis, XRD (Verezhak, 2016) and HR-TEM

(high resolution transmission electron microscopy) (Kis
et al., 2019). In order to obtain information about orien-
tation at this organizational level, electron diffraction is
usually the modality of choice (Georgiadis et al., 2016).

1.2. Small-angle scattering tensor tomography

A relatively new technique in the world of X-ray
tomography, small-angle scattering tensor tomography
(SASTT) (Liebi et al., 2015) offers the information
about collective 3D orientation and organisation of sam-
ples principal components, i.e. bone fibrils, within large
volumes (few hundred of µm). Each element of SASTT
is no longer a voxel, but a tensor describing the average
orientation of the structure of the sample probed by the
beam of the given size (Guizar-Sicairos et al., 2020).

This technique was originally developed and demon-
strated by Liebi et al. (2015) on a human trabecular bone
sample. The diagram in 2 shows the concept behind
SASTT acquisition: the incident X-ray pencil beam
scans the sample to acquire a single projection from the
set of scanning positions recorded as SAXS signal on
the detector. The projections are collected at different
tomographic angles (around the y axis) as well as at var-
ious tilts (around x axis). As illustrated, in this case the
information that leads to the pattern registered on the
detector comes from the nano-scale organization of the
collagen fibrils that make up the bone. The features that
are probed by using this method range from a few hun-
dred nanometers to a few nanometers.

As SASTT offers insight into the local orientation of
the ultrastructure of the sample, the data has to be re-
constructed in such a way that the orientation is visible.
One such representation is a 3D arrow (glyph). In or-
der to achieve such a representation, Liebi et al. (2018)
propose to reconstruct the data by modeling the 3D re-
ciprocal space collected by the detector with spherical
harmonics. These are a set of 3D basis functions used to
model volumetric shapes. The parameters are the degree
(l), the order (m) and the coefficients (a0, a1, a2, a3) of
the spherical harmonics. The first coefficient a0 is used
to describe the symmetry of the sampled neighbour-
hood, while the other three encode information about
its anisotropy. Following the reconstruction, the ori-
entation is described in spherical coordinates using the
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Figure 3: Ptychographic X-ray computed tomography: a) PXCT experimental setup, X – X-ray beam, P – pinhole, S – sample, D – detector.
The sample is scanned in the plane perpendicular to the beam direction in the set of overlapping positions b) to acquire a single projection. Such
projections are recorded for all tomographic rotation angles (Dierolf et al., 2010). c) iterative phase retrieval algorithm used for ptychographic
reconstructions (Faulkner and Rodenburg, 2004).

azimuthal angle ϕ and the polar angle θ and a set of
above-mentioned spherical harmonics coefficients. In
order to obtain the 3D arrow representation, this infor-
mation was converted to the Cartesian coordinates using
the following transformation:

x = sin θ cos ϕ;
y = sin θ sin ϕ;

z = cos θ.
(1)

In order to obtain the information about the local sym-
metry, the vectorial components were multiplied by the
principal spherical harmonic coefficient, a0. In addi-
tion, to encode the information about the degree of ori-
entation (i.e., how strongly the collagen fibrils are ori-
ented in a certain direction), the vector is multiplied by
the ratio of the anisotropic components to the full set
of components of the spherical harmonic coefficients,

(a1+a2+a3)2

(a0+a1+a2+a3)2 (Liebi et al., 2018).

1.3. Ptychographic X-Ray computed tomography
Ptychography is a lensless imaging method, which by

iterative reconstruction of the coherent interference pat-
terns scattered from the sample in the set of overlapping
positions, provides the reconstructed image. Ptychogra-
phy can be used with X-rays, visible light, electrons and
extreme ultraviolet radiation. Unlike absorption-based
imaging that is predominately used in the clinical world
today, ptychography is working with diffraction (scat-
tering) data.

As shown in Figure 3a, in ptychography, a focus-
ing element or a pinhole is used to select coherent and
pencil-shaped illumination obtaining a diffraction pat-
tern on the detector. The scanning of the specimen at
hand is performed such that the different recorded re-
gions overlap (see Figure 3b) thus leading to redun-
dancy in the acquired data. This is a crucial aspect that
ensures for the iterative reconstruction (summarised in
Figure 3c) of both the sample and the illumination func-
tion (Diaz et al., 2012).

Negative effects introduced by limited numerical
aperture or artifacts produced by lenses are avoided
when using ptychography as it is a lensless method.
This aspect also accounts for the high resolution (be-
low 10 nm) that can be achieved with ptychography as
it is only limited by the maximal angle of scattered ra-
diation that interacts with the detector and the radiation
damage of the sample.

Another advantage of ptychography is its resistance
to noise due to the fact that even though it requires the
same number of counts as a conventional image, these
counts are distributed over a large number of diffrac-
tion patterns because dose fractionation applies in such
a case (Thibault and Guizar-Sicairos, 2012).

In order to reconstruct the data of ptychographic X-
Ray computed tomography (PXCT), two mathemati-
cal objects have to be retrieved: the illumination and
the object. The ptychographic data reconstruction is
performed by using phase-retrieval algorithms. In this
work the combination of

On of the two methods used in this work, the differ-
ence map algorithm, was developed by Thibault et al.
(2009). Since this is not the scope of this work, the al-
gorithm will not be described at length but as a summary
it is comprised, as most inverse-problem algorithms, of
a minimization of a cost function based on a set of con-
straints. In the case of ptychographic reconstruction, the
constraints are imposed by the diffraction patterns (the
information gathered from the detector). In order to ob-
tain the missing phase information of the image, the al-
gorithm starts with a random object (including the am-
plitude and the phase) and random illumination. Phase,
the imaginary part of the complex wavefront that inter-
acts with the sample, is then iteratively refined by series
of back and forward Fourier transforms of the object,
while updating the amplitudes using measured intensity
from the detector. This process reconstructs the illumi-
nation function as well as the object function.

22.4



Feature registration algorithms for the correlative study of bone mineralized fibrils with small-angle scattering tensor
tomography and ptychographic X-ray computed tomography 5

1.4. Goal of the project

The main goal of this project was to develop the fea-
ture registration algorithm that provides a correlation
between the PXCT and the SASTT data, acquired on
the same bone sample volume. Such feature registration
required not only 3D spatial registration, but also find-
ing and angle of rotation of one volume with respect to
another around the tomographic axis. Such work would
demonstrate the complementarity of the two techniques,
PXCT providing high resolution and SASTT providing
large field of view.

As SASTT data is represented as tensorial volume,
describing the reciprocal space of the sample and PXCT
is providing with real space gray scale tomography, a
common set of features had to be decided upon; these
features had to represent the 3D orientation of both
SASTT tensors and fibers visible in ptychographic data.
Hence, SASTT tensors could be correlated with infor-
mation from the gray scale values of the PXCT vox-
els. For this, the SASTT tensors have been transformed
from the spherical coordinate system to Cartesian co-
ordinates and several methods were investigated for the
extraction of orientation information from the collagen
bundles visible in the ptychography data. One of the
strategies for finding a correlation was to obtain a rep-
resentation from autoencoder neural networks and it in-
volved describing the two volumes in the latent space.

This work will not only benefit the fundamental un-
derstanding of bone tissue but might play a role in the
development of new diagnostics and treatment tools. In
addition, it might impact other fields of biophysics and
material science by validating the physical meaning of a
tensor in small-angle scattering tensor tomography with
information from real-space data obtained from pty-
chography. Moreover, the algorithm proposed in this
paper could come to the aid of other similar projects in
which a correlation between 3D information from dif-
ferent imaging modalities has to be investigated. For
example, one other field in which the work presented in
this thesis could be of use is the one of neural circuit re-
search. By studying the orientation of fibrilar structures
one could infer useful characteristics about the electro-
chemical interactions between bundles of neurons, help-
ing or bypassing the need to segment individual neural
cells.

2. State of the art

At a first glance, this project seems to be an image
registration work but thanks to the nature of the data, it
is clear that the correlated features were never going to
be images. After a thorough literature review, we con-
cluded that most of the work done in the field of correl-
ative imaging is concerned with registration of images
obtained from different modalities but images nonethe-
less. The main hurdle that had to be overcome during

this project was the fact that one of the volumes that
needed to be correlated was not an image but a volume
of tensors.

To the best of our knowledge, such a correlation
between these two specific data sets is attempted for
the first time in this work. The only known work
Guizar-Sicairos et al. (2020) described the validation
of small-angle scattering tensor tomography by using
scanning SAXS, at the cSAXS beamline of the Swiss
Light Source (SLS) Synchrotron. For the SAXS acqui-
sition, the sample used for SASTT was cut into slices,
since this method is not suitable for 3D analysis modal-
ity does not. Since in the present work, ptychographic
X-ray computed tomography is used, the information
about the bulk 3D volume is obtained in non-destructive
manner, thus having the potential to further validate the
3D capabilities of this method.

In a similar manner, Khan et al. (2015) have de-
veloped a method for analysing light microscopy data
for validating diffusion MRI (d-MRI). For this, stacks
of confocal microscopy images of hippocampal tissue
were acquired and then the orientation of the tissue is
analysed and compared to data acquired via d-MRI. The
features describing the orientation of the tissue were
extracted in this study is through structure tensor (ST)
analysis.

Rezakhaniha et al. (2012) have also used structure
tensor analysis in order to study the orientation and
waviness of the collagen structures in arterial adven-
titia from images of the confocal laser scanning mi-
croscopy. The structure tensor analysis is also men-
tioned by Püspöki et al. (2016) as a robust method for
the analysis of tissue directionality in biological images.
This algorithm was developed by Daniel Sage and his
team at EPFL, Switzerland. In their implementation,
the structure tensor (Equation 2) is analysed in a neigh-
borhood around the each pixel p to extract information
about the local orientation θ(p) by processing it through
Equation 3.

S (p) =


(Ix(p))2 Ix(p)Iy(p)

Ix(p)Iy(p) (Iy(p))2

 (2)

where Ix(p) and Iy(p) are the local gradients of the
image along the considered directions (x and y respec-
tively).

θ(p) =
1
2

arctan 2
⟨Ix(p), Iy(p)⟩w

⟨Iy(p), Iy(p)⟩w − ⟨Ix(p), Ix(p)⟩w (3)

where ⟨Ix(p), Iy(p)⟩w =
∫∫

R
w(x, y)Ix(p)Iy(p)dxdy is

the weighted inner product of the two gradient func-
tions, and w(x, y) ≥ 0 is the weighting function that
delineates the region of interest.

Recently, deep learning methods for orientation anal-
ysis have also started to appear in the scientific commu-
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Figure 4: Trabecular bovine bone sample: a) scanning electron microscopy image of the sample used for SASTT analysis, b) orientation map of
mineralized fibrils as obtained by SASTT. Yellow cylinders highlight the sample volume extracted for PXCT investigation.

nity. Schmarje et al. (2019) propose a method for seg-
menting the fibers in an image based on their degree of
organisation. In this work, fiber bundles were classified
according to how much oriented they were, the pixels of
an image were potentially belonging to three classes: 1)
pixels belonging to an area of fibers with similar orien-
tation, 2) pixels belonging to an area of dissimilar ori-
entation, and 3) pixels belonging to an area that is not
of interest due to a lack of fibers in that region. The au-
thors have compared the result of this approach to other
methods that can indicate whether an area is strongly
oriented or not, such as Fourier space analysis. The
downside of such techniques is that they do not tackle
the quantitative estimation of orientation itself.

3. Material and methods

The samples were prepared and measured at the
cSAXS beamline of the SLS prior to the beginning of
this thesis project.

3.1. Sample preparation

The bovine bone samples were obtained from the
local butcher (Berchtold Fleisch AG, 5037 Muhen,
Switzerland) with authorisation of use for the scientific
purposes. The animal is female bovine, 486 days of
age with the ID of TVD 120.1370.6096.7. Both cor-
tical and trabecular samples were extracted and cut to
the dimensions of 1x1x1 mm3 from the tibia bone with
a high precision circular diamond saw (Buehler Isomet
low speed saw): the medial cortical quadrant from the
mid-diaphysis for the cortical sample and the distal mid-
epyphysis for the trabecular sample. The samples were
fixed in ethanol 70% for 10 days, subsequently dehy-
drated (48 h in ethanol 100%) and slowly dried in a des-
iccator.

The samples for SASTT were reduced in size using
the lathe system (Holler et al., 2020), resulting in the
cylinder shape of ∼ 160 µm in diameter and 175 µm in
height (see example for trabecular sample in Figure 4a).

3.2. SASTT data acquisition

The SASTT was performed in a similar way to (Liebi
et al., 2015) at X-ray photon energy of 11.2 keV with the
beam focused to ∼5x5 µm2 (HxV). SAXS and WAXS
(wide-angle X-ray scattering) signal was simultane-
ously acquired. The SAXS signal was recorded with
Pilatus 2M detector at 2 m from the sample. The flight
tube was under vacuum. The sample volumes were
measured with 5 µm scanning step size, azimuthal an-
gular spacing of 6° between 0° and 180° at seven dif-
ferent tilt angles of the tomographic axis between 0°
and 45°. We acquired in total 345 projections per sam-
ple, by scanning 35 × 45 positions in each (including
some buffer space around the sample). This results in
540,000 scattering patterns with a total measurement
time of 17.6 h. Standards were used for the data cal-
ibration (glassy carbon, LaB6, AgBe). The data was
radially integrated and the tensor tomograms were re-
constructed, see Figure 4b,c.

In order to visualize the tensorial data that is pro-
vided by the spherical harmonics based reconstruction
for SASTT, 3D rendering was used, producing results as
the ones illustrated in Figure 4b,c. This was performed
by ParaView software. The array of orientations was
comprised of the θ and ϕ angles and the principal co-
efficient of the spherical harmonic, a0, measuring the
symmetry of the sampled region.

3.3. PXCT data acquisition

After SASTT data was successfully acquired, two 15
µm in diameter and 40 µm in height cylinders were ex-
tracted from the centers of each SASTT volumes us-
ing plasma focused ion beam (ScopeM, ETH) and fo-
cused ion beam (PSI). Then the ptychographic tomog-
raphy data was acquired from each cortical and trabecu-
lar volumes using both flOMNI (Holler et al., 2014) and
OMNY (Holler et al., 2018) setups in order to compare
the effect of radiation damage on the spatial resolution
in PXCT. In addition, 2 cortical and 2 trabecular fresh
control samples were prepared for PXCT. In this work,
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Figure 5: PXCT sample volume: a) scanning electron microscopy image of the sample extracted for PXCT analysis, b) 3D rendering of the
ptychographic reconstruction, c) axial slice of the ptychographic volume. Individual collagen fibrils are visible as can be observed in the zoomed
patch.

the results will be presented on one sample, the trabec-
ular sample that was measured by SASTT and PXCT
with flOMNI setup.

PXCT data was acquired with the following param-
eters using photon energy of 6.2 keV. We obtained
20x15 µm2 FOV with the step size of 0.8 µm and count
time of 0.1 s that resulted in 1030 projections per sam-
ple. Data was acquired with Eiger 1.5M detector at
5.271 m downstream of the sample.

Ptychographic projections were reconstructed in an
area of 700 × 700 pixels of the Eiger 1.5M detector, re-
sulting in a pixel size of 20.07 nm using 300 iterations
of the difference map (DM) algorithm (Thibault et al.,
2009) followed by 800 iterations of a maximum like-
lihood (ML) refinement (Thibault and Guizar-Sicairos,
2012).

For tomography, 1030 projections equally spaced
over a 180-degree angular range were recorded. The
phase of the reconstructed projections was then post-
processed in terms of alignment and removal of constant
and linear phase components (Guizar-Sicairos et al.,
2011) (Guizar-Sicairos et al., 2015), and a modified fil-
tered back projection algorithm was applied for the to-
mographic reconstruction.

The 3D spatial resolution was estimated by Fourier
shell correlation (FSC) with the ½-bit threshold crite-
rion. For this we split the projections into two inde-
pendent data sets, each with double angular spacing, by
taking either the even or odd angular projections. With
this we then compute two independent tomograms. The
FSC between these two tomograms is calculated and the
point where the FSC intersects the 1/2 bit threshold de-
fines the resolution (Heel and Schatz, 2005). The 3D
spatial resolution of the trabecular volume was 33 nm
(see supplementary Figure 1).

3.4. Feature registration pipelines

In order to perform the correlation between the two
data sets, it has been necessary to reach a common set
of features taking into account the nature of the end re-
sult of the reconstruction, namely: a gray scale value

volume for PXCT and a tensorial volume for SASTT.
The first challenge is therefore to convert both data sets
to a comparable representation and appropriate dimen-
sionality. In the current work, we propose three distinct
pipelines to accomplish this task, that are discussed at
length below:

• 3D structure tensor analysis;

• Fourier spectrum analysis;

• Deep feature correlation.

3.4.1. 3D structure tensor analysis
Using the structure tensor for extracting the informa-

tion about orientation is a technique that analyses the
derivatives in the three directions of a tomographic data
set. This method was chosen as a first approach to de-
duce the main orientations of the collagen fibril bundles
within the real space gray-scale volumes from PXCT.

3.4.1.1. PXCT data post-processing. The PXCT data
needed to be adapted prior to feature extraction.

Apodization. In order to remove the artifacts that
were located beyond the edges of the region of inter-
est of the PXCT volume, an apodization step was intro-
duced. To achieve this, Otsu thresholding was chosen
due to its satisfactory performance and speed. How-
ever, there were still some areas inside the region of in-
terest that were segmented out as Otsu’s algorithm is
a histogram-based technique and it does not take lo-
cal information into account. Hence, thresholding has
to be followed by a closing binary morphology opera-
tion. In the next step, the array was modified by use of
padding and cropping around the region of interest so
that from a dimensionality of 743x864x864 it becomes
750x750x750 without sacrificing any information of in-
terest. This new dimensionality allows for straightfor-
ward physical interpretations of the data: since the voxel
size is approximately 20 nm in the ptychographic data
set, the total PXCT volume is a cube with the dimen-
sions of 15x15x15 µm3. The SASTT volume has a ten-
sorial voxel size of 5 µm so this means that the PXCT
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Figure 6: Schematic of the 3D structure tensor analysis pipeline.
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volume corresponds to a 3x3x3 sub-volume of SASTT
tensorial voxels.

Flipping. Data acquisition of SASTT and PXCT is
performed in a different coordinate systems. Therefore,
as the next step, the PXCT volume was flipped with re-
spect to the x-axis to match SASTT coordinate system.

Denoising and sharpening. The next consideration
in the pipeline was to attempt enhancing the image
by filtering out noise or by sharpening it. The pty-
chographic reconstruction already undergoes a post-
processing steps before the tomographic reconstruction
(Guizar-Sicairos et al., 2011), in which issues like ramp
removal and smoothing are addressed. Still, an attempt
was made at improving the image quality after this rou-
tine by implementing noise filtering through anisotropic
diffusion and a sharpening routine was developed with
the hope of improving the definition of the 3D struc-
tures of interest. An improvement in image quality was
not observed after the aforementioned filtering trials.

3.4.1.2. Rotated volumes preparation. In this work,
the feature registration task required to not only find the
3D spatial location of one volume within another but
also the angular rotation around the tomographic axis.
To this end, a set of rotated PXCT volumes were com-
puted by spline interpolation in the angular range from
0 to 360◦ with the angular step of 1◦, as illustrated in
Figure 6, step 2.

3.4.1.3. Structure tensor calculation. Also referred to
as the second-moment matrix, the structure tensor ma-
trix (presented in Equation 4 for a 3D case) is derived
from the gradient of a function, in the case at hand, the
image function. It describes the distribution of the gra-
dient in a specified neighborhood around a point. In
this work, the structure tensor is calculated for a 3-pixel
wide neighborhood around every voxel of the ptycho-
graphic volume in all 3 directions. The result of this
process were the 6 volumes illustrated in the 3rd step of
Figure 6.

S (p) =



(Ix(p))2 Ix(p)Iy(p) Ix(p)Iz(p)

Ix(p)Iy(p) (Iy(p))2 Iy(p)Iz(p)

Ix(p)Iz(p) Iy(p)Iz(p) (Iz(p))2


(4)

where Ix, Iy, Iz are the three partial derivatives of the
image neighborhood I, and the integral ranges over R3.

3.4.1.4. Eigenvectors calculation. The eigenvectors
ê1, ê2, ê3, and the corresponding eigenvalues λ1, λ2, λ3
of S w[p], synthesize the distribution of gradient direc-
tions in the neighborhood of p defined by the window
w. In order to better visualize this information, it is of-
ten modelled as an ellipsoid whose semi-axes directed

along the eigenvectors and their norms are equal to the
eigenvalues.

The nature of the data set on which this analysis is
performed is such that collagen fibrils and bundles of
fibrils of different sizes are the structures of interest. In
the case of fibrilar structures, the ellipsoid would cor-
respond to a flat and round, disk-like shape. If λ3 is
much smaller than both λ1 and λ2, the gradient direc-
tions are spread out and perpendicular to e3 (see sup-
plementary figure 2b); so that the isosurfaces tend to be
like tubes parallel to that vector. This situation occurs,
for instance, when p lies on a thin line-like feature, or
on a sharp corner of the boundary between two regions
with contrasting values.

In the regions with very little to no organization, the
gradients are dispersed in all directions so that the ellip-
soid is roughly spherical (λ1 ≈ λ2 ≈ λ3) (see supple-
mentary figure 2c), showing that the gradient directions
in the window are more or less evenly distributed, with
no particular alignment; so that the image function is
mostly isotropic in that neighborhood. This is an in-
dication of spherical symmetry in the neighborhood of
p. It is particularly interesting, as the calculation of the
proportion of such PXCT neighborhoods in a certain
region could be correlated with the information about
symmetry provided by SASTT. An extreme version of
this case is when the ellipsoid, which is almost sphere-
like, degenerates to a point. This is indicative of a lack
of significant gradients in the window that is considered.

The manner in which the structure tensor analysis
was implemented in this project is multi-scale (see
Equation 5) in the sense that the scale at which this
tensor is calculated can vary. The multi-scale struc-
ture tensor (or multi-scale second moment matrix) of
a function I is an image descriptor that is defined over
two scale parameters. One scale parameter referred to
as local scale t, is needed for determining the amount
of pre-smoothing when computing the image gradient
(∇I)(x; t). Another scale parameter referred to as inte-
gration scale s, is needed for specifying the spatial ex-
tent of the window function w(ξ; s) that determines the
weights for the region in space over which the compo-
nents of the outer product of the gradient (∇I)(∇I)T are
accumulated. In the current algorithm, the window size
was set to two, which was proposed as default for the
fiber orientation analysis in the Püspöki et al. (2016)
OrientationJ software. In consequence, the neighbor-
hood is a 5x5x5 voxels3 around the current voxel.

µ(x; t, s) =
∫

ξ∈Rk
(∇I)(x − ξ; t) (∇I)T(x − ξ; t) w(ξ; s) dξ

(5)
where t is a variable expressing the local scale that

controls the pre-smoothing applied before calculating
the gradient; ∇I(x; t) is the gradient along the x direc-
tion; the scale at which the integration takes place is
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Figure 7: Schematic of the Fourier spectrum analysis pipeline.22.10
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expressed by s and the window that is considered is sig- nified by the window function w(ξ; s).

det(αI − S (p)) = α3 − α2tr(S (p)) − α1
2

(tr(S (p)2 − tr2(S (p))) − det(S (p)) = 0 (6)

where α is a scalar, I is the 3x3 identity matrix, tr(S (p)) is the trace of the 3x3 second moment matrix, S (p), and
det(S (p)) is its determinant.

For the actual computation of the eigenvectors
and eigenvalues, Smith’s algorithm was implemented
(Smith, 1961). This method starts off with the charac-
teristic equation (Equation 6) of the 3x3 matrix that is
the structure tensor that was calculated at the previous
step for every voxel.

In Smith’s implementation it is chosen to apply an
affine change to S in order to simplify the expression
S = pB + qI. In this expression, S and B have the same
eigenvectors and an eigenvalue β of B exists if and only
if α = pβ + q is an eigenvalue of S. If we express q as
q = tr(S )/3 and p as p =

√
tr((S − qi)2)/6, then:

det(βI − B) = β3 − 3β − det(B) = 0. (7)

By doing so, the computationally expensive solution
of the equation through the Lagrange method is avoided
and a trigonometric solution is reached.

After the substitution β = 2cosθ and the simplifica-
tion by use of cos3θ = 4cos3θ − 3cosθ, Equation 7 be-
comes:

β = 2cos
(

1
3

arccos
(

det(B)
2

)
+

2kπ
3

)
, k = 0, 1, 2. (8)

Once the eigenvalues are computed, the eigenvec-
tors are obtained as such: if λ1, λ2, λ3 are the distinct
eigenvalues of the structure tensor S (p), then (S (p) −
λ1I)(S (p) − λ2I)(S (p) − λ3I) = 0. In the general case,
the columns of the product of any two of these matrices
contains an eigenvector for the third eigenvalue. In the
case in which two eigenvalues are identical, for exam-
ple λ2 = λ3, then (S (p) − λ1I)(S (p) − λ2I)2 = 0 and
(S (p) − λ2I)2(S (p) − λ1I) = 0, resulting in the general-
ized eigenspace of λ2 to be spanned by the columns of
(S (p) − λ1I) and its ordinary eigenspace to be spanned
by (S (p) − λ2I)(S (p) − λ1I), while the eigenspace of λ1
is spanned by (S (p) − λ2I)2.

In the framework that was developed during the
course of this project, the result of this step included
12 volumes: 3 arrays corresponding to the three eigen-
values and 9 arrays of the x, y, z coordinates of the three
corresponding eigenvectors. The eigenvector used for
the calculation of orientation was the one with the high-
est eigenvalue, as it is the one that indicates the main
orientation of its neighborhood. Slices of the volumes
generated by calculating the Cartesian coordinates of
the biggest eigenvector are presented in step 4 of Fig-
ure 6.

3.4.1.5. Volume partitioning. As mentioned earlier in
the pipeline, the remodelling of the PXCT volume al-
lowed for its equivalence with a 3x3x3 region of the
SASTT tensorial volume from dimensionality point of
view. After the extraction of the three eigenvectors and
three eigenvalues, each of the 12 volumes resulting from
the Eigenvectors calculation step have been divided into
27 equally-sized sub-volumes (step 5 of Figure 6). One
sub-volume is made of 250x250x250 voxel3 and mea-
sures 125 µm3.

3.4.1.6. Orientation extraction. The local orientation
calculated around the neighborhood of each voxel in the
initial PXCT volume is now averaged over the range of
each sub-volume. This operation results in three 3x3x3
volumes for each of the three eigenvectors, expressing
their orientation in the three Cartesian coordinates. Step
6 of Figure 6 symbolizes a visual rendering the informa-
tion contained within the three volumes that correspond
to each eigenvector. Hence, at the end of this step, nine
3x3x3 volumes are produced.

3.4.1.7. SASTT data post-processing. The exploration
step for the SASTT data was of utmost importance, as
it allowed for the proper extraction and handling of the
features outputted by the spherical harmonics-based re-
construction. As outlined in previous chapters the fea-
tures, that expresses the average local orientation over a
window of 5x5x5 µm3, in the case of SASTT is in spher-
ical coordinates, represented by the ϕ and θ angles. The
features that express the local anisotropy of the sample
encode it in the form of spherical harmonic coefficients,
a0, a1, a2 and a3.

3.4.1.8. Spherical to Cartesian transformation. The
orientation information contained in SASTT volume
had to be transferred to the same coordinate system as
the one in which the orientation of the PXCT data was
encoded in, the Cartesian system. This was achieved by
applying the three transformations in Equation 1.

3.4.1.9. Feature registration. Following the feature ex-
traction step from both data sets presented in this work,
a correlation routine was developed. The SASTT vol-
ume was used as the main array and the PXCT orien-
tation array was used as a correlation kernel. In other
words, the 3x3x3x3 volume which contains information
about the orientation of PXCT sub-volumes was slid
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over the 3x43x48x48x48 SASTT volume of the Carte-
sian components of orientation for each tomographic
angle as illustrated in the step 9 of Figure 6.

The manner in which the operation was set up was
chosen such that the output array has the same dimen-
sions as the bigger array, in our case, SASTT.

The correlation is computed for each component of
the PXCT orientation array and its SASTT counterpart.
Hence, the volume containing information about the X
components of the eigenvectors extracted from PXCT
is correlated with the X components derived from the ϕ
and θ angles of SASTT. The same applies in the case
of the Y and Z components. After the correlations of
the three Cartesian components of a new array are com-
puted, these are then multiplied, thus outputting an ar-
ray in which the highest values are assigned to voxels in
which the three components are in agreement.

3.4.2. Fourier spectrum analysis
The Fourier transform converts the input signal from

the initial domain (real space) to its representation in the
frequency domain (reciprocal space). The Fourier trans-
form of an image can provide information about the ob-
jects as well as its texture. In this image processing
framework based on the Fourier transform, the PXCT
that was used in this work is treated as a 3D function of
finite duration and its frequency components refer to the
spatial frequencies present in the volume:

F(u, v,w) =
M−1∑

u=0

N−1∑

v=0

P−1∑

w=0

f (x, y)e−2 jπ(ux/M +vy/N +wz/P)

(9)
where the function f (x, y) is the tomographic volume

with the size MxNxP, evaluated for the values of the
discrete variables u, v, w in the ranges u = 0, 1, 2, ...,M−
1, v = 0, 1, 2, ...,N − 1, w = 0, 1, 2, ..., P − 1.

3.4.2.1. PXCT data post-processing. For this method,
the ptychographic volume underwent the same Apodiza-
tion, Cropping, Padding and Flipping routines as for the
structure tensor analysis approach.

3.4.2.2. Rotated volumes preparation. The volume
also had to be rotated around the tomographic axis to
prepare a set of rotated volumes. The rest of the pro-
cessing in this pipeline was applied to the volume gen-
erated at each of these rotations, in the same manner as
before.

3.4.2.3. Volume partitioning. The processing done in
this pipeline begins to differentiate starting with the fact
that the volume is partitioned prior to the rest of the pro-
cessing (Figure 7, step 3).

3.4.2.4. Vignetting. Before performing the 3D Fourier
transformation of the sub-volumes, 3D vignetting was
applied to each of them in order to remove artifacts
present in the reciprocal space due to the edges of the
region of interest within the array.

The edges present within the PXCT volume are of
two kinds: the ones generated by the sub-volume par-
titioning and the ones that are the consequence of the
cylindrical geometry of the bone sample. Figure 7, step
3 helps with the envisioning of this two types of array
edges.

Two kinds of vignetting were tested. First, a half-
sine vignetting was applied to the image, resulting on a
dimming towards zero of the image at the periphery of
the region of interest.

The second method is more complex: instead of dim-
ming the edges of the image to zero, the function that
smooths out the edges of the image array is a dampened
sinusoidal that stops its fluctuations at the mean value
of the PXCT array.

3.4.2.5. 3D Fourier transform. The algorithm used to
obtain the Fourier transform of the ptychographic vol-
ume was the fast Fourier transform (FFT) proposed by
Cooley et al. (1969). This approach was chosen due to
the computational efficiency that it provides, which was
crucial in the development of this pipeline. Such speed
of calculation is achieved through clever consideration
of symmetries in the calculated terms, bypassing the
need to calculate the transform by evaluating the trans-
form in all the initial points. This algorithm allows for
the Fourier transform to be computed almost 2200 times
faster than by using the direct Fourier transform (DFT)
on the same computational system (Rafael C. Gonzalez,
2008).

After transforming each volume to its reciprocal
space, a shift was applied to the whole spectrum to make
the first component appear in the center of the array and
the modulus of the complex numbers was computed to
obtain volumes such as the ones illustrated in Figure 7,
step 5.

3.4.2.6. Orientation extraction. A few methods for ex-
tracting the orientation from the reciprocal (frequency)
space were researched. The principal candidate for this
pipeline is Gabor filtering. By using a batch of Gabor
filter, it is possible to sample the information in the 3D
Fourier space and, according to the values of each com-
ponent of the catch of filters, infer the orientation of the
collagen fibrils that make up the structures in the PXCT
sub-volumes. This information is then expressed in 3D
vectorial form in a manner similar to eigenvectors.

Another methodology that is considered for this
step is the principal component analysis (PCA) of the
Fourier space. This would result in a principal compo-
nent vector that points in the direction of the main vari-
ation of data in the cloud of frequencies that make up
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the reciprocal space of each of the 27 sub-volumes.

3.4.2.7. SASTT data post-processing. The manner in
which SASTT data is extracted and transformed to fit
the feature registration routine is the same as in the case
of the aforementioned structure tensor analysis pipeline.

3.4.2.8. Feature registration. In the case of the Fourier
spectrum analysis pipeline, the correlation routine
would be exactly the same as the one proposed for the
eigenvector analysis pipeline but instead of the PXCT
orientation array coming from the main eigenvector of a
sub-volume, it would come from the orientation vector
perpendicular to the disc shapes created in the reciprocal
space by the cylindrical aspect of the collagen fibrils.

3.4.3. Deep feature correlation
The final approach that was considered for this

project was extracting the representation in latent space
by training a 3D autoencoder-type convolutional neural
network with the two data sets. An autoencoder is a
kind of deep learning architecture that consists of two
parts:
a) The encoding path is made up of the layers of the
network that collectively learn how to best represent
the input data in the latent space.
b) The decoding path which, for the purposes of this
project, learns how to best reconstruct the input data.

The system is trained with the input and the output
of the network being the same volume. Contrary to the
common use of deep learning techniques, in this work
it is only used as a mathematical tool for feature extrac-
tion, not for the generalization of performing a task on
other data sets.

3.4.3.1. PXCT and SASTT data post-processing. As
suggested in Figure 8, step 1, the PXCT data was only
flipped along its X axis before inputting it in the net-
work. The SASTT data only had to be extracted from
the reconstruction files and, in this pipeline, information
about anisotropy is also taken advantage of by using the
first spherical harmonic coefficient (a0) as shown in Fig-
ure 8, step 2.

Experiments were carried out by using both parti-
tioned versions of the PXCT volume and the full PXCT
volume as input to the autoencoder. For the sub-volume
partitioning routines, data was fed to the model by
means of generator-type routines. Since this time the
correlation is not calculated between voxels, but be-
tween representations in latent space, it was considered
useful to also let the network extract information from
the volume as a whole. The same consideration applies
to the SASTT data.

Prior to being inputted into the network, the arrays
were modelled to dimensions that fit the TensorFlow
(Abadi et al., 2015) framework. This translates to the

introduction of two new axes for both arrays and to the
padding of SASTT data to dimensions compatible with
the kernel size used for network operations.

3.4.3.2. Latent space representation. The result of the
processing of the PXCT volume with the autoencoder
neural network is one latent space vector, while in the
case of processing the SASTT data, three volumes are
passed through the network (θ, ϕ, a0) so three latent
space representations are extracted.

Optimization and hyper-parameters. The optimizer
that was chosen for the training process is Adam. This
algorithm is based on the adaptive estimates of the
lower-order moments. Two parameters control the ex-
ponential decay of these moments: beta1 which rep-
resents the exponential decay rate of the 1st moment,
which in this project was set to 0.9; and beta2, the ex-
ponential decay rate of the 2nd moment, in this work set
to 0.999. ϵ is a small constant that serves the purpose of
numerical stability. In this pipeline ϵ=10−7. The learn-
ing rate is controlled throughout the training process by
a scheduling routine that starts at 0.01 and decays with
a rate of 0.8 in 100 steps. The cost function that was
chosen for the model is the mean squared error.

Neural network architecture. The model that was
used is represented by the diagram in Figure 8, step 3.
The encoding of input data is done by means of 3D con-
volution and max pooling with steps of batch normaliza-
tion between convolutions. The dimensionality of the
layers becomes longer and thinner with each convolu-
tion operation. The number of filters on the input layer
is two and it increases to four in the first convolutional
layer. It stays four until the last convolution, where the
number of filters is again two right before the output
layer. The decoding of the latent space, and reconstruc-
tion of the input data, is realized by use of 3D convolu-
tions as well, but instead of max pooling, up-sampling
is used. In this way, the model learns how to populate
an array with the original dimensionality at each of the
five steps of the decoding path. The dimensionality of
the kernels used throughout the network is 5x5x5 in the
case of the PXCT volume and 3x3x3 in the case of the
SASTT data.

After the model is trained, it is saved to disk and for
the deep feature extraction, only the encoding path is
imported and used to process the data by taking advan-
tage of a routine that was developed for the automatic
naming of layers: only the layers that are called by name
are loaded in the predictor model. The output of the pre-
diction function call is the latent space of the input data.

3.4.3.3. Sub-sampling of the latent space. The result-
ing latent space was just a 1D vector with a dimension-
ality of 864x1 in the case of PXCT and 48x1 in the case
of the three SASTT volumes as depicted at the end of
step 3 in Figure 8. Therefore, before the correlation rou-
tine that concludes the pipeline, the PXCT latent space
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Figure 8: Schematic of the deep feature correlation pipeline.
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vector is sub-sampled in order to reach the same dimen-
sion as the SASTT representation as suggested by the
arrows in step 4 in Figure 8.

3.4.3.4. Two vectors correlation. The correlation is
computed between the latent representation of PXCT
and all three deep feature vectors of SASTT. The results
of the three correlation are then multiplied, resulting in
only one final correlation vector as illustrated in Figure
8, step 5.

3.4.3.5. Conversion to human-readable data. The final
step of this pipeline is the conversion of the deep feature
correlation result to a representation that is interpretable
by human experts, see Figure 8, step 6. This was at-
tempted by using the decoding path of the models that
were used.

4. Results

4.1. Structure tensor analysis
The structure tensor analysis provided the principle

results in this work. The strongest correlation between
two data sets was found and a quantitative assessment of
the correlation between the PXCT and SASTT features
at each rotation is depicted in Figure 9 from various per-
spectives. At each angular step of the tomographic ro-
tation, a correlation array was outputted. The curve de-
picted in graph b) presents the maximum value of every
correlation array computed at every tomographic angle.
In the same manner, graph c) depicts its minimum value
and graph d) illustrates the average value of that corre-
lation array.

This correlation routine outputs one array for each
tomographic rotation as stated above. If this resulting
array is flattened and plotted at each rotation, graph a)
of Figure 9 is obtained. The values in graph a) are so
tightly packed because instead of only one value for
each rotation, the whole flattened array of correlation
coefficients is squeezed into a very tight spacing on the
x axis.

The highest correlation coefficient was found to have
a value of 2.236 and is apparent in Figure 9a,b and d at
a tomographic rotation of 89◦. So not only is 2.236 the
highest correlation coefficient but it also occurs within a
range of rotations that present consistently high average
correlation values. Other local maxima also do exist in
Figure 9a,b. These locations in the data were explored
but they corresponded to surface areas of the pillar so
likely caused by sample preparation artefacts from ma-
terial re-deposition.

The minimum correlation (apparent in Figure 9a,c)
was found at 158◦. Two very well defined negative
peaks are present in Figure 9c between 200◦ and 360◦.
In Figure 9d depicting the average correlation coeffi-
cients, there is only one negative correlation peak at
313◦. These regions were also explored, mainly to rule

Figure 9: Results of the 3D structure tensor analysis: a) total corre-
lation, b) maximum correlation, c) minimum correlation, d) average
correlation. The clear correlation coefficient maximum is present at
89◦ at the spatial coordinates of x=21, y=23, and z=34 px.

out the algorithm misbehaviour, i.e. to establish that
the resulting correlation volumes still resemble the pil-
lar shape.

A correlation array has the size of a SASTT volume
as it is a result of scanning the SASTT feature volumes,
that have a dimensionality of 48x48x43 with the 3x3x3
PXCT feature volumes at a given tomographic rotation.
The correlation array which contained the highest cor-
relation values, at the above mentioned 89◦ rotation is
presented in Figure 10. In the first image, a), the XY
plane is presented and in the second one, b), the cor-
relation array is depicted in the YZ plane. Note that
Figure 10a resembles the axial cut of the SASTT pil-
lar, while the Figure 10b corresponds to the sagittal cut
of the SASTT pillar. It is clear that the location of the
highest correlation coefficient is present close to the top
pillar surface, roughly in the center of the pillar.

The lines overlaid on the images of Figure 10a,b rep-
resent the spatial 1D ranges over which the line profiles
in c, d and e were computed. These profiles put the high-
est correlation value in quantitative perspective, giving
insight into its signal-to-noise ratio with respect to the
rest of the correlation coefficients on the same longitudi-
nal, latitudinal and vertical level as this voxel. The over-
lays are color coded so that each of them correspond to
the line profile of the some color.

The voxel with the highest correlation is located in
the central region of the very top of the bone pillar. In
the line profile graphs it appears as a peak with relatively
high values around it. The position of this voxel reveals
the position of a 3x3x3 (15x15x15 µm3) sub-volume of
the SASTT tensorial volume that is indicated to corre-
spond to the PXCT volume of the same dimensions.

4.2. Deep features correlation

Figure 11 illustrates a plot of the correlation vector
that resulted from the deep feature analysis pipeline.
The distribution of values in this vector presents a heavy
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Figure 10: Results of the 3D structure tensor correlation: a) the axial plane, b) the sagittal plane of the correlation coefficient map at 89◦. The
bright regions show the highest correlation. The line profiles in three directions are presented in c), d) and e).

right tail, the whole array being skewed towards that di-
rection. The values of the vector start from zero and
then grow in a rough manner until the maximum is
reached then they decrease significantly but never return
to zero again.

The aspect of this correlation array is jagged, in oppo-
sition to the relatively smooth line profiles that resulted
from the structure tensor analysis, depicted in Figure 10.
The maximum correlation is found to be at the index of
28 of the resulting latent space vector. However, it is
needed to convert this data back into human-readable
format to draw conclusions on where in the SASTT 3D
volume this correlation is found and at which rotation
angle.

5. Discussion

5.1. Results interpretation

As stated in the Materials and methods, the PXCT
volume was collected from a pillar of bone that was
previously explored with SASTT. The sample was de-
creased in dimensions from 160 µm to 15 µm in diam-
eter to fit PXCT requirements. By doing so the effort
was taken to know the location of the newly obtained
PXCT volume and this location was at the very top of
the SASTT pillar, in the center. The only unknown fac-
tor is the rotation of one pillar with respect to another as
this was not preserved between two measurements.

Figure 11: Results of the deep feature correlation based on the θ and
ϕ angles and the principal component a0. The maximum correlation
is found to be at the index of 28 of the latent space vector.

The results obtained by 3D structure tensor correla-
tion in this work correspond well to the prior knowledge
of the location of PXCT pillar in the SASTT volume. In
Figure 10 it is clearly depicted that the voxel with the
highest correlation coefficient is located at the top of the
SASTT pillar, and that it is also central. Moreover, this
voxel has the higher value than any other voxel in all
correlation arrays at all orientations. Taking all of these
arguments into consideration, the results point towards
the fact that these findings represent a form of validation
for the aforementioned feature correlation pipeline.
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Even though the Fourier spectrum analysis pipeline
is not complete and require further development, the
results of the Fourier transform routine (Figure 7, step
5) clearly illustrate a very important detail: within one
sub-volume of the PXCT data, multiple fiber orienta-
tions can be distinguished. It can be seen from the fact
that in the reciprocal space representation there are two
or more intersecting regions of high intensity. In the
presented slice in Figure 7, step 5, one of them is at
80◦-85◦ and the other one at around 135◦. These cor-
respond to two ellipsoidal shapes in 3D that intersect,
corresponding to the two orientation present within the
region that was Fourier transformed. The ellipsoidal
shape of these transforms comes from the fact that the
Fourier transform of a thin cylinder (i.e. fiber) is an el-
lipsoid. This means that the Fourier spectrum analysis
pipeline once complete will be able to work with and
incorporate more than one collective orientations and
therefore to describe the structures with higher preci-
sion. This can not be achieved with the 3D structure
tensor correlation pipeline.

It is important to note that the deep feature correlation
pipeline was able to find a strong correlation as well, but
the data remains to be converted to the human-readable
format for drawing conclusions and validation. Even
thought it requires further developments, this method
would be most versatile and flexible to accommodate
different feature-rich types of data from variety of ex-
perimental methods, which can not be done with previ-
ously mentioned pipelines.

5.2. Algorithmic considerations

In the incipient stages of this project, while per-
forming the literature review, an exploratory phase took
place. During this exploration, a plethora of methods
were considered for accomplishing the main task of this
project. Out of these methods, the three pipelines that
are presented in this work began to take shape. The
Fourier spectrum analysis (FSA), the structure tensor
analysis (STA) and the deep feature correlation (DFC)
pipelines were developed in parallel for the most part.
As the intermediary results of STA looked promising
and the experiments within this framework were repeat-
able, all efforts were shifted towards this approach. This
decision made it the algorithmic framework of choice
for solving the proposed task. This leads to the fact that
most of the results come from the structure tensor anal-
ysis approach.

There are, of course, other considerations for which
the STA pipeline was chosen. First of all, the mathemat-
ical basis upon which it was constructed is very trans-
parent and explainable. Moreover, it is a tried and tested
method in the imaging community, as outlined in Sec-
tion 2. State of the art, giving consistent and robust re-
sults for the analysis of orientation in data coming from
different imaging modalities. Last but not least, this

method can be applied natively in 3D, a very important
condition for the project.

Final results of the Fourier spectrum analysis are not
included in this work as the development efforts were
shifted mainly towards STA. One output of this pipeline
that aided STA was the transformation of PXCT gray-
scale sub-volumes. Apart from providing further qual-
itative insight into the multi-directional nature of colla-
gen fibers within one sub-volume, this served as a quali-
tative assessment of performance during anisotropic dif-
fusion and sharpening experiments.

The DFA approach yielded interesting results but fur-
ther research is needed into how to express them in a
more comprehensive manner. It is noteworthy that this
was the only framework in which features that encode
information about the local anisotropy of the bone sam-
ple were also included in the correlation routine.

5.3. Computation
All the computations carried out throughout this

project was performed on the Ra cluster of the
Paul Scherrer Institute. This is a high-power super-
computing cluster of CPU and GPU nodes directed to-
wards offline data analysis. In this context, the term
”offline analysis” refers to the processing of data that
happens after an experiment that was performed at the
synchrotron.

The main challenge in the case of DFA was memory
management. This framework was developed for GPU
processing. As it was deemed useful to train the autoen-
coder model with the full 3D volume, a lot of VRAM
(video random access memory) was required to oper-
ate with the whole array. This resulted in the quota be-
ing routinely reached so memory cleaning routines were
implemented in the code.

The calculations from the current stable version of the
STA pipeline are performed on CPU. This aspect makes
the time required to run it relatively high, at around 72
hours. A GPU-based version of this pipeline was also
developed. Its usage can help reduce the time required
for the feature extraction and registration to under 4
hours but further testing is required in order for it to
be deemed robust enough.

The calculations that the FSA pipeline is based upon
all run on CPU and from a time perspective, the time
required to perform them is under one hour.

For all the computation that required the use of shared
resources, routines were developed and implemented
that check the status of available computational nodes
and help the user only select those which are not cur-
rently and use.

5.4. Future work
The pipelines developed during the course of this

project can benefit from a number of further implemen-
tations that have been considered but which were not
applied mainly due to time constraints.
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Structure tensor analysis. Currently, the features that
are used for registration are only those that encode ori-
entation. One improvement could be the inclusion of
features that encode symmetry and anisotropy. From
the SASTT side, these are the spherical harmonics co-
efficients which have already been extracted from the
reconstruction array. In the case of PXCT, one more
step of processing needs to be carried out, the process-
ing of the eigenvalues volumes. Aside from the inclu-
sion of new features that can help the registration, im-
provements can be made to this routine by means of op-
timizing the partitioning of the PXCT volume. There is
no way of guaranteeing that the current partitioning of
the PXCT volume is the optimal one. To explore this,
the 3D gridding that separates the sub-volumes can be
optimized.

Fourier spectrum analysis. Fully developing this
pipeline can provide further validation of the results
found by structure tensor analysis. Moreover, since the
reciprocal space contains several ellipsoids in the trans-
form of only one PXCT sub-volume, multiple orienta-
tions could be extracted and quantified. The next step
is to find a suitable method for the extraction of orienta-
tion information from the computed Fourier space and
to use it to obtain a vectorial representation of this infor-
mation for correlation with the SASTT data. One such
technique is extracting the principal components of the
reciprocal space data by means of PCA. Another poten-
tial idea for the task of feature extraction is the process-
ing of the Fourier space with a batch of Gabor filters.

Deep feature analysis. More research is needed for
finding a way to make the latent space correlation vec-
tor interpretable by humans. While the correlation ar-
ray that results from this pipeline does not appear to
be fully random, it is certainly not a good representa-
tion of feature registration from a human interpretabil-
ity point of view. Moreover, a more thorough design
work for the architecture can be done, resulting in la-
tent space dimensionality that would not require further
sub-sampling after the feature extraction step.

5.5. Other considerations
From a human interpretability point-of-view, the STA

and FSA pipelines output the best results as opposed
to DFA. However, DFA outperforms the two previous
pipelines in terms of scalability, this means that DFA is
easily applicable to other experimental data without ma-
jor pipeline modifications. In addition, little to no pre-
processing was required for the DFA implementation,
while STA and FSA required some data manipulation in
terms of filtering and interpolation. In the case of STA,
for example, the gridding strategy has to be changed to
accommodate a new data set, by contrast DFA does not
require this partitioning step.

One other consideration that has to be made when
comparing the three pipelines is the space required by
each. For STA and FSA, a large amount of intermediary

volumes were saved in order to save computational time
in later stages of development. This was not the case for
DFA which, due to its lack of required pre-processing
steps it did not require intermediary data to be saved to
disk.

As stated previously, one consideration for adopt-
ing STA as the main computational framework of this
project is the community’s trust towards the mathemati-
cal mechanisms upon which it is based. The same argu-
ment can apply for FSA because the main routine in this
framework is the fast Fourier transform which is widely
accepted as a standard engineering and scientific analy-
sis tool. This cannot be said about DFA as the majority
of the scientific community still considers data-driven
approaches to be ”black boxes”. On the other hand, the
DFA approach is very novel and can attract high-impact
applications.

Ultimately, it would be great to compare the per-
formance and to cross-validate the three described
pipelines as well as test their performance on the multi-
ple samples available in the project.

6. Conclusions

In this work we present an algorithmic framework for
the registration of two tomographic data sets acquired
with two different state-of-the-art methods: ptycho-
graphic X-ray computed tomography and small-angle
scattering X-ray tensor tomography. This task was ac-
complished not only spatially in the 3 Cartesian direc-
tions, but also the rotation of one volume with respect
to another around its tomographic axis was found. Ad-
ditionally, the two data sets were converted to contain
comparable features, i.e. fibrillar orientations, on which
the registration routine was based. The principal re-
sults were obtained by means of structure tensor anal-
ysis. This was the first time such a correlative study was
performed and the results confirm the a priori consid-
erations of the project, from sample preparation point
of view, validating the SASTT reconstruction and the
physical meaning of a tensor in SASTT. The two other
proposed methods, Fourier spectrum analysis and deep
feature analysis, require further development, but the
ideas were proposed to how to tackle the necessary
steps.

It is important to conclude that the PXCT and SASTT
are complimentary techniques. SASTT provides very
large field of view and offers 3D orientation informa-
tion from large sample volumes, while PXCT offers
very high resolution (down to 20 nm in biological tis-
sues) and direct imaging. This work shows how by har-
nessing the power of both methods, not only the better
fundamental understanding of bone is achieved but also
new insights can be gathered by studying the effects of
species, age, gender, pathologies on the collagen fibrils
orientation in bone. Such an orientation-based feature
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registration framework can also be useful to other disci-
plines such as material science and geology by provid-
ing the useful means of correlating orientation-specific
data acquisition techniques with imaging modalities that
output data in the real space.
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Supplementary figure 1: Resolution determined by the Fourier shell correlation curve at the intersection with the half-bit 
threshold. 

 

 

Supplementary figure 2: a) ellipsoid stretched along ê1 only; b) ellipsoid stretched in the direction of both ê1 and ê2; c) 
when all three eigenvalues are roughly equal, the ellipsoid becomes a sphere. 
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Abstract

Tissue segmentation of infants could lead to early diagnosis of different neurological disorders, potentially enabling
early interventions. However, the highly dynamic developmental changes in the first year of brain development
make tissue quantification challenging. The myelination, which progresses from central to peripheral brain regions,
causes limited contrast between gray and white matter tissue on T1-weighted and T2-weighted magnetic resonance
images at around six months. Previous studies usually base their work on implementing a well-known learning-based
algorithm without utilizing auxiliary information to handle the problem. In this work, we propose a knowledge-
guided U-Net for segmenting the isointense infant brain by considering the value of auxiliary anatomical information.
Particularly, in one experiment, we adopt white matter prior obtained utilizing an available 6-month-old atlas to guide
the segmentation. Conversely, in the second experiment, the low contrast boundary between gray and white matter
is utilized as a second output channel to guide the segmentation in ambiguous regions. Experimental results on the
subjects of the MICCAI Grand Challenge on 6-month infant Brain MRI Segmentation (iSEG19) challenge display
the potential of utilizing the white matter prior as input for segmentation. Overall, more refined results and increase
in segmentation accuracy was obtained when utilizing the prior compared to when not.

Keywords: guided segmentation, isointense phase, U-Net

1. Introduction

Pathologies related with the cognitive function (e.g.
autism, intellectual disability) are mainly diagnosed af-
ter the appearance of clinical symptoms (Damiano et al.
(2014), Lord et al. (2018)). However, early diagno-
sis of neurological disorders in children is highly rel-
evant in the clinical practice since interventions have
been proved to be more effective when they are pro-
vided at an early stage of development (Elder et al.
(2017), Haefner and Maurer (2006)). Magnetic reso-
nance imaging (MRI) allows the study of the brain in-
vivo while neurological disorders could be identified be-
fore their onset by detecting brain imaging anomalies
(Knickmeyer et al. (2008)). Specifically, MRI quan-
tification of the brain tissues (i.e., white matter (WM)
and grey matter (GM)) has been proved to be helpful
for the early detection of neurological disorders such as
schizophrenia (Gilmore et al. (2010)) and autism (Ha-
zlett et al. (2005)). Furthermore, longitudinal mea-
surements (i.e., repeated measurements over time on

the same individuals) enable a quantitative analysis of
brain development, potentially leading to the prognosis
of clinical outcomes.

Despite the potential clinical value of developing au-
tomatic methods in infants, MRI quantification of very
young patients (i.e., from birth to 2 years old) presents
multiple challenges. Infant MR scans suffer from lower
quality as the result of increased partial volume effect
due to smaller brain size, as well as motion artifacts
(de Macedo Rodrigues et al. (2015)). In addition, rapid
and non-linear neurodevelopmental changes contribute
to heterogeneous intensities in MR scans leading to un-
clear borders and regional variations in contrast (Paus
et al. (2001)). Furthermore, equipment manufacturers,
magnetic field strength, and acquisition protocol can af-
fect the contrast and intensity distribution in acquired
images leading to multi-site heterogeneity issues (Sun
et al. (2021)).

The highly dynamic developmental changes, espe-
cially in the first year of brain development, add further
challenges to MR quantification. These developmen-
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tal changes occur at micro and macro-structural levels.
The myelination process induces an increase in lipids
within the cell membrane, reducing the free water con-
tent. This accelerates the realignment of proton spins
with the main magnetic field during MR image acqui-
sition. Moreover, this myelination process is regionally
dependent, as the oligodendrocyte myelination of sub-
cortical and cortical regions develops in the posterior to
anterior and caudal to the cranial direction (Zimmerman
and Fuhrman (2011), Adam et al. (2014)).

Based on the distinct MR scan properties, these
biochemical changes can be divided into three major
phases: infantile phase, isointense phase, and adult-
like phase (Paus et al. (2001)). As Figure 1 illustrates,
during the infantile phase (samples of 2 weeks and 3
months), due to incomplete myelination of the brain,
WM and GM intensities are reversed compared to adult
brain imaging, which leads to hyperintense GM and
hypointense WM in T1-weighted images. The pattern
can be observed in the histogram, where GM intensi-
ties are higher than the intensities in WM. Furthermore,
the T2-weighted images showcase higher contrast than
the T1-weighted images. Over time, myelination pro-
gresses in the WM, which leads to age-related intensity
changes. The isointense phase (sample of 6 months)
corresponds to the phase in which the GM and WM ex-
hibit similar intensities (in both T1-weighted and T2-
weighted images), with a visible intensity overlap of the
two classes present in the histogram. In the adult-like
phase (samples of 9-12 months), on the T1-weighted
images, the GM demonstrates hypointense intensities
and WM hyperintense, similar to what is seen in nor-
mal adult brains. Concurrently, on the T2-weighted
images, GM demonstrates hyperintense intensities and
WM hypointense. In the histogram of T1-weighted im-
ages, this leads to WM taking on higher-intensity voxels
and GM falling in the range of lower intensities. In the
T1-weighted images, cerebrospinal fluid (CSF) has the
lowest intensities in each phase and can be easily dis-
tinguished from the other two tissue classes, whereas in
the T2-weighted images, it has the highest intensities.

Figure 1: Visual presentation of brain MRI at different age stages
during infant development. The respective histograms are result of
T1-weighted image intensities. Courtesy of Wang et al. (2019)

iSeg17 and iSeg19 are publicly available MRI
datasets focusing on infants in the isointense phase
(Sun et al. (2021), Wang et al. (2019)). iSeg19 pro-
vides data points from different acquisition sites (Sun
et al. (2021)). Other datasets such as Baby Connectome
project (Howell et al. (2019)) and the dataset described
in de Macedo Rodrigues et al. (2015) provide a wider
range of ages, but unfortunately with limited access.

Given the necessity to develop a reliable approach for
segmenting isointense brains and potentially assisting
in the early diagnosis, the main aim of this research is
to develop a robust method for isointense brain tissue
quantification.

2. State of the art

Due to its clinical relevance, MRI quantification of
infant brains has been widely investigated. Accord-
ing to Li et al. (2019), four distinct approaches for the
aforementioned problem are: atlas-based, deformable-
surface-based, learning-based, and hybrid. Public and
widely available datasets, such as iSeg17 and iSeg19,
have boosted the research in the isointense phase.
Within the scope of this research, the methods imple-
mented for the segmentation of the isointense brain can
be split into three categories. These methods include
atlas-based, learning-based (further split into classical
machine learning and deep learning based), and hybrid-
based approaches, all of which have state-of-the-art rep-
resentations that can be seen in Table 1.

2.1. Atlas Based Approaches

Atlas-guided segmentation utilizes deformation map
between a fixed and moving image to propagate corre-
sponding segmentation labels to unlabeled data (Igle-
sias and Sabuncu (2015), Li et al. (2019)). This method
of segmentation is typically computationally expensive
since a non-linear deformation map must be constructed
between the non-similar images (Wang et al. (2015)).

In general, creating an atlas requires either an image
of an individual or multiple images from different indi-
viduals averaged together. Due to high variability in the
anatomy between individuals, a multi-atlas label fusion
approach is commonly used (Wang et al. (2015))

The features of the MR data determine whether or
not T1-weighted or T2-weighted images should be em-
ployed for image registration at a specific phase in brain
development. Given that an atlas requires adequate
contrast between classes, T2-weighted images are typ-
ically employed in neonates (Shi et al. (2010a), Shi
et al. (2010b)), whereas T1-weighted images are used
in adults.

de Macedo Rodrigues et al. (2015) proposed a seg-
mentation pipeline for infants aged 0 to 2 years old (cov-
ering all three distinct phases in brain development). In
this methodology, a multi-atlas label fusion approach
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Methodology Author CSF GM WM Dataset

Atlas-Based Methods
Infant FreeSurfer de Macedo Rodrigues et al. (2015) 75 77 73 iSeg17

Machine Learning
LINKS Wang et al. (2015) 92.6 86.5 87.1 50 infant images

SDM + HF + RF Wang et al. (2018a) 92.5 90.5 89.4 50 infant images
Deep Learning

U-Net Wang et al. (2018b) 92.7 89 91.9 iSeg17
SDM + U-Net Wang et al. (2018b) 95.8 92.3 93.3 iSeg17

DenseNet + Skip Connections Wang, Li, et al. (2019) 96 92.1 90.8 iSeg17
Hybrid Methods

JLF + FE Wang, Li, et al. (2019) 89 90.3 93.1 iSeg17

Table 1: Overview of the state of the art methods and the respective Dice Similarity coefficient (DSC) score used for segmentation of the isointense
phase. The methods presented are comparable with respect to results considering the dataset used for validation
SDM stands for signed distance maps, HF stands for Haar Features, RF stands for Random Forest, JLP stands for Joint Label Fusion and FE
stands for Feature Extraction

Figure 2: Visual representation of the typical learning based approach workflow. Courtesy of Castiglioni et al. (2021)

was used. However, the performance in the isointense
phases is worse than in the neonatal period, probably
a result of the weak contrast in both T1-weighted and
T2-weighted images during the isointense period.

2.2. Learning Based Approaches
Machine learning and deep learning are two types of

learning-based techniques commonly used in medical
imaging (Castiglioni et al. (2021)). Figure 2 depicts a
typical workflow for the aforementioned approaches.

In general, machine learning approaches require ex-
plicit data characterization through the extraction of
hand-crafted features, whereas deep learning mod-
els learn more representative and discriminative fea-
tures automatically (Moeskops et al. (2016), Li et al.
(2019),Castiglioni et al. (2021)).

Due to the public availability of iSeg17 and iSeg19
datasets, many learning-based approaches have been de-
veloped to work with isointense MR data.

For instance, in a sequential random forest approach
for segmentation, the LINKS technique developed by
Wang et al. (2015) includes multi-modal Haar-like fea-
ture information and previous tissue probability maps
prediction Haar-like features. One of the teams from
the iSeg17 challenge created a hybrid model based on

the implementation of features of both original T1-
weighted and T2-weighted images as well as features
from obtained joint tissue probability maps (Sanroma
et al. (2016)). The features above were fed into SVM
for classification.

Bui et al. (2017) and Dolz et al. (2020) implemented
a network based on DenseNet. The former introduces
skip connections between respective layers to increase
the amount of contextual information captured, whereas
the latter combines information from all the previous
convolutional layers in the final block of the network to
prevent resolution loss and preserve gradient flow.

Lei et al. (2019) introduced a U-Net with an attention
mechanism to approach the problem of blurred tissue
boundary between WM and GM.

As stated in Wang et al. (2019) and Sun et al. (2021),
the majority of the methods rely on the application of a
well-established method or an advanced deep learning
method. However, they do not introduce any informa-
tion that can be used to guide segmentation and which
can be determined via qualitative MRI analysis.

Not leveraging the prior anatomical knowledge, e.g.,
cortical thickness is within a certain range, WM is
a topological sphere enveloped by GM (Huang and
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Roberts (2021)) leads to misalignments (holes and han-
dles) in the border between WM and GM in the cortical
regions of the brain as can be seen from Figure 3.

Figure 3: Visual representation of the holes and handles present in
non-anatomically guided tissue segmentation. Figure was adapted
from fig. 7 in Wang et al. (2018a)

2.2.1. Introduction of Anatomical Knowledge
Machine Learning

The aforementioned limitation was approached in
Wang et al. (2018a) by utilizing signed distance maps.
A signed distance map gives information on the clos-
est distance between any point and the border. By in-
troducing the signed distance map, the anatomical con-
straint of GM enveloping WM has been approximately
satisfied (Huang and Roberts (2021)). A two-stage se-
quential random forest approach was devised to obtain
anatomical information by first segmenting CSF against
WM and GM, taking into account that CSF has a higher
contrast towards brain tissue than WM and GM have
between each other. This was followed by using the
combined segmentation of WM and GM to generate a
signed distance map to be utilized as a channel for the
next phase in segmentation (Figure 4). Similarly, as
before, sequential random forest and Haar-like features
were used to obtain final segmentation results.

Figure 4: The results of the estimated (a) CSF, (b) GM and WM com-
bined and (c) obtained signed distance map with respect to the outer
surface (as shown in (d)) from the GM and WM combined segmenta-
tion. Courtesy of Wang et al. (2018a)

The promising effects of introducing anatomical
knowledge can be seen from quantitative results show-
cased in Table 1. An increase in DSC score has been
observed with respect to both GM and WM when the
algorithm were tested on the same validation dataset.

Deep Learning
Wang et al. (2018b) implemented a similar method-

ology as previously, but using a deep learning algorithm
consisting of a U-Net with DenseBlocks in encoder and
decoder parts. A first network was trained for a binary
classification between CSF and the combination of WM
and GM. The obtained WM and GM segmentation was
utilized to derive a signed distance map, which was used
as an additional channel for the following network ar-
chitecture for the segmentation of WM and GM.

Table 1 showcases an improvement in segmentation
of both GM and WM in comparison to the other im-
plementation. Moreover, an increase of 2.5% in DSC
score was achieved in segmenting WM in comparison to
the best result of iSeg17 challenge (Wang et al. (2019)).
Furthermore, it can be observed that, in general, deep
learning methods lead to better results than other meth-
ods.

2.3. Limitation of the Current Methods

As already stated, many deep learning algorithms
were used to approach the challenging isointense phase
of brain development (Zhang et al. (2015), Nie et al.
(2016), Wang et al. (2019), Sun et al. (2021)). How-
ever, only a few take into account prior anatomical in-
formation that can guide the segmentation process. Fur-
thermore, limited pre-processing is applied. Moreover,
while approaches achieve promising results, errors on
the GM/WM border remain.

Signed Distance Maps (SDM) are one of the strate-
gies that can be utilized as prior knowledge to con-
strain segmentation and produce good results both qual-
itatively and quantitatively (Wang et al. (2018b)). How-
ever, the method requires training two separate models
to generate the respective SDM. Considering there are
other ways to introduce anatomical constraints (through
shape, appearance, motion, and context information
(Liu et al. (2021))) while only training a single model,
this is time inefficient and introduces more complexity.

2.4. Contributions of this work

Inspired by the work of Wang et al. (2018b) and Wang
et al. (2018a), a new approach to dealing with the isoin-
tense stage of brain development is developed. This ap-
proach manipulates previously defined tissue labels on
reference MR images (atlas) as prior knowledge to seg-
ment a target image. Mainly, a WM prior is employed
as the neural network’s third input channel, combined
with T1-weighted and T2-weighted images.

Furthermore, considering the numerous ways of in-
troducing prior information and prevailing error present
on a GM/WM border, a multi-branch network was de-
veloped motivated by the works of Navarro et al. (2019).
Contour prediction is added as the network’s output
channel keeping in mind the network’s bias towards tex-
ture rather than shape.
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3. Material and methods

3.1. Dataset and atlas

3.1.1. iSeg19
The dataset used in this paper is the publicly avail-

able dataset provided by the iSeg19 challenge (Sun et al.
(2021)). This dataset consists of T1-weighted and T2-
weighted images of infants aged 6±0.8 months. Ten
training samples containing both intensity and ground
truth (GT) images, thirteen cases of only intensity im-
ages for validation, and sixteen cases for testing were
acquired in multiple centers.

According to the organizers of the challenge, annota-
tion of CSF, WM, and GM of the training dataset were
obtained using a longitudinal guided segmentation algo-
rithm (Wang et al. (2013)). The later time point volume
of a subject is used to segment the earlier time point
volume. Specifically, later time point segmentation is
utilized to guide robust segmentation of the neonate
(which is based on convex optimization and coupled
level sets) through guided level sets. This segmenta-
tion was followed by expert manual refinement of the
results. However, the initial segmentation of the vali-
dation dataset was done using anatomy-guided densely
connected U-Net (Wang et al. (2018b)). In addition, the
following steps were taken to unify the dataset: (i) all
images were resampled to 1x1x1 mm3, (ii) skull strip-
ping, (iii) intensity inhomogeneity correction, and (iv)
removal of the cerebellum and brain stem.

Through visual analysis of the subjects’s raw im-
ages, as well as the corresponding image intensity his-
tograms, the following conclusion was drawn about the
dataset: (i) both T1-weighted and T2-weighted images
display highly overlapping intensities between WM and
GM; (ii) unlike T2-weighted images, T1-weighted im-
ages display a distinct peak for the CSF class; (iii) T2-
weighted images display a CSF with evenly distributed
intensities; (iv) in T1-weighted images, the subjects 4
and 7 have different higher intensities than the other
cases.

3.1.2. Atlas
An atlas (and its associated segmentation) is one

of the possible ways of imposing prior information.
The atlas should provide information on common brain
anatomy and ensure that the WM is a topological
sphere.

Zhang et al. (2016) provide a 6 months old infant at-
las of common brain anatomy in a standardized space
(Figure 5). Specifically, this atlas is obtained by decon-
structing longitudinally collected MRI volumes using
wavelets and then accommodating spatial and temporal
variability into these volumes using group-sparse con-
struction.

Figure 5: Atlas of a 6-month old infant and its segmentation provided
by Zhang et al. (2016).

3.2. Data Preparation

Pre-processing the data reduces the variability across
subjects. Firstly, in each image, the intensities above the
99 percentile and below 1 percentile were cropped, re-
moving the influence of outliers. Secondly, a min-max
normalization was used to scale the values between 0
and 1. Finally, a data augmentation technique of flip-
ping was implemented to increase the number of vol-
umes during training. The dataset was doubled by in-
cluding left-to-right flipped volumes in training, taking
into account the pseudo-symmetrical nature of the left
and right hemispheres of the brain. The described pre-
processing and data augmentation is depicted in Figure
6.

Figure 6: Visual representation of data pre-processing and augmenta-
tion steps: (a) axial slice of the original T1-weighted, (b) processed
image with quantile min-max; (c), (d) illustration of an original and
flipped and (e) illustration of the absolute difference between the orig-
inal and flipped slice to indicate the difference between the volumes.

3.2.1. Anatomical Prior
Image Registration

To derive the anatomical prior, image registration was
implemented to align the atlas and the particular subject.
Specifically, the T1-weighted image of the subject and
the T1-weighted atlas were registered.

Two different strategies were employed for image
registration, affine, and affine and non-rigid registration
combined.
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Figure 7: Pipeline for extracting prior information from the atlas

The affine registration implemented is based on the
Aladin algorithm (Ourselin et al. (2001)). It is a two-
step coarser to finer detail scheme registration. A col-
lection of corresponding points between reference and
target is produced via block-matching and filtered via
cross-correlation. The affine registration results were
improved by subsequently applying non-rigid registra-
tion. In particular, a B-spline model implemented by
Modat et al. (2010) was used. The implementation con-
sists of three main steps (i) modification of the floating
image using splines and interpolation, (ii) evaluation of
objective function, and (iii) optimization of the function.

Due to the time complexity of optimizing image reg-
istration, default parameters were utilized for affine and
non-rigid registrations. For affine, they include three
levels of the coarser-to-finer scheme with a maximum of
5 iterations per level before reaching the next level. The
non-rigid registration was provided with initial affine
transformation. The final grid spacing for the spline on
the x,y, and z-axis was set to 5 voxels. The number of
bins for calculation of similarity measure was set to 64.

Prior Information Processing
Registration of the T1-weighted atlas to the subject’s

T1-weighted image was followed by propagating atlas
labels to the subject space. The propagation of the la-
bels was followed by extracting only the WM segmenta-
tion and processing via two distinct strategies. The first
strategy included only applying Gaussian blurring and
the second included applying erosion and then Gaussian
blurring, as can be seen in Figure 7.

The Gaussian blurring was implemented to smooth
the anatomical prior, in order to make the binary WM
prior look more similar to the signed distance map (Fig-
ure 4). The blurring level was adjusted and sigma was

set equal to 3 as this choice preserved reasonable infor-
mation from the prior.

Given the imperfect alignment between the ground
truth and the propagated labels, the practice of applying
erosion and then Gaussian blurring was used to provide
more certain information on the presence of WM at spe-
cific locations.

3.2.2. Patch Extraction
As a result of GPU memory constraints, a patch ex-

traction tactic was employed.
The patch extraction was done considering different

patch sizes and patch strides. The overlap was intro-
duced by decreasing the patch stride to be smaller than
the patch size. Furthermore, considering that a signif-
icant component of the subject’s MR volume is empty
space around the brain, only patches that include at least
a predefined portion of genuine brain volume are con-
sidered in training.

To find the ideal network settings, the following com-
binations of four patch sizes and patch strides were
taken into account:

1. 16x16x16 and 16x16x16
2. 16x16x16 and 8x8x8
3. 32x32x32 and 32x32x32
4. 32x32x32 and 16x16x16

3.3. Deep Learning Network
U-Net is a well-known state-of-the-art deep learning

network for biomedical image segmentation introduced
by Ronneberger et al. (2015). This network has been ex-
tensively used to segment the isointense phase of brain
development (Sun et al. (2021); Wang et al. (2018b)).
Consequently, a 3-D U-Net architecture is used in this
project.
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Figure 8: U-Net model used for segmentation.Disclaimer: The figure illustrates just a slice but the actual model uses a 3D patch.

The U-Net architecture consists of two symmet-
ric parts: encoder (down-sampling) and decoder (up-
sampling). The encoder extracts high-order abstract fea-
tures from images while shrinking their size, whereas
the decoder gradually restores the input image’s orig-
inal size. Furthermore, skip connections between the
encoder and decoder preserve information.

A sequential process of repeated convolutions and
ReLU activation functions is utilized to extract high-
order abstract features, followed by max-pooling proce-
dures. The number of features doubles with each max-
pooling action. The decoding counterpart is reversed.
The feature maps are concatenated with their down-
sampling complements before passing through convo-
lution and ReLU, followed by up-sampling. After each
up-sampling, the number of features is decreased by
two. The soft-max activation function and 1x1x1 con-
volution are the network’s last steps to provide the per-
class probability at each voxel.

Furthermore, to prevent overfitting, dropout is intro-
duced. In the encoder, it is applied before max-pooling
and in the decoder before up-sampling. Each of the
three encoding blocks in the model included a single
3D convolution, ReLU activation, and dropout before
max-pooling. In the decoder, up-sampling was followed
by concatenation with the matching encoder counterpart
before performing a single 3D convolution and dropout.

Considering the main topic is observing the effects of
introducing prior information to the network architec-
ture, a simple U-Net model was employed as seen from
Figure 8 using parameters displayed in Table 2.

Training Parameters

Optimizer Adam
Loss Categorical Cross-Entropy

Batch Size 32
# of Epochs 100

Patience 10

Table 2: Overview of training parameters used for training the U-Net

3.4. Multi-branch U-Net
A complementary-task learning U-Net was devel-

oped to deal with the issue of tissue segmentation with
the presumption that the contour prediction will boost
the performance on the border between WM and GM.
The tissue contrast between CSF and GM is much
higher than the tissue contrast between WM and GM,
and as a result, the network was created to only predict
the WM/GM contour. Moreover, the model was trained
only on T1-weighted and T2-weighted images for the
multi-branch network.

Figure 9: Corresponding T1-weighted and T2-weighted images of
Subject 1, and target segmentation and contour map (binary edge of
GM/WM border)

The U-Net architecture, in this case, consisted of
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common encoding layers and common decoding layers
until the final one. The second to last decoder block
splits into two separate decoder blocks, each with its
own softmax activation function. The segmentation is
output by one, while the contour is output by the other.
As there are two separate outputs, the loss function op-
timized objectives of related tasks, segmentation (cat-
egorical cross-entropy) and contour prediction (binary
cross-entropy).

Ltotal = Ltissue + Lcontour

Ltissue = −
M∑

c=1

M∑

o=1

yo,c log(po,c)

Lcontour = −
M∑

c=1

(yc log(p) + (1 − yc) log(1 − p))

where M - number of classes, y - binary indicator (0 or
1) if class label c is the correct classification for obser-
vation o, and p - predicted probability that observation
o is of class c.

3.5. Training and Validation Strategy

As a result of the limited number of subjects available
for the training and validation, a leave-one-out cross-
validation was employed during training to obtain the
optimal parameters and evaluate the effects of intro-
ducing prior information. During network training, an
80%/20% strategy was employed, the former being the
% of training subjects and the latter being the validation
subjects. One case would be left as the test sample to
observe the final results.

Firstly, the effects of introducing a prior obtained us-
ing affine label propagation to the network as the third
channel to the input were observed. The initial patch
size and stride were both set to 16x16x16. Secondly,
the introduction of flipped counterparts (which double
the dataset) was observed. Thirdly, the best parameters
for patch and patch stride were identified. Once the op-
timal parameters have been set, the effect of the prior
was scrutinized by:

• Training the network using the improved prior.
The improved prior was firstly obtained by em-
ploying affine and non-rigid label propagation.
Furthermore, pre-processing the prior also in-
cluded the utilization of erosion and then Gaussian
blurring.

• Training the network with the same parameters
without prior information

• Predicting the segmentation (of the network
trained with WM prior) using GM prior

• Training the network using a ”perfect” prior ob-
tained using the available GT to observe the possi-
ble results of the best-case scenario concerning im-
age registration and acquired prior. The “perfect”
prior was obtained by extracting the WM volume
from the ground truth, eroding it, and blurring it
before feeding it to the network

In addition, a multi-branch U-Net with optimized pa-
rameters was evaluated using auxiliary information re-
garding the border of GM and WM.

The best-performing pipeline was further tested on
the iSeg19’s validation dataset. Due to the low number
of training, it was trained on the entire training dataset.
In addition, because GT is unavailable for the validation
dataset, the challenge organizers conduct the validation
independently after receiving your segmentation results.

3.6. Quantitative Analysis

To evaluate the accuracy of the proposed segmenta-
tion, Dice Similarity coefficient (DSC) and Volumetric
Difference were computed.

3.6.1. Dice Similarity Coefficient
Denoting GT ground truth and S as segmentation of

each MR volume, the DSC was defined by the following
formula:

DS C =
2|GT | ∩ |S |
|GT | + |S |

DSC values range between 0 and 1 corresponding to
the worst and best overlap between the ground truth and
prediction.

3.6.2. Volumetric Information
For the volumetric information, the difference be-

tween the GT segmentation and the model segmentation
was observed concerning:

1. Total intracranial volume (WM + GM + CSF vol-
umes combined)

2. GM volume
3. WM volume

3.7. Implementation Details

This project was implemented using Python program-
ming language. Complementary libraries used include
numpy, nibabel, patchify and matplotlib. Image regis-
tration was done using icometrix’s implementation of
NiftyReg. Erosion and blurring of the registered atlas
were done using scikit-image package (van der Walt
et al. (2014)). The 3D U-Net was implemented using
Tensorflow (Abadi et al. (2015)). Furthermore, the vi-
sualization was done in 3D Slicer (Kikinis et al. (2014)).
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4. Results

Following the description in subsection 3.5. Training
and Validation Strategy, the results section will be split
to cover the indicated experiments.

4.1. Introducing Prior Information

The first experiment evaluates if the addition of prior
information on a simple network with no optimized pa-
rameters could led to improved segmentation results.
Table 3 shows the result of this experiment, comparing
a baseline segmentation that uses simple label propa-
gation from atlas to subject image against results ob-
tained with U-Net models. Cross validation results of
a U-Net without prior information, with WM guidance
and with WM guidance and data augmentation (flipping
of the axis) are included in the table. Notice that the per-
formance increases when using a 3D U-Net rather that
label propagation, while a slight increase in the WM
performance is observed when adding prior information
guidance of this tissue.

As data augmentation produces a slight increase in
performance for all the 3 classes, the flipping of the axis
is kept during training in the subsequent steps.

CSF GM WM

Baseline
Affine label propagation 0.53 (0.0180) 0.66 (0.0159) 0.62 (0.0082)

U-Net
No Prior 0.886 (0.0158) 0.833 (0.0134) 0.787 (0.0183)

With WM Prior 0.886 (0.0158) 0.839 (0.0110) 0.801 (0.0110)
WM Prior, Data Augm 0.890 (0.013) 0.840 (0.006) 0.808 (0.019)

Table 3: Average DSC and corresponding std. deviation of segmenta-
tions when only using affine registration. Furthermore, a comparison
of DSC results when not using prior, with WM prior, as well as com-
bined WM prior and introduction of data augmentation (flipped axis).

4.2. Patch size and stride

The introduction of overlapping patches led to an in-
crease in the number of sample during training. When
using a patch size of 16, the number of patches in-
creased from around 1300 to around 21000. On the
other hand, in the case of patch size of 32, the num-
ber increased from around 159 to around 4000. The
exact number of patches varies between training in the
leave-one-out strategy, considering that different sub-set
of subjects is used to extract patches during each train-
ing.

Table 4 shows the DSC when changing the patch
sizes and strides to include overlapping patches. The
best performance score is obtained when using the patch
size of 16 and stride of 8. Hence, the next steps will be
done using those parameters.

CSF GM WM

Patch Size Patch Stride
16x16x16 16x16x16 0.89 (0.1310) 0.84 (0.00650) 0.808 (0.01869)

8x8x8 0.919 (0.0111) 0.879 (0.0083) 0.854 (0.0159)
32x32x32 32x32x32 0.88 (0.0186) 0.828 (0.0156) 0.791 (0.0242)

16x16x16 0.918 (0.0115) 0.874 (0.0099) 0.844 (0.0153)

Table 4: Average DSC and corresponding std. deviation of segmenta-
tion results when using different patch sizes and strides.

4.3. Utilization of Non-Rigid Registration to obtain
prior

The next experiment improved the WM prior by se-
quentially combining affine and non-rigid registration
and propagating corresponding labels. The overall im-
provement in the prior can be seen by comparing the
DSC between only affine registration (see Table 3) and
combined (see Table 5).

CSF GM WM

Affine+nonrigid label propagation 0.679 (0.0098) 0.717 (0.0112) 0.713 (0.0159)

Table 5: DSC and and corresponding std. deviation of segmentations
obtained using combined affine and non-rigid label propagation.

4.4. Improved Prior

With the refinement of prior through the usage of
combined affine and non-rigid label propagation, no im-
provement in the DSC can be observed (compare Table
4 (patch size 16x16x16 and stride 8x8x8) and Table 6
(With WM Prior)) when training the knowledge-guided
U-Net for segmentation.

CSF GM WM

WM Trained U-Net
With WM Prior 0.919 (0.0119) 0.879 (0.0096) 0.854 (0.0157)

With WM Prior (E + GB) 0.92 (0.0106) 0.88 (0.0088) 0.855 (0.0156)

Table 6: Average DSC and std. deviation of segmentation when using
optimized patch size and patch stride. ”With WM Prior (E+GB)”
stands for a model trained using the prior obtained with the pre-
processing including combined erosion and Gaussian blurring.

With the idea to overcome the presence of consid-
erably imprecise information in cortical regions, the
eroded prior should offer a more precise prior of the
WM localization. Hence, the following test in improv-
ing the prior also considers the application of erosion
before Gaussian blurring to the prior. Overall, an in-
crease of 0.1% is visible for both CSF and WM classes
when using the combined pre-processing (see Table 6).

Besides the evaluation of the DSC, by analyzing the
volumetric information using the prior obtained with
combined pre-processing, it can be concluded that the
absolute difference in volumes between segmentation
and GT for both GM and WM leads to very similar av-
erage values. By observing the non-absolute difference
on a case-by-case basis, it can be inferred that in most
cases, segmentation using the proposed pipeline leads
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Figure 10: Visual illustration of Subject 1’s (a) T1 images, (b) T2 images, (c) GT, (d) segmentation results when using no WM guidance, (e)
segmentation results when using the perfect prior, (f) segmentation results when using prior obtained through combined registration, and (g)
segmentation results when using GM prior for prediction on a WM prior trained network.
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Figure 11: Visual illustration of Subject 1’s (a) WM prior obtained using combined registration; (b) WM prior obtained using GT, and (c) GM prior
used for prediction.

Subject diff [ml] diff CSF [ml] diff GM [ml] diffWM [ml]

1 -0.559 3.537 25.088 -29.184
2 -1.02 -1.902 3.711 -2.829
3 -1.269 -3.78 33.43 -30.919
4 -0.467 3.111 26.257 -29.835
5 -1.034 -9.657 31.168 -22.545
6 -0.89 -13.685 14.989 -2.194
7 -2.546 5.093 -4.974 -2.665
8 -0.716 0.606 9.914 -11.236
9 -1.083 7.326 35.908 -44.317

10 -1.508 -7.695 -41.217 47.404
Abs average 1.1092 5.6392 22.6656 22.3128

Table 7: The 1st column shows difference in total intracranial volume
between segmentation and GT, 2nd-4th column show difference in the
volume between CSF, GM, and WM respectively between segmenta-
tion and GT. The last row display the average absolute difference be-
tween corresponding values.

to over-segmentation of GM and under-segmentation of
WM (see Table 7).

4.5. No Prior

In order to see the effects of the prior, a network with
previously optimized parameters (patch stride and size)
was trained without the input prior as the third channel.

Overall, using no prior information for training leads
to similar quantitative results as when using the prior
(see Table 8). The results are slightly worse by a dif-
ference in DSC of 0.2%, 0.1%, and 0.2% for each of
the CSF, GM, and WM classes, respectively, when com-
pared to using prior obtained by erosion and Gaussian
blurring (see Table 6).

Although there is a slight difference in DSC, through

CSF GM WM

No WM Prior 0.918 (0.0108) 0.879 (0.0071) 0.853 (0.0151)

Table 8: Average DSC and std. deviation of segmentation when using
optimized patch size and patch stride with no prior as the third channel

visual analysis, the proposed pipeline (with using the
prior) leads to more refined results. The improvement in
using the prior guidance is noticeable on the cotical and
sub-cortical border between GM and WM (see Figure
12).

Figure 12: Improvement in segmentation when using the prior. The
1st column shows the GT of corresponding subject, 2nd column show-
cases the segmentation results when not using the WM prior and 3rd
column when using the prior obtained using combined registration
and pre-processed with erosion and Gaussian blurring.

4.6. Utilization of GM for prediction

The results of segmentation with and without the
prior display similar DSC (see Table 6 and Table 10).
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In order to test if the network utilized the prior for pre-
diction, GM prior was fed into the network trained on
WM prior.

GM prior was obtained in a similar manner as WM
prior.

CSF GM WM

WM Trained U-Net
GM prior 0.886 0.754 0.604

Table 9: DSC of the segmentation obtained using GM prior for pre-
diction with the network trained with WM prior.

DSC results from Table 9 showcase that the network
predicts poorly when misleading information is given
concerning the prior. The DSC decreased by 3.4%,
12.6%, and 25.1% for CSF, GM, and WM, respectively.

Visual results from using the GM prior to predict can
be observed in Figure 10.(g). By reviewing the Figure,
it is clear that using GM prior on a WM prior trained
network misleads the prediction. It leads to almost re-
versed GM and WM in prediction. Hence, the exper-
iment conclusively shows that the network utilizes the
prior for the prediction.

4.7. ”Perfect” Prior
The proposed prior information is not optimal as a

consequence of the registration errors between the atlas
and subjects, mainly due to the lack of intensity contrast
and anatomical heterogeneity. Hence, the full potential
of adding prior is not fully visible. Aiming to study the
effects of this type of guidance in the best-case scenario
of a ”perfect” prior (see Figure 7, (b)) was utilized. The
”perfect” prior gives much-refined information in the
cortical regions of the brain, which is different from the
prior obtained using combined label propagation with
much fuzzier cortical region information.

CSF GM WM

With Perfect Prior 0.929 (0.0085) 0.925 (0.0047) 0.927 (0.0077)

Table 10: Average DSC of segmentation when using optimized patch
size and patch stride with perfect prior

Using the ”perfect” prior increases the DSC for all 3
of the classes (Table 10). 0.9% in case of CSF, 4.5% in
case of GM, and 7.2% in case of WM when compared
against the results of the model with best results (Table
6).

This experiment concludes that improvement in the
registration could lead to improved results in the final
segmentation.

4.8. Complementary task learning
As a result of misalignments on the GM/WM border,

the next step included analyzing if introducing comple-
mentary task learning can aid the segmentation of isoin-

tense brain tissue. In this case, only the T1-weighted
and T2-weighted images were used for training.

CSF GM WM

Segm + Contour pred 0.915 (0.0116) 0.874 (0.0094) 0.85 (0.0146)

Table 11: Average DSC and std. deviation of segmentation predicted
using complementary task learning.

Adding the contour as a complementary task to learn
does not improve the results. Specifically, the decrease
in DSC of all three classes is observed compared to the
network trained using the WM prior as the input, as well
as the network trained without using the WM prior (see
Table 11).

4.9. iSeg19 Validation Dataset

The final model included using a U-Net with patch
size and stride of 16 and 8, respectively, T1-weighted,
T2-weighted, and prior obtained using affine and non-
rigid label propagation processed with erosion and
Gaussian blurring as input.

The number of epochs used for training was 42.
That number was obtained by averaging the number of
epochs required for convergence during the leave-one-
out strategy.

As mentioned earlier, GT is unavailable for the vali-
dation dataset; hence, the challenge organizers conduct
the validation independently. Therefore, all the results
showcased are received from the challenge’s organizers.

DICE HD ASD

CSF
Mean 0.927 10.023 0.197
Std 0.007 1.659 0.017
Min 0.912 7.681 0.174
Max 0.939 11.57 0.225

GM
Mean 0.891 7.340 0.437
Std 0.009 1.247 0.038
Min 0.873 5.657 0.390
Max 0.904 9.434 0.541

WM
Mean 0.860 6.659 0.499
Std 0.016 1.020 0.048
Min 0.824 5.000 0.453
Max 0.874 8.775 0.622

Table 12: Average mean, std. deviation, min and max values for DSC,
HD (95-th percentile Hausdorff Distance), and ASD (average surface
distance on the validation dataset of the iSeg19 challenge.

As a result of proper training (e.g., avoiding over-
fitting) and consequently a good generalization perfor-
mance, the segmentation results are coherent with what
was obtained during training. Observing the difference
between the mean DSC of training (Table 6, With WM
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Figure 13: Performance of the pipeline on the validation dataset of iSeg19 challenge in terms of DSC, HD (95-th percentile Hausdorff Distance),
and ASD (average surface distance), using violin plots. Each color from the legend represents the Subject number from the dataset.

Prior (E + GB)) and validation (Table 12), a slightly
higher DSC values in segmentation results of all 3
classes is seen. 0.8% in case of CSF, 1.1% for GM,
and 0.5% for WM.

Figure 13 illustrates values for each one of the met-
rics used by the organizers of the challenge, DSC, HD,
and ASD, on a case-by-case basis. It can be observed
that when segmenting WM and GM worst results are
obtained for Subject 20 (DSC of 0.824 and 0.873 for
the classes mentioned above, respectively). That can be
due to Subject 20 being slightly rotated (see Figure 14)
compared to other cases leading to erroneous segmenta-
tion.

Figure 14: Axial slice of T1-weighted and T2-weighted validation
subject number 20. Notice the severe rotation.

5. Discussion and Concusions

The presented model deals with the segmentation of
infant brain tissue in the isointense phase, characterized
by the limited distinction between GM and WM tissue
on T1-weighted and T2-weighted images. The limited
contrast leads to difficulties even in manual delineation.

The segmentation was performed using knowledge-
guided segmentation by considering the potential of us-
ing anatomical prior to guiding segmentation and the
limitations presented in the previous work. Primarily,
tissue segmentation was formulated as a patch segmen-
tation task where the relationship between patches was

not considered. Furthermore, only patches that con-
tained a pre-defined amount of brain anatomy were uti-
lized. Secondly, prior guidance was introduced in a
two-fold way. The foremost way included obtaining an
anatomical prior to guiding the segmentation by taking
advantage of the available atlas for the 6-month-old in-
fant. In particular, combined affine and non-rigid image
registration were utilized to register the atlas to the pa-
tient space, and subsequently, WM was extracted and
processed using erosion and blurring. Once the prior
was obtained, segmentation was achieved by employing
a U-Net with multiple inputs, considering T1-weighted,
T2-weighted images, and the derived WM anatomical
prior. The second way included introducing the prior
by developing a complementary task learning through
multi-output U-Net segmentation of the tissue classes
and GM/WM border. In this case, the neural network
would utilize the WM/GM border prior as an output to
penalize the segmentation.

Overall, experimental results on the iSeg19 dataset
showcase a slight increase in the quantitative results
when utilizing the anatomical prior as the third input
channel, obtained with combined image registration and
processed with erosion and Gaussian blurring. Visual
analysis of the above results demonstrates more refined
segmentation in sub-cortical regions when using the
prior. The resulting slight quantitative difference be-
tween the models can be due to the atlas, in general,
being blurry in cortical regions of the brain and conse-
quently not providing precise information.

5.1. Limitations
Despite the good and coherent results of the model,

some limitations can be improved with further work.
The model struggles to segment the region on the bor-
der between WM and GM, usually leading to the over-
segmentation of GM and under-segmentation of WM.
This results from a lack of intensity contrast in this
area as myelination processes from central to peripheral
brain regions. Furthermore, when unusual poses (ro-
tations) are present, erroneous segmentation results are
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achieved. In addition, very few data samples are avail-
able for training the network.

When it comes to complementary task learning, in
some cases, the segmentation loss will drop below the
segmentation loss obtained without complementary task
learning. The final segmentation produced was worse
because neither the choice of the loss function nor the
weighting between the two losses was optimized.

5.2. Future Work

In order to improve the segmentation results, further
optimizing the image registration between the atlas and
the subject could add more precise information in corti-
cal regions of the brain. In addition, considering that the
most erroneous region is the border between WM and
GM, increasing the number of patches selected from
that region can potentially improve the segmentation re-
sults. Introducing data augmentation with more aggres-
sive rotations could lead to a more robust method.

Further network optimization concerning the number
of encoding/decoding blocks, the number of convolu-
tional layers, and the introduction of batch normaliza-
tion could potentially improve the results.

Finally, the usage of more data points would improve
the network’s overall performance, considering that the
performance of the DL network depends on the amount
of available data.
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Appendix A. Additional Results

DSC

Experiment # Prior Type of Registration Prior Pre-processing Patch Size Patch Stride Data Augmentation CSG GM WM

Baseline - Affine label propagation
1 / A / / / / 0.53 0.66 0.62

U - Net with Affine Registered Prior
2 No / / 16x16x16 16x16x16 / 0.886 0.833 0.787
3 Yes A GB 16x16x16 16x16x16 / 0.886 0.839 0.801
4 Yes A GB 16x16x16 16x16x16 Yes 0.89 0.84 0.808

Patch Modification
5 Yes A GB 16x16x16 16x16x16 Yes 0.89 0.84 0.808
6 Yes A GB 16x16x16 8x8x8 Yes 0.919 0.879 0.854
7 Yes A GB 32x32x32 32x32x32 Yes 0.88 0.828 0.791
8 Yes A GB 32x32x32 16x16x16 Yes 0.918 0.874 0.844

Improved Prior - Combined affine and non-rigid label propagation
9 / C / / / / 0.679 0.717 0.713

U - Net with Combined Registration Prior
10 Yes C GB 16x16x16 8x8x8 Yes 0.919 0.879 0.854
11 Yes C E + GB 16x16x16 8x8x8 Yes 0.92 0.88 0.855

U - Net with No Prior
12 / / / 16x16x16 8x8x8 Yes 0.918 0.879 0.853

U - Net with Perfect Prior
13 Yes C E + GB 16x16x16 8x8x8 Yes 0.929 0.925 0.927

Multi branch U-Net
14 Yes / / 16x16x16 8x8x8 Yes 0.915 0.874 0.850

Table A.13: Summary of all the experiments performed. [A - affine; C - combined affine and non-rigid registration; GB - Gaussian blurring; E -
erosion]

ml

Experiment # Prior Type of Registration Prior Pre-processing Patch Size Patch Stride Data Augmentation diff diff GM diffWM

Baseline - Affine label propagation
1 / A / / / / 10.6384 29.8107 29.7237

U - Net with Affine Registered Prior
2 No / / 16x16x16 16x16x16 / 1.5834 34.2455 37.8772
3 Yes A GB 16x16x16 16x16x16 / 2.2129 27.3538 29.0518
4 Yes A GB 16x16x16 16x16x16 Yes 1.5495 26.7073 25.6036

Patch Modification
5 Yes A GB 16x16x16 16x16x16 Yes 1.5495 26.7073 25.6036
6 Yes A GB 16x16x16 8x8x8 Yes 0.7964 22.0451 21.4974
7 Yes A GB 32x32x32 32x32x32 Yes 1.8951 27.2299 28.7181
8 Yes A GB 32x32x32 16x16x16 Yes 1.082 22.9151 25.2725

Improved Prior - Combined affine and non-rigid label propagation
9 / C / / / / 17.1405 14.0303 34.0913

U - Net with Combined Registration Prior
10 Yes C GB 16x16x16 8x8x8 Yes 0.9463 22.7446 20.5423
11 Yes C E + GB 16x16x16 8x8x8 Yes 1.1092 22.6656 22.318

U - Net with No Prior
12 / / / 16x16x16 8x8x8 Yes 0.9463 22.7446 20.5423

U - Net with Perfect Prior
13 Yes C E + GB 16x16x16 8x8x8 Yes 0.6855 12.1307 9.6185

Multi branch U-Net
14 Yes / / 16x16x16 8x8x8 Yes 0.929 23.369 23.167

Table A.14: Summary of all the experiments performed with respect to absolute volumetric difference between the total intracranial volume of
segmentation and GT (column diff), difference in GM volume (diff GM) and difference in WM volume (diffWM).
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