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Editorial

Computer aided applications for early detection and diagnosis, histopathological image
analysis, treatment planning and monitoring, as well as robotised and guided surgery will
positively impact health care during the new few years. The scientific community needs
of prepared entrepreneurships with a proper ground to tackle these topics. The Joint
Master Degree in Medical Imaging and Applications (MAIA) was born with the aim to
fill this gap, offering highly skilled professionals with a depth knowledge on computer
science, artificial intelligence, computer vision, medical robotics, and transversal topics.

The MATA master is a two-years joint master degree (120 ECTS) between the Uni-
versité de Bourgogne (uB, France), the Universita degli studi di Cassino e del Lazio
Meridionale (UNICLAM, Italy), and the Universitat de Girona (UdG, Spain), being the
latter the coordinating institution. The program is supported by associate partners,
that help in the sustainability of the program, not necessarily in economical terms, but
in contributing in the design of the master, offering master thesis or internships, and
expanding the visibility of the master. Moreover, the program is recognised by the Eu-
ropean Commission for its academic excellence and is included in the list of Erasmus
Mundus Joint Master Degrees under the Erasmus+ programme.

This document shows the outcome of the master tesis research developed by the
MATA students during the last semester, where they put their learnt knowledge in prac-
tice for solving different problems related with medical imaging. This include fully
automatic anatomical structures segmentation, abnormality detection algorithms in dif-
ferent imaging modalities, biomechanical modelling, development of applications to be
clinically usable, or practical components for integration into clinical workflows. We
sincerely think that this document aims at further enhancing the dissemination of infor-
mation about the quality of the master and may be of interest to the scientific community
and foster networking opportunities amongst MAIA partners.

We finally want to thank and congratulate all the students for their effort done during
this last semester of the Joint Master Degree in Medical Imaging and Applications.

MATIA Master Academic and Administrative Board
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Optimizing stroke segmentation using acute brain CTA

Uma Maria Lal-Trehan Estrada, Luca Giancardo

School of Biomedical Informatics, UTHealth, Houston, TX, USA

Abstract

Background. Stroke is the second leading cause of death and the third leading cause of disability worldwide. Acute
ischemic stroke (AIS) accounts for 87% of all strokes. Prompt diagnosis and treatment of AIS patients is of vital
importance for the recovery and outcome of these patients. Effective treatment of AIS is predicted on neuroimaging.
Some models have been proposed to automatically segment stroke lesions from neuroimaging. Different from other
studies proposed in the literature, this work focuses on optimizing stroke lesion segmentation using acute brain CTA,
a widely available imaging modality. The hypothesis of this project is that stroke segmentation can be optimized using
as input a CTA scan from which there is a high difference between the stroke region and the rest of the brain.

Material and Methods. This study uses whole brain CTP data from AIS patients and treats them as sequential brain
CTA scans. For each patient, the ground truth stroke lesion segmentation is provided in MRI DWI images acquired
after successful recanalization. Firstly, the difference between the stroke region and the symmetrical region on the
contralateral hemisphere is analyzed using the Jensen Shannon Distance. The same analysis is made between the
hemispheres without considering the stroke area. This distance is statistically compared between different CTP time
scans (equivalent to CTA scans acquired at different times). Then, an adaptation of a previously proposed Deep
Learning based model for stroke detection (DeepSymNet) is implemented to automatically segment the stroke infarct
core from the CTAs. A patch based strategy is used to train the model, which takes as input the main patch to be
classified and the symmetric patch on the contralateral hemisphere. The segmentation results are evaluated using F1
score and are also statistically compared between different CTP time scans.

Results. Regarding the analysis of difference, the results show that a CTA scan acquired approximately 3 seconds
after the peak arterial enhancement phase provides significantly higher differences in the stroke area compared to
other scan start times. Concerning the segmentation, due to a high number of false positives mainly appearing in the
area of the skull, poor results (F1 score around 0.2) are obtained.

Conclusions. This works shows that a brain CTA scan acquired approximately 3 seconds after the peak arterial
enhancement phase, target phase for current CTA scan protocols, can provide higher information related to stroke
compared to acquisitions performed at any other time. Further work is required in order to improve the segmentation
results and being able to robustly compare the segmentation performance between CTAs acquired at different instances
of time so as to test the hypothesis of the project.

Keywords: Acute Ischemic Stroke, CT Angiography, Stroke Segmentation, Optimal CTA Scan Start Time, Peak
Arterial Enhancement Phase

1. Introduction

A stroke is a lesion characterized by the sudden death
of nerve cells due to restricted blood flow to a region
of the brain, resulting in a corresponding loss of neu-
rological function. This condition can be caused by
a blockage or a rupture of a brain artery. Depending
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on the cause, blockage or rupture, stroke is referred to
as ischemic stroke or hemorrhagic stroke, respectively
(Johnson et al., 2016).

The effects of stroke are diverse and depend on the
brain region that is affected. It can cause partial or com-
plete disability and it is a major cause of human death.
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In fact, stroke is the second leading cause of death and
the third leading cause of disability worldwide (Johnson
etal., 2016).

1.1. Acute Ischemic Stroke

Acute ischemic stroke (AIS) accounts for 87% of all
strokes and its main cause is atherosclerosis, which is
a narrowing of the arteries caused by accumulation of
plaque. Plaque, which consists of fatty deposits that line
the vessel walls, can provoke two types of obstruction:
cerebral thrombosis, which is a blood clot that grows
at the fatty plaque within the blood vessel, or cerebral
embolism, which is a blood clot developed at a differ-
ent location that travels through the circulatory system
until reaching vessels that are too narrow to allow its
circulation (der Worp and van Gijn, 2007).

For the patients with AIS, time is brain. With the on-
set of acute ischemia, cerebral autoregulation (a mani-
festation of local blood flow regulation) is able to main-
tain the cell viability. However, when the processes in-
volved in this autoregulation are exhausted, irreversible
ischemic damage (cell death) occurs in a progressive,
time-dependent manner (Brouns and De Deyn, 2009).
Therefore, prompt diagnosis and treatment of AIS are of
vital importance for the recovery and outcome of stroke
patients.

1.2. Neuroimaging

Effective treatment of AIS is predicted on neuroimag-
ing. While non-contrast head computed tomography
(NCCT) has played a role in excluding hemorrhage,
the introduction of intravenous thrombolysis with al-
teplase (a thrombolytic agent aimed at dispersing the
blood clot) (Hacke et al., 2008) has made advanced
imaging to be placed at the center of the immediate pa-
tient evaluation. Since the proven efficacy of mechan-
ical thrombectomy (Wahlgren et al., 2016), the main
goal of advanced imaging is to identify patients with
salvageable brain tissue who may benefit from vessel re-
canalization. Potentially salvageable tissue is called the
penumbra, while irreversibly injured tissue is referred to
as the ischemic core.

1.2.1. Non-contrast Computed Tomography

The initial imaging evaluation of an AIS patient usu-
ally begins with non-contrast head CT (NCCT). NCCT
is the fastest, easiest and most widely utilized imag-
ing modality in stroke. Its main purpose is excluding
hemorrhage. Ischemic changes, which are defined in
NCCT as hypoattenuation or loss of gray-white differ-
entiation, begin to appear on NCCT scan within sev-
eral hours. The Alberta Stroke Program Early CT Score

(ASPECTYS) is used to recognize the importance of
these changes and to subjectively asses the extent of
early infarct on NCCT. ASPECTS is a 10-points seg-
mental assessment of the middle cerebral artery (MCA)
vascular territory. One point is deducted from the ini-
tial score of 10 points if a region is involved (Pexman
et al., 2001). Despite its simplicity, ASPECTS can be
used as a measure of ischemic core. However, as a
semi-quantitative measure, it requires expertise and is
observer dependent. Another weakness of ASPECTS
includes the low resolution of CT in the detection of
early changes after AIS. Therefore, ASPECTS is com-
monly used, but its relevance in patient triage for treat-
ment has been limited due to the existence of more ad-
vanced imaging modalities.

1.2.2. Magnetic Resonance Imaging

As an initial evaluation, MRI is both more sensitive
and more specific for AIS than CT. Diffusion-weighted
imaging (DWI) shows changes as early as within a few
minutes of cell death. The ischemic core is identified
as a DWI lesion, characterized by its restricted diffusion
(Pavlina et al., 2018). Resource constraints limit the ap-
plication of non-contrast MRI to stroke triage at many
centers. Moreover, MRI imaging has been shown to de-
lay time to treatment, and the benefit of MRI over CT
for patient triage for thrombectomy is still unclear.

Ischemic changes can also be identified on fluid-
attenuated inversion recovery (FLAIR). However, in
this case, the changes appear over several hours
(Wouters et al., 2016).

1.2.3. Computed Tomography Angiography

CT angiography (CTA) of the brain is a noninvasive
technique which allows the visualization of the cerebral
arteries via contrast enhancement. CTA is standardly
used in the detection of large vessel occlusion (LVO)
(Reidler et al., 2020). After identifying an occlusion, the
presence of penumbral tissue guides the decision to per-
form endovsacular thrombectomy (EVT). The penum-
bra can be determined by qunatifying the collateral sup-
ply. Collateral circulation, which can be assessed by
CTA, is a network of arterial anastomoses supplying the
brain tissue when the main blood flow providers fail to
meet demands (Liebeskind, 2003). Poor collateral cir-
culation is associated to early and more extensive is-
chemic damage. Several studies have shown that the
degree of collateralization is correlated with the benefit
to thrombectomy (Bonney et al., 2019). However, the
quantification of collaterals has not been adopted in the
patient triage for EVT.
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Although collaterals have also been assessed with
MR angiography (MRA), the techniques are less vali-
dated than with CTA (Bonney et al., 2019).

In CTA, the optimal shape of the contrast bolus pas-
sage corresponds to a rapid rise, followed by a peak
enhancement plateau and a rapid fall (Hinzpeter et al.,
2019). The scan acquisition is aimed at capturing the
peak arterial enhancement phase, also referred to as mid
arterial phase. As opposite to single-phase CT angiogra-
phy (sCTA), multiphase CT angiography (mCTA) was
developed in order to obtain temporal information by
scanning beyond the peak arterial phase (Menon et al.,
2015). With mCTA, images in the late arterial and ve-
nous phases can be obtained, by repeating the CT acqui-
sition following a certain delay. Hypoperfused regions
will show low vessel opacification in the peak arterial
phase, while regions with delayed perfusion supplied by
collateral vessels will show vessel enhancement only in
the later phases. Therefore, collateral flow can be more
accurately analyzed by mCTA than by sCTA.

1.2.4. Computed Tomography Perfusion

CT perfusion (CTP) is a dynamic imaging modal-
ity where the first pass of a bolus of iodinated con-
trast agent is traced through the brain parenchyma by
repeated rapid scanning of the volume of interest im-
mediately after injection. The passage of the contrast is
depicted with a time-density curve (also called time at-
tenuation curve), which indicates the change in CT den-
sity of the imaged tissues as the agent passes through the
vasculature. This imaging modality provides physiolo-
gycal and pathophysiological information of the cere-
bral hemodynamics.

CTP, as well as MR perfusion, allow the calcula-
tion of different parameters that reflect different as-
pects of the hemodynamic state, such as cerebral blood
flow (CBF), time to peak (TTP), cerebral blood volume
(CVB) and mean transit time (MTT). CBF is the flow
rate of the blood within a brain region. When the blood
supply is compromised in a region, the CBF in that re-
gion is decreased. When there is no or very small CBF,
the brain tissue becomes irreversibly injured. TTP for a
given region is the time required to reach the maximal
attenuation. It is used to measure the time to perfuse a
territory. This time is increased in a region with com-
promised blood supply. Compared to CBF and TTP, the
effect of AIS on CBV is less intuitive. CBV is the to-
tal blood volume present in a region of the brain. In
AIS, CBV may be “normal” or even increased as a con-
sequence of the autoregulatory vasodilation. However,
when autoregulatory processes are exhausted, which
leads to irreversibly injured tissue, CBV is decreased.
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CBYV is divided by CBF to obtain MTT, which is the
time spent by the blood in the capillary phase.

As the contrast bolus flows through the vasculature,
the enhancement profile in Hounsfield units (HU) is
plotted against time and two attenuation curves are ob-
tained: a tissue enhancement curve and an arterial en-
hancement curve. These curves undergo mathematical
postprocessing (deconvolution), essentially, pixel scal-
ing, to create a single residue function enhancement
curve. All perfusion variables (CBF, TTP, CVB, MTT)
and final perfusion maps (maps representing the values
of the perfusion variables for each voxel of the brain)
are derived from these curves (Catanese et al., 2017).

Visual inspection of perfusion maps yields different
results between readers (Bivard et al., 2015) . To obtain
more consistent and objective results, perfusion maps
are commonly subjected to thresholding to identify is-
chemic core and differentiate it from penumbral tissue.
These thresholds held true when the pathological hemi-
sphere is compared with the healthy contralateral hemi-
sphere. The optimal thresholds to assess the core and
the penumbra on CTP have been extensively evaluated.
However, there is no conclusive definition of ischemic
core using CTP maps. Currently, the volume of tissue
with a relative reduction of CBF <30% as compared
with the contralateral hemisphere is commonly used to
estimate core on CTP (Garcia-Tornel et al., 2021).

Complete multimodal CT has been used to extend the
EVT window to 24 h (Nogueira et al., 2018).

However, CTP has some negative aspects. These neg-
ative aspects include a higher radiation dose compared
to sSCTA and mCTA; a higher bolus of contrast material,
which could cause renal complications; an increased ac-
quisition time and data processing time; the require-
ment of expensive software and licenses; the lack of
standardization across commercialized platforms; and
the limited availability of technicians trained to perform
such acquisition. Therefore, there is a pressing need to
screen patients that may be candidates for treatment us-
ing imaging data and expertise that are available while
maintaining the diagnostic and prognostic accuracy.

1.3. Goal of this project

Given the fact that CTA is available in most medi-
cal centers and compared to NCCT, it performs better
for the detection of AIS and estimation of infarct vol-
ume (Camargo et al., 2007), this work is focused on this
imaging modality, in particular, on optimizing stroke
segmentation using acute brain CTA.

Commonly, CTA acquisition protocols are designed
to maximize arterial-phase contrast enhancement, that



is, they aim to scan the brain at the mid arterial phase.
When there is ischemia, differences in the vasculature
and the brain tissue can be observed in the two hemi-
spheres of the brain. Depending on when the CTA scan
is started, there may not be sufficient delay time for a
steady state between arterial and tissue contrast material
to be reached, leading to low tissue enhancement and
a consequent low difference between hemispheres. In
particular, a non-considerable enhancement difference
between the stroke region and its symmetric contralat-
eral region hinders the detection of stroke.

In order to optimize stroke segmentation using acute
brain CTA, this work is aimed at finding the CTA scan
start time that maximizes the amount of stroke informa-
tion that can be extracted so as to use it as input for the
segmentation process.

This is achieved by comparing CTA scans acquired
at different instances of time after contrast material in-
jection. Specifically, based on what experts do when
visually inspecting, the difference between hemispheres
is analyzed. Although the brain is not perfectly sym-
metric, in healthy conditions, there are not substantial
differences in the intensity between one hemisphere and
the other (both hemispheres are equivalently perfused).
However, in an ischemic scenario, the intensity distribu-
tion may well differ between the affected region and the
contralateral symmetric region.

Furthermore, a representation learning model for is-
chemic core segmentation is trained and validated on
CTA scans acquired at different instances of time and
the segmentation results are compared with respect to
the CTA scan start time.

2. State of the art

Computed tomography perfusion (CTP) is a dynamic
imaging modality which gives functional information
useful to differentiate salvageable ischemic brain tis-
sue (the penumbra) from the irrevocable damaged tissue
(the infarct core), thereby guiding acute ischemic stroke
(AIS) therapy. However, perfusion imaging and inter-
pretation may not be available in a substantial number
of institutions. On the other hand, computed tomogra-
phy angiography (CTA) is available in most centers.

Considering this, a potential research path involves
the analysis of CTA as a proxy for perfusion imaging in
the detection of blood flow abnormalities.

Perfusion source data are a 4-dimensional data set,
3-dimensional volumes captured over time. This 4-
dimensional data set (CTP) can be seen as a sequence of
CTA scans performed at different time delays. For each

voxel in CTP, time-attenuation curves (TAC) can be ob-
tained. A CTA scan corresponds to one time point of
these curves for each voxel. Multi-phase CTA (mCTA)
corresponds to several (normally, 3) time points of these
curves.

Being able to automatically reconstruct the CTP
TACs from single-phase CTA (or mCTA), that is, for
each voxel, going from 1 (or 3) time points of the TAC
to several time points, would allow to obtain a synthetic
CTP and compute from that the perfusion parameters
necessary to assess AIS patient for a treatment. This
would be obtained using a faster, more widely avail-
able, less radiation-requiring and less contrast-requiring
imaging modality (CTA), compared to CTP. In addi-
tion, unlike estimating directly stroke related charac-
teristics, such as the infarct core volume, location and
delineation, which do not have a physical basis, recon-
structing the time-attenuation curves of CTP consists of
learning a real signal.

The ability to reconstruct the CTP TACs may vary
depending on the time at which the CTA scan given as
input is acquired. In particular, it is likely that inputting
a CTA scan acquired at a time instance at which higher
stroke information amount can be extracted will con-
tribute to a better TAC reconstruction and a more accu-
rate computation of the perfusion parameters.

This work analyzes CTA scanning start time for
higher stroke information amount extraction with the fi-
nal goal to optimize stroke segmentation. Therefore, a
literature review related to this topic is presented in this
section.

2.1. CTA protocol

In the literature, there are works that have analyzed
the CTA scan protocol focused on providing diagnos-
tically useful information about both the vascular and
parenchymal phases of brain enhancement. Some stud-
ies have analyzed the CTA scan protocol with the spe-
cific aim of obtaining more stroke information. How-
ever, as far as we are concerned, there is no work that
studies this by analyzing the difference between inten-
sity distributions of the stroke region and the symmetric
contralateral region.

Cademartiri et al. (2002) reviewed the parameters that
affect the geometry of the bolus in CTA and gave recom-
mendations for an optimal and robust scan protocol for
CTA. They define as optimal bolus geometry for CTA
an “immediate increase in the enhancement of the stud-
ied artery to a high maximum value of enhancement
just before the start of the acquisition of CT data and
a steady state in which the enhancement does not alter
during the acquisition”. In a real scenario, though, the
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optimal bolus geometry cannot be not reached. CTA is
normally acquired during the rise and the fall of the time
attenuation curve.

The time required for a contrast material to reach the
target vasculature varies among patients. For this rea-
son, ACR et al. (2020) recommend to perform an as-
sessment of patient-specific circulation time for optimal
CTA scanning.

Circulation timing can be performed using one of the
following techniques: bolus tracking or test bolus tech-
nique.

Bolus tracking is the most common technique for tim-
ing the scan start of CTA. This technique involves mon-
itoring the contrast enhancement in a predefined vessel.
After a threshold is reached, the scan is automatically
started after a predefined and fixed trigger delay (Cade-
martiri et al., 2002).

For the test bolus technique, a low dose of contrast
material is injected and low radiation dose, single-slice,
sequential scans are acquired at a slice containing the
vessel of interest, allowing the analysis of contrast en-
hancement over time and obtaining a time attenuation
curve. The peak of the obtained time attenuation curve
is used to compute the scanning delay after contrast
agent injection (Cademartiri et al., 2002).

Compared to the test bolus technique, the main ben-
efits of bolus tracking include its time efficiency, the
lower contrast material requirement and lower radiation
dose exposure. On the other hand, test bolus is a patient-
specific technique and it is able to remove the variability
of the bolus tracking technique. These two techniques,
though, are not specifically designed to obtain more in-
formation related to stroke, but for global optimal arte-
rial enhancement.

2.2. CTA optimization for stroke information

Focused on stroke, in the work published by Pulli
et al. (2012), they test whether the parameters of CTA
acquisition protocol affect the relationship between
acute ischemic infarct size on CTA source images and
concurrent DWI MRI images, being the measured areas
of hyperintensity at acute DWI used as the standard of
reference for infarct size (outlined manually by two neu-
roradiologists). They observe that CTA protocol modifi-
cations aimed at increasing imaging speed and optimiz-
ing arterial enhancement are associated with significant
overestimation of infarct size on CTA, which could lead
to inappropriate exclusion of patients who may benefit
from treatment. These protocol changes may prevent
sufficient delay time for a steady state between arterial
and tissue contrast material to be reached. In this work,
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they also report that a time of 38 seconds to imaging
(with respect to contrast injection) of the middle of the
anterior circulation territory shows good discrimination
between good and poor agreement between the infarct
volume on CTA and the infarct volume on DWIL.

Based on the fact that some studies have shown that
CTA ASPECTS can predict final infarct size and clinical
outcome better than NCCT ASPECTS, in the work done
by Lee et al. (2020), they assess the value of each phase
of a mCTA comprised of NCCT, arterial phase CTA
(CTA-AP) and delayed phase CTA (CTA-DP) in pre-
dicting final infarct core and clinical outcome in AIS pa-
tients undergoing endovascular treatment (EVT). The fi-
nal ASPECTS (ground truth) is obtained from DWI per-
formed 36 h after treatment. By computing the correla-
tion between pretreatment ASPECTS (NCCT, CTA-AP
and CTA-DP) and final DWI ASPECTS, they observe
that CTA-DP ASPECTS is a reliable tool to predict final
infarct score in patients undergoing EVT of AIS, better
than CTA-AP and NCCT (the correlation between CTA-
DP ASPECTS and DWI ASPECTS is greater).

These studies show that a CTA acquired some sec-
onds after the peak of arterial enhancement may well
increase the amount of stroke information that can be
extracted.

2.3. Metrics for the calculation of the difference be-
tween distributions

In a lot of situations, it is commonly necessary to
compute the difference between two probability distri-
butions for a given variable. For instance, in machine
learning, it is often required to calculate the difference
between an observed probability distribution and an ac-
tual one.

This can be performed using methods from informa-
tion theory, like the Kullback-Leibler Divergence (KL
Divergence) and the Jensen-Shannon Divergence (JS
Divergence), which is a normalized and symmetrical
version of the KL divergence.

KL divergence. The Kullback-Leibler divergence
(Kullback, 1959), also referred to as relative entropy,
between two distributions P1 and P2 is calculated as
the negative sum of the probability of each event in P1
multiplied by the logarithm of the probability of the
same event in P2 divided by the probability of the event
in P1 (Equation 1).

Pl(x)
KL(P1|| P2) = Pl(x) log( ) (1
;\, P2(x)

In the case of intensity probability distributions, an
event corresponds to an intensity value. Therefore,



when the probability for an intensity from P1 is high,
but the probability for the same intensity in P2 is small,
the divergence is high. The logarithm can be base-2 or
base-e giving “’bit” or “nats” units. A score of 0 indi-
cates identical distributions. A positive divergence indi-
cates different distributions.

JS divergence. The Jensen-Shannon divergence (Lin,
1991) uses the KL divergence to compute a normalized,
symmetrical score (Equation 2). Since it is symmetri-
cal, the divergence from one probability P1 to another
probability P2 is the same as the divergence of P2 from
P1.

JS(P1|| P2) = %KL(PI || M) + %KL(PZ M) (2)

1
where M is E(Pl + P2) and KL is the KL divergence.

JS distance. The Jensen-Shannon distance (JS dis-
tance) is calculated as the square root of the Jensen-
Shannon divergence.

These metrics can be used for providing a score that
represents the difference between the intensity probabil-
ity distributions of the stroke region and the symmetric
contralateral region in a brain CTA of an AIS patient.

2.4. Stroke segmentation / detection from CTA

Stroke lesion segmentation from neuroimaging has
been a research area in the medical image analysis
field. Different machine-learning based models have
been proposed to segment stroke lesions in an auto-
mated way (Lucas et al., 2018), (Zhang et al., 2018),
(Kuang et al., 2021). However, considering the scope
of the literature searched, no model has been found to
automatically segment stroke from brain CTA scans.

Deep Symmetry-Sensitive Convolutional Neural Net-
work (DeepSymNet) is a model designed for predicting
if a patient has suffered from AIS (Barman et al., 2019),
(Sheth et al., 2019). Based on the fact that the two
hemispheres of the brain are visibly different in CTA
images in an ischemic scenario, and inspired from the
paradigm of Siamese networks, the model compares the
two hemispheres of the brain, which are processed in
parallel, to detect ischemic stroke from CTA brain im-
ages.

A Siamese network, originally proposed in Bromley
et al. (1993), uses identical neural networks with the
same weights to learn the differences and the similari-
ties between two or more inputs.

Instead of using a cost function to compare the out-
puts of the identical networks as most proposed models
do, DeepSymNet employs convolutional layers to learn
the differences contained in the output of the identical
networks.

The model takes as inputs the CTA images of the two
hemispheres of the brain. Two identical convolutional
neural networks (CNN5s) are used to learn low and high
level features of the 3D volumes. Then, a merge layer
calculates the difference in absolute value between the
outputs of the CNNs. By adding further convolutional
layers, the model is aimed at learning the asymmetry
information contained in the difference obtained by the
merge layer. Finally, after max-pooling, the output pre-
dictions (stroke or no stroke) are obtained through a
fully connected layer.

Since DeepSymNet provided good results (AUC
0.914) in recognizing stroke from CTA images, an adap-
tation of this model is used in the current work for seg-
menting the stroke core from specific time scans of CTP
images (equivalent to CTA scans).

3. Material and methods

In this section, the data used in this study is described,
followed by the description of the procedures that have
been implemented, which include:

e Data preparation

e Extraction of the infarct core region and the con-
tralateral region (and corresponding hemispheres)
Difference between intensity distributions

Core segmentation

Core segmentation evaluation

3.1. Data

The data used in this study was acquired in the Uni-
versity of lowa Hospitals & Clinics, Iowa City, United
States. 112 acute ischemic stroke patients who un-
derwent whole brain CT perfusion acquired at acute
phase and MRI diffusion-weighted imaging acquired af-
ter successful recanalization were included in this study.
Data from one patient of the IOWA dataset can be seen
in Figure 1.

As for the CTP, all scans were done with 40 ml of
nonionic iodinated contrast (Isovue-370) followed by
50 ml of saline. The CTP protocol included a rapid se-
quential scanning, with 4 scans each 3 seconds (s) apart
followed by 15 scans 1.5s apart and another 9 scans 3s
apart, totaling 28 scans over approximately 60s (Limaye
etal., 2019).
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Figure 1: Axial slices of 4 different instances of time of the CTP (4 first rows: Oth time, early arterial phase, mid arterial phase and delayed venous
phase) and axial slices of the MRI DWI with the manual segmentation overlayed in white (last Sth row) of one patient of the dataset. Images are

aligned to the MNI space.

Even though the same protocol was aimed to be fol-
lowed, the number of scans varied from subject to sub-
ject depending mainly on the tolerance of the patient. In
the used dataset, this number ranges from 8 to 30 scans.

Each CTP scan consisted of 512x512x158 voxels
with a slice thickness of 1 mm and a resolution of 0.39
mm on the x-y plane.

RAPID charts (iSchemaView Inc, Menlo Park, CA)
were also obtained from the CTP data. Based on arterial
and venous contrast vs. time concentration curves ob-
tained by RAPID, three time points, simulating a three-
phase CTA (early arterial phase, mid arterial phase and
delayed venous phase), were selected from the CTP of
each patient.

The gold standard, manual infarct core segmentation,
was delineated by a medical doctorate student on MRI
DW imaging.

The DWI data consists of 128x128x22 voxels with a

slice thickness of 7 mm and a resolution of 1.875 mm
on the x-y plane.
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3.2. Data preparation

3.2.1. Image conversion

MRI DWTI scans and the corresponding manual in-
farct core segmentations were given in Nifti format,
while CTP images were in DICOM format.

CTP data was converted from DICOM format (.dcm)
to compressed Nifti format (.nii.gz). This conversion
was performed using “dcmstack”, a package for stack-
ing DICOM images into multi dimensional arrays.

3.2.2. Image registration

Image registration was performed in order to align the
CTP and the DWI data.

”SimpleElastix”, which is an extension of ”Sim-
pleITK” that allows to configure and run “Elastix” pro-
gram, was used to perform the automatic intensity-
based registrations.

In all cases, a rigid affine registration with multi res-
olution strategy was performed. Advanced normalized
correlation was used as the metric for the transformation
optimization.

DWI to CTP. For each patient, DWI was registered to
CTP. Since CTP consists of various scans, a processed



version of the median across time of the CTP scans (me-
dian CTP) was used as the fixed image for the registra-
tion process. The processing performed to the median
CTP consisted in setting to 0 intensity values lower than
0 or higher than 95 Hounsfield Units (HU) and smooth-
ing using a Gaussian filter.

This processing steps were aimed at obtaining a fixed
image on the CTP space that is more similar to a DWI in
terms of intensity values. In DW imaging the skull and
the vessels are not enhanced, while in contrast-enhanced
CT imaging, the skull and the vessels have very high
intensity values.

The transformation parameters found in the DWI-to-
CTP registration were used to align the manual infarct
core segmentation to the CTP space.

After this process, all data belonging to the same pa-
tient was aligned in the same space.

CTP to MNI. In order to have all the data in the
same space, data was registered to an image previously
aligned to the MNI space, a standard space for the hu-
man brain.

Specifically, the fixed image corresponded to the me-
dian taken from a number of CTA scans previously reg-
istered to the MNI space.

For each patient, the moving image used in this reg-
istration process was a processed version of the median
across time of the CTP scans (median CTP). The pro-
cessing consisted of setting to 0 all negative intensity
values and smoothing using a Gaussian filter. This pro-
cessing was aimed at increasing the similarity between
the moving and the fixed image. Compared to the pre-
vious registration process, in this case, in both fixed and
moving images, the skull was represented by very high
intensity values. Therefore, high intensity values were
not removed in this case.

The transformation parameters found in the CTP-to-
MNI registration for each patient were used to trans-
form all the CTP acquisitions, the DWI and the manual
infarct core segmentation to the MNI space.

After this process, all data was aligned to the MNI
space.

CTP registration across time. In order to correct pos-
sible motion artifacts, CTP scans already registered to
the MNI space were registered across time.

The median of the CTP images across time was used
as the fixed image to which all CTP scans were regis-
tered.

Registration corrections. After the automatic registra-
tion process, the resulting transformed images were vi-

sual inspected and registration corrections were per-
formed if considered necessary.

Registration corrections were made using 3D Slicer
software (Fedorov et al., 2012).

3.3. Extraction of the infarct core region and the con-
tralateral region (and corresponding hemispheres)

The amount of stroke information that can be ex-
tracted for each CTP scan was quantified based on what
experts do when visually inspecting CT brain scans for
stroke detection, by comparing the two hemispheres of
the brain. Since the CTP images are equivalent to CTA
scans acquired at different times, with lower quality,
though, they will be referred to as CTA scans.

In particular, for each CTA, the intensity distribution
of the following region pairs was compared:

3.3.1. Infarct core region and contralateral region
Core region. For each CTA scan, all the voxels manu-
ally segmented as infarct core in the corresponding DWI
image were extracted.

Contralateral region. The contralateral region was ob-
tained by taking the symmetric region on the contralat-
eral hemisphere.

3.3.2. Stroke hemisphere without the stroke region and
corresponding contralateral region

The intensity difference was also analyzed in the
healthy tissue of the brain.

The healthy tissue extraction was made on a pre-
processed brain without the skull and the backgorund.
After removing the voxels corresponding to skull and
background based on intensity thresholding, grayscale
morphology was used to fill the possible holes (black
voxels) that could have appeared. Holes are local min-
ima in the grayscale topography that are not connected
to boundaries of the image. Gray level values adjacent
to a hole were extrapolated across the hole.

Core hemisphere. The voxels on the affected hemi-
sphere were extracted without considering the affected
region, that is, the infarct core region.

Contralateral hemisphere. The voxels on the con-
tralateral healthy hemisphere were extracted also with-
out considering the contralateral region symmetric to
the core region.
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3.4. Difference between intensity distributions

With the aim of quantifying the amount of stroke
information that can be obtained from CTAs acquired
at different times, the difference between the “core re-
gion” and the “contralateral region” was analyzed for
each CTA scan. This difference was also obtained for
the ”core hemisphere” with respect to the “contralateral
hemisphere”.

Jensen-Shannon distance (JS distance) was used to
calculate the difference between intensity distributions.
For each patient, the JS distance was calculated for each
CTA scan, and the instance of time corresponding to the
maximum value was obtained.

For each patient, the following variables calculated
from the CTA were plotted against the scan start time:

e Median intensity of each of the four regions (“core
region”, “contralateral region”, ”core hemisphere”
and “contralateral hemisphere”).

e Median intensity difference between the two re-
gion pairs (“core region” vs “contralateral region”
and “core hemisphere” vs “contralateral hemi-
sphere”).

e ]S distance of “core region” vs “contralateral re-
gion” and “core hemisphere” vs “contralateral

hemisphere”.

The obtained curves were analyzed visually. Based
on this visual inspection, motion artifacts present on
the curves were examined and patient discard was per-
formed if considered appropriate.

The time corresponding to the maximum JS distance
was obtained for each patient. Also, the median along
the patient dimension of this time, calculated with re-
spect to the mid arterial phase time, was computed. This
was used to have an equivalent time to maximum JS dis-
tance for all the patients, and it will be referred to as the
relative time of maximum JS distance.

Then, the JS distance values were compared among
CTAs corresponding to 6 particular time points:

Oth time point. Equivalent to a NNCT.
Early arterial phase.

Mid arterial phase.

Delay venous phase.

Time of maximum JS distance.
Relative time of maximum JS distance.

A

The comparison was done on these selected time
points since they correspond to enhancement phases
equivalent among patients, except for point 5. The time
corresponding to CTA providing the maximum JS dis-
tance represents the ”optimal” CTA that can be obtained
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for each patient, thus, specific to each patient. The
relative time of maximum JS distance (point 6) is the
patient-equivalent version of the previous one. The Oth
time point was used to have an equivalent non-contrast
CT scan. The three phases, early arterial, mid arterial
and delayed venous, correspond to the time points pro-
vided by the RAPID charts.

For the 6 CTAs of each patient, the JS distance be-
tween the two region pairs was obtained.

Statistical difference. Mann—Whitney U test was used
to compute the statistical significance of the difference
between the JS distance values. It consists of a nonpara-
metric test of the null hypothesis used to test whether
two samples are likely to derive from the same popula-
tion.

Using this test, for both cases (“core region” vs ” con-
tralateral region” and “core hemisphere” vs “contralat-
eral hemisphere”), the JS distance was compared be-
tween all the possible pairs of the 6 above-mentioned
time points.

Also, for each of the 6 time points, the statistical dif-
ference between the JS distance “core vs contralateral”
and the JS distance “core hemisphere vs contralateral
hemisphere” was analyzed.

3.5. Core segmentation

Automatic segmentation of the infarct core was per-
formed from each of the 6 CTA scans listed in 3.4. Thus,
in total 6 experiments were performed:

Segmentation from Oth time CTA.

Segmentation from early arterial phase CTA.
Segmentation from mid arterial phase CTA.
Segmentation from delay venous phase CTA.
Segmentation from CTA providing the maximum
JS distance.

6. Segmentation from CTA corresponding to the rel-
ative time of maximum JS distance.

ARl

DeepSymNetV2. The segmentation was based on an
adapted version of DeepSymNet classification model,
referred to as DeepSymNetV2 (Figure 2):

o Input: CTA patch (3D) of certain window size and
symmetric contralateral patch (flipped).

e Output: classification of the central voxel of the
patch into infarct core or not infarct core.

In this architecture (Figure 2), a VGG module (VM)
consists of two consecutive convolutional layers with
3x3x3 filters (24 filters are used in total) followed by
a max pooling layer of 2x2x2 size. The difference layer



Figure 2: DeepSymNetV2. (VM: VGG module, DL: difference layer, CP: convolution followed by max pooling, ML: merge layer, FC: fully

connected layer).

(DL) calculates the difference between VM outputs. A
CP module is composed by a convolutional layer with
3x3x3 filters (8 filters are used in total) followed by
max pooling (2x2x2). ML stands for merge layer and
consists of a concatenation operation. Two consecu-
tive fully connected layers (FC) preceed the final out-
put layer with the prediction of the class (infarct core /
not infarct core). The convolution outputs are activated
using ReLU. The final FC that leads to the output prob-
abilities uses softmax activation.

DeepSymNetV2 was used to classify the central
voxel of 3D patches of brain CTAs into infarct core or
not infarct core. In order to balance the computational
cost with an appropriate size to capture the stroke re-
gion, a window size of 31x31x31 was used to extract
patches from CTA data.

The dataset was split into training (70% of the data)
and test sets (30% of the data). 20% of the data of the
training set was used for validation. The same train-
validation-test split was used in all experiments.

For training the model, not all the patches from the
training set, but a selected subset, were used. Specif-
ically, both classes (infarct core and not infarct core)
were equally represented in the training subset. This
way, class imbalance present in the whole training set
was avoided.

The input of the model consists of the main patch,
from which the central voxel is aimed to be classi-
fied, along with its symmetric patch on the contralateral
hemisphere. The contralateral patch is flipped in order
to facilitate the network learning process.

Two identical convolutional neural networks (CNNs),
with identical weights, are used to learn the low and
high level 3D patch representations. This CNNs ar-
chitecture employs 2 VMs one after the other. Then, a
difference layer (DL) calculates the difference between
the high-level convolution filter outputs common to the
two patches. Afterwards, two modules composed by a
convolutional layer followed by max pooling layer (CP)
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are used to learn information about the asymmetry of
the two patches. Two other CP modules are used to
learn further information from the VM outputs of the
main patch. The outputs from the CP modules are then
merged (ML), simply concatenated, and the merged re-
sult is then connected to two fully connected layers (FC)
leading to the final output prediction layer, outputting
logits with values from O to 1.

For all experiments, Adam optimizer with a learn-
ing rate of 1E-4 was used to minimize the classifica-
tion loss function, binary cross-entropy. The model
was trained for 100 epochs. Early stopping was im-
plemented by monitoring the validation average preci-
sion (AP), a metric that summarizes the precision-recall
curve as the weighted mean of precision values achieved
at each threshold (Equation 3).

AP = 3 (R, =R, )P, 3)
n

where P, and R, are the precision and recall at the
nth threshold.

Therefore, for each experiment, the best model was
selected as the one providing the highest AP score in
the validation set.

3.6. Core segmentation evaluation

For each experiment, the test set was used to evaluate
the segmentation model performance.

Core segmentation from patch classification. Due to
computation related issues, not all the brain voxels of
each test patient were inferred. Only the central voxel
of windows covering the brain with a 50% of overlap
were inferred. Afterwards, in order to get segmenta-
tion probabilities for the whole brain, not inferred vox-
els were assigned the classification prediction of their
nearest neighbor classified voxel.

Once the probabilities were obtained for each test
brain, F1 score (Equation 4) was calculated between
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the ground truth segmentation and different thresholded
segmentation results. Since the network outputs proba-
bilities, to obtain a binary segmentation result, the prob-
abilities need to be thresholded. F1 score is equivalent
to a metric commonly used to evaluate segmentation re-
sults, the Dice Coeflicient:

(precision * recall)

“4)

Flscore =2 % —
(precision + recall)

where an F1 score reaches its best value at 1 and
worst score at 0.

”F1 score vs threshold” curves were obtained for each
patient in the test set. A median curve along the pa-
tient dimension was calculated and from that, the maxi-
mum F1 score and corresponding threshold, referred to
as “’best threshold”, was obtained.

Statistical difference. For each test patient, an F1 score
value was obtained using the specific “best threshold”,
for each experiment. The F1 score distribution on the
test set was statistically compared between experiments
using the Mann-Whitney U test.

4. Results

4.1. Image registration

Some misregistration results were observed after the
automatic alignment processes, thus, manual registra-
tions using 3D slicer were performed on those cases.
Regarding the alignment to the CTP space, the regis-
tration was reperformed for 10 cases. Concerning the
alignment to the MNI space, the registration was reper-
formed for 5 cases.

Due to high motion observed between the CTP scans
and because of bad registration results difficult to re-
cover, 2 cases were discarded from the study. This led
to a dataset consisting of 110 subjects.

4.2. JS distance

The JS distance between the “core region” and the
“contralateral region” and the JS distance between the
”core hemisphere” and the “contralateral hemisphere”
was obtained for the 110 subjects of the registered
dataset.

Due to lack of information regarding the three phases
(early arterial, mid arterial and delayed venous), 18
cases were further discarded for the subsequent experi-
ments, leading 92 patients in total.

The plots obtained for some of the patients can be
seen in Figures 3 and 4.
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Figure 3: Patient SAS-0905: a) Median intensity (HU) of the core re-
gion (red), the contralateral region (black), the core hemisphere (light
red) and the contralateral hemisphere (gray). b) Difference of the me-
dian intensity between the contralateral and the core regions (light
blue) and between hemispheres (lighter blue). ¢) JS distance between
the core and contralateral regions (patches in the plot legend) and
hemispheres. d) JS distance between the core and contralateral re-
gions corresponding to the three phases (early arterial, mid arterial
and delayed venous phase) (blue points), and the green point, the value
corresponding to the time of maximum JS distance. The number next
to the colored points is the corresponding time in seconds.

Inspecting the curves from patient "SAS-0905" (Fig-
ure 3), it can be observed that, at the beginning (first
time points), the curves are not smoothed, rather, they
change abruptly from one time point to another. By fur-
ther inspecting the CTP registered data using 3D slicer
software, motion was observed in the first CTP scans
of this patient, which led to the decision of discarding
this patient for the subsequent experiments (segmenta-
tion task).

Other similar cases (5 in total) were observed and also
discarded. This led to a final dataset of 87 patients.

In most of the cases, 49 out of 87, the CTA providing
the highest JS distance between the “core region” and
the “contralateral region” corresponds to a scan start
time between the mid arterial phase and the delay ve-
nous phase, as in Figure 4 (green point in the 4th row
graph) (see Table 1).

4.3. Relative time to maximum JS distance

The time corresponding to the mid arterial phase was
used as a reference to compute the relative time of max-
imum JS distance.



Figure 4: Patient SAS-0902: a) Median intensity (HU) of the core re-
gion (red), the contralateral region (black), the core hemisphere (light
red) and the contralateral hemisphere (gray). b) Difference of the me-
dian intensity between the contralateral and the core regions (light
blue) and between hemispheres (lighter blue). ¢) JS distance between
the core and contralateral regions (patches in the plot legend) and
hemispheres. d) JS distance between the core and contralateral re-
gions corresponding to the three phases (early arterial, mid arterial
and delayed venous phase) (blue points), and the green point, the value
corresponding to the time of maximum JS distance. The number next
to the colored points is the corresponding time in seconds.

Table 1: Time of acquisition of the CTA providing the highest JS
distance between the “core region” and the “contralateral region”.

CTA scan time Cases

Before early art. phase 1

= Early art. phase 1

Between early and mid art. phases 3
= Mid art. phase 10
Between mid art. and delayed ven. phases 49
= Delayed ven. phase 5
After delayed ven. phase 18

The median, along the patient dimension, of the rel-
ative time of maximum JS distance is 3 seconds with
respect to the mid arterial phase (Table 2). Therefore,
this time is used to take for each patient an equivalent
acquisition that approximates the optimum one (the one
that maximizes the JS distance).
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Table 2: Quantile values of the relative time to maximum JS distance
(time of maximum JS distance minus time of mid arterial phase).

Quantile [0 - 1] 0 0.25 | 0.5 | 0.75 1
-3.0 S 3.0 | 6.0 | 195

Time [s]

4.4. Statistical difference of JS distance

The statistical analysis of the JS distance is presented
in this section by box plots for each distribution and the
statistic test result above each plot. The following p-
value annotation is used:

ns: SE-02 <p <=1

*: 1E-02 <p <= 5E-02
**: 1E-03 <p <= 1E-02
**%: 1E-04 <p <= 1E-03
ik p <= 1E-04

4.4.1. Stroke region vs. Contralateral region

The statistical difference between each pair of CTAs
of the JS distance (JSD) between stroke region” and
“contralateral region” can be seen in Figure 5.

Figure 5: Box plots of the distribution of the JS distance between
regions for each of the 6 different CTAs.

CTA providing the maximum JSD vs Others. It can
be observed that the JSD distribution from the CTAs ac-
quired at the instance of time of maximum JS (Max.
JSD, purple in Figure 5) is significantly higher than all
the others except for 3s Mid, which is its equivalent ver-
sion (CTAs of the relative time of maximum JS, brown
in Figure 5).
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NCCT (0th) vs Others. The JSD values provided by the
equivalence of a NCCT (Oth time CTA) are significantly
lower than the values obtained by all the other CTAs,
except for the early arterial phase CTA. Both Oth and
early arterial phase CTAs provide lower JSD compared
to the other CTAs.

Mid arterial phase CTA vs Others. Mid arterial JSD
distribution (in green) is not significantly different from
the ones corresponding to the delayed venous CTA,
early phase CTA and NCCT. However, it is significantly
lower than the maximum JSD distribution (Max. JSD,
in purple).

CTA acquired 3s after the mid arterial phase vs Oth-
ers. The JSD values obtained by the CTA scan corre-
sponding to the relative time of maximum JSD (3s Mid)
are significantly higher than the ones obtained with a
NCCT and an early phase CTA scan. However, they
are not significantly higher than the ones obtained with
a mid arterial phase CTA, which is the currently used
target CTA scan.

The highest median JSD value corresponds to the
Max. JSD distribution (Figure 5).

4.4.2. Stroke hemisphere vs. Contralateral hemisphere

The statistical difference between each pair of CTAs
of the JS distance (JSD) between “stroke hemisphere”
and “contralateral hemisphere” can be seen in Figure 6.

Figure 6: Box plots of the distribution of the JS distance between
hemispheres for each of the 6 different CTAs.

NCCT (0th) vs Others. As ithappened in the difference
between regions, between hemispheres, the JSD values
provided by the equivalence of a NCCT (Oth time CTA)
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are significantly lower than the values obtained by all
the other CTAs, except for the early arterial phase CTA.

Mid arterial phase CTA vs Others. The JSD distribu-
tion obtained from the mid arterial phase CTA is only
significantly different (higher) with respect to the NCCT
and the early arterial phase CTA.

CTA providing the maximum JSD vs Others. The
Max. JSD distribution is only significantly different
from the early arterial phase JSD and the NCCT JSD
and it is very similar to the CTA corresponding to 3s
after the mid arterial phase (3s Mid).

The highest median JSD value corresponds to the mid
arterial phase distribution (Figure 6).

4.4.3. Stroke regions vs. Stroke hemispheres

As it can be noticed in Figure 7, for all CTAs, the JS
distance between the “core region” and the “contralat-
eral region” is significantly higher than the JS distance
computed between the “’core hemisphere” and the “con-
tralateral hemisphere”.

4.5. Stroke segmentation

The results of the segmentation process can be seen
in Table 3.

For all 6 experiments, the best validation average pre-
cision achieved was higher or equal than 0.75. The
highest validation average precision was achieved when
training from mid arterial phase CTAs and CTAs cor-
responding to the relative maximum JSD (0.84 in both
cases).

As for the AUC achieved on the validation set, in
all cases, it was higher than 0.8, being the highest 0.87
achieved in the mid arterial phase CTA experiment.

Regarding the evaluation of the segmentation on the
test set, the maximum F1 score obtained from the me-
dian ”F1 score vs threshold” curve across the test set
can be seen in Table 3. Although high classification
performance was achieved in the training and validation
sets, noticeably, F1 score values obtained for the recon-
structed test segmentations are very low. The highest
F1 score is 0.24, for the relative time of maximum JSD
experiment.

The results obtained for one of the test examples for
the mid arterial phase experiment are shown in Figure
8.

As an issue observed in many other patients for all
6 experiments, from the axial slices in Figure 8, it can
be seen that the network is able to predict quite well
the location of the stroke, since high probabilities are



Figure 7: Statistical comparison of the JS distances between “regions” and “hemispheres” for each of the 6 analyzed CTAs.

Table 3: Best validation average precision and corresponding validation AUC (rows 2 and 3) of the validation brain patches classification results.
Maximum F1 score (row 3) using the “’best threshold” specific to each experiment (row 4) of the test segmentation results.

CTA OTH | EARLY ART. | MID ART. | DELAYED VEN. | MAX. JSD | REL. MAX. JSD
Validation Average Precision [0-1] 0.75 0.80 0.84 0.82 0.82 0.84
Validation AUC [0-1] 0.80 0.81 0.87 0.83 0.82 0.85
Max. F1 score of the median curve [0-1] 0.1 0.2 0.19 0.2 0.15 0.24
”Best” threshold [0.000 - 1.000] 0.715 0.756 0.690 0.884 0.737 0.833

observed in the core region. However, a lot of false pos-
itives can be observed around the skull area. Some false
negatives are observed too.

The poor F1 score values are mainly due to the high
quantity of false positives present around the brain skull
observed in many cases.

A statistical comparison of the F1 score values for the
test patients obtained for each experiment can be seen
in Figure 9, where it can be seen that there is no signifi-
cant difference in any case except between the F1 score
distributions obtained from the ’mid arterial phase” and
the ”0th” time. That is, the distribution of F1 scores of
the test set computed from the mid arterial phase CTA
is significantly higher than the one obtained when us-
ing NCCT scans. However, the values of this metric, as
commented before, are very low in all cases.

5. Discussion

This study focuses on optimizing stroke segmentation
using acute brain CTA. To our knowledge, there is no
method described in the literature that analyzes the CTA
scan protocol with the specific aim of extracting higher
stroke information and thus helping the segmentation
process.

In this work, this is tackled by examining the differ-
ence in intensity between the stroke region in the af-
fected brain hemisphere and the symmetric region in the

contralateral hemisphere. This analysis of difference is
based on what experts do when visually inspecting CT-
based scans for detecting stroke, which consists of com-
paring visually both hemispheres of the brain to detect
the subtle changes that are caused by ischemia. In an is-
chemic scenario, the blood flow to a region of the brain
is restricted. Therefore, during the injection of contrast
enhancement material, which travels through the blood
vessels, less enhancement will be observed in the stroke
area compared to the rest of the brain, which is normally
perfused, as in healthy conditions.

Jensen Shannon distance, a metric based on
Kullabck-Leibler divergence, is used in this work to
quantify the difference between intensity distributions.
This metric has been chosen as it is a robust metric to
compare two distributions that was originated in infor-
mation theory and used in many other applications, such
as in the machine and deep learning fields.

In most of the patients analyzed in this work, a higher
Jensen Shannon distance is obtained in CTAs acquired
between the mid arterial phase and the delayed venous
phase. It is worth to notice that this difference is signifi-
cantly higher between the “’stroke region” and the ’con-
tralateral region” than between the “’stroke hemisphere”
and the “contralateral hemisphere”. This is important
considering that the proposed classification model bases
its decision by comparing each patch to its symmetri-
cal contralateral patch. Therefore, if the JS distance
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Figure 8: Test example. Axial slices of the mid arterial pahse CTA (in the background), ground truth core segmentation (overlayed in pale orange)
and the reconstructed network probabilities (overlayed in gray scale, from black to white). Examples of false positives in red frame; examples of

true positives in green frame.

Figure 9: F1 score distributions on the test set for each of the 6 exper-
iments and corresponding statistical difference.

between the “core region” and the “contralateral re-
gion” was not significantly higher than the JS distance
between the “core hemisphere” and the “contralateral
hemisphere”, the network would not be able to detect
the stroke area and differentiate it from the rest of the
brain.

Then, if using a CTA scan acquired between the
mid arterial and delayed venous phases is associated to
a better automatic stroke segmentation, something not
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proved in this study, then, the CTA protocol should be
changed according to that. Instead of targetting the peak
arterial enhancement phase, CTAs should be acquired
some seconds after this phase. However, it should also
be pointed out that the time required for contrast ma-
terial to reach the target vasculature varies among pa-
tients. Therefore, instead of providing the same time
to scanning for all subjects, a patient-specific variable
should be calculated. However, this becomes more
complex since it requires the prior knowledge or prior
analysis of the patient-specific circulation timing.

Deep learning based methods have yield very good
results in many image medical problems. Stroke lesion
segmentation has been a research of study and different
methods have been proposed to automatically segment
stroke core from neuroimaging. However, these meth-
ods have designed their models using NCCT, CTP or
MRI DWI images. On the contrary, in this study we
focus on CTA, because it is an imaging modality used
in many medical centers, more feasible than CTP and
MRI for evaluating AIS patients at acute phase and bet-
ter than NCCT in the detection of stroke, as reported in
previous studies.

CTA protocol is aimed at capturing the peak arte-
rial enhancement phase. The CTA scan start time is
an essential variable in the context of this work, since
depending on this time, the enhancement of the brain
tissue varies and so does the difference intensity be-
tween the stroke region and its corresponding symmet-



rical area. Although not proved in this study due to the
poor segmentation results obtained, it is likely that a
model designed for segmenting infarct core from CTA
will benefit from the difference that can be extracted
from the stroke region and its corresponding contralat-
eral region. In particular, providing a CTA with a higher
difference is expected to be associated to a higher seg-
mentation performance.

In this work, a segmentation model has been trained,
validated and tested with the aim to test this hypothesis.
However, poor segmentation results have been obtained,
limiting the comparison among the different CTA scans
(with different scan start times).

The low values of the F1 score metric used to evalu-
ate the segmentation results are mainly caused by the
false positives observed around the area of the brain
skull. Since the brain is not symmetric, compared to
patches inside the brain, patches around the area of the
skull are likely to be more different than their symmetric
patches on the contralateral hemisphere. A patch from
the skull may take more voxels, or less, corresponding
to background compared to its corresponding symmet-
rical patch. Background intensities are different from
the ones shown inside the brain. This may well lead to a
misclassification of the patch as infarct core, since the
proposed network is focused on detecting differences
between patches. Furthermore, since the proposed clas-
sification network (DeepSymNetV2) only sees patches
but not the whole brain, it is not able to learn where the
skull is and thus it is not able to tackle this problem.

Future work includes trying to reduce this false pos-
itives so as to obtain robust results and being able to
perform a comparison among CTAs acquired at differ-
ent instances of time. A potential way to approach this
issue is to add at a second stage of the segmentation pro-
cess a U-Net model. The input of the U-Net would be
slices of the brain CTAs along with the inferred prob-
abilities of those slices. The aim of the U-Net would
be to learn the skull location and learn not to classify
voxels from that area as infarct core.

Despite the obtained low F1 scores, by visual exami-
nation of the segmentation results, it has been observed
that in many cases the location of the stroke is well pre-
dicted by the network. This demonstrates the power of
the adapted version of the DeepSymNet (inspired by
the paradigm of siamese networks) in the detection of
stroke even from low-quality images, as the ones used
in the current study.

Another aspect to point out is that the proposed model
has been trained, validated and tested using the same
data split. Instead, in order to utilize the data better,
cross-validation technique should be considered in fu-
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ture work.

It is also worth mentioning that the CTP data used
in this study has followed the same acquisition protocol
in all cases. Then, image quality, which is quite low
(lower signal-to-noise ratio compared to other imaging
modalities), is the same in all CTAs and NCCT since
these scans come from the same CTP acquisition for
each patient. Therefore, a fair comparison (not misled
by external aspects such as image quality, protocol and
machine used) between variables extracted from these
scans can be performed.

6. Conclusions

This study proposes a way to optimize stroke seg-
mentation using acute brain CTA. Brain CTP data ob-
tained for 87 AIS patients is used and treated as sequen-
tial brain CTA scans.

In particular, the amount of stroke information that
can be extracted from acute brain CTA is analyzed with
respect to the CTA scan start time.

Based on the Jensen Shannon Distance, the results
show that the best CTA for higher stroke information
extraction corresponds to a scan start time that is ap-
proximately 3 seconds after the mid arterial phase. This
best CTA maximizes the difference between the stroke
region and its corresponding symmetrical region on the
contralateral hemisphere.

An automatic segmentation model is designed to au-
tomatically segment the infarct core from CTA. The re-
sults obtained, in terms of F1 score, are very low though.
Further improvement of the segmentation performance
is required for being able to robustly compare the stroke
segmentation from different CTA scan start times and
test the main hypothesis of this project: whether stroke
segmentation can be optimized using a CTA providing
higher difference between the stroke region with respect
to the rest of the brain.
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Automatic Registration of Pre-Operative CT-Scan and Surgical Video of
Augmented Reality System for Ear Surgery

Ali Taleb, Alain Lalande

Dijon, France

Abstract

Transtympanic surgical procedures are a form of minimally invasive surgery and involve penetration of micro-
instruments through a small opening in the tympanic membrane to access middle ear cleft structures. Augmented
Reality system for handling Transtympanic procedure, requires registration between pre-operative CT-scan and sur-
gical video as a preliminary step. In our work we propose a fully automatic free registration pipeline. The algorithm
works by detecting contours then registering through Iterative closet point algorithm. Results were within the speci-
fied surgical tolerance with mean overlay error of 0.565 mm and a maximum duration of 18 seconds. The proposed
registration method does not rely on any external fducial markers attached to the patient and performs automatically
with an acceptable processing duration. In parallel we studied the contribution of persistent homology in the same

problem. Results were interesting with more work currently in progress.

Keywords: Registration, Augmented Reality, Contour Detection, Iterative closest point, Persistent homology,

Transtympanic

1. Introduction

Augmented reality (AR) is about enriching the sen-
sory perception of the user and enhancing the reality
with convenient information. The enhancement can take
a form of visual, audio, haptic, etc. Such technology
is immersing in real time surgical video, usually in the
form of a combination of pre-operative data with real
time one. AR is under development to be used in sur-
gical room. It can be delivered via screens, speakers,
gloves or co-manipulated robots, etc. The main con-
tribution of AR in surgery is the ability to see through
structures and access hidden information without inter-
fering with the surgical process (Hussain et al., 2020b).
It could significantly improve critical tasks during surgi-
cal operation such as localization, efficiency and safety.
It also has the potential to facilitate minimally invasive
procedures by allowing surgeons to visualize structures
without exposing them (Bernhardt et al., 2017; Marro-
quin et al., 2018). The main advantage that AR based
procedures offer over traditional image guided proce-
dures is the significant improvement in ergonomics of
the system. With AR, everything can be available on a
single view thus eliminating the need for the surgeon to
go back and forth between different sensorial systems.

Preprint submitted to MAIA Master
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AR has been successfully applied in different surgi-
cal domains (Hussain et al., 2020b; Vavra et al., 2017,
Yoon et al., 2018). However, very few applications have
been designed for otological procedures. Despite of-
fering many advantages such as rigid bony structures
and limited inter-structural movements, limitations in
workspace and maneuverability coupled with high pre-
cision requirements have been the main hindrance in de-
veloping AR solutions for otological procedures.
Transtympanic surgical procedures are a form of mini-
mally invasive surgery and involve penetration of micro-
instruments through a small opening in the tympanic
membrane to access middle ear cleft structures, such
as ossicles and labyrinthine windows 1 (Hussain et al.,
2018). These procedures have been mainly designed for
diagnostic and therapeutic purposes and have been em-
ployed for ossicular chain repair, drug administration,
labyrinthine fistula diagnosis, cholesteatoma removal,
vertigo treatment, and electrocochleography. This ap-
proach offers many advantages over traditional ap-
proaches such as preservation of tympanic membrane,
reduced bleeding, faster procedure and less painful post-
operative course as the tympanomeatal flap is not ele-
vated and remains at its position throughout the process
(Marroquin et al., 2018).
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Figure 1: Schema of Transtympanic procedures

Until today, these procedures have been achieved by
introducing both an endoscope and the surgical instru-
ments through a puncture hole in the tympanic mem-
brane. Such procedures introduce complications into
the surgical process by reducing the available opera-
tive space and field of view and limiting the instru-
ment movements (Hussain et al., 2020b). Indeed, the
instruments and the endoscope must be very carefully
maneuvered in order to avoid tympanic membrane tear
at the penetration point. Alternatively, visualization of
middle ear structures through an intact tympanic mem-
brane by optical instruments outside the middle ear is
very limited since the eardrum has a poor translucency
and may be even totally opaque in pathological cases.
Recently, a vision-based AR system, was proposed for
transtympanic procedures without any external track-
ing system (Transtympanic Augmented Reality System)
(Kakehata, 2013). The system was designed to visu-
alize middle ear cleft structures behind the tympanic
membrane by overlapping a virtual endoscopy image
derived from preoperative computed tomography (CT)
over the tympanic membrane. The system employed
a semi-automatic fiducial marker-based endoscope CT
registration followed by movement tracking based on
image feature processing algorithms.

Problem Analysis. Our problem constitutes in register-
ing a preoperatively acquired CT scan to an endoscopic
image. The structure of the ear behaves in a rigid man-
ner, however considering orientation of both source and
target image, this will introduce additional skewing pa-
rameters thus ending with a projective transformation
with 8 degrees of freedom.

The fact that we aim to automate the procedure, our
first goal is to integrate information from both modal-
ities without the use of any fiducial markers. In previ-

ous work there has been several algorithms applied be-
tween multi modal medical image acquisition ( MRI —
CT — ultra ... ) which are usually more robust to fea-
ture extraction. However, in cranial base regions, which
is our case, anatomical landmarks are not so apparent,
and complications may be introduced in selecting them.
Feature may vary within subject or cross subject. Also,
accuracy poses another critical issue where acceptable
margin error in other work would not be acceptable in
ours due to the size and sensitivity of the proposed tis-
sue. Upon our research only few approaches were found
to be fully automatic, marker less, registering to an en-
doscopic image without the aid of any extra hardware
and non were applied on the temporal bone area.

Target. After analyzing the problem and exploring the
possibility of using features and similarities between
images, we set our target to first semi automate the pro-
cedure through Iterative Closest Point (ICP) algorithm.
Next step would be fully automating it through con-
tour detection neural network. At each step we will ex-
plore the possibility of using Persistent Homology (PH)
within our process.

2. Background

2.1. Registration

Registration presents an essential role in AR. It is
an early crucial process as any error incurred during
this step will propagate throughout the whole procedure.
Registration is about transforming an initial object (im-
age or set of points) to match another. It is usually rep-
resented by a transformation matrix.

Navigation data could be obtained intraoperatively or
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preoperatively. The principle of the first is a registra-
tion is to obtain a rigid transformation between differ-
ent imaging modalities acquired at the same time. This
approach needs intraoperative imaging equipment such
as CBCT and external tracking devices with markers
(Chaudhury, 2020). In contrast, preoperatively acquired
data could introduce more complex deformations that
could be general or local.

Depending on the tissue under study and the nature of
acquisition registration could be rigid or non-rigid (aka
deformable, local). Soft tissues require a nonrigid reg-
istration that considers any local deformation that could
occur due to tissue movement for (Wang et al., 2019),
while rigid registration considers only global transfor-
mation and normally requires less degrees of freedom
which result in less computational costs. Such defor-
mations could be even resolved within a fully automatic
technique as long as features and mutual information
modalities could be clearly extracted (Tan et al., 2020).

In both cases of rigid or non-rigid, registration could
be manual, semi-automatic or automatic. While the fu-
ture focuses on removing the man from the loop, lead-
ing to better performance and less error, the emerge to-
wards automating the whole procedures is more under
study. A manual registration is performed by a surgeon
or expert by selecting or aligning a set of corresponding
points in the fixed and the target image based on a qual-
itative analysis. A semi-automatic introduces a step that
can assist the process by means of better performance,
accuracy, or computational costs but still requires the
intervention of an expert. The step could be followed
or preceded by well-known algorithms such as ICP or
NICP (Lee et al., 2019) or even learning based algo-
rithms (Alam et al., 2017). While automatic registration
does not require any intervention, still in some cases it is
required to use invasive external marker fixation which
may also require external tracking devices with bulky
tracking sensors.

Approaches for registration could be segmentation
based (Zhang et al., 2019), feature based (aka sparse)
(Schneider et al., 2020), intensity based (aka dense) (Liu
et al., 2017). The main steps for any registration proce-
dure are: feature detection, feature matching, comput-
ing mapping functions and resampling.

2.2. Persistent Homology

Persistent homology is a method for computing topo-
logical features of a space at different spatial resolu-
tions. More persistent features are detected over a wide
range of spatial scales and are deemed more likely to
represent true features of the underlying space rather
than artifacts of sampling, noise, or particular choice

2.3

Figure 2: building a complex by indicating all connected components.
1-simplex are connected by an edge and 2-simplex are colored

of parameters. The study of this concept started in late
1980’s and till now is an active research area. In a sim-
ple illustration of the theory, a space is composed of ver-
tices, edges, triangles and tetrahedrons... Each named
as k-simplex. Simplices to be connected if the distance
between the components is greater than a threshold. A
complex is a set of simplices which we can build by
connecting the vertices and then mark or fill complete
graphs 2.

The term homology represents the count of holes in
the space aka Betti number, in a certain dimension. For
instance, a H; homology represents the number of 1-
dimensional holes (circular holes), H, represents the 2-
dimensional holes (cavity in a tetrahedron). .. Persistent
stands for how long this hole persist in function of the
variability of the threshold distance. Usually, the output
could be a barcode diagram or a persistent diagram (PD)
which later could be endowed with metrics.

For simplicity, we will demonstrate with a set of four
points 3. Filtration is applied with an euclidean distance
d starting from 0 we observe four 0-simplices. While
increasing the value of d we keep the same observation
until we reach a value of d = 2 of which then we ob-
serve two 1-simplices implying 2 edges. For d = 3 the
graph is formed of 1-simplex and we witness the birth
of the first hole. Upon reaching a value of d = V13 the
previous hole vanishes.

Notice that at d = 3, a Betti value equals to 1 is pro-
duced, and this hole was persistent between the interval
[3, VI3].

Representing those information could take different
forms, one of which is the PD 4, where for each point
we can associate a corresponding death and birth. Birth
is the value where the hole was created and death when
it was destroyed. Hence none of the points in a PD could
appear below the identity line y = x.

Note that a O-dimensional homology is defined as the
number of connected components a shape has. In prac-



Figure 3: Demonstration of persistence homology on four points. Filtration with euclidean distance in a coordinate system.
Red segments represent connected components.

Figure 4: Persistence Diagram of set of four points

tice, we will be focusing on two main concepts from
the theory. The 0-dimensional homology representing
the connectivity of the shape and the 1-dimensional
homology representing how many circular holes de-
fined by it. A PD could be endowed with a metric
distance (bottleneck for instance). Another option is
to transform for a more stable vector representation.
By giving the space of persistence diagrams a metric
structure, a class of effective machine learning tech-
nique can be applied. Several representations have been
proposed, one of which we rearrange entries of the
distance matrix between points in a PD which yields to
more stable representation in terms of slight variations
(Adams et al., 2016; Reininghaus et al., 2015). Another
form is superimposing a grid over a PD and counting
number of points in each bin (Chepushtanova et al.,
2015).

Applications of PH in medical applications. The con-
tribution of PH in medical applications has been un-
der study. One of which PH was used to better de-

scribe brain white matter in Alzheimer disease (Kuang
et al., 2020). Gamble and Heo (2010) proposed PH as a
method for statistical analysis of human Jaws and distin-
guish clinically relevant treatment effects in orthodon-
tistry.

In Image processing, PH has been used with segmenta-
tion tasks. In an application of tumor segmentation in
histological images, it was proposed to classify patches
as tumor or non-tumor, and this by exploring the con-
nectivity between cells (Qaiser et al., 2016). A homoge-
nous connectivity is associated with a more homoge-
nous barcode or PD.

Another approach was embedding the PH in the loss
function (Clough et al., 2021). Importantly this process
might be used with no requirement of truth labels, how-
ever a prior topological information of the object being
segmented is required.

3. State of the art

To the best of our knowledge, no other work has
been published for transtympanic procedures. Other
similar studies in otology have been restricted by the
use of either fiducial markers or manual identification
of anatomical landmarks (Hussain et al., 2020a). In
our previous work, manual registration yielded a mean
registration overlay error of 0.31 mm (Hussain et al.,
2020c). In otology, owing to minuscule structure and
technological limitations, an error of 1-2 mm with a
registration duration less than 1 minutes have been sug-
gested as clinically acceptable (Hussain et al., 2020b).

4. Material and methods

4.1. Data

Dataset formed of two image modalities, CT-scans
and endoscopic video frames. CT-scans of spatial reso-
lution range 0.14x0.14x0.15 to 0.44x0.44x5 mm?.

For a total of 41 patients, 58 ears were selected (29 left
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(a) Cadaver Endoscopic Frame

(b) Ground Truth

(c) Patient Endoscopic Frame (d) Patient CT-Scan

Figure 5: Data Sample Images and annotations

CT-Scans | Endoscopic Frames
Cadavers 17 167
Real Patients 48 186
Total 65 353

Table 1: Count of Images in training Data

and 29 right). Each ear is associated with one virtual
endoscopy (VE) and multiple endoscopic frames cho-
sen randomly from a surgical video.

VE is selected by an expert from a 3D model, recon-
structed from its corresponding CT scan using Osirix
software. According to its projection angle the appro-
priate VE is selected to match the endoscopic video
frames.

Patients ages range from 5 to 83 and average 51.57.
An expert surgeon annotated corresponding contours of
tympanic membrane and malleus handle in both the CT
image and video frames. Ground truths are used as con-
tours rather than masks (segmented areas). Ultilizing
masks will change the problem into a segmentation with
higher priority on the edges. Contours as labels might
present a high misbalance problem, but it was found in-
teresting to approach the problem in this manner.

In the training data a set of cadavers images were added,
thus constituting 47 % of the training dataset. For val-
idation and testing, only endoscopic images were used
therefore simulating the real scenario. 4 patients were
used for validation and 6 for testing.

2.5

4.2. Methods

Process pipeline 6 starts with a neural network for
detecting the contours of the tympanic membrane and
malleus. The output is processed for enhancement,
noise removal and point sampling. ICP algorithm
registers both modalities and then outputs a registration
matrix.

Note that the below order does not reflect the
pipeline flow, it represents our work order. We
started with semi-automatic registration, U-Net and
then post processing.

4.2.1. Semi Automatic Registration

The algorithm of ICP is the process of matching
each point in a fixed data cloud (F) into its correspond-
ing nearest distance point in a moving point cloud (M)
(Chen and Medioni, 1992). The algorithm iteratively
revises the transformation needed to minimize the cost
function. We implement an algorithm variant from
scratch since none of the libraries did include a solution
for 2-dimensional and projective transformation. The
cost function used is the Euclidean distance.
Implementing and testing semi registration was per-
formed on ground truth contours.

Algorithm. We modify the search algorithm of closet
point to seek the least distance in both directions from
Fto M and M to F 1. For each point cloud we iter-
ate through its elements and associate its corresponding
closet point from the other cloud.

If one point was associated with multiple matches, the
one with the highest distance was eliminated. This step
will produce a stable correspondence and clear conver-
gence between points over iterations.

We estimate the unknowns in the registration matrix
with least squares and outliers are removed with M-
estimator sample consensus (MSAC) algorithm (Torr
and Zisserman, 2000). Parameters in MSAC (confi-
dence and distance) are set to constant values .

Listing 1: ICP algorithm
for iter in range(MaxIterations):

for point in FixedCloud:

find nearest point
for point in MovingCloud:

find nearest point
Remove points with same matching
Remove outliers
Estimate transformation



Figure 6: Process Pipeline

Persistence and Initialization. Results may not be iden-
tical between runs due to the randomized nature of the
MSAC algorithm. In 10 test runs, it is observed one run
that diverges. To overcome this issue, an initialization
was required to set the algorithm on the right track.
Translation initialization was sufficient in our applica-
tion. For this purpose, M is transformed by the follow-
ing matrix 1

1 0 ¢
Ia
0 1 g {

0 0 1)\

- ZT (x,y) € n fixedpoints
Y

s |§= |M

=1 (X, Y) € m movingpoints

ey
Thus, translation is defined by the vector formed by
centroids of both clouds.

m

Selection of the best transformation. It was realized
that the algorithm reaches its stable phase after an av-
erage of 25 loops. We then propose 70 iterations as the
maximum number of iterations.

The iteration with least variance is selected. Variance
was preferred over mean of distances, since we seek to
minimize distances between all points. A distribution of
error over all set is preferred. Such approach did have
the impact on hausdorff metric with a little trade off on
the mean distance 2 .

Hausdorf inmm | Mean Distance in mm
Variance 1.01 +0.44 046 =+0.15
Sum Distance 1.18 +0.43 04 =+0.1

Table 2: Accuracy results of ICP on input ground truth contours

4.2.2. Contour Detection with Deep Learning
For the purpose of contour detection, U-Net net-
work was adopted. U-Net is popular in biomed-

Figure 7: Red: CT initial moving point cloud position.
Green: Endoscopic fixed point cloud position.
White: ICP result transformed CT point cloud

ical field and usually associated with segmentation
tasks(Ronneberger et al., 2015). The fact that it per-
forms good even with small data sets makes it efficient
in medical applications.

Specifications.

Architecture The network architecture is illus-
trated in 8. It consists of a contracting path (left side)
and an expansion path (right side). The contracting path
follows the typical architecture of a convolutional net-
work. It consists of the repeated application of two 3 X3
convolutions, each followed by a batch normalization
and rectified linear unit (ReLU) and a 3 X 3 max pool-

ing.

Pre-processing In our work we did not undergo
any type of pre-processing except for RGB channels
normalizing.

Data Augmentation Several techniques of data
augmentation were used. Techniques that mimic the
real scenario of data acquisition or sequence of frame
in endoscopic video.

Affine transformation with free rotation but limited
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Figure 8: U-Net Architecture for our proposed method

Figure 9: Endoscopic Frames with high contrast spots

translation so we would not crop the ROI under study,
and shear limited to 8°.

Random erasing which imitates the high contrast areas
present in some endoscopic images 9

Additional techniques: Salt and pepper noise, Gaus-
sian blur, randomly changing brightness-saturation-
contrast, horizontal and vertical flipping.

Metric Depending on the way the distance between
predictions and ground truths is defined, evaluation can
take many forms. As the output of the U-Net will be
processed and inputted to the ICP, we shall analyze ICP
requirements for a good performance.

ICP performs the best when the input cloud points are
well connected and free of noise in the cloud’s mod-
erate neighberhood 11. The moderate neighberhood is
defined by the set of points not too near from ground
truth nor too far.

The algorithm is robust to noise far from the ground
truth, as they are considered as outliers and excluded

2.7

(a) Mean distance (b) Gaussian mean distance

Figure 10: Euclidean distance images.

by MSAC. Also, false detections in the very near
neighborhood will be removed as post-processing will
include an edge thinning.

A high noise is considered at its peek when miss-
classified pixels appear at a distance of 25 pixels from
the ground truth.

We started by finding the mean distance between out-
put contours and ground truth. Then it was improved
to meet our goal. The mean distance is filtered within
a gaussian 10 . Thus, a very low or high mean distance
will be minimized. At the end among the best 10 values
of gaussian mean distance, the best with true positive
detections is selected to enhance the connectivity of the
contour. All distances are normalized to the size of the
image.

Loss Function Three loss functions were under
study and their performances evaluation adapted to our



(a) Network Contour output (b) Noise map

Figure 11: Analysis of the noise with respect to distance from contour.
Blue: Ground truth . Green : noise with low impact . Red: noise with
high impact.

application is compared.
The standard binary cross entropy BCE with a weight
ratio 0.003 for tackling the class imbalance problem.
The focal loss FL which is an improved version of
cross entropy. FL tries to handle the class imbalance by
assigning more weights to hard or easily misclassified
examples (Lin et al., 2018). FL is defined by

FL(p)) = —a,(1 = p)" log(p,)

Prior value for class imbalance was maintained at 0.01
as proposed in the paper and same values for the param-
eters @ and y were adopted.

Active Contour loss AC is also experimented. In con-
trast to BCE and FL, AC considers the region energy
minimization rather than pixelwise loss (Chen et al.,
2019). The loss is defined by :

lossac = Length + A - Region

in which,

i=1,j=1

Length = Z \/ '(Vu)(u )2+ (Vuy,.y_/ )2‘ +e€
o

and

i=1,j=1 i=1,j=1

Region = u; j(cy — v,;j)2 +

Q Q

with ¢; = 1 and ¢; = 0 as the proposed problem is a
binary classification

Training. Endoscopic frames and CT-scans with their
corresponding contours are used to train the network
with Adam optimizer. The learning rate was main-
tained at a constant value of 5 x 1073 for endoscopic
and 1 x 10~* for CTs. Using the same size of raw data
without resizing, limited the option of a batch size to 16
so we would not bypass allowed RAM size. Loss func-
tions were compared on same parameters. Hardware
used titan X GPU.

(1 —u; )(ca = i)

4.2.3. Post Processing

We aim in post processing to remove noise and then
sample the contour into a point cloud. The following
techniques are done in the order.

Top-hat 12b : the algorithm computes the morpho-
logical opening and then subtracts the result from the
original image. This will remove uneven background
illumination, particularly the inside area of the malleus.

Thresholding 12c¢ : a constant threshold is applied.
The step binarizes the image and removes the easy
noise ( pixels with low intensity ).

Remove non-complete 12d : an operation is per-
formed by sliding a batch of size ( k X k ) over the
image. If it contained any O pixel, the whole batch is
deleted . In other terms if the sum of pixels in the batch
< k? the pixels are all set to 0.

Thinning 12e : we reproduce the skeleton of the
contour through an iterative algorithm (Lam et al.,
1992). The result is a thin line but with some small leaf
branches.

Remove non-dense 12f : similarly to remove non-
complete in previous step, we slide a batch over the
image. The condition of erasing applies if the batch
is not dense. We define a dense batch as the one with
minimum number of pixels m. { delete if sum batch
< m where m < k? ).

Point Sampling 12g: the result was sampled into
point cloud by projecting a grid on the image and uni-
formly selecting 20 % of the contour.

4.3. Persistent Homology

The first attempts were to use PH applied directly to
the input image. This has been applied within previ-
ous applications but preceded by preprocessing step to
binarize the image and transforming into a set of point
cloud. In our case this was impossible with high inten-
sity and texture variation in endoscopic images. Several
attempts were performed applying edge detection. The
anatomical structures under study were not clearly visi-
ble. Thus, making it not possible to detect the persistent
shape of the malleus or the tympanic membrane. So, PH
requires landmarks or a set well described input image.
Embedding PH in the contour detection could be
achieved if used in the loss function. A differen-
tiable topological layer has been implemented by Briiel-
Gabrielsson et al. (2020). The library maps each point
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(a) Contour output

(b) Top-hat

(c) Thresholding (d) Remove non-complete

(e) Thining (f) Remove non-dense

(g) Point sampling

Figure 12: Post-processing steps

in the PD to its corresponding set of points in the point
cloud. The library has not been implemented to run on
GPUs, which resulted in a long processing time ( up to
3 days for a single run ). We ran tests only on CT scans
being smaller and require less duration of processing.
PH was tested in two manners.

First as a regularization to the BCE 2 .

losst) = BCE + A.Topological 2)

Recall that O-dimensional homology represents the
connectivity of the elements and 1-dimensional homol-
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(a) CT scan

(b) Ground truth

(c) Contour detection - BCE loss

Figure 13: Contour detection (BCE) with a false detection of the area
below the malleus due to the similarity in the edge

ogy represents the holes in a set of points. As pre-
implemented by the library, the topological loss func-
tion penalizes all elements in the PD except for the most
persistent one by returning their sum (the most persis-
tent is the fully connected component representing the
contour). The possibility of using PH initially from the
start of the training or a late regularization after BCE
reaches a stable phase were tried.

The other manner, was to use persistent diagrams as
ground truth. The loss function returns the sum of dif-
ference square for each element in the PD 3 .

lossry = (x = X)? +(y = Y)? 3)

(x,y) the coordinate of point in persistent diagram
associated to its corresponding pixel in output.
(X,Y) the coordinate of point in persistent diagram
associated to its corresponding pixel in ground truth.

The model would have the same input and output la-
bels, but at the level of loss function we calculate the
persistent diagrams of both and then compare. Class-
imbalance was not considered in this approach.

Since the loss relies on the shape of the input, we then
expect it to solve one of the issues which is multiple or
false detection of the edge of the malleus 13



5. Results

ICP execution process required a duration of 18 sec-

onds. The average count of iterations to reach preferred
result was 32 iterations.
Network output results were good enough to be used
with ICP. Some endoscopic images introduced a miss-
detection of the malleus part 18 . Contours were well
connected and wide compared to the ground truth. The
effect of data augmentation on the results was signifi-
cant 14.

(a) Cadaver Frame (b) Result without Augmentation

(c) Result with Augmentation

Figure 14: Data augmentation effect on results

BCE and FL outperformed AC with a slight advan-
tage to BCE U, True positive detections reached 94%
with CT scans and 86% with endoscopic frames.

10

Figure 15: CT scans Contour Detection Results - BCE Loss

comparison of loss functions on endoscopic frames
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For final evaluation, an expert surgeon selected the
test patients and annotated two visible anatomies (
Round Window and Incus ) in CT scans and endoscopic
frames. Hausdorff and mean distance were measured.
All results were within the specified surgical tolerance
3. Moreover all patients had distance values less than
Imm. except for one patient where hausdorft distance
reached 1.8mm.
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Figure 16: Endoscopic Contour Detection Results - BCE Loss

Hausdorf in mm ‘ Mean Distance in mm
0.88 +05 | 0565 +0.495

Table 3: Final Registration error accuracies

For PH work. No quantitative evaluation was done on
the results, since we were in the early stages of imple-
mentation, but they were visually evaluated.

The test failed for the first loss approach 2.The loss out-
put being the sum could not be normalized and modi-
fying is not permitted by the library. The high values
from the topological loss dominated BCE leading to an
output converging to null (black image).

For the second approach 3, the output showed a clear
and visible shape of the membrane and the malleus but
low accuracy on edges. The results can be built on for a
further study, yet they were not good enough to be used
within the application.

As for the false detection in the area of the malleus, we
observed that the edge did not show in the result, but the
quality was bad and not to be relied on.

6. Discussion

With some patients it was found that the final pipeline
results were better than when using the contours ground
truth (instead of neural network) with ICP.
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Figure 17: Network Contour Detection with PH loss function. (left:
input ; right: output)

The hypothesis behind the results of the patient with
maximum error is the choice of virtual endoscopy where
its projection angle was distinctive from the endoscopic
frame.

The approach of active contour loss could perform bet-
ter in case of masks as labels, then modifying the con-
tour detection to a segmentation task.

Several steps could be improved to make the regis-
tration more robust. Starting with ICP, instead of using
the variance in the evaluation of the best iteration an-
other metric or a combination of multiple metrics could
be used to improve the results. A rotation initialization
should be added as this is essential for persistence of re-
sults.

For the neural network used for contour detection, we
shall start by trying to merge the information from both
CT and endoscopic frame as one input. Another non-
pixelwise losses could be used to improve the quality of
contour detection results.

Selection of the best virtual endoscopy from CT-scan
used for registration should be automated after 3D re-
construction, to better choice compatible with corre-
sponding endoscopic frame. Also, more data could be
added, then making the validation set bigger for better
tuning of parameters.

PH discussion. One of the causes of the poor results
could be the distance metric used on the PD. Add to
that the fact we are using the loss without any consider-
ation of the imbalanced class thus making it converging
fast on the background and the inside of the shape. In
future work it is to be considered to focus on the edge
neighborhood.



(a) (b) () (d)

Figure 18: Examples of automatic Registration (a) original frame (b) original CT-Scan (c) Transformed Ct-Scan (d) cropped blended image with
Test annotations. Blue: annotations on endoscopic frame. Red: annotations on CT-Scan.

12
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7. Conclusions

In this work we implemented a pipeline of process
for automatic registration of pre-operative CT-Scan and
surgical video of AR system for ear surgery. The results
(‘average Hausdorff distance 0.88mm and mean error of
0.565mm ) were within the specified surgical tolerance.
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