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Editorial

Computer aided applications for early detection and diagnosis, histopathological image
analysis, treatment planning and monitoring, as well as robotised and guided surgery will
positively impact health care during the new few years. The scientific community needs
of prepared entrepreneurships with a proper ground to tackle these topics. The Joint
Master Degree in Medical Imaging and Applications (MAIA) was born with the aim to
fill this gap, offering highly skilled professionals with a depth knowledge on computer
science, artificial intelligence, computer vision, medical robotics, and transversal topics.

The MAIA master is a two-years joint master degree (120 ECTS) between the Uni-
versité de Bourgogne (uB, France), the Università degli studi di Cassino e del Lazio
Meridionale (UNICLAM, Italy), and the Universitat de Girona (UdG, Spain), being the
latter the coordinating institution. The program is supported by associate partners,
that help in the sustainability of the program, not necessarily in economical terms, but
in contributing in the design of the master, offering master thesis or internships, and
expanding the visibility of the master. Moreover, the program is recognised by the Eu-
ropean Commission for its academic excellence and is included in the list of Erasmus
Mundus Joint Master Degrees under the Erasmus+ programme.

This document shows the outcome of the master tesis research developed by the
MAIA students during the last semester, where they put their learnt knowledge in prac-
tice for solving different problems related with medical imaging. This include fully
automatic anatomical structures segmentation, abnormality detection algorithms in dif-
ferent imaging modalities, biomechanical modelling, development of applications to be
clinically usable, or practical components for integration into clinical workflows. We
sincerely think that this document aims at further enhancing the dissemination of infor-
mation about the quality of the master and may be of interest to the scientific community
and foster networking opportunities amongst MAIA partners.

We finally want to thank and congratulate all the students for their effort done during
this last semester of the Joint Master Degree in Medical Imaging and Applications.

MAIA Master Academic and Administrative Board
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Abstract

Lung Cancer is one of the leading causes of cancer-related deaths for both men and women in the United States. The
aim of lung cancer screening is to detect lung cancer at an early stage. Majority of the time, after the lung nodule
detection phase, only a small portion out of all the nodules that get detected turns out to be cancerous. Compared to
traditional techniques that use handcrafted features and furthermore relies on tedious & time-consuming prior lung
nodule segmentation, the proposed method uses deep learning techniques in an end-to-end arrangement that performs
both the feature extraction and classification directly from raw nodule patches. In this study, we focus on improving
the pulmonary nodule malignancy estimation part by introducing a novel multi-view multi-timepoint convolutional
neural network (MVMT-CNN) architecture that uses low dose CT images as its input. The dataset used in this study
was taken from the National Lung Cancer Screening Trial (NLST)- which is the largest lung cancer screening trial
known to date. We investigate the influence of whether adding temporal information of the same patient can help
to improve the diagnosis. The proposed convolutional neural network architecture requires nine 2D patches- each of
which represents a certain plane from the extracted 3D nodule patches. The nine planes are analyzed separately in
parallel CNN streams and the output features coming from the nine different pathways are fused into one layer before
passing it to the classification stage. Additionally, batch normalization and drop out layers are also incorporated in
order to decrease the training time and reduce the chances of over-fitting. The average Area Under the ROC curve
obtained after 5 fold cross validation along with bootstrapping were used to compare & select the final best performing
architecture. The robustness of the final selected model was examined and verified by swapping the time points to
see if the network did actually learn to identify the growth of the nodule between timepoints. The proposed method
confirms that using the proposed multi-view multi-timepoint CNN architecture improves the prediction ability of
pulmonary nodules significantly.

Keywords: Pulmonary nodule, lung cancer, nodule malignancy, temporal data, Convolutional Neural Network
(CNN)

1. Introduction

Lung cancer is the second-most common type of
cancer diagnosed in the United States and it leads to
the the most cancer-related deaths for both men and
women. In 2018 alone, approximately 234,030 new
cases of lung cancer are set to be diagnosed in the
US. Additionally, it is expected that 154,050 deaths
will occur due to lung cancer which will account
for 1 out of every 4 cancer-related deaths in the US
in 2018 (Society, 2018). Early detection as well as
accurate localization of the nodules however can aid in

increasing the survival rate of lung cancer up to 52%
(Liu et al., 2018). Lung nodules which are commonly
spherical in shape can be difficult to detect due to
having surrounding anatomical structures such vessels
and pulmonary walls (Hussein et al., 2017). From
the detected nodules, only around 20% turns out to
be cancerous (Erasmus et al., 2000). Considering the
immense variations of lung nodules, even experienced
radiologists can fail to correctly identify the cancerous
nodules. For that reason developing robust automatic
distinction systems for lung nodules is a critical step
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for both screening and clinical use in the diagnosis of
lung cancer. Back in the early 2000’s, research showed
that it is possible to decrease the mortality rate of lung
cancer with low dose CT scans as CT scan produces 3D
images with more finer details compared to standard
Chest X-rays. This helps in improving the detection
capability of lung nodules at early stages and hence
allows for better treatment options (Henschke et al.,
1999). The voxel values in CT scans represents the
radiodensity of the tissues in Hounsfield scale (HU).
The radiodensity of air and distilled water at standard
pressure temperature is defined at -1000 HU and 0 HU.
Lung is therefore perfectly suited for CT imaging as
it mostly consists of air of radiodensity around -100
0HU and surrounding tissue density of around 0 HU.
This considerable difference allows acquisition of high
quality images with high contrast even with at a low
radiation setting. This is very convenient, especially
for cases with large screening programs where the
participants are expected to be exposed to frequent
CT scannings. Technological advances in CT image
acquisition has made it possible to capture lung nodules
and its surrounding tissues with intricate details.
This particular increase in the quality of CT images
has created a pathway for data-driven analysis for
accurately detecting lung nodules and predicting their
probability of malignancy, which in return results in
better management decisions and effective development
of lung cancer screening programs. The principal goal
of lung cancer screening programs is to detect lung
cancer at an earlier stage, during which the treatment
and prognosis options are better. The stage at which the
lung cancer is diagnosed dictates the treatment options
available and it directly correlates to the mortality rate
of the patient. 57% of all lung cancer diagnosis is done
during the later stages as the symptoms such as repeated
coughing, pain in the chest, blood in the sputum and
reoccurring pneumonia are typically observed only at
a later stage when the metastasis has already begun
and cancer has grown by several centimeters (Ellis and
Vandermeer, 2011). The 5 year survival rate for late
detection is 4.5%, whereas, an early detection can raise
the 5 year survival rate up to 55%.

The National Lung Screening Trial (NLST) study
was conducted in the United States which included
26,722 patients who were scanned using low-dose CT
and 26,744 patients who were scanned using Chest
X-rays. This is the largest randomized screening trial
conducted to investigate the benefits of using low dose
CT over using conventional Chest X-rays for early
detection of lung cancer. The participants who took part
in this study were required to have at least a smoking
history of a minimum of 30 packs per year. They could
be both former or current smokers but they cannot have
symptoms or any family history of lung cancer. Three

screenings were conducted on all participant with an
interval period of one year between scans and later they
were followed up after five years. After randomization,
nodules that were malignant were confirmed by biopsy
up to 7 years after the initial randomization. From
the study, the conclusion was that using low dose
CT compared to traditional radiography decreased
mortality due to lung cancer by 20% (Team, 2011b).

One big problem with such large lung screening tri-
als is that it generates large quantities of data that must
be analyzed one by one by the radiologists which is
both expensive and time consuming. One of the main
aims of this thesis is to develop a malignancy estima-
tion system for lung nodules using a machine learn-
ing approach with the goal to significantly automate
and reduce the workload of the radiologists. Current
convention during the screening of lung cancer include
the use of Lung Imaging Reporting and Data System
(Lung-RADS). Lung-RADS is a management and nod-
ule scoring system developed by the American College
of Radiology (ACR) in order to standardize the follow-
up steps of screening protocols (of Radiology, 2014).
Lung-RADS has a set of categories, and each category
is dependent on the nodule type, nodule size, and the
growth rate. Each category then determines a follow-up
recommendation which can be to take a new CT scan
after a certain time period or to seek additional imaging
techniques or to directly go for a biopsy. Each category
also gives an estimate of the probability of the nodules
being malignant.
Automatic prediction of nodule malignancy generally

follows a common pipeline. First, the suspicious can-
didates that can be nodules are selected from the lung
CT scans. Here, morphological operations are used
to detect a huge number of candidates usually consid-
ering a high sensitivity. Next, a false positive reduc-
tion step separates the nodules from the non-nodules.
After that, some system includes a segmentation step
that separates the nodules from the background in or-
der remove unnecessary information. Handcrafted fea-
tures are then extracted from the region of interest
followed by a classifier, which is trained to estimate
the final malignancy of the nodules. Typical hand-
crafted feature extraction methods make use of his-
tograms (Uchiyama et al. (2003)), scale invariant fea-
ture transform (SIFT) (Farag et al. (2011)), local binary
patterns (LBP) (Sorensen et al. (2010)) and histogram
of oriented gradients (HOG) (Song et al., 2013). The
extracted features then are fed into classifiers such as
Support Vector Machines(SVM) (2015) and Random
Forests (Ma et al., 2016). Other methods include Zi-
novev et al. (2011), who used a belief decision tree
method to differentiate the nodules semantic features.
Chen et al. (2011) suggested an approach using an en-
semble scheme of neural networks to predict the classes
of nodules to benign, malignant and uncertain. Han
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Figure 1: Figure showing two consequent timepoints (t 1,t 0) of malignant and benign nodule patches taken over 1 year of interval. From the
patches, is can be seen that between the timepoints, the benign nodules does not change a lot. For the case of malignant nodules, a significant
change/growth is seen for majority of the cases

et al. (2015) proposed a 3D image based texture fea-
ture analysis system for the purpose of nodule classi-
fication. Balagurunathan et al. (2014) and Aerts et al.
(2014) worked on extracting features from nodules to
study how efficiently they can be used for lung nodule
malignancy prediction. Nowadays, with the availabil-
ity of huge datasets along with the capability of massive
parallelization permitted by modern GPU’s, Convolu-
tional Neural Networks are outperforming all existing
state of the arts in both field of computer vision applica-
tions and medical imaging. Simonyan and Zisserman
(2014),Brosch et al. (2014) and Parveen and Kavitha
(2012) did a review on CAD systems designed for lung
nodule analysis which includes preprocessing, segmen-
tation and classification. The paper concluded that the
use of artificial neural networks increases efficiency in
lung nodule analysis. Hua et al. (2015) analyzed the use
of deep learning techniques including Deep Belief Net-
work (DBN) and Convolutional Neural Networks for
diagnosis of lung nodules where they show that deep
learning architectures is capable of beating any con-
ventional method that uses handcrafted features. Lo
et al. (1995) worked with pulmonary nodule detection
in chest CT images using Convolutional neural network
architecture.

Traditional studies commonly depend on careful
prior nodule segmentation and tedious feature extrac-
tion before the classifier can be trained. Classical seg-
mentation methods such as region growing which de-
pends largely on the initialization threshold can lead to
inaccurate segmentation and hence inaccurate feature
extraction. In this study, an architecture is designed
based on using the whole nodule patches directly as the
input and then using an end-to-end convolutional neural
network architecture to predict the malignancy of the
nodules directly from the input patches of the nodules.
In this thesis, the use of temporal information is studied
intensively to verify if adding additional scans of the
same nodules spanned over time can improve the per-
formance of the output classification.

Prior to this work, to our best knowledge, no system
exists that uses temporal data to predict malignancy
of lung nodules. Our proposed model was obtained
after extensive experiments and comparison between
different models was made using data taken directly
from the NLST dataset for testing and validation. A
separate set also from the NLST dataset was kept
on hold for testing the final model. Further tests are
performed to conclude the robustness of the proposed
system in nodule malignancy prediction. After careful
comparison between different techniques, the proposed
algorithms shows that using multi-time point scans in
lung nodule malignancy prediction outperforms the
current state of the art results of using only single time
point data.

2. State of the art
As the main goal of having lung cancer screening pro-

grams is to identify the cancerous nodules at an early
stage, an accurate nodule malignancy estimation system
becomes a key part of having an efficient screening pro-
gram. In spite of that, very few research has been con-
ducted on developing lung cancer malignancy predic-
tion systems using machine learning approaches. Com-
monly, a lot of studies can be found including open chal-
lenges that tackle the problem of nodule type detection-
which is also a key part of the lung cancer diagnosis
systems. The reason that there is a scarcity of research
in nodule malignancy detection can be explained by the
lack public data with pathologically proven malignant
nodules. Public challenges like Luna16 and 2017 Kag-
gle Bowl challenge offered public dataset of lung nod-
ule type classification with annotation. Some of the
previous works included the use of linear discriminant
analysis of the features extracted using morphology and
gray-levels from lung nodules that were segmented us-
ing multi-level thresholding (Armato et al., 2003). Zi-
novev et al. (2011) distinguish between cancerous and
no cancerous nodules by using both texture and inten-
sity features with the help of belief decision trees and
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a multi-labeling approach. Way et al. (2009) again did
segmentation of the lung nodules by using k means clus-
tering algorithm. Next, they used linear discriminant
analysis again with surface, texture and morphological
feature. It should be noted that most of the features used
in such systems such as shape and volume are highly de-
pendant on the segmented mast. This sensitivity arising
from the segmentation phrase can hinder the classifier
to learn the correct features for distinguishing cancer-
ous nodules. Another big issue with such systems can
be how to select the optimal set of features that best
represent the discriminative characteristics of the lung
nodules (Ciompi et al., 2015). Recently, with the use of
deep learning techniques, such problems can be solved.
Such systems are capable of automatically learning the
best set of features from raw input images without ever
needing prior sensitive segmentations. A few recent
works have used deep learning techniques to classify
nodule malignancy. Kumar et al. (2015) initially trained
an unsupervised deep autoencoder that is able to extract
complex unobservable features and then used decision
trees to predict the malignancy of lung nodules. Hua
et al. (2015) used a supervised approach with a deep
belief network and convolutional neural network for es-
timating malignancy.Ciompi et al. (2015) used convolu-
tional neural network models that were pre-trained for
the purpose of classifying the nodules to peri-fissural
nodules or nonperi-fissural. 2D patches of nodules in
axial, sagittal and frontal planes were extracted from
the CT image and this was fed into the pre-trained net-
work. Next an ensemble of deep features along with a
bag of frequency features was used to finally train the
peri-fissural nodule classification system. Shen et al.
(2015) used a multi-scale 3D CNN approach, where the
input was 3D patches instead of the aforementioned 2D
patch strategies.Shen et al. (2017) used the same theory
of multiscaling but they showed a more efficient way of
replacing the max-pooling layers with what they call a
multi crop layer which is able to extract multiscale fea-
tures without the need of having multiple parallel net-
works. The study also proposes to use the same archi-
tecture of multiscale multi-crop layers to estimate the
diameter of the nodules which can further assist in pre-
dicting the malignancy of nodules. However, the use
of such aggressive double max-pooling layers after the
first convolution layer can hinder the ability to learn
the spatial features correctly. Hussein et al. (2017) me-
dian intensity projection to obtain 2D patches in the ax-
ial, sagittal and coronal planes. The planes were then
stacked in channels of a single tensor followed by CNN
network that extracts the features of the nodules and
finally, a Gaussian process regression makes the final
classification.Nibali et al. (2017) used an architecture
that was inspired by the original study of the deep resid-
ual network He et al. (2016) the proposed architecture
is an 18 layer deep CNN architecture with skip connec-
tions between the layers like the original He et al. (2016)

that won the ImageNet detection challenge. This paper
also proposed the use of curriculum learning, transfer
learning and experimenting with the network depth.

Due to a lack of a standardized publicly available
dataset with proper annotations, different studies con-
sidered using different datasets for training and valida-
tion. It is, therefore, a difficult task to compare the
methods and identify which one works best. Majority of
the screening program performs follow up scans of the
same patients during their study. Normally, the ability
to predict the lung nodules with temporal information is
more reliable due to having information of the growth
of the nodules which is a direct predictor for nodule
malignancy. To our best knowledge, none of the stud-
ies took advantage of using this temporal information
to build a more robust lung nodule prediction system.
The method proposed in this thesis shows how just by
adding two timepoint information can significantly im-
prove the prediction ability of lung nodules.
3. Material and methods
3.1. Pulmonary Nodules:

Commonly, lung cancers start as pulmonary nod-
ules at its early stages which can be defined as hav-
ing rounded opacity, being well or poorly defined and
measuring up to 3 cm in diameter (Hansell et al., 2008).
Pulmonary nodules can be of three main types: solid,
semi-solid and non-solid nodules. For predicting the
probability of malignancy of a nodule, parameters such
as the type of nodule, the size of the nodule, the upper
lobe location, morphology and emphysema scores are
used (McWilliams et al. (2013), of Radiology (2014)).
The result can only be validated and confirmed by per-
forming a biopsy on sample tissue cells extracted from
the cancerous region. Since only a small portion of all
visible nodules ends ups as being diagnosed as cancer-
ous, having a system that can predict the malignancy
of such nodules with good precision using CT images
would help in significantly reducing the number of biop-
sies required and would enable in a quicker diagnosis to
be made which is essential for large screening programs.

3.2. Machine learning in Medical Imaging

Compared to humans, in order to comprehend im-
ages, computers require a set of discriminative features.
Such discriminative features can be referred to as a fea-
ture vector of numerical information that the computer
algorithm uses to classify and differentiate the input im-
ages. For instance, for predicting the malignancy of
nodules, the nodule size, intensity and shape informa-
tion can be used as the discriminative features. The
machine learning algorithms generally learn to map the
feature vector to the output labels that are provided by
the human experts. However, designing such hand-
crafted methods which extract all the optimal features
is more commonly arduous and they result in moder-
ate performance. Instead of handpicking the features,
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Figure 2: Pipeline from isotropic resampling, 3D patch extraction, augmentation, cropping and 2D 9 view patch extraction

another way of machine learning could be to allow the
algorithm to extract the best set of features from raw
images that most optimally distinguishes the dataset. In
the machine learning universe, deep learning is one of
such techniques that uses a set of feature extraction lay-
ers and classification layers to automatically extract fea-
tures and perform classification directly from the input
data (LeCun et al., 2015). Each consequential layer in
a given deep learning model extracts features starting
from simple features such as edges in the initial layers
followed by more complex informations such as con-
tours, shapes and more abstract features in the consecu-
tive layers. Convolutional Neural Network is a subcat-
egory of deep learning that uses the same idea of ex-
tracting features but now by using convolutional layers
with receptive fields. The idea of convolutional neural
networks was introduced back in the 1980s (Fukushima
and Miyake, 1982). However, back in the days, due to
the computational limitations and the lack of substantial
amount of data, it was not popular and was not suited to
be used in the medical field. With the improvements
in available computing power and resources combined
with the availability of large sets of datasets, now con-
volutional networks are widely becoming popular and
are being used in all computer vision and medical im-
age analysis tasks. They are consistently achieving state
of the art performances and beating all the other gold
standards that previously used handcrafted feature tech-
niques. In this thesis, an end to end convolutional neu-
ral network system was proposed that can efficiently use
the temporal information of lung nodules to generate re-
liable output predictions of the malignancy of lung nod-
ules.

3.3. Dataset Preparation

The dataset used in this study was taken from the
largest lung cancer screening trial known to date (Team,

2011a). The goal of the National Lung Screening Trial
was to find out if low dose CT can improve the sur-
vival rates of lung cancer for a high risk group com-
pared to a control group who was diagnosed using chest
radiography. 26,722 participants in the NLST study
was diagnosed using low dose CT across 33 US med-
ical centers in the period between August 2002 to April
2004. These participants went through three screening
rounds after randomization with a yearly interval and
afterwards was followed up till December 2009. From
the patients in the NLST study who received low dose
CT, only a portion of the data was taken for this study
which included participants who had high risk nodules,
participants who passed away during follow up and a
control group consisting of randomly selected subjects.
The exact coordinates of the nodules present in the scans
of the NLST dataset was not provided by the NSLT
database. However, they do provide information such
as the the number of nodules, the slice number and
the lobar location. An in house software (CIRRUS
Lung Screening, DIAG, RadboundUmc) was used to as-
sist in detecting nodules that was missed in the NLST
database. All nodules from the scans were evaluated
and the malignant cases were identified by an experi-
enced screening radiologist. For the cases in which the
malignant nodules were visible and detected by the in
house software in the prior scans. those nodules were
also taken in the dataset. All the nodules for the pa-
tients who did not develop lung cancer were located by
medical students who were trained by experienced radi-
ologists. The nodules that could not be located were dis-
carded from the dataset. The coordinates of the nodules
that were annotated were not always centered and hence
the annotation was just a rough approximate of the lo-
cation of the nodules in the scan. From the total NLST
database a subset of CT scans was selected that con-
tained 218 malignant cases taken from 168 patients and
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4229 benign cases taken from 2116 patients. From the
selected dataset, some of the patients had nodules that
were present in all three screening points and some had
nodules that were visible only in two time points. In this
study, only the last two time points were taken. The CT
scans were in DICOM format which were first resam-
pled to have an isotropic voxel spacing of 1mm x 1mm
x 1mm. Next, for every nodule, using the annotated
ground truth center coordinate information, a patch of
100mm3 cube was extracted taking 50 mm3 on all 6 di-
rections around the center coordinate. In cases were the
nodules were too close to the boundary of the scan, vox-
els were padded with the minimum value of that corre-
sponding patch. Figure 1 shows some examples of ma-
lignant and benign nodules extracted between the last
two timepoints taken from the subset of NLST data. All
the extracted 3D patches of nodules were saved to disk
for further processing.

From the subset of the nodules extracted, 44 malig-
nant nodules and 846 benign nodules were selected ran-
domly and was kept in hold for being tested with the
best performing model to check how well the system
performs on unseen data. The rest of the 174 malignant
and 3383 benign nodules were used to train and validate
the system.

3.4. Data Augmentation

Normally, deep architectures of convolutional neu-
ral networks consists of a large quantity of trainable
parameters. The larger the dataset, the better the net-
work is able to learn the features and parameters which
makes the model more robust and generalized in its out-
put predictions. Trying to optimize a convolutional neu-
ral networks with a dataset that is not balanced between
the classes can result in the network converging to a
local minima where prediction is biased towards the
class with the higher amount of data. Data augmenta-
tion allows a solution to this problem and also prevents
the issue of over-fitting during training. The subset se-
lected for training and validation had heavy imbalance
between the two classes of nodules with 95% of them
belonging to the benign class and the rest belonging to
the malignant class. In order to balance the dataset,
heavy augmentation was performed on the malignant
nodules while preserving the semantic information of
the nodules. Before augmentation, the dataset was di-
vided into 5 sets of non-overlapping validation set made
up of 20% of the total dataset. 5 sets were generated in
order to allows a 5 fold cross validation during evaluat-
ing the performance of a given model. The validation
sets were kept as they were and augmentation was per-
formed only on the 5 training sets that was prepared by
taking the rest of the data after excluding validation set
for each of the 5 fold. During augmentation, Random
rotations were applied on the extracted 100mm3 patches
in the range between -20:20 degrees along with random
translations in the range of -6:6 pixels for both x and

y-axis. When performing random augmentation, both
timepoints of every nodule received the same augmenta-
tion so that the correlation of the location of the nodules
between the two scans are not hampered. Even though
two scans coming from the two timepoints were not reg-
istered to each other, the annotations of the nodules al-
low extraction of the patches that are somewhat in the
same space. The positive cases were augmented heav-
ily until equal samples for both negative and positive
cases were present for training. Since, if augmentation
is only performed on a specific class, the network might
learn the rotation/translation as a feature for distinguish-
ing the two classes, similarly random rotation and trans-
lations were also applied on the original benign cases.

3.5. 2D patch extraction and Pre-processing

After augmentation, next step in the pipeline was to
extract 2D multi-plane patches from the 3D patches ex-
tracted previously. From the center of the 3D patches,
different planes of 2D patches were extracted, each with
a voxel size of 40mm2. 40mm2 patch size was selected
initially as statistically it was observed that 95% of the
nodule diameters fell within 40mm, where enough con-
textual information about the nodules is available for
the network to learn the correct features. Later during
the study, a comparison is made between changing the
size of the extracted 3D patches. Before extracting the
2D patches, the augmented original dataset was cropped
from 100mm3 to 40mm3, after which the 9 planes are
extracted for every nodule between the two-time points.
As in Setio et al. (2016),Prasoon et al. (2013), (Roth
et al., 2014) and (van Ginneken et al., 2015), the first
three planes extracted are the commonly known ax-
ial, sagittal and coronal planes around the center of the
cube. The other 6 planes are the diagonal planes that cut
every corresponding parallel opposite face of the cube.
Figure 2 shows the process of resampling, 3D patch ex-
traction, patch augmentation, patch cropping and finally
the 2D 9 view plane extraction.

Figure 3: Baseline model with batch normalization and stacked time-
series input
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3.6. Convolutional Neural Network

The baseline network used in this study was inspired
by the deep learning architecture used for false posi-
tive reduction in pulmonary nodule detection in Setio
et al. (2016). The false positive reduction deep learn-
ing system was constructed out of a series of parallel
streams of convolutional neural networks, where each
of the stream takes a particular plane of the patch. This
architecture is referred to as a multi-view CNN archi-
tecture as the network takes multiple 2D inputs, each
coming from a different plane. The architecture in Setio
et al. (2016) was developed by doing a study on a small
dataset and then analyzing the most important hyperpa-
rameters that were critical to the output performance.
Based on a pilot study using a smaller batch of data,
they concluded that the number of planes and the type
of fusion method used to merge the features taken from
each parallel streams of the CNN architecture were the
two most important hyperparameters. Considering the
excellent performance demonstrated in the paper, it can
be expected that the proposed architecture, that was de-
signed for false positive reduction of lung nodules, was
able to learn the latent discriminative features of pul-
monary nodules. Keeping that in mind, a similar net-
work is expected to work equally well in extracting fea-
tures that can be used to design a classification system
to find the malignancy of nodules. Hence, a baseline
network was designed consisting of 9 parallel streams
as introduced in the paper. Late fusion technique Se-
tio et al. (2016) was used to fuse the features coming
from the 9 different streams before feeding the concate-
nated features into the final classification layer of the
architecture. For every nodule, the patches were resized
from 40 x 40 pixels to 64 x 64 pixels using linear in-
terpolation. Every 2D convolutional stream consisted
of 3 convolutional layers. Starting with 24 filters of
size 5x5 followed by 32 filters of size 3x3 and finally
the last convolutional layer consisting of 48 filters of
size 3x3. Even though batch normalization Ioffe and
Szegedy (2015) is known to improve the performance,
the original network did not have any batch normaliza-
tion layers. Here in this study the network was evaluated
with and without batch normalization. After every con-
volutional layer, a Batch normalization layer was added.
Max pooling layer was added right afterwards the Batch
normalizing layer with had a stride of 2. This reduces
the size of the input patch to half of its input size by tak-
ing maximum values from a window size of 2x2. Rec-
tified Linear units (ReLU) was used as the activation
function Krizhevsky et al. (2012) for both the convolu-
tional and fully connected layers. The activation func-
tion can be represented by the following formula:

a = max(0, x) (1)
where, a is the output of the activation for a given input
of x. The last fully connected layer gives an output of
16 neurons. The outputs from all the 9 streams are then

concatenated using late fusion technique. Late fusion
method (Prasoon et al. (2013),Karpathy et al. (2014))
is basically the method of fusing the outputs features
of the parallel stream and outputting the features di-
rectly towards the final classification layers. The idea
of adding the features of the 2D patches in such a way
is to allow the network to learn the 3D characteristics
from the individual set of features coming from every
stream. For this setup, the weights between each par-
allel networks are shared which allows a reduction in
the number of parameters that need to be learned from
the dataset. A dropout layer Srivastava et al. (2014) was
added which drops neuron connections with a proba-
bility of 50%. The output from the dropout layer was
followed by two dense layers of 128 neurons and 2 neu-
rons. Softmax activation was applied on the last layer
to get the probability results for the binary classification
problem.

3.7. Training Phase

Due to having a limited amount of data, the valida-
tion set contains only a small amount of data. Meaning
that, based on the partition of the dataset, the validation
results can have a significant variance. In order to some-
how tackle that, 5 fold cross validation is used to eval-
uate the performance of the network. For every cross-
validation, both the training and validation patches were
normalized by using the following formula,

x = (x − mean)/std (2)
where, mean and standard deviation are calculated from
the training set used during a specific cross-validation.
Stochastic Gradient descent was used to optimize the
weights of the network with a starting learning rate of
10−3. The learning rate was dropped by 20% after ev-
ery 10 epochs. Cross-entropy error Nasr et al. (2002)
between the predicted and ground truth was used as the
loss function and the weights were updated using mini-
batches of 64 training samples for every iteration. The
initialization of the weights was done as proposed by
Glorot and Bengio (2010) and the biases were initial-
ized as zero. Training was continued for 50 epochs and
only the weights for the highest AUC on the validation
set were saved. The final evaluation was done by using
all the 5 networks from the 5 fold training and averaging
the results at the end.

The network was implemented using Keras with Ten-
sorflow in the back-end.

3.8. Evaluation Metrics: ROC

The final motive of this thesis is to integrate the
pulmonary nodule malignancy estimator with a fully
fledged CAD system that takes a CT image as the input
and outputs the location of the nodule with a malignancy
score. Such systems have to be equivalent or superior to
human observers in terms of both efficiency and accu-
racy of the results. The classifier proposed in this study
gives an output value between 0 to 1, which basically
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represents the probability of a nodule being malignant
or not. An optimum threshold of the probability can
be selected when computing the final binary result. A
common way of visualizing the performance of such a
binary classification system is to plot the Receiver Op-
erating Characteristic (ROC) Curve, which is a plot of
sensitivity on the y-axis (True Positive Rate) versus the
1-specificity on the x-axis (False Positive Rate) for ev-
ery possible threshold on the classification probability.
Sensitivity is the rate of positive samples that are cor-
rectly computed out of all the positive predictions. Sim-
ilarly, specificity is the rate of true negatives that are
correctly classified out of all the negative classifications.
From the ROC curve, the area under the curve (AUC)
can be calculated which determines the performance of
the classification system. An AUC of 1 represents a per-
fect classification system where the True Positive rate is
1 and False Positive Rate is 0. The optimum threshold
for a specific classification system can be selected by
finding the point in the curve that is closest to the upper
left of the ROC curve, where, the true positive rate is 1
and the false positive rate is 0.

3.9. Statistical Analysis

Machine learning algorithms make use of random-
ness. Especially in the case of deep learning, ran-
domness can arise from the way the weights in the
original network is initialized, randomness in the sam-
pling/resampling of the data and randomness in the or-
der the model sees the data. It is common to get dif-
ferent performance results on the same network even
when trained using the same data. This uncertainty is of
course bounded. However, knowing that such an uncer-
tainty lies for every trained model, it is difficult to com-
pare two methods relying only on a single evaluation.
Although resampling methods of the dataset such as K
fold cross validation help in reducing the uncertainty of
the output performance and provide an average result
of the performance that can be expected on the test set,
it still can have a large variance. In order to evaluate
the statistical significance between models bootstrap-
ping method was used (Efron and Tibshirani, 1994).
Bootstrapping allows a powerful and flexible statistical
analysis that is used to quantify the ambiguity of a pre-
diction model. 10,000 iterations were performed, where
the performance of a model was evaluated by using the
cross validation set that was used to train that particular
model. For each iteration during bootstrapping, the cor-
responding validation set was randomly sampled with
replacement following method from (Efron and Tibshi-
rani, 1994). For every iteration, the performance metric
was calculated and stored. Two main statistical analysis
was done using the bootstrap method. The 95% confi-
dence interval was estimated, which gives the range of
performance values obtained during all the bootstrap-
ping steps. Next, in order to compare two deep learn-
ing architectures, a statistical significance test was con-

ducted. To compare two given systems, during each
bootstrap sample the performance metric is evaluated
for both systems and then is compared. This is done
by calculating the p value, which is basically the num-
ber of times a systems performance was lower than the
other system divided by the total number of bootstrap
iterations.

Figure 4: ROC of original PanCan, PanCan with default parameters,
single timepoint with batch normalization, single timepoint without
batch normalization, parallel multi-timepoint and stacked multi-time
point

4. Results
4.1. Baseline Comparison model

4.2. PanCan model

Several well-known prediction models can be used to
predict the probability of malignancy of nodules found
in CT images. However, most of them are designed us-
ing a study based on a relatively small number of par-
ticipants (Swensen et al. (1997), Gould et al. (2007),
Herder et al. (2005)). In 2013, McWilliams et al. (2013)
published a mathematical prediction model based on a
large amount of screening data famously known as the
Brock model or PanCan model. The model is called the
PanCan model since it was developed using the PanCan
screening data (McWilliams et al., 2013). The equa-
tion to estimate the probability of malignancy requires
parameters such as the patient’s age, gender, family his-
tory of lung cancer, emphysema score, nodule diameter,
the location of the nodule, nodule count and spicula-
tion. The model was validated using both internal and
external screening data where it showed consistent per-
formance on both the validation and external data. This
is why this prediction model is recommended by many
nodule management guidelines to be used as a primary
tool for risk calculation for the case of both clinical use
and screening trials (Callister et al. (2015),of Radiol-
ogy (2014)). PanCan model was chosen as the baseline
model for comparing the output of the proposed net-
work during the analysis of each nodule. To obtain the
parameters required to get the PanCan score, an experi-
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enced radiologist was appointed to determine the nodule
type, emphysema score and spiculation for each nodule.
The family history, the age of the patients, gender of the
patient, nodule count and lobe location of the nodules
were obtained from the NLST pathology database.

The size of the nodules were estimated using a
semi-automatic nodule segmentation tool Kuhnigk et al.
(2006). As the PanCan model does not consider time
series information, only the parameters from the last
scan for every nodule was used to estimate the Pan-
Can score. To evaluate the discriminative performance
of the PanCan model, receiver Operation Characteristic
(ROC) curve and the Area Under the ROC curve (AUC)
was assessed as can be seen from Figure:4.

The following equation shows how to calculate the
output probability of the PanCan risk model.

Logodds = (0.0287 × (Age − 62)) + S ex

+ FamilyHistory + Emphysema

+ Noduletype + NoduleLocation

− (5.3854 × ((Nodulesize/10)−0.5

− 1.58113883)) + S piculation

− (0.0824 × (Nodulecount − 4))
− 6.7892

(3)

Cancerprobability = 100 × eLogodds

1 + eLogodds (4)

Where, sex is equal to 0 for male or 0.6011 for
female, family history is 0.2961 if there is family
history of lung cancer, emphysema is 0.2953 if there
is emphysema, nodule size is in mm, nodule type is
-0.1276 if non-solid or 0.377 if partially solid or 0 is
solid, nodule location is 0.6581 if located in upper lobe,

Similarly, a more simplified version of the PanCan
model was used where parameters such age, sex, family
history, emphysema score, nodule position, spiculation
and nodule count was set to their default values for ev-
ery nodule. For instance, the default value of age is 62,
sex is male, family history is 0, emphysema is 0, nod-
ule position is 0, nodule count is 1 and spiculation is
0. Hence, only the nodule size and nodule type were
used for this simple logistic regression model. This was
done as in most of the scenarios, all parameters are not
available. Furthermore, features such as the nodule size
and nodule type are considered more important when
diagnosing the malignancy risk of nodules, so in or-
der to compare the output scores, this simple regression
model was also used. Figure 4 shows the ROC of the
PanCan model with/without default parameters. It can
be observed from the AUC that using all the parame-
ters results in a better prediction. However, it should be
noted that when using the default parameters, the AUC
only falls by 3%. Meaning that the nodule size and nod-
ule type information alone can differentiate the nodules
with compelling results.

4.3. Single timepoint state of the art

The initial architecture design was based on Setio
et al. (2016), where they used a multi-stream CNN ar-
chitecture for false positive reduction during candidate
selection of lung nodules. In the original work, they
used input with no time series information. Hence, be-
fore feeding multiple time series information, the exact
architecture was implemented. Here, only the last time-
point from every nodule was fed as the input for the
model. As described before in section 3.7, 5 fold cross-
validation was used to train and evaluate each model.
This architecture was selected as the baseline CNN ar-
chitecture, where the input 2D planes were extracted
from 40mm3 patches containing the nodules. The re-
sults obtained from the baseline model is shown in Fig-
ure 4. The original architecture did not use batch nor-
malization between the convolutional layers and max-
pooling layers. Without Batch normalization, the aver-
age AUC for 5 fold cross validation was 91.09% with
a standard deviation of 2.35%. The obtained AUC is
comparable to the PanCan risk model with all parame-
ters. The AUC is higher when compared to the PanCan
model with default parameters. Next, Batch normaliza-
tion was added after every convolutional layer and be-
fore activation function as in (Ioffe and Szegedy, 2015).
The deep learning community has quickly adopted the
use of batch normalization as is introduces some form
of regularization which restrains the network from sim-
ply memorizing the training dataset, which means the
network is expected to generalize on unseen data better
with the use of batch normalization. Batch normaliza-
tion also speeds up the convergence during training of
neural networks. With batch normalization added, the
AUC obtained was 93.46%(+/-1.30%). This experiment
concluded that adding batch normalization improves the
performance when dealing with nodule classification.

Using the exact same architecture with Batch Nor-
malization, time series information was fed into the in-
put. Two ways of giving the time series information
were explored. The first method included two paral-
lel branches inside the 9 streams, where each parallel
branch processes input for a time series data and then at
the end output a 16 neuron vector. The 16 neuron vector
from the two time series for every parallel branch were
fused into one and later the same classification layers
were used as in the single timepoint architecture. Figure
6 shows the architecture of such parallel streams inside
the 9 individual streams to separately process the time
series input images. With such a strategy, the AUC ob-
tained was 92.76%(+/-1.41%). The next strategy was
to simply use the single timepoint architecture but in-
stead of feeding a single image as input, here, the two-
time points were stacked in channels of a single image
and then fed as the input. Figure 3 shows the base-
line model including batch normalization and stacked
input images. With such a setup, the AUC obtained
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Figure 5: Schematic of the experiment by altering layer depth

Figure 6: Parallel multi-timepoint architecture

was 95.69%(+/-1.48%). As seen from Table 1, the aver-
age AUC for the multi-time point network with parallel
branch is less than that of using a single timepoint input.
But stacking the timepoints as a single image increase
the average AUC significantly. This is because not only
the network needs less learnable parameters as can seen
from Table 1, but also the network learns a better dis-
criminative feature when stacked together in a single
stream. Nodule diameter, which is an important fea-
ture in predicting the malignancy of a nodule, can easily
be compared when time series information is available.
Considering this, adding more time series data should
improve the diagnosis decision. By processing the time
series separately into two streams, the ability to com-
pare the difference of the images from the input level is
lost and only during the fusing of the feature vectors,
the information of the two-time points are considered.
If the parallel streams do not eventually learn that the
growth of the nodule diameter is one of the substan-
tial features, then the network does not fully utilize the
time series information as can be seen from the results
in Table 1. However, stacking the two images in channel
gives an instant ability to compare the input raw images
from the first convolution layer. This is why the results

from stacking the images gives a better overall perfor-
mance. From the series of experiments, it is clear that
stacking time series information on the baseline model
and adding batch normalization significantly improves
the ability of the network to predict more accurately.
The ROC figures for each of the different models are
added in the Annex section of this report.

Table 1: Comparison of multi-timepoint and single-timepoint input
data

Model AUC(SD) Parameter
PanCan with all parameters 91.98% -
PanCan with default parameters 88.99% -
Single Timepoint (no Batch Normalization) 91.09%(+/- 2.35%) 67,922
Single timepoint (with Batch Normalization) 93.46%(+/- 1.30%) 68,130
Two timepoints (in parallel channels) 92.76%(+/- 1.41%) 135,874
Two-timepoints (stacked in channels) 95.69%(+/- 1.48%) 68,730

4.4. Selecting the layer depth

One of the leverage of deep learning networks is their
ability to naturally fuse low, mid and high level features
and the classifiers in a total end to end manner (Zeiler
and Fergus,He et al. (2016)). Different features are
learned in different levels of the stacked architecture and
recent studies (Simonyan and Zisserman (2014),Srivas-
tava et al. (2015)) suggests that deeper the architecture,
the better the network is able to learn complex arbi-
trary features which in turns improves the output per-
formance. This is also backed by the top scorers (Si-
monyan and Zisserman (2014),Szegedy et al. (2015)He
et al. (2015),Ioffe and Szegedy (2015)) in the ImageNet
challenge Russakovsky et al. (2015), where all of the
architectures included deep stacks of layers. However,
putting a lot of layers is not always the answer. Conver-
gence can be affected by the vanishing gradient (Bengio
et al. (1994),Glorot and Bengio (2010)), where, during
backpropagation, the gradients get smaller and smaller
as they progress backward from the last layer to the first.
A deeper architecture could mean that by the time the
gradients reach the earlier layers, they are so small that
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Table 2: Layer and output feature comparison

Layers Average AUC:
16 features

95% CI:
16 features

p:
16 features

Parameters:
16 features

Average AUC:
32 features

95% CI:
32 features

p:
32 features

Parameters:
32 features

1 95.20%(+/- 1.96%) 92.6%-96.9% 0.0071 729,754 94.77% (+/- 1.96%) 91.5%-96.3% 0.0000 5,576,602
2 95.32%(+/- 1.51%) 92.4%-96.9% 0.0049 127,466 95.69%(+/- 2.17%) 93.3%-97.3% 0.0538 1,659,642
3 95.69%(+/- 1.48%) 93.9%-97.8% 0.1210 68,730 95.63%(+/- 2.07%) 93.1%-97.2% 0.0049 510,346
4 96.44%(+/- 1.31%) 94.3%-97.6% 0.1705 73,018 95.96%(+/- 2.13%) 92.6%-97.3% 0.0162 161,354
5 96.59%(+/- 1.50%) 93.7%-97.6% 0.0480 104,122 96.84%(+/- 1.47%) 94.9%-97.9% - 161,738
6 94.79%(+/- 1.65%) 92.5%-96.7% 0.0013 238,010 95.42%(+/- 0.88%) 93.0% - 97.0% 0.0011 326,346

those layers learn very slowly compared to the last lay-
ers. So in order to find the optimum depth, the baseline
model was tested with different combinations of net-
work depth and output features. The classification lay-
ers ere kept same and only the parallel streams where
altered to see which combination allows the network
to learn the discriminative features from each plane of
the nodule. The depth and output feature of the base-
line model which had3 convolution layers and 16 neu-
ron output was altered from having a single convolution
layers to 6 convolutional layers. And for every change
in layer, both 16 neuron and 32 neuron output features
were experimented. For the 32 neuron output vector, an
extra dense layer with 256 neurons was added preced-
ing the 32 neuron dense layer. Figure 5 shows hows the
architecture of each parallel stream looked like based on
the number of layers and output feature selected. All the
networks were trained using 5 cross-fold validation on
the same NSLT dataset where the patch size of the nod-
ules were 40mm3. 95% confidence interval was calcu-
lated using bootstrapping of 10,000 iterations on the val-
idation set. From Table 2, it can be seen that the 5 layer
32 feature gives the best average AUC of 96.84%(+/-
1.47%) with the best confidence interval 94.9%-97.9%.
The p value for all the other combinations were calcu-
lated by comparing all methods with the 5 layer 32 fea-
ture model. The p values from Table 2 shows that the
selected 5 layer and 32 output neuron combination in
fact performs significantly better than many other com-
binations. However, for model, the p value was still big
enough to conclude if the 5 layer 32 model was signif-
icantly better or not. Hence, it only selected because it
had the best combination of the average AUC, the 95%
CI and the number of trainable parameters. Figure 7
shows how the output average AUC and its standard de-
viation changes with the layer depth. Figure 7(a) shows
the change in average AUC when the model was opti-
mized based on the lowest validation loss while Figure
7(b) shows the change in average AUC when the net-
work is optimized based on the highest validation AUC.
Figure 8 shows the ROC curves of models with different
layer size for a specific validation set.

4.5. What should be the optimum patch size:

Since the proposed method does not depend on any
segmentation techniques prior to classifying the nod-
ules, the field of view of the nodules that is presented to

(a) AUC based on validation loss vs change in layers

(b) AUC based on highest validation AUC vs chnage in layers

Figure 7: Figures showing how the average AUC changes with the
change in depth of a network.

the deep learning network becomes an important factor.
Since the size and shape of nodules vary quite signifi-
cantly, a patch size that is too small can mean that for
bigger nodules, important voxel values can go outside
the patch. Again a larger patch size might introduce
too much background information, where the network
can learn features that are not locally from the nodules
themselves. To test that, the optimum 5 layers 32 fea-
ture network was trained and validated using different
size nodule patches. All the planes extracted from the
patches were later resized to 64x64 pixels in order to fit
the input size of the network. Table 3 shows the average
AUC results from the 5 fold cross-validation. Similarly,
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statical analysis was performed using bootstrapping of
10,000 iterations on 80% of the validation set. After
bootstrapping the 95% confidence interval and p values
of the different experiments were compared. The p val-
ues in Table 3, it is clear that there isnt a significant dif-
ference between using any of the patch sizes as p value
was not below 0.05 for any of them. Hence, 40 mm3

patch size was empirically chosen.

Figure 8: ROC of varying layer depth and output feature size

4.6. How robust are the predictions?

In order to check how robust the network is in predict-
ing the proper discriminative features of the nodules,
the trained network was put to the test first by check-
ing what happens when the timepoints are swapped. As
previously mentioned, the growth of nodule or change
in diameter of the nodules is a crucial feature in under-
standing if a given nodule is malignant or not. For this
experiment, the time points were swapped to see if the
network is affected by it. With the swapped timepoints
now the previously trained 5 layer 32 feature model was
used to predict the AUC of the validation set. From the
results a clear deterioration of the results is seen from
the average AUC obtained from the 5 fold cross vali-
dation which fell from 96.84% to 76.92%. The AUC
did not go down so much because swapping the benign
nodules had little effect on the ability of the network to
predict the benign class. This is because benign nodules
have little to no change between the timepoints. How-
ever, when the timepoints of the malignant nodules were
swapped, the true positive rate fell sharply as there is a
negative growth in all the malignant nodules. This test
confirms that the network learns that the increase in the
size of the nodule is an important feature in distinguish-
ing malignant nodules from benign ones. The accuracy
of predicting positive cases only fell from 80% to 26%.

Since the time series scans taken in the NLST dataset
are registered to some degree between the timepoints.
For the next experiment, a question a raised that how
well will the network perform if the two-time points are

Table 3: Performance of the optimum model with different input patch
size

Layer, Features,
Patch size

Average:
AUC(+/- SD) 95% CI p value

5 layer, 32, 30mm3 96.41%(+/-2.10%) 94.6%-97.8% 0.4483
5 layer, 32, 40mm3 96.84%(+/-1.47%) 94.9%-97.9% -
5 layer, 32, 50mm3 95.86%(+/-1.80%) 93.3%-97.5% 0.2442
5 layer, 32, 60mm3 96.05%(+/-1.12%) 94.0%-97.4% 0.2691
5 layer, 32, 70mm3 95.83%(+/-1.75%) 94.0%-97.4% 0.2707
5 layer, 32, 80mm3 94.55%(+/-2.18%) 91.8%-96.6% 0.0688

not registered like before. For this experiment, the aug-
mentation was performed randomly between the time-
points, meaning that the same augmentation was not
done on both the timepoints like previously. After 5
fold cross-validation, the average AUC was 96.47% (+/-
0.87%) (p=0.3004) with a 95% confidence interval of
94.3% and 97.4%. This shows that even the nodules
that are not registered can be used for training as well as
testing without significantly reducing the output perfor-
mance of the system.

Figure 9: ROC of varying the 3D nodule patch size extracted from the
original CT scan

4.7. Evaluation on separate test set

Figure 10: Architecture of the final 5 layer 32 feature model
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The results of using the test set could not be obtained
due to not having access to the ground truth annotations
for the time being. The result is expected to be added in
the final journal paper. For the scope of this thesis, only
validation set was used to compare all the architectures.
For the 5 layer 32 feature network (Figure 10), the oper-
ating point for each cross validation was calculated by
finding the closest point of the ROC curves to the upper
left hand corner of the ROC curve. The output predic-
tion from the 5 models are then averages to get the final
predictions. Figure 11 shows some of the misclassified
benign and malignant nodules from the best performing
model. By looking at the images and comparing be-
tween the timepoints, for the malignant cases it is seen
that these particular nodules did not grow significantly.
For the benign cases, a variation is seen between the
timepoints which include background variation as well.
This can be one of the reason why the nodules got mis-
classified.

Figure 11: Misclassified results from the 5 layer 32 feature model

5. Discussion
In this study, a multi-view multi-timepoint convolu-

tional neural network (MVMT-CNN) architecture was
proposed for the purpose of estimating lung nodule ma-
lignancy using low dose CT images. Unlike conven-
tional methods which require nodule segmentation and
handcrafted features, the proposed system adopts an
end-to-end classification method which learns the dis-
criminative features of lung nodules automatically in
an hierarchical manner. The goal of developing such
a system is to aid in estimating the early suspicious-
ness of lung nodules using noninvasive CT images. This
removes the need to surgically perform biopsy during
early detection stages hence enabling a quick and cost-
effective way of predicting suspiciousness of lung nod-
ules. Is this thesis, the use of multi-time series infor-
mation was studied extensively to justify if using tem-
poral information of the same patients can aid in devel-
oping a better prediction system. The dataset used dur-
ing training and validation of the various models were
taken from the large lung cancer screening trial (NLST).
For the first series of experiments, the main goal was

to compare if adding additional time series information
improves the results. Before diving into the deep learn-
ing architectures, a baseline prediction model that uses
handcrafted parameters was investigated using the same
dataset. As K fold cross-validation technique was used
for evaluating the deep learning architectures, the mod-
els indeed were evaluated using all the dataset. This is
because, during 5 fold cross-validation, all samples are
divided into 5 validation sets. Similarly, using PanCan
prediction model, the probability of malignancy were
generated for all the nodules in the dataset using infor-
mation of only the last timepoint since PanCan model
was not developed to handle temporal information. A
separate version of the PanCan model that uses only the
default parameters was also evaluated. Next, a base-
line model was designed based on Setio et al. (2016),
where using both single time point and multi timepoint
(with temporal data) were examined. This architecture
takes different planes/views of the patch of the nodules
as input. The idea behind using patches coming from
nine planes is because using a singular plane can re-
sult in the network learning incorrect features that can
come from the background information such as the pul-
monary walls/vessels. Furthermore, adding the extra
planes also captures the 3D characteristics of the nod-
ules in separate 2D patches and allows the network to
learn the morphological characteristics from a 2D point
of view. This significantly reduces the complexity of
the network and allows faster training and prediction
times. This baseline architecture was examined with
various ways of inputting the patches. From this se-
ries of experiments, it was clear that adding batch nor-
malization and stacking time series data in channels of
the input image improves the average AUC of the sys-
tem from 91.09% to 95.69%. This is expected because
as from the results from the PanCan prediction model,
it is clear that even with default parameters, the per-
formance does not go down by a lot. Meaning that
only the nodule type and nodule diameter is used for
computing PanCan risk model with default parameters,
nodule size is an import factor to discriminate between
the two classes. With temporal information, the nod-
ule growth can be estimated as well as the nodule di-
ameter. With this additional parameter, the network is
expected to perform better. Next series of experiments
hypothesized how changing the architecture affects the
output results. Different combinations of depths of lay-
ers and output features of the parallel streams were as-
sessed and statical significance test was conducted with
bootstrapping to compare the models. As seen from re-
sent Imagenet challenges, deeper architectures are per-
forming better than all the current state of the art results
in computer vision applications. By varying the depth
and width of the network, the networks are most likely
to learn deep features and make more correct assump-
tions (Krizhevsky et al., 2012). From this experiment
it was seen that a combination of 5 layers of convo-
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lution layer and 32 feature output resulted in the best
average AUC and this was validated by finding the p
value between this model and the other combinations.
Next, a hypothesis was put to the test that if changing
the original patch size could make any significant im-
provement in the results. The size of the 3D patches
extracted of the nodules were altered from 30-80mm3.
Again with statistical analysis, it was seen that a size of
40mm3 gives the best performance. A few other com-
plex models were compared with the best performing
model 7 and it was concluded that the best results that
were obtained on this dataset can be achieved with the
5 layer 32 features model. From the p values in Ta-
ble 4, it can be seen that some of the models do come
close to the results obtained from the 5 layer 32 fea-
tures model. The difference+multi scale model had the
highest p value (p=0.4276) in the set of models exper-
imented with. It is also seen that the number of train-
able parameters required for the difference+multi scale
model is almost 4 times more. It can be possible if a
larger dataset is used, the model with the higher param-
eter can learn more strong discriminative features and
result in a better performance. But based on the limited
amount of data used in the study, the 5 layer 32 fea-
ture model gives the best performance with an average
AUC of 96.84% (95% CI:94.9%-97.9%). Further data
balancing and inclusion more data should improve the
result even further.
6. Conclusions

In this study, we proposed a deep learning archi-
tecture called multi-view multi-timepoint convolutional
neural network (MVMT-CNN) that uses temporal data
to predict malignancy directly from raw CT patches of
nodules. To our best knowledge, this is the first sys-
tem where temporal data has been used in a lung nodule
malignancy predictor system. This study compared dif-
ferent methods to find the best performing model on the
given dataset. The performance observed in this study
shows encouraging results of using temporal data with
deep learning architecture for lung nodule risk estima-
tion. Further extension of the thesis can be to experi-
ment with 3D fully convolutional neural networks and
to test the proposed system on a larger dataset with more
time point data.
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7. Annex

This annex includes extra experiments and ideas of
more complex CNN architectures. The idea here was
to experiment with different cases to see if the results
of 5 layer 32 features MVMT-CNN architecture can
further be improved. The next series of experiments
were performed again using the same training and val-
idation dataset prepared from the NSLT dataset. 5
fold cross validation was similarly used and the ex-
tracted nodule patches had a size of 40mm3. Statistical
analysis was performed at the end to see if any such
network would perform better than the best-selected
model. From the series of experiments, it is clear that
the number of trainable parameters will increase with
the network complexity. Keeping that in mind as well
as the nature of having limited dataset with pathologi-
cally proven malignant nodules, none of the following
architecture could top the 5layer 32 feature network. Ta-
ble 4 shows the difference in performance between the
different models experimented in this part.

7.1. Parallel+Stacked Model

From the previous experiments between using tem-
poral data and single data, it was clear that the network
learns better discriminative features when accessible to
temporal data. The single timepoint network also per-
formed comparatively, meaning, single timepoint scans
also contains enough contextual information that can be
used to differentiate cancerous nodules from noncancer-
ous ones. The assumption made here was that while
the stacked input stream learns features comparing the
two-time points, adding extra parallel streams of simi-
lar CNN architecture that analyzes the two inputs sepa-
rately can learn from local features that can help in dis-
criminating the nodules better. The outputs of the three
streams are concatenated before passing on to the next
stage. Figure 17 shows the schematics of adding two
additional parallel CNN architectures that analyze the
two time points separately as well.

The ROC curve is generated for every fold of cross
validation and can be observed in Figure 12. The aver-
age AUC for this model was 95.74% (95% CI: 92.9%-
97.1%, p = 0.0063).

Figure 12: ROC of Stack + Parallel model

7.2. Difference Model

The main point of adding temporal data is to have a
base of comparison between the change in the nodules
characteristics over a period of time. Nodule growth
which is an underlying predictor for nodule malignancy
can be estimated by having time series information. Al-
though it is expected that by stacking the images the
initial convolution layers learns to map the difference
of the inputs to the output label, here in this architec-
ture, the difference between the two images is manually
provided in a separate parallel branch. From figure 13,
the benefits can clearly be seen. The figure shows the 9
views of a benign and a malignant nodule for two time
points, t 0 and t 1. From the difference image it can
clearly be seen that since the malignant cases are ex-
pected to grow, the difference around the center of each
patch is high. Even if the patches are not aligned prop-
erly, the nodules are somewhat centered in the patch.
Meaning, if there is a significant change in the shape
of the nodule, a high difference should be observed in
the middle portion of the patch. Similarly, since benign
cases are not expected to grow, the difference image ob-
tained by subtracting the benign cases gives less differ-
ence in the center portion of the patch.

(a) Malignant nodules

(b) Benign nodules

Figure 13: Figures showing how the difference images looks like for
malignant and benign nodules in each of the 9 planes
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Figure 18 shows the final architecture of the model
with an additional branch in every stream which takes
the difference image as the input. The ROC curve is
drawn from the 5 cross-fold validation as can be seen in
Figure 14. The average AUC for this model was 96.09%
(95% CI: 93.9%-97.2%, p = 0.0786).

Figure 14: ROC of Difference model

7.3. Multi-Scale Model

For this experiment, the idea was that the size of nod-
ule varies significantly in shape and sizes. Some nod-
ules can be very small compared to the overall patch
size. In order to extract the true local features coming
from the nodules itself, the input needs to be cropped.
Moeskops et al. (2016) shows that using a multiscale
approach in classification task can allow the network to
learn both local and global features which could ben-
efit in the final classification task of the model. The
stacked inputs where cropped from having 64x64 pixels
to 32x32 pixels centered around the nodule and then it
was passed through a parallel branch in every stream.
With a smaller patch, the background information was
significantly removed which meant now the network is
now exposed to more voxels coming from the nodules
itself. Since the patch size is reduced, the number of
layers in the parallel branch processing the cropped im-
ages is reduced to only 2 convolution layers.

Figure 19 shows the architecture of the model using
multi-scale information. The ROC curve is drawn from
the 5 cross-fold validation as can be seen in figure 15.
The average AUC for this model was 96.64% (95% CI:
94.1%-97.8%, p = 0.2611).

Figure 15: ROC of Multi-Scale

7.4. Difference + Multi-Scale Model

In this experiment, the idea was to combine both the
difference branch and multi-scale branch with the best
performing model. Figure 20 shows the architecture
of the model using both the difference and multi-scale
branch. The ROC curve is drawn from the 5 cross-fold
validation as can be seen in figure 16. The average AUC
for this model was 96.62% (95% CI: 94.8%-97.8%, p =

0.4276). The p value obtained is the highest p value
obtained among any other experiments. Still for a boot-
strap analysis of 10,000 iterations, only 4276 times, this
model performed better than the previously determined
best performing model. the conclusion meaning that the
previously selected model still performs better than this
model.

Figure 16: ROC of Difference + MultiScale
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Table 4: Comparison of the experimented models

Model Validation AUC CI 95% Parameters p value
5 layer 32 feature 96.84% (+/- 1.47%) 94.9%-97.9% 161,738 -
Stacked + Parallel 95.74%(+/- 1.58%) 92.9%-97.1% 778,154 0.0063
Only Difference 96.09%(+/-1.25%) 93.9%-97.2% 519,098 0.0786
Only Multiscale 96.64%(+/-1.71%) 94.1%-97.8% 346,434 0.2611
Difference + Multiscale 96.62%(+/- 0.93%) 94.8%-97.8% 605,490 0.4276

Figure 17: Architecture of Stacked + Parallel model
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Figure 18: Difference model

Figure 19: Multi-Scale model
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Figure 20: Difference + Multi-Scale Model
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Abstract

The detection of new appearances and changes of pigmented skin lesions (PSLs) is essential for a timely diagnosis
of possible developing melanoma. For this purpose, a common approach is to acquire baseline images of the skin
surface and to use them as a reference to detect eventual changes in following examinations. To collect this baseline,
total body skin examination (TBSE) is usually accomplished manually by a physician. However, the procedure can be
time-consuming for patients with numerous skin lesions. In addition, it is highly prone to the subjectivity of the doctor
performing the acquisition, increasing the risk of missing developing cancers. In this context, a second version of a
new photogrammetry-based total body scanning system has been proposed to acquire skin images with better quality
with respect to the first model. Additionally, given the state-of-the-art results obtained by deep learning techniques in
image analysis, the existing pipeline has been replaced with a new one - based on artificial intelligence techniques -
to automatically map and match skin lesions on the images acquired by the scanning system. The initial tests showed
how the results improved the previous performance. The framework, indeed, can be applied in hairless areas of a
patient to automatically detect and segment PSLs on full-body images. In addition, the paper proposes an automatic
methodology for matching skin lesions within a scanning session.

Keywords: Pigmented skin lesions, nevi, deep learning, total tody skin examination, scanner, melanoma

1. Introduction

Melanoma (also known as malignant melanoma)
is a type of cancer that develops from the pigment-
containing cells known as melanocytes and it is the most
dangerous type of skin cancer1. Globally, in 2015 there
were 3.1 million with people an active disease which
resulted in 59,800 deaths (Stewart et al., 2017) and the
country with the highest rates of melanoma is Australia
and New Zealand. Nevertheless, timely diagnosis can
prevent melanoma from producing any metastasis, so it
can be cured completely (Weinstock, 2006).

Visual inspection is the most common technique for
the diagnosis of melanoma (Wurm and Soyer, 2010),
and the main characteristics that are taken into account
for the diagnosis are the colour and the shape (Negin

1https://www.iarc.fr/en/publications/pdfs-
online/wcr/2003/WorldCancerReport.pdf

et al., 2003): lesions with irregularities in these two
features are typically treated as candidates of possible
developing cancer. Thus, physicians have to learn to
recognise them. For this task, a popular method for re-
membering the signs and the symptoms of melanoma
is the mnemonic acronym ABCDE (Friedman et al.,
1985): Asymmetrical skin lesions, Border of the lesion,
Color, Diameter, Enlarging. To understand whether
a skin lesion would conduct to a possible melanoma,
physicians need a baseline to compare it with respect
to a previous state (Banky et al., 2005), to check if any
relevant change has happened. One technique used to
detect it is the total body photography (Halpern et al.
(2003)), which consists in periodically acquiring images
of the skin surface. Additionally, it is common practice
to use the total body skin examination (TBSE) to com-
pare skin lesions in a previous state to detect changes,
achieving a more accurate diagnosis. However, acquir-
ing this baseline is time-consuming and biased by the
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(a) (b)

Figure 1: In situ melanoma acquired with two different modalities: in
a a dermoscopy image, in b a clinical image of a lesion. The images
were submitted to the Dermoscopy atlas by Dr. Alan Cameron

physician’s subjectivity. In this context, the idea of de-
veloping a total body skin scanning system is a valid
alternative to perform this process automatically.

In general, images of skin lesions can be acquired by
using different tools (Korotkov and Garcia, 2012). For
example, dermoscopy is a non-invasive imaging tech-
nique for PSLs that provides the visualisation of their
subsurface structures by means of a hand-held incident
light magnifying device (microscope). Cross-polarised
light is nowadays used, and it allows almost identi-
cal images to be obtained using a microscope with or
without immersion fluid and direct skin contact with
the instrument (Benvenuto-Andrade et al., 2007). An-
other modality to acquire PSLs consists of dermatolog-
ical photographs - referred to as clinical or macroscopic
images - showing single or multiple skin lesions on the
surface of the skin. These images reproduce what a clin-
ician sees with the naked eye (Day and Barbour, 2000).
Clinical images are used to document skin lesions, map-
ping their location in the human body and tracking their
changes over time. A comparison by the two modalities
is showed in Fig. 1.

For this project, a total body scanning system is used
to obtain clinical pictures (Korotkov et al., 2015). It is
now at its second version and is capable of acquiring
high-resolution images of the skin. Fig. 2 is an example
of a photo acquired by the system and moreover Fig. 3
presents a comparison of two different skin lesions de-
tected on the total body skin images and a dermoscopy
tool.

A software framework to detect and compare skin le-
sions has been already developed at the University of
Girona, as detailed in Korotkov et al. (2015). However,
given the outstanding results obtained by deep learning,
in this work we implemented a new workflow based
on artificial intelligence, to automatically localise and
characterise the lesions and to perform intra-exploration
matching of them in the images obtained by a single ac-
quisition session. More in details, the main steps on
which this work focuses on are 1) detection, 2) seg-
mentation and 3) intra-exploration matching of the pig-
mented skin lesions. A scheme of the proposed pipeline
is shown in Fig. 4. The first step is related to detect
the lesions on the total body photos. In fact, the ac-

Figure 2: Example image acquired by the new total body skin scan-
ning system.

(a)

(b)

(c) (d)

Figure 3: Comparison between the same PSLs obtained with Mole-
Max digital dermoscopy (a and c) and extracted by the skin body im-
age (b and d).
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Figure 4: Scheme of the proposed pipeline considered in this project..
Change detection algorithm was not explored but is left for future in-
vestigation.

quired pictures cover large parts of the skin surface, in
which many PSLs can be found. Because each of the
them may change in a future acquisition, the first pri-
mary objective is to collect and label the largest number
of skin lesions. The second step that has been solved in-
volves the segmentation of lesions on the ROIs localised
by the detection technique. As stated by Korotkov and
Garcia (2012), border detection (segmentation) of a skin
lesion is crucial for its automated diagnosis and is one
of the most active areas in the computerised analysis
of skin lesions. After their detection and segmentation,
the lesions have to be matched to create a unique map.
Matching pigmented skin lesions is an important step of
the pipeline and its application is required for two dif-
ferent reasons. First of all, because of the architecture
of the scanning system, adjacent cameras acquire over-
lapping regions of the skin surface during a single ac-
quisition. Therefore, the same skin lesions can be found
in different images in which they appear with different
views according to their position with respect to the ac-
quiring cameras. We want to maintain their multiples
views to estimate the 3D orientation of the lesions. But
at the same time we need to discard duplicated represen-
tations of the same PSLs. To address this, it is impor-
tant to understand if a skin lesion has its counterparts in
other images and, if this is the case, match them in order
to refer all the views of a PSL to a unique map. Since
it is related to performing a mapping procedure for the
PSLs from a single acquisition, this process takes the
name of intra-exploration matching. Another reason for
which the matching task is required, comes from the
change-detection algorithm. In fact, in a follow up for
melanoma detection, a patient would be scanned sev-
eral times. It means that for each acquisition, an intra-
exploration map is created. Then, the maps have to be
compared with the baseline to look for future changes
happened during the inter-explorations period. To con-
trol the evolution of each skin lesion, we have to match
its versions acquired at different times in order to com-
pare them correctly. However, for the moment, we focus
only on the intra-matching task, by leaving the inter-
matching as future work.

The rest of the document is organised as follows. In
section 2, an analysis of the state of the art for the vari-
ous steps is presented. In section 3, the dataset available
is described. Then, in section 4 the methodology chosen
for this project is presented with more details. In section
5, the results of each step are presented together with a
discussion about them.

2. State of the art

The proposed review takes in account not only tech-
niques related to clinical images of the skin, but also
more techniques of computer vision in general. The
main tasks that have been reviewed in this work are
three: detection of skin lesions, their segmentation and
then intra-examination matching.

2.1. Detection of the Skin Lesions

The detection task includes two different steps that
are usually accomplished by the reviewed algorithms
(Girshick et al., 2014; Girshick, 2015; Ren et al., 2015).
The first one is related to the spatial localization of
the objects, that is usually expressed with rectangular
bounding boxes around them. Their coordinates are
given with respect to the origin (0,0) in the image of
interest. In the algorithms that have been analysed, it is
common practice that these coordinates are composed
of four elements: x and y coordinates of the top left of
the bounding box, plus its width and height. The second
element is a vector of probabilities related to the classes
to which the object belongs.

For what concerns our work, total body photogra-
phy has started to be investigated recently, and as con-
sequence of this there are few reported applications of
object-detection algorithms for skin lesions on full body
images. Whilst this lack of information represents an
unexplored research field that in our opinion gives par-
ticular value to our proposed technique, it also presents
a challenge in finding scientific literature on which we
could base our methods. For this reason, a review of
the state-of-the-art techniques for general detection task
is proposed. For years the detection has been based on
the use of hand-crafted features, such as histograms of
gaussian (HoG) presented by McConnell (1986) etc.),
followed then by a trainable classifier, for example, Sup-
port Vector Machine - introduced by Cortes and Vapnik
(1995) -, boosted classifiers or random forests. Besides,
in the pipeline developed by Korotkov et al. (2015)
for the previous version of the scanning system they
make use of a method widely used for blob detection,
the maximally stable extremal regions (MSER) method,
presented by Matas et al. (2004). Its application is based
on the idea that usually, the PSLs are darker spots on the
lighter skin surface. Regarding this, before using this
detector, they apply two pre-processing steps to ease de-
tection of the PSLs. The first one is a foreground (skin)
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segmentation, which afterwards is used 1) to exclude
from the PSLs detection areas not belonging to the pa-
tient body (scanner’s surfaces in the background etc.)
and 2) to selectively enhance the skin lesions w.r.t. the
skin surface. From their results, the MSER detector ap-
plied on the scanner images yields stable skin lesion re-
gions (blobs) which are approximated by ellipses with
their respective dimensions (major and minor axes) and
locations (centre coordinates). However, this technique
is an intensity-based method that is not able to detect
such a large number of skin lesions, since they can in-
clude many freckles which are not so easily identified
because of their intensity range being very close to the
skin of scanned patients.

Furthermore, the design of an algorithm for features’
extraction is difficult to engineer without the help of
some learning procedure. A considerable improve-
ment has been possible thanks to Convolutional Net-
works (ConvNets), that are examples of hierarchical
systems with end-to-end feature learning that are trained
in a supervised fashion. The use of deep learning ap-
proaches for object detection represents a new challenge
compared to other computer vision tasks (classification,
recognition, segmentation, etc.). However, it can be
found that the main approaches based on artificial intel-
ligence implement the localisation tasks as slight vari-
ant of the classification step. Regarding this, the idea
of this work is to replace the previous method with a
deep learning approach, that has proven to produce out-
standing results in detection tasks2. Their effectiveness
is clearly visible if we analyse the results of public chal-
lenge in the visual recognition task. As an example, in
the PASCAL VOC object detection3, the best results are
obtained with convolutional neural networks. However,
to the best of our knowledge, there is no evidence of
the application of artificial intelligence techniques for
detecting PSLs on clinical images. Therefore, in the
paragraph below, a review of deep learning - based algo-
rithms applied to the detection of general objects (cars,
pedestrians etc.) is presented.

One of the first techniques built with deep learning
techniques has been the Region-based Convolutional
Neural Network (R-CNN) presented by Girshick et al.
(2014). It is based on the combination of Selective
Search (Uijlings et al., 2013), a region proposals algo-
rithm, and a convolutional neural network applied for
each of the generated ROI. The output is then passed to
an SVM, that labels the regional, and a linear regres-
sor that can insert a bounding box around the detected
objects. The idea on which R-CNN is based is simple
and successful, its only problem is its low speed due to
the exhaustive Selective Search technique. Its succes-
sive algorithm is an implementation of a fast version of
the R-CNN that not by chance is called Fast R-CNN

2http://image-net.org/challenges/LSVRC/2015/results
3http://host.robots.ox.ac.uk/pascal/VOC/

(Girshick, 2015). It has different analogies with its pre-
decessor, but with improvements in the detection speed.
There are two main modifications: 1) a feature extrac-
tion over the image before proposing candidate regions,
2) the use of a softmax layer instead of SVM. The first
change makes use of one CNN over the entire image, in-
stead of multiple ones as in R-CNN, and the second one
extends the neural network predictions instead of creat-
ing a new model. However, this approach makes still
use of Selective Search for regional proposal, the main
bottleneck for what concerns the speed. Finally, another
improvement has been accomplished in the Faster R-
CNN algorithm by Ren et al. (2015) by replacing the
slow object proposal method of the previous two ap-
proaches with a fast neural network, called regional pro-
posal network (RPN). The most relevant modification
of this algorithm resides in the use of a sliding window
over the feature map of an initial CNN to map it to lower
dimensions. For each location taken into account by the
sliding window, multiple possible regions are proposed.
They are called anchor boxes, and each of them comes
with a bounding box with default dimensions and ra-
tio. Then, the RPN network takes each of these pro-
posals and give them an objectiness score (background
VS foreground) and bounding boxes coordinates. If
an anchor box has an objectiness score above a cer-
tain threshold, its box coordinates get accepted as region
proposal. After that, this information is feed into a Fast
R-CNN, that is identical to the network of the previous
approach. In the end, Faster R-CNN technique achieves
better speeds than before and state-of-the-art accuracy.
Later models did a lot to increase the detection speeds,
but few of them managed to outperform Faster R-CNN
by a significant margin. In conclusion Faster R-CNN
can be considered a canonical implementation for object
detection. However, successive algorithms tried to im-
prove the speed of the object detection, and one of them
is the Region-based Fully Convolutional Net proposed
by Girshick et al. (2016), that is several times faster than
Faster R-CNN and achieves comparable accuracy. In
fact, it can simultaneously address location variance by
proposing different object regions, and location invari-
ance by having each region proposal refer back to the
same bank of score maps. Moreover, it is fully convo-
lutional, so all the computation is shared throughout the
network. All the previous approaches are based on the
use of two separate steps: regional proposal and region
classifications. Another pipeline is proposed in Single
Shot Detector (SSD), where Liu et al. (2016) combine
the two steps in one single shot.

2.2. Segmentation of the Skin Lesions
After the extraction of regions of interest, the PSLs

are segmented. As stated by Korotkov and Garcia
(2012), one of the earliest works on skin lesion bor-
der detection used the concept of spherical coordinates
for color space representation (Umbaugh et al., 1989).
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Since then, it has been widely adopted in the litera-
ture for lesion feature extraction and color segmenta-
tion. Comparisons of different color spaces applied to
segmentation were carried out by Umbaugh et al. (1992,
1993). Golston et al. (1990) estimated the role of several
determinants of the lesion border, namely color, lumi-
nance, texture and 3D information. While 3D informa-
tion was mostly absent, color and luminance appeared
to be the major factors for most of the images. Thus,
the authors discussed an overall algorithm that would
take into account several border determinants based on
their level of confidence, and proposed a radial search
method based on luminance information. Similarly, in
support of multifactorial descriptiveness of the lesion
border, Dhawan and Sim (1992) proposed the combi-
nation of gray-level intensity and textural information.
Further works concentrated on improving existing tech-
niques (Zhang et al., 2000) and applying a multitude of
different approaches, including edge detection (Denton
et al., 1995; Xu et al., 1999), active contours (Chung and
Sapiro, 2000), PDE (Barcelos and Pires, 2009; Chung
and Sapiro, 2000), gradient vector flow (Tang, 2009)
among many others.

Recently, the community has started to move from
traditional techniques towards deep learning techniques,
following the general trend of computer vision (For-
naciali et al., 2016). Among the challenges hosted
by the International Skin International Collaboration
(ISIC) sponsored by the International Society for Dig-
ital Imaging of the Skin (ISDIS), there is the segmen-
tation of dermoscopic images challenge. Several ap-
proaches that obtained top results are based on the U-
net of Ronneberger et al. (2015), a convolutional net-
work intended for accurate segmentation of biomedical
images. One of the these algorithms4 has been imple-
mented by Campinas University in Brazil5, as described
by Menegola et al. (2017). The convolutional neural
network has been built specifically for dermoscopic im-
ages.

2.3. Matching of the Skin Lesions

Multiple occurrences of the PSLs in various images
obtained in a single acquisition of the scanning system
have to be matched in order to create a unique map
of each skin lesion. A common strategy is to charac-
terise each element by generating a same-size vector
that can uniquely describe it. In this way, the match-
ing problem can be seen as a process in which objects
with similar descriptors (whose distance is lower than
a given threshold) are identified to match. In computer
vision, generating descriptors has been a hot topic in
the last decades. One of the milestones for descrip-
tors extraction comes from the Scale Invariant Feature

4https://challenge.kitware.com/phase/584b0afacad3a51cc66c8e24
5https://www.unicamp.br/unicamp/english

(SIFT) method by Lowe (1999). It allows generating
spatial-invariant descriptors for objects of interest, to
find correspondences useful to the matching process af-
terwards. This method has also been used by Korotkov
et al. (2015), where the skin lesions and larger skin re-
gions are compared using SIFT. Specifically, in their
pipeline for matching, the authors initially consider the
stereo-pair images for matching and subsequent trian-
gulation of the MSER blobs. In fact, the detected skin
lesions are compared using image feature descriptors
(SIFT) and then triangulated by using the intrinsic and
extrinsic parameters of the stereo rig. Once the PSLs are
matched across all the stereo pairs, their 2-D views at
each turntable position are grouped in sets. Afterwards
these sets are generated for each turntable position and a
matching process across different turntable positions is
performed with a similar approach of before, based on
the comparison of features extracted by SIFT descriptor
on ROIs of the detected skin lesions. At the end of this
method, every PSL has all its 2-D views in the images
of the scanner correctly referring to it.

Several other approaches have been used for match-
ing skin lesions. One of them comes from the work by
Perednia and White (1992), in which a correct identifi-
cation of initial matches works as base for a 3-point ge-
ometrical transformation. The same authors proposed a
method to automatically extract initial PSLs matches by
using a Gabriel graph representation of lesions in an im-
age. The same process is a requirement for the baseline
algorithm proposed by Roning and Riech (1998). They
first create lesion maps to perform the registration of
multiple lesion images. Another approach comes from
Mcgregor (1998). Clusters of nevi are generated by
using a centre-surround differential operator and later
at different images scales they are thinned via a cen-
tring mask. A registration process is then performed,
but it requires initial lesion matches, which are ob-
tained by minimising the distance and angular error of
local neighbourhood. Instead, the authors Huang and
Bergstresser (2007) used Voronoi cells to measure sim-
ilarities between skin lesions. Another approach based
on graph matching was proposed by Mirzaalian et al.
(2009).

All previous approaches do not include any deep
learning techniques. However as it is happening in
other computer vision tasks, for what concerns gener-
ation of descriptors, convolution neural networks out-
perform the handcrafted ones, as stated in Fischer et al.
(2014). Starting from the success of CNNs trained on
public dataset such as ImageNet in recognition tasks ob-
tained by Krizhevsky et al. (2012), they demonstrated
how convolutional neural networks outperform SIFT on
descriptor matching.
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Figure 5: A 3-D model of the scannining system: exterion view on
the left and acquisition compartment with side door removed (right).
Its human-size dimensions allows patients to stand up during the ac-
quisition.

3. Material and Methods

3.1. Total Body Skin Scanning System

The first version of a photogrammetry-based total
body scanning system was developed by the ViCOROB
institute at the University of Girona in 2015. It is
equipped with 21 high-resolution cameras organised in
two columns and a turntable, and it allows the acquisi-
tion of overlapping images, covering almost 85 - 90 per
cent of the patients skin surface. The tests performed
with this scanner showed that it could be used for au-
tomated mapping and temporal monitoring of multiple
lesions. A new version of the scanner has been built by
the same team. It has eleven Canon 6D cameras with
CMOS sensor of 20.2 megapixels, that can cover the
same skin surface as before. The lighting procedure is
not continuous as before, but a set of flashes is used
to light the scene, and they are synchronised with the
shooting time. This modification increases three times
the amount of light, allowing better illumination con-
ditions and better light polarisation. Also, lower ISO
is used, and consequentially, image quality is increased
concerning the previous implementation.

The system appears as a human size cabin (in Fig.
5), and it is equipped with a rotating platform. A pa-
tient enters inside and locates his/her feet on the moving
stand. The scanning is performed in two steps. Initially,
the person has to grab a support in front of him/her and
the platform performs a rotation of 180 degrees counter-
clockwise, with images acquired in twelve fix turntable
positions. After the turntable reaches 180 degrees, the
patient needs to change his/her position and to grasp
the same support but with a posterior pose. Then the
same amount of images are acquired. In total, the final
amount of images per scanning session are 264. For

the moment, the scanning system is located inside a
room on the laboratory. In the future, after the tech-
nical experiments will be finished, clinical tests will be
performed at the Hospital Clinic in Barcelona (Spain),
starting a follow up of a larger amount of patients.

3.2. Dataset
The dataset is composed of clinical images - each

one with sizes 5472x3648 - coming from the total body
skin scanning system. One patient has been scanned in
two different sessions, so the final number of images we
used for this project is 528. Our pictures are acquired
with a larger field of view compared to other acquisition
methods (i.e. dermoscopy), so that they may include
skin areas with different PSLs in them. For this project,
the primary interest is in the photographs in which the
skin lesions are well visible. For instance, those cov-
ering the back of a patient have been chosen as good
candidates: they include flat skin surfaces, in which the
PSLs are clearly displayed. On the contrary, the hands
and the feet have a shape and other characteristics (as il-
lumination conditions) that do not allow to observe very
clearly the skin lesions, so for this reasons they have
been discarded. Furthermore, the head skin has been
excluded, because possibly covered by hair and because
of the different curves of the various elements forming
the face, that does not let the skin lesions to be seen.

Unfortunately, we were not able to get a ground truth
from a trained physician during the course of this work.
As consequence, a qualitative analysis has been accom-
plished to verify the results of detection and segmenta-
tion tasks in the implemented pipeline. Moreover, orig-
inal arrangements - as we explain in the next section -
have been taken to produce the training, validation and
test sets to run the CNNs for the various steps. Then,
specific modifications and augmentations to the original
dataset have been performed for each task, i.e. 1) de-
tection, 2) segmentation and finally 3) intra-acquistion
matching of the skin lesions. For instance, in the seg-
mentation part, a public dataset of dermoscopic images
has been used. This dataset comes from ISIC Challenge
2017 ”Skin Lesion Analysis Towards Melanoma Detec-
tion” (ISBI 2017).

4. Detection and Characterisation of Skin Lesions

To detect, characterise and match the skin lesions
contained in the images acquired during one acquisition
of the scanning system, we propose a pipeline organ-
ised with 1) an initial detection of the PSLs, followed
by 2) their characterisation based on a segmentation ap-
proach. After these two steps, 3) the intra-exploration
match of the skin lesions is accomplished by using the
localisation provided by the detection algorithm. State
of the art deep learning techniques have been used to
solve the intended tasks, and a summary of our work is
presented below.
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4.1. Detection of the Skin Lesions
For the first task, we decided to use Faster R-CNN,

which reached state-of-art in public competitions. We
take advantage of the public implementation of the net-
work available at the Facebook Detectron Project6.

As backbone of convolution body of the detection al-
gorithm, VGG16 by Simonyan and Zisserman (2014)
has been replaced with Deep Residual Network (ResNet
with 50 layers). In fact, as stated by He et al. (2016) and
Ren et al. (2015), the use of deep residual learning al-
lows having broader networks - able to learn a wider
range of features (Szegedy et al., 2015) - that are more
easily trainable and at the same time they can gain ac-
curacy because of the increased depth. Furthermore, the
connections based on Feature Pyramid Network (FPN)
have been added to the ResNet. It has been showed by
Lin et al. (2017) how the inherent multi-scale, pyrami-
dal hierarchy of deep convolutional networks are able
1) to build feature pyramids with a marginal extra cost
and 2) to obtain better results in Faster R-CNN. Be-
sides, FPN has recently enabled new top results in all
tracks of the COCO competition, including detection,
instance segmentation, and keypoint estimationee (He
et al., 2017).

As is common practice (Girshick et al., 2014), a pre-
trained ResNet-50 model is obtained from the MSRA
(Microsoft Research Asia) repository, which contains
also the models of the Deep Residual Network. Fine
tuning, based on slightly updating the weights of all the
level of the Faster R-CNN, has been used to train the
network. To perform this task, it has been necessary to
create a specific dataset, that includes 1) the images in
which the PSLs have to be detected and 2) the annota-
tions (in JSON format) of the skin lesions in the pho-
tos. The annotations file is composed of bounding box
coordinates per object, specified as described in subsec-
tion 2.1 of the state of the art paragraph. The images
of our dataset come with no annotations, so these have
been created for this specific purpose. There are soft-
ware programs7 that can be used to manually annotate
the files of interest. However, in our particular problem,
the process cannot be performed manually, because the
number of skin lesions is considerable, and the required
time to do the annotations would have been unfeasible.
Instead, it was decided to take advantage of the MSER
detection - segmentation method used by Korotkov et al.
(2015), followed by a boundary detection8 and mini-
mum bounding box detection. This method allowed us
to generate boxes for a large number of PSLs in the im-
ages of interest. This ground truth generation method is
based on the good results in PSLs detection obtained by
Korotkov et al. (2015): starting from them, we gener-
ated our dataset to feed the Faster R-CNN.

6https://github.com/facebookresearch/Detectron
7https://github.com/tzutalin/labelImg
8https://www.mathworks.com/help/images/ref/bwboundaries.html

Another modification that has been done is related
to the size of the images processed by the CNN. The
good results of Ren et al. (2015) are obtained for COCO
dataset, whose images have sizes of one order of mag-
nitude smaller compared to the one in our dataset. For
this reasons, the initial attempts of the experiments were
not able to obtain the desired output, even changing
the available parameters of the code. To resolve this,
each image has been divided into smaller overlapping
patches (one hundred per each picture), with a dimen-
sion (484×668) similar to the ones of COCO dataset.

Furthermore, several parameters have been tuned in
the Regional Proposal Network. The modifications that
have been done take into account the characteristic of
the object we are willing to detect. First, the default an-
chor ratios were set to 0.5, 1, 2. However, it is not likely
for the PSLs to be enclosed in a rectangular box with
one side dimension double of the other. For this reason,
they have been changed to 0.7, 1, 1.5. Another consid-
eration is done by taking into account the dimensions
of the skin lesions in the patches. The default anchor
sizes are set to (64, 128, 256, 512). However, in our
dataset, it has been observed that it is difficult to have a
PSL larger than 120 pixels per side. So, the dimensions
of the anchors have been reduced to concentrate only on
smaller objects (32, 64, 128), and also the possible size
configurations have been fixed from five to three, be-
cause of the absence of so much variety in dimensions
of the objects to detect. This task ends with the detec-
tion of skin lesions by drawing bounding boxes around
them. For our pipeline, it has been decided to use larger
windows than the predefined ones to save the detected
PSLs. This decision involves consequentially to include
wider parts of the skin surrounding the lesions, to allow
a better characterisation in the following steps.

4.2. Segmentation of Skin Lesions

The next step of the pipeline is the characterisation of
these region of interest. To do that, it has been decided
to segment the border of the skin lesions. This task has
been solved by using the implementation of the U-Net
by Menegola et al. (2017), which reached outstanding
results in the segmentation task on ISIC challenge9. The
challenge includes only dermoscopic images, on which
Menegola et al. (2017) fine-tuned their neural network.
Following a similar approach, several experiments have
been conducted to fine tune the network, by using dif-
ferent types of datasets. First, the training has been
built only with the 2000 dermoscopic images available
for training on the challenge from ISIC. Then, a mixed
training set has been built by combining the dermo-
scopic images of the challenge with the detected skin
lesions coming from the detection tasks. To obtain the
ground truth masks for such images, the bounding box

9https://challenge.kitware.com/phase/5841916ccad3a51cc66c8db0
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coordinates associated to each detected skin lesion are
used to clip also the detection maps obtained by MSER
algorithm. As last test, we train only on the images of
our dataset. In the final solution, we have been decided
to train the neural network by mixing the two datasets
in equal percentage. Regarding this, even they come
from another acquisition modality, the dermoscopy im-
ages have been already used in combination of clinical
images (as an example, we cite the classification task of
Menegola et al. (2017)). For this reason, we took advan-
tage of the well-done masks of the dermoscopy images.
At the same time, we are sure to have included the char-
acteristics of our dataset in the training process. The
images are resized to 128 by 128 in the default configu-
ration. However, it has been seen that the best sizes for
having good results on our dataset are 64 by 64. An-
other modification has been reserved for the introduc-
tion of early stopping technique. In the original imple-
mentation, the number of epochs has been set to 220.
However, with early stopping technique, the results of
the original network on the challenge dataset have been
found to be the same that the one reported, but with a
much shorter computational time (less than 10 epochs).

4.3. Matching of Skin Lesions
After the PSLs have been detected and segmented,

they are ready to be matched. In this work, we focus on
the matching of the skin lesions to create a map of a sin-
gle acquisition performed by the scanner. The change
detection could be investigated with a similar method to
the proposed one, but it has been left as future work. In
our approach, we establish a new workflow organised
with a first rough registration process performed with a
method based on hand-crafted features and geometrical
constraints of the scanning system, followed by a novel
deep learning technique to refine the matches.

In the proposed pipeline, a first registration method
is used to generate rough correspondences in the var-
ious images. In particular, after an initial calibration
of the intrinsic and extrinsic parameters of the cameras,
SIFT features are extracted for the images acquired by
the eleven cameras at the same turntable position. Next,
the 2-D extracted points are matched together and tri-
angulated to 3-D space. This procedure is performed at
each known turntable position, and a 3-D point cloud is
obtained by grouping all together the triangulated points
at different turntable positions. Then, the 3-D point set
is converted to a surface mesh by using the method of
Kazhdan and Hoppe (2013). Given the generated 3-D
mesh and the known geometry of the system, we are
able to infer for a given point in an image, its 3D po-
sition on the surface, and where it back-projects in the
other images. This technique works well, but the re-
sults showed that it represents only a rough estimation
of the correspondences between the different areas of
the body. The algorithm itself does not give an exact
estimate location, mainly because it is very likely that

Figure 6: Architecture of the Classification Network created for
matching skin lesions

during the acquisition the shape of a patient is prone to
involuntary movements that do not allow for an exact
matching among skin lesions. Nevertheless, we want to
be sure of the locations of the same PSLs in the images,
so a refinement process on the results obtained by the
previous method is performed.

To perform this, a local matching on the areas pro-
posed by the previous technique is performed. The idea
is to compare locally the PSLs to be matched and the
skin lesions detected in the suggested regions. For this
task, it has been decided to take advantage of a method-
ology inspired by the one described by Fischer et al.
(2014). Here, they demonstrate how features extraction
by neural networks outperforms the traditional SIFT de-
scriptor for matching tasks. However, we use a slight
variant of their network, organised as shown in Fig. 6.
To build the training set, eighty-four different skin le-
sions are used to generate the training and validation
set, with a similar method described in the original im-
plementation. Each skin lesion goes under four different
geometrical transformations: one rotation of thirty de-
grees and three different affine transformations. Despite
what described in their paper, we decided to generate
modifications that resemble the most the different views
in which the PSLs can be found in the images, without
causing any very variating changes. After that, the neu-
ral network is trained with the 336 pictures to classify
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them in 84 classes. The results are checked by using a
validation set composed of 84 images. All the images
are resized to 100×100. The training is conducted for
20 epochs, with an Adam optimiser, a learning rate of
0.0001 and a batch size of 4. After the end of this pro-
cess, features have been extracted. Descriptors at two
different network depths - corresponding to the last two
fully connected layers (or dense layers10) - have been
compared. The weights of the first fully connected layer
(fcl) are 110,166,016 plus 512 biases, on the contrary
the ones of the second fcl are 43016 plus 84 biases. No
feature reduction method has been applied on the ex-
tracted descriptors.

5. Results and Discussion

In this section, results of the new pipeline - com-
posed of detection, segmentation and intra-exploration
matching of the PSLs - are presented. Several exam-
ples are displayed to highlight the improvements of our
method with respect to the former one. We recall that
no ground truth has been generated with the help of a
physician, consequentially we decided to avoid quanti-
tative results for detection and segmentation tasks be-
cause they would not have any scientific relevance. In-
stead, our efforts are focused on presenting visual ex-
amples in which our pipeline is able to detect and seg-
ment PSLs on the full-body images correctly. Instead,
for what concerns the matching process, our methodol-
ogy allows to generate numerical results.

5.1. Detection and Segmentation of Skin Lesions
The detection task has been solved, as Fig. 7 shows.

According to our knowledge, the proposed method rep-
resents an innovative step in the field of total body skin
examination, where no use of deep learning techniques
for PSLs detection has been considered yet. We can
see how the most evident nevi are recognised by draw-
ing bounding boxes around them, with very high proba-
bilies, even if many lesions detected are freckles. Since
in this work no distinction between nevi and freckles is
considered, the results are consistent with the fact that
we are interested in detecting as many PSLs as possi-
ble. In addition, a comparison between our method and
the previous one can be performed. Regarding this, be-
cause the results of MSER detector are given as PSLs
including the mask of their borders, we want to be con-
sistent in the comparison between the outputs of two
methods. For this reasons, for Faster R-CNN results
we consider the detected skin lesions with the masks
generated by the segmentation task. However, in this
first part, our focus will remain on the detection task
and no observations will be made regarding the differ-
ent shapes of the PSLs. Regarding this, a comparison

10https://keras.io/layers/core/dense

between the two methods is showed in Fig. 8, obtained
by applying the pre-processing performed by the previ-
ous pipeline before MSER detection. On these images,
an enhancement of the PSLs is achieved, so that it is
easier to highlight them on the skin. They show which
of the same PSLs have been detected by the two differ-
ent techniques. In Fig. 8.a, b we can underline that both
approaches segment correctly the nevi, but as expected
the MSER method skips several freckles that have an
intensity very close to the intensity range of the patient
skin (Fig. 8.c-f ).

Then, the inference process has been applied also to
types of images that have not been used in training. In
particular, Fig. 9 show the network responding to hairy
parts of the body (in our case, they belong to the chest of
the patient). In Fig. 9.a and 9.c, it is evident that the net-
work correctly detects the more clear PSLs, even if they
are covered by the black hair of the subject. However
Fig. 9.c illustrates how the presence of hair prevents the
network to detect correctly all the skin lesions (in par-
ticular a large number of freckles), by generating sev-
eral false negative detections. On the other hand it hap-
pens also that, because of the conformation of the hairy
parts, several of these regions are detected wrongly as
skin lesions (Fig. 9.e shows an example of false posi-
tive). However, it can be observed how the performance
of the new approach is improved with respect to the pre-
vious method, even if it is still inevitable that in the clin-
ical setting, the patient will be asked to shave the hairy
parts. In fact, Fig. 9.b, 9.d and 9.f show that MSER
algorithm generates more false positive as well as false
negative detections. This is due to 1) the pre-processing
applied to the image to enhance darker spots, that is not
able to selectively discriminate between skin lesions and
hair of the patient, and because the 2) the technique is
not sensible to the different of textures of these kind of
areas. The MSER is mainly an intensity-based method,
but as in this case the hairy regions have an intensity
range close to the darker skin lesions, it is not able to
differentiate them correctly. On the other hand, Faster
R-CNN is a deep learning approach that perform its de-
tection based on a richer collection of features, that im-
prove (but not solve) the detection process. Moreover,
we tested the network on parts that contain dark un-
dergarment worn by the patient. Fig. 10 generated by
the combination of detection and segmentation show no
false positive in these areas. It is in accordance with the
previous technique, that also obtains good results with a
dark undergarment worn by the patient.

For the second task, each detected skin lesion has
been segmented, and Fig. 11 illustrates some exam-
ples. In particular, we can see how the borders of
both nevi and freckles (Fig. a and b and freckle in c)
agree correctly with the PSLs borders. For what con-
cerns the hairy areas detected by the Faster R-CNN,
Fig. 12 present the segmentation output on them. In Fig.
12.d we can see that, since the hair presence generates
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skin 0.99

skin 1.00

(b)

Figure 7: Output of skin lesion detection with Faster R-CNN on a region of the back of the patient. No classification between nevi and freckles has
been performed, because for the moment we are interested in detecting as many PSLs as possible.

(a) (b)

(c) (d)

(e) (f)

Figure 8: Comparison of the two detection algorithms by overlap-
ping the detected skin lesions on the pre-processed images that are
demanded before MSER algorithm. From them, it is easy to see how
the freckles are the cause of different false negative in the previous
approach, because of their intensity very similar to the skin of the
patient. On the contrary, Faster R-CNN bases its detection on the en-
riched features learnt during the training, and its false positive rate is
lower compared to MSER. )

(a) (b)

(c) (d)

(e) (f)

Figure 9: Detection results for hairy areas. The two algorithms are
compared (a, c, e by the new approach and in b, d, f by MSER). It is
evident how the MSER approach generates more false positive with
respect to our method, that instead can correctly most of the nevi.
However, in c we can notice how in the hairy regions false negative
(yellow arrows) are present, as well as in e a false positive is high-
lighted by green arrow. Even if the number of wrong detections is
reduced compared to the previous method, the indication of shaving
these kind of area is still a recommendation.
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(a) (b)

Figure 10: Example of detection of PSLs on skin area in which the
patient wears dark undergarment. Both the approaches perform well,
with no false positive detected on the trouser. In Fig. a detection per-
formed by Faster R-CNN, in Fig. b detection performed by MSER
approach.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: Output of the segmentation by the U-Net for two different
PSLs (nevi in a, b and freckle in c). It is evident to see how the
the generated masks (shown in d, e and f figures) is able to correctly
segment the borders of the PSLs (g, h and i figures)

(a) (b) (c)

(d) (e) (f)

Figure 12: Segmentation results on areas detected by Faster R-CNN
on hairy part of the body.

(a) (b)

(c) (d)

Figure 13: Segmentation comparison of the two methods (U-Net re-
sults in a and c, MSER result in b and d). It is evident how the our
method agree with the previous one on border detection.

false positive in detection, the segmentation algorithm
wrongly produces a mask on a hairy region. Moreover,
Figs. 12.e and 12.f show that the segmentation is ac-
complished, but with no precision in the border detec-
tion. These wrong results are again due to the intensity
similarities between darker skin lesions and hair. Then,
a comparison between our approach and the previous
one in the segmentation of some PSLs is presented also
in Fig. 13. In particular, it can be seen how the bor-
ders of most of the lesions obtained by the latter follow
quite well the former. Besides, we can highlight how
the profiles of borders of the PSLs processed by the new
approach are more realistic and more smoothed.

By combining the detection and segmentation on all
the regions of an entire image obtained with the scan-
ning system, a complete mask with the detected PSLs
is obtained, as Fig. 14.a shows. In Fig. 15 the gener-
ated mask is used to highlight the nevi on the original
image. This accomplishment of the pipeline is com-
parable with the previous method, whose segmentation
is given by Fig. 14.b. In particular, the first thing that
can be stated is that in the previous approach the appli-
cation of MSER algorithm requires two pre-processing
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(a) (b)

Figure 14: Comparison of the whole mask segmentation generated by the two methods for the same image obtained with the scanning system.
Fig. a: Complete Mask generated by our method. After having detected and segmented the PSLs in area extracted by the whole photo, our pipeline
is able to generate a complete mask of the initial image. The number of PSLs detected is larger than the other method in Fig. b. Fig. b: Complete
Mask generated by MSER method. This is segmentation should be compared with the one performed by our new method. It is evident how the
number of detected skin lesions in the former is smaller the latter. Moreover, in the bottom left corner of the image it appears an error in the
segmentation due to shaded underlit area.

Figure 15: Overlap between segmentation whole mask and original
image. It is evident how the majority of the skin lesions and freckles
are detected and segmented.

steps on the images. The first one is the foreground
(i.e. skin) detection, to avoid the algorithm to detect
skin lesions on the background given by the cabin of
the scanner. Another pre-processing resides in the in-
tensity’s enhancement of the skin lesions so that the
MSER algorithm can perform better in blob detection.
On the contrary, our approach is a homogeneous com-
bination of two steps (detection followed by segmen-
tation) that does not require any pre-processing. More-
over, another drawback of the previous approach resides
in the false positive obtained by MSER algorithm in
shaded underlit areas, such as in the lower-left corner
in Fig. 14.b. Our algorithm does not present this prob-
lem, as Fig. 15 shows. Then, a visual comparison of
the same image processed by the two algorithms can be
analysed in Fig. 16. It shows where the two segmen-
tation methods agree (yellow color), plus the segmen-
tation performed by the MSER approach (green color)
and by our pipeline (red color). From the previous im-
age, it is possible to notice that the latter approach is
able to segment most of the skin lesions detected also
by the former one. Besides, our technique is able to lo-
calise a larger number of nevi. Remember that the first
requirement that we decided to accomplish in the be-
ginning was to detect the largest number of skin lesions
as possible because each of them could lead to a possi-
ble melanoma if a change in its characteristic happens
in a future acquisition. So, as image shows, our method
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Figure 16: Differences between the segmentation of new algorithm
(red color) and MSER method (green color). The yellow color identi-
fies the overlapping PSLs segmented by the two approaches

(a) (b)

Figure 17: Example of a reference point in Fig. a for which a matching
proposal in Fig. b is computed in another image. Even if the proposed
region is close to the desired one, it is not precise. For this reason, a
further step of refinement is needed.

obtains better results in collecting skin lesions.

5.2. Matching of Skin Lesions

The detection of the PSLs in the different images of
the full-body skin of a patient also poses the need of
matching them. The initial rough estimation of the lo-
cations between a reference point in one image and a
matching localisation in other images is not a precise
procedure, as the Fig. 17 shows. For this reason, a
refinement process finds its use to match correctly the
PSLs of interest. The neural network for features ex-
traction has been tested by comparing the descriptors
from the last two fully connected layers. The tables pre-
sented below show the results in term of L-2 norm and
they show which skin lesions in different images (up-
per row, with a vertical line dividing different images)
match the specific PSLs in a given image (column on
the left side). Moreover, the tables give a measure of

how accurate a match is. In particular, we use the ratio
by Lowe (1999) (we refer to it as Lowe’s ratio) between
the first closest match and the second closest one and if
its value is greater than 0.80, the match is not considered
good.

As illustrated by the first four rows of Table 1, the
features extracted from the two layers allow obtaining
vectors that characterise correctly the PSLs in differ-
ent images from cameras at the same turntable posi-
tion. In fact, the smallest values in term of Euclidean
norm are obtained by the correct matches of the skin le-
sions between different images. We check if they are
good candidates by using the ratio between the clos-
est and second-closest matches. For the match of the
first skin lesions to the first image of camera 4, the ratio
obtained from the second fully connected layer is 0.31,
compared to the 0.44 obtained from the first dense layer.
Then, the related values for the first skin lesion with
the second images are 0.60 and 0.65. For the match
of the second skin lesion, we obtain 0.44 for the first
match obtained with the second fully connected layer,
compared to the same value of 0.44 obtained from fea-
ture vector extracted from the first fully connected layer.
Again, for the second match of the same skin lesions,
the related values are both equal 0.43. From these re-
sults, it is evident how the matches obtained are right
in terms of relative distances, because they are smaller
than the threshold of 0.80. The results from the second
fully connected layer are slightly better. This may seem
unexpected if we consider that the first fully connected
layer would allow a better characterisation of the image
because of its wider length. However, evidence shows
that the best results are obtained with the features from
the second fully connected layer that holds less weights,
which seem to better describe the lesions. Then, more
results of matching PSLs at same turntable positions are
given by extracting the features from the first fully con-
nected layer, to further explore its performances. The
lower part of Table 1 and the second results on Table 2
reveal that the descriptors are suitable to perform the
match between skin lesions in different images at the
same turntable position. However, the second row of
the Table 2 presents the case in which there is no real
match to perform between a PSL and the ones in other
images. This situation is unlikely to happen but it is due
to a failure of the localisation given by the initial rough
estimation. The L-2 norm value of 115 indicates there
is a match even if it is not the correct one and its value
is in line with the correct matches of the other cases.
Moreover, the check to understand if it is a good match
gives also a result of 0.67, that is higher than the pre-
vious ones but still within the acceptance threshold of
0.8. However, this can be avoided by performing a bet-
ter initial registration. Another observation is done for
the match of the last lesions of table 2 with camera 5.
The lowest L-2 norm is given by the correct match, but
Lowe’s ratio is higher than the threshold. Nevertheless,
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Table 1: L-2 norm distances between the features extracted at two different depths of the neural network. For five skin lesions detected in an image
of camera 3, matches have been searched among the proposed areas in the images of adjacent cameras 4 and 5. The turntable position is fixed.
Rows 1-4 compare the results of the matching for features extracted at two different fully connected layers of the neural network: lines 1,2 (in
yellow) show the results for descriptor taken at the 2nd fully connected layer (fcl), lines 3,4 (in white) show the relative distances for the same PSLs
described by features extracted from the 1st fcl. Rows 5-7 shows the results of the matching for skin lesions characterised by descriptors obtained
from the 1st fcl. For all the cases, their Lowe’s ratio values are below the threshold of 0.80, therefore they can consider good matching candidates.

Camera 4 Camera 5

Lowe’s
ratio

Lowe’s
ratio

102.43 16.07 84.29 52.06 110.29 98.09 0.31 107.08 77.00 29.57 49.17 103.58 83.39 0.60

74.42 87.61 23.74 53.21 61.30 59.71 0.44 65.76 21.71 66.74 54.29 49.59 49.87 0.43

284.26 51.33 181.57 117.88 244.43 213.07 0.43 268.48 164.73 74.30 114.23 231.14 188.76 0.65

205.42 180.66 55.12 123.38 153.16 155.29 0.44 187.98 53.22 143.80 121.17 136.70 135.24 0.43

127.83 297.53 199.50 225.57 203.78 215.18 0.64 88.01 203.92 259.89 212.33 188.65 215.03 0.46

237.48 143.32 132.28 43.39 158.91 116.21 0.37 204.10 118.98 116.48 52.39 147.49 97.26 0.53

236.58 229.01 164.14 130.65 94.50 22.42 0.23 194.55 159.55 193.90 136.90 101.53 52.81 0.52

we can conclude that, from the majority of the experi-
ments we conducted, the matching for skin lesions at the
same turntable position is well solved by our method.

Next, the matching of skin lesions from the same
cameras but at different table positions is performed.
Table 4 and 3 compare again the L-2 norm values ob-
tained for different skin lesions by extracting features
from the two last fully connected layers. In particular,
Table 4 shows the results of the matching for the skin
lesions on images acquired in previous turntable posi-
tions with respect to the reference to which the match
is performed. On the contrary Table 3 presents the out-
put of the process for the positions of the turntable that
come after the reference. As it can be observed, the re-
sults remain good in terms of L-2 norm and Lowe’s ratio
for all the first adjacent positions with respect to the ref-
erence. However, the more the images are acquired in
further turntable locations, the more their performance
falls down. In particular, we can notice that the L-2
norm values in rows 1,3 still indicate the right candi-
dates, but Lowe’s ratio warns that the chosen matches
could be wrong. These results are expected because the
task of matching skin lesions from the same camera at
different turntable positions is intrinsically more diffi-
cult compared to the process conducted among different
cameras at the same turntable position. In fact, during
the acquisition, only the part of the body placed in front

of the flash is lighted, and the side areas of the body
present a lower illumination. It normally happens, as in
the examples shown in the table, that the skin lesions
are detected not only in the illuminated areas but also
in the darker surfaces. For these reasons, in the process
of matching, the same skin PSLs can be found with dif-
ferent lighting conditions and views, which makes their
matching challenging. Comparing the results performed
in the implementation by Korotkov et al. (2015), they
limit the results of merging skin lesions to the first two
adjacent turntable positions. Our method can be consid-
ered in line with the previous method because the results
remain acceptable until the third closest turntable posi-
tion.

6. Conclusions and Future Work

The initial tests performed for the detection and seg-
mentation tasks show visually how the implemented
methods obtain good results. In fact, not only the most
significant nevi but also the freckles are detected and
segmented, with visible improvements concerning the
previous methods. In particular, the deep learning tech-
nique for the detection of PSLs on full body skin le-
sions represents a novel method in total body scanning
technique that, to the best of our knowledge, has not
been explored yet. MSER detection is an intensity-
based technique, and it requires more pre-processing to
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Table 2: L-2 norm distances between the features extracted at two different depths of the neural network. For 3 skin lesions detected in other areas
of the image from camera 3, matches have been searched among the proposed areas in the images of adjacent cameras 4 and 5. The turntable
position is fixed. All rows show results of the matching for features extracted at the 1st fully connected layer. Row 2 shows a particular case in
which the proposed area in camera 5 is wrong. Even if the candidate is wrong, the Lowe’s ratio is still within the threshold: this can be considered
a failure of the pipeline, but it can be fixed by better refining the proposing region algorithm.

Camera 4 Camera 5

Lowe’s
ratio

Lowe’s
ratio

18.75 134.68 212.68 290.07 249.72 263.92 0.13 121.41 210.67 260.11 197.06 282.41 281.65 249.18 281.12 0.61

132.07 24.75 191.33 275.33 221.09 234.77 0.18 119.79 195.02 240.98 177.40 250.19 250.49 237.69 252.37 0.67

285.76 266.83 187.33 80.36 141.11 108.94 0.73 213.72 152.60 214.35 191.44 173.53 148.52 75.02 231.64 0.50

247.42 220.89 124.15 137.51 41.75 105.01 0.39 162.36 90.20 153.76 124.02 108.88 95.85 111.09 161.09 0.94

Table 3: L-2 norm distances of skin lesions in a specific area of the image of camera 3 at position 17 w.r.t. the PSLs found in the proposed areas
of the same camera at different turntable positions. The features are extracted at two different depth: in yellow, the matching performed for vectors
taken at 2nd fully connected layer (fcl) is showed, in white, the matching with features extracted at 1st fcl is performed. For the first adjacent
position, the matching works in both the cases. On the contrary, more the positions get far from the reference, more errors happen. For instance, in
the position 14, even if L-2 norms is good for the same lesion at row 1 and 3, all Lowe’s ratios are above the threshold of 0.80.

Position 16 Position 15 Position 14

Lowe’s
ratio

Lowe’s
ratio

Lowe’s
ratio

106.36 102.40 106.86 47.48 119.42 61.25 98.76 0.77 90.70 57.83 69.00 0.83 89.90 83.39 0.93

47.29 33.83 43.46 81.75 45.43 99.51 48.69 0.77 60.45 85.63 85.55 0.70 75.10 70.61 0.93

232.40 229.90 232.58 113.34 281.84 156.34 225.44 0.72 216.48 151.94 166.80 0.91 210.09 202.07 0.96

113.28 77.88 96.29 190.84 109.17 219.75 112.26 0.80 132.25 194.33 195.54 0.68 182.73 169.97 0.92
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Table 4: L-2 norm distances of skin lesions in a specific area of the image of camera 3 at position 17 w.r.t. the PSLs found in the same proposed
areas of the same camera, but at others turntable positions. The features are extracted at two different depth: in yellow, the matching performed
for vectors taken at 2nd fully connected layer (fcl) is showed, in white, the matching with features at 1st fcl is performed. For the first adjacent
position, the matching works in both the cases. On the contrary, more the positions get far from the reference, more errors happen. For instance, in
the position 20, all Lowe’s ratios are above the threshold of 0.80.

Position 18 Position 20

Lowe’s
ratio

Lowe’s
ratio

117.04 121.63 74.43 48.76 108.61 119.72 114.29 116.52 120.85 0.65 55.08 87.08 95.03 55.73 0.95

36.04 49.68 64.90 83.62 13.49 76.70 40.52 38.56 39.59 0.37 86.69 55.21 52.34 88.69 0.94

288.89 294.44 168.06 106.98 236.31 303.53 285.64 277.13 297.86 0.63 142.78 212.71 217.18 142.88 0.99

124.41 141.99 177.80 218.39 33.60 230.21 128.40 109.78 115.91 0.28 185.64 121.40 116.90 196.88 0.95

obtain good results. Therefore, our new methods repre-
sent a valid alternative to the previous implementation
for the detection task. Moreover, the tests performed
for the segmentation task show that the detected skin le-
sions are correctly segmented, also in comparison with
the previous approach. However, to prove the pros and
cons of the two strategies, a more thorough and quan-
titative analysis should be performed. As future work,
a physician should indicate with skin lesions are worth
to be detected and to provide segmentation on clinical
images of PSLs. Then, a classifier will be trained to
distinguish relevant PSLs from the rest.

For the matching procedure, the numerical results
show how the method performs correctly for PSLs at
the same turntable position. In the future, a comparison
by using pre-trained neural network will be explored
to check how different feature extraction methods work
for the same task. Particular attention should be put on
matching skin lesions between images acquired at the
different turntable positions by the same camera. The
results regarding this point show how the neural net-
work allows a good matching, even if with lower ro-
bustness. In particular, for the moment, the initial rough
estimation of the locations of the skin lesions in other
images is not as precise as expected, and this generated
several wrong matches because the proposed areas are
not the expected ones.

A complete integration of the different steps is still
missing. As future work, with the idea of providing
a stand-alone software for the full body skin scanning
system, all the individual tasks should be integrated to-
gether. For the moment, this paper shows how well the
different methods work.
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Abstract

Late gadolinium enhanced magnetic resonance imaging (LGE-MRI) is the gold standard and highest resolution tech-
nique for myocardial viability assessment. Although the technique accurately reflects the damaged tissue, there is
no clinical standard for quantifying myocardial infarction (MI), demanding most algorithms to be expert dependent.
Moreover, up to now the lack of public LGE-MRI datasets has hindered methods reproducibility and has restricted
their objective comparison and validation. In this work we propose an end-to-end fully automatic framework for MI
quantification in LGE-MRI. By means of a three-step deep learning based strategy, the framework provides automatic
segmentation of the left ventricular myocardium, detection of diseased myocardial slices and subsequent infarction
quantification. For its validation, reproducibility and further comparison against other methods, we developed a big
multifield expert annotated LGE-MRI database. It accounts with healthy (n = 20) and myocardial infarcted (n =

80) scans and will potentially be opened in a public repository. In an exhaustive comparison against nine reference
algorithms, the framework achieved state-of-the-art segmentation performances and showed to be the only method
agreeing in volumetric scar quantification with the expert delineations. To our knowledge, this is the first fully auto-
matic method for myocardial infarction quantification with high clinical transfer potential.

Keywords: Cardiac Magnetic Resonance, Late Gadolinium Enhanced, Scar Segmentation, Deep Learning

1. Introduction

Myocardial infarction (MI) is recognised by the
World Health Organization as a severe global problem
(Organization et al., 2011) and is the leading cause of
death and main cause of morbidity in the US. It is pro-
duced by myocardial cell death as a consequence of pro-
longed ischemia, resulting in insufficient oxygen supply
to some myocardium area (Rajiah et al., 2013). After
the oxygen supply shortage, the affected myocardial re-
gions can be non-viable or hibernating. Since in the
hibernating regions the suspended myocardial activity
is able to resume the contraction after revascularization
(Wei et al., 2013a), viability assessment turns crucial
for clinical and therapeutical decision making (Positano
et al., 2005).
Cardiovascular magnetic resonance imaging (MRI)
plays a key role in MI evaluation, since allows myocar-
dial anatomy, left ventricular function, perfusion and vi-
ability assessment (Arai, 2008). The standard planes

used in clinical practice are the short axis, horizontal
long axis and vertical long axis of the left ventricle, from
which the former one is the most common used for car-
diac function evaluation (Petitjean and Dacher, 2011).
Considering the long axis of the heart as the line ex-
tending from the apex to the center of the mitral valve,
the short axis plane covers perpendicularly the long axis
along the left ventricle. Most cardiac volumetric mea-
surements on routine practice are conducted under the
short-axis views (Ginat et al., 2011).
Late gadolinium enhancement (LGE) MRI is the cor-
nerstone of myocardial tissue characterisation (Dastidar
et al., 2015), representing the most accurate and highest
resolution method for MI and non-ischemic cardiomy-
opathies diagnosis. It allows, as well, risk stratifica-
tion and outcome prediction after revascularization pro-
cesses or cardiac resynchronization therapy. Currently,
LGE inversion recovery and phase sensitive inversion
recovery are considered as the gold references for my-
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ocardial viability assessment (Engblom et al., 2016).
Imaging is conducted after 8-15 minutes of gadolinium
injection which over-enhances infarcted myocardium
by accumulation of the agent in the damaged tissue.
In healthy tissue areas, given the fast gadolinium wash
in and wash out no agent accumulation is presented
and normal myocytes remain with hypointense signal-
ing (Rajiah et al., 2013). By means of experimental
studies, it was exhibited that the contrast distribution
accurately reflects pathology of the myocardium (Kim
et al., 1999). Infarcted tissue may also present hypo-
intense regions as a consequence of the permanent mi-
crovascular obstruction (MVO, also call no reflow) phe-
nomenon. MVO evidences the lack of reperfusion of
some myocardial area even after the ending of the is-
chemic event, indicating severe ischemic disease and
being associated with poor prognosis, adverse cardiac
events and remodelling (Rajiah et al., 2013).
The main limitations of LGE-MRI for myocardial tis-
sue assessment are not only due to technical parame-
ters setting (such as slice thickness, inversion recovery,
etc.) (Pattanayak and Bleumke, 2015) but mainly due
to the lack of a clinical standard for scar tissue quantifi-
cation (Engblom et al., 2016; Pattanayak and Bleumke,
2015). Thus, nowadays there is no reference method
for abnormal tissue detection and segmentation, even
though several techniques have been explored. It is
worth to point out that excepting the STACOM 2012
challenge images (Karim et al., 2012), no open datasets
can be found in this field, and hence most methods are
only validated under private databases, hindering re-
producibility and comparison against other techniques.
The most frequently used techniques are the threshold-
based ones, such as the full-width at half-maximum
(FWHM) (Amado et al., 2004) and the n-standard de-
viations (from now n-SD) (Kim et al., 1999). Neverthe-
less, these methods provide poor agreement with expert
delineations, inconsistent and high result variability and
significant differences when compared it with ground
truth (Spiewak et al., 2010; Zhang et al., 2016). Addi-
tionally, most of them are manual or semi-automatic re-
quiring visual assessment and human interaction, turn-
ing the quantification process tedious, subjective and
hardly reproducible. To our knowledge, up to now no
fully automatized algorithm was proposed and current
techniques require i) prior myocardium manual contour-
ing or propagation from other MRI sequences (such as
cine-MRI sequence) ii) visual identification of diseased
myocardium before algorithm application (turning re-
sults valid for pathological slices only) and iii) scar tis-
sue quantification by manual/semi-interactive methods.
In this work, the above-mentioned limitations are tack-
led by proposing an user interactive-free infarction
quantification framework validated over a new cardiac
database. The main contributions of this work are two-
fold. Firstly, it is presented a big multi-field LGE-
MRI database for myocardial viability assessment. The

free and open dataset accounts with fully annotated
data including the left ventricular myocardium (LVM),
blood pool, hyper-enhanced and no-reflow areas. To our
knowledge, this is the first multifield dataset with expert
delineated MVO areas. Secondly, herein it is proposed
and validated an end-to-end, fully automatic framework
for myocardial infarction quantification. The main nov-
elties of this framework are: i) the automatic left ven-
tricular myocardium segmentation on LGE images, ii)
the discrimination of healthy and diseased myocardium
slices, which extends the framework for working under
healthy scenarios and iii) the development of a novel
and robust automatic technique for scar tissue and MVO
segmentation.

2. State of the art

2.1. Reference Datasets on Cardiac LGE-MRI
Unlike other medical image domains where well

defined opened datasets allow algorithm performance
quantification and direct results comparison, for the
problem herein addressed such a reference proposal
does not exist. Thus, methods reproducibility are
mainly constrained to the private data used in the stud-
ies. Under the STACOM 2012 challenge a first attempt
of a reference cardiac LGE-MRI database was pre-
sented accounting with pathological animal (15 cases,
3T magnetic field) and human (15 cases, 1.5T mag-
netic field) data (Karim et al., 2016, 2012). A big ef-
fort was conducted for performing various experts an-
notations, which was centered in hyper-enhanced tissue
areas delineation but without providing microvascular-
obstruction (MVO) ground truth. However, due to the
limited database size as well as to the low quality of the
acquired images (with many cases presenting overen-
hanced healthy areas), just few works extern to the chal-
lenge validated their algorithms with these images (Lar-
roza et al., 2017). Besides, as far as the author knows
until now there were no clinical studies conducted with
different magnetic field MRI devices, a variable that
may impact over algorithms performance.

2.2. Left Ventricular Myocardium Segmentation
Since scar tissue segmentation and quantification re-

quires the initial delineation of the LVM (i.e., endo-
cardium and epicardium contours have to be identified),
in clinical practice is common to have expert manually
drawn boundaries. According to Petitjean and Dacher
(2011), this task requires around 20 minutes for a clin-
ician in Cine-MRI (half time on LGE-MRI), turning
the process long and tedious. The left ventricular my-
ocardium segmentation in cardiac MRI presents well
known difficulties (Bernard et al., 2018; Petitjean and
Dacher, 2011): i) Poor contrast between the epicardium
and the surrounding structures (and high-contrast be-
tween the blood-pool and the endocardium), ii) Gray-
level inhomogeneities in the left ventricular cavity due
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Table 1: Summary of published methods for scar and left-ventricle myocardium segmentation.

Scar Segmentation LVM Segmentation
Reference DB n Seq MF Algorithm Inter Algorithm Inter

Kim et al. (1999) A 26 IR 1.5T 2-SD Semi - -
O’Donnell et al. (2003) H 14 IR - SVM Auto Expert Drawing Man

Dikici et al. (2004) H 45 IR - Intensity Features &
SVM Auto Cine Propagation Semi

Amado et al. (2004) A 30 IR 1.5T n-SD, FWHM Semi Expert Drawing Man
Kolipaka et al. (2005) H 23 IR 1.5T n-SD Semi Expert Drawing Man

Positano et al. (2005) H 15 IR 1.5T Fuzzy Clustering Auto Drawing & Active
Contours Semi

Hsu et al. (2006) A 11 PSIR 1.5T EM, CCA & FWHM Auto Expert Drawing Man
Schmidt et al. (2007) H 47 IR 1.5T n-SD + FWHM Semi Expert Drawing Man

Ciofolo et al. (2008) H 27 - - - - Template Deformation
& Cine Propagation

Semi/
Auto

Hennemuth et al. (2008) H 21 IR - EM + Watershed Auto Live-Wire Semi
Detsky et al. (2009) H 15 IR 1.5T Fuzzy clustering Auto Expert Drawing Man

Tao et al. (2010) H 20 IR 1.5T Otsu, CCA &
Region Growing Auto Expert Drawing Man

Andreu et al. (2011) H 12 IR 3T 50, 60, 70% FWHM Semi Expert Drawing Man

Flett et al. (2011) H 60 IR 1.5T n-SD, FWHM Semi/
Auto Expert Drawing Man

Valindria et al. (2011) H 20 PSIR 3T EM, FWHM &
Feature Analysis Semi Expert Drawing Man

Lu et al. (2012) H 10 IR 1.5T Graph-cut, EM &
FWHM Auto Cine Propagation &

Manual Correction Semi

Wei et al. (2013b) H 21 IR 1.5T - -
Cine Propagation, Mesh

Deformation &
Intensity Modelling

Semi

Wei et al. (2013a) H 20 IR 1.5T 3D Graph-Cut Auto
Cine Propagation,

Registration & Intensity
Modelling

Man/

Semi

Kotu et al. (2013) H 44 - 1.5T Probability Maps Semi/
Auto Expert Drawing Man

Pop et al. (2013) A 9 IR 1.5T EM Auto - -
Rajchl et al. (2014) H 50* IR 3T Potts Models Semi - -

Engblom et al. (2016) A/

H
38/

124
IR/

PSIR 1.5T
EM, Weighted

Intensity & A-priori
Information

Auto Expert Drawing Man

Ukwatta et al. (2016) H 61 IR 1.5T Min-Cut
Optimization Auto Expert Drawing Man

Liu et al. (2017) H 22 - - - - GMM & Level Set Auto

Kruk et al. (2017) H 7 PSIR 3T Watershed & Shape
Priors Semi Expert Drawing Man

Kurzendorfer et al. (2017a) H 100 IR 1.5T - -
Hough transforms,
Active Contours &

Random Forests
Auto

Kurzendorfer et al. (2017b) H 30 IR 3T - -
Registration,

Polar-Space Refinement
& Marching Cubes

Auto

Xu et al. (2017) H 114 - 3T Deep Learning Auto - -

Note: DB: Database; Seq: MRI Sequence; MF: Magnetic Field; LVM: Left Ventricular Myocardium; Inter: Interaction;
A: Animal; H: Human; IR: Inversion Recovery; PSIR: Phase-sensitive IR; SD: Standard-deviation; FWHM: Full-width
at Half-maximum; EM: Expectation-maximization; CCA: Connected Component Analysis; GMM: Gaussian Mixture
Model; Man: Manual; Semi: Semi-automatic; Auto: Automatic.
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to the blood flow, iii) Presence of papillary muscles and
trabeculations in the chamber, with similar gray-levels
as the myocardium, iv) partial volume effect given by
MRI limited resolution, v) Motion artifacts given by res-
piration and heart dynamics, vi) shape and gray-level
heterogeneity over the heart structures by patient and
pathology and vii) Presence of banding noise. It is con-
sequently highly desired the devising of automatic seg-
mentation methods that can perform the left-ventricle
delineation dealing with the above presented difficul-
ties. In this sense, the task was widely addressed in
Cine MRI sequences, with over seventy proposals listed
by Petitjean and Dacher (2011) and several newer deep-
learning strategies (Avendi et al., 2016; Bernard et al.,
2018; Curiale et al., 2017; Oktay et al., 2018). How-
ever, over LGE-MRI sequences the task was much less
explored and remains being an open issue. It is worth
to point out some additional constraints presented in
contrast-enhanced MRI that does not allow using the
same strategies developed for kinetic sequences. Firstly,
the images present high myocardial gray-level hetero-
geneity in infarcted images, while intensity homogene-
ity is preserved in non-diseased ones. Secondly, images
present noisier and less sharpen organ boundaries when
compared against Cine MRI. For this reason, the signal
contrast between the healthy myocardium and the lungs
is poor. Thirdly, scarred myocardial tissue presents sim-
ilar intensity levels as the blood-pool (Tao et al., 2010)
and both structures are generally contiguous (infarction
propagates from the endocardium to the epicardium).
Given these characteristics of cardiac LGE-MRI, the
myocardium delineation turns extremely challenging.
The few algorithms proposed until now for segmenting
the myocardium in LGE-MRI are summarized on Table
1. As can be appreciated, most approaches are semi-
automatic and/or require a-priori Cine MRI segmenta-
tions. Despite having strong limitations, propagation
of the LVM boundaries from Cine MRI was widely ex-
plored (Ciofolo et al., 2008; Dikici et al., 2004; Lu et al.,
2012; Wei et al., 2013a,b). Hennemuth et al. (2008) pro-
posed using the live-wire-algorithm for LVM segmenta-
tion and Liu et al. (2017) used multi-component Gaus-
sian mixture model and coupled level sets. Kurzendor-
fer et al. (2017a) used a random forest and dynamic
programming based algorithm and later extended the
work to 3D LGE-MRI by using a multiple-step registra-
tion, polar-space refinement and marching cubes algo-

rithm (Kurzendorfer et al., 2017b). Nonetheless, while
semiautomatic techniques require expert-interaction or
a-priori kinetic sequences information, automatic algo-
rithms are still limited in terms of performance, speed
and validation. Thus, until now there is no consensus of
a reference method for segmenting the left ventricular
myocardium in LGE-MRI.

2.3. Myocardial Damage Detection

Quantification of myocardial scar has been widely
addressed in many works where most algorithms were
mainly validated under pathological datasets (Table 1).
Before their application for scar quantification, myocar-
dial abnormality identification by visual inspection is
a compulsory step, as in n-SD (Kim et al., 1999) and
FHWM methods (Amado et al., 2004). By means of
this approach, the lesions search is guaranteed in abnor-
mal myocardiums only, reducing false positives detec-
tion in healthy slices. Despite the fact that these meth-
ods are able to control better the false positive rate, one
of the drawbacks is the expert interaction required. Un-
der this scenario the development of an automatic adap-
tive framework that could deal with healthy patients as
well turns highly desirable.
Devising such a method based on intensity myocardial
profiles could be conducted by characterizing healthy
and abnormal myocardium histograms. In previous
works, healthy and scarred myocardial tissue distribu-
tions have been well described (Hennemuth et al., 2008;
Tao et al., 2010; Wei et al., 2013a). While a Rayleigh
(or a Rician) distribution might appropriately model the
normal tissue, hyper-enhanced infarcted areas are suit-
able modeled by a Gaussian one. Thus, the whole my-
ocardium histogram consists on the resulting distribu-
tion obtained from the overlapping of healthy and ab-
normal tissues. For the sake of simplicity, assumption
of both distributions as Gaussian models has been ex-
tensively conducted (Carminati et al., 2016; Engblom
et al., 2016; Pop et al., 2013; Valindria et al., 2011).
Hennemuth et al. (2008) proposed the use of informa-
tion criteria (Akaike and Bayesian ones) for histogram
characterization. By assessing the best model fitness of
an histogram could be distinguished weather the my-
ocardium is normal (best fitness achieved with only one
distribution) or abnormal (best fitness with two, over-
lapped distributions). However, the main limitation of

Table 2: MRI acquisition parameters summary.

Sequence MF TE FA Matrix (min/max) Spatial Resolution (min/max) ST SG
PSIR 1.5T 1.37 ms 25◦ 240 x 138 / 256 x 224 1.87 x 1.87 / 1.25 x 1.25 mm2 8 mm 2 mm
PSIR 3T 1.53 ms 20◦ 256 x 168 / 256 x 256 1.91 x 1.91 / 1.36 x 1.36 mm2 8 mm 2 mm

Note: PSIR: Phase Sensitive Inversion Recovery; MF: Magnetic Field; TE: Echo Time; FA: Flip Angle; ST: Slice
Thickness; SG: Slice Gap.
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this approach regards expectation-maximization algo-
rithm convergence. Due to the considerable distribu-
tions overlap, the algorithm sometimes converge to a
unique component model. Evenmore, in small myocar-
dial lesions, the scarred tissue distribution is obscured
by the healthy one, turning the method inaccurate.
The problem could be better addressed by using not
only intensity features. In this sense, recently Zreik
et al. (2018) proposed a method for coronary artery
stenosis detection by myocardial characterization in CT
scans. The method extracts local myocardial features
using convolutional autoencoders and through clus-
tering and support-vector-machines (SVM) classifies
healthy and abnormal slices. Despite the good perfor-
mance achieved, implementation of this approach turns
difficult in clinical practice due to the extensively long
computational time required. Even more, since the al-
gorithm was developed for CT scans there is no war-
ranty that could work on LGE-MRI.

2.4. Myocardial Infarction Segmentation

For a better understanding of the existing algorithms
for MI segmentation, we summarized the most rele-
vant works on Table 1. As can be appreciated, inten-
sity based segmentation algorithms have been widely
investigated and validated in clinical practice. In these
techniques, the histogram thresholding is conducted in
a semiautomatic approach by a myocardial region de-
lineation done by an expert (like in n-SD, Kim et al.
(1999); Kolipaka et al. (2005), and FWHM methods,
Amado et al. (2004)) or in an automatic way by an
optimized cutoff value selection (like in expectation-
maximization, Pop et al. (2013) or Otsu (1979) ap-
proaches). Given that these methods can not deal with
the overlapping tissue distribution areas, several stud-
ies extended or combined these methods by using more
sophisticated tools. Common works recombined the
thresholding techniques (Andreu et al., 2011; Flett et al.,
2011; Schmidt et al., 2007) or used intensity features
with connected component analysis (Hsu et al., 2006;
Tao et al., 2010; Valindria et al., 2011), clustering (Det-
sky et al., 2009; Positano et al., 2005) or SVM (Di-
kici et al., 2004; O’Donnell et al., 2003). Graph-cuts
(Lu et al., 2012; Wei et al., 2013a) and watershed algo-
rithms (Hennemuth et al., 2008; Kruk et al., 2017) have
received researchers attention as well.
Despite the vast techniques exploration, up to now there
is no reference method for scar quantification (Engblom
et al., 2016) and just few of these techniques are used in
clinical practice. The considered state-of-the-art (SOA)
ones comprise the n-SD and FWHM, even when its vari-
ability, reproducibility and lack of expert agreement was
highly discussed (Spiewak et al., 2010; Zhang et al.,
2016). For these reasons, the development of a robust
technique able to accurately reproduce the experts de-
lineations turns highly valuable. With these aims, Xu

et al. (2017) attempted the problem by proposing a solu-
tion under the deep learning paradigm. The poor perfor-
mance assessment by the only use of classification met-
rics as well as the lack of appropriate validation makes
the method hardly usable in clinical practice.

3. Material and methods

3.1. Data Acquisition
A cohort of healthy and myocardial infarcted patients

that attended the imaging center of the University Hos-
pital of Dijon (Dijon, France) between 2015 and 2017
were included in the study. The institutional review
board approved the study development. A total amount
of 100 randomly chosen late-gadolinium enhanced MRI
cases (20 healthy, 80 presenting infarction) were consid-
ered for developing the dataset. Gadolinium contrast so-
lution (Dotarem, Guerbet, France) was administered to
the patients between 8 to 10 minutes before conducting
the study. Myocardial infarction was assessed and con-
firmed in all cases by LGE-MRI. The 35% of infarcted
cases (n = 28) presented micro-vascular obstruction
areas detected as hypo-enhanced zones surrounded by
enhanced necrotic tissue. For all patients, a short-axis
stack of cardiac images covering the whole left ventri-
cle were acquired using one of the two clinical MRI
devices with magnetic fields of 1.5T and 3T (Siemens
Medical Solutions, Erlangen, Germany). All volumes
account with between 6 to 9 images, with a slice thick-
ness of 8 mms and a distance between two slices of 10
mms. Voxel resolution varied according to the patient
between 1.25 x 1.25 mms2 to 1.91 x 1.91 mms2. For
each patient, a phase sensitive inversion recovery se-
quence was used for acquiring the images. All datasets
were stored using the digital imaging and communica-
tions in medicine (DICOM) format and anonymized for
research purposes. A summary of the acquisition se-
quence parameters used is shown on table 2.
The dataset ground truths were delineated in each slice
by an expert of the institution (AL) with more than 10
years of expertise in the field. The endocardium and
epicardium boundaries were contoured, defining the left
ventricular myocardium and blood-pool regions. Pap-
illary muscles were included in the cardiac cavity, as
recommended (Lalande et al., 2015). Afterwards, in
pathological cases the scar tissue was annotated tak-
ing separate contours for enhanced and microvascu-
lar obstructed areas. The full database accounts with
751 images from which 474 presented diseased my-
ocardium (111 including microvascular obstructions)
and 277 were healthy. For assessing intra/inter-observer
annotations variability, a random subset (50%, n = 40)
of pathological cases were re-contoured by the same ex-
pert as well as by a second observer (Dr. Leclerq, a car-
diologist with 5 years of experience in the field).
I fully developed the dataset as part of this master the-
sis project. The activities performed include old data
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retrieving, cleaning, MI and MVO cases selection, re-
peated slices or missing information cases removal,
slices re-ordering (base to apex), delineation inaccura-
cies detection, dataset statistics computation, scans for-
mat convertion (DICOM to NIfTI) and storing.

3.2. Proposed Framework
In this work a fully automatic framework for detec-

tion and quantification of myocardial infarction from
short-axis cardiac LGE-MRI is proposed. The algo-
rithm receives as input raw MRI scans and in a 3-
step algorithm approach provides the left-ventricle my-
ocardium segmentation, per-slice detection of diseased
heart and quantification of damaged myocardial re-
gions. The outputs of the framework are the the seg-
mented myocardium, the detected scarred areas and
their corresponding clinical markers of medical impor-
tance. Firstly, myocardium segmentation is conducted
under a deep-learning strategy which defines the my-
ocardial region of interest. Secondly, by mimicking
the experts clinical working pipeline healthy and patho-
logical scans are discriminated before conducting seg-
mentation. Developing such a method benefits the in-
farction segmentation performance, since avoids poten-
tial lesion over-estimation by false-positive inclusions
in healthy images. Thirdly, the scarred tissue is quan-
tified by an initial fast coarse segmentation followed
by a voxel reclassification refinement strategy. The
whole framework was implemented under Python and
Matlab R© R20017b environments.

3.2.1. Data Pre-processing
Collected MRI scans present differences among them

mainly in i) voxel size and ii) intensity values. While
the former differences come from the setting of diverse
scanning parameters (which are decided depending on
the examination by the involved device operator), the
latter differences may come from the use of different
magnetic field devices (which account with diverse sig-
nal to noise levels) as well as by the inherent biological
and anatomical patients variability. For homogenizing
the scans and addressing data variability all volumes
were pre-processed by following three steps. Firstly,

high-frequency noise was removed from all slices by us-
ing a spatial adaptive non-local means filter with auto-
matic noise level estimation (Manjón et al., 2010). The
chosen algorithm allows to tackle not only the intra-
patient noise level differences in the scan, but also the
inter-patient one observed by the use of different MRI
magnetic field devices. Secondly, volumes were re-
sliced to reach an homogenous voxel size of 1.25 x 1.25
x 8 mm3 (minimum voxel space found among patients)
by means of linear interpolation. Thirdly, for reducing
inter-patient intensity variability, all images were nor-
malized within the interval [0-1].

3.2.2. Left Ventricular Myocardium Segmentation
Segmentation of the left ventricle myocardial bound-

aries was conducted by means of the 2D U-Net
convolutional-neural-network (CNN) winner of the
ISBI 2012 challenge (Ronneberger et al., 2015). This
architecture showed outstanding performances for seg-
menting the myocardium on kinetic MRI under the
ACDC challenge (Bernard et al., 2018), where the
two best ranked groups used U-Net based approaches
(Baumgartner et al., 2017; Isensee et al., 2017). The
preference of a 2D architecture instead of the 3D one
relies on the poor resolution along the Z-axis and on the
variability of the diafragm position during two consec-
utive breathholds. Thus, 3D architectures could help in
myocardial segmentation by using strategies for dealing
with the motion constrains. Nonetheless, compensation
of breathholding variabilities requires developing more
complex models, which are out of this work scope. Our
implementation differed from the original work of Ron-
neberger et al. (2015) since padded convolutions were
used for keeping dimension consistence across the con-
catenation levels. Moreover, our proposal differs from
the works of Isensee et al. (2017) and Baumgartner et al.
(2017) since we followed a patch based segmentation
strategy instead of working with the entire images.

Training phase. Patches of size 64 x 64 were used
for segmenting the left ventricular myocardium, size
choosen on a preliminary patch dimension performance
exploration. Given that the myocardial anatomy rep-
resents a small part of the whole MRI slices, dealing

Table 3: Summary of the CNN architectures used in the framework and their corresponding parameters.

Goal Net Patch LF Optim LR M MB L2 E ES
LVM Segmentation U-Net 64x64 CE Adadelta 1 - 32 - 50 X
Disease Detection VGG19 89x89 CE SGDM 1x10−4 0.9 16 1x10−4 20 ×
Scar Segmentation Zreik et al. (2018)* 49x49 CE SGDM 1x10−2 0.75 256 1x10−4 50 ×

Note: LVM: Left Ventricular Myocardium; Net: Network Architecture; LF: Loss Function; Optim: Optimizer;
SGDM: Stochastic Gradient Descent with Momentum; LR: Learning Rate; M: Momentum; MB: Minibatch Size.
L2: L2 Regularizer; E: Epochs; ES: Early Stopping. * The elemental branch of the network was used instead of the
whole architecture.
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with class imbalance turns crucial for avoiding a back-
ground biased segmentation. For tackling this problem,
the training was conducted under a class balanced patch
extraction strategy were 50 % of the patches were ran-
domly centered in background areas and the remaining
50 % were centered in myocardial areas. A high infor-
mation patch overlap was considered during the extrac-
tion step, since helps in the network learning process
(Bernal et al., 2018). Moreover, for avoiding informa-
tion redundancy among the overlapped patches and with
the aim of increasing the CNN learning capability we
added random offsets to the central patch voxels (Guer-
rero et al., 2018). This strategy allows the possibility
of finding myocardial voxels elsewhere the patch, and
not only in the patch center. Moreover, for overfitting
avoidance we conducted data augmentation for increas-
ing the training set by considering random geometric
image transformations (rotation, shearing, flipping and
scaling). On Table 3 the used network training parame-
ters are summarized.

Segmentation phase. For conducting the voxels la-
bel prediction we performed overlapping patch extrac-
tions along the whole image. Afterwards, each patch
was independently pass by the trained network and the
predicted labels were obtained. The final segmentation
was conducted, for each voxel, following a maximum-a-
posteriori probability approach were the label probabil-
ities from the different patches were equally-weighted
combined.

3.2.3. Myocardial Abnormality Detection
Once the contours that enclose the myocardium are

found, we are interested in knowing the condition of
the myocardial tissue in each slice. For it, a dichoto-

mous classifier is built for discriminating healthy and
pathological images. By using the epicardial mask and
by assuming that the myocardial heart shape resembles
a ring, the epicardium centroid it is estimated. After-
wards, cropped images (size 89x89, 3-channel repli-
cated) masked within the myocardium and centroid-
centered are used as inputs of the classifier.

Classification phase. For achieving the classification
task a three-step approach is conducted: i) Fine-tuned
VGG19 (Simonyan and Zisserman, 2014) models are
used for extracting informative features characterizing
the myocardial images, ii) Extracted features followed
a principal-component-analysis (PCA) dimensionality-
reduction and iii) images are finally classify as healthy
or infarcted by using support-vector-machines. In step
i), the images to classify are passed through the fine-
tuned neural network and the 1000 features from the
last fully connected layer (FCL) are extracted. After-
wards, in step ii) the features are projected into the
principal-components space after mean-feature vector
subtraction, obtaining k new features (k � 1000) which
preserve 95% of the data variance. The classification
stage (step iii) is conducted on a linear kernel trained
support-vector-machine by using the k principal com-
ponent features.

Training phase. The ImageNet pretrained VGG19
(Simonyan and Zisserman, 2014) model was chosen
over other network architectures (such as VGG16,
Resnet50, Resnet101, and GoogleNet) based on an ex-
ploratory performance analysis. In previous works, the
model shows suitability and good adaptability for work-
ing in the medical domain (Antropova et al., 2017; Jia
et al., 2018). Since the main aim of this framework
block is the devising of a robust image classifier, only
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Figure 1: Coarse segmentation workflow.
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experiments with the achieved outperforming network
are shown. The model was fine-tuned using MR images
by preserving all layers and its corresponding weights
with exception of the three ending FCL’s, whose neu-
rons weights where re-learnt. Besides, after the last
1000-neuron FCL layer an extra 2-neuron FCL with a
softmax layer were added for conducting the classifica-
tion. The network training parameters are summarized
on Table 3. For the replaced FCL, the learning rate was
30 times higher the value shown on the table. Consid-
ering the dataset size limitations and with the aim of
avoiding overfitting we i) performed data augmentation
as explained in Section 3.2.2, ii) shuffled the training set
in every epoch and iii) applied a random dropout [Sri-
vastava et al., 2014] of 50% after each fully connected
layer. Besides, for avoiding the classifier to produce
biased class results, data imbalance was addressed by
randomly sub-sampling the majority class until reach-
ing the minority class size.
The PCA step was conducted as in (Sidibe et al., 2017).
Features extracted from the 1000 FCL over the training
set were used for building a matrix X = [b1 b2 · · · bm],
where m is the amount of training samples and bi ∈
R1000. The mean feature vector was computed as b̄ =
1
M
∑M

j=1 b j and was subtracted from each column of X
for centering the data. Afterwards, the covariance ma-
trix was computed as C = 1

M XXT and its eigendecom-
position was conducted such that C = U∧UT . Thus, the
principal components are the eigenvectors (columns) of
C and the eigenvalues λi (i = 1, · · · , 1000) give the
axis importance. For conducting data-dimensionality-
reduction we kept the k principal components associ-
ated with the k largest eigenvalues, such that 95% of
the data variance is preserved (condition satisfied when∑k

i=1 λi∑1000
i=1 λi

> 0.95). Afterwards, with the dimensionality-
reduced training set X′ = [b′1 b′2 · · · b′m] (where b′i ∈
Rk) we fit a SVM with linear kernel for classifying nor-
mal and infarcted myocardium images.
Model Validation. One-hundred random dataset
splits were conducted in a class balanced 80-10-10%
(training-validation-test) approach. For each training-
validation set, fine tuning of VGG19, principal com-
ponents decomposition and SVM fitting were con-
ducted. Afterwards, over the test-set the label predic-
tion was performed. Obtained classifiers were charac-
terized and evaluated by means of a receiver-operating-
characteristic (ROC) curve analysis. Besides, to further
validate whether the discriminant SVM rule could be
randomly achieved, a one-hundred permutation analy-
sis (Ernst et al., 2004) over Healthy vs Diseased cases
was performed. Obtained ROC area under the curve
(AUC) values were used as a global performance met-
ric for comparing permuted and un-permuted classifier
results.

3.2.4. Myocardial Scar Segmentation
Once abnormal slices were detected in the volume,

the lesion segmentation was conducted in a two-steps
approach by firstly providing a fast coarse segmentation
and secondly by refining it using a voxel-reclassification
strategy. Images were enhanced by means of gamma
correction Iout = Iγin (γ > 1) and normalized for hav-
ing a distribution within the epicardium inner region
spread in the interval [0-1]. Since the contrast agent
tissue concentration changes within time and the in-
tensities become brighter from the mitral valve to the
apex causing inter-slice variability (Wei et al., 2013a),
all images were normalized by using the left ventricular
myocardium and blood-pool regions information. By
means of this approach the myocardial intensity homo-
geneity was guaranteed for different slices and patients.

Coarse Segmentation. Myocardial infarction was ini-
tially segmented by a non-parametric intensity based
approach applied after over-enhancing potential dam-
aged regions, as similarly conducted on Ram et al.
(2012), BahadarKhan et al. (2016) and Savelli et al.
(2017) in other fields. The enhancement was conducted
by using a sum of non-linear top-hat transforms, which
increases the contrast between dark and bright image
areas (healthy and damaged regions respectively). The
top-hat transform is defined as:

g = I − (I ◦ B) (1)

where g is the transformed input image I and ◦ rep-
resents the gray-scale opening operator using a structur-
ing element. The transform was applied in each slice
using a 2D bar rotational structuring element with in-
creasing variations of 30◦ and a constant length of 34
pixels. The top-hat enhancement was conducted for re-
ducing the overlapping areas of the healthy and scar
tissue intensity distributions due to partial volume ef-
fect, helping the tissues discrimination by the automatic
thresholding Otsu algorithm (Otsu, 1979). Structuring
element shape, length and rotations degree were em-
pirically selected by maximizing the segmentation per-
formance over the training set. Subsequently, a mor-
phological opening (disk as structuring element, radius
1 pixel) was applied for removing small misclassified
voxel clusters. The coarse segmentation workflow is
shown on Fig. 1.

Refined Segmentation: I)Voxel reclassification phase.
After achieving an initial segmentation of the potential
damaged areas, a voxel-level segmentation refinement
was followed by using an ensemble of from-scratch
trained CNNs. Although in the initial segmentation
most lesions are detected within their core or more evi-
dent damaged areas, the method might provide misclas-
sifications due to the overlapping healthy and infarcted
intensity distributions. Thus, we tackle false positives
(respectively negatives) removal (resp. inclusion) by
a voxel reclassification approach using image patches
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obstruction inclusion workflow. conv: Convolutional Layer; MP: Max-Pooling Layer; FC: Fully Connected Layer.

centered at the voxels of interest. Even if an infarc-
tion might affect the whole myocardium in a slice, the
amount of voxels to reclassify represent a small amount
of data compared with the whole MRI scan. Under this
assumption, we reclassify voxels falling in a boundary
region surrounding the pre-segmented mask after mor-
phologically dilating it and eroding it (disk as structur-
ing element with radius of 2 pixels) with the aim of
including in the analysis potential misclassified voxels
surrounding the initial segmentation. The degree of the
dilation was chosen by assuring at least a mean sen-
sitivity of 95% over the dilated mask on the training
set. Voxel label prediction was achieved afterwards by
majority voting after passing a patch (centered on the
voxel of interest) over a seven-component CNN ensem-
ble. The whole refinement segmentation workflow can
be appreciated on Fig. 2.b).

Refined Segmentation: II) CNN’s training phase. The
CNN architecture of Fig. 2.a) was used for voxel clas-
sification, which consists on a modified single-branch
version of the architecture proposed for left ventricular

myocardium segmentation in Zreik et al. (2018). Unlike
the original implementation, we used rectified linear
units as activation functions (Krizhevsky et al., 2012).
After each convolutional layer, batch-normalization
(Ioffe and Szegedy, 2015) was used with the aim of
rendering the training process faster and less sensitive
to learning rates (Zreik et al., 2018). For building the
classifier, the network was trained from scratch by using
patches taken from the training set in a 50%-50% class
balanced way. Ground-truth masks were dilated and
eroded by using a disk of radius 5. Then, healthy-class
patches were taken from the mask obtained after sub-
tracting to the dilated mask the original ground-truth.
Likewise, infarcted-class patches were extracted from
the mask obtained after subtracting to the original
infarction mask the eroded mask. In cases were the
lesions were small (and hence the erosion operation
degraded the whole mask) patches from the entire mask
were taken. The reason for preferring boundary-close
voxels instead of central ones relies on the difficulty for
their detection, since partial volume effect and the so
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call gray-zone areas (Valindria et al., 2011) turns the
tissue separation difficult. Voxel-centered patches were
extracted with a stride of 3, providing high information
overlap.
A summary of the parameters used during the training
phase is shown on Table 3. Hyper-parameters selection
was conducted by an exhaustive sequential manual
search that lead to segmentation performance maxi-
mization. A patch size of 49x49 was chosen, which
provided enough contextual information for learning
low as well as high level features. In all cases, patches
were zero-centered by subtracting the mean image
of the training set. Overfitting avoidance and data
balancing were conducted as before described (Section
3.2.3). The network training process converged after 50
epochs.
The classifiers ensemble was built by training CNNs in
a 7-fold cross-validation strategy (over the considered
training set) where networks were trained in the same
fashion. Thus, 7 CNN’s were obtained per each training
set for conducting voxel reclassification by majority
voting over the test-set. Validation of the method
was performed by 5-fold cross-validation (80-20% of
patients as training-test sets respectively in each fold).

Table 4: Dataset.

Patients
Characteristic All Healthy Diseased

HE MVO
n 100 20 52 28

Age 59.5 53.4 61.1 62.4
(12.8) (15.2) (11.0) (13.7)

Men 62 14 38 10
Women 20 5 12 2

Scarvol (mm3) 25.6 - 22.5 31.5
(19.3) (19.2) (18.8)

LVMvol (mm3) 225.1 232.2 221.9 207.8
(87.4) (57.3.7) (73.0) (52.9)

IM (%) 18.5 - 15.4 24.3
(12.6) (11.6) (12.7)

Subset (50%)

Scarvol (mm3) 40.7 - - -
(32.1)

LVMvol (mm3) 211.2 - - -
(76.5)

IM (%) 18.9 - - -
(13.8)

Note: Mean (standard deviation). IM: Infarcted
Myocardium. LVM: Left Ventricular Myocardium;
HE: Hyper-enhanced Areas; MVO: Microvascular Ob-
structed Areas. Age and Sex fields were field with avail-
able information only.

Refined Segmentation: III) MVO Inclusion. The
infarction segmentation algorithm developed only ac-
counts for hyper-enhanced regions detection. For in-
cluding micro-vascular obstruction areas, we took ad-
vantage of pathological anatomy a-priori information
since MVO is represented as hypointense regions neigh-
bouring the hyperintense areas (Durante and Camici,
2015). Besides, infarction is always propagated from
the endocardial cavity towards the epicardial one (Ra-
jiah et al., 2013), assuring connectedness of the en-
hanced scar tissue volume with the blood-pool area.
Mainly, MVO is found in the images as a dark cluster
of voxels i) confined by the endocardial and enhanced
areas or ii) fully enclosed in the enhanced region. For
MVO inclusion, we computed the union of the endo-
cardial and hyperintense infarction masks for finding
all voxels clusters fulfilling i) and/or ii). Afterwards,
holes were filled and the endocardial mask was finally
removed for having a unique infarction segmentation
mask including dark and bright pixel areas. The MVO
inclusion algorithm in illustrated on Fig. 2.c).
Comparison against SOA methods. In order to evalu-
ate the proposed infarction segmentation algorithm per-
formance, results were compared against nine standard
algorithms (including SOA ones) widely used in clin-
ical practice: the n-SD (n = 1, 2, · · · , 6) (Kim et al.,
1999), Otsu (Otsu, 1979), FWHM (Amado et al., 2004)
and Gaussian Mixture Models (with threshold at 2-SD
above the mean healthy intensity) (Pop et al., 2013). All
SOA algorithms were from-scratch implemented in this
work following the original paper implementations.

3.2.5. Performance & Statistics
Statistical analysis were conducted over the different

estimated metrics by first inspecting data behaviour and
then applying one of the following tests: (un)-paired
t-Student test, non-parametric Wilcoxon and Mann-
Whitney U-tests (paired and unpaired respectively). For
t-Student test conductions, normality was checked by
using the Shapiro-Wilk test while homoscedasticity was
verified by data distribution inspection. When these re-
quirements were not fulfilled, non-parametric tests were
preferred. Two-tailed tests with a 0.05 significance level
were performed in all cases.

Performance & Statistics: I) Dataset. The dataset
summary is reported by its mean and standard devia-
tion variable values. For assessing the observers delin-
eation agreement, intra/inter-observer variabilities were
computed in terms of left ventricle myocardial volume
(cm3), scar volume (cm3) and percentage of scarred my-
ocardium (% Volscar

VolMyocardium
) by using Spearman correlation

and Bland-Altman analysis (Bland and Altman, 1986).
Performance & Statistics: II) Classification. Image

classification was assessed by the methods sensitivity,
specificity and accuracy. Besides, characterization of
the built classifier was evaluated by the area under the
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curve on the ROC analysis. Mean and standard devi-
ation of AUC values were reported. For assessing the
model robustness in the ROC permutation analysis, the
p − value was computed as follows:

p =

N∑

i=1

I(AUCp
i , AUCnp

i )
N

(2)

where N = 100 is the amount of data splits (and per-
mutations) conducted, AUCp

i and AUCnp
i are the ob-

tained AUC values for the permuted and un-permuted
i − th dataset split respectively and the indicator func-
tion I follows the below defined rule:

I(AUCp
i , AUCnp

i ) =

{
1 i f AUCp

i ≥ AUCnp
i

0 i f AUCp
i < AUCnp

i
(3)

Performance & Statistics: III) Segmentation. For the
different segmentation goals and for all the algorithms
compared the performances were assessed by Dice sim-
ilarity indexes (Dice = 2 |X∩Y |

|X|+|Y | , being X the obtained
volume and Y the ground truth) and 3D Haussdorf dis-
tances. The total myocardial volume, scarred myocar-
dial volume and percentage of infarcted myocardium
were quantified for assessing the performance of clin-
ical markers estimation. Furthermore, in order to assess
over/under-segmentation of the different algorithms, the
relative volume differences (RVD) were computed as
RVD =

|X|
|Y | − 1. In addition, for all segmentations and

methods the estimated volumes were compared with the
expert annotated ones by using Spearman correlation
coefficient and Bland-Altman plots (mean and standard
deviation of bias are provided).

4. Results

4.1. Dataset

A summary with the whole dataset retrieved clini-
cal information as well as with the estimated markers
of clinical interest in shown on Table 4 (superior part).
Likewise, results for the 50% random chosen cases used

Table 6: Agreement between our method and the ground truth in terms
of left ventricle myocardial mass.

Marker Volume (cm3) ρ BA Bias
LVM 200.8 (79.0)* 0.899 -24.0 (35.7)

Note: LVM: Left Ventricular Myocardium; ρ: Spear-
man correlation coefficient; BA: Bland-Altman; * p <
0.05 by means of a paired t-Student test.

for intra/inter-observer variability are summarized on
the inferior part of the table.
When the re-delineation of the data subset was con-
ducted by the main observer, the corresponding results
of Table 5 (superior part) were obtained. On the other
hand, in the inferior part of the table the results obtained
after a second expert delineation are shown.

4.2. Left Ventricular Myocardium Segmentation

The automatic myocardial delineation by means of
the proposed U-Net segmentation approach lead to an
overall Dice performance of 78.8 ± 7.2% with Hauss-
dorf distance values of 26.2 ± 28.8mm and RVD of
−0.08 ± 0.13. As an example of the diverse quality of
segmentations achieved, high, middle and low perfor-
mances obtained at different heart locations are depicted
on Fig. 3. The agreement between our method and the
ground truth in terms of left ventricle myocardial mass
can be appreciated on Table 6.

4.3. Myocardial Abnormality Detection

4.3.1. Model Selection
The herein proposed classification approach was cho-

sen over three classification models explored on a 100
random-splits validation step. Thus, besides the ap-
proach explained on Section 3.2.3, we explore a simi-
lar one where the features were directly extracted by the
non-tuned VGG19 and the remaining algorithm steps
(PCA decomposition and SVM fiting) were preserved.

Table 5: Intra- and inter- observers variability results.

Obs Biomarker Value Dice HD (mm) RVD ρ BA Bias

In
tr

a Scarvol (cm3) 38.5 (32.7)* 70.6 (18.3) 17.9 (13.9) -0.06(0.22) 0.980 -2.2 (7.0)
LVMvol (cm3) 191.0(69.1)** 87.5 (2.5) 7.5 (2.3) -0.09 (0.07) 0.962 -20.0 (18.3)

IM (%) 17.8 (13.9)* - - - 0.973 -1.0(2.4)

In
te

r Scarvol (cm3) 51.3 (41.5)** 61.2 (24.2) 25.7 (18.7) 0.38 (0.79) 0.915 11.0 (7.04)
LVMvol (cm3) 212.9 (77.2) 84.8 (2.8) 8.84 (2.69) 0.01 (0.08) 0.949 1.6 (20.2)

IM (%) 17.8** (13.9) - - - 0.900 5.2 (9.7)

Note: Obs: Observer; HD: Haussdorf Distance; RVD: Relative Volume Difference; ρ: Spearman Correlation Coeffi-
cient; BA: Bland-Altman. LVM: Left Ventricular Myocardium; IM: Infarcted Myocardium. * p < 0.05; ** p <0.01
(paired t-Student tests).
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Figure 3: Left ventricle myocardial segmentations obtained. For each image pair, the left (right) one represents the ground truth (obtained result).

Moreover, we also explored a model using direct clas-
sification by the fine-tuned VGG19 network. Perfor-
mance results for the three-proposed models are shown
on Fig 4. Overall, the best model selected for classifi-
cation outperformed the remaining two by achieving a
90.63±4.30% mean accuracy , 88.11±6.53% sensitivity
and 93.15±4.83% specificity in a maximum-a-posteriori
prediction. The variability for the performance accu-
racy, sensitivity and specificity metrics were lower for
the outperforming model when compared against the
other approaches.

4.3.2. ROC Analysis
The AUC value obtained on the ROC analysis was

0.957 ± 0.03 for the proposed classifier, as can be ap-
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Figure 4: Mean and standard-deviation performance metrics obtained
for the 3 explored classification strategies under the 100-random splits
validation. Se: Sensitivity; Sp: Specificity; Acc: Accuracy; PCA:
Principal Component Analysis; SVM: Support Vector Machines; FT:
Fine Tuned.

preciated on Fig 5. The results obtained under 100-
random splits scenarios show high performance stability
and low variability.

Since the classifier is used in this work to decide
whether or not the segmentation lesion search algorithm
should be applied in each image, it is not equally im-
portant to have false positive or negative detections.
Thus, each pathological image misclassified as a healthy
one will not be assessed by the segmentation algorithm
and their damaged areas will be lost from the analy-
sis. On the other hand, misclassified healthy images
into pathological ones might tend to produce an over-
segmentation of the lesion. However, the algorithm
might handle these images without finding any dam-
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Figure 5: ROC curve obtained after 100-random splits for the pro-
posed classifier. The solid black line represents the mean AUC per-
formance obtained, while the red area represents the variability AUC
interval (mean SD). The random-chance classifier is shown with a
dashed black line. ROC: Receiver Operating Characteristic; AUC:
Area Under the Curve.
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Figure 6: AUC distributions for the permutation analysis.

aged area on it. Under this scenario we would like to
set up the classifier for assuring high-sensitivity per-
formances. When moving the decision rule threshold
for addressing this goal we obtained for sensitivities of
90%, 92.5%, 95% and 97.5% corresponding specificity
values of 90%, 85.4%, 73.3% and 57.3%.

The last experiment of this section involved a ROC
permutation analysis. Boxplots of AUC permuted, un-
permuted and paired differences (AUCp

i − AUCnp
i ) are

shown on Figure 6. It can be appreciated the con-
sistent AUC distribution differences between permuted
and un-permuted data, which showed statistical signif-
icance (p < 0.05, paired t-Student test). The boxplot
depicting paired AUC differences shows the abscence
of random dataset configurations outperforming in AUC
terms the original data configuration.

4.4. Myocardial Scar Segmentation and Quantification

4.4.1. Ensemble Size Selection
The fact of training an ensemble of classifiers using 7

CNNs is based on a comparative analysis conducted for
different ensemble sizes. Results obtained for different
ensemble models with k = 1, 3, 5, 7, 9 components are
reported in Table 7. The coarse segmentation by itself
achieved an overall Dice index of 73%, which behaved
as well or better than all SOA methods (Fig. 7). When
the segmentation refinement was introduced, results im-
proved until reaching a mean Dice index of 77.22% for
the ensemble using 7 CNNs. It is noticeable that us-
ing an ensemble with more CNNs did not improve the
segmentation performance. Consequently, after this ex-
periment the amount of CNNSs was fixed on a value
of seven and from here on, all presented results are ob-
tained under the chosen configuration.

4.4.2. Segmentation Performance
Achieved segmentation performances for all the com-

pared algorithms are shown on Fig. 7. Our algo-
rithm obtained the highest Dice indexes when compared
against the SOA method ones, achieving a Dice value of
77.22± 14.3% and considerably outperforming the best

Table 7: Mean (standard-deviation) segmentation performances ob-
tained for the coarse segmentation followed by different ensemble
sizes.

Method Dice (%) HD (mm) RVD
Coarse 73.0 (14.5) 41.89 (17.23) 0.94 (4.07)
Ens #1 76.3 (14.9) 40.90 (17.95) 0.37 (1.75)
Ens #3 76.9 (14.7) 41.36 (17.75) 0.43 (2.07)
Ens #5 77.1 (14.4) 41.31 (17.72) 0.41 (1.90)
Ens #7 77.2 (14.3) 41.25 (17.79) 0.41 (1.89)
Ens #9 77.2 (14.3) 41.28 (17.83) 0.41 (1.93)

Note: Ens: Ensemble Size; Dice: Dice Index; HD:
Haussdorf distance; RVD: Relative-volume-difference.

ranked SOA method (2-SD with Dice 70.49 ± 16.48%).
Besides, our proposal obtained the lowest Dice vari-
ance among all methods. Statistical significance was
present in all Dice comparisons. When comparing per-
formances in terms of Haussdorf distances, our method
obtained 41.2 ± 17.8 mm (Fig 7B). The lowest Hauss-
dorf values were obtained for the 4-SD and 5-SD meth-
ods (30.8 ± 16.9 mm and 31.7 ± 18.4 mm respectively,
p < 0.05). The achieved homocedastic Haussdorf dis-
tance distributions showed similar variance levels for all
the methods. On Fig. 7C, RVD results are shown. Our
proposal achieved a low mean value of 0.4 with high
variance. The best RVD performances were obtained
by FWHM (-0.19 ± 0.77) and 3-SD methods (-0.24 ±
0.31).

Qualitative segmentation results at different heart lo-
cations are shown on Fig. 8. Robustness of the algo-
rithm for detecting the scar at different heart positions
can be observed. Overall, less false-positives cluster
of pixels were found for our method when comparing
against the SOA ones. It is noticeable as well the slight
segmentation improvement conducted after the refine-
ment step.

The agreement with the manual delineations obtained
by the different methods in terms of clinical markers is
summarized on Table 8. Estimation of the scarred my-
ocardial volume as well as of the percentage of infarcted
myocardium was consistently better for our proposal
when compared against the SOA ones. For both con-
sidered metrics, our approach achieved the highest cor-
relation values and lowest Bland-Altman biases. A rel-
evant result is that our proposal was the only method in
estimating the scar volume and percentage of infarcted
myocardium by agreeing with the manual delineations.
All the remaining methods obtained clinical-markers es-
timations that statistically differed from the expert anno-
tated ones.

4.4.3. Microvascular Obstruction Inclusion
On Table 9 the sensitivity of the different methods for

detecting MVO areas are shown. Our proposal achieved
the highest performance values and showed statistical
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Figure 7: Segmentation performances. RVD: relative-volume-difference; FWHM: Full-width at half-maximum; GMM: Gaussian-mixture-model;
n-SD: n-standard deviation thresholding from remote myocardium; ∗ : p < 0.05 obtained by Mann-Whitney U-test.

Table 8: Agreement between methods and the manual delineations by means of clinical markers.

Infarcted Volume (cm3) Infarcted Myocardium (%)
Method Value ρ BA Bias p-value Value ρ BA Bias p-value
Manual 25.6 (19.3) 18.5 (12.6)
FWHM 17.5 (12.8) 0.937 -8.0 (8.7) < 0.001 12.7 (8.1) 0.933 -5.8 (5.9) < 0.001
GMM 32.7 (17.1) 0.806 7.1 (14.6) < 0.001 24.1 (10.9) 0.776 5.6 (9.5) < 0.001
Otsu 39.2 (20.7) 0.906 13.6 (10.0) < 0.001 28.6 (12.1) 0.884 10.1 (6.5) < 0.001
1-SD 43.9 (24.3) 0.931 18.3 (10.7) < 0.001 32.3 (15.7) 0.923 13.7 (7.2) < 0.001
2-SD 28.6 (18.7) 0.92 2.9 (9.4) < 0.01 21.1 (13.0) 0.916 2.5 (6.4) < 0.001
3-SD 18.4 ( 14.4) 0.874 -7.2 (12.5) < 0.001 13.6 (10.3) 0.846 -4.8 (7.6) < 0.001
4-SD 11.2 (11.1) 0.755 -14.4 (15.2) < 0.001 8.3 (7.9) 0.722 -10.2 (9.4) < 0.001
5-SD 6.3 (8.4) 0.567 -19.2 (16.9) < 0.001 4.8 (5.9) 0.565 -13.7 ( 10.6) < 0.001
6-SD 3.7 (6.3) 0.458 -21.9 (17.6) < 0.001 2.7 (4.4) 0.471 -15.7 ( 11.2) < 0.001

Proposed 26.6 (18.5) 0.944 1.0 (6.8) 0.196 19.2 (11.0) 0.944 0.5 (4.5) 0.313

Note: Mean(standard deviation). FWHM: Full-width at half-maximum; GMM: Gaussian-mixture-model; n-SD: n-
standard deviation thresholding from remote myocardium; BA: Bland-Altman; ρ: Spearman correlation coefficient;
p − values obtained by a paired t-Student test.

Table 9: Mean (standard-deviation) sensitivity for detecting microvascular-obstruction areas per method.

FWHM GMM Otsu 1-SD 2-SD 3-SD 4-SD 5-SD 6-SD Proposed
18.8* 54.6* 57.7* 63.6 46.5* 27.9* 14.1* 5.7* 2.8* 66.9
(23.0) (37.1) (35.0) (36.4) (38.9) (34.0) (25.1) (14.6) (9.1) (40.5)

Note: FWHM: Full-width at half-maximum; GMM: Gaussian-mixture-model; n-SD: n-standard deviation threshold-
ing from remote myocardium. ∗ : p < 0.05 by means of Mann-Whitney U test.
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Figure 8: Scar segmentations obtained per algorithm at different heart locations. a) Ground-truth. b) Full-width at half-maximum. c) Gaussian-
mixture-models. d) Otsu. e) 1-SD f) 2-SD. g) 3-SD. h) 4-SD. i) 5-SD. j) 6-SD. k) Proposed coarse segmentation. l) Full proposed method.

significance when compared with all SOA methods with
exception of the 1-SD one. A MVO segmentation exam-
ple can be appreciated on Fig. 9, where our proposals
capability for the task is exposed. It can be highlighted
the accurate segmentation of the hyper-enhanced area
provided by the coarse pre-segmentation, with its im-
provement and MVO inclusion after the refinement ap-
proach. For the shown image, only our approach was
able to deal with the no-reflow area.

5. Discussion

We present in this work a clinical multi-field, expert
delineated reference dataset for cardiac LGE-MRI

assessment using phase-sensitive inversion recovery
sequences. The large opened dataset will allow direct
method comparison and development of machine and
deep learning solutions for infarction detection. The
dataset accounts with the following main novelties
when compared with the only available competing
dataset (Karim et al., 2012): i) the inclusion of a big
cohort of human scans considerably overcoming in size
(more than six times greater) the STACOM proposal;
ii) the full dataset annotation into left ventricular
myocardium (labeled as healthy, scarred or MVO)
and blood-pool regions. It is worth to highlight the
separated delineation of MVO areas which are, to
our knowledge, the first time conducted on a dataset
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Figure 9: Segmentation results for microvascular-obstructed areas per method. a) Ground-truth. b) Full-width at half-maximum. c) Gaussian-
mixture-models. d) Otsu. e) 1-SD f) 2-SD. g) 3-SD. h) 4-SD. i) 5-SD. j) 6-SD. k) Proposed coarse segmentation. l) Full proposed method.

of these characteristics; iii) complementary clinical
patient information was retrieved and is provided in
this work (Table 4), which could allow future deeper
analysis and understanding of the myocardial damage
phenomena, iv) herein it is included a subset (20%) of
healthy patients and v) different magnetic field scans,
which might help in the development of more robust
solutions for infarction detection.
When the dataset delineations were assessed by the
conduction of intra/inter-observer variability analysis,
an overall low agreement was obtained, evidencing the
discrepancy between observers for identifying not only
the damaged tissue areas, but also the left-ventricle
myocardial boundaries. For the intra-observer analysis,
despite the high correlation and low Bland-Altman bias
obtained for the different clinical markers, all paired
analysis evidenced statistically significance with a ten-
dency to under-estimate the myocardium and scar mass
(RVD < 0, Table 5). Moreover, the Dice performance
was low especially when considering the myocardial
scar, with a greater agreement achieved when consid-
ering the left ventricular myocardium. On the other
hand, the inter-observer analysis showed as expected
stronger disagreement in terms of Dice, Spearman cor-
relation and Bland-Altman biases. An exception can be
appreciated for the left ventricular myocardium, being
the only clinical marker without showing statistical
differences with the ground truth. The interpretation
of both intra- and inter-observers variability can be
attributed to diverse potential causes. Firstly, due to
the conduction of fully blind delineations. Thus, no
previous agreement for conducting the draws was
performed between the observers. Although in other
medical imaging fields this point could not introduce
high discrepancies, the overall small areas to delineate
in these studies could be consistently affected. For
instance, in the heart base and apex locations where the
left ventricular myocardium is highly affected by partial
volume effect without exhibiting clearly boundaries,

some delineation rules should be defined. This is the
way that was conducted, for instance, the myocardial
ground truth over the ACDC cardiac dataset (Bernard
et al., 2018). Secondly, the lack of a consensus for
establishing the myocardial clinical condition (healthy
or infarcted) for all the patients and slices introduced
high variability between observers. It was exhibited
that for many images there was disagreement regarding
the myocardial clinical status and hence an impact
over the clinical markers estimation can be expected.
Thirdly, interpretation of Dice metric for evaluating
small regions segmentation performance could be
critical, specially under the lack of an expert ground
truth consensus.
In this work, an end-to-end fully automatic framework
for myocardial infarction detection and quantification
in LGE-MRI is presented. The strategy is modular
and flexible, allowing the use and implementation
of not only the entire pipeline, but also of their
independent blocks if desired. As well, modifica-
tions, improvements, or adaptations for its use in a
semi-automatic version (for instance by only using
the scar segmentation block after manual delineation)
are possible given its block modularity. Among the
biggest novelties of the proposed framework we can
point out: i) The fully user-interactive free capability.
Up to know, only Hennemuth et al. (2008) and Wei
et al. (2013a) attempted to automatize the whole task.
However, their methods showed strong limitations and
lack of validation as explained in Section 2. ii) The
development of a strategy fully independent from Cine
MRI sequences. iii) The automatic segmentation of
the left ventricular myocardium. iv) The generalization
of the algorithm for working under healthy scenarios
as well and v) the incorporation on the framework of
a dedicated step for including MVO areas within the
scar segmentation. All these characteristics turns our
framework a highly valuable tool with potential clinical
transfer capabilities.
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A detailed analysis of the achieved results for the
different blocks of the framework is presented below.
Our proposal for segmenting the left ventricular my-
ocardium demonstrated an overall good agreement
with the expert delineated ground truth. The obtained
Dice values were on average just ∼ 9% and ∼ 6%
lesser than the intra- and inter-observer ones, sug-
gesting robustness of our proposal for conducting this
task. Moreover, in terms of RVD and Bland-Altman
bias our method showed similar performances with
the intra-observer obtained ones (Tables 5 and 6),
where both delineations exhibited a slight tendency
to under-estimate the myocardial mass. Nonetheless,
our algorithm’s performance was limited in terms of
Haussdorf distance and showed a consistent lesser
myocardial volume correlation when compared against
the intra- and inter- observer cases. For this latter
clinical marker, statistically significancy was achieved
as happened as well for the intra-observer study.
The qualitative assessment of the myocardial segmenta-
tions (Fig. 3) unveal some common limitation patterns
for the proposed deep learning approach. Firstly, in
most cases the method presented better performances
for segmenting the base or middle slices than the apex
ones. The reasons might be related with the myocardial
size, which is much greater for the base and middle
slices than the apex ones, as well as related with the
strong image quality differences. On the heart apex,
as can be appreciated on Fig. 3, the MRI quality is
generally poorer than for central slices, exhibiting non
clear boundaries and a strong partial volume effect
influence. These results are non surprising and are in
agreement with the reported results for kinetic MRI
sequences in the ACDC challenge, where the same
method’s failures were pointed out (Bernard et al.,
2018). Secondly, a common limitation of the method
was observed for recognizing the myocardial tissue in
big infarcted areas. Given that the blood-pool presents
similar intensity profiles than the scarred myocardium
(Tao et al., 2010), the algorithm presented difficulties in
differentiating both regions. It is important to remark
that this limitation was mainly observed in big infarc-
tions, since in middle/small scar lesions the remaining
myocardial healthy tissue brings contextual information
for helping in the task performance. Thirdly, likewise in
(Bernard et al., 2018) the method presented unrealistic
anatomical configurations for the myocardium, as can
be appreciated on Fig. 3. Given that the myocardium
geometrically resembles a deformed ring, the inclusion
of a-priori information as conducted in Zotti et al.
(2017) and/or Ngo et al. (2017) could be a solution
for this problem. Despite these limitations, given the
hardness of myocardial segmentation in LGE-MRI
and the very little solutions published for conducting
the task (Table 1) our results turn very promising.
To our knowledge, this is the first work presenting
a deep learning solution for LGE-MRI myocardium

delineation.
By mimicking semi-automatic SOA algorithms
pipeline, a classifier was devised for detecting diseased
myocardial slices, a step generally conducted by visual
inspection from experts. The discriminant rule achieved
high classification performance results and was able to
overcome the traditional fine tuning approach widely
spread in literature. Thus, our results suggest that the
fitting of a machine-learning classifier (SVM in our
case) feed with fine-tuned CNN features outperforms
transfer learning or direct fine-tuned CNN approaches.
When the decision rule was assessed in terms of a
ROC analysis, high AUC metrics with low variance
were obtained, suggesting robustness of the proposed
discriminant rule (Fig. 5). Possible operative points
providing high sensitivity were extracted, which will
help in reducing the false positive lesions detection
in healthy images. Even more, results from the per-
mutation analysis showed that the built classifier and
the features used for its devising are informative for
the addressed problem and cannot be achieved by a
random chance configuration. The permutation analysis
excluded the finding of dataset-dependent results and
showed that the AUC obtained values do not belong
to the null permuted distribution. All these findings
supports, consequently, the classifiers robustness as
well as the method’s reproducibility over different
databases.
Segmentation of the infarcted masses was conducted
in a two-step approach where the initial segmentation
was later improved using deep learning. It is important
to highlight the novelty of this approach which was
not only thought as a high-performance algorithm, but
also as a modular transferable framework. Thus, it is
demonstrated the high performance achieved before
and after the segmentation refinement, achieving the
coarse segmentation step a better agreement with the
ground truth than the SOA methods (∼ 3% greater Dice
than the remaining algorithms). Given its easiness for
implementation without requiring GPU computation
capabilities, the coarse segmentation algorithm by itself
could be used in clinical practice as well.
When the deep-learning based refinement was included,
a consistent and statistical significant improvement in
segmentation agreement was achieved (∼7% greater
Dice than the best performing SOA). Even more, the
low Dice variance showed homogeneity and adapt-
ability of the method to different myocardial lesions
configurations. However, when assessing the Haussdorf
distance results, our method obtained non-outstanding
performances. Overall, it performed similar to most
SOA algorithms excepting 4-SD and 5-SD, which
achieved much lower metrics (p < 0.05). These
results are expectable since in these algorithms the
segmentation histogram threshold is set very high.
Thus, only highly hyperenhanced voxels belonging to
the core necrotic tissue are detected and false detections
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coming from overlapped histogram areas are avoided.
Given the fact that the Haussdorf distance is strongly
affected by outliers (Jia et al., 2018), these methods
result benefited by this metric.
When comparing RVD metric performances, the
proposed method achieved a mean low positive value
suggesting a tendency to slightly over-segment the le-
sions. Nevertheless, a high variance can be appreciated
evidencing the presence of not only over-segmented
but under-segmented lesions as well. The best RVD
performances were obtained for FWHM and 3-SD
methods, whose results under-estimated the lesions
mass. Despite the good performances obtained by
3-4-5-SD methods in terms of HD and RVD values,
very poor Dice agreement with the ground truth charac-
terized these algorithms without suggesting suitability
for clinical usage (Fig. 7).
Promising results in terms of clinical markers were
achieved with the proposed algorithm. The high corre-
lation, low bias and the fact of being the only method
agreeing in volumetric lesion quantification with the
delineations (Table 8) suggest its appropriateness for
working under clinical and medical scenarios. On
the other hand, supporting the findings of Spiewak
et al. (2010) and Zhang et al. (2016) the SOA results
showed very poor scar segmentation agreement with the
manual delineations, characterized by low accuracies,
high results variability and significant differences in
volumetric tissue quantification.
Considering the novelty of the used dataset that
contains no-reflow annotated cases, the inclusion of
MVO areas within the infarcted segmented masks
was compared between the different methods. Our
approach was consistently superior for conducting this
task, achieving the highest sensitivity performance
and evidencing statistical significance when compared
against the SOA approaches. The 1-SD method was
the only exception, showing non-significant differences
even when achieving lower performances (Table 9). For
this latter technique, the setting of a very low threshold
for detecting myocardial scars favors MVO detection
at the expenses of providing low overall performances
(Fig. 7 and Table 8).

6. Limitations and Future Work

The main dataset limitation regards the reliability of
the expert contours. For decreasing the intra- and inter-
observer delineation variabilities, a consensus between
observers will be established. It will include as well the
definition of a protocole for conducting the annotations,
specially for the basal and apical slices as conducted for
the ACDC challenge (Bernard et al., 2018). With re-
spect to the proposed framework, the main limitation
regards the optimal conditions results reported in this
study. In forthcoming analysis the impact of the differ-

ent block algorithms over the final scar quantification
will be conducted.

7. Conclusions

The findings of this study can be summarized into two
main contributions. Firstly, herein is proposed for the
very first time a big multifield open dataset for myocar-
dial infarction quantification in LGE-MRI. It includes
annotated data from the left ventricular myocardium,
hyper-enhanced and no-reflow regions. To our knowl-
edge, this is the first dataset including several cases
with no-reflow phenomena and were its regions are
expert annotated. Secondly, we propose and validate
an end-to-end fully automatic framework for infarction
segmentation and quantification. The framework over-
comes several limitations of previous proposals from
which can be highlighted: i)The only use of LGE-MRI
data and its independence from cine MRI, ii) the auto-
matic segmentation of the left ventricular myocardium,
iii) the detection of disease images, allowing to extend
the method for working under healthy scenarios and iv)
the development of a novel and robust technique for au-
tomatically delineating the scar tissue. The extensive
statistical validation of the framework and its vast com-
parison against several current state-of-the-art methods
turn this proposal into a robust and reliable tool with
clinical transfer potential.
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Abstract

Breast cancer is the second dominant cause of cancer death among women, and there has been a significant amount
of research to develop Computer-aided detection (CAD) systems for early stage detection and diagnosis. Although,
Convolutional Neural Networks (CNN) has had a huge success in many areas of computer vision and medical image
analysis, in mammogram breast cancer detection CAD systems there is an immense potential of performance improve-
ment by integrating all the information that radiologist utilize, such as symmetry and temporal data. In this work, to
integrate symmetry information into CNN, we propose a patch based multi-input CNN that learns symmetrical dif-
ference to detect malignant breast mass in Digital Mammogram (DM) images. First, a candidate detector that uses
local lines and gradient orientation based features are employed. Then, a CNN that incorporates symmetry informa-
tion was adopted to reduce the False Positive (FP) with high sensitivity. To alleviate imbalance between pathological
observations and normal candidates an efficient augmentation with perturbation was applied. The network is trained
on a large-scale dataset of 28294 DM images collected from different sites and obtained using machines from three
different vendors. A baseline architecture without symmetry information was also trained. We observed that integrat-
ing symmetrical information slightly outperforms the baseline architecture. Performance of the baseline architecture
and symmetry CNN were evaluated using Area Under the ROC Curve (AUC) and Competition Performance Metric
(CPM) based average Free Receiver Operating Characteristic (FROC) sensitivity. At candidate level, AUC value of
0.933 with 95% confidence interval of [0.920 , 0.954] was obtained when symmetry information is incorporated in
comparison with baseline architecture which yielded AUC value of 0.929 with [0.919 , 0.947] confidence interval.
Although there was no a significant candidate level performance again (p = 0.111) of incorporating symmetrical in-
formation, we have found a compelling result at exam level with CPM value of 0.733 (p = 0.001). We believe that
including temporal data, and adding benign class to the dataset could improve the detection performance.

Keywords: Breast cancer, Digital mammogram, Convolutional neural networks, Symmetry, Deep learning

1. Introduction

Breast cancer is the second most cancer causing death
in women after lung cancer in the United States and the
chance of a woman dying from breast cancer is 2.6%
Siegel et al. (2018), which covers around 30% of can-
cers diagnosed (Rakhlin et al., 2018). According to
American Cancer Society in 2018, around 266120 and
63960 new cases of carcinoma and invasive carcinoma
breast cancer will be diagnosed in women, respectively.
Approximately 40920 women will die from breast can-
cer.

Breast cancer is a complex disease in which its etiol-
ogy is not fully understood due to its multifactorial na-
ture. This makes its prognosis difficult, however, studies
have revealed that its main risk factors include genet-
ics and hormones Martin and Weber (2000), and envi-
ronment, sociobiological (age and gender) and physio-
logical factors also affect its development (Organization
et al., 2006). Women in different geographical location
have shown a different potential of developing breast
cancer. Stefan (2015) stated that in Africa, presum-
ably around 35 per 100,000 women in most countries
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(as compared to over 90 − 120 per 100,000 women in
most European or North American countries) will have
breast cancer. Signs of breast cancer may include a
lump in the breast, a change in breast shape, dimpling
of the skin, fluid coming from the nipple, a newly in-
verted nipple, or a red or scaly patch of skin. In those
with distant spread of the disease, there may be bone
pain, swollen lymph nodes, shortness of breath, or yel-
low skin (Organization et al., 2006).

For a better survival, early detection and improved di-
agnosis of breast cancer are essential. There are differ-
ent breast imaging modalities. Some of them are used
for screening purpose, others for diagnosis. Once breast
cancer has been detected in screening stage, more de-
tailed evaluations are usually performed using diagnos-
tic modalities which may also be used for initial diag-
nosis.

The currently used modalities include mammogra-
phy, breast ultrasound, Tomosynthesis, magnetic reso-
nance imaging (MRI), positron emission tomography
(PET), and computed tomography (CT). Mammogra-
phy is the most common method of breast imaging. It
uses low-dose amplitude X-rays to examine the human
breast. Cancerous masses and calcium deposits appear
brighter on the mammogram. This method is good for
detecting Ductal Carcinoma In Situ (DCIS) and calcifi-
cation (Sree et al., 2011).

Tomosynthesis produces a 3-dimensional image of
the breast acquired using several low dose x-rays from
different angles. It allows the radiologist to see through
dense tissue to a greater degree than with 2-dimensional
mammography. This technique improves the chances of
finding cancer early and reduces the risk of a false alarm
(Gilbert et al., 2016).

Breast cancer screening is important because, for
some breast cancers, symptoms might not be visible un-
til cancer reaches a certain level. During breast cancer
screening, radiologists utilize Medio Lateral Oblique
(MLO) and Cranio-Caudal (CC) views of mammogra-
phy scan of both breasts to identify markers of lesion
such as masses and calcification (Bick, 2014), (Giger
et al., 2013). The radiologist looks for the shape and
appearance of some suspicious regions and character-
izes them as malignant and normal. Breast masses are
most dense and appear in grey to white pixel intensity
with oval or irregular shape while micro-calcification is
characterized by a cluster of small round bright spots in
the breast (Oliver et al., 2010), (Tang et al., 2009). Nor-
mally, irregular or spicule shaped masses are considered
as malignant and malignancy of micro-calcification de-
pends on the location of the marker in the breast (Oliver
et al., 2010), (Dhungel et al., 2017).

In most countries, women between the age of 45
and 65 are recommended for breast cancer screening
at a regular interval depending on the country where
they live. This has shown a reduction in mortality
rate between 40% and 45% for women who were un-

dergoing mammogram screening (Feig, 2002), (Group
et al., 2006). Despite this general benefits, mammogram
screening has harms associated with FP recalls which
results in FP biopsy and anxiety caused by the recall
for additional diagnostic test after screening (Tosteson
et al., 2014), (Oeffinger et al., 2015). There is also a
cost associated with these unnecessary follow up (Geras
et al., 2017). Therefore, it is necessary to increase sen-
sitivity for early stage detection and increase specificity
to reduce FP.

Moreover, the large volume of mammogram images
makes the manual screening tedious task for radiolo-
gists Dhungel et al. (2017), Anttinen et al. (1993) has
stated manual screening has low sensitivity and high re-
call rate.

Nowadays, with a massive amount of data and com-
putational power, Deep Learning (DL) has showed a
remarkable success in the natural language Bahdanau
et al. (2014), Iyyer et al. (2015), and object detection
and recognition (Wang et al., 2016b). This has opened
an interest in applying DL in medical image processing
and analysis and it has shown a potential improvement
in detection and classification problems. However, care
should be taken as the way we humans interpret natu-
ral images and medical images are different, for exam-
ple, in mammogram breast cancer detection and diagno-
sis. Eventually, the performance of DL method will be
compared with the radiologist and the network should
be given all the information that radiologist use. For in-
stance, during the reading of screening mammograms,
radiologists visually compare the latest images (current)
to the ones acquired in the previous screening round
(prior). Similarly, right and left breasts are also com-
pared as shown in figure 1 in order to find differences
in the breast tissue (asymmetries) that might be signs
of cancer. This information has been found to be very
important to improve overall detection performance and
reduce false positive recalls. Moreover, CC and MLO
views are considered.

In object detection and recognition problems, images
are often down-scaled while keeping the performance
at the same level, however, in medical applications, fine
details are needed in detection, classification, and seg-
mentation. Original resolution is desirable for early-
stage breast cancer detection. Geras et al. (2017) pro-
posed a multi-view single stage CNN that works at orig-
inal resolution to classify MLO and CC views. To ad-
dress memory issue, they proposed aggressive convo-
lution and pooling layers with stride greater than one
instead of downscaling the image beforehand. There is
spatial information loss, though it is better than down-
scaling in the image space. Adopting a patch based ap-
proach could address this problem. Incorporating sym-
metry and temporal information improves detection of
malignant soft tissue lesion, in which random forest
classifier was used for mass detection and CNN for clas-
sification Kooi and Karssemeijer (2017).
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Figure 1: An illustrative example showing symmetry and different views of left and right breast

In this study, we conducted an investigation to ana-
lyze the performance gain of integrating symmetry in-
formation to CNN to detecting malignant lesions on a
large scale mammography images. First, a database
of 7196 exams which contains 28294 images was col-
lected from different sites in the Netherlands. Previous
work of (Karssemeijer, 1999) which has high sensitivity
was used to detect suspicious candidates. Then, patches
centered on the points were extracted to train a two in-
put CNN to reduce FP candidates. Left and right breast
images were considered as contra-later images to each
other and a patch in a primary image and an exact re-
flection or mirror on the contra-lateral were considered
as a pair of inputs. In the work of Kooi et al. (2017)
incorporating both symmetry and temporal context was
investigated. In this study, we investigated the perfor-
mance gain of incorporating symmetry context only.

One of the drawbacks of two-stage decision sup-
port system is that it produces sub-optimal results as
the stages are optimized independently (Dhungel et al.,
2017). To overcome this limitation the first stage used
in this study has h high sensitivity and low specificity.
Moreover, an efficient and effective way of augmenta-
tion to train a CNN using imbalanced data is presented
which can be used in other medical image analysis prob-
lems. Furthermore, qualitative, and quantitative analy-
sis of the proposed method is presented.

This paper is organized as follows. In section two,
state of art papers is reviewed. The dataset used and
methodology is described in section three. Then, results
and statistical analysis are presented in section four. Fi-
nally, discussion and conclusion are presented in section
five and six, respectively.

2. State of the Art

Several works have used deep learning to perform
mammogram lesion classification and detection. Table
1 summaries the current state of art deep learning based
approaches to breast mammography. The table presents

the target of the study, the size of the dataset, image
size, performance evaluation metric, number of stages
and type of input image considered.

In mammography, the most frequently used prepro-
cessing techniques are intensity normalization and re-
gion of interest (ROI) extraction. In multi-stage breast
cancer screening or detection, mammogram image is di-
vided into different regions or suspicious candidates are
detected either handcrafted features Wang et al. (2016a).
Then, in the next stage, each of these regions will be
processed to predict its class. There are also research
works that process directly the whole image. As can be
seen in the Table 1, the most frequently used metric is
AUC.

As the size of mammogram images is too large to fit
in a Graphics Processing Unit (GPU), most of the re-
cent researches have focused on multi-stage. For in-
stance, mass detection Kooi and Karssemeijer (2017),
Domingues and Cardoso (2013), Carneiro and Bradley,
Ertosun and Rubin (2015), Lévy and Jain (2016), Jiao
et al. (2016) and micro-classification Mordang et al.
(2016), lesion level detection (Lévy and Jain (2016),
Arevalo et al. (2016)).

Kooi and Karssemeijer (2017) and Carneiro and
Bradley employed random forest classifier for candidate
detection. Then, patches were extracted to train a CNN
(patch size can be seen in the table). In the work of Kooi
and Karssemeijer (2017) in addition to the main patch,
contra-lateral and temporal information was added and
it is stated that incorporating these additional informa-
tion increases the performance of the classifier. A large-
scale dataset of 73464 images was used and negative
candidates were taken only from exams without lesion.

In the work of Jiao et al. (2016), and Arevalo et al.
(2016), Huynh et al. (2016) Support Vector Machine
(SVM) classifier was trained on features extracted from
CNN. Others have focused on training a CNN for clas-
sifying small region of interest in to either malignant
or benign lesion(Huynh et al. (2016), Mordang et al.
(2016), Lévy and Jain (2016)).
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Alternatively, a small number of researchers have
considered training the whole image and replaced the
multi-stage by single stage which can be trained end-to-
end. Geras et al. (2017) has proposed high-resolution
breast cancer screening with multi-view CNN and eval-
uated on a large scale data of around 890 thousand im-
ages. In contrast to natural images, in medical image
analysis original resolution is necessary to detect abnor-
malities like masses and calcification at an early stage
and downsampling hides original patterns that are de-
terminant. However, training on the original resolution
of mammogram images is limited by memory require-
ment. To address this issue, Geras et al. (2017) has pro-
posed aggressive convolution and pooling layers with
stride greater than one in the earlier layers and work on
the original resolution.

However, Geras et al. (2017) has stated also aggres-
sive convolution has a drawback of loss of spatial infor-
mation. This will have less effect in classification, but
in detection, it will affect negatively as localization is
important. Training with images at original resolution
and increasing training data increases classifier perfor-
manceGeras et al. (2017). A multi-view deep residual
network was also proposed by Dhungel et al. (2017) to
classify breast mammogram image into malignant and
benign. Both views and binary mask of masses and
micro-calcification for each view were given as an input
to an ensemble of deep residual networks. Detection
of lesion and segmentation was done using (Carneiro
and Bradley, Lu et al. (2016)). The main drawback of
this implementation was the number of inputs. For one
breast CC and MLO view images and additional 4 bi-
nary mask image are generated and fed as input to the
network.

3. Material and Methods

3.1. Dataset

The mammogram images used were collected from
General Electric, Siemens, and Hologic from women at-
tending for diagnostic purpose between 2000 and 2016.
The images are anonymized and approved by the re-
gional ethics board after summary review, with a waiver
of a full review and informed consent (de Moor et al.,
2018). The database contains 7196 exams. For most of
the exams, MLO and CC views of both right and left
breasts are provided, resulting in 28294 DM images in
total. The sample comprises 25901 normal or benign
images and 3023 malignant lesions. All images with
malignant lesions were histopathologically confirmed,
while normal exams were selected if they had at least
two years of negative follow-up. From 7196 DM exams,
2883 exams (42%) contained a total of 3023 biopsy-
verified malignant lesions. The exact distribution of
the dataset is shown in table 2. Furthermore, lesion

masks were provided together with the images. More-
over, 1315 exams does not have either left or right breast
images of MLO and/or CC views.

Training, validation and test data split was done at
exam level to evaluate the generalization of the model
developed. Data were randomly split into training
(50%), validation (10%) and testing (40%) while mak-
ing sure exams from each vendor present in each parti-
tion proportionally.

Images were energy band normalized Philipsen et al.
(2015) and down-scaled to 200 microns after applying a
Gaussian filter to homogenize the pixel size across dif-
ferent vendors.

3.2. Candidate Selection Stage

In this study, we have proposed a two-stage breast
cancer detection system in which the first stage detect
suspicious candidates center location, followed by CNN
based approach to reduce FP candidates. Suspicious
candidates in the first stage were detected using the pre-
vious work of (Karssemeijer, 1999). We refer to this
step as the candidate step. Likelihood of a pixel to be
part of a mass was computed using local lines and dis-
tribution of gradient orientation features. Then, a global
threshold was applied to the likelihood image to gener-
ate regions that are considered as suspicious. Figure 2)
shows sample MLO view DM images of left and right
breast. The right breast images are flipped horizontally
to put both images in the same space. The red and green
points correspond to suspected candidate center loca-
tions of mass. While the candidate marked green is a
true mass, the others are false predictions. The role of
the second stage will be to reduce these false candidates.

Table 3 presents the number of suspicious candidates
obtained in stage one for training, validation and test
data. 339725, 62926, and 256447 points were found to
be suspicious lesion center from the training, validation
and test exams respectively, which are outside the le-
sion mask. 2275 candidates from the training DM were
found to be inside the lesion mask, while 1047 and 794
were for validation and test data.

3.3. Patch Preparation

To train our baseline and symmetry CNN, patches
centered on the points detected in Section 3.2 were
extracted as shown in figure 2. To extract symmetry
patches, first the right breast mammography image was
flipped horizontally. A simple mirror mapping was ap-
plied to locate patch boundary on the contra-lateral im-
age as shown in the figure. Similarly, candidates loca-
tion of right breast were transformed according to equa-
tion (1).

(Ct
x,C

t
y) = (R −Cx,Cy) (1)

where R is width of the image, and Cx and Cy are can-
didates x and y location before transformation. Ct

x and
Ct

y are transformed coordinates.
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Table 1: Previous works on breast mammography lesion, mass and calcification detection, and classification. Task
stands for the target task of the study: BI= Breast Imaging Reporting and Data System( BI-RADS), M = Mass
detection, L: Lesion, µC: Micro-calcification. In the images column, the total number of images used and the number
of test images is displayed in parenthesis. Im. size is the size of image or patch used to train a convolutional neural
network. Metric is evaluation method used in the study. The number of stages details whether the experiment is
completed in a single stage or multiple stages. Column Info displays the information given to the network: SI: Single
input, MV: Multi-view, Sym: Symmetry, Temp: temporal data. Input is presented whether the whole image (WI)
or Patch (P) was used as an input. D*: (TPR/image,FPR)=0.87, 0.8, A* = (auc=0.87(µC), 0.9(µc+mass)), B* =

(acc=0:929, recall:.934) , acc: Accuracy, sen:Sensitivity,

Ref. Task Images Im. size Metric Stages Info Input
Carneiro et al.

(2015) BI 680(340) 264x264 auc(0.91) 1 SI WI

Zhu et al. (2017) BI 410(CV) 224x224 auc(0.90) 1 SI P
Arevalo et al. (2016) L 736( 300) 150x150 auc(0.826) 2 SI P
Huynh et al. (2016) L 607(cv) 512x512 auc(0.86) 2 SI P

Carneiro and
Bradley M 410(cv) 264x264 D* 2 SI P

Geras et al. (2017) BI 829k(57k) 2600x2000 auc(0.787) 1 MV WI
Ertosun and Rubin

(2015) M 2500(250) 256x256 acc(85%) 1 SI P

Mordang et al.
(2016) µC 1606(378) 13x13 sen( 0.6914) 2 MV P

Domingues and
Cardoso (2013) M 116(cv) 32x32 acc(0.86) 2 SI P

Lévy and Jain (2016) M 1820(182) 224x224 B* 2 SI P
Jiao et al. (2016) M 600(CV) 227x227 acc(97%) 2 SI P

Kooi and
Karssemeijer (2017) M 73464(18366) 250x250 auc(0.895) 2 Sym and Temp P

Dhungel et al. (2017) L 410(CV) 120120 auc(0.80) 1 MV P
Wang et al. (2016a) L 1204(204) 1024x1024 A* 1 SI WI

Table 2: Distribution of DM dataset used

General Electric Siemens Hologic
number of studies 2248 1518 3430
normal images 7771 5842 12288
images with malignant lesions 1292 255 1476

The green box in 2 represents a rectangular patch cen-
tered on a positive candidate on MLO view of left breast
image, and its corresponding symmetry patch at the
same location on the contra-lateral image is displayed
in blue. These patches will be used to train a second
stage CNN which incorporates symmetry information.
In our training dataset, the largest sized mass was 5cm
(250 x 250 pixels) and patch size of 6cm (300 x 300
pixels) was selected.

The largest size of a mass in our dataset is 5cm,
computed from masses and we selected a patch size of
300x300 pixels (6cm x 6cm). Figure 3 shows sample
malignant and normal patches.

3.4. Sampling Strategies

In average, 24 suspicious candidates were detected
per image resulting in 659098 candidates of which 3837

(0.6%) are positive candidates. Thus, the pathological
observations were remarkably less compared to healthy
candidates. This causes a serious problem during train-
ing especially if objective function used is not robust to
class imbalance. Thus, we under-sampled the negative
patches in the training data. All negative candidates in
an image are analyzed one by one and considered for
training if it satisfies the following conditions:

1. Candidate is at a Euclidean distance of greater than
100 pixels from a lesion (if any).

2. If another candidate within 70 pixels Euclidean
distance is not considered. For every candidate in
the image, a Euclidean distance is computed to all
other candidates and a candidate will be considered
if any the candidates which are in distance less than
70 pixels are already in the training patch list.

The 100pixels and 70pixels threshold distances were
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Table 3: Distribution of suspected candidates from first stage. The numbers after + indicates candidates from exams
without left or right breast images.

Candidates Training Validation Test
Negative 337366+2359 61833 +1093 250293+6154
Positive 2217+58 927+30 727+67

a) b)

Figure 2: An illustrative example showing center location of suspected masses in a sample MLO and CC views of
right and left breast mammogram images, and patches used to train symmetry CNN model. The first image is left
breast mammogram image while the second is for right breast. Green points represents positive candidates, and red
markers are negative. a) MLO view and b) CC view

Figure 3: An example of negative (last column) and pos-
itive (first two columns) samples mammogram images.
Patches in the top row are from the main image and their
corresponding symmetry patches are in the bottom row.

chosen empirically. This reduced the number of neg-
ative patches to 253476, which is 74.6% of the origi-
nal amount. However, still, the proportion of positive
to negative is 1 to 112 respectively. Thus, further patch
balancing is applied during training as explained in Sec-
tion 3.6.

3.4.1. Preprocessing
The images were already energy band normalized and

scaled to same resolution 200microns. After patches
are extracted, pixel intensity normalization to be in the
range [0,1]. Normalization reduces training time by al-
lowing larger learning rate and makes training less sen-
sitive to weight initialization (Ioffe and Szegedy, 2015).

3.5. Patch Augmentation

Augmentations refer to generating new images from
the available images by applying transformation, defor-
mation and adding noise to alleviate data scarcity and
overfitting by incorporating more variation of the data
at hand. However, the images should be realistic. In a
mammogram, the main variations at lesion level mainly
scale, rotation, translation and amount of occlusion of
tissue. The lesion can be detected at a different stage
and this was incorporated by training on a scaled ver-
sion of input patches, though, later stage lesions might
not be simply scaled version of early stage masses Kooi
et al. (2017). Moreover, our problem is translation in-
variant, as lesion center by candidate detector described
in section 3.2 can be at any part of the lesion.
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Initially, the positive patches are flipped (up-down
and left-right) and Gaussian blurred with a standard de-
viation ranging from 0.2 up to 3. Blurring was ap-
plied only to the original patches, not to flipped patches.
These generated patches were saved on a disk.

Then, both negative and positive patches (augmented
+ original) were augmented in real-time. Training was
done using Keras Chollet et al. (2015) fit generator, a
keras model method that trains and optimizes a model
on a batch by batch data generated by Python generator.
Keras has a built-in image data generator class that sup-
ports real-time images augmentation. The main func-
tion of the generator is to generate a batch of images
and their labels according to the setting given at every
iteration of training batch. The main downside of this
generator is that in case there is large data imbalance,
selected batch of images can be from one class which
results in overfitting.

Thus, we implemented an image generator which se-
lects an equal number of positive and negative candi-
dates in a batch and applies augmentation to every can-
didate with a given probability p. In our case we se-
lected p = 0.5, chosen empirically. Then, if a candi-
date was chosen to be augmented, a randomly selected
augmentation will be applied to scaling, translation, and
rotation. For the purpose of shrinking and translation,
originally, patches of size 350 pixels were extracted.
Scaling range was set to [0.88, 1.25] inclusive, thus de-
pending on the selected value, the patch will be either
up-scaled or down-scaled. In case of translation, the
center of the lesion is transformed by a value randomly
selected from the range [-25, 25] both in the x and y-
direction. The translation in the x and y are selected
independently. Rotation is another commonly used aug-
mentation both in computer vision and medical applica-
tion, and to make it robust, the rotation angle was cho-
sen in the range [-30, 30].

Rotation, translation, and scaling were done in real-
time. This saves the need for a large storage memory,
however, it slows training time especially when batch
size is large. Multiprocessing was used to speedup aug-
mentation time. We have used a batch size of 64 and
created 4 processes, in which each process will read 16
patches and apply augmentation. Finally, data from all
processes will be combined and fed to the network for
training. For symmetry model, the main and symmetry
patches are read and augmented in the same way by the
same process.

3.6. Network Architecture and Training

In addition to symmetry CNN, a baseline architecture
shown in figure 5 was built and trained. This baseline
model is used as a reference to evaluate the performance
gain of incorporating symmetry information.

Figure 4: sample augmented images. The first image is
original patch. The other images from left to right are
generated by rotation, flipping, zooming and translation
respectively.

3.6.1. Baseline Architecture
It is a variant of VGG architecture Simonyan and

Zisserman (2014) as shown in figure 5 and it consists
of feature extraction and classification part. The fea-
ture extraction section has a series of seven convolu-
tional layers with {16, 32, 32, 64, 64128, 128} neurons
and max-pooling layers. Convolution was performed
with a stride of (1,1) and valid padding. The classifi-
cation part is composed of three dense layers of neu-
rons {300, 300, 2}. Dropout (rate of 0.5) was used after
first dense layer. Relu activation was applied to all lay-
ers except the last layer, where softmax was applied.
The depth of the network and the number of layers were
found using a grid search considering the comments of
(Kooi and Karssemeijer (2017), Geras et al. (2017)).

Global average pooling (GAP) Lin et al. (2013) was
applied after the last convolutional layer while the other
layers are followed by 3x3 max pooling. The advantage
of GAP over flattening is that it minimizes the chance
of overfitting by reducing the number of parameters.

3.6.2. Symmetry Model
The symmetry model has two inputs, a candidate un-

der consideration and a patch on the same location from
a contra-lateral image as shown in figure 6. The paral-
lel streams are transfer learned from baseline network
in figure 5. Then, the features are extracted from both
inputs and concatenated before feeding to the classifier.
The classifier part setup up in the same way as the base-
line model. The advantage of transferring the learned
weights from the baseline architectures is that the net-
work converges in a short time.

Features from the parallel data streams can be fused
at any level and to the best of our knowledge, there is no
work that investigates this. Most of the parameters in
CNN based classification methods comes from the fully
connected or dense layers. Therefore, if the parallel data
streams are fused at an early stage, the dimension of the
input tensor to the fully connected will be high. This
results in a dramatic increase in the number of hyperpa-
rameters, and a high chance of overfitting. The number
of hyperparameter in a dense layer with a given num-
ber of neurons is linearly proportional to the dimension
of the input tensor. Thus, although we did not perform
an experimental investigation, we strongly believe that
it is advisable to fuse the features at a later stage which
gives a reasonable number of hyperparameter taking the
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amount of training data.
Multi-input CNN can be trained using the single

stream and multiple data stream architectures. In the
study by Kooi and Karssemeijer (2017), it is stated that
a multi-stream network outperformed single input net-
work and in this work, we have proposed the network
presented in figure 6 without sharing weights of the
parallel data stream. The output of the max-pooling
after the last convolutional layer is three dimensional
(3x3x128). It is flattened before feeding to the classi-
fier.

One of the most common problems in machine learn-
ing is missing data. It is an old problem and there have
been a lot of imputation techniques to handle this in
statistical machine learning, such as k-nearest neighbor
Batista and Monard (2003), mean, mode and predictive
replacement Poulos and Valle (2016), zero imputation
and forward filling in the context of recurrent neural net-
work(Lipton et al., 2016). In zero imputation, missing
data are replaced by zero and missing values are set to
a previous value in case of forwarding filling. For im-
puted data, missing data perturbation can improve gen-
eralization of the model by regularizing the model Pou-
los and Valle (2016), and zero imputation outperformed
forward filling in Lipton et al. (2016).

In our dataset, there were exams with no right or left
breast DM images, and we considered them as missing
data. For the image from these exams, zero matrices
(image) was used as a contra-lateral image. Quantitative
evaluation of symmetry model on exams with missing
data is presented in Section 4.

3.6.3. Training
Weights are initialized using Glorot weight initial-

ization Glorot and Bengio (2010) and optimized us-

ing Stochastic Gradient Descent (SGD) with time-based
learning rate scheduler with an initial learning rate
(ILR) of 1e−2 for baseline network and 1e−3 for symme-
try model, with decay rate of ILR/200, and momentum
value of 0.9. Mini-batch size of 64 was used.

During training, categorical cross entropy objective
function was optimized. For a mini-batch size of M
patches the computed cross entropy loss is given by
equation (2).

loss = −
∑

M

∑

i

yilog(ŷi) (2)

where M is batch size, yi ground truth class and ŷi is
predicted probability.

As explained in Section 3.3, in our dataset, the num-
ber of positive patches are much smaller than negative
patches. Thus, if a batch of images is randomly selected
the images might be only from negative class and this
results in overfitting. Buda et al. (2017) has stated that
the effect of class imbalance is detrimental for classifier
performance and oversampling performs better. How-
ever, if the imbalance cannot be completely removed,
under-sampling outperforms Buda et al. (2017). In our
case, as the imbalance is 1:150, oversampling will not
work. Instead, oversampling and under-sampling were
applied.

Moreover, additional strategies were applied. First,
an equal number of positive and negative were fed to
the network at every iteration using a generator. The
number of iteration per epoch was determined by the
positive samples, the underestimated class. Every pos-
itive sample was seen multiple times per epoch similar
to the work of Kooi et al. (2017), however, it did not
explicitly specify the number of times. We evaluated
our baseline model for a different number of repetition

Figure 5: Illustration of baseline CNN architecture; it is scaled down version of VGG16 Simonyan and Zisserman
(2014). The feature extraction part is composed of a series of convolutional and max-pooling layer. Dense layer with
relu activation were used as classifier. Each convolution has 3x3 kernel. The output of the classifier is binary, normal
or malignant patch.
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Figure 6: Symmetry model architecture. It has two inputs of gray scale 300 X 300 pixels size patches with their
own data stream for feature extraction. Then, the features are concatenated and fed to a neural network classifier
which contains a series of dense layers. Input main is the a patch from main image and input sym is a patch from
contra-lateral image

and we found that repeating twice succeeds in terms of
generalization and training time. This approach has the
following advantages; first, it improves generalization
of the model as the weight update is based on the pre-
diction loss of an equal number of samples from both
classes. Second, reduces the time per epoch as the num-
ber of iteration is smaller. Furthermore, training with
the same image many times will result in overfitting as
the network learn the noise in the underestimated class.
This is the same problem as a class or sample weighting
when the class imbalance is large.

Secondly, when a given sample is seen repeatedly in
a given epoch and at different epochs, it is likely to be
its augmented version as there is runtime augmentation
as explained in Section 3.5.

Moreover, we have created a custom callback func-
tion that computes AUC at the end of every epoch on
validation and sampled training patches. As the training
set is large to minimize the computation time, 30% of
the training set was sampled and used as a representa-
tive for the whole training data. Then, AUC was com-
puted at every two epochs interval and the best model
was selected based on AUC on validation patches.

Finally, early stopping was applied. During the
progress of training, training loss continues improving,
however, validation loss starts to drop after some epochs
due to overfitting. Early stopping attempts can be con-
sidered a type of regularization method in that it can
stop the network from overfitting. We monitored AUC
for early stopping and patience was set to 20 epochs.

3.7. Performance Evaluation Metrics

One of the most frequently used performance met-
ric for classification problems is AUC, especially when

there is skewed sample distribution like in our prob-
lem. Moreover, detection and localization of one or
more targets is a common task in diagnostic image anal-
ysis and other computer vision problems. In such cases,
FROC is also used as a diagnostic performance eval-
uation method (Bandos et al., 2009). Receiver Oper-
ating characteristic (ROC) curve gives evaluation at a
candidate level. In contrast to ROC, FROC gives infor-
mation to asses the performance at an image or exam
level and takes into consideration the number of targets.
In this work, candidate and lesion level performance
comparison were done using ROC and AUC, whilst im-
age and exam based evaluation were performed with the
help of FROC and CPM. CPM score was introduced by
(Niemeijer et al. (2011), (Setio et al., 2017)) and it is
computed as an average sensitivity from the FROC at
seven False Positive Rate (FPR): 1/8, 1/4,1/2,1,2,4, and
8.

Image-based FROC is computed per image and used
for image level performance evaluation, while exam
basedFROC is computed per exam, considering all
views of left and right breast images.

FROC curve is plotted True Positive Rate (TPR)
against FPR per image or FPR per exam and the points
on the FROC curve are computed as follows:

1. For all candidates in test dataset, the prediction
probability, and ground truth label was recorded.

2. All unique probabilities were sorted and marked as
a threshold (T) to compute TPR and their respec-
tive FPR

3. Then, TPR and FPR were computed at every
threshold, T. FPR is computed only from normal
exams as we can guarantee there is no lesion.

• For a image based FROC, for every T, FPR
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was computed as average number of FPR
per image, where FPR per image is a ratio
between the number of negative candidates
wrongly categorized as positive (FP) and the
total number of actual negative candidates.
TPR is determined as an average TPR per im-
age, where TPR per image is the proportion
of True Positive (TP) that are correctly pre-
dicted.

• For case based FROC, FPR is computed in
a similar way as image based FROC, but per
exam. TPR is set to 1 if at least one of the le-
sions in the exam are correctly classified and
else zero.

Competition performance metric is an average sensi-
tivity computed at 8 predefined different FPR per image
or FPR per exam depending on where the performance
is being evaluated. Different CAD systems use different
FPR threshold. An interesting point about CPM is that
low and high FP are considered. This determines if the
model can also significantly identify masses at a small
FP predictions.

Most machine learning algorithms such as CNN
based approaches suffer from randomness and select-
ing the best model is a challenging task (Brownlee,
2015). In this study, 95% confidence interval of AUC
and FROC CPM was computed using bootstrapping as
described in (Efron and Tibshirani, 1994), with 1000
bootstraps, to compare the performance candidate selec-
tion stage, baseline architecture and symmetry model.
Moreover, a p-value of our models was computed to
measure the significance of the difference in perfor-
mance at different levels. Significance test and p-values
were computed on our test data using 1000 iterations
employing sampling with replacement, each iteration
taking 70% of the whole testing data. To figure the
confidence interval and p-value at exam level, sampling
was done at an exam level. similarly, for candidate level
analysis, sampling was done at a candidate level. In
many statistical analysis p-value smaller than 0.05 was
considered as significant.

4. Results and Statistical Analysis

We first presented an empirical analysis of our CNN
based models and candidate selection, then, qualita-
tive results of best-performing symmetry CNN model
is presented. All the experiments were conducted in
KerasChollet et al. (2015), and all the results presented
here are on a separately held 40% of our dataset. Quan-
titative evaluation was done at candidate, lesion, image
and exam level.

4.1. Candidate and Lesion Level
In most of the images, during candidate detection,

more than one suspicious candidates were selected in-
side one lesion area. Candidate level evaluation refers

to the performance of the models for every candidate
detected in the first stage. For lesion level evaluation,
predicted probabilities of all candidates detected within
the region a given lesion were grouped and the maxi-
mum malignancy prediction probability was chosen as
malignancy probability of the lesion.

Figure 7a shows candidate level ROC and their re-
spective AUC values for the three models. Moreover,
95% confidence interval of the all the models is detailed
in Table 4. At candidate level, AUC value of 0.896 with
confidence interval of [0.879 , 0.913] was obtained by
the model used for candidate selection. The baseline ar-
chitecture that processes a single ROI image yield AUC
value of 0.929 with confidence interval [0.916, 0.942],
significantly higher than the candidate selection stage
performance (p = 0.004). Incorporating symmetry in-
formation undoubtedly improved the AUC to 0.933 with
[0.919 , 0.947] 95% confidence interval, although it was
not significant (p = 0.111) in comparison with baseline
architecture.

Figure 7b presents ROC curve comparison of symme-
try model evaluated on all test data and on images with
missing contra-lateral part. The evaluation on missing
data is based on 6152 negative and 67 positive candi-
dates (Table 3) and AUC value of 0.866 was obtained
with 95% significance interval of [0.788, 0.930].

From figure 8, AUC values of 0.943, 0.937, and 0.935
was scored by the first stage, symmetry and baseline
model respectively when performance is evaluated at le-
sion level and their confidence interval is also shown in
the second column of Table 4. At lesion level, the per-
formance of the first stage was higher compared to sym-
metry and baseline model (p = 0.216 and p = 0.082 re-
spectively). In contrast to candidate level evaluation, the
AUC value candidate selection stage was found higher
than the CNN models. As the maximum predicted prob-
ability from all the candidates that lie in a given lesion
was assigned as a malignancy probability, the algorithm
used in a candidate level has managed to get slightly
higher sensitivity, although the difference was not sig-
nificant.

4.1.1. Predicted Probabilities Distribution
To understand the distribution of the predicted prob-

abilities of suspected candidates, the mean(µ) and stan-
dard deviation (σ) of predicted probabilities for the neg-
ative and positive candidates are displayed in figure 9
for the three models. For candidate selection stage, the
mean of predicted probabilities of negative and positive
candidates was found 0.6402 and 0.366 respectively.
The average predicted probability obtained for positive
candidates using baseline and symmetry architectures is
slightly higher than the first stage, 0.724 and 0.673 re-
spectively. For negative candidates, the CNN models
have a remarkably smaller mean prediction, however,
the variance was a bit higher in case of CNN models.
From the bar graph, it is clearly evident that symmetry
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a) b)

Figure 7: Candidate level ROC curve comparing discriminative performance of the three models. a) Compares ROC
curve and AUC value of candidate selection stage, baseline CNN and symmetry CNN. b) Compares ROC and AUC
evaluation the best performing symmetry model on candidates with missing contra-lateral image and overall perfor-
mance.

Figure 8: Lesion level ROC curve comparing discrimi-
native power of candidate selection, baseline and sym-
metry models.

model was better in reducing FP candidates as the mean
malignancy prediction probability was found smaller in
comparison with the other models.

4.2. Image and Exam Level

Figure 10a and 10b present image and exam based
FROC along with CPM values comparison of the three
models and 95% confidence interval of CPM values
computed from FROC using 1000 bootstraps are shown
in Table 4. In our test set, symmetry model showed a
reasonably better performance ( p = 0.001) compared
to the single ROI baseline architecture in both image
and exam level statistical analysis. Competition perfor-
mance metric value of 0.716, 0.718, and 0.744 with 95%
confidence interval of [0.682 , 0.750], [0.679 , 0.756]
, and [0.723 , 0.794] was obtained for candidate selec-
tion, baseline and symmetry model respectively when
evaluation was done at an image.

Figure 9: Distribution of predicted probabilities of sus-
pected candidates. The numbers displayed are mean and
standard deviation values, and the black thin bars show
standard deviation of the values around the mean.

Moreover, during exam level evaluation sensitivity of
our model that incorporates symmetry information was
found higher than the other model throughout the whole
range of FPR, resulting in CPM value of 0.733 com-
pared to 0.682 and 0.702 for candidate selection and
baseline model, respectively.

From figure 10a and figure 10b, for FPR less than 0.3,
CNN based models have outperformed in comparison
with candidate selection stage model. For FPR greater
than 0.5 candidate selection stage and baseline model
have similar performance while symmetry model has
continued to perform better.

5. Discussion

In our dataset, there is a remarkable amount of imbal-
ance between positive and negative candidates (1 posi-
tive to 150 negative candidates). To mitigate this, we
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Table 4: 95% Confidence interval. For candidate and lesion level evaluation, the values indicated corresponds to 95%
confidence interval of AUC and CPM was used for image and exam level evaluation.

Model Candidate Lesion Image Exam
Candidate selection [0.879, 0.913] [0.925, 0.957] [0.682, 0.750 ] [0.671, 0.746]
Baseline CNN [0.916, 0.942] [0.917, 0.949] [0.679, 0.756] [0.713, 0.772]
Symmetry CNN [0.919, 0.947] [0.920, 0.954] [0.723, 0.794] [0.721, 0.823]

a) b)

Figure 10: FROC comparison of candidate selection, baseline and symmetry models; a) Image based FROC compar-
ison. b) Exam based FROC comparison. The y axis represents sensitivity in linear scale and x axis FPR per image or
exam in logarithmic scale. Lesion level prediction probabilities were used to compute FPR and TPR.

have experimented with different sampling strategies on
the overestimated class. In the whole training set, there
were 2309 positive candidates and sampling was ap-
plied only to negative class. The number of negative
samples after the different strategies and AUC value of
best performing baseline models on the validation set
is presented in Table 5. When negative candidates are
taken from normal exams as in the work of Kooi and
Karssemeijer (2017), 322062 candidates were collected
after sampling. Then, the baseline model in figure 5 is
trained and the maximum value of AUC obtained was
0.917. Sampling strategy described in Section 3.4 was
applied to the other methods in the table. When the
threshold is 70, the number of candidates was reduced
to 253476 and 264211 for a threshold value of 50.

When the threshold value is 70 AUC value of 0.926
was obtained compared to 0.922 and 0.917 for a dis-
tance threshold value of 50 and sampling from normal
cases, respectively. A model trained on with negative
candidates from positive and negative exams outper-
formed as more variety of candidates capturing the real
distribution of the class were incorporated. Another ad-
vantage is that faster training time due to a smaller num-
ber of data while maintaining the variance of the data.
These sampling strategies will minimize redundant in-
formation. It should be noted that increasing the dis-
tance threshold value does not guarantee an increase in
performance in other problems. This depends on the va-
riety of patches and the distance of candidates from the

first stage candidate selection.
Undersampling described above cannot completely

solve data imbalance we have. As in the work of
Farid and Rahman (2013), sample or class weighting
increases classification accuracy, however, in our case,
the result got worse. The under-sampled class was given
large weight while smaller weight was associated with
the overestimated class or samples. We have realized
that sample and class weighting works when the degree
of imbalance is not very large, which is not the case
in our dataset. The loss gradient is a weighted aver-
age over the batch and that if all of the batches contain
at least one positive sample, the gradients will bias to
overfit to the positive class due to the large weight. This
drawback might be minimized by increasing batch size.

We have solved this by applying real-time geometric
transformation during training from a continuous range
of values as described in section 3.5 and by feeding aug-
mented version of positive samples twice per epoch. Ta-
ble 6 shows convergence epoch number for a different
number of repetitions (R) on the positive class to reach
AUC value of 0.92 on a validation set.

The larger the number of repetition, the smaller num-
ber of epochs to converge. However, it should be noted
that the training time per epoch will be larger and there
is a high chance of overfitting to positive candidates.
when the number of repetition is 8, the network gave
AUC value of 0.92 after 2 epochs, and when the posi-
tive case is seen only once convergence is reached after
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Table 5: AUC performance of different data sampling strategies using one view model. Normal exams refer to
mammography exams without lesion and distance specified are Euclidean distance.

Sampling strategy AUC Number of negative candidates
Only from normal exams 0.917 322062
Distance threshold, 50 0.922 264211
Distance threshold, 70 0.926 253476

26 epochs. So, to minimize the chance of overfitting
and reach convergence at a reasonable time, for the rest
of our experiments, R=2 was chosen.

Table 6: Number of epochs needed to reach AUC value
of 0.92 for different number of repetition. Number of
repetition is the number of times that a positive candi-
date is presented in a given epoch.

Number of repetition (R) Number of epochs
1 26
2 6
4 4
8 2

In this study, we have trained the baseline archi-
tecture from scratch. As the primitive patterns that
are useful for malignancy detection in one view model
will be important even when symmetry image is added,
the weights of the parallel data streams in the symme-
try model were initialized by the weights of pretrained
baseline architecture. This has helped us to train on
large-scale data in a short time and get better perfor-
mance within a small number of epochs. One of the
drawbacks of using multi-stage approach is candidates
missed in the early stages cannot be recovered in the
later stage and the performance of the later stage will
be lower as its inputs are those picked by the previous
stage. In our case, there were positive candidates that
were missed in the first stage and this implies even at
FPR of 1.0, sensitivity will be slightly less than 1,0. For
example, in figure 8, sensitivity of 0.994 was achieved
at FPR value of 1.0 due to missed lesions in the can-
didate selection stage. Therefore, having a candidate
detector with high sensitivity is crucial for the overall
performance of the CAD system.

To investigate what the network is learning and
missing, we have visualized some of the misclassified
patches as shown in figure 11.

Figure 11a shows sample patches with a biopsy-
proven lesion, but the network predicted to have a lesion
with probability less than 0.1. Most of the misclassified
positive candidates include large lesion, a lesion that
looks benign and/or patches with micro-calcification.
Larger lesions were underestimated during training. Be-
nign looking malignant candidates could be better dis-
criminated by including temporal data.

Negative patches that were predicted to be malignant
lesion with a probability of at least 0.9 are displayed

in figure 11b. Most of these patches comprise benign
abnormalities such as cyst and fibroadenoma, normal
structures like fat necrosis, breast nipple, and pectoral
muscle, and patches with artifacts. In some of the ex-
ams large part of the pectoral muscle is visible, but not
in the other breast. Thus, when the main patch is inside
pectoral muscle but not the symmetry, the network is
predicting as a lesion, because of asymmetrical differ-
ence. Moreover, the left and right DM images are not
also aligned and this affects the performance of sym-
metry model. Alignment and pectoral muscle problem
can be solved by proper scanning when the DM are ob-
tained. The benign FP candidates can be filtered by in-
cluding third class, benign in the framework.

In this work, we have extensively employed data aug-
mentation using geometric transformation. We use rota-
tion, translation, flipping, and scaling. These augmenta-
tions are justified as the mass classification is invariant
to these transformations. To avoid artifacts outside the
boundary during rotation and for real-time translation,
350x350 pixels sized patch was extracted and cropped
from the center to 300x300 pixels when it is fed to the
network. One of the drawbacks of restricted augmenta-
tion is that the network might learn augmentation even
if the model selection is based on validation set as the
weight update is based on the loss of training batch.

We have found that perturbation of augmentation
type and parameters through real-time data generation
improves the generalization of the model and thus, the
performance of the classifier. The more flexible is the
augmentation type and the more generalized will be the
model. Symmetry model trained without patch augmen-
tation described in Section 3.5 yielded AUC value of
0.91 on a test set, in comparison to 0.933 when augmen-
tation was applied. Real-time augmentation slows the
training time, and we managed it using multiprocessing
to speed up augmentation time. Moreover, images are
copied from the server to GPU machine multiprocess-
ing.

We have found that incorporating symmetry infor-
mation helps in learning distinctive features when there
is a low-intensity contrast between mass and the back-
ground as shown in figure 12a. Baseline architecture
(without symmetry information) failed to discriminate
these patches 12. the malignancy probability was found
to be below 0.2, however, integrating symmetrical in-
formation increased malignancy prediction to a value
greater than 0.7. Moreover, the images in figure 12b
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a) b)

Figure 11: An illustrative example of top misclassified patches by symmetry model. The top and bottom row im-
ages correspond to primary and contra-lateral patches, respectively a) patches with a mass that were predicted with
malignancy probability of less than 0.1. b) negative patches that were predicted as positive

were predicted as malignant masses by the baseline
model with probability greater than 0.9. In mammo-
gram images, it is less likely to find a lesion at the same
location, and as the primary and symmetry images look
similar, symmetry model has manages to discriminate
them as normal patches.

As shown in Table 2 in the previous work by Kooi
et al. (2017), which was focused on soft tissue lesion
classification, it is reported that AUC value of 0.895 was
obtained by incorporating symmetry and temporal con-
text information. Although a direct comparison might
not be convenient with state of art methods in Table 1 as
a different dataset was used in this study, our approach
has the highest AUC value, which is 0.933 at candidate
level and 0.937 at lesion level.

One of the main limitations of this work is that only
breast mammogram masses are studied and detecting
calcification will be an added value. Secondly, as de-
scribed above some benign abnormalities were difficult
for the network to differentiate from malignant candi-
dates. We suggest that separating the benign candidate
and training with three classes could improve the detec-
tion performance. As studied in Kooi et al. (2017), in-
tegrating the different views and more time points could
also improve the performance of the model.

6. Conclusion

In this work, we proposed a deep learning ap-
proach that integrates symmetrical information to im-
prove breast mass detection from mammogram images.
A previous work by Karssemeijer (1999) was used to
detect suspicious candidates. The FP were reduced by
learning symmetrical differences between primary and
contra-lateral patches. Due to symmetrical nature of
the breast, for every candidate on the primary image,

a)

b)

Figure 12: Sample patches with an improved prediction
using symmetry model: a) positive patches that were
misclassified by baseline architecture and correctly clas-
sified by symmetry model. b) negative patches that were
miss classified by baseline architecture and correctly
classified by symmetry model. The top and bottom row
images are primary and contra-lateral pairs
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a mirror point was considered in the contra-lateral im-
age to train the symmetry model. We have used AUC to
measure the performance at candidate and lesion level,
whilst CPM were computed for image and exam level
evaluation. We have found that our proposed approach
reduces FP predictions compared to baseline architec-
ture. AUC value 0.933 ( p = 0.111) with 95% confi-
dence interval of [0.919,0.947] was obtained at candi-
date level and 0.733 (p = 0.001) CPM with 95% confi-
dence interval of [0.721, 0.823] was achieved with our
symmetry model. Although a private dataset was used,
with our large-scale dataset, we have obtained a bet-
ter performance than the state of art in terms of AUC
and our proposed approach has a potential to be used in
breast screening program.

Although an acceptable performance was achieved,
training with a dataset which includes more time points
could possibly improve reliability and detection accu-
racy.
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Abstract

Magnetization-Prepared 2 Rapid Gradient Echo (MP2Rage) is a new T1 weighted sequence in Magnetic Resonance
Imaging (MRI). MP2Rage can obtain homogeneous intensity throughout the brain structures with a high dynamic in-
tensity range between them. However, due to the sequence novelty, no effective skull stripping methodology has been
proposed for it. In this study we developed a deep learning method, trained on a silver standard dataset, to provide an
accurate skull stripping to MP2Rage images. The silver standard mask was created using a combination of MP2Rage
and Fluid-Attenuated Inversion (FLAIR) images. The qualitative results shows that our deep learning approach is
able to produce an accurate skull stripping on the MP2Rage images. Quantitative comparison of segmentation results
of the brain structures with FreeSurfer software shows that it reduces gray matter over segmentation by 2.19% in
terms of tissue volume. The method was also applied to the publicly available dataset of MPRage images (LPBA40)
which comes with manually segmented brain masks. A Dice score of 97.88 was obtained, which is the highest result
compared with state-of-the-art methods for this dataset. The results suggest this method is effective for processing
skull stripping of T1 weighted MR images for both MP2Rage and MPRage.

Keywords: MRI, MP2Rage, skull stripping, deep learning, multi modality, bias field, silver mask

1. Introduction

Magnetic Resonance Imaging (MRI) is a widely used
imaging modality to observe and study brain structures.
Analysis of brain MRI images is commonly used to
diagnose brain diseases such as Alzheimer’s disease,
aneurysms, sclerosis, brain tumour, Huntington’s dis-
ease, brain abscess and many others.

There is a variety of software designed to process
MRI images. The most commonly used automatic tool
in neuroscience for brain segmentation from MR im-
ages is FreeSurfer (Fischl (2012)). It is designed to
work with T1 weighted MR images. Magnetization-
Prepared Rapid Gradient Echo (MPRage) (Mugler and
Brookeman (1990)) which is the most frequently used
T1 weighted sequence for structural brain imaging. De-
spite its wide use, MPRage suffers from inhomogene-
ity due to the heterogeneity of the bias field (B1) (that
causes intensity variations of the same tissue across the
image region), and low contrast between certain brain
structures. Magnetization-Prepares 2 Rapid Gradient
Echo (MP2Rage) (Marques et al. (2010)) is a new se-

quence which was developed to acquire bias-free T1
weighted images with an improved contrast-to-noise ra-
tio between white matter (WM), gray matter (GM) and
cerebrospinal fluid (CSF). MP2Rage is able to enhance
the contrast between them due to the double acquisi-
tion approach. In addition, the combination of both im-
ages results in a bias free image. However, while the
GM to WM contrast is typically improved compared to
MPRage, MP2Rage suffers from a similarity in intensi-
ties between dura matter, medium size vessels, and gray
matter tissues. This makes the process of segmenting
gray matter from skull tissues difficult (Marques et al.
(2010)).

In the majority of methods used for processing MR
images, including FreeSurfer, the initial step is skull
stripping (SS). It includes preliminary processing which
isolate the brain from extra-cranial or non-cerebral tis-
sues (Kalavathi and Prasath (2016)). This differenti-
ates white matter, gray matter and cerebrospinal fluid
from the dura matter, sinuses, and all upper layers of
the skull (Figure 1 from the Lubopitko Encyclopedia
(http://encyclopedia.lubopitko-bg.com)). Most of the
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Figure 1: Brain skull morphology

tools are quite sensitive to the quality of the extracted
brain mask. Therefore errors in this step can negatively
affect downstream processing steps.

Considering the limitation of current segmentation al-
gorithms for dealing with MP2Rage sequence, the main
goal of this research was to create an efficient and ro-
bust method to perform skull stripping on MP2Rage
images. Currently, state-of-the-art methods for image
segmentation rely on use of deep learning (DL) (Lit-
jens et al. (2017)). However, despite the good results
achieved with this technique, DL requires a consider-
able amount of annotated data for training. Due to the
novelty of the MP2Rage sequence, no manually anno-
tated data, referred to as gold standard, is available.

Lucena et al. (2018) proposed a way to deal with
the lack of the manual annotated data by creating a
silverstandard segmentation mask. The set of segmen-
tation masks were created using different automatic SS
tools. The silver mask was then created by combin-
ing masks using simultaneous truth and performance
level estimation (STAPLE) algorithm (Warfield et al.
(2004)). While this method was successful in MPRage,
it cannot be transferred to MP2Rage as the existing
SS methods produce inaccurate results. For this rea-
son, a different approach to define the silverstandard
map was developed. Recently Viviani et al. (2017) pre-
sented that the combination of T1 weighted images with
Fluid-Attenuated Inversion (FLAIR) can significantly
aid in separating the dura from the brain tissues. Our
methodology is to use the SPM (Statistical Parametric
Mapping) segmentation toolkit to segment the brain tis-
sues using both FLAIR and MP2Rage images. The fi-
nal silver standard mask was created by combining in-
formation from SPM and a separate Expectation Max-
imization (EM) (Dellaert (2002)) algorithms. Using
these masks, the DL approach was trained so that it can
reliably segment MP2Rage even when no FLAIR data
is available. Additionally, was compared to state of the

art methods on an openly available dataset of MPRage
images. Furthermore, the results was compared with the
widely known FreeSurfer method.

2. State of the art

Existing methods for skull stripping can be divided
into three main groups:

1. Manual segmentation performed by an expert, usu-
ally by a radiologist or other specialists in the field.

2. Segmentation performed by automatic skull strip-
ing methods without any prior training procedure.

3. Segmentation methods based on deep learning, re-
quiring training data.

The first method is extremely time-consuming, re-
quiring more than an hour per volume. This makes this
method expensive and unfeasible for large-scale studies.

Leading methods in the second group are based
on a combination of intensity, edge detection, atlases,
level set/graph cuts and registration tools (Galdamesa
et al. (2011)). Due to the combination of different ap-
proaches, these methods can be time-consuming. Some
of these methods also rely on the registration between
images which imposes strong assumptions about the ge-
ometry, orientation, and features. Typically, most of the
methods require manually tuned parameters which do
not generalise well when using difference acquisitions
parameters or imaging sequence (such as MP2Rage).
The most widely used software for automatic brain seg-
mentation is FreeSurfer by Fischl (2012). It is a pub-
licly available open source software for the segmen-
tation, meshing, cortical thickness estimation and sta-
tistical analysis of brain MR images. For SS it uses
the Hybrid watershed algorithm (HWA) (Ségonne et al.
(2004)), which is based on combining the watershed al-
gorithm (Hahn and Peitgen (2000)) and deformable sur-
face model (Dale et al. (1999)). Although this method
provides accurate segmentation, the pipeline to perform
segmentation is extremely time-consuming (approxi-
mately 17 hours per volume). Even though, it is a refer-
ence for the majority of novel methods in brain segmen-
tation, which are striving to improve in terms of time per
volume while showing similar accuracy.

SPM12 is the second most commonly used software
in MRI brain tissue segmentation and analysis after
FreeSurfer. It is a software package for the MatLAB
environment that was developed by the researchers of
Functional Imaging Laboratory of Welcome Depart-
ment of Imaging Neuroscience at University College
London (Ashburner et al. (2012)). For tissue segmenta-
tion, it uses a unified segmentation scheme (Ashburner
and Friston (2005)), that relies on the spatial correspon-
dence of pixels to the probability atlas and intensity dis-
tributions within 6 classes. As a result, it performs prob-
ability maps of the 6 structural groups of the brain (WM,
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GM, CSF, 2 groups of skull tissues and background).
This tool has been proven to be the epitome in segment-
ing CSF from WM and GM ((Tudorascu et al. (2016)).
Moreover, this software can take information from mul-
tiple image modalities to create the tissue probability
map.

Others automatic methods in skull stripping with-
out any prior training are Brain Extraction Tool (BET)
(Smith (2002)) from FSL toolkit (Jenkinson et al.
(2012)), Advances Normalization Tool (ANTs) (Avants
et al. (2009)), and Robust Learning Extraction(ROBEX)
(Iglesias et al. (2011)). BET relies on the intensity-
based threshold estimation between brain and non-brain
tissues. It uses a deformable model that expands the
sphere the centre of gravity until it reaches the edges of
the brain. ANTs is based on the image registration with
the template, deforming the brain mask to the subject
space, which fuses them together using joint label fu-
sion. ROBEX method also involves the registration of
the subject to the template however the brain mask is
generated using a random forest classifier.

The third group is the newest in the SS field. The
advantage of using DL is that it can self-generate the
features used to segment each of the tissues. However
the disadvantages of this method are lack of generalis-
ability of the approach, the computation requirement for
training the network, and the need for a large training
dataset. For each image from a new sequence or with
different acquisition parameters, the network requires
additional training with appropriate dataset. Within the
DL frameworks for image segmentation there are two
types of networks. One for skull stripping and one for
brain segmentation using provided brain masks. Cur-
rently the leading skull stripping methods are CONSNet
(Lucena et al. (2018)) and Deep 3D CNN (Kleesiek
et al. (2016)). Both networks are using 2D Fully Convo-
lutional Neural Networks (FCNN) U-net (Ronneberger
et al. (2015)) based network architecture. Remarkably,
CONSNet is able to generalise through the use of silver
standard masks during the training. For brain tissues
and structures segmentation outstanding results are ob-
tained by 3D FCNN network (Dolz et al. (2017)), Deep-
Nat - 2D FCNN U-net (Wachinger et al. (2017)), and
patch based 3D FCNN (Bernal et al. (2018)). The V-net
network (Milletari et al. (2016)) is a modified 3D U-net
with added residual connections within each step of the
encoding / decoding branches. The use of residual con-
nections in the architecture provides a significant im-
provement in the performance of deep network, such as
ResNet (He et al. (2016)). Adding residual connections
to the network for brain segmentation could provide sta-
bility of the network and faster convergence. Bernal
et al. (2018) has shown that using 3D patches with 3D
convolutional filters gives the best result for brain seg-
mentation .

3. Materials and methods

3.1. Materials
This investigation was conducted on the dataset of

MP2Rage images. This sequence is a new approach
in T1 weighted MRI data acquisition. One of the is-
sue with MPRage is that it not only measures T1 relax-
ation but also M0 (often referred to as proton density)
and T2, which contribute into the variability in intensity
and contrast. MP2Rage images solve this issue by tak-
ing two images at different inversion times (GRET I1 and
GRET I2), but with identical sequence parameters. This
results in the equal impact of B−1 , M0 and T ∗2 . Combin-
ing the images by means of the ratio (Eq.1) will elim-
inate the impact of these parameters (Van de Moortele
et al. (2009)) and create a bias free image (Figure 2-c)).

MP2Rage =
GRET I1 ∗GRET I2

GRE2
T I1 + GRE2

T I1
(1)

However, dividing the intensities with very small value
in the background results in ”salt and pepper” back-
ground noise. OBrien et al. (2013) proposed a simple
way to denoise MP2Rage images (Eq. 2), by introduc-
ing the variable γ into each ratio.

MP2Rage =
GRET I1 ∗GRET I2 − γ

GRE2
T I1 + GRE2

T I1 + 2γ
(2)

Introducing γ suppresses the noise presented on the
uni MP2Rage image (Figure 2-d). However this is cou-
pled with a small bias field that is slowly varying across
the brain and requires further corrections.

The provided dataset also had FLAIR images, which
is a T2 weighted MR image typically used to image
white matter lesions. FLAIR provides clear contrast
between dura and cortical gray matter. Including this
sequence can assist when creating a robust brain mask
and mitigate the over-segmentation presented in regions
where dura matter and GM have similar pixel intensities
on MP2Rage.

3.1.1. Imaging protocols
The data for the experiments was acquired as part of

the prospective imaging study of aging (PISA). Images
were acquired using a SIEMENS MAGNETOM Prisma
machine. The study included 58 subjects. MP2Rage im-
ages were acquired with isotropic voxel size 1 mm, FOV
256 × 240, 192 sagittal slice, phase encoding anterior-
posterior, phase oversampling = 10 %, TR = 5000 ms,
TE = 2,96 ms, TI1 = 701 ms, TI2 = 2500 ms, non-
selective inversion recovery, flip angle 1 =4◦, flip angle
2 = 5◦. Filters applied: distortion Correction (3D), Pres-
can normalize, acquisition time = 9 min 2s.

FLAIR images were acquired with the same dimen-
sion parameters as MP2Rage and phase encoding, with-
out phase oversampling, TR = 5000 ms, TE = 388 ms,
TI1 = 1800 ms, non-selective T2-IR inversion recovery.
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a) GRETI1 b) GRETI2

c) Uni MP2Rage d) Uni denoised
MP2Rage

Figure 2: MP2Rage sequence to obtain denoised T1 weighted MR
images

Filters applied: Raw filter, Distortion Correction(3D),
Prescan normalize, acquisition time = 7 min 7s.

A second dataset LPBA40 which is a part
of the LONI Probabilistic Brain Atlas project (
http://www.loni.usc.edu/ ) was used to compare the de-
veloped approach with state-of-the-art methods in skull
stripping. It includes 40 T1 weighted MPRage scans of
healthy subjects with provided manual segmentation of
the three tissues types inside the brain.

14 MP2Rages acquired from SIEMENS-MR scan-
ner from a separate study was used as a third dataset.
MP2Rage images are isotropic with voxel size 1 mm,
FOV 240 × 256, TR = 5000 ms, TE = 2,96 ms, TI1 =

0ms, TI2 = 0 ms, acquisition time 8 min 18s. No FLAIR
images or segmentation were provided for this study.

3.2. Methods

The networks applied in this study were imple-
mented using Python 3, using TensorFlow libraries
(https://www.tensorflow.org/). Both networks were
trained using the silver mask to predict segmentation
for MP2Rage image.

Figure 4 shows steps to create the silver standard
segmentation mask. It was implemented using SPM
software package (version 12, Welcome Trust Cen-
tre for Neuroimaging, University College London,
http://www.fil.ion.ucl.ac.uk/spm/) from MatLab (ver-
sion 2016b, The MathWorks, Inc.) and FSL toolbox

(a) MP2Rage

(b) FLAIR

(c) MPRage

Figure 3: The difference in the representing internal structures of the
brain within MP2Rage, FLAIR and MPRage (1 - gray matter, 2 - dura
matter, 3 - superior sagittal sinus)

(FMRIB Software Library, Release 5.0 (c) 2012, The
University of Oxford).

FreeSurfer toolkit (version 5, Laboratory for
Computational Neuroimaging at the Athinoula
A. Martinos Center for Biomedical Imaging,
https://surfer.nmr.mgh.harvard.edu/) was used to
compare quantitative and qualitative differences
between segmentation.

3.3. Creating S ilver standard mask
3.3.1. Register FLAIR images to MP2Rage uni image

SPM requires primary registration of all input modal-
ities. In the PISA study, MP2Rage images were ob-
tained with corresponding FLAIR images for each of
the subject. Despite this, registration of FLAIR to
MP2Rage is still required due to the movement of the
subject between image acquisition. Due to absence of
shape variability for one subject, only linear registration
was applied (translation and rotation). We used ”FLIRT
linear registration” (Jenkinson and Smith (2001), Jenk-
inson et al. (2002)) from the FSL toolbox.

Qualatative inspection of the segmentations was per-
formed using ITK-Snap (version 3.6.0). It is a powerful
tool for 3D image visualisation that allows to overlay
the segmentation on the image.

3.3.2. Tight brain mask using SPM segmentation
The brain mask for each of the volume was cre-

ated using the Unified Segmentation procedure from the
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1
 

Register FLAIR images to
MP2Rage images. 

2
Obtain 6 probability

  maps for brain tissues
 using  

SPM segmentation tool

3 Create a tight brainmask
using SPM segmentation

toolkit 

4
Create second set of

probability maps using 
 EM segmentation

5 Create a silver standard
segmentation mask

Figure 4: Workflow of the presented paper

SPM software package (Ashburner and Friston (2005)).
The MP2Rage was supplied as a first input channel and
the FLAIR image as a second channel for the multi-
spectral classification. The parameters of the program
were also adjusted according to minimum representa-
tion of B1 on MP2rage and FLAIR. The number of
Gaussians used to represent the intensity distribution of
each tissue type was tuned to include different intensity
variations. For white matter and gray matter two Gaus-
sians were used, while only one was used for CSF.

Skull stripping was conducted using the generated
probability maps of WM, GM, and CSF. The probability
maps were then converted to binary masks, with thresh-
olds of 0.1, 0.75 and 0.9 for the WM, GM, and CSF
respectively. The threshold for each of the tissue type
was chosen empirically to ensure that dura matter is not
included in the brain mask. Afterwards, tight skull strip-
ping mask was created using morphological operations
on the merged masks from three tissues segmentations.

3.3.3. Refining SPM segmentation
To perform brain tissue segmentation, a combina-

tion of probability maps was used. The first map was
derived from previous steps and the second map was
generated using the EM algorithm. The EM algorithm
is a well-known statistical tool for creating probabil-
ity maps based on the intensity distribution of pixels
through classes. It takes into account both image modal-
ities (FLAIR and MP2Rage) and their correspondences
between pixels. Unified segmentation combines the EM
algorithm for 6 tissues from the whole scan with the
spacing information of the pixels. Whereas the second
probability map is based only on the intensity distribu-

tion inside the three classes (WM, GM, and CSF) of
the brain. The final segmentation was conducted by fol-
lowing a maximum-a-posteriori approach over the com-
bined probability maps P1(X)∗P2(X), where P1(X) and
P2(X) are the probability maps obtained with the Uni-
fied Segmentation and EM methods respectively. For
pixels inside the brain that have zero value in the SPM
probability maps, the segmentation based only on the
intensity information (EM probability maps) was ap-
plied.

3.4. Segmentation using Deep Learning

To perform the brain segmentation using deep learn-
ing, we used two deep network architectures, both of
them representing 3D modification of the standard U-
net.

Within the DL frameworks for image segmentation,
there are two main approaches: a) voxel wise, which
extracts the patches for each of the pixel and predicts
the label individually b) fully convolutional, which in-
terprets the full image and predicts the label for entire
subject in one feed-forward step. While the second ap-
proach is much faster compared to the first one, it re-
quires a lot more memory to store the features and train-
ing data. Patches can be extracted either in 2D, 2.5D
(when extracting three planar anatomical 2D patches
around one pixel) or 3D. A new tri-planar approach was
introduced by Lucena et al. (2018) for skull stripping.
This approach utilises randomly 2D patches extracted
from each of the anatomical view. The difference be-
tween this method with a traditional 2.5D approach that
2D patches surround not one voxel but lay indepen-
dently in all 3 dimensions. This method aims to imi-
tate the gold standard segmentation. It gives promising
results in skull stripping, however, there is no applica-
tion in tissue segmentation, which is led us to apply 3D
patches and 3D convolutions in our work.

The first architecture represents a 3D - Unet based
network. It contains 4 blocks of encodes levels and 3
corresponding decoding blocks. Each block consists of
3 fully connected convolutional layers. In the encoding
part, the number of convolutional filters (channels) is
increased with each block, from 1 channel in the top
layer to 128 channels in the lowest layer.

The original U-net was designed to work on full size
images where the size of the input image guided the
number of layers. Since our patches are smaller, this
impacts the number of downsampling that can be per-
form. Due to this limitation, the number of layers was
decreased from five to four. The amount of channels is
only increased once within each block, whereas in the
original architecture, the number of channels was in-
creased multiple times per block. The concatenation of
the feature map from the encoding path ensures the in-
formation from high-resolution features has been taken
into account.
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Figure 5: U-net based architecture

The second network represents a V-net architecture,
another 3D modification of the U-net. The main dif-
ference from the 3D U-net is the residual connections
which perform an element-wise summation within a
block of convolution filters of the input feature map with
the output feature map. As for the U-net, the number
of layers is different from the original V-net architec-
ture. Unlike the previous approach, the increasing num-
ber of channels on the compression path occurs in the
downsampling stage, by implementing filters of 2x2x2
and appropriate padding. The batch of 50 3D isotropic
patches was used as an input for the network. Bernal
et al. (2018) shown that overlapping of patches can in-
crease the performance of segmentation. Therefore, an
overlap of 50% in each dimension was used to train the
network with all possible positions of the patch and in-
crease the number of patches to train the network. In the
reconstruction step the mean between all probabilities
between patches was calculated. The patches were first
normalised to zero mean, unit variance coupled with a
selective filter to exclude patches that do not contain any
information from the extracted patches. Intensity and
magnitude gradient thresholds were applied to exclude
patches that belonged to the background and do not con-
tain strong edges.

Both architectures represent FCNN. In comparison
with different traditional networks, such as GoogleNet
or AlexNet, FCNN does not have limitations on the in-
put size of the image because the whole network could
be presented as single non-linear convolution, trained
from end-to-end. FCNN includes spatial information
by obtaining the feature map in one dense inference step
making the computations more efficient. This mitigate
against redundant convolutions and pooling in the net-
work architecture.

For both networks, each convolution layer was fol-

lowed by PreLu activation function. It was shown that
using PreLu as activation function improves the perfor-
mance of the network (Dolz et al. (2017)). Adam op-
timiser (Kingma and Ba (2014)) was used in both net-
works. One of the characteristic of this optimiser is that
it performs better without maxpooling (Kingma and Ba
(2014)). Therefore, maxpooling was omitted in the pre-
sented networks. In both networks batch renormalisa-
tion proposed (Ioffe (2017)) was used. Traditional batch
normalization (Ioffe and Szegedy (2015))increases the
stability of a neural network by normalizing the output
of each previous activation layer. Batch renomlization
is an extension of the traditional batch normalization.
It ensures that batches are normalized on individual ex-
amples rather than the entire batch. The loss function
for both networks was the general Dice coefficient loss.
It was calculated as a mean value of the Dice coeffi-
cient for all classes that we aimed to segment. The goal
of the networks was to maximize this value. For both
networks, a learning rate of 0.01 was used. To reduce
the number of channels at the final layer from 16 to the
number of predicted classes (4 channels in the presented
problem), a convolution filter 1 x 1 x 1 was used. A
softmax function was applied to create four probability
maps corresponding to the 4 classes(Background(BG),
WM, GM, and CSF) for each patch of the network. For
the final reconstruction, the reconstruction was com-
puted for each pixel individually. The mean of all proba-
bility patches that were created for the pixels were com-
pared. The class with the highest probability was pre-
dicted as a final label.

3.5. Validation

Three metrics were used to evaluate the quality of the
segmentation:
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Figure 6: V-net based architecture

Dice =
2T P

2T P + FP + FN
(3)

S ensitivity =
T P

T P + FN
(4)

S peci f icity =
T N

T N + FP
(5)

Where T P, FP,T N and FN are a number of true pos-
itives, false positives, true negatives and false nega-
tives respectively. Sensitivity measures the percentage
of correctly segmented brain tissues inside the brain
while specificity presents the percentage of correctly
segmented non-brain tissues. The Dice coefficient met-
ric is a compromise between sensitivity and specificity,
it evaluates trade-off between the correct and false voxel
predictions. All of the presented metrics are designed to
work with only two classes.

In cases where 4 classes are presented, Dice coeffi-
cients were calculated separately for each of them (ex-
cluding the background) and their mean was calculated.
For tuning the network parameters 3 different Dice co-
efficients were evaluated:

• mean value of the Dice score to the 3 tissues seg-
mentation

• Dice score of the gray matter only

• Dice score of the whole skull segmentation

PISA dataset was divided into three subsets for the
experiments: 60% training, 20% validation, and 20%
testing set. Tuning of the network was performed on the
validation set. The test set was applied in the final step
selecting the best network within U-net and V-net for
skull stripping in the provided dataset.

3.6. Generalisability

The second dataset containing MP2Rage images to
ensure the robustness of the network. The images
were acquired with different scanners and different pa-
rameters compared to the PISA study. To reduce the
bias between the 2 datasets, two pre-processing steps
were evaluated: 1) matching the histograms of the new
dataset to the one that the networks was trained on 2)
normalizing the PISA dataset in the range from 0-255,
training train the network on this data, matching the new
dataset to the training data to obtain the final segmenta-
tion.

3.7. Comparison with State-of-the-art

To evaluate the performance of the network for skull
stripping on MP2Rage, the dataset LPBA40 was used.
It is a common dataset to compare the performance of
skull stripping methods, which contains T1 weighted
MPRage images. Since MPRage is quite different from
MP2Rage in terms of contrast and pixel intensities be-
tween structures, the network was trained from scratch
using LPBA40 data. However no tuning for this dataset
was done. The parameters were taken from the network
for PISA segmentation networks. To have an accurate
result, the validation was performed using a three-fold
cross validations. The network was trained to segment
4 classes in one step (WM, GW, CSF, and BG). In post-
processing, the brain mask was created by merging the 3
classes that belong to the brain and compared with other
methods.

3.8. Segmentation using FreeSurfer

In Freesurfer, the segmentation task is performed
in three stages (Figure 7). At the end of the first
step of FreeSurfer pipeline, 5 volumes are available:
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orig.mgz (motion correction, image normalization be-
tween 0−255 and size correction), nu.mgz (non-uniform
normalization), T1.mgz (intensity normalization with
wm equal to 110), and brainmask.mgz (that represents
extracted brain from the skull).

Brain preprocessing

Motion correction

Intensity normalization

Bias field correction

Skull stripping

Brain segmentation

Segmentation of brain tissues

Labeling anatomical regions

Statistical analysis

Surface brain analysis

Surface reconstruction

Statistical analysis

Mesh group analysis

Figure 7: Workflow of FreeSurfer

At the end of the first stage, the brain mask can be
replaced with the one that we generated using our deep
learning method. The rest of the pipeline of FreeSurfer
can then be run using this brain mask. The whole
pipeline was also run without any modification, to com-
pare the results with and without our automatic SS.

The most commonly obtained error observed on the
FreeSurfer brain masks was the over-segmentation of
the brain in the borders of the dura and gray matter,
due to the similarity of intensities. To quantitatively
measure the improvement with the new mask, we com-
pared the measures of the thickness of the brain matters
and structures inside the brain. If the mask is accurate
and does not contain over segmentation, the thickness
of the gray matter is expected to be smaller using the
new mask.

4. Results

To create the brain mask for the MP2Rage images
were explored 4 automatic skull stripping tools that do
not use any prior training. Figure 8 presented results
of applying 2 methods that are commonly used in the
MPRage sequence for skull stripping.

The masks produced with ROBEX method cuts the
GM and CSF on the borders with the brain resulting in
overall under segmentation. The mask from ANT’s seg-
mentation shows over segmenting in the borders where

a) ROBEX b) ANT’s

Figure 8: Skull stripping on the MP2Rage using automatic brain seg-
mentation tools without training; in red - masks obtained with differ-
ent methods

GM is touching the dura matter. In both cases the CSF
around venous sinus is not segmented correctly.

Aside from the presented method, the results from
BET segmentation tool was tested. The segmentation
produced by BET include the skull bone as a brain tis-
sue. As the goal of this study was not the comparison
of the SS tools on the MP2Rage, the images of this tool
performance is not included.

4.1. Creating silver standard segmentation

Using FLAIR images significantly improved the
qualitative performance of the SPM segmentation.
However after running the data in the toolbox with stan-
dard parameters (two Gaussians for the CSF and one for
WM and GM), an over-segmentation of the gray matter
was observed. The number of Gaussian distributions
impacts on the quality of SPM segmentation for each of
the tissue type. After multiple experiments, it was de-
cided to use one Gaussian distribution for CSF and two
for GM and WM. The differences between the results
of the segmentation with higher number of Gaussians
for WM and GM was not significant, but the time for
processing each volume increased dramatically (twice
per one additional distribution). For this reason, it was
decided not use more than 2 Gaussians.

a) MP2Rage b) MP2Rage + FLAIR

Figure 9: Skull stripping on the MP2Rage using SPM and different
image modalities
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The time per image in SPM toolkit with the param-
eters mentioned above was about 15 min 40s. An ex-
ample brain mask using FLAIR and MP2Rage is pre-
sented in the Figure ??. For creating the WM, GM and
CSF segmentation masks the SPM probability maps in-
side the brain mask were combined with the probability
mask from the EM algorithm. Figure 10 illustrates the
results of combining the two probability maps, creating
an accurate segmentation.

a) Unified segmentation b) Unified + EM
segmentation

Figure 10: Brain tissue segmentation using different probability maps

a) MP2Rage scan b) FLAIR scan

c) Skull stripping mask d) Segmentation of GM,
WM, CSF

Figure 11: Creating the ground truth for tissue segmentation

Figure 11 illustrates how a multi-modal approach can
create an accurate brain mask. The venous sinuses are
correctly segmented from the dura matter. Visual in-
spection did not reveal any significant over-segmenting
of the grey matter in the brain mask. Overall, qualitative

inspection gave satisfying results.

4.2. Segmentation using Deep Learning

The tuning of the network parameters was performed
on the validation set of the PISA MP2Rage dataset. The
parameters that were optimized are the patch size, batch
size, learning rate, batch normalisation, thresholds for
the patch intensity and magnitude of the gradient.

To define the patch size to use for the network, it was
trained using different isotropic patches size. The re-
sults evaluated in terms of Dice score for the three tis-
sues (Table 1), grey matter (Table 2) an the whole brain
segmentation (Table 3) were checked. The tested size
were limited to 12 pixels on the lower end as smaller
size would risk excluding contextual information, and
50 pixels on the higher end because of memory limita-
tions.

Table 1: Mean Dice coefficient through GM, WM and CSF for the
whole scan in the validation dataset PISA study

Patch size 12 32 50
Dice (V-net) 90.95±2.46 92.46 ± 1.47 92.22± 1.33
Dice (U-net) 91.87 ± 1.48 91.89 ± 2.16 91.73 ±1.73

Table 1 shows that the best Dice value was ob-
tained for the patch of 32×32×32 for both networks.
V-net shows better Dice value and standard deviation
for patches of 32×32×32 and 50×50×50, when for the
12×12×12 U-net performs higher.

Table 2: Mean Dice coefficient through GM for the whole scan in the
validation dataset PISA study

Patch size 12 32 50
Dice (V-net) 92.02±2.18 93.53 ± 1.34 93.54± 1.28
Dice (U-net) 93.60 ± 2.01 92.47 ± 3.50 92.96 ±1.41

In terms of the Gray matter segmentation (Table 2),
the network trained with patches of 50×50×50 has 0.01
higher Dice value compare to the of 32×32×32 patch.
Comparing between the networks, the performance of
the V-net is higher for these patches which is similar to
the mean Dice score (Table 1).

Table 3: Mean Dice coefficient through brain segmentation for the
whole scan in the validation dataset PISA study

Patch size 12 32 50
Dice (V-net) 98.32±0.44 98.63 ±0.30 98.63±0.29
Dice (U-net) 98.60 ±0.33 98.23 ±1.57 98.54 ±0.58

Table 3 presented the performance the networks
trained with different patch sizes for the skull stripping.
For both patches of 32×32×32 and 50×50×50 the per-
formance of V-net is equal where as the U-net had better
performance with the patch of 50×50×50.

Qualitative performance of the networks are pre-
sented in the Figure 12.
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a) Patch 12x12x12 b) Patch 32x32x32 c) Patch 50x50x50

Figure 12: Mask generation using different patches

In the Figure 12 it is observed that the reconstruction
with the patch 12 ×12×12 has errors in classifications
between the tissues inside the brain with BG. When on
the reconstruction with big patches the absence of small
details was highlighted.

Tuning of the networks parameters was applied on
patches of size 32 ×32×32 with the V-net network. The
evaluation metric was the mean Dice coefficient com-
puted across all patches of the validation set at the best
epoch out of 40.

The threshold mean was the first parameter that de-
fines cut-off on the mean patch intensity and is used to
exclude background patches. A percentile of the mean
patch intensity is compared to the whole scan intensity
data. If mean value of all patch voxels is less than TM,
then the patch will be excluded. This argument was
implemented to include patches of brain scans that had
weak edges, but moderate intensity (e.g. homogeneous
patch of white and/or grey matter).

Table 4: Dependence of the Dice coefficient from the threshold mean
value

TM, % 30 35 40 45
Dice 92.7 ± 8.55 92.71 ± 8.65 92.37 ± 7.98 92.34 ± 8.34

Table 4 shows that the best Dice index obtained with
the value of TM of 35%. A higher value leads to smaller
Dice, no difference is observed for smaller values.

The threshold gradient-magnitude (TGM) defines the
cut-off on the gradient magnitude image and is used to
exclude patches with weak edges (e.g. homogeneous
tissue outside the brain, blank background). Similarly to
TM, the threshold was defined as the percentage of the
mean intensity within the patch of the gradient image
compared to the mean intensity within the full gradi-
ent image. The patch will be excluded if the gradient is
lower than the value of TGM. This gradient-magnitude
testing was implemented to reject patches with weak

edges (e.g. homogeneous tissue outside the brain, blank
background).

Table 5: Dependence of the Dice coefficient from the threshold gradi-
ent magnitude value

TGM, % 60 70 80 90
Dice 92.75 ± 8.73 92.86 ± 8.63 92.70 ± 8.85 92.67 ± 8.76

Table 5 shows that the best value of Dice achieved
using TGM = 70%.

Figure 13 presented the variation of the Dice coeffi-
cient loss during the training time for segmenting brain
tissues. Both networks were trained in 40 epochs. The
best validation loss for the V-net was archived on the 16
epoch, for the U-net on the 12 epoch.

(a) U-net Dice loss in 40 epochs

(b) V-net Dice loss in 40 epochs

Figure 13: Training and validation loss for the U-net and V-net archi-
tectures, patch 32 × 32 × 32, 40 epochs

Figure 13 shows that for networks with such architec-
tures, the learning process converges conducts after the
first 10-15 epochs.
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The Dice coefficient on the testing set is presented
for both tuned networks in Table 6. The Dice coefficient
was calculated for the whole reconstructed volume. The
test set contains 11 volumes, that were completely new
for the network, as they were not used in any of the pre-
vious tuning. Due to these reasons, no cross fold vali-
dation was performed. This set was used for checking
the difference in FreeSurfer performance.

Table 6: The Dice coefficients for two networks in the reconstructed
test set from the PISA study

Patch size 12 32 50
Dice(V-net) 90.95 ± 2.46 92.46 ± 1.47 92.22 ± 1.33
Dice(U-net) 91.86 ± 1.48 91.89 ± 2.16 91.73 ± 1.73

Table 6 shows that for the testing set, the highest Dice
score was obtained using the V-net architecture. For all
three tissues the performance of the V-net increased the
Dice value by 0.12, whereas for the GM, the value was
increased by 0.08. For the skull stripping V-net had the
highest Dice coefficient, with the smallest standard de-
viation.

The qualitative comparison of the skull stripping us-
ing V-net and its corresponding silver standard is pre-
sented on Figure 14.

a) Deep learning mask b) Silver standard mask

Figure 14: Comparison of the mask obtained with two different meth-
ods

As seen on Figure 14, the mask created with deep
learning approach succeeded to improve the brain mask
in areas where grey matter is in contact with dura mat-
ter. In addition some areas of CSF are segmented more
accurately by the deep learning approach.

4.3. Segmentation using FreeSurfer

Figure 15 presents the overlap of the brainmasks
generated with V-net deep learning method and with
FreeSurfer for two different subjects.

In both subjects, FreeSurfer tends to over-segment the
brain in places where the gray matter is in contact with
dura matter. Using the new mask resolves this problem.
In addition, venous sinuous are omitted from the brain-
mask.

a) b)

Figure 15: Extracted brain using two different masks for two different
cases (in red colour - Deep Learning mask)

Figure 16 shows the cortical GM volume using the
default FreeSurfer pipeline and the one using our DL
brain mask. Using the DL mask resulted in thinner GM,
likely due to the exclusion of the dura from the GM seg-
mentation.

Figure 16: Gray matter thickness

Observed in Figure 16 that the volume of gray mat-
ter decreased from mean value of 529.9 ± 47.68ml to
518.29±47.82ml, which made a difference in 2.19%. In
addition, the difference in the CSF and WM volumetric
thicknesses was measured, the improvement of 0.27%
for CSF and 0.001% for WM using the mask from deep
learning method was detected.

4.4. Generalisability of the network
The dataset of MP2Rage images from a different

study was segmented using the network trained on the
PISA dataset. Application of the network to the raw
image data showed poor results. Pre-processing steps
were carried out for matching the new dataset to the im-
ages, used for training the network. The first proposed
method includes histogram matching of new dataset to
the volume from the training set of PISA dataset. How-
ever, this approach did not show any qualitative im-
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provement. The second experiment includes normalisa-
tion both datasets in the range [0−255]. Afterwards his-
togram matching was applied. Figure 17 illustrates the
best segmentation results obtained after different epochs
during the deep learning training process.

a) MP2Rage b) Network after 2
epochs

c) Fully trained network
(40 epochs)

d) Fully trained network
(40 epochs)

Figure 17: Brain segmentation on the new study using the network
trained on the images from PISA study

Figure 17 shows that using the network trained on the
data from the PISA study poor results were obtained.
Checking the segmentation from the different epochs of
the networks shows that in the second epochs the net-
work is able segment internal tissues, however the seg-
mentation of the brain from the background failed. With
the fully trained network was applied to the images, a
majority of the internal tissues of the brain are classified
as a background.

4.5. Comparison with state-of-the-art
The comparison of the skull stripping done by V-net

with the state-of-the-art methods in the LPBA40 dataset
is presented on the Table 7.

In Table 7, the patch based V-net has achieved the
best performance for skull stripping in terms of Dice
coefficient, improving the previous results from Lucena
et al. (2018) for this dataset by 0.3 Dice. Also the U-
net was tested for this dataset. The mean Dice through
three cross validation was 97.87±0.011 which also out-
performs the previous results. The V-net ranks as the
third in terms of the Sensitivity, that is higher than the
two previously proposed deep learning approaches (3D

Table 7: The performance of the state-of-the-art methods in skull
stripping for the LPBA40 dataset

Method Metrics
Dice (%) Sensitivity (%) Specificity ()%

BET 96.625 ± 0.007 97.236 ± 0.014 99.279 ± 0.002
HWA 92.515 ± 0.012 99.898 ± 0.012 97.092 ± 0.002

Deep 3D CNN 95.696 ± 0.007 92.614 ± 0.015 99.831 ± 0.001
CONSNet 97.353 ± 0.003 97.257 ± 0.007 99.541 ± 0.001
STAPLE 97.585 ± 0.002 98.144 ± 0.006 99.457 ± 0.002
Our V-net 97.88 ± 0.008 97.72 ± 0.008 99.71 ± 0.007

CNN and CONSNet). In the Specificity comparison,
the V-net is on the second rank, with a 0.12 difference
compared to the leading 3D CNN and 0.16 higher that
CONSNet.

5. Discussion

The qualitative inspection of the brain masks pro-
duced by the state-of-the-art automatic tools (Figure 8)
highlighted the errors in the segmentations. It should be
noted that these methods are based on the image regis-
tration to the template (ANTs) or to the Atlas (ROBEX),
which can be biased when the template is using a se-
quence different to that of the image. In both cases there
were no available MP2Rage images.

Adding the FLAIR modality to the SPM segmenta-
tion tool improved the brainmask segmentation signif-
icantly. In those areas where vessels are close to the
brain sinuses, or where gray matter is in contact with
the dura matter, FLAIR modality has a better contrast
in tissue intensities. As a result, the segmentation mask
presented in Figure 11 does not includes any vessels and
achieved to segment dura matter from the gray matter
and CSF with greater clarity. The qualitative compar-
ison of this mask with the outputs of other automatic
methods found this approach to be the most suitable
for performing MP2Rage skull stripping. Our results,
in agreement with the ones obtained by (Viviani et al.
(2017)), confirmed that combining the FLAIR images
with T1 MR images could be used to performed accu-
rate CSF and GM segmentation from dura matter.

Figure (10) presents the improvement in tissue seg-
mentation achieved by adding the probability map cre-
ated by EM to the obtained ones with SPM. The final
achieved segmentations were used as a training silver
mask in two deep learning convolutional networks. By
means of this approach, it was tackled the the limitation
of requiring multiple image modalities for creating the
brain mask.

Three different patch size were evaluated in order to
determine the input patch size that gave the most ac-
curate results in our DL networks. Tables 1-3 presents
the Dice score in the validation set. Table 1 showed that
the best for performing tissue segmentation for both net-
works will be the with the 32x32x32 patch. However
the next experiments shows that the patch of 50x50x50
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performs the same Dice in terms of the gray matter seg-
mentation and skull stripping (Table 2 and Table 3). Due
to the not significant difference in Dice score (0.01 for
GM and absence of it for SS for V-net, 0.5 for GM and
0.3 for SS for the U-net), we also took into account qual-
itative consideration of the reconstructed patches (Fig-
ure 12). The patches of 32x32x32 has a slightly differ-
ence on the segmentation of venous sinus segmentation
from dura matter which is a common error in MP2Rage
segmentation. Consequently, taking into account both
quantitative and qualitative measures, the patches of
32x32x32 was chosen as an input to both networks.

The experiments with tuning the network in terms of
patch selection for the input to the network showed that
changing the parameters for extracting patches could
improve the performance by 1 Dice score (Table 4-5).

We compared the performance of the V-net and U-
net based architectures on the testing set, to evaluate the
effect of the residual connections improve on the perfor-
mance of the network (Table 6). For the patch of chosen
size, the performance of V-net architecture on the test
set improved the Dice value for GM, WM and CSF in
0.12 Dice compare to the U-net. In terms of skull strip-
ping the V-net has also higher performance and better
stability of Dice value. The residual connections are de-
signed to stabilise and improve the convergence time of
the network. However, while the Dice score overall is
improved, the experiments showed it did not translate
in an improved convergence speed, with with the U-net
converging after 11 epochs, while the V-net achieved
it after 14 epochs. Also, as seen in the Figure 13 V-
net had more outliers compared to the U-net. Thus,
wasdoneanassumption, that in the case of brain seg-
mentation, the U-net architecture is quite stable itself
and residual layers can create outliers, and slow down
the rate of convergence. Qualitative inspection of the
obtained segmentations from deep learning compared
to the silver standard segmentation masks, concluded
that the deep learning has improved the segmentation of
the where gray matter is connected to dura mater (Fig-
ure 14). This is a common error conducted by automatic
tools on the MP2Rage images. As a result deep learning
method was implemented into the further experiments
with FreeSurfer.

Comparison of brain mask obtained from FreeSurfer
and using the deep learning method showed that
deep learning method effectively mitigates over-
segmentation of gray matter. (Figure 15). FreeSurfer
statistical analysis was used to quantitatively compare
the impact of the new mask to the GM, WM and CSF
segmentations. Figure 16 shows that the biggest dif-
ference was achieved in the gray matter volume. The
CSF volume also decreased, while the white matter stay
almost unchanged. This confirmed the qualitative ob-
servation that the deep learning mask reduces the gray
matter segmentations on the MP2Rage images.

When testing the network to separate dataset of

MP2Rage images, poor results were obtained, with
large misclassification of brain tissue into background.
Despite pre-processing the images with histogram
matching and scan normalisation, errors were observed
in the areas with low intensity. This results shows
the weak generalisability of the deep learning methods
when difference acquisition parameters or scanners are
used. Future work will focus on testing different pre-
processing steps and on improving the future genereliz-
ability of the network overall.

The deep learning method was applied to the tissue
segmentation of the publicly available dataset LPBA40
(Table 7). The brain mask was obtained by merging
the manual tissue segmentations. The mask was com-
pared with state-art-methods in terms of Dice coeffi-
cient, Specificity and Sensitivity using data publishes
in Lucena et al. (2018). Two deep learning methods
and 3 automatic methods were compared. The V-net ap-
proach showed the highest performance in terms of the
Dice score, that shows the effectiveness of proposed ap-
proach in skull-stripping on MPRage images with avail-
able training data.

6. Conclusions

In this study, we developed an effective deep learning
method to perform skull stripping to T1 weighted MR
images. The network for MP2Rage images was trained
using the silver standard mask generated by SPM uni-
fied segmentation using a combination of FLAIR and
MP2Rage images. The obtained mask was able to suc-
cessfully segment the dura mater from the gray mat-
ter and CSF tissues. The capability of the method for
performing gray matter segmentation was quantitatively
and qualitatively confirmed by comparing the obtained
masks with the FreeSurfer obtained ones. However, the
method did not show robustness for conducting the task
over data with different acquisition parameters. On the
MPRage dataset with available training data, the deep
learning method obtained state-of-the-art results. This
approach showed that DL based strategis can produce
accurate skull-stripping on MPRage and MP2Rage im-
ages with gold or silver standard training data.
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Abstract

As opposed to conventional deep brain stimulation (DBS), directional DBS offers higher spatial resolution and better
possibility of more targeted stimulation and decoding. This, consequently, enables us to get more information content
from subthalamic nucleus (STN) which could be useful in brain computer interface applications (i.e. communication
for those in locked in syndrome) or brain machine interface systems (i.e. neuro-prosthetics for patients with paralysis).
Directional deep brain local field potentials (LFPs), also, would offer a greater ability to resolve different limbs from
decoding STN LFPs. This study presents a machine learning (ML) approach to investigate whether directional LFPs
recorded from STN have sufficient spatial resolution to allow the differentiation of upper and lower limbs which can be
used to control neural prosthesis. The results reported in this work prove the efficiency of applying ML on directional
LFPs to disentangle upper limb from lower limb during movement preparation and execution. This increases the
potential of using LFPs for end-effector selection in neuro-prosthetics.

Keywords: Deep Brain Stimulation, Brain Computer Interface, Neural Decoding, Neuro-Prosthetics, Subthalamus,
Nucleus, Machine Learning

1. Introduction

Majority of Brain machine interface (BMI) and brain
computer interface (BCI) systems extract brain signals,
process, and transform them into commands to control
peripherals responsible of carrying out specific tasks,
or to communicate with computers which can perform
certain processes. One of the major aims of BCI and
BMI systems is to replace or restore helpful functions to
people with disabilities, especially for those with neuro-
muscular disorders such as amyotrophic lateral sclerosis
(ALS), stroke, or spinal cord injury. Starting from basic
demos of Electroencephalography (EEG) based spellers
and single-neuron-based tool control (Birbaumer et al.,
2015; Cecotti, 2010; Hochberg et al., 2006), the usage
of EEG, intracortical, Electrocorticography (ECoG),
and local field potentials (LFPs) started increasing for
more advanced tasks including control of robotic arms,
prostheses, wheelchairs, and other assistive technolo-

gies (Lazarou et al., 2018). BCI and BMI systems can
additionally be used for rehabilitation after various brain
disorders (i.e. stroke) (Cecotti, 2010).
These systems have two main types, one is using inva-
sive methods and the other is using non-invasive ones.
Non-invasive systems primarily take advantage of EEG
to control machines (Hinterberger et al., 2005; Kübler
et al., 2001). For example, a tetraplegic patient used
BCI system which uses beta waves acquired from sen-
sorimotor cortex to grip objects using upper limb robot
prosthetics (Birbaumer, 2006). In another example,
imagery-based system proposed by Pfurtscheller et al.
(2003) was coupled to an implanted neuro-prosthetics
hand designed by Kübler et al. (2005) to partially as-
set patient with paralysis. On the other hand, inva-
sive BCI and BMI techniques are using mainly a group
of single brain cells or the neural activity of multiple
neurons, this is based on the new electrophysiologi-
cal methodologies development in chronic, multi-site,
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multi-electrode recordings (Keith et al., 1989; Kübler
et al., 2005; Nicolelis et al., 1995).
These systems’ applications are rapidly growing, how-
ever, this growth relies crucially on the availability of
convenient, safe, and flexible signal-acquisition hard-
ware. The commonly used noninvasive acquisition
hardware (i.e. EEG), and even invasive ones (i.e.
ECoG) have certain limitations. For example, EEG is
not convenient nor flexible, also it can‘t be used at all
times (i.e. when patient is sleeping or exercising). On
the other hand, ECoG is not relatively safe nor conve-
nient, and using it considered to be risky since a large
skull opening should be performed to enable placing the
grid of electrodes (Shih et al., 2012). Therefore, a better
recording technique which can satisfy the essential re-
quirements and provide easy, flexible, and stable neural
signal-acquisition is needed. Hence, deep brain LFPs
recording using multi-contact electrodes, it can be a ro-
bust signal-acquisition technique which avoids the other
techniques’ limitations and provides potentially a better
spatial resolution.
In this paper, we aim to study whether LFPs recorded
from subthalamic nucleus (STN) can be used to distin-
guish upper limb from lower limb at three different pe-
riods; at resting before the audio cue where patient is
asked to perform a certain limb movement, after the cue
and before the movement onset, and during the limb ac-
tual movement. Furthermore, we investigate whether
the audio cue and the actual movement can modulate
the STN in a way that could be used to tell that an au-
dio cue was given or a movement was occurred. Finally,
we explore how the important features for classification
develops from period to period, for disentangling upper
limb from lower limb, pre-cue from post-cue, and pre-
movement onset from post-movement onset. The ability
to answer these questions contributes toward developing
an efficient neuro-prosthetics for paralyzed people using
directional deep brain LFPs and ML approach. Also, it
discovers what other information, apart from movement
related, is encoded in the human’s STN.

2. State of the art

Significant development and contributions in neuro-
prosthetics has been made by researchers and compa-
nies around the globe due to the high potential for
these technologies in reinstatement of motor functions
in paralyzed patients (Nicolelis et al., 1997; Nicolelis
and Ribeiro, 2002). Directional LFPs recording of-
fers a promising option for neuro-prosthetic applica-
tions where STN neural signals can be utilized for con-
trolling robot limbs for patients with paralysis or limb
loss. Additionally, It is safer and less risky than ECoG
where a limited burr hole is needed to insert the elec-
trode for LFPs recording. Also, as it is implanted, it
is more stable and more robust than EEG (Giannicola
et al., 2012).

STN deep brain recording allows acquiring signals for
various types of movements, as STN has representations
of different types of movements in one small place, un-
like in cortex where movement representations are dis-
tributed at larger area (Nicolelis, 2001). Therefore, di-
rectional LFPs recording offers a promising option for
neuro-prosthetic applications where STN neural signals
can be utilized for controlling robot limbs for patients
with paralysis or limb loss.
Tan et al. (2016) presented a system capable of decoding
gripping force using STN LFPs. Features representing
power in the two frequency bands; 55-90 Hz and 13-
30 Hz, were the most important ones in decoding the
gripping force. These features were fed to first order
dynamic linear model to decode the force. However,
the force prediction did not work in about half of the
study’s patients, due to the limitations related to disease
impairments, post-operative stun effects, and failure to
record LFPs from the ’motor’ STN.
Golshan et al. (2018) presented their work about the
classification of five behavioral tasks; speech, finger
movement, mouth movement, arm movement, and ran-
dom segments, using STN LFPs recorded while subjects
were performing the tasks. The methodology followed
to achieve the goal was using cascaded classifiers in
tree-like structure. The classification accuracy reported
was ranging between 0.607 and 0.706 using support vic-
tor machine (SVM) based classifiers.
Mamun et al. (2015) presented a new approach for
identifying movement from STN LFPs. This pro-
posed approach takes advantage of features based on
causality related to inter-hemispheric connectivity, and
a weighted sequential feature selection methodology,
which is designed for datasets with small amount of
trials and high variability. The results reported illus-
trate the high efficiency (average accuracy of 0.815) that
the method achieves in disentangling left upper limb
from right upper limb. The methodology used in our
project for disentangling upper limb from lower limb is
inspired by the methodology in this work, however, our
approach aims at exploring which other information,
apart of movement one, can be decoded from STN LFPs
to increase the potential of using deep brain recording
for neuro-prosthetics.
The work proposed in this project aims to classify lower
limb from upper limb, not only during the movement
execution, but also during the movement preparation
when there is no muscle activity. This would show
that STN does not encode information only while the
movement is occurring, but also when the subject re-
ceives audio cue or prepares for movement. Thereby,
LFPs recorded during periods other than movement one,
like when person is preparing for movement or intend-
ing to move, could hopefully be used to classify up-
per limb from lower limb, which can be used for end-
effector selection to increase the potential use of deep
brain recording for neuro-prosthetics application. En-
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coding limb from LFPs’ movement preparation period
is not reported in literature since researchers usually fo-
cus on the time around the movement onset.

3. Material and methods

3.1. Experimental paradigm and data recordings

In this study, 5 patients (8 hemispheres) with Parkin-
son’s disease (PD) undergoing STN-DBS surgery
were implanted with Boston-Vercise directional lead
(Boston Scientific, Marlborough, MA). LFPs were
measured intra-operatively after placing the lead in its
final position in the STN. First LFPs were recorded
with the patient at rest for about 120 seconds. Then
the patients have been instructed to perform a block of
upper and lower limb movement, as part the routine
intra-operative assessment. Within each block the
patient performed 15-20 movements of contralateral
upper and lower limb. Electromyography (EMG) and
accelerometer sensors were mounted on the limbs to
record and reliably recognize the single movement
episodes for correct labeling.
Figure 1 shows the LFP, EMGs, and accelerometers
signals which were recorded while performing the
intraoperative tasks of upper and lower limb simple
movement. To the lower right corner of the figure, the
used deep brain multi-contact lead, and to the upper
right corner of the same figure, a simple illustration
on the recording and stimulating setup, and where the
electrodes are inserted for the LFPs measurement.
Spike2 software (CED, Cambridge, UK) was used
to manually label the appearance of the audio cue,
movement onset, and end of movement based on the
EMG and accelerometer signal. MATLAB (2017b,
Mathworks, Natick, MA) was used for segmenting
trials, pre-processing and further analyses. Figure
2 shows how the time windows for the upper/lower
limb classification were extracted. Figure 3 shows
how the time windows for pre-cue/post-cue and pre-
movement/post-movement classification within upper
and lower limb tasks blocks were extracted.

3.2. Pre-processing

After labeling of the data, they were imported into
MATLAB, and detrended by subtracting mean to re-
move any trend of systematic increase or decrease. The
eight LFP channels were subsequently convolved with a
complex Morlet wavelet (Cohen, 2014), which aims at
transforming the time-domain LFP signal into a time-
frequency signal.
This step is needed to calculate the frequency-based fea-
tures which are the power values in various frequency
bands over time. In the wavelet transform, a linear fre-
quency scale of 500 frequency points ranging from 1 Hz
to 500 Hz and a variable number of cycles as a function

of frequency were used. Finally, four seconds length
trials were segmented in time-domain and frequency-
domain for each class.

3.3. Feature extraction

A set of 200 ms long non-overlapping windows were
used to extract frequency-domain and time-domain fea-
tures from the eight LFP channels. The power in thir-
teen different frequency bands ranging from 1 Hz to 500
Hz were identified as potential frequency domain fea-
tures. These distinct frequency bands are: 1-4 Hz, 5-
7 Hz, 8-12 Hz, 13-20 Hz, 21-30 Hz, 31-45 Hz, 46-55
Hz, 56-95 Hz, 96-105 Hz, 106-200 Hz, 201-300 Hz,
301-349 Hz, and 350-500 Hz. Before the extraction of
power in these bands, a baseline normalization was per-
formed on each trial following the approach by Shah
et al. (2016), where each frequency component in each
trial in the time-frequency domain was normalized by
a baseline of 750 ms taken from the beginning of each
trial before the cue or the movement onset. The baseline
allows expressing any STN neural changes presented in
the LFPs as a percentage change with respect to the pre-
cue or the pre-movement onset LFP, It works by can-
celing any effect of background activity and allowing
comparison across various hemispheres and patients.
On the other hand, regarding the time-domain fea-
tures, three of them were selected according to the ap-
proach in (Hjorth, 1970), where few metrics charac-
terizing the amplitude/time pattern of EEG were pre-
sented. These features capture statistical properties of
each time-window LFPs, which are not captured by
the afore-mentioned frequency-domain features. These
metrics were: activity which is a variance measure for
the signal; equivalent to the total power in the frequency
domain, mobility which is a standard deviation measure
for the slope of the original signal relative to the stan-
dard deviation of the signal; equivalent to the standard
deviation of the power spectrum along the frequency
axis, and complexity which is a smoothness measure of
the signal with reference to the ’softest’ signal that can
be computed using the standard deviation of the second
derivative (Hjorth, 1970).
Additional to these three features, other seven statisti-
cal time-domain features were extracted. These features
included mean, standard deviation, skewness, kurtosis,
maximum value, minimum value, and entropy. Simi-
lar to the frequency-based features, time-based features
were calculated for every time window independently.

3.4. Feature selection

After extracting all twenty three features, they were
standardized because they vary highly, and it was nec-
essary to normalize them to ensure good classification
performance. This features’ standardization was ap-
plied through making the values of each feature having
a zero-mean; by subtracting the mean in the numerator,
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and a unit-variance; by dividing by the standard devia-
tion (Grus, 2015).
In other words, the distribution mean (M) and the stan-
dard deviation (SD) for each feature were first calcu-
lated, then each feature (X) was subtracted by M, and
finally the values calculated of each feature was divided
by SD as shown in the equation below:

Xstandardized =
X − M

S D
(1)

k-fold cross validation is a common strategy to make
sure that all trials in the original training dataset are
used for both training and validation; each trial is used
for validation only one time. It is used in our case
to assess the implemented machine learning model in
better way especially because we had limited numbers
of data samples. Where k refers to the number of
groups which the dataset is to be split into. In this work,
we had four folds, where at each rotation, three folds
were used for training, and the remaining one was used
for testing.
A feature selection algorithm was used to determine
the important features and eliminate the non-important
ones. This algorithm is called ReliefF, it was adopted
from (Robnik-Šikonja and Kononenko, 2003), and it
was applied on the training subset which contains three
folds, then the selected features were used for testing
on the fourth fold.

ReliefF algorithm calculates the weights for features
through penalizing the ones that give different values to
neighbors of the same class, and rewards ones that give
different values to neighbors of different classes.
ReliefF sets first all features weights W j to 0. Then, it
iteratively chooses a random trial xr, finds the k-nearest
trials to xr for each of the two classes, and updates
weights, for each nearest neighbor xq, all the weights
for the features F j as follows:
If xr and xq belong to same class,

W i
j = W i−1

j −
∆ j(xr, xq)

m
· drq (2)

If xr and xq belong to different classes,

W i
j = W i−1

j +
Pyq

1 − Pyr

· ∆ j(xr, xq)
m

· drq (3)

Where W i
j is the weight of feature F j at the ith itera-

tion. Pyr is prior probability of the class to which xr be-
longs, and Pyq is prior probability of the class to which
xq belongs. m is the number of iterations. And drq is the
distance function of the form.

3.5. Decoding algorithm

In this work, we used a Naive Bayes classification
to differentiate between two classes in set of classifi-
cation problems including upper/lower limb classifica-
tion, pre-cue/post-cue classification, and pre-onset/post-
onset classification. In typical two class classification
problems, one class is labelled as 0, and the other is
labelled as 1. In this algorithm, each feature or class
combination is a separate and independent multinomial
random variable (Cohen, 2014).
The estimated probability is given by the equation be-
low:

P(C j\F1, F2, F3, ..., Fd) = P(F1, F2, F3, ..., Fd\C j) · P(C j)
(4)

Where the estimated probability, can be called
the posterior probability, which is equal to the prior
probability P(C j) multiplied by the likelihood which
is calculated based on the values of the features
F1, F2, F3, ..., Fd.

This classification method was used because it is
simple, and it converges quicker than discriminative
models such as logistic regression. Also less amount
of training data is required for Naive Bayes, which
matches the properties of our dataset especially re-
grading the low number of trials. The Naive Bayes
classifier relies heavily on the conditional independence
assumption, where if it holds, it performs very well, and
if it does not, it still often does a good job in practice.

3.6. Validation

To be certain about model generalization, 4-fold cross
validation was used as explained earlier. The optimal
model with the optimal set of features was chosen dur-
ing the cross validation while applying the ReliefF al-
gorithm on the three training folds. To be sure that
the model is not over-fitting, three procedures were per-
formed to validate the obtained classification results.
First, for 20 iterations, labels of the actual segmented
trials from the two classes were shuffled, then model
was trained and tested, and average across all iterations
was calculated. Second, random signals with Gaus-
sian noise resembling the LFP channels were generated,
then the whole process of extracting and selecting fea-
tures followed by testing and training for two class prob-
lem, was performed. Finally, random labels of the two
classes were assigned to resembled trials extracted from
the rest period which lies at the beginning of each sub-
ject’s recording before performing any tasks, then the
whole process was applied again.
In all these three steps, the area under the curve (AUC)
values of all the channels were almost equal to the AUC
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Figure 1: (a) The LFP, EMGs, and accelerometers signals recorded while performing intraoperative upper limb contralateral (ULco) and
lower limb contralateral (LLco) movement tasks, and (b) illustration on electrodes inserted in human’s brain to make the recording and

the Boston-Vercise directional LFP lead

value of the random classifier which is 0.5. These val-
idation steps confirmed that the results obtained during
the actual classification of the LFP channels are because
of the recorded neural activity from the STN, and not
because of any sort of noise or over-fitting.

4. Results

4.1. Upper/Lower limb classification

Figure 4 shows the average AUC values across all
hemispheres and all LFP channels for upper/lower limb
classification for four different periods; rest before
the blocks of upper and lower movement tasks, rest
within the blocks of tasks before cue, between cue and
movement onset, and between movement onset and
movement stop. Each point in the figure corresponds
to a time window belongs to one of the four periods
mentioned above.
Figure 5 and Figure 6 show the AUC values of all the
LFP channels, in two hemispheres, for upper/lower
limb classification for the four periods explained above.
Each set of vertical points in these figures correspond
to a time window belongs to one of these four periods.

Figure 7 shows the box plot of the average absolute
values of the EMG amplitude across all the subjects and
all the trials for upper and lower EMG channels for the
three periods; rest before the block of tasks, rest within
the block of tasks before cue, and between movement
onset and movement stop.
Figure 8 and Figure 9 show the box plots of the absolute
values of the EMG amplitude across all the trials, in
two subjects, for upper and lower EMG channels for the

three periods; rest before the block of tasks, rest within
the block of tasks before cue, and between movement
onset and movement stop.

Figure 10 shows the average spectrum across all
the subjects and all the trials for the down-sampled
upper and lower EMG channels for the three periods;
rest before the block of tasks, rest within the block of
tasks before cue, and between movement onset and
movement stop.
Figure 11 and Figure 12 show the spectrum across
all the trials, in two subjects, for the down-sampled
upper and lower EMG channels for the three periods;
rest before the block of tasks, rest within the block of
tasks before cue, and between movement onset and
movement stop.

4.2. Pre-cue/Post-cue classification

Figure 13 show the average AUC values across all
hemispheres and all LFP channels for pre-cue/post-cue
classification within upper and lower limb blocks. The
twenty three bars under each point in the figure corre-
spond to the weights -based on occurrence- for the fea-
tures used during the classification.
Figure 14 and Figure 15 show the AUC values of all
LFP channels for pre-cue/post-cue classification within
upper and lower limb blocks for two different hemi-
spheres. The twenty three bars under each set of vertical
points in the figures correspond to the weights -based on
occurrence- for the features used during the classifica-
tion.
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Figure 2: (a) Segmented and labeled trial sample, and (b) the procedure of extracting time windows from cue aligned and movement-onset
aligned trial to perform upper/lower limb classification

Figure 3: (a) the procedure of extracting time windows from cue aligned trial to perform pre-cue/post-cue classification, and (b) the
procedure of extracting time windows from movement-onset aligned trial to perform pre-onset/post-onset classification
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Figure 4: Average AUC values averaged across all subjects and channels for upper/lower limb classification in four periods; rest, pre-cue,
pre-onset, and post-onset

Figure 5: Average AUC and individual LFP channels AUC values of hemisphere 6 for upper/lower limb classification in four periods; rest,
pre-cue, pre-onset, and post-onset

Figure 6: Average AUC and individual LFP channels AUC values of hemisphere 7 for upper/lower limb classification in four periods; rest,
pre-cue, pre-onset, and post-onset
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Figure 7: Average of absolute amplitude for EMG channels across all subjects and all trials before and during upper and lower limb tasks
in three periods; rest, pre-cue, and post-onset [U: upper limb, and L: lower limb]

Figure 8: Average of absolute amplitude of EMG channels across all trials in case 6 during upper and lower limb tasks in three periods;
rest, pre-cue, and post-onset [U: upper limb, and L: lower limb]

Figure 9: Average of absolute amplitude of EMG channels across all trials in case 7 during upper and lower limb tasks in three periods;
rest, pre-cue, and post-onset [U: upper limb, and L: lower limb]
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Figure 10: Average spectrum of EMG channels across all subjects and all trials before and during upper and lower limb tasks in three
periods; rest, pre-cue, and post-onset [U: upper limb, and L: lower limb]

Figure 11: Spectrum of EMG channels across all trials in case 6 before and during upper and lower limb tasks in three periods; rest,
pre-cue, and post-onset [U: upper limb, and L: lower limb]

Figure 12: Spectrum of EMG channels across all trials in case 7 before and during upper and lower limb tasks in three periods; rest,
pre-cue, and post-onset [U: upper limb, and L: lower limb]
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Figure 13: Average AUC values and average features’ weights across all hemispheres and all LFP channels for pre-cue/post-cue
classification within upper and lower limb blocks

Figure 14: AUC values and average features’ weights across all LFP channels in case 6 for pre-cue/post-cue classification within upper
and lower limb blocks

Figure 15: AUC values and average features’ weights across all LFP channels in case 7 for pre-cue/post-cue classification within upper and
lower limb blocks
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Figure 16: Average AUC values and average features’ weights across all hemispheres and all LFP channels for pre-onset/post-onset
classification within upper and lower limb blocks

Figure 17: AUC values and average features’ weights across all LFP channels in case 6 for pre-onset/post-onset classification within upper
and lower limb blocks

Figure 18: AUC values and average features’ weights across all LFP channels in case 7 for pre-onset/post-onset classification within upper
and lower limb blocks
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4.3. Pre-onset/Post-onset classification

Figure 16 show the average AUC values across all
hemispheres and all LFP channels for pre-onset/post-
onset classification within upper and lower limb blocks.
The twenty three bars under each point in the figure cor-
respond to the weights -based on occurrence- for the
features used during the classification.
Figure 17 and Figure 18 show the AUC values of
all LFP channels for pre-onset/post-onset classification
within upper and lower limb blocks for two different
hemispheres. The twenty three bars under each set of
vertical points in the figures correspond to the weights
-based on occurrence- for the features used during the
classification.

4.4. Features development

Figure 19 show the average weights across all hemi-
spheres and all LFP channels -based on occurrence- for
the features used during the upper/lower limb classifica-
tion during the three periods; rest before cue, between
cue and movement onset, and between movement onset
and movement stop.

5. Discussion

In this work, we showed that LFPs recorded from
STN encode information about the moved limb, not
only during the actual movement, but also during the
rest before the audio cue, and also between the cue and
the movement onset. This implies that human’s STN
is neuromodulated differently according to the type of
movement which the person performs, and it shows also
that muscle activity is not the only reason for the neural
information encoded in the STN modulation, to the con-
trary, the subject’s pre-set, preparation for movement,
and maybe intention to move the limb, do encode infor-
mation in the STN.
This change in neural activity in STN allows ML
methodologies (i.e. Naive Bayes) to differentiate ef-
ficiently between upper and lower limb movements.
These different types of STN neuromodulation, enabled
us to perform upper/lower limb classification during
three periods; pre-cue, pre-onset, and post-onset which
suggests that limb prediction can be performed whether
there is a movement of not.
As a control, to validate the finding, the upper/lower
limb classification task was performed on eleven time-
windows while the subjects were at resting before per-
forming any tasks. Results showed that the classifi-
cation AUC values for all LFPs contacts were random
(AUC is around 0.5), since subject’s STNs have not en-
coded yet any movement, preparation to move, or in-
tention of movement. This finding proves also that the
algorithm used is not over-fitting.
To quantitatively and qualitatively prove that the ability

to perform upper/lower limb classification in the peri-
ods other than where the actual movement takes place,
was because of STN neuromodulation, not because of
any muscle activity, EMG channels absolute amplitudes
were calculated and plotted for rest period before any
movement, for rest within task blocks before the cue,
and during the actual movement between movement on-
set and movement stop.
Results in Figure 7, Figure 8, and Figure 9 show that
there is no significant difference in muscle activity be-
tween the two resting periods, however, the difference
is significant if the two resting periods are compared
to the period of the movement. This finding supports
our claim which states that the high performance of up-
per/lower limb classification, in pre-cue and pre-onset
periods, is because of neural information stored in STN,
and not because of a muscle activity. As another confir-
mation, the spectrum of the down-sampled EMG chan-
nels during the three periods mentioned earlier were
plotted as it appears in Figure 10, Figure 11, and Fig-
ure 12. Again, the spectrum plots show a significant
difference between the spectrum of the movement pe-
riod and the two resting periods’ ones, which supports
the claim regarding the ability to distinguish upper limb
from lower limb at the three periods.
These results give more aspiration for the usage of LFPs
to control prosthetics for paralyzed patients or people
with limb loss, especially because they show that having
a muscle activity or performing an actual movement are
not the only way to predict upper from lower limb since
patients might not have any muscle activity, thereby sys-
tem needs to rely fully on movement intention or move-
ment preparation to select the end effector for the robot
arm or leg which can highly increase functions that par-
alyzed patients can do.
Another interesting finding appeared in the results of
upper/lower limb classification is the change in the
channels that gives the highest AUC values across the
three different periods; pre-cue, pre-onset, and post-
onset. For example, in Figure 5, channels c2, c4, and
c6, channels c3, c2, and c1, and channels c6, c4, and
c1, provide the highest AUC values in the three periods,
pre-cue, pre-onset, and post-onset, respectively. This
observation shows a change in the LFP channels which
gives the highest AUC values for upper/lower limb clas-
sification task. Most importantly, it illustrates the spatial
distribution of the eight LFP channels in the recording
electrode, and it suggests having more than one neural
circuit in STN involved in encoding upper and lower
limb movement preparation and execution.
Second and third sections in results show whether there
is a discriminating difference in the STN LFPs before
and after the cue, and before and after the movement
onset. Figure 13, Figure 14, and Figure 15 show that
our used machine learning algorithm can efficiently dis-
tinguish when the person has received an audio cue, and
he started preparing to move. Figure 16, Figure 17, and
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Figure 19: Averaged features’ weights across all hemispheres and all LFP channels for upper/lower limb classification in three periods;
pre-cue, pre-onset, and post-onset

Figure 18, present that we can also distinguish when the
person has started moving a limb or not, so it can clas-
sify whether the LFP segment is before the movement
onset or after it.
These can be further enhanced to predict the expected
time of movement before it occurs which can be bene-
ficial for prosthetic application as it would increase the
speed and accuracy of the device activation. This would
bring us closer to the real-time neuro-prosthetics since
predicting the movement before it occurs would con-
tribute in reducing the latency of such systems.
STN neural signals also change when the subject re-
ceives an audio cue, and when he moves a limb. This
change allowed the implemented ML algorithm to pre-
dict cue and movement onset. The prediction works
well because of a set of important features which offers
the maximum differentiation between the two classes.
The most important features are those which offers a
maximum separation between the two classes. In this
work, the most important six features are selected for
testing at each fold, also, they are collected across all
channels and folds, then normalized, and finally plotted
to show their weights -based on occurrence- as shown
in Figure 13 and Figure 16.
Mostly low-frequencies are contributing highly in dis-
tinguishing pre-cue from post-cue and pre-onset from
post-onset. However, in the single hemispheres, in Fig-
ure 14, Figure 15, Figure 17, and Figure 18, features’
weights are more variant. In most hemispheres, few
of the LFP channels have AUC values higher than 0.9,
which suggests that we can rely on one channel for clas-
sification, however, it is critical to come up with mech-
anism to select the best channel. The results show that
more analysis on channel level with the help of the elec-
trode mapping -based on the MR intraoperative scans-

should be performed to study deeper the features devel-
opment and the spatial distribution using the recorded
STN LFPs and ML approach. Depending on the loca-
tion of each channel in STN’s space, different features
might be important for classifying upper/lower limb,
pre-cue/post-cue, and pre-onset/post-onset.
Figure 19 shows the weights of the important features -
based on occurrence- for the time window with the high-
est average AUC from each period of the three ones;
pre-cue, pre-onset, and post-onset. The figure illustrates
that the low frequency features have relatively high im-
portance in upper/lower limb classification. Further-
more, in the post-onset period, the statistical maximum
value of the LFP time-domain signal appears to be im-
portant which suggests that the LFP channels amplitude
varies significantly when performing upper and lower
limb movements, which means that one has higher am-
plitude than the other.
It is worth mentioning, that the results reported in this
paper do not utilize history information nor combine
LFP channels data to improve performance, instead they
are generated from single time window and one LFP
channel at each time. Despite the simple used method-
ology, still it provides relatively high performance for
the tasks discussed earlier. Following more advanced
solution in analyzing the data would definitely increase
the performance further and illustrate the high potential
in this promising technology for BMI and BCI applica-
tion.
Invasive recording in healthy patients for research pur-
pose is not permitted, therefore, LFPs was recorded in
PD patients as they have already an implanted electrode
for stimulation. In this work, we were assuming that
PD and paralyzed patients have similar LFPs, however,
this might not be the case. Still, the concept of neu-
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ral decoding is the same, and if the classification works
for PD patients, it would probably work also for people
with paralysis. One of the other main challenges en-
countered during this study was the limitation of data
trials for every class as the recordings were performed
during clinical routines where only limited trials are per-
formed by the patients, therefore, it was not possible to
use advance machine learning algorithms (i.e. neural
networks) to solve the proposed classification problem.
Another difficulty faced in this work is regarding defin-
ing the features which are to be extracted from the time
windows. The approach followed was typically based
on extracting twenty three time-based and frequency-
based features, but, what if there are few other important
features which has not been extracted, thereby, using
and automated method to extract the features like con-
volutional neural network or autoencoders would pro-
vide a significant help in discovering new important fea-
tures, but the low number of data samples in the dataset
prevents us from pursuing this approach.

6. Conclusions

In conclusion, our study demonstrated the feasibility
of using Naive Bayes ML approach to distinguish up-
per limb from lower limb using STN LFPs recorded by
directional deep brain multi-contacts electrodes. Fur-
thermore, we could predict the audio cue and the move-
ment onset within the one block of certain limb move-
ment tasks. The spatial distribution of channels across
the three periods suggests that there are two or more
neural circuits in the STN involved in the encoding of
movement preparation and execution. The successful
prediction reported in this work shows the high potential
of using the deep brain recording for neuro-prosthetics
which will increase the life standards for patients with
physical disabilities.
In term of future work, performing experiments with
randomized set of upper and lower limb movement tasks
is essential to investigate the prediction of limb move-
ment. Additionally, as the results in this work presents
the ability to predict limb while subject is in resting, it
is important also to perform experiments of imaginary
upper and lower limb movement, and see if we still can
predict limb. Finally, performing feature quantification
in temporal domain to study the most important features
in each channel and how their weights are developing
from period to period would be important extension of
this work.
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Abstract

Convolutional neural networks are the core to obtaining solutions with remarkable results to countless computer vision
tasks. However, there are some limitations introduced by their concept. One of their main disadvantages is the low
preservation of input data in the deeper layers due to simplistic signal routing. Another restraint is their strong tendency
to memorize input data, allowing a generically large neural network to express any labeling of the training data while
easily fitting random labels. They also suffer from poor generalization, huge training data requirements, low stability to
rotational and other geometrical distortions and lack of spatial dependencies and neuron hierarchies. A novel approach
of Sabour et al. (2017) has recently been presented that aims to tackle these limitations by replacing conventional
max-pooling layers with strided convolutional filters and, moreover, an enhanced hierarchical capsule structure with an
advanced dynamic routing algorithm that targets transferring the object perception of the network from global to local
coordinate system specific for each object presented in the input. This approach has shown ground breaking results for
small handwritten digit recognition, while also having significantly higher generalization to affine transformations of
input data than the state-of-the-art CNN.

Our work contributes to the research of this novel concept as well as expands the use of capsule networks to the task
of false positive reduction for pulmonary nodule detection in lung CT scans while achieving improved classification
accuracy compared to a conventional CNN with max-pooling.

It was also shown that the implemented network is more robust to the change of viewpoints for small images of 3D
objects than the baseline CNN. The current architecture of CapsNet has proven not to be easily extendable to data of
bigger size and increased overall complexity, while steeply growing amount of trainable parameters and lack of logical
constrictions for enforcing the ideological functioning of capsules lead to the vanishing of the conceptual advantages.
The comparison of the ability to learn from less training samples was also made for the CapsNet and the baseline
CNN with max-pooling. Different configurations of CapsNet were studied and compared in terms of performance in
this work. Even though the concept is being at its early development stage, it is able to prove its superiorities and,
undoubtedly, further improvements will solve some of the current limitations.

Keywords: MAIA master, Capsule networks, Dynamic routing, Pulmonary nodules, Generalization, Max-pooling,
Local perception, Part-whole orientation encoding, Classification, LUNA16

1. Introduction

Convolutional neural networks are the current state-of-
the-art solution in many computer vision and image anal-
ysis tasks. In medical imaging these methods are now
beginning to challenge human performance for disease
detection and classification. Recent examples include

detection of lung disease in chest X-rays from Rajpurkar
et al. (2017) and detection of melanoma from Esteva
et al. (2017). However, traditional CNN architectures
suffer from a number of drawbacks such as

• Poor generalization

• Huge training data requirements
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• Low stability to rotational and other geometrical
distortions

• Lack of spatial dependencies and neuron hierarchies

We discuss these drawbacks in the next sections.

1.1. Poor generalization

Newer architectures with increased number of parame-
ters are developed relentlessly in order to improve the
accuracy of solving a huge variety of upcoming tasks.
Nevertheless, growing the depth of neural networks leads
to facing the fact that the number of trainable weights be-
comes many times larger than the quantity of samples in
the datasets, by means of which the networks are trained.

Thus, recent studies prove that most recently created
deep neural network architectures such as AlexNet and
Inception have a strong tendency to memorization and,
in fact, do not learn well how one or another object may
be represented. Zhang et al. (2016) showed that for the
classification task generically large neural networks can
express any labeling of the training data while easily
fitting random labels and tending to rather memorize
inputs that were fed during training than learn the phys-
ical function describing valuable features of the input.
This study showed that these large networks have enough
capacity to memorize each desired output for all of the
training images, even if there is absolutely no meaning-
ful correlation between the inputs and their labels in
the dataset. Therefore, the networks in the case of fit-
ting random labels were in fact not able to learn how to
distinguish one object from another, but build a certain
”key-value” relationship database, which allows to route
input images to their ground truth labels. Even though,
perhaps, it wouldn’t be the case for simpler classifiers
with less trainable parameters due to their smaller mem-
ory capacity, larger and larger networks are developed
continuously and the presence of the described problem
will eventually lead to a relentless need for increasingly
bigger datasets.

Currently the most common and straightforward solu-
tion to low generalization is to supply more data for
training, while performing augmentation so that the net-
work would learn from as many samples as possible.
Unequivocally, obtaining a bigger amount of samples
may become a time consuming and quite costly proce-
dure, especially in the regulated areas such as health care,
where despite the existence of nation-wide collections of
various patient examinations, obtaining access to them
is strictly limited by law. Besides, labeling such data
requires work of highly qualified specialists that are well
familiar with certain medical imaging modalities.

The inability to provide sufficient stability and generaliza-
tion of AI solutions for disease detection or classification

is one of the reasons that the state-of-the-art deep learn-
ing approaches are rarely used by clinicians throughout
their medical practice. Due to the huge variety of scan-
ners and equipment in hospitals around the world it is
one of the greatest challenges to create a solution that
would generalize well to this variety of data, while still
having a good performance.

Therefore, it is highly desired to develop a network, that
would be able to achieve better performance while re-
quiring less data for learning, and at the same time to
offer improved stability to input data changes such as
data from a different scanner or another imaging pro-
cedure. One of the ways this goal may be fulfilled is
by introducing a smarter and ideologically more struc-
tured way of learning from data, where each part of the
network would perform an operation corresponding to a
certain meaning in the physical world such as orientation
determination, pose estimation and high level feature
detection.

1.2. Low stability to geometrical distortions

Most modern convolutional neural networks provide a
certain level of translation invariance. However, frankly
speaking, this is achieved by one of their conceptual
flaws: loss of information during routing of the signal to
deeper layers. Herewith, max-pooling routing is invari-
ant to small translations of input features as soon as the
location of the highest signal remains within the same
receptive field region, the size of which is defined by the
pooling kernel. Despite the fact that this allows step-wise
reduction of the feature space dimensionality by remov-
ing minor signals with each max-pooling layer, it also
means performing data filtering instead of compression.
Besides, the translations of the input are not encoded
in the outputs of the network, introducing a very little
ability of the system to consider spatial relationships
between features for making predictions.

If one considers a task of face detection and after train-
ing a network on normal non-distorted data, feeds a
distorted image(Fig[1b]) for prediction, a conventional
CNN due to translation invariance would detect the
very same set of features as it would on a non-distorted
image((Fig[1a]), generating the same prediction for both
images. Because of being invariant but not equivariant
to translations, the network doesn’t take into account
the spatial relationships between features and thus may
produce false output as in the given example.

In the domain of medical imaging, sufficiently big neural
networks are able to memorize all possible pose com-
binations of features, that are required to be present in
order to trigger certain activation functions and further
be used for classification, segmentation or other tasks.
For example, for brain MRI clustering into gray mat-
ter, white matter and CSF, the network would learn all
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(a) Initial non-distorted image of
a face. Classified as a face by a
conventional CNN

(b) Image of a face distorted with
translation of separate parts rela-
tive to each other. Also classified
as a face by a conventional CNN

Figure 1: Illustration of the disadvantage of translational invariance
provided by conventional CNNs with max-pooling: the second image,
even though completely distorted, would produce the same output in
the network as the image (a) for the face detection task. Since the CNN
doesn’t consider spatial relationship between eyes, nose and the mouth,
both images would trigger the same output because all of the features
required for an image to be classified as a face are present.

the possible intensity patterns, that represent edges be-
tween every two of the components under all possible
orientations. Due to being generically large, the network
would be able to perform quite well despite the fact that
it considers each orientation of those intensity patterns
to be a separate phenomenon, while it is only a certain
transformation of a single intensity configuration. Hence,
the system would have to learn much more data in this
configuration compared to a system that would predict
the presence and the pose (transformation, orientation)
separately for each feature(Fig[2]).

Figure 2: Each of these intensity patterns would be considered to be a
separate phenomenon, while it is only a certain set of transformations
of a single intensity configuration. Consequently, a conventional CNN
would have to learn and memorize all of its possible spatial represen-
tations rather that learn it’s distinctive feature in the local coordinate
system and predict its pose for each of it’s representations.

1.3. Huge data requirements and lack of spatial depen-
dencies and hierarchies

It is worth noting that unlike humans, neural networks
require hundreds of thousands of samples(if not more)
in order to properly learn how to distinguish one ob-
ject or structural pattern from another. This is partially
due to the fact that artificial networks consider the pro-
jections of each object on a 2D camera matrix, rather
than the objects’ distinctive details in respect to one an-
other. Networks that require 3D images as input, have
the capability to analyze the entire object, however due
to the absence of invariance or equivariance to various
transformations(rotation, scaling, translation or other de-
formations), are able to learn only a single set of features,
that are visible and represented under the given pose of
that object, but not the general physical properties of
that object. This means that a network has to be fed by
inputs with all those possible transformations in order to
properly learn and afterwards be able to perform well at
its task on novel unseen data samples, that might have
one of the enormous set of transformations included.

Therefore, there is a necessity in a more sophisticated
base for neuron activation mechanisms, that would physi-
cally represent not the simple presence of a certain lower
level feature, but also take into account how these fea-
tures are located in respect with each other, hence learn-
ing the structure of the objects present on the image in
their local coordinate systems.

This thesis investigates a CNN architecture proposed
recently that claims to address these drawbacks. Several
experiments were performed to examine the performance
of such networks.

2. State of the art

For the domain of medical imaging and various disease
detection and classification tasks a network that would be
able to analyze spatial relationships between lower level
features might introduce significant improvements in ac-
curacy, while being able to extract and utilize more com-
plex distribution patterns in order to create and fit higher
precision decision hyperplanes. Moreover, the robust-
ness to a variety of transformations may help reducing
the demand for bigger datasets, due to the network be-
ing able to learn more advanced feature representations
from fewer samples. The described features would be
valuable for every domain since it would solve some of
the greatest problems of the artificial intelligence. These
issues are claimed to be tackled by the novel capsule
architecture.

Despite the idea of capsules themselves is claimed to
have existed for quite a few years in the research group
of Geoffrey Hinton, the architecture as well as the novel

7.3



Lung nodule classification by means of capsule neural networks 4

dynamic routing algorithm, that allowed such a network
to be implemented, have been first presented only a
couple of months ago by Sabour et al. (2017). Their
experiments have shown significant improvement in clas-
sification accuracy and robustness to affine transforma-
tions compared to state-of-the-art approaches. Their
experiments were mainly performed for MNIST hand-
written digit classification task, which is a relatively non-
complex data. A more recent work, of Hinton et al.
(2018) has introduced a different routing algorithm and
another structure of capsules. Even though the presented
classification accuracy on smallNORB dataset in this
paper has increased, the performance on the CIFAR-10
dataset, on the contrary, has become lower. The last
introduces a dramatic decrease of the overall network
trainable parameter set by approximately 6 times, how-
ever to our knowledge this architecture and the claimed
performance have not yet been replicated in any other
published papers or reports.

In this work properties of the novel architecture such as
its robustness to transformations, performance on com-
plex data, features of the training phase, robustness to
data distortions, changes of performance with training
set size, stability to novel viewpoints and other will be
presented. A set of experiments will be performed to
explore the functioning of the architecture on complex
data. Moreover the task of false positive reduction for
lung nodule detection will be targeted by means of this
novel system.

Since this architecture is new, not a lot of valuable re-
search has been conducted by now. Therefore, during
this work, many discoveries as for the advantages and
limitations of this novel network architecture had to be
explored before the actual targeting of the final goal.

The architecture implemented in this paper is based on
the work of Sabour et al. (2017). The input of the net-
work is a single channel image of size I× I. By means of
a 2D convolutional layer low-level features are extracted
via A channels with a kernel of size K1, a stride of K1stride

and ReLU activation function. While being fundamen-
tally different, the following layer(Primary Capsules)
is essentially a convolutional layer with D channels, a
kernel of size K2 and a stride of K2stride. However, the
output is separated into D capsule layers, each contain-
ing C-dimensional blocks, generated by a defined kernel
size K2 and stride K2stride from the output of the first
layer. The size of these blocks corresponds to the output
size a convolution generates for a single channel and is
the number of capsules in a single layer.

The idea behind the structure of capsules is that each of
them encodes the level of certainty that a definite feature
is present in the input as well as the pose of this fea-
ture in an object-specific local coordinate system. While
every capsule in the PrimaryCaps layer is being a C

Figure 3: 3-layer capsule network architecture.
I × I - single channel input image
K1 - kernel size of the Conv2D layer
A - number of channels in the first Conv2D layer
K2 - kernel size of the convolution in the Primary Capsule layer
B × B ×C - size of a single capsule layer
F ×G-dimensional digit capsules

dimensional vector, it is desired to encode the probabil-
ity of feature existence as the length of this vector and
a variety of possible spatial transformations in each of
its C dimensions. For example, if C = 8 a transforma-
tion of up to 8 degrees of freedom could be taken into
account. Therefore, it would be possible to achieve a
certain equivariance to these deformations.

Unlike in a conventional CNN, where the spatial infor-
mation about features is never taken into consideration,
capsules allow to encode and forward this knowledge
to deeper layers of the network. It is worth noting that
this does not introduce invariance to these specific defor-
mations, but rather equivariance to them, allowing the
network to achieve conclusions based not only on pres-
ence of certain features, but also on spatial relationship
between them.

Figure 4: Illustration of capsule spatial feature encoding for the case
of 4 2D capsules. The length of every capsule vector represents the
probability of presence of a certain feature in the input signal, while its
orientation encodes the pose of this feature in an object-specific local
coordinate system.

The goal of every classification network is step-wise di-
mensionality reduction in each of the consecutive layers,
thus it is required to compress the input data size while
reaching deeper layers, where higher-level features are
aimed to be extracted. Typically the max-pooling oper-
ation is performed, that allows filtering the least active
elements while forwarding only the most significant ones.
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As discussed previously, networks, where max-pooling
is chosen for signal downsampling are invariant to gener-
ically small translations, but not to transformations with
more degrees of freedom.

Alternatively, for the case of encoding both presence
and spatial positioning of the features, a novel dynamic
routing between capsules algorithm has been introduced
by Sabour et al. (2017). It allows the network to make
decisions based on agreement between capsules in con-
secutive layers, due to which the relationship between
objects on the input image is dealt with. Every capsule
in the PrimaryCaps layer is routed to one of the capsules
in the ClassificatonCaps layer by means of a routing
weight matrix Wi j = [C ×G]. The weights of this matrix
are determined by an iterative agreement algorithm.

The MNIST model baseline, that was initially used by
the inventors of the architecture was configured as given
in Tab[1].

Configuration Parameter Value

I 28

K1(K1stride) 9(1)

K2(K2stride) 9(2)

A 256

B 6

C 8

D 32

G 16

F 10

Table 1: The original MNIST CapsNet model configuration according
to the Fig[3] as described in the work of Sabour et al. (2017)

.

The decoder enforces the classification network to learn
features in a well structured representation, so that each
value of the capsule vector would likely represent a cer-
tain physical property of the input. The size of the de-
coder has to be deep enough to reconstruct most of the
input details.

3. Material and methods

3.1. Performance for digit classification

In order to evaluate the performance of our implemen-
tation and verify its conceptional correctness, it was
decided to perform a variety of tests on the MNIST digit
dataset. Due to the fact that the mentioned data is defi-
nitely not as complex as, for example, medical data, it
is unequivocally a good idea to first evaluate the perfor-
mance of the network for simpler tasks. Since the studied

Figure 5: Reconstruction is used to enforce the capsule network to act
as an encoder, while learning the most descriptive features of the input.
The similarity between the output of the given decoder network and
the initial input image is maximized. The ClassificationCaps layer is
masked by the ground truth labels(during training) or by choosing the
longest of all N vectors(during testing) so that the mask is as given

M j(i) =


1, if i = j
0, otherwise

where j - target class

The output of the last layer is chosen to be the same as the size of the
initial input image I × I.

concept is completely new, many of its properties remain
unexposed, the following primary experiments also al-
lowed us to better understand the real potential and cur-
rent possible applications, where the system would make
a noticeable difference compared to the state-of-the-art
approaches.

3.1.1. Proof of implementation correctness

It was decided to replicate the results presented in the
original paper and also verify the robustness of the net-
work to affine transformations of the data as Sabour et al.
(2017) claimed to achieve ground breaking results for
this experiment. To explore the robustness of the model
to data transformations the model initially trained on the
MNIST dataset was applied for classification of another
sample set from affNIST, where random affine transfor-
mations were carried out for each original digit. The last
set is previously unseen to the network and thus allows
to measure its invariance and robustness to the given
transformations.

3.1.2. Feature encoding and reconstruction

The decoder network allows to reconstruct images from
the capsule vectors in the ClassificationCaps layer. This
forces the network to learn the most important and de-
scriptive features that are common for all digits and en-
code them in a compressed representation of a G dimen-
sional capsule vector. The more detailed this compressed
information is, the more precisely each input image may
be reconstructed. Once the network converges to a state,
when it can properly reconstruct the inputs from their
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compressed representations, it becomes more probable
that the system would appear more robust to unseen data.

If the data fed to the network was rotated around a cer-
tain axis, it would thus be highly probable that a specific
part of the capsule vector encodes rotation of the ob-
ject around this axis. If one would desire generating a
model that is robust to affine transformations of the input
data, it is likely that this would only be achieved once
feeding the network with enough data subjected to these
transformations.

This finding correlates with the conceptual disadvantage
of modern neural networks, suggesting the remaining
presence of a significant flaw in perception mechanisms
compared to human vision. The core of this issue lays
in the amateur ability of neural networks to extrapolate
their knowledge to new incoming data, while one of their
biggest advantages being the ability to interpolate it. It
is the last one that allows networks to accomplish good
results on modern tasks once being trained on a sufficient
amount of data.

However, even though data augmentation required to
tackle this issue is somewhat computationally demand-
ing, a network that benefits more from it while better
learning the object properties would still be of great in-
terest. The aim to physically structure the network into
groups of neurons, that is targeted in the architecture
of CapsNet, might expand the capacity of networks to
extrapolate, while enforcing them to encode spatial ori-
entation of features in capsule vectors and dynamically
using determined groups of neurons for each specific in-
put(by means of the dynamic routing algorithm). Owing
to the structuring of neurons into groups representing
specific physical operations, such networks could be able
to deal with previously unseen data in a better way. This
would introduce the possible opportunity of training the
networks on less data, while still attaining state-of-the-art
outcomes.

The way that CapsNet encodes handwritten digits into
the capsule vectors of ClassificationCaps layer has been
investigated. In order to detect and verify the fact that
each value in these vectors corresponds to a certain phys-
ical feature of the digit, we have performed a study in
which random noise is added to the remaining masked
vector, therefore simulating a change in the encoded rep-
resentation as if it was performed by the network itself.

We present the illustration of the observed phenomenons
in Sec[4.1.2].

3.1.3. Robustness to affine transformations

The given architecture has also been examined in terms
of robustness to affine transformations of the input data.
In order to conduct this, the network trained on the orig-
inal MNIST dataset was applied on previously unseen

data from the affNIST dataset, that consists of MNIST
images distorted with random affine transformations. In
the case of CapsNet being more reliable for this task
than a conventional CNN with max pooling, one may
conclude that its advanced structure and signal routing
indeed introduce improvements to the way the given data
is learned and analyzed by the network. It is worth men-
tioning that for such simplistic data, where the image
doesn’t contain complex background, object shadows,
or small descriptive object details, each digit may be
considered to be somewhat of an affine transformation
of a single digit of this class. Hence, the network is
able to learn on data already subjected to a certain de-
gree of affine transformations, therefore adapting to such
changes while learning to recognize these distortions.

The results of this experiment are presented in Tab[2].

3.2. Performance for 3D object classification

The performance of the CapsNet on digit classification
datasets establishes evidence that this architecture works
rather well on undemanding data(the MNIST dataset
contains images with no background and the digits them-
selves do not have any complex micro features). Never-
theless, the idea of encoding the objects’ features, their
spatial orientation and deformations in the capsule vec-
tors may become problematic for cases when the object
is not easily distinguishable from the background, drop-
ping shadows, while being subjected to different lighting
configurations. This may lead to the network overfitting
to the training data, while the capsules wouldn’t encode
physical properties of objects’ features on a certain com-
mon scale of all possible inputs but other information
such as simple presence of certain intensity patterns in
pixel intensities specific for each input, acting as a con-
ventional CNN with no benefits of logical neuron groups
structuring.

Therefore, the architecture was tested on a more complex
smallNORB dataset, containing images of 3D objects of
5 different types taken under various lighting config-
uration from a set of defined viewpoints(LeCun et al.
(2004)). Since this dataset contains extensive metadata
that precisely describes under which conditions every
shot was taken, such as azimuth, elevation of the camera
in respect to the object, lighting intensity, class subtype
and others, it allows performing a selective training on
a certain subset of data while measuring the networks’
response to changes of input configuration.

The input data was normalized to a zero intensity mean
and a unit standard deviation.

3.2.1. Reconstruction

To investigate the effect that complex data has on the
quality of reconstruction, and also determine the opti-
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mal network configuration, different configurations of
the network were tested, e.g. changing the number of
channels in the primary convolutional layer in the range
of (32, 64, 128, 256, 512) as well as the dimensionality
(8, 16 values per capsule) and quantity (8, 16, 32, 64)
of Primary Capsule types. The dimensions of capsules
in the ClassificationCaps layer has been set to 16 or 32
according to the dimensions of capsules in the previous
layer. In order to extract deeper features prior to passing
the signals to the capsule layers, the number of convolu-
tional layers before the PrimaryCaps layer has also been
manipulated.

The depth of the decoder network has also been changed
in order to verify that there is sufficient reconstruction
capability for each given configuration of capsules.

The results of the most significant architecture alterations
are presented in Sec[4.2.1].

3.2.2. Robustness to novel viewpoints

In order to test the invariance of the network to changes
in viewpoints, i.e. changes in the position from which
the objects were photographed, it was decided to set up
two networks: (a) a baseline CNN with max-pooling and
(b) the CapsNet. Each architecture was optimized for the
task, the training parameters adjusted to maximize the
invariance of each network.

The CNN baseline network was created to be of similar
size to the CapsNet network in terms of the number
of trainable parameters. It consists of two consecutive
groups of 2D convolutional layers with 64 filters, a single
strided kernel of size 5 × 5, followed by a max-pooling
layer with a pool size of 2 × 2 with valid padding and
ReLU activation functions, two fully connected layers
of 1024 neurons each with ReLU activation functions,
completed by another fully connected layer with size
corresponding to the number of possible classification
predictions with a softmax activation function.

Because the smallNORB dataset is well structured and
contains necessary meta-data for each sample, it is possi-
ble to perform the following experiment. Each network
is trained on a defined set of viewpoints (containing az-
imuths of 300, 320, 340, 0, 20, 40) that is approximately
one third of all training data in size. Afterwards two
tests are taken for each network: one on a set of familiar
viewpoints (containing the same azimuths as for training)
from the test partition of the dataset and another one on a
set of novel viewpoints (containing azimuths from 60 to
280) previously never seen by the networks. This allows
us to determine how the performance of each network
changes once applied on data, where images of objects
were taken from different positions than the ones it was
trained on.

The given split of the training and test data allows to

Figure 6: Sets of azimuths used for training (purple) and testing (gray)
of the network. The samples for training and testing were taken from
two different partitions of the dataset and have no overlap between
them.

test the ability of the network to extrapolate the learned
knowledge to unseen data, where the images of objects
are taken under unseen points of view (Fig[6]).

The results of undertaken experiments for different
model configurations are presented in Tab[4].

3.3. Performance for lung nodule classification

During previous tests it was noticed that the current ar-
chitecture has a significant decrease in object feature
encoding ability with the growth of complexity of the
data. Therefore, it is crucial to perform sufficient prepro-
cessing and structuring of the particulars.

While the size of the network and the number of trainable
parameters grow steeply with the increase of the input
size, it is highly desired to keep the input dimensions
limited. This would allow also limiting the number of
parameters and hence possibly improving generalization,
while also keeping the classification accuracy at its max-
imum value. Thus, it was decided to process 64 × 64
images as it was determined that this is the minimal di-
mensions, for which there is no notable improvement in
the network performance when using inputs of bigger
size.

As determined by Perandini S. (2016) and others there
is a certain distribution of pulmonary nodules inside the
lobes of the lungs. These distributions are different for
each of the nodule categories. For example, in the men-
tioned study it was determined that the prevalence of
adenocarcinomas and other non-carcinoid cancer types
is located in the upper lobe, while the prevalence of carci-
noid tumors is located in the middle and right lower lobe
with a tendency to occur in the central lung parenchyma.

Quinn Colin Meisinger (2011) discovered that 85% of
lesions arise within the central airways as endobronchial
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masses, which are associated with symptoms such as
cough, shortness of breath, wheezing, hemoptysis. Some
other reports found malignancies to favor an upper lobe
location. For that reason, it is logical to conclude, that
the orientation information (the location of the finding)
as well as the spatial relationship between structures
surrounding the candidate (e.g. airways, bronchioles,
proximity of pleura etc.) may be structured into certain
complex statistical patterns, determining which would
most probably enhance the performance of detection and
classification algorithms for this task.

To utilize the presence of such complex patterns at the
highest possible level, the classification algorithm is de-
sired to be able to identify them, taking into account
not only the presence of definite structures on the input
image, but also their spatial relationships relative to the
candidate and to each other.

Speaking of which, capsule networks might break the
performance of the state-of-the-art approaches for tasks
where these relationships between features are of the
utmost importance.

3.3.1. Dataset preprocessing

The LUNA16 dataset was generated from the LIDC-IDRI
database that consists of diagnostic and lung cancer
screening thoracic computed tomography (CT) scans
with marked-up annotated lesions. This screening collec-
tion contains 1018 cases, provided by seven academic
centers and eight medical imaging companies. The
LUNA16 was created as a subset of the LIDC-IDRI by
selection of scans with a slice thickness smaller than
2.5 mm, which resulted in 888 scans being included.

The LUNA16 challenge also provided a list of candi-
date nodule locations in each of the CT scans, which
were generated by a semi-automated detection algorithm.
Ground truth was provided that stated for each candidate
whether it was a true or false nodule detection. Patches
were generated centered on each candidate in all the CT
scans. These patches were afterwards classified by the
means of the chosen neural network.

The CT volumes were rescaled so that the image voxels
were isotropic, i.e. each voxel corresponds to a cube
with sides of 0.5 mm. This procedure was performed
so that the pose and spatial transformation prediction
does not have to take into account the anisotropy of the
space where a feature is located, and therefore allows it
to encode the object related descriptors with less effort
and using a more compact representation. Furthermore,
it allows the network to equally process patches of the
three different views.

In order to extract the maximum fraction of valuable
details that are represented in the 3D space of a CT scan,
three orthogonal patches are extracted for each candidate,

as illustrated in Fig[7]. This allows a deeper and a more
robust analysis of each candidate in comparison with
the case of extracting patches only in one defined view
(i.e. sagittal, axial or coronal planes).

Figure 7: 3 orthogonal slices of size 64 × 64 extracted for each nodule
candidate from CT volumes. The slices are extracted with 5 different
angles per each view of each candidate. This results in 125 patches per
positive candidate.

During the first analysis of the samples, one may easily
notice a major imbalance between the positive and neg-
ative classes since the patient with a pulmonary nodule
is luckily a less frequent case than an unaffected healthy
person. Because the network fits its weights to maximize
a certain performance metric, it is crucial to ensure that
both sample categories are considered to be of equal im-
portance. To achieve this the positive class (containing
pulmonary nodules) is upsampled to have 125 entries
per positive candidate. This is done by applying data
augmentation, by rotating each of the three orthogonal
views by a set of angles ∈ {−20,−10, 0, 10, 20} degrees,
resulting in five images per view per candidate.

Figure 8: Randomly selected patches in orthogonal planes for 5 differ-
ent candidates.

The amount of negative candidates, on the contrary, is
decreased by taking only the first 150 locations for each
volume and once again extracting their sagittal, coronal
and axial views.

This allows to create a balance between the positive and
negative classes distributed closely to 50%:50%, while

7.8



Lung nodule classification by means of capsule neural networks 9

generating approximately 750 000 patches. 10% of the
data has been dedicated for testing purposes.

When selecting the size of the patches it has to be con-
sidered that important information lies not only in the
nodules themselves, but also in their nearest surrounding
neighborhood. Choosing a sufficient neighborhood size
allows the network to base its decisions also on the pres-
ence of certain structures, which may indicate regions
with a high or low probability of a mass finding, while
enhancing the overall accuracy of the predictions.

According to the analysis of the size distribution of pul-
monary nodules on lung computed tomography scans
performed by Li et al. (2017), most of the malignant nod-
ules have a diameter of 3–6 mm; larger sized nodules oc-
cur much less frequently (Fig[9]). Since we have to prop-
erly cover the entire scale of diameters, it was decided to
choose the patch dimensions so that even the largest nod-
ules would be completely contained within a single patch.
Thus according to the classification of lung nodules into
miliary nodules (less than 2 mm), pulmonary micron-
odules (2–7 mm), pulmonary nodules (7–30 mm), pul-
monary masses (more than 30 mm), the biggest nodule
size to be considered is 30 mm. With a chosen isotropic
voxel spacing of 0.5 mm, a 30 mm nodule can be fully
contained in a 60 × 60 patch. While introducing a rela-
tively shallow neighborhood with 64 × 64 pixel patches,
due to the given nodule size distribution, most of them
would include larger surroundings.
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Figure 9: Appearance frequency for different lung nodule diameters in
the positive class as given in the study of Li et al. (2017) .

The current state of the art approach to the false positive
reduction task on the LUNA16 challenge uses multiple
patches extracted in the same view instead. However this
could mean that the network better fits the parameters
to data which is more similar, rather than considers the
physical meaning of every layout on the image.

3.3.2. Performance with training set size

The CapsNet is an approach that introduces an advanced
learning procedure to the conventional neural network.
Since one of the goals of artificial intelligence research
is to allow networks to learn in a manner closer to that

of humans, it is of great interest whether the described
architecture is able to distinguish inputs better while
being fed less data than a typical network (such as the
baseline CNN) requires.

In order to assess this ability to learn from fewer example
datasets, an experiment was performed involving testing
the performance of the models trained on different num-
bers of datasets. Each of the models was trained using a
certain fraction of the entire training dataset (3.2%, 11%,
33%, 100%), and the performance tested on an unseen
set of samples. The experiment was conducted for both
architectures (i.e. the CapsNet and the CNN baseline)
while the performance was measured by means of cal-
culating the area under receiver operating characteristic
curve (AUC).

3.3.3. Training computation time

Due to the CapsNet using a significantly more complex
routing algorithm, which in optimal configuration makes
three iterations per single data pass, the training time
of the CapsNet is significantly higher than for a CNN
using max-pooling. All experiments were performed on
a server with 2 × Intel Xeon E5645 CPUs, 99 GB RAM,
and an NVIDIA Titan V GPU. It was determined that the
CapsNet model requires approximately 8.3 times more
training time per batch than a conventional CNN with an
equivalent number of parameters (Tab[5]).

3.3.4. Robustness to data distortion

Capsule networks have proven to be more robust to ad-
versarial attacks. In a very recent study by Hinton et al.
(2018) it has been shown that the capsule network model
is significantly less vulnerable to both general and tar-
geted FGSM adversarial attacks (Goodfellow I. (2014)).
The model was also tested on the slightly more sophis-
ticated adversarial attack of the Basic Iterative Method
(Kurakin A. (2016)), where it was also found that the
model was much more robust to the attack than the tradi-
tional convolutional model.

Even though in the domain of medical imaging stability
to adversarial attacks is not at the forefront of current
research, these experiments show that the novel archi-
tecture is less sensitive to minor data distortions. This
suggests it may also generalise better and be more robust.
This is of the utmost importance for healthcare. There-
fore, an investigation was made of the robustness of the
networks to a variety of plausible data distortions, that
may occur in real scenarios of medical imaging.

The primary type of distortions exists due to the fact
that the medical imaging data is created by a wide vari-
ety of scanners worldwide. Every scanner has its own
specific features and software with image processing al-
gorithms embedded within it. Behaviour is model and
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manufacturer dependent. This introduces a set of prob-
lems: certain details on the images of one scanner may
be less visible than on the images of others, entire in-
tensity patterns may change due to different calibration,
data compression or contrast enhancement techniques
used in each machine.

Thus, in order to develop a framework that could be
widely used independently of the scanner manufactur-
ers or the institutions where they are located, one has
to either collect enormous sets of training samples in
order to feed the network with all possible variations
of data during training or, preferably, create a system
that is less vulnerable to such changes between hardware
and software imaging technologies. For example, in
CT scanners one of the main differences among existing
manufacturers is the calibration that is used to transform
the relative electron densities or stopping powers of tis-
sues to the scale of Hounsfield units (HU). Even though
the HU scale is always calibrated relative to the relative
stopping power (RSP) of water, which is always set to
correspond to be HU = 0, values for other tissues may
vary significantly between scanners due to differences in
X-ray beam filtration, reconstruction method and post-
processing. Cheng et al. (2013) have investigated and
compared the HU-RSP calibration curves for 18 CT scan-
ners from Philips, General Electric, Siemens, Toshiba
Medical, Picker and Accuray (Fig[10]).
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Figure 10: HU-RSP curves for 18 CT scanners: HUmin-RSP, HUmax-
RSP and HUmean-RSP, labeled as Min, Max and Mean in the graph. It
represents the difference in calibration curves for the tested machines
and allows to mimic certain distortions of data in order to test the
robustness of the CapsNet to such changes.

According to the mentioned study an intensity mapping
function has been created, that introduced the ability to
mimic data from different scanners and test the networks’
response to such data modification as if images from a
new scanner were fed to it during testing. The mapping
function used represented a case where calibration curves
were distorted to the maximum possible degree accord-
ing to the difference study. Thus, HU intensities above
0 HU were increased to the maximum possible degree for

their range, while intensities below 0 HU were decreased
by the corresponding maximum change. Other mapping
functions were tested as well, however those cases re-
sulted in a lower network response, so the previously
described case may be considered the most extreme pos-
sible change of HU-RSP calibration curves.

A secondary type of distortions that causes distinctness
between CT samples exists due to the specific CT re-
construction kernels used by each scanner manufacturer.
The variance of these reconstruction kernels results in
a change in sharpness and noise levels in the volumes
following tomographic reconstruction from the raw sino-
grams. Sharper kernels result in a more significant noise
in the target volumes. However this is favoured by some
radiologists, as they believe it enhances fine details. Note
that each CT scanner has many built in kernels that may
be chosen, ranging from sharper to smoother (less noisy)
images.

Previously, Gierada et al. (2010) have shown the effects
of CT slice thickness and reconstruction kernels on a
set of quantitative descriptors of the volumes. Gallardo-
Estrella et al. (2016) introduced a technique for normal-
ization of such data, that was created by means of differ-
ent reconstruction kernels from different scanners. This
technique significantly increased the similarity between
the volumes of the 369 subjects from the COPDGene
study in terms of emphysema Scores. Nonetheless, the
mentioned normalization technique helps to reduce the
variance of a certain quantitative function among the
images in the study, but not equalize them in terms of
all possible features. This might reduce the effect of the
problem, however it does not disappear altogether.

In order to analyze how well the proposed architecture
copes with such issues, it was decided to mimic the
difference between images by performing sharpening
on a subset of the datasets with chosen kernels. After-
wards, both networks that were previously trained on
non-distorted data were tested on this generated subset.
The sharpening kernels were chosen to be of size 3 × 3
voxels, with a range of auxiliary coefficients so that

K = S aux · Ksharp

S aux = 1, 5, · · · , 30,

where Ksharp is the sharpening kernel and S aux is an aux-
iliary coefficient. Even though this doesn’t completely
recreate data from different CT machines, it allows to re-
semble the variance in image sharpness and thus analyze
the stability of the networks to it.

3.3.5. Overall performance

In order to generate the most efficient and accurate model,
various configurations were tested to optimize the param-
eters in Tab[1]. The goal is to determine the configura-
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tion that provides the best performance, i.e. the most ac-
curate classification of nodule patches in terms of AUC,
while minimizing the total number of trainable parame-
ters in the network, to discourage overfitting. Overfitting
also unnecessarily increases training and inference run
times and reduces the generalization of the model.

Different input dimensions of the data were tested. The
initially extracted patches of size 64 × 64 were down-
scaled to sizes of 48×48 and 32×32 by means of bilinear
interpolation. Lower input sizes offer fewer low-level
details than the initial patches. However, the smaller
patches vastly reduce the amount of trainable parame-
ters, which may result in better generalization to novel
data, while preserving a high classification accuracy.

The influence of the primary convolutional channels, A,
that are extracted from the input, has been analyzed. The
reduction in this number eases the further processing
of the signals by deeper capsule layers and, taking into
account the fact that each capsule must represent the
presence and the instantiation parameters of a certain
combination of lower level features at a given location,
increasing the number of these primary channels results
in the need to combine more feature types.

The number of primary capsule types, D, influences the
potential to process and make predictions of more details
and separate groups of features extracted by the first
convolutional layer. Theoretically, the more complex and
diverse the data is, the more primary capsule types should
be used. The real influence of this model parameter on
the overall accuracy of the model was also studied.

The dimensions of capsules in the PrimaryCaps and
ClassificationCaps layers correspond to the allowed de-
grees of transformation freedom, that for each of the
objects they may be sufficiently represented by C and G
values. If it is required to allow more possible ways of
transforming objects of the input, one may consider in-
creasing these dimensionalities. However, the larger they
get, the less probable it is that the network will encode
the predicted pose, and is highly likely to overfit and act
like a conventional convolutional layer. We have studied
the real influence of the dimensionality of capsules for
various datasets.

We have also created a model that averages the vote of the
network for each of the three patches corresponding to
the coronal, sagittal and axial planes, in order to predict
whether the given candidate location contains a nodule
or not. Unlike creating an ensemble of models, one for
each of the views, this approach allows us to train a
single model on the set of all views and further classify
each patch with the same network. The voting procedure
averages the prediction weight for each class vc(i) among
all patches for each candidate i ∈ 1..3 . Afterwards, the
highest averaged prediction weight max(ṽc) indicates the
class to which a candidate is assigned. The prediction

for class c ∈ (pos, neg) is as given:

ṽc =

3∑

i=1

vc(i)

The results of these studies, as well as the comparison of
the best CapsNet models for the given task, are presented
in Sec[4.3.5].

4. Results

The results of the set of performed experiments and stud-
ies are given in this section. Each of the subtopics relates
to the corresponding entry in the ”Materials and meth-
ods” section.

4.1. Performance for digit classification

This following experiment was performed in order to
verify whether our capsule network behaves similarly to
the original network from Sabour et al. (2017).

Applying the network on the MNIST digit classification
task has proven that the implementation used in the fur-
ther work manages to perform comparably to the results
claimed in the study where the architecture was first
described and thus confirms the validity of the further ex-
periments. The test error rates for cases of applying the
network on MNIST and affNIST datasets are presented
in the figure Tab[2].

4.1.1. Proof of implementation correctness

Dataset
Test error rate %

CapsNet
(Sabour et al.)

Baseline
CNN*

CapsNet
(our implementation)

MNIST 0.25 0.39 0.29

affNIST 21 34 25

multiMNIST 5.2(80% overlap) 5.2(4% overlap) —

Table 2: Performance of CapsNet on datasets for digit classification.
The implementation used in this paper has proved to achieve results,
closely comparable to the implementation of Sabour et al. (2017).
*Baseline CNN - previous state-of-the-art neural network of Wan et al.
(2013). It is worth noting that the mentioned architecture achieved
0.21% test error rate while using an ensemble of 5 networks as well as
data augmentation by rotation scaling.

The presented solution was able to achieve very similar
performance metrics for the MNIST and affNIST datasets
when compared to the original implementation of Sabour
et al. (2017) (Tab[2]). The test error rates achieved with
the given implementation were slightly higher that the
ones originally presented by the authors, however are
still significantly better than the baseline CNN approach.
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4.1.2. Feature encoding and reconstruction

Fig[12] shows examples of input reconstructions for
some MNIST images. In the capsule vectors of the Clas-
sificationCaps layer each of the values describes a certain
degree of transformation freedom that the object or digit
can have, such as stroke thickness, rotation, width, height
or stroke type (specific curvatures). Since this last layer
of the network is actually masked, either by the ground
truth labels in case of training or according to the longest
capsule vector of all in case of testing, each of the vectors
does not encode the class of object in its values but only
the variations of this specific object class. The class itself
is described by whichever vector remains non-zero after
the masking operation. This gives an extended capability
to the encoded structure. The results of randomly chang-
ing each of the 16 values of the remaining unmasked
vector may be observed in Fig[11].

Figure 11: Response of the reconstruction network to random noise
introduced to each value of the 16D capsule vector of the Classifica-
tionCaps layer in case of digit ”4”. Even though the mentioned layer
is masked, the reconstruction takes into account all of the capsules it
contains, however the encoding of the physical properties of a certain
digit take place in the single remaining unmasked vector of all. It is
this vector that is manipulated.

One may notice that the reconstructed inputs are in fact
quite detailed representations of the initial images, mean-
ing that for this data the network allows to properly
encode most of the details present on the images in the
classification capsules of the last layer. Despite the fact
that every value of the capsule vector indeed encodes
a certain variation of the specific digit, such as stroke
thickness, width, translation and rotation, it is essential
to understand that there is still no control over which

physical meaning would be encoded in these vectors dur-
ing training — this relies solely on the distribution of
data in the training dataset.

Figure 12: Initial inputs with reconstructions obtained as output of
the decoder network, that recreates the image from the information
encoded in the capsules of ClassificationCaps layer.

4.1.3. Robustness to affine transformations

Once subjected to testing on the affNIST dataset with
random affine transformations of the data, the accuracy
measures obtained showed that the CapsNet has a smaller
drop in performance than the baseline CNN model com-
pared to the one on the original MNIST set as mentioned
in Tab[2].

4.2. Performance for 3D object classification

In this experiment the performance of CapsNet for small
images containing 3D objects is studied. The following
results show how the capsule network is able to cope
with this data of greater complexity compared to the
MNIST.

Despite the fact that the paper of Sabour et al. (2017)
claims that the described architecture achieved 2.7% test
error rate on smallNORB, our best attempt only resulted
in 10.9%. The inability to replicate the results of Sabour
et al. (2017) is also seen in the paper of Xi E. (2017),
where for the CIFAR10 dataset instead of 10.6% claimed
in Sabour et al. (2017), these authors only achieved a test
error rate of 28.5% using an ensemble of four networks
and an additional convolutional layer prior to the Pri-
maryCaps (31.07% with the mentioned MNIST model
baseline). This leads to a conclusion that at this mo-
ment of time, there is a gap in performance between the
original implementation and others, that might have its
cause in advanced data preprocessing techniques or other
crucial network configurations, that remain undisclosed.

4.2.1. Reconstruction

If one considers analyzing the ability of the network to
reconstruct the input image from the capsule vectors in
the last layer of the encoder part, it is clearly visible that
for this dataset, the network encodes projection shapes
of the objects present on the image, however not much
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Dataset Test error rate %

CapsNet CNN

smallNORB 2.7 (EM Caps - 1.8%) 2.0
10.9 (our experiment)

CIFAR-10 (RGB)
10.6 (EM Caps - 11.9%) 4.5

28.5 (experiment of \cite{capsulesOnComplexData})

Table 3: Performance of CapsNet and the corresponding state-of-the-
art CNN with max-pooling on the smallNORB and CIFAR-10 (RGB
images) datasets. Another architecture of Hinton et al. (2018) claims
to achieve better accuracy on smallNORB, however on the CIFAR-10
capsules with dynamic routing performed better according to the data
from the two papers. The performance on smallNORB achieved during
our experiment largely differs from the performance originally claimed
by Sabour et al. (2017). The inability to replicate the original claim on
CIFAR-10 also appeared in the paper of Xi E. (2017).

details (such as shadows, minor edges) are recreated
(Fig[13]).

It may also be seen that the larger model with more
convolutional channels and more primary capsule types
produces better reconstructions (Fig[13b]) than the shal-
lower one (Fig[13a]). However, the decoding did not
seem to improve any further while increasing the dimen-
sions of the capsules in the network (from 8 to 16 in
the PrimaryCaps and from 16 to 32 and more in the
ClassificationCaps layers). In fact, any attempt to force
the network to encode less important features — such
as by stacking more convolutional layers in the early
stages of the network or changing the dimensions of con-
volutional kernels, capsule vectors and etc. in order to
extract deeper features — didn’t improve the encoding
and reconstruction noteworthy.

Changing the type of the loss function, that aims to match
the reconstructed image with the initial input, did not
exhibit any notable changes to the quality of reconstruc-
tion.

After many attempts to enhance the classification and
encoding performance, the model of Fig[13b] has been
chosen for further experiments.

4.2.2. Robustness to novel viewpoints

A robustness coefficient was chosen as the invariance
metric, that is defined as the fraction of test accuracy on
a set of novel and unseen viewpoints compared to the
test accuracy on a set of familiar ones. The higher the
metric, the better the result.

Resulting network performances for both CapsNet and
baseline CNN are presented in Table[4]. One may notice
that despite CapsNet having 256 convolutional filters in
the first layer, and 32 8D Primary Capsule Types, it had
a slightly lower accuracy on familiar viewpoints than
the best baseline CNN model. However, it has proven
to have an impressive performance on novel viewpoints
(0.98 against 0.92 in terms of the robustness coefficient).

(a) 64 convolutional filters, 8 8D capsules in the PrimaryCaps
layer

(b) 256 convolutional filters, 32 8D capsules in the PrimaryCaps
layer

Figure 13: Initial inputs and reconstructed images decoded from the
masked ClassificationCaps layer capsule vectors for the smallNORB
dataset. Since the data is more complex the network is not able to
encode all of the feature details, but rather shapes of the objects on the
inputs.

The architecture of CapsNet provides a classification
solution that is thought to be closer to human percep-
tion. However, during the experiments above it was
noticed data augmentation was crucial in both models,
for performance and robustness improvement. While
for a conventional baseline CNN with max-pooling this
was expected, it was hoped the CapsNet would perform
otherwise.

That the capsule network still requires data augmentation
may be explained by the need of an actual enforcement
for the network to learn in a desired manner. Thus, if a
capsule network is trained on data, where all the features
have a very limited set of possible orientations and de-
formations, there is absolutely no technique that would
encourage proper pose prediction during the training
phase. Therefore, the CapsNet trained in this way is
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Test accuracy
Network
Model Familiar

viewpoints
Novel

viewpoints

Robustness
coefficient

32×32 input 82.19 66.78 0.81

32×32 input
augmented 83.04 77.23 0.93

32×32 input
(random crops
from 48×48)

84.58 68.44 0.81
CapsNet

64 conv. filters,
8×8

Primary
Capsule Types

32×32 input
(random crops
from 48×48)
augmented

83.72 79.91 0.95

CapsNet
256 conv. filters,

32×8
Primary Capsule

Types

32×32 input
(random crops
from 48×48)
augmented

81.73 80.11 0.98

Baseline CNN
32×32 input 80 68.97 0.86

Baseline CNN
32×32 input - augmented 83.96 77.04 0.92

Table 4: Invariance to novel viewpoints for different models of CapsNet
and CNN baseline. The robustness coefficient shows the fracture of
accuracy on novel viewpoints compared to the accuracy on familiar
viewpoints.

never actually learning as it is designed to, while fitting
its weights to the training data and using capsules as
certain micro internal layers, that learn unpredictable
information about the input features, but not their poses.

This discovery brings up an important conceptional limi-
tation of the new architecture, while introducing a need
of a training procedure that would encourage actual pose
and transformation prediction in capsule vectors rather
than abstract information about the features.

Nevertheless, even though data augmentation is still ap-
plied during the learning phase, the trained capsule net-
work has a better ability to extrapolate its knowledge to
new incoming data than the one of the baseline CNN,
resulting in a better robustness to novel viewpoints. Fur-
thermore, data augmentation can always be performed
at a low cost, and it’s need should not be considered a
disadvantage.

4.3. Performance for lung nodule classification

In this section the results of applying the CapsNet for
lung nodule candidate classification are presented. We
investigate and compare the dependence of performance
on training set size for CapsNet and the baseline CNN,
study the encoded representation of features and stability
of the networks to a set of distortions. The comparison
of various configurations of the capsule network is also
given.

4.3.1. Performance with training set size

Figure 14 shows plots of nodule classification accuracy
(measured by the area under the ROC curve) versus the
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Figure 14: Classification accuracy (area under ROC curve) versus the
fraction of the training set used to train the networks. Note that the
CapsNet result is superior at all training set sizes.

number of training datasets, for both the baseline CNN
and the CapsNet implementations. While the perfor-
mance of the CapsNet architecture is slightly better for
all training set sizes, the behaviour of the two networks is
quite similar: a drop in accuracy is almost identical when
using less training data and is represented by a pattern
common for most of the machine learning systems.

4.3.2. Feature encoding and reconstruction

The reconstructions of inputs for the case of LUNA16
lung nodules have proven to contain the most important
descriptions of each patch, such as the estimated shape
of the nodule candidate, as well as some structures that
may surround it (such as the tissue of lung walls, airways,
etc.). Unlike the decoded representations for the small-
NORB dataset, where the level of present details was
not sufficient and the reconstructions were able to repre-
sent only an estimate of the objects’ shape but not their
details, the encoding of lung nodule candidate patches
preserves the most significant structures.

Figure 15 shows some examples of reconstructions from
a CapsNet model with 64 convolutional filters in the
first layer, 32 Primary 8D Capsule Types, and ten 16D
capsules in the ClassificationCaps layer.

4.3.3. Training computation time

While being quite predictable, the finding that the cap-
sule network epoches require more processing time is
explained by the complexity of the dynamic routing
between capsules — involving time consuming opera-
tions with the capsule vectors such as dot product, mean,
squashing, soft max operations. At the same time, in the
baseline CNN this step is using only a rather simple max-
imum value selection among each of the given kernels,
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Figure 15: Initial 32×32 inputs (upper half of figure) with the corre-
sponding reconstructions (lower half of figure) for LUNA16 patches
for the CapsNet model with 64 convolutional filters, 32 Primary 8D
capsule types. The nodule candidate as well as some of its surrounding
structures are visible on the reconstructed images, while smaller details
are left not encoded.

Figure 16: Response of the reconstruction network to random noise
introduced to each value of the 16D capsule vector of the Classification-
Caps. As in the case with the MNIST, quite a few values redundantly
represent the same physical change to the object on the image, e.g., the
size of the nodule itself is encoded in most of the vector values rather
than a single value being assigned to this property. Each vector part
represents a superposition of a set of physical properties of the input.

Computation time per training step

CapsNet CNN

158ms 19ms

Table 5: Computation time of one training step(with 32 samples per
batch) on smallNORB dataset for the CNN baseline and CapsNet
architectures. The networks were configured to have a similar number
of trainable parameters(∼10m). The tests were taken on a machine
with 24 Intel Xeon E5645 CPUs, 99 GB RAM and NVIDIA TitanV
GPU.

that is relatively undemanding in terms of computation
time.

Besides the greater computation time required for each
training iteration, the CapsNet also converges slightly
less rapidly, requiring more epochs to reach a stabilized
classification solution. Therefore, in terms of computa-
tion time, CapsNet has a very strong disadvantage once
compared with a conventional CNN of a similar number
of parameters.

4.3.4. Robustness to data distortion

The response of both CapsNet and the baseline CNN
to such distortion appeared to be equal resulting in the
performance to drop to 99.9% of the initial AUC on non-
distorted data (Tab[6]). Even though the CapsNet did not
appear to be more stable in this case, it is worth noting
that such a small drop in classification accuracy serves
as an indication of the fact that both network types are
quite robust to variations in CT intensity calibration.

Distortion
type

Performance change

(percentage of initial AUC on
non-distorted data)

CapsNet CNN

HU scale
change 99.9% 99.9%

Sharpening
(S aux = 5) 99.88% 99.89%

Sharpening
(S aux = 30) 95.74% 97.33%

Table 6: Response of the CapsNet and the baseline CNN model to
image distortions: HU calibration scale change that mimics data as if it
was from another scanner, sharpening of intensities that is performed
uniquely in the software of each scanner manufacturer.

According to the results of this experiment both networks
have responded to feeding a set of sharpened images
with S aux = 5 in a similar way (the baseline CNN had a
slightly larger AUC decrease compared to the CapsNet).
While for a stronger sharpening of S aux = 30 the baseline
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CNN appeared to be more stable, resulting in a smaller
response (Tab[6]).

4.3.5. Overall performance

In this section the performance of some of the tested
CapsNet models as well as the baseline CNN models are
presented. These models correspond to various configu-
rations of CapsNet with different capsule configurations,
image input dimensions and feature extraction mecha-
nisms described previously in this paper. The influence
of additional data augmentation is also shown.

Model Test
AUC

Trainable
parameters G

ra
de

CNN-32×32 (aug) 92.5 2.8 M 6

Caps-32×32-64f-8c.t. (aug) 91.2 1.9 M 8

CNN-32×32 91.7 2.8 M 7

Caps-32×32-64f-8c.t. 90.7 1.9 M 9

Caps-32×32-64f-32c.t. 93.0 3.2 M 2

Caps-32×32-64f-64c.t. 92.6 4.8 M 5

Caps-32×32-512f-64c.t. 53.0 10.5 M 10

Caps-32×32-256f-64c.t. 92.6 7.2 M 4

Caps-64×64-256f-32c.t. 93.2 12.0 M 1

Caps-32×32-64f-32c.t.-16d-
32d 92.6 7.1 M 3

Table 7: Performance of different CapsNet and baseline CNN models
for the lung nodule candidate patch classification task. The correspond-
ing number of trainable parameters of each network is given in order
to show the size of the network, which usually strongly correlates with
the computation time required, and may also influence the generaliza-
tion ability. The grade scale in terms of performance is also presented
(lower is better).

Some of the best performing CapsNet models are also
presented in the graph of Fig [17], where the correspond-
ing number of filters, A, used in the convolutional layer
prior to the capsule layers, the dimensionality of the cap-
sules in PrimaryCaps and ClassificationCaps layers, C
and G, the number of primary capsule types, D, as well
as the number of trainable parameters and the test AUC
measure on for lung nodule candidate patch classification
task are presented.

Once three orthogonal patches are fed to the network
for each nodule candidate, and further the prediction
for each of these patches is considered as a vote for
predicting whether this location is of positive or negative

2 4 6 8 10 12
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90

93.19
95

100

64f

64f 64f

64f
256f

256f
(64 × 64)

Trainable parameters, 106

Te
st

A
U

C

8 Primary 8D Capsule Types
32 Primary 8D Capsule Types
64 Primary 8D Capsule Types
32 Primary 16D Capsule Types

Figure 17: AUC (area under ROC curve) for different configurations of
CapsNet models. One may notice that a relatively shallow model with
only about 3.2 trainable parameters performs better than the extended
configurations with enlarged capsule dimensions of increased capsule
types number. The compressed patch size (from the initial 64×64 to
32×32 also does not introduce significant drops in performance. While
there is no noticeable improvement in terms of classification AUC
when growing different model components, it is sufficient to use a
shallow model in that case. The input size I is 32×32 for all models
unless otherwise stated.

Test AUC

CNN
baseline CapsNet

Separate patches 91.4 93.2

Candidate
(patch voting) 93.8 96.0

Table 8: Test AUC of the CapsNet and CNN baseline networks for
lung nodule classification. The results are presented for classifying
separate patches (one of three orthogonal views for each candidate), as
well as the result of voting of these three patches orthogonal patches
per candidate. The voting among orthogonal views improves the
overall accuracy of classification without actually using an ensemble
of models.

class, the overall candidate classification accuracy of the
networks increases. The result of this voting approach is
presented in Tab [8].

5. Discussion

We have confirmed findings in the literature that a cap-
sule network with dynamic routing architecture achieves
the state-of-the-art results for a simplistic task like
MNIST handwritten digit classification. In addition, the
capsule network shows much better robustness to affine
transformations of data than the best performing tradi-
tional convolutional networks. One of the reasons the
capsule network works so well with the MNIST data is
that it consists of a simple two-dimensional object on
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a plain background. This makes it simple for the archi-
tecture to learn and route the signals to deeper levels;
the network can properly detect, extract and encode the
objects present in the image and their instantiation pa-
rameters in order to further classify the inputs. This is
proved by the quality of the reconstructions obtained
from the decoder network.

However, the results are less impressive for more com-
plex data, such as the smallNORB dataset. The quality
of the encoding and reconstruction was seen to decrease
notably. The network is able to extract only the esti-
mated shape of the object for its current appearance to
the camera, but no details are preserved. This is due
to the increased difficulty of distinguishing the object
from the background in this data, where the images are
projections of three-dimensional objects; it is much more
challenging to estimate their pose and deformations from
only the given two-dimensional projections. In order to
achieve better estimation of the objects’ instantiation
parameters, 3D data should alternatively be used.

Despite the above mentioned limitation, our experiments
showed that the CapsNet was more stable to the change
of viewpoints under which the photos of objects were
taken, as shown for the smallNORB dataset. However,
since this robustness is achieved in a configuration with
a rather limited overall classification accuracy, it may
be because the network is able to encode only the shape
of the object but not its details, it has higher chance of
correctly classifying a previously unseen sample than a
network which takes into account more minor details.

For the task of lung nodule candidate classification from
the false positive reduction task of the LUNA16 chal-
lenge, the CapsNet achieved a 96.0% AUC, compared
with the 93.8% of the presented baseline CNN with max-
pooling. The mentioned data seems to fit well the ar-
chitecture of CapsNet while resulting in a sufficiently
detailed encoding of the patch features due to being
less complex than the samples of smallNORB in terms
of lighting conditions, reduced background complex-
ity, absence of shadows and greater general consistency.
Nevertheless, initially a higher increase in terms of clas-
sification accuracy has been expected since unlike for
distinguishing simple objects, the presence of certain
structures and their orientation relative to the nodule
blob was expected to influence the ability to distinguish
between the two classes more precisely. More complex
statistical patterns were expected to be learned by the
CapsNet due to its enhanced preservation of information
about the features of the input in deeper layers compared
to a CNN with a primitive routing algorithm. However,
due to the dominant sphericity of the nodule blobs, the ro-
bustness to different variations of its shape appears to be
only a minor advantage. Besides, the nodule volume and
its size itself remains the most descriptive parameters of
the image and the ability to base the network predictions

also on the spatial relationships between other objects
and the blob introduces only a slightly higher result. Af-
ter all, taking into account that the described capsule
network can be considered as a primary step toward the
development of this concept, the achieved performance
is satisfying.

In terms of learning ability and the amount of training
data required to sufficiently train the network, CapsNet
did not show any improvement compared with a conven-
tional CNN. In the study of the network performance
versus the training set size, both networks showed the
same tendency (i.e. more data resulted in better results).
This suggests that we still require enormous datasets to
properly train deep neural networks, and there remains a
significant difference in the number of training examples
required by human learners and machines.

Due to a significantly more complex data routing algo-
rithm, CapsNet has a strong disadvantage when it comes
to the computation time required for each training step.
Even though both networks require a similar number of
iterations to achieve convergence, the capsule network
requires approximately eight times more computational
power than the baseline CNN network. This is expected,
and due to the use of an advanced routing algorithm that
requires multiple iterations for every single data pass in
order to converge.

The CapsNet and the baseline CNN appeared to have a
near equal stability to both CT scanner calibration vari-
ance and different CT reconstruction kernel sharpening,
while suffering a similar reduction in classification accu-
racy for the realistic changes of the data.

Modifications of the CapsNet that involved enlarging
the networks’ size by stacking more capsule layers, in-
creasing the dimensions of capsules in order to allow
encoding deformations of higher degrees of freedom,
adding convolutional layers for deeper feature extrac-
tion, etc. did not seem to affect notably the performance.
This leads to the conclusion that the the given configura-
tion is optimal, and that further improvement is limited
conceptually rather than computationally. The lack of
enforcement in the system that would ensure that the ad-
vanced structuring of neural groups correlates to certain
physical operations with the features of objects (struc-
tured pose and presence prediction) becomes an issue
upon the increase of the network size. In the last case the
effect from structuring and routing between capsules van-
ishes and leads to the network acting as a conventional
CNN.

One of the largest limitations of the current capsule net-
work architecture is the relatively small input image size
that the network can handle. For images of 64×64 pixels
the number of parameters in a relatively shallow model
could easily reach 15 million, while for bigger and more
complex data, such as chest X-rays of size 512 × 512,
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the number of parameters could exceed 100 million. It is
worth mentioning that for such complex data, as used in
the work of Rajpurkar et al. (2017), where the differences
between classes are very minor, the presented capsule
network failed to achieve convergence. Therefore, for
such tasks as this, where patch based approaches can-
not be used due to the way the data is labeled, CapsNet
cannot be successfully applied at the moment.

Hinton et al. (2018) have managed to decrease the num-
ber of trainable parameters dramatically in the network
by introducing sharing of weights among different po-
sitions of the same capsule type, as well as a technique
referred to as “coordinate addition”. The different struc-
ture of capsule layers, as well as EM routing algorithm,
allowed them to achieve state-of-the-art performances
on smallNORB. This restructuring limits the operations
that a certain region of the network can perform, and
avoids vanishing of the conceptual grouping of neurons
into capsules as in the CapsNet.

A very recent study by LaLonde R. (2018) expanded the
use of capsule networks to the task of object segmen-
tation, where they achieved state-of-the-art results for
segmenting lung cavities of the LUNA16 volumes. They
significantly enhanced the concept by modifying the
original dynamic routing algorithm to act locally when
routing children capsules to parent capsules, and to share
transformation matrices across capsules within the same
capsule type. These changes dramatically reduce the
memory and parameter demand of the original capsule
implementation, and allows for operating on large image
sizes. To compensate for the loss of global information,
they introduce the concept of a “deep convolutional-
deconvolutional capsule architecture”.

6. Conclusions

Conventional CNNs suffer from a number of drawbacks
such as poor generalization, huge training data require-
ments, low stability to rotational and other geometrical
distortions and lack of spatial dependencies and neuron
hierarchies. Some of these issues are tackled by the novel
capsule network architecture and the dynamic routing
algorithm. During this work we have investigated this
innovative approach.

The performance of the implemented network has been
verified on MNIST data, that allowed to prove the imple-
mentation correctness and confirm some of the claimed
advantages of the CapsNet. In order to study the ability
of this architecture to process data of higher complexity,
its performance for classification of small images con-
taining 3D objects has been studied. We have shown
that CapsNet was more robust to the change of camera
viewpoints than a conventional CNN with max-pooling,
however the overall accuracy couldn’t reach the claimed

value.

We proposed a solution for lung nodule candidate classi-
fication based on the novel capsule network architecture
and the dynamic routing algorithm. It has proven to be
more accurate in terms of AUC than the baseline CNN
approach, which may be explained by the enhanced de-
tail preservation in deeper layers of the network. The
LUNA16 candidate patches are well processed by this ar-
chitecture, while the network is able to properly encode
and recreate the most important input details and, there-
fore, produce accurate class predictions. The ability to
utilize the knowledge about spatial relationships between
anatomical structures present on the patches due to the
networks’ design, undoubtedly, enhances the ability to
distinguish the classes. However, knowledge of addi-
tional minor features, that may be further achieved by
improved capsule architectures, would probably allow to
improve the classification results, while creating a more
advanced feature space for which statistical patterns of
greater precision could be learned. The way in which
the capsule vectors encode information regarding the
input features has been illustrated as well as the response
of the decoder network to minor changes of this com-
pressed capsule representation. Due to the lack of logical
learning constraints for capsules, physical properties that
they encode are often redundant. The last should not be
considered as a major issue, however improved structur-
ing and neuron group hierarchies might result in better
ability to adapt to novel data.

We have also conducted various experiments that allow
to better understand the current stage of the concept, its
advantages and possible improvements. A strong limi-
tation has been noticed as for the input size and overall
data complexity, that the network can properly manage.
A data of higher entropy and size introduces a need of
certain logical enforcement that would manage different
groups of neurons to act as units with defined physical
meaning such as feature pose, deformation and presence
estimation. Data of growing size steeply increases the
number of trainable parameters of the network and in
order to be able to train deeper models, has to be reduced.

It was noted that the current capsule network architec-
ture requires significantly bigger computation time for
training. We believe this issue might be solved in the fu-
ture by reduction of trainable parameters in the network,
while enhancing its structure as recently presented in the
work of LaLonde R. (2018).

Since the concept is being under an early stage of devel-
opment, some limitations take place such as low scal-
ability, the inability to process data of bigger size and
increased complexity. However, unequivocally, some of
the current limitations will be solved in the future, creat-
ing a powerful alternative to conventional convolutional
neural networks.
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Abstract

The diagnosis of psychiatric disorders is currently based purely on the apparition of clinical manifestations. Never-
theless, such a diagnosis reaches its limits during early stage of the development of psychiatric disorders conducting
to a follow up of several years to get a first diagnosis in the most extreme cases. The purpose of our study is to
develop an automatic aided diagnosis tool to help to classify patients with schizophrenia or bipolar disorders from
healthy subjects based on the brain morphology. An analysis of the impact of the development of psychiatric on
subcortical structures is conducted. In addition, 5 models are trained both in local classification using support vector
machines and global classification using convolutional neural network on a dataset consisting of 125 healthy control
subjects, 50 patients with schizophrenia and 49 patients with bipolar disorders. Using convolutional neural network,
we achieve an accuracy of 0.89 for the classification of healthy controls and non healthy patients (including both
schizophrenia and bipolar disorders) and 0.86 in the subsequent classification of schizophrenia and bipolar disorders
patients. In summary, this work demonstrates that analyzing brain morphology we are able to discriminate between
normal subjects and schizophrenia and bipolar disorders patients.

Keywords: MAIA Master, Schizophrenia, Bipolar Disorder, Classification, Support vector Machine, Deep Learning,
Structural Neuroimaging

1. Introduction

Psychiatric disorders remain a recent field in the sci-
entific community with the term schizophrenia emerg-
ing in 1910 by the Swiss psychiatrist Paul Eugen
Bleuler, while bipolar disorder, previously known as
manic-depressive illness, became only official in the late
90’. Despite their recent recognition, they already repre-
sent non-officially 1% and 5% of the global population,
respectively, and reach the top 10 of the most disabling
diseases by the World Health Organization. Their posi-
tion may be explained by their high social impact in the
daily life of the patient as well as his/her family circle
and also their high level of suicide, especially in bipo-
lar disorder patients, where the statistics indicate that 1
patient over 5 will make a suicide attempt during their
life.

Currently, the diagnosis of psychiatric disorders such
as schizophrenia and bipolar disorders is limited to the
apparition of clinical manifestations. Such a diagnosis

is efficient at medium or late stage of the disorder when
the symptoms appear clearly. Nevertheless, during the
early stage of the development of the psychiatric disor-
der, providing a diagnosis based purely on clinical man-
ifestations reaches its limits due to the low discrimina-
tion between the symptoms which can belong to other
psychiatric disorders.

Studies regarding the classification of psychiatric dis-
orders based on brain morphology using machine learn-
ing techniques emerged with Davatzikos (2005) using
Support Vector Machines (SVM) as the main strategy.
Koutsouleris (2009) and Ingalhalikar (2010) have con-
tinued with this strategy, respectively for the classifica-
tion of early stage of schizophrenia, and advanced stage
of schizophrenia and autism spectrum disorders. An al-
ternative to SVM for classification is the use of Dis-
criminant Function Analysis introduced by Karageor-
giou (2011) and Kasparek (2011) for the classification
of patients with schizophrenia. To resolve the issue
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of detection of psychiatric disorders during early stage,
several studies have been published (Strakowski, 2000,
2005), highlighting a correlation between the develop-
ment of psychiatric disorders and their impact on struc-
tural neuroimaging, especially in the subcortical struc-
tures, which appear to be enough discriminative to be
use as features for classification (Heckers, 2001).

The medical image modality selected to perform the
classification is the Magnetic Resonance Imaging. MRI
does not involve exposure to radiation and is efficient to
show soft tissues structures (i.e. brain tissues). Further-
more, specific type of MRI such as functional MRI can
provide information about the blood circulation.

In this master thesis we aim to develop an automatic
aided diagnosis tool to perform the classification of psy-
chiatric disorders such as schizophrenia and bipolar dis-
orders based only on neuroimaging information and ap-
plicable in early stage of development. To that aim, we
have:

• reviewed the impact of psychiatric disorders in the
development of the brain morphology,

• reviewed the state of the art regarding the classi-
fication of psychiatric disorders using neuroimag-
ing,

• segmented the subcortical structures using multi-
atlas based Segmentation and FIRST based Seg-
mentation from the FSL toolbox,

• studied the volumes of different subcortical struc-
tures in normal subjects and in patients with psy-
chiatric disorders,

• classified schizophrenia and bipolar disorders pa-
tients using SVM based on features extracted from
the subcortical structures,

• classified schizophrenia and bipolar disorders pa-
tients using convolutional neural network (CNN)

• analyzed the advantages and drawbacks of the
above strategies.

The rest of this paper is structured according to the
above steps.

2. State of the art

In this section, we will introduce the state of the art
from neuroimaging and medical imaging perspectives.

2.1. Review of structural neuroimaging
Besides the recent increase on literature regarding the

impact of psychiatric disorders of the brain, the hetero-
geneity of the methodology and the different clinical
populations appear to be a restraint to the comprehen-
sion of the role of structural neuroimaging due to the

Figure 1: Location of the subcortical structures between the cerebral
cortex and the cerebellum

conflicts and contradictions between the different publi-
cations.

A summary regarding the global and local brain ab-
normalities with an important impact regarding psychi-
atric disorders is presented on the table 1. A complete
review has been published by Emsell (2009). In next
subsections we summarize the main findings of that
work.

2.1.1. Global structural abnormalities
Despite the preservation of global volumes in bipo-

lar disorder in contrast to schizophrenia, as documented
by Hoge (1999), several publications support the pres-
ence of regional deficits in both gray and white matter.
Nevertheless, many studies appear to enter in conflict
regarding the abnormalities in gray and white matter.
Lyoo (2004) demonstrated regional volume reduction of
gray matter in multiple prefrontal areas while Lochhead
(2004) reporting both regional increases and decreases.

Regarding white matter, the most consistent abnor-
malities detected are the presence of white matter hyper-
intensities on T2-weighted and FLAIR MRI on patients
with bipolar disorder.

2.1.2. Local structural abnormalities
Although many structures are described having an in-

fluence on brain morphology, the literature suggests that
subcortical structures have the highest impact due to
their cognitive functions. These subcortical structures,
consisting of the the Basal Ganglia, the Thalamus, the
Amygdala and the Hippocampus, lie directly between
the cerebral cortex and the cerebellum (figure 1).

Subcortical structures are important for the classifi-
cation of psychiatric disorder as their functions have a
direct correlation with the behavior of the patient and its
symptoms such as the control of the emotions, the sleep
or the attention. Namely,

Basal Ganglia: Neurological lesions on Basal Ganglia
can implicate on Obsessive Compulsive Disorder
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Table 1: Review of structural neuroimaging regarding the presence of local and global abnormalities on patients with psychiatric disorders
Structures Affectation

Global Volumes Preservation in Bipolar disorder in contrast to Schizophrenia
White matter Presence of white matter hyper intensities on T2 weighted

Sparse volume reduction in Bipolar disorder
Basal Ganglia Enlargement of the striatum in Bipolar disorder

Thalamus Thalamic deficits in Schizophrenia
Volume preservation in Bipolar disorder

Amygdala High heterogeneity
Various volumetric changes

Hippocampus Bilateral volumetric decrease in Schizophrenia
Volumetric preservation in Bipolar disorder

and Anxiety disorder. An enlargement of the stria-
tum, the largest component of the subcortical struc-
ture, have been put in evidence by Aylward (1994)
and DelBello (2004) while Beyer (2004) reports
small volumetric decreases for patients with bipo-
lar disorders

Thalamus: Most of the studies report a preservation
of the volume in bipolar disorder ((Caetano, 2001;
DelBello, 2004)). Inversely, thalamic volume in
schizophrenia is repeatedly affected by deficits.

Amygdala: Amygdala dysfunction is subject to con-
flicts in the scientific community. Indeed there are
many publications reporting both volumetric in-
creases and decreases with very high heterogeneity
regarding the patient for schizophrenia and bipolar
disorder

Hippocampus: The majority of the studies re-
port a bilateral volume deficit ((Videbech, 2004;
Wright, 2000)) with a tendency to the left side in
schizophrenia while it appears to be preserve in
bipolar disorder.

2.2. Magnetic Resonance Imaging

Magnetic Resonance Imaging is commonly used for
neuroimaging due to its high resolution and its non
exposure to radiations. It exists several type of MRI
which are presented on figure 2.

The most common MRI are the T1-weighted and the
T2-weighted. Their difference are the Repetition Time
(TR) and the Time to Echo (TE), the T2-Weighted
presenting longer TR and TE, and modifying the
contrast and brightness of the tissues.

An another common MRI is the Fluid Attenuated
Inversion Recovery (Flair) which has longer TR and TE
than the t1-Weighted and T2-Weighted which has the
advantage to highlight abnormalities.

Figure 2: Different Magnetic Resonance Imaging modalities

The last type of MRI presented is the functional
MRI which represent the blood oxygen level dependent
(BOLD) signal, traducing the cerebral activity.

2.3. Classification of patients with schizophrenia or
bipolar disorders

As mentioned, despite the growing interest regard-
ing the classification of psychiatric disorders in medical
imaging, the recentness of its recognition by the scien-
tific community leads to a limited state of the art. To the
best of our knowledge, only a couple of studies compose
the state of the art for the classification of schizophrenia
and bipolar disorder, the most recent being Nieuwen-
huis (2012) and Schnak (2013), both works using SVM
on structural 3T MR images.
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Figure 3: Score of the state of the art using the Support vector Ma-
chine models based on gray matter densities

Both publications are established on the assumption
of the presence of brain abnormalities on patient with
psychiatric disorder ((Arnone, 2009; Ellison-Wright,
2010; Hulshoff, 2012; McDonald, 2005)) represented
by local presence, or concentration, of gray matter de-
fined as gray matter densities (GMDs) in specific neu-
roimaging structures. After transformation into a stan-
dardized coordinates system of the GMDs images to
GMDs maps, 3 independent models are built using the
machine learning technique SVM. The 3 independent
models, entitled later as the three two-class classifica-
tion due to their triangular aspect (figure 3), classify re-
spectively healthy controls from schizophrenia, healthy
controls from bipolar disorder, and schizophrenia from
bipolar disorder.

On the latest publication (Schnak (2013)), the
schizophrenia patients were classified from the healthy
control subjects with an accuracy of 90%. The
schizophrenia patients and patients with bipolar disor-
der were distinguished with an accuracy of 88%. Be-
sides, the classification of patients with bipolar disor-
der from healthy control patients, which appear as the
most difficult, provided the lowest accurate model with
an accuracy of 67%. Nevertheless the general classi-
fication of non healthy control patients, including both
schizophrenia and bipolar disorder, from healthy control
subjects, and the 3 classes classification healthy control
from schizophrenia from bipolar disorder have not been
experimented.

3. Material and methods

In this section we will present the different selected
databases and the procedures applied in order to quan-
tify the brain abnormalities on patients affected by men-
tal disorders and to provide a classification.

During the master thesis, the experiments have been
conducted using two independent public databases, the
Hammers Adult Database and the UCLA Database,
which are explained in what follows.

3.1. Hammers Adult Database

The first database is the Hammers Adult database
include 30 individual Atlas consisting of a MRI and
its associated labeled segmentation. It also provide
the adult probabilities atlas for each of the 95 brain
structures and the associated regional probabilistic maps

The Hammers Adult database is available in open
source1 and shared by the Faculty of Medecine Impe-
rial College London2, the University College of Lon-
don3 and the Hospital Neurologique Pierre Wertheimer
of Lyon4.

The database is a contribution of Hammer (2003) for
the segmentation of the regions of interest 01 to 49,
Gousias (2008) for the regions of interest 50 to 83 and
Faillenot (2017) for the regions of interest 86 to 95.

3.2. UCLA Database

The second database used in this work, also available
as opensource, has been published by the UCLA Con-
sortium for Neuropsychiatric Phenomics LA5c Study5

(Poldrack (2016) and Gorgolewski (2017)). The
database consists of 150 men and 115 women divided
into 4 different subset: 125 Healthy control (HC), 50 pa-
tients with Schizophrenia (Sz), 49 patients with Bipolar
disorder (Bd) and 41 patients with Attention deficit hy-
peractivity disorder (ADHD). Each patient’s folder con-
tains both anatomical and functional MRIs.

3.2.1. Anatomical MRI
The anatomical MRIs correspond to a series of high

resolution volumes representing the preprocessed T1-
Weighted images, the brain mask and the independent
segmentation of the 3 main brain tissues: white mat-
ter, gray matter and cerebro-spinal fluid (figure 5). The
preprocessed T1-Weighted includes the following pre-
processing steps: correction of the bias field, skull-
stripping and registration to the Montreal Neurological
Institute (MNI) space.

In our work, both segmentation and classification of
the subcortical structures will be performed using the
anatomical MRI of the UCLA database.

3.2.2. Functional MRI
The functional MRI measures the brain activity by

detecting changes of the blood oxygen level dependent
(BOLD) signal over the time. The regions with high
cerebral activity appear brighter than the rest.

1brain-development.org
2Department of Clinical Neuroscience and MRC Clinical Sciences

Center, Division of Neuroscience and Mental Health
3Department of Clinical and Experimental Epilepsy, Institute of

Neurology
4Functional Neuroimaging, Foundation Neurodis
5https://openneuro.org/datasets/ds000030/versions/00002
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Figure 4: Description of the components of the Hammer Adult database

The series consists of 6 fMRIs T2-weighted, each ac-
quired after a questionnaire and a different neurocog-
nitive task. The following descriptions are the original
description of the neurocognitive tasks (extracted from
Gorgolewski (2017)):

• Rest: A resting state session eyes open

• Bart: Balloon analog risk task. Participants were
allowed to pump a series of virtual balloons. Ex-
perimental balloons (green) resulted either in an
explosion or in a successful pump (no explosions
and 5 points). Control balloons (white) did neither
result in points nor exploded. Participants could
choose to not to pump but to cash out and start with
a new balloon.

• Scap: Spatial working memory task. Subjects were
shown an array of 1, 3, 5 or 7 circles pseudoran-
domly positioned around a central fixation cross.
After a delay, subjects were shown a green circle
and were asked to indicate whether the circle was
in the same position as one of the target circled. In
addition to the memory load, the delay period was
manipulated with delays of 1.5, 3 or 4.5 seconds.
Half of the trials were true positive and half were
true negative.

• Stop-signal: Stop signal task. Participants were
instructed to respond quickly when a ‘go’ stimu-
lus was presented on the computer screen, except
on the subset of trials where the ‘go’ stimulus was
paired with a ‘stop’ signal. The ‘go’ stimulus was

a pointing arrow, a stop-signal was a 500 Hz tone
presented through headphones.

• Task-switch: Task-switching task. Stimuli were
shown varying in color(red or green) and in
shape(triangle or shape). Participants were asked
to respond to the stimulus based on the task cue
(shape ‘S’ or color ‘C’). The task switched on 33%
of the trials

• Bht: Breath holding task. Participants were
asked to alternate between holding their breath and
breathing regularly while resting.

For each description of the neurocognitive tasks
above, we highlight specific aptitudes. Indeed, the Bal-
loon analog risk task evaluates the risk perception of the
patient while the Breath holding task required patience
and self control. The task Switching-tasks and the Stop
signal task reward respectively a good visual and sound
reaction. The spatial working memory task focuses on
visual memory. Finally the Rest task, which has no spe-
cific requirements is defined as the reference task.

3.3. Healthy and patients classification using SVM

In this section we will detail the different methods
for segmentation of the sub cortical structures and the
classification of Healthy control subjects from patients
with psychiatric disorders using support vector machine
and based of the brain volume abnormalities.
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Figure 5: Description of the components of the UCLA database: the
preprocessed T1-Weighted, the brain mask, and the 3 independent tis-
sues segmentation: White matter, Gray matter and CSF

3.3.1. Multi-atlas based Brain Structures Segmentation
Multi atlas based segmentation is a common ap-

proach in medical image segmentation ((Ltjnen, 2010;
Wang, 2012)). It consists on registering each MRI of the
Individual Atlas to the target image. Then the labeling
decision fusion is done using the Mutual Information
to quantify the similarity between the individual atlas’s
MRI and the target image (figure 7). After defining the
best match between the multiple individual atlases and
the target image, the same transformation matrices are
applied to the associated labeled segmentation. The
final output segmentation is a 3D volume labeled with
95 brain regions.

The multiple individual atlases of the Hammers
Adult database are registered to each of the prepro-
cessed T1-Weighted images of the UCLA database.

The registration is achieved using the open source li-
braries NiftyReg, developed at University College Lon-
don, which perform successively affine and non-rigid
registration.

Figure 6: Preview of functional MRI modality.The bright region rep-
resent the regions where the cerebral activity is at the highest

3.3.2. FIRST segmentation
The second segmentation of the brain structures is

performed using the FIRST model-based segmentation
and registration tool from the FSL toolbox of analysis
tools developed by the University of Oxford, especially
introduced by Patenaudeh (2011) and detailed in his the-
sis (Patenaudeh, 2007), containing more technical de-
tails.

The FIRST algorithm provide an automatic segmen-
tation for 15 brain regions, including sub cortical re-
gions, based on atlas segmentation approach, searching
through linear combinations of shape modes of varia-
tion for the most probable shape instance,based on mul-
tivariate Gaussian assumptions, given the observed in-
tensities in a T1-weighted image.

3.3.3. Classification using Support Vector Machine
Once we have the structures segmented, a SVM dis-

criminative classifier is considered to build our super-
vised learning model. The SVM is defined as a hyper-
plane or set of hyperplanes in a high dimensional space.
The classification is based on the distance to the nearest
training-data point of any class.

The classification is performed by extracting of the
local features of each subcortical structures previously
segmented. The main feature for each structure is their
volume in voxels normalized by the whole brain vol-
ume.

Nevertheless, limiting the features to the unique vol-
ume of the subcortical structures is not discriminative
enough. That is the reason why additional features have
been given to the SVM classifier such as the mean inten-
sity and the standard deviation of the subcortical struc-
ture.
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Figure 7: Step by step method of multi-atlas based segmentation

3.4. Healthy and patients classification using Convolu-
tional Neural Networks

In contrast with SVM that are feeded with hand-
crafted features (i.e. the volumes of the structures),
CNN automatically extracts the best features during
training. Hence, the input to the CNN is already the
images. In what follows we explain this approach in
more detail.

3.4.1. Convolutional Neural Network
During years, conventional machine learning tech-

niques have been the standard for classification until
the emergence of deep learning techniques based on
CNN. The recent investigations on that field, accom-
panied with the progress in GPU development, makes
CNN the current state of the art technique in machine
learning.

A CNN is defined as a succession of layers, each of
them having a different function:

• Convolutional layer: The convolutional layer is the
main layer of a CNN architecture. They are stack
one after the other, and can be seen as a pyramid.
Each convolutional layer is compose of a set of
filters where each kernel is slided over the input
image to extract features. The first convolutional
layers return low level features while the last ones
return more complex features.

• Pooling layer: The most common Pooling Layer
is the Max Pooling Layer. It allows to reduce the
number of parameter on the next layers while con-
trol the over fitting. The output of the Max pooling
layer correspond is the max of each region repre-
sented by the filter.

• Fully connected Layer: The fully connected layer,
or dense layer, is unique by its characteristic to has
a full connection to all the activations of the previ-
ous layer. The ouput of the fully connected is the
predicted class labels.

• Dropout layer: Dropout layer is a regularization
layer for reducing overfitting in neural networks
by preventing complex co-adaptations on training

data. During the dropout layer, a partition of the
neurons are deactivated to force the layer to learn
the same concept from different neurons

The full architecture of the CNN used is depicted on
figure 9. The classification of psychiatric disorders has
been implemented using the Keras, a high-level neural
networks API6

3.4.2. Transfer Learning
Transfer Learning consists of employing a model

trained for a specific classification task along with its
learned weights and use them for another task. Trans-
fer learning is an optimization step that allows rapid
progress. Its general use is in the presence of a small
database because deep net do not train well with a
small number of samples. The trained model selected
is the VGG-16 developed by the University of Oxford
for the International Classification Challenge ILSVRC-
2014 (Simonyan (2014)).

3.4.3. Fine Tuning
Fine tuning the CNN is a common strategy to con-

tinue to fine-tune the weights of the pretrained network
by continuing the backpropagation.
It is explain by the presence of more generic features in
the first layers (i.e. the pretrained network) and more
complex and discriminative features in the last layers
on which we want to focus for the classification.

During the process, we applied different techniques
of fine tuning to the convolutional neural network to op-
timize it:

• Freezing the first few layers issues from the pre-
trained model to preserve their weights because the
first few convolutional layers capture low level fea-
tures which can be re-use in our task.

• Adding of a classifier on the top of the convo-
lutional base by adding a fully connected layer
followed by a softmax layer with the number of
classes of the task as parameter.

6The documentation relative to Keras is available at
https://keras.io/
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Figure 8: Procedure of data processing for convolutional neural network

• Choosing of a smaller learning rate, usually 10
times smaller to preserve them to distortion assum-
ing that the weights of the pre-trained model are
quite good.

3.4.4. Procedure
To process the data for the CNN, it is possible to give

as input the 3D volume directly or, in contrast, feed it
using extracted 2D images from a 3D volume. This lat-
ter option has been selected and the full procedure is
presented on figure 8. The same procedure has been ap-
plied to the training, validation and testing datasets.

From each volume 30 central slices of the Axial view
are extracted and given as input to train the CNN. The
output is the independent prediction for each central
slice of each 3D volume. The final prediction is sub-
sequently obtained by applying majority voting to the
predictions of the slices. The choice of the parameters
such as number of central slices and axis will be dis-
cussed in the section 5.

3.5. Classification of functional MRI using Convolution
Neural Network

As mentioned in the section 3.2.2, the UCLA pro-
vides in addition of the T1-Weighted a series of func-
tional MRI acquired after the execution of a neurocog-
nitive tasks. In this master thesis we also want to test
if using this information can discriminate between the
healthy subjects and the patients.

Notice that using functional MRI is slightly differ-
ent that normal T1-Weighted, since it is defined as a 4D
volume, the last dimension being the acquisition time
during which the cerebral activity is measured as the
blood oxygen level dependent (BOLD). Several tech-
niques have been published to use functional MRI based

on signal analysis (Bandettini, 1993) or independent
components analysis (Calhoun, 2001).

To highlight the brain areas where the cerebral activ-
ity is the highest and correspond to the target brain area
of the cognitive test, appearing as brighter on the func-
tional MR images, we choose to compute the average of
the 4D volume over the time into a 3D volume. Then
the procedure to process the data remains the same than
explained previously.

4. Results

First we present the results of the segmentation struc-
tures and the differences we found between healthy sub-
jects and patients. Afterwards, the classification results
obtained when analyzing the anatomical images using
either the SVM or the CNN approaches. Finally, we
show the results obtained when feeding the CNN with
the functional MR images.

4.1. Segmentation of subcortical structures

4.1.1. Multi-atlas based segmentation
As mentioned in the section 3.3, the first method of

segmentation has been the multi-atlas based segmen-
tation presented on figure 10 which provides 95 brain
structures.

We observed that the segmentation is not perfect and
presents some under segmentation, visible on the sagit-
tal view. Nevertheless, the subcortical structures, which
are the final aim of the segmentation, seem to be well
segmented.
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Figure 9: CNN Architecture

4.1.2. FIRST Based segmentation
The second method of segmentation is FIRST from

the toolbox FSL and provide 15 brain structures (figure
11), including subcortical structures.

The contours of the subcortical structures seem to be
better segmented than our multi-atlas based segmenta-
tion.

Two different segmentation are generated as output
for classification using FIRST: a segmentation of the 15
structures, and a segmentation of the 6 subcortical struc-
tures composed of the right and left Amygdala, Hip-
pocampus and Thalamus.

4.2. Volumetric differences of segmentation
After segmentation of the brain into structures,

the following subcortical structures: Amygdala, Hip-

Figure 10: Subcortical structures segmentation using multi-atlas

pocampus and Thalamus, have been extracted. The
average volume for each patient’s classes for each sub
cortical structures have been normalized to the entire
brain volume and are shown on table 2.

The two segmentation methods present different
results on the same database. The difference is clearly
observable with the Hippocampus (figure 12) which
is under segmented when performing our Atlas based
segmentation.

Nevertheless, the table confirms the assumptions
made on the section 2.1.2 regarding the volumetric
changes on the subcortical structures in the case of psy-
chiatric disorders, independently of the method of seg-
mentation. Indeed, we observe a volume preservation
for patients with bipolar disorders on the Hippocampus
and Thalamus regarding the healthy subjects while pa-
tients with schizophrenia shows slight deficits. For the
Amygdala, as mentioned in the table 1 of the section
2.1.2, we note various volumetric changes depending of
the side, right or left, and the method of segmentation.

4.3. Local Classification using Support Vector Machine
In this work, we have tested different classification

settings:

• The three 2-class classification presented in the
state of the art: healthy control from schizophre-
nia (Hc - Sz), healthy control from bipolar disorder
(Hc -Bd), schizophrenia from bipolar disorder (Sz
- Bd)

• The 2-class classification: healthy control from
non healthy control, including both schizophrenia
and bipolar disorder (Hc - nHc)
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Table 2: Volumetric comparison of the subcortical structures depending of the diagnosis
Segmentation Diagnosis Amyg. R Amyg. L Hipp. R Hipp. L Thal. R Thal. L

Atlas
Healthy 0.1242 0.1214 0.1684 0.1410 0.5682 0.5237

Schizophrenia 0.1233 0.1212 0.1638 0.1402 0.5283 0.5208
Bipolar 0.1230 0.1201 0.1661 0.1408 0.5573 0.5240

First
Healthy 0.1106 0.1066 0.2927 0.2789 0.5905 0.6084

Schizophrenia 0.1078 0.1053 0.2900 0.2720 0.5762 0.6056
Bipolar 0.1086 0.1057 0.2918 0.2766 0.5893 0.6071

Figure 11: Subcortical structures segmentation using FIRST

Figure 12: Comparison of segmentation methods for subcortical
structures: on the left our Atlas based segmentation, on the right the
FIRST algorithm

• The 3-class classification: healthy control from
schizophrenia from bipolar disorder (Hc - Sz - Bd).

Table 3 shows the results of the above classification
settings using SVM. To recall, the features given as in-
put to the SVM are the normalized volume, the mean
intensity and the standard deviation of each of the sub-
cortical features computed either using the multi-atlas
segmentation or the FIRST algorithm. The classifi-
cation give the highest results when using the FIRST-
based segmentation of the 15 subcortical structures, es-
pecially on the classification of healthy control subjects
from schizophrenia (+0.05) and the schizophrenia from

bipolar disorder (+0.06).
Two observations stand out from the crowd. The first

is that the FIRST segmentation provides more accu-
rate segmentation in general of the subcortical structures
than our multi-atlas based segmentation. The second
is that limiting the segmentation only to the subcortical
structures reduces the accuracy. This is explained by
the lack of information of the adjacent structures which
are directly impacted by the volumetric changes of the
subcortical structures.

4.4. Global Classification using Convolutional Neural
Network

Table 4 compare the results obtained with global clas-
sification using CNN to the local classification using
SVM and the state of the art. Nevertheless, it is impor-
tant to note that the results from the State of the art have
been obtained on a different database and their compar-
ison is purely indicative.

Regarding the 2-class classification, CNN present a
major increase of the accuracy from the SVM. The clas-
sification of the healthy controls from schizophrenia pa-
tients shows an increase of +0.24, schizophrenia from
bipolar disorders +0.19, and healthy controls from non
healthy controls +0.20. The lowest increase of accuracy
is for the classification of healthy control from bipolar
disorder(+0.13) which appear to be in adequacy with
the results of the state of the art. Indeed from the three
2-class classification, the classification of healthy con-
trol from bipolar disorder is shown as the hardest clas-
sification.

About the 3-class classification, healthy control from
schizophrenia from bipolar disorders, the support vector
machine present slight better accuracy than the convo-
lutional neural network accuracy (+0.07).

4.5. Classification of functional MRI using Convolution
Neural Network

Finally, table 5 presents the results of the classifica-
tion of the functional MRI. To recall, a functional MRI
tracks the Blood Oxygen Level Dependent (BOLD) sig-
nal which represents the cerebral activity of the patient.
Each functional MRI has been acquired after a neu-
rocognitive task, described on the section 3.2.2 and a
questionnaire.
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Table 3: Local classification using Support Vector Machine in function of the method of segmentation
Hc - Sz Hc - Bd Sz - Bd Hc - nHc Hc - Sz - Bd

Atlas 6 Structures 0.52 0.51 0.52 0.50 0.36
First 6 Structures 0.60 0.63 0.61 0.66 0.52
First 15 Structures 0.65 0.64 0.67 0.70 0.52

Table 4: Comparison between the State of the art, the Local classification using Support Vector Machine and the Global classification using
Convolutional Neural Network

Hc - Sz Hc - Bd Sz - Bd Hc - nHc Hc - Sz - Bd
State of the art 0.90 0.67 0.88

SVM 0.65 0.64 0.67 0.70 0.52
CNN 0.91 0.77 0.86 0.89 0.45

The original functional MRI being 4 dimensional,
the 4D volume has been converted to a 3D volume
by doing the average over the time to be given as in-
put on the CNN. The classification has been performed
as a 2-class problem between healthy control subjects
and non-healthy control subjects, hence grouping both
schizophrenia and bipolar disorder patients together.

The Task Rest correspond to the functional MRI of
reference which explain the accuracy close to 50%. Re-
garding the others neurocognitive task, we note that
only the task bart (Balloon analog risk task) and bht
(Breath holding task) present the highest accuracy.
These cognitive test have in common respectively the
perception of risk, the reaction to the stress and re-
quire patience during the activity which are known to
be secondary symptoms of psychiatric disorders, both
schizophrenia and bipolar disorders. The rest of the neu-
rocognitive tasks, scap (Spatial memory task), stopsig-
nal (Stop signal task), switch (Switching task) have an
accuracy close to 50%. It is explained by the type or
neuro-stimulus generated by the cognitive test, respec-
tively spatial coordination and reaction to a visual or
sound signal, which do not affect any of the psychiatric
disorders studied in this work.

5. Discussion

5.1. Parameters of the input data for Convolutional
Neural Network

As mentioned previously, the CNN approach has two
distinct parameter defining the format of the input im-
age: the number of central slices and the MRI axis.

For the number of central slices, experiments have
been conducted over the range [10 60] without signifi-
cant changes regarding the accuracy of the predictions,
the final parameter has been set to 30, which represent
the average and include all 3 subcortical structures.

Regarding the axis, no significant changes have been
noticed over the axial, sagittal and coronal axis. By de-
fault, the input image has been set to the axis Axial be-
cause it is the common acquisition axis for MRI

Figure 13: Comparison between 3 classes classification and two suc-
cessive 2 classes classification

5.2. Limitation of the 3 class classification

As observed on the previous section, there is a clear
limitation of the 3 class classification problem (healthy
control from schizophrenia from bipolar disorders) with
an accuracy of 0.45.

Indeed, we note that the successive application of
CNN for 2 class classification problem provide more
accurate results (figure 13. By performing first the clas-
sification of healthy control from non healthy control
(0.89) followed by the classification schizophrenia from
bipolar disorders (0.86), we reach similar predictions
than the 3 classes classifications with a better accuracy,
in theory equal to 0.7654.

5.3. Pros and cons of the integration of functional MRI
for classification

The integration of functional MRI for classification
of non healthy control patients shows that depending
on the neurocognitive task, a classification is possible
with an accuracy of 0.685 for the task Bart and 0.64 for
the task Bht. Nevertheless, such an accuracy is possible
only if the reaction to the neuro-stimulus generated
by the neurocognitive task is shared by both of the
psychiatric disorders.

An another constraint of the use of functional MRI is
the need to register the fMRI to the anatomical MRI for
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Table 5: Classification of fMRI using Convolution Neural Network
Cognitive task Task bart Task bht Task rest Task scap Task stopsignal Task switch
Accuracy CNN 0.685 0.64 0.52 0.51 0.545 0.56

information fusion which is difficult regrading the 4th
dimensionality of the fMRI.

6. Conclusions

During the master thesis, the role of the subcortical
structures has been highlighted during the development
of psychiatric disorders such as schizophrenia or bipolar
disorders.

A segmentation of the subcortical structures has been
performed using our own multi-atlas based segmenta-
tion approach and FIRST algorithm from the FSL tool-
box. A quantitative study of the subcortical volume has
shown brain abnormalities located on these subcortical
regions. A local classification using SVM has been con-
ducted based the subcortical volume and has demon-
strated that the FIRST segmentation presents a better
segmentation than our Multi atlas approach.

Then we performed a global classification using CNN
based on the preprocessed T1-Weighted MRI issue from
the UCLA database. Performing successive 2 class clas-
sification, healthy controls subjects from non healthy
control followed by schizophrenia from bipolar disor-
ders, appeared to provide more accurate predictions
than the normal 3 class classification, healthy control
from schizophrenia from bipolar disorders.

Finally a global classification using CNN based on
functional MRI has been achieved. Nevertheless, a clas-
sification based on functional MRI has shown that the
associated cognitive task is primordial and highly de-
pends on the neuro-stimulus generated.

To conclude, a computer aided diagnosis tool has
been develop based on the presence of abnormali-
ties on the sub cortical structures using deep learn-
ing techniques, with an accuracy reaching 76.5 % for
the classification of healthy control from patients with
schizophrenia from patients with bipolar disorders.
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Abstract

Mammography are used as an efficient tool for breast cancer diagnosis. In the recent years, Computer Aided Diagnosis
(CAD) can be very useful for detection of breast cancer. Unfortunately, the presence of high False Positive (FP)
detection is an actual issue the majority of CAD systems face. The purpose of this project is the reduction of FP rate
of an existed framework for lesion detection. The majority of approaches for FP reduction, and even CAD systems,
analyze each breast projection separately. In contrast, our approach is based on a two-views lesion correspondence
using a 3D breast deformation and epipolar curves projections. The algorithm proposed faced different dificulties,
however the idea of the project have been proven in certain cases. The main drawbacks and the possible factors that
cause the algorithm fails are explored as well. As a side of the project, a pectoral muscle segmentation based on
deep learning was implemented and different evaluation were made to prove how robust the algorithm can be. Two
datasets were using during this project, the INbreast and the Optimam dataset. In total, 234 images were used for
the pectoral muscle segmentation section; having as result a Dice Similarity Coeficient of 0.94 and 0.81 for INbreast
and Optimam images respectely. In the case of the two-view lesion correspondence, 26 patients containing 52 lesions
were examinated.

Keywords: breast cancer, U-net, false positive reduction, digital mammography, curve epipolar line, CAD, deep
learning, segmentation.

1. Introduction

Breast cancer is the most common cancer diag-
nosed among women worldwide (Siegel et al., 2014).
According to the American Cancer Society (ACS),
breast cancer constitutes 25 percent of all new cancer
diagnoses in women. In 2012, almost 1.7 million new
cases were diagnosed worldwide (Society, 2013). The
mortality of breast cancer can be reduced largely by
identifying the cancer at the initial stage. The World
Health Organization (WHO) estimates that, although
the survival rates for breast cancer vary worldwide, in
general, rates have improved in the last years. This was
observed by Ferlay et al. (2015), where the observed
survival rates were much higher for early stage detected
cancers (80-90%) than advanced stage cancers (24%).

X-ray mammography is the gold standard to detect
breast cancer in its early stages since decades (Misra
et al., 2010). In clinical practice, the conventional
mammography exam typically consists on four images:
a mediolateral oblique (MLO) and a craniocaudal (CC)
views for each breast. The MLO view is a projection
taken at an angle of approximately 45 degrees, where,
in most of the cases the pectoral muscle is captured.
On the other hand, the CC projection corresponds to a
top-down view of the breast (Ganesan et al., 2013).

During mammographic interpretation, the radiologist
combines the information from the two views with the
assumption that if a mass appears in one view, most
of the time the mass can be found as well on the other
view (Blanks et al., 1999). This helps to identify the
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object as a true or a false mass and to obtain a more
accurate cancer detection by radiologists, in contrast
with the separate evaluation of each view. Notice that,
although the examination takes into account the two
views, there are particular cases where a mass is only
visible in one of the views.

Moreover, in recent years, the number of computer-
aided detection (CAD) algorithms for mammography
has increased rapidly, and its advantages and results
confirm such increments on breast cancer detection
(Brem et al., 2003). Nevertheless, the majority of
CAD algorithms reported in the literature analyzed
each breast view separately. Although, in general, high
sensitivity of the CAD systems involves the presence of
false positive (FP) detections.

This project aims to improve the performance of an
already implemented framework for mass detection in
mammograms by reducing its FP rate. The method
proposed is based on the two-view image analysis,
following radiologists’ strategy when performing a
diagnosis. The study is centered on a 3D breast defor-
mation method which searchs for possible positions in
the MLO view of a lesion detected in CC view. This
is done by projecting epipolar curves in the MLO,
which corresponds to the lesions in the CC view, and
evaluating distance conditions regarding the MLO
lesion to the epipolar curves to interpret the lesion as a
mass or no mass.

At the same time, a pectoral muscle segmentation ap-
proach has been investigated as pre-processing step to
discard potential lesions within this tissue Notice that
this approach by itself can be considered as a FP reduc-
tion strategy.

2. State of the art

CAD systems aimed for breast cancer screening have
been implemented since recent years, however, in the
topic of detecting masses is still facing the complexity
of the task. The main drawback of these methods is the
high number of FP detections, which means that a CAD
system interprets a normal tissue as a suspicious one.
Approaches combining the information of the two views
of the same breast have been proposed with this issue
(Destounis et al., 2004). Previous research related to the
general approach proposed in this project is described
below:

2.1. Pectoral Muscle Segmentation

One of the main obstacles in mammographic image
analysis is the presence of pectoral muscle (Ganesan
et al., 2013). The extraction of this region has become
a challenging task due to the issue that the density and

texture information of both, pectoral muscle and breast
tissue, are almost similar.

Therefore, pixels based segmentation techniques
(Sultana et al. (2010), Saltanat et al. (2010) and Yapa
and Harada (2008)) or techniques based on curvature
of the edge of pectoral muscle (Ferrari et al. (2004)
and Xu et al. (2007)) had a limited success in obtaining
accurate results for a wide range of datasets. The
study of Kwok et al. (2001) used a Hough trans-
form to find the contour between breast tissues and the
pectoral muscle, producing generally acceptable results.

Since recent years, the performance of convolutional
neural networks (CNN) for tasks as segmenting, detect-
ing and classifying objects on natural scenes has in-
creased; thus, there was a keen interest to develop CAD
systems applying this technique on the medical imag-
ing area. That is the case of the recent approach of
Rodriguez-Ruiz et al. (2018), where a method to seg-
ment the pectoral muscle in Digital Breast Tomosynthe-
sis (DBT) using a deep learning approach is proposed.
Their results show a recognized performance with im-
ages from different modalities (mammograms and syn-
thetic images from breast tomosynthesis) with a median
Dice Similarity Coefficient (DSC) value ranged from
0.947 to 0.977.

2.2. Correspondance views
The importance of analyzing the CC and MLO views

by radiologists (ipsilaterality) has been reported since
long time ago. For instance, the study of Warren et al.
(1996) reports an increased in detection rates from 7.6
per thousand to 8.2 per thousand women screened,
with 14 more cancers detected by radiologist when
examining the two views rather than one view only.

CAD systems aimed at mass detection in mammo-
grams with a two-views analysis approach are not as
popular as the common examination and analysis of
views independently. Wei et al. (2009) explored the im-
plementation of fusion the information of the views CC
and MLO with a dual CAD system, which merges the
decision from two mass detection systems in parallel.
The study was based on the identification of potential
pairs of mass candidates by using a regional registra-
tion technique and applying similarity measures focused
on the paired morphological feature. Then, each object
was scored by computing Hessian and texture features
for each mass pair identified, and finally, a discriminant
analysis classifier between the 3 scores, the individual
score per view and the one from the masses paired, was
applied. This method obtained an average case-based
sensitivity improvement from 67.4% to 83.7% for aver-
age masses, and 44.8% to 57.0% for subtle masses at
the same FP rates.
(Hartley and Zisserman, 2003).
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(a) (b) (c) (d)

Figure 1: Comparison of mammography images from different systems containing on the datasets. All images from INbreast dataset were obtained
from a Siemens −MammoNovation (a). The Optimam dataset subset using on this project contained images obtained from several systems: General
Electrics (GE) − Senographe Essential (b), Hologic − Lorad Selenia (c), and Hologic − Selenia Dimensions (d).

Kita et al. (2001) proposed a technique based on
the calculation of curved epipolar lines by developing
a 3D model of the deformation of the breast caused
by compression in different view. Their approach was
based on the assumption that it is possible to find the
epipolar geometry relating pairs of images for further
matches to a line. This means that a point in one image
(e.g. CC view) defines a line in the other one (e.g.
MLO view) on which the corresponding point must lie

Geometrical principles and deformable object behav-
ior were the strategies conducted in that studies. Also by
studying the guidelines for performing mammograms,
they propose approximation of the breast behavior when
being compressed. Some of the essential assumptions
that they do are: The nipple keeps the same coordinates
due to it hardly moves under compression; the compres-
sion force applied to the breast is always constant; the
breast tissue deforms uniformly. The performance of
the method was evaluated on a dataset of 37 lesions,
and their method could predict the location in the sec-
ond view by using a minimum distance tolerance of 6.78
± 5.85 mm from the lesion in MLO to the curved epipo-
lar line projected from the CC lesion.

3. Materials

3.1. Data sets
Two datasets were used in this project, Figure 1 il-

lustrates example of images containing in the datasets
described below.

3.1.1. INbreast
The INbreast dataset is composed of full-field

digital mammography (FFDM) images from screening,
diagnostic and follow-up cases, acquired at the Breast
Centre in the Hospital de Sao Jao, Porto, Portugal.
Moreover, this dataset contains annotations of pectoral

muscle and 6 types of findings: asymmetries, calcifi-
cation, distortion, masses, multiple findings, cluster of
micro-calcifications.

The dataset has a total of 115 cases, where 90 cases
correspond to patients with 2 breasts, and the remaining
25 cases are from patients who had a mastectomy. In
total, 410 images are contained on the dataset; 203 are
CC views, 1 is caudio-craneal from below (FB) view
and 206 MLO views. It is important to point out that
from the 206 MLO images, only 201 have the present
of pectoral muscle. Therefore, these 201 MLO images
were used in this work to evaluate the pectoral muscle
segmentation algorithm investigated.

Several characteristics of the dataset are listed below.

• Images were acquiered using the Mammo Nova-
tion Siemens system, see figure 1a.

• Images size of 3328x4084 or 2560x3328 pixels,
according to the x-ray plate used, which depends
on the breast size of the patient).

• Pixel size of 0.07 microns.
• Contrast resolution of 14-bits.

3.1.2. OMI-DB
The Optimam Mammography Image Database

(OMI-DB) is an extensive mammography image
database of over 80,000 unprocessed and processed
digital images extracted from the National Breast
Screening System (NBSS), which also contains expert-
determined ground truths and associated data linked to
the images.

From this database 54 cases with MLO images
were selected. The number of the cases used on each
Module (explained in follow section) is as follow: For
the percoral muscle segmentation all 50 cases was
taking into account, giving a total of 54 MLO images

9.3



False Positive reduction for lesion detection in breast mammography based on two-views lesion correspondence
strategy 4

were analysing. On the other hand, due to the random
selection of the cases, not all of them were contained
masses annotation findings. At the end, a total of 46
cases corresponded to patients with at least one lesion
visible in both CC and MLO views. Each breast has its
CC and MLO views, which gives a total of 92 images,
as the dataset used to test the FP reduction scheme of
this project.
Those images were obtained from different systems
(Figure 1b, figure 1c and Figure 1d).

OMI-DB contains mammography images from sev-
eral vendors and scanners. Each of which has different
image characteristics.

1. General Electric (GE) vendor
(a) Images obtained using a Sennographe scan-

ner (Figure 1b).
(b) Two types of mage size: 1914 x 2294 and

2394 x 3062.
(c) Pixel size of 0.094 x 0.094 microns.
(d) Contrast resolution of 12 bits.

2. Hologic vendor
(a) Images obtained from two scanners: Lorad

Selenia (Figure 1c) and Selenia Dimensios
(Figure 1d.

(b) Two types of image size for both scanners:
2560 x 3328 and 3328 x 4096.

(c) Pixel size of 0.07 x 0.07 microns in the case
of Lorad Selenia scanner. And 0.065 x 0.065
microns for the Selenia Dimensios one.

4. Methods

The primary objective of the project is to reduce FP
detections as part of a framework for mass detection;
the approach is focused mainly in the lesion corre-
spondence analysis from the CC to the MLO view
(ipsilateral analysis).

The complete workflow of the project is shown in
Figure 2. Module A corresponds to the framework
that is already implemented on our research group (i.e.
VICOROB). Since the CAD system did not have any
pre-processing for the pectoral muscle in MLO views,
and it is required for module C, a pectoral muscle seg-
mentation algorithm, using the deep learning approach
of Rodriguez-Ruiz et al. (2018), was implemented in
module B. Notice that this module by itself will be
evaluated as a FP reduction too.

For the module C, due to the limit of time and re-
sources, an already existing MATLAB code implemen-
tation of the method described on Kita et al. (2001) was
adapted.

Figure 2: Workflow of the project divided into modules. Module A
extraction of potential mass candidates per each view; Module B pec-
toral muscle algorithm for MLO views; and Module C the lesion cor-
respondence between the two views.

4.1. Potential Mass Candidates (Module A)
The potential mass candidates are generated by

a framework for mass detection in mammograms
developed in our research group. This framework is
based on CNNs and makes use of 2 datasets to train
the net, Curated Breast Imaging Subset of Digital
Database for Screening Mammography (CBIS-DDSM)
and INbreast datasets. The CNN architecture used on
this framework corresponds to a 50 layers of Residual
Network (ResNet-50) previously pre-trained on natural
images using the ImageNet dataset, and it is a path
based fashion, with patches of size 224 x 224 pixels.

In summary, the framework works as follow. As the
first step, it is wanted to transfer the domain of convo-
lutional features from natural images to digitized mam-
mograms. Therefore the net is trained with positive and
negatives patches, generated from images of the CBIS-
DDSM dataset, as follow:

• The net is trained only on the last fully connected
layer by freezing the lowers layers.

• Then, the net is trained on all the layers.

Finally, the network is adapted to detect masses
using path classification by fine-tuning the net using
fully digital mammograms from the INbreast dataset.
The output of the net is a pixel-wise probability map
for breast masses.
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(a) (b) (c)

Figure 3: Example of potential mass candidates extracted from IN-
breast dataset. (a) corresponds to the original image; (b) is the proba-
bility map (values from 0 to 1) resulted from Module A, and (c) dis-
plays the potential mass candidates obtained with a 0.70 theshold on
(b).

For this framework, Free-Response Receiver Oper-
ating Characteristic (FROC) was used to evaluate it at
different thresholds, in order to find an optimal configu-
ration. Figure 3 shows an example of Module A output
and the extraction of potential mass candidates from it.

4.1.1. Local threshold percentage
The extraction of the potential mass candidates are

done by using a local thresholding to discriminated the
20% of the values contained in each probability map.
This means that the value of the threshold is not fixed,
instead, it change according to the maximum probabil-
ity found on each probability map evaluating. Equation
1 illustrates the calculation of the local threshold.

Thresh = max(I) − max(I)Ṫp

100
(1)

where I represents the probability map image, Tp is
the percentage value wanted to restring, in this case is
set to 20 and Thresh is the local threshold value per
probability map.

4.2. Pectoral Muscle Segmentation (Module B)
Although the main objective of the project is not pec-

toral muscle segmentation, we is needed to have a robust
algorithm for this matter. Therefore we implemented
and adapted the algorithm described in (Rodriguez-Ruiz
et al., 2018). This had to be adapted as the original work
was applied to breast tomosynthesis images. Figure 4
illustrates the structure of the algorithm for segmenting
the pectoral muscle. Each section of this pipeline (i.e.
pre-processing, model prediction, and post-processing)
are described below.

4.2.1. Pre-processing
When working with images that do not share the

same characteristics, like the intensity ranges, size of
the images, etc., it is essential to have a pre-processing
stage to normalize and specify the data that enter into
the net. This will help the network to learn the main

Figure 4: Structure of the Pectoral Segmentation approach.

characteristics of the image in a more generalized way.
This is why a series of pre-processing and normaliza-
tion were applied to all the images.The first step of
the normalization is to corroborate that all the images
passed to the net are MLO view. As the algorithm
works with images with the standard Digital Imaging
and Communications in Medicine (DICOM) format,
it can discriminate CC views among the images by
looking into the tag ”ViewPosition” of the DICOM
header.

Another important point is that all the MLO views
must lay the breast tissue to the left part. Depending on
the image type there are two options to flip the image.
If the images are in DICOM format, the orientation
of the image (i.e. right or left) can be known by
means of reading the DICOM header. Otherwise, the
algorithm compares the sum of the intensities of a 20
x 20 pixel region of the top left and right; the one with
the maximum value indicates the position of the breast.
Notice that, looking for a sumatory equal to zero on the
opposite top side of the breast does not always work
due to the variability of the intensity ranges as in some
images the background is represented with low values
different from zero.

After the image is flipped to the left, the image is
downsampled to 1x1 mm2 pixel size. If the image is
with intensity values, a pixel area relation is applied
to resampling; otherwise, if the image corresponds to
the ground truth (binary image), a nearest-neighbor
interpolation is used instead. Moreover, to handle the
variability of the intensity ranges, all the images were
downscale to 8 bits (0-255 grayscale).
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At this point, the original size of the image has been
reduced to a reasonable size for processing into a CNN.
However, the sizes are not proportionally and equal
among each other; therefore a zero padding/extraction
method is used to homogenize the image size to 320 x
320 pixels, as the original proposal. This technique is
affordable because, as all the images are flipped to the
left and the breast tissue barely touches the right and
lower image border. Hence, there is no possibility to
alter the breast tissue. In addition, all the images were
normalized by subtracting the dataset mean and divide it
by its standard deviation. This serves to center the data
and give more control stability to the net.

4.2.2. Prediction Model
For the prediction model, the U-net network as a

3 class model was used. The class corresponds to
background, breast tissue & pectoral muscle. The
U-net architecture follows the same level structure as
the original one from Ronneberger et al. (2015), as
despicted in Figure 5.

Figure 5: Structure of U-net architecture adapted from (Ronneberger
et al., 2015).

As observed in figure 5, the number of filters for each
convolutional layer is not specified because more than
1 model was implemented to exploit the behavior of the
net. The description of the number of filters is explained
on Section 5.The last layer of the net is a softmax activa-
tion function which gives a probability map of the pixels
belonging to one of the three classes, with the same in-
put size.

4.2.3. Post-processing
From the probability map of the 3 classes, it has to

be extracted the class of interest, the pectoral muscle.
Therefore an arg max function, which gives to the pixel
the value of the class with the maximum probability, is
applied. Figure 6 illustrates an example where, although
the breast tissue and background classes are predicted
well (reason of uniform colors), the hole’s border inside

the pectoral muscle shows a blurred color. Examples
were is visualize better this behavior can be found on
Experiment Section. Notice that figure 6b is displayed
in colors although the probabilities go from 0 to 1 as the
example of figure 3b. As each pixel has a probability
for each of the three class, the image can be interpreted
as an RGB image due to it has 3 channels:

• First channel: Background class probability (Red
color).

• Second channel: Pectoral Muscle class probability
(Green color).

• Three channel: Breast tissue probability (Blue
color).

(a) (b)

(c) (d)

Figure 6: Example of post-processing steps followed. (a) three class
ground truth. (b) three class probability map resulted from the net
prediction where. (c) pectoral muscle class extraction. (d) fill-holes
algorithm. The label of the images are: Red and Black = background,
blue and white = breast tissue, and green and gray = pectoral muscle.

After that, the prediction class extracted is upsampled
to the original resolution using linear interpolation.
Since segmentation can fail during the process, for
instance, incomplete or over-segmentation, a fill-holes
algorithm is applied. This algotihm first look for the
number of object existed on the prediction image by
applying a connected components and find contourts
functions, if there are more than one object, the algo-
rithm selects the bigger one closer to the left upper
border. Then, the algorithm fill the object.

A sample of segmentation failure (i.e. hole)is shown
in Figure 6c and the result after applying the fill-holes
algorithm, Figure 6d. Notice that this algorithm also
take cares of segmentation failures when more than one
object is predicted as pectoral mask.
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4.2.4. Evaluation
Each pectoral muscle prediction was evaluated using

the Dice Similarity Coefficient (DSC) with the Ground
Truth, see Eq.2. 2.

DS C =
2|PectModel ∩ PectTruth|
|PectModel| + |PectTruth| (2)

where PectModel refers to the pectoral prediction
mask, and PectTruth corresponds to the pectoral muscle
ground truth.

4.3. Lesion correspondence on CC &MLO Views
As mentioned before, the two-view lesion correspon-

dence part was based on the Kita et al. (2001) method,
and an existing MATLAB code was adapted. Notice
that, in order to compute a 3D breast deformation, there
are certain information required:

1. Acquisition information, usually found in the DI-
COM header: pixel spacing, the distance between
the x-ray and the compression paddle, and the
breast thickness under compression.

2. Coordinates of the breast profile and nipple.
3. MLO views with pectoral muscles segmented.

Point 1 is needed to obtain by mathematical and
geometric forms the decompression and compression
information of the CC and MLO view respectively,
which are used to obtain the behavior of the breast
deformation.

Point 2 & 3 are aimed to construct the 3D model of
the breast. The reason why the pectoral muscle segmen-
tation plays an important role here is that, when approx-
imating a 3D model of the breast, the pectoral muscle is
not present in CC view, so the 3D model will not work
correctly.

(a) (b)

Figure 7: 3D model computation. (a) represents the aligment of the
MLO and CC contours based on nipple position. (b) corresponds to
the 3D breast model from (a).

Notice that in the implementation of Kita et al.
(2001), the nipple coordinates and the breast outlines
are extracted manually. Also, for computing the
breast 3D model they approximate the outline of the
MLO with the contour of the Medio Lateral (ML) or

Latero Medial views because it was available, Figure 8
represents an example of a 3D reconstruction.

Figure 8: Illustration of 3D reconstruction of the breast approach im-
plemented on Kita et al. (2001).

In contrast, for the approach proposed here, the fol-
lowing steps were made:

• For Point 2 previously mentioned only the nipple
coordinates were taken manually. For the breast
profile, a simple threshold and connected compo-
nent approach was implemented.

• To deal with the pectoral muscle presence, the pec-
toral segmentation algorithm describded in section
4.2 was used.

The existed MATLAB code was oriented for a
medical area, aimed for use as a visual tool for radi-
ologist. The code assumes MLO images have already
segmented the pectoral muscle, and that both images,
CC and MLO had masked the breast to delete external
artifacts. For the case of the nipple and lesion coordi-
nates, they were obtained manually by the user in real
time the program was analyzing the correspondence.

For this project it was needed to modify and autom-
atize the mentioned MATLAB code. For instance, the
nipple coordinates were previously taken and stored to
later be accessible to the algorithm. Furthermore, apart
of working with the intensity image, the probability
map obtained from Module A is used as well. Then,
for the breast profile and pectoral masking is calculated
and applied, respectively, during the computation of
the algorithm. Excluding the modifications previously
mentioned, the MATLAB algorithm performs the
same steps described in the original method. A brief
summary is explained below:

First, the algorithm adjusts the CC and MLO view.
The CC view must have the centroid of the breast
aligned with the nipple coordinate. On the other
hand, for the MLO view, the aligment of the centroid
and the nipple have to be with a 45 angle. Once the
views are adjusted, they are aligned within the nipples
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coordinates to build the 3D model. Figure 7a displays
the alignments of the views, the CC contour lays on
the X axis, while the MLO sits on the Y axis. Figure
7b shows the following step, the 3D model computation.

After that, with the technical information of the
CC and MLO compression, the epipolar lines can be
calculated for present masses on CC view by applying
decompresion algorithm to the centroid of the mass;
and further projecting the lines on the MLO view
using an uncompression algorithm, which transform
the epipolar line into an epipolar curve. A more detail
information and mathematical explanation can be found
on the original propose of (Kita et al., 2001).

(a) (b)

Figure 9: Lesion correspondance view example. (a) corresponds to
the CC view, red points are the lesion detected, green poit is the cen-
troid of the breast, and blue one is the nipple coordinates. (b) illus-
trates the MLO view of the same breast with the curves projected from
lesion in (a).

Figure 9 illustrates an example of epipolar curves in
the MLO projection from 2 masses detected in the CC
view.

4.4. False Positive Reduction
The FP reduction strategy consist in make use of the

epipolar curves projected on the MLO view, obtained
from section 4.3. Basically, an Euclidean distance cal-
culation (Eq. 3) is applied from the centroids of MLO
candidates masses to the epipolar curve(s) projected.

D =

√
(x1 − x2)2 + (y1 − y2)2 (3)

where x1 and y1 corresponds to x and y coordinates of
one point; and x2 and y2 to a second point.

The distances measured are subject to followed con-
ditions to determinate the interpretation of each mass
candidate.

1. If one candidate mass on the MLO lies close to
an epipolar curve projection of a CC mass candi-
date, and the distance between is less than 20mm,

both candidate masses are considered as a corre-
spondence lesion. Thus, the masses on both views
(CC and MLO) are classified as true positive de-
tection.

2. Otherwise, if the distance to the epipolar curve is
too large or there is no object in correspondence,
the candidates masses of each view are discarded
and interpreted as a false positive detection.

4.5. Computational Environment

The computations were performed on a Linex work-
station, Ubuntu 18.04, with 12 CPU cores and a single
NVIDIA GeForce GTX GPU with 125,6GB memory.

The deep learning framework used is Keras-2 with
Tensorflow as backend using Python 2.7 environment.
Regarding the two-view lesion correspondence, MAT-
LAB R2016a program was used.

5. Experiments

5.1. Pectoral Muscle Segmentation

The first experiments for this module were made us-
ing the INbreast dataset due to the existence of its pec-
toral muscle ground truths. The images of this data were
split into training, validation and testing sets with a pro-
portion of 60%, 20%, and 20%, respectively. The three
sets were balanced using the number of cases per each
density category. This means the sets contains equal dif-
ficulty levels of cases and none of the images from the
same patient belongs to more than 1 set. Furthermore,
the OMI-DB sub-dataset was used for testing the net as
it contains images from different systems and with dif-
ferent intensity values distribution, see Figure 1. Table
1 shows the distribution of the images for each dataset.
For the experiments described below were used only IN-
breast images. The images from Optimam were only for
evaluation.

Table 1: Distribution of images from different datasets for training,
validation and testing the models. The number of system refers to the
scanners used to obtain the images, explained on section 3.1.

Distribution of datasets
Dataset Set System Patients Images
INbreast Training 1 66 120

Validation 1 17 32
Test 1 20 36

Optimam Test 2 8 8
3 12 12
4 14 14
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5.1.1. U-net configuration
Before the computational system mentioned before

was available for this project, the first u-net configura-
tion for pectoral muscle segmentation was tested on a
Linux workstation, version Ubuntu 16.04, with 8 CPU
cores and one NVIDIA GeForce GTX GPU with 12GB
memory. In addition, different architectures configura-
tion were implemented. Table 2 describe them.

Table 2: Description of number of filters per each convolution layer
of the 3 U-net models used in this work.

U-net Model’s Configurations
Model x x1 x2 x3 x4

U-net 1 16 16 32 32 64
U-net 2 32 64 128 256 512
U-net 3 64 128 256 512 1024

5.1.2. Selection of post-processing strategy
For the post-processing of the pectoral prediction im-

age was experiment the fill-holes algorithm, described
on section 4.2.3, with and without binary dilation to the
image, Figure 13 illustrates an example. Futhermore,
an evaluation of applying them before or after the im-
age is upsampled to its original resolution was done as
well.Note that Figure 13 only compares the aspect of the
pectoral border rather than the segmentation precision.
Therefore the ground truth of the image is not displayed.

(a) (b)

Figure 10: Comparison of upsample without dilation (a) and when
using it (b). Dilation of 3x3 window. Notice that the image has been
cropped for visual displayment.

5.2. Potential Mass Candidates

As explained before on section 4.1, the output of
Module A is a probability map with a 0 to 1 range
values. The potential mass candidates are extracted by
applying a threshold to the probability image. The first
technique applied was a fixed threshold value for all
the images (global threshold), however, zero detections
of mass candidates were faced; caused when the image
have in general a low probability map.

Thus, a local threshold method was opted to avoid
modifying the probabilities by normalizing all from 0
to 1. This method looks for the maximum value of each
probability map and calculate the threshold values ac-
cording to the percent of probability is wanted to take
into account (local threshold). A high percent value, i.e.
90-80% means a high threshold, and inverse with low
percent values.

(a) (b)

(c) (d)

Figure 11: Global threshold and local threshold comparison for poten-
tial mass candidates extraction. (a) Original intensity image, (b) prob-
ability map (from 0 to 1), potential mass candidates at global threshold
of 0.5 (c), and at local threshold of 50% (equal to 0.21) (d).

5.2.1. Local threshold percentage
Figure 11 shows a clear example of comparing the

output of a global threshold against a local one. Figure
11b corresponds to the probability map, which has 0.43
as maximum probability value. When applying the
global threshold of 50% over 0 to 1, which is equal to
0.5, the results are zero detections, figure 11c.

In comparison, the use of a local threshold will
always detect at least one candidate mass, Figure 11d,
because, in this case, the threshold value instead of be-
ing 0.5, change to 0.21, as the maximum probability of
the image is 0.43. Equation 1 illustrates the calculation
of the local threshold.

Previously, the example made for the local threshold
percentage was using a 50%. However, 9 values were
experiment in orden to select and fix the percentage of
restrinction. Therefore, the three modules, A, B and C,
were subject under different thresholds percentage val-
ues to compare and select the one were the algorithms
performs better.
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Table 3: Modules performance comparison under different thresholds

View Module Class GT Thresholds (%
[0.5ex] 10 20 30 40 50 60 70 80 90
CC A TP 26 16 18 20 23 21 20 21 14 3

FP 0 12 17 25 27 38 39 50 68 56
FN 0 8 6 5 4 4 0 0 10 21

C TP 26 8 10 9 10 10 11 11 9 2
FP 0 5 5 11 13 17 17 17 25 9
FN 0 18 16 17 16 16 15 15 17 16

MLO A TP 26 16 18 20 23 21 20 21 14 3
FP 0 20 28 39 40 56 77 98 125 106
FN 0 10 8 6 3 5 6 5 12 23

B TP 26 18 21 23 24 24 26 17 12 3
FP 0 15 22 32 42 61 83 79 107 113
FN 0 8 5 3 2 2 0 9 14 23

C TP 26 10 8 8 10 6 6 2 2 0
FP 0 5 9 14 15 19 16 26 27 10
FN 0 16 18 21 20 20 19 23 22 18

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12: Comparison of potential mass candidates extraction with local threshold. (a) & (f): intensity images. (b) & (g): probability maps. (c) &
(h), (d) & (i) and (e) & (j): potential mass candidates at 20%, 50% and 80% threshold, respectively.
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Table 3 reports the result of each module per view
in terms of classifying the masses as TP, FP and False
Negative (FN) classes. Notice that, for the evaluation
of the module C in this case, the distance tolerance to
classify the mass candidates as mass or no mass was
100 pixels.

Figure 12 illustrated the behaviour of the potential
mass candidates extraction within different threshods.
Therefore, the final experiments were decided to be con-
ducted with a threshold of 20%.

6. Results

6.1. Pectoral Muscle Segmentation

Therefore, the first configuration on the model was
”Unet-1”. However, even with a significant reduction
regarding the number of filters per convolutional layer
the network was given a reasonable performance with
this configuration; this can be possible due to the posi-
tional information to the net (the pectoral muscle always
lay on the left upper part of the image) and the 3 class
approach. After improving the computational resources,
the following model’s configurations, U-net 2 & U-net 3
were tested. The first pectoral muscle segmentation re-
sults for both models were better, in comparison of the
first configuration. All the results show in this section
use a guide a red line representing the ground truth con-
tour, and the yellow line the pectoral prediction contour.
Figure 13 displays example result of the three models
output.

The table 4 shows the result of DSC evaluation
over the 2 datasets. As the OMI-DB is integrated with
images obatained from different systems it was decided
to present the results for each one separately. As can
be noticed, the performance of the net when evaluating
images from the same system is considarable. see
Figure ??

Dataset System Images DSC
INbreast 1 20 0.94
Optimam 2 8 0.72

3 12 0.80
4 14 0.79

Table 4: Distribution of images from different datasets for training,
validation and testing the models. The number of system refers to the
scanners used to obtain the images, explained on section 3.1.

The net fails in a few cases, as the Figure 15 shows,
when the contour of the pectoral muscle is not well de-
fined or have a similar structure as the breast tissue.

On the other hand, when testing images coming from
another system, the net is not able to generalize due
to the distribution of the intensities are quite different

(a) (b)

(c) (d)

Figure 13: U-net prediction comparison using different number of fil-
ters for the same image. (a) is the three class ground truth. (b)-(d)
display the three class probability map predictions from configuration
models ’U-net 1’, ’U-net 2’ and ’U-net 3’, respectively. Its configu-
rations are found on Table 2. The label of the images are: Red and
Black = background, blue and white = breast tissue, and green and
gray = pectoral muscle.

from the one the net learned.

The Figure 16 illustrate the highest DSC obtaining
from each system from Optimam dataset.

And finally, below are displayed the lower DSC from
those three system.

6.2. False Positive Reduction

As the performance of the pectoral muscle segmen-
tation on the Optimam data was not satisfactory in most
of the cases, it was decided to evaluate the performance
of the FP reduction without the interference of the
pectoral muscle algorithm’s error. This means that the
groung truth of the pectoral muscle was used instead.

The Table 5 contains the results of all the models.
As first look, incongruence within resulst of MLO with
and without pectoral muscle segmentation come into the
mind. Logically, the TP should not be alterated, at least
that one mass lays on the pectoral muscle; and the FP
should be reduced; masses from pectoral muscle are
discarded not added. However, this logical can not be
applied the approach proposed because:

1. The pectoral mask is applied to the image directly,
without any area or region analysis. Therefore, if
one uniform mass is between the pectoral and the
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(a) Ground Truth (b) U-net 1

Figure 14: Example of pectoral muscle segmentation result from IN-
breast images with DSC = 0.99

(a) (b)

Figure 15: Example of pectoral muscle segmentation result from IN-
breast images with DSC 0.96.

breast tissue, instead of being one object, after ap-
plying the mask can partitionate it into several ob-
jects, see Figure 18a

2. As the evaluation of the mass takes into account
the centroids, the calculation of this position will
be affected to objects layed on the middle of the
muscle.

3. And finally, an important factor of this behaviour
is due to the pectoral is masked on the probabil-
ity map image; this mean that, the calculation of
the image threshold, according to its minimum and
maximum probability change. For example, on
Figure 18b, the blue contours were masses can-
didates detected on the pectoral muscle, however
the high intensities of the image belongs to those
masses. Therefore, when calculating the thresh-
old, the intensity of the real mass, red contour, is
not taken into account due to the low probabil-
ity. When the probability map is segmented, the
high probabilities now are moved to the real mass.
Thus, a TP detection is summed up thanks to the
pectoral segmentation removal.

Regarding the two-view lesion correspondence, there
were some cases were the algorithm predict almost ex-
actly the position of the lesion on the MLO, as show in

(a) (b)

Figure 16: Example of pectoral muscle segmentation result from Op-
timam images with DSC = 0.98

(a) U-net 2 (b) U-net 3

Figure 17: Example of pectoral muscle segmentation result from Op-
timam images with DSC = 0.85

Figure ??. The minimum distance from the lesion cen-
troid to the epipolar line was 0.2mm.

Most of the time were the program fails is caused
since the mass candidates extraction. That is the case
of Figure 20 were, visually, the epipolar line shows a
clear correspondence between the two view, but the real
mass was not taken into account as a mass candidate due
to its low probability predicted from Module A.

7. Discussion

In this section the results of the algorithms imple-
mented are discussed and the conclusion of this work
are given, in terms of single and full FP reduction strat-
egy.

7.1. Pectoral muscle segmentation algorithm
7.1.1. U-net configuration

Three models with the same architecture but varying
the number of filters per convolutional layer were
implemented. The figure 14a is a clear example of the
behavior of each model.
When a CNN has limited number of filters, the net is
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(a) (b)

Figure 18: Example of aumenting FP findings (a) and TP (b)

Figure 19: Example of good match using correspondence approach

Figure 20: Example of bad result using correspondence approach

Table 5: Modules performance comparison under different thresholds

View Module Class GT 10mm 15mm 20mm
CC A TP 26 20 20 20

FP 0 17 17 17
FN 0 6 6 6

C TP 26 10 12 15
FP 0 5 6 8
FN 0 16 14 11

MLO A TP 26 18 18 18
FP 0 28 28 28
FN 0 8 8 8

B TP 26 21 21 21
FP 0 22 22 22
FN 0 5 5 5

C TP 26 8 11 12
FP 0 9 7 11
FN 0 18 15 14

not able to generalize and interpret the image correctly,
as noticed on the figure 14b. Therefore when the
number of filters increase, the net can capture the es-
sential characteristics of the problem evaluated, figures
15a- 15b, where the last one corresponds to the orig-
inal structure described on Rodriguez-Ruiz et al. (2018).

7.1.2. Pectoral segmentation result
At the beginning of the project, it was decided

to work only with one dataset, INbreast, due to the
advantage of the pectoral muscle annotation. However,
when the first test was performed on the CC and MLO
correspondence algorithm, it was noticed that INbreast
dataset lack of crucial information on the DICOM
header due to data anonymization.

Due to the time limitation of the project, it was
not possible to create manually ground truths of the
pectoral muscle for all images to train the net for that
dataset. Therefore, as the model trained and tested on
INbreast dataset gives acceptable results for pectoral
muscle segmentation, it was decided to test the model
with another dataset, OMI-DB.

In order to evaluate the segmentation produced by the
model for the OMI-DB, 46 pectoral muscle ground truth
were manually annotated by two engineers with large
experience in mammography. The annotations were
computed using the ITK-SNAP software.

7.1.3. Post-processing strategy
For the post-processing was decided to include the

fill-holes algorithm with the dilation step after the
upsample of the image. because if the post-processing
algorithm are applied before the upsampling, the image
end-up with pixeled border. However, the border
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appearance looks better when the post-processing
algorithm are applied after. In this point, the dilation
steps plays an important role for visual assignment,
therefore, although this step no dot impact significantly
the DCS calculation, it was decided to maintained on
the pipeline.

Figure 10 shows a comparison of applying that the
dilation do not have an important impact to the per-
formance of the net, in comparison with the fill-holes
scheme. and the slightly differents regarding the shape
of the pectoral border can be notice.

7.1.4. Drawbacks
One of the commom issue found when working with

medical images is the variability in the image charac-
teritics. This is caused by two main subjects.

1. The intensity variation when taking mammograms
cannot be controlled as it is subject to the auto-
matic x-ray exposure control, which depends on
the composition and internal distribution of each
breast.

2. There is not an standard image processing tech-
nique that all the systems must followe when pro-
cessing the RAW image. Therefore, each system
applies different criterias depending on each ven-
dor.

When the pectoral muscle segmentation algorithm
was tested with images coming from different systems,
this issue was faced. Thus, a normalization step for
the images is needed. Possible approaches include
background correction, or histogram matching.

Other alternatives to deal with this issue is training
the net with a dataset containing images from different
systems, then the net should be able to generalize for
all the cases. In addition, avoiding large background
areas on the images by cropping them within the breast
tissue could help to give less weight to the background
and focus on discrepancies between breast tissue and
pectoral muscle.

On the other hand, using this approach as a FP
reduction strategy, it gives good results in general when
test it after module A. However, if the pectoral muscle
is marked before producing the probability maps, its
performance is expected to improve.

It is important to mention that, in particular cases,
segmenting the pectoral muscle can compromise the di-
agnosis, since the presence of certain structures (e.g. ab-
normal axillary lymphs) can be useful to radiologists.

7.2. Potential Mass Candidates

The results show a better TP detections within
middle local threshold in the two views. However, in
these values, the potential mass candidates increase
but behind the local threshold percent values can exist
inadequate clinical tolerance. In other words, taking as
example the local threshold of 40% and the example of
potential mass candidates extraction of Figure 11, the
probabilities taken into account for this case are over
0.17 probability values. It is true that only with this low
value the mass can be detected, but clinically, classify a
mass with less than 20 percent of probability of being
a mass can not be allowed. Therefore the final decision
was taking as a local threshold of 20% percentage to let
pass the probabilities.

7.3. False positive reduction algorithm

The general performance of the algorithm proposed
cannot be evaluated strictly in this project because is
not possible to confirm the fails were caused by the
algorithm itself. More experiments regarding the dis-
tance tolerance could lead to increase its performance
but without reaching a significant grow.

The main issue is that this algorithm proposed is
aimed to reduce FP detection. Some of the cases study
in this project were having, in the Module A, a maxi-
mum probability less than 0.5 of being a lesion. Thus,
when computing the potential candidate mass the TP
rate was low. This was caused due to the module A was
trained as well with the INbreast dataset. Therefore,
when getting as input new images from other systems,
the framework fails. The same problem that Module B
presents.

Therefore, until the module A does not generate valu-
able potential masses that detects the majority or all the
TP, the algorithm cannot exploit its potential. One solu-
tion can be the application of Module B, when normal-
ization is done for working with images from different
systems, before the MLO image enters into the frame-
work of lesion detections.

8. Conclusions

Calculating the position of one object from one
projection to another one, adding a deformable environ-
ment due to compression factor, has been a challenging
task. The results expected were not possible to reach.
The main drawbacks was the influence of external
factors to the algorithm. For instance, breast profile
containing none breast tissue, nipple detection preci-
sion, and the main dependency to the performance of
an existed framework.
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The belief that the idea of the project can work is not
discard. However, the cost and benefits can discourage.
If the algorithm can have an acceptable performance
when the external factor, mentioned before, works
correctly, then the algorithm comes into a second plane
until those factors have an acceptable performance.
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Abstract

Currently, most users manually select and analyse data through visual inspection, which is intuitive on a small scale
but becomes impractical and error-prone on a large dataset. An entire research experiment may be distorted because
of some no good quality images over all the data. Magnetic Resonance Imaging (MRI) can be corrupted from different
preprocess algorithms. For instance, the skull stripping procedure commonly called brain extraction is often the first
component in neuroimage pipelines and therefore, its robustness is critical for the overall performance of the system.
Many methods have been proposed in the literature to address this problem. Moreover, there are many other processes
where the images can be accidentally corrupted and none of these modules have a quality control of the obtained
results. Hence, having an index that tells us about the quality of the images in an unsupervised way is essential for
having good results in further phases. To ensure the quality of the acquired images we have developed a modular
framework in which we deal with the different problems related to the images corruption after the preprocessing
algorithms. In this master thesis three main process for plane recognition, brain extraction recognition and quality
control of the skull-stripped brain were developed. We tackle these problems by combining some of the multiple
modules developed in order to build different pipelines. One of these pipelines, for example, is designed to obtain
the best parameter for the skull stripping tools. This pipeline as well the different modules have been successfully
validated in different MRI brain images. Thanks to the good results obtained, the different modules implemented can
be used in the future for an automated quality assessment of brain MRI scans.

Keywords: Quality assessment, preprocessing, framework, MRI, pipelines.

1. Introduction

Magnetic Resonance Imaging (MRI) has evolved into
an essential diagnostic technique in medical imaging
(Albers et al., 2006; Cerqueira et al., 2002; Warach
et al., 1996). As a consequence of this, in the last few
years, the use of MRI has grown exponentially. Fur-
thermore, the different unsolved problems present in the
medical imaging field such as longitudinal evaluation of
the lesion, quantitative analysis of the different struc-
tures of the brain, etc. has lead to increasing collabora-
tion between engineers and medical experts in order to
achieve better solutions.
Due to the difference on the acquired MRI images used
in the different medical algorithms, preprocessing plays
an important role. Moreover, preprocessing algorithms
are one of the preliminary steps that are required to ob-

tain high accuracy on further steps. However, after ap-
plying some preprocessing techniques on the raw data,
such as skull stripping, registration, denoising, bias cor-
rection etc, a wide variety of artefacts can degrade the
reliability of the MRI images quality (see Figure 1). Im-
age artefacts can compromise the utility of MRI vol-
umes in brain studies. These artefacts can include a
wide range of errors such as the one listed below:

• Incorrect brain extraction leading to unexpected
structures such as eyes, part of the skull or others
parts not considered as a brain.

• Structure of the volumes uploaded in the com-
puter’s memory: it is not always possible to rely
on the header of the file for correctly interpreting
the raw data in the software used. For example,
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(a) (b) (c)

Figure 1: Example of three different bad quality MRI images. a) Inaccurate skull stripping. Presence of the eyes. The eyes must not be included
when a skull stripping is performed. b) Excessive skull stripping. In this image is possible to see that the fundamental structure of the brain
damaged. c) Orientation error. The orientation of this image has been corrupted after a registration process.

it is crucial to recognise how the different planes
(sagittal, axial, coronal. see Figure 2) are stored in
the uploaded volume. This problem is also known
as the individualisation of the axis where the views
are stored in the matrix[x, y, z].

• Quality control of the registration process.

The idea, in this master thesis, is to build a dynamic
framework where it will be possible to add solutions for
all the problems related to the Quality Control (QC).
Solving the mentioned problems is important because
failure in recognising one of these artefacts can cause
various errors in the future morphometric analysis. Due
to the possible involvement of the structure of the brain,
the propagation of these errors into subsequent analysis
can lead to incorrect diagnosis results. Nowadays the
method most often used to avoid the dissemination of
error along image analysis pipelines is the use of visual
QC verification step. This step is performed manually
by experts. The downstream image assessment thus be-
comes susceptible to intra- and inter-evaluator variabil-
ity, as well as a human error related to the failure to
identify deviations.
A common target in medical imaging is trying to in-
crease the speed of the diagnosis. Giving a correct
diagnosis in the short time often helps patients in re-
covery better. Hence, solving these artefacts is fun-
damental for avoiding errors as well as increasing the
speed. Moreover, in order to improve the speed of the
diagnosis, we can resort to the use of a web-platform.
Using a web-platform can bring many advantages for
the research in medical image field such as 1) man-
aging the images and the associated metadata needed
for developing, testing and validating novel algorithms
for medical image analysis, 2) increase collaboration
between academia, industry and healthcare providers,
3) collaboration between multiple clinical institutions
(share data), etc. Further, nowadays with the evolu-
tion of the deep learning techniques, there are operat-
ing system and processing power limitations which pre-

vent applications from running on every type of work-
station. By developing web-based tools, it is possible
for users to access the medical image processing func-
tionalities wherever the internet is available. Digital
images should be processed, saved and retrieved eas-
ily and quickly using the software. They must compro-
mise their characteristics in terms of reading, writing,
and representing different image formats, applying var-
ious automatic analysis methods on the images in 2D
and 3D, and applying the latest image processing meth-
ods to accurately segment and visualise the data (Chabat
et al., 2000; Osteaux et al., 1992). These functionalities
are necessary for computer assisted diagnosis and ther-
apy.
In order to follow this line, we propose an approach that
supports data consolidation and integration based on the
well known XNAT1 web-platform. XNAT is an open
source imaging informatics platform, developed by the
Neuroinformatics research group at Washington Univer-
sity (Herrick et al., 2016). It facilitates common man-
agement, productivity and quality assurance tasks for
imaging and associated data.

1.1. Deep learning approaches in medical imaging
As 3D and 4D imaging are becoming routine, and

with physiological and functional imaging increasing,
medical imaging data is increasing in size and com-
plexity. Therefore, it is essential to develop tools that
can assist in extracting information from these datasets.
Nowadays, the researchers are using mainly machine
learning techniques to develop tools. Machine learning
is a set of algorithmic techniques that allow computer
systems to make data-driven predictions from large
data. These techniques have a variety of applications
that can be tailored to the medical field (Akkus et al.,
2017). There has been a significant effort in developing
classical machine learning algorithms for different

1https://www.xnat.org/
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problems, for example segmentation of normal (e.g.,
white matter and gray matter) and abnormal brain
tissues (e.g., brain tumors) in MRI. However, creation
of the imaging features that allows to solve these
problems requires careful engineering and specific
expertise. Furthermore, traditional machine learning
algorithms may do not generalise well. Despite a
significant effort from the medical imaging research
community, there are still unsolved problems due to
many facts such as normal anatomical variations in
brain morphology, variations in acquisition settings
and MRI scanners, image acquisition imperfections,
and variations in the appearance of pathology. But,
an emerging machine learning technique referred to
as deep learning (LeCun et al., 2015), can help avoid
limitations of classical machine learning algorithms,
and its self-learning features may enable identification
of new useful imaging features for quantitative analysis
of brain MRI. Deep learning techniques are gaining
popularity in many areas of medical image analysis
(Vasilakos et al., 2016), such as computer-aided diagno-
sis of brain disease, computer-aided detection of breast
lesions (Kooi et al., 2017), computer-aided diagnosis
of breast lesions and pulmonary nodules (Cheng et al.,
2016), and in histopathological diagnosis (Litjens et al.,
2016).

1.2. Objective
The main goal of this thesis is to develop a fully au-

tomated quality assessment pipeline for unsupervised
brain MRI processing. After the preprocessing step, we
treat several problems related to quality and orientations
of the images. Furthermore, we integrate the fully auto-
mated pipeline into the XNAT platform. In views of the
above information, realising tools for quality control of
the images such as the integration of these in a web plat-
form, it has become strictly necessary. For these reason,
the workflow of this master thesis is organised as fol-
low:

1. As the first step we propose an application for brain
MRI images quality control, mainly based on deep
learning: a Python script to organise, QC, and col-
laborate on neuroimaging processing.

2. Then we build a container with the idea of integrat-
ing this work into the installed web platform.

3. The last part is dedicated to the installation of the
well-known web platform XNAT and the integra-
tion of the container into XNAT.

Moreover, we divided this master thesis into the several
sub goals listed below:

Transfer learning approach. For reaching most of the
prefixed goals we decide to base our work on a
deep learning approach; in particular, we decide
to use a transfer learning (fine tuning) technique.

Figure 2: Axial, sagittal and coronal views are depicted in red, green
and blue, respectively.

Transfer learning is a machine learning method
where a model developed for a task is reused as
the starting point for a model on a second task. We
use the VGG16 (Simonyan and Zisserman, 2014a)
model pretrained on ImageNet in all the experi-
ments. ImageNet is a research project to develop
a large database of images with annotations, e.g.
images and their descriptions (Krizhevsky et al.,
2012). We decide to use transfer learning tech-
nique because usually training CNN’s (Convolu-
tional Neural Networks) from scratch is very com-
plicated and time-consuming and it require always
a significant amount of labelled data that are not
always easy to retrieve.

Data. Another important objective prefixed in this the-
sis is to develop a method not related to the domain
of the data (Ben-David et al., 2010). Nowadays,
there are many problems related to the domain
adaptation such as the use of different vendors MRI
scanner or the different range of intensity for rep-
resenting the same tissue. It is well known that
CNN’s methods for classification perform badly
when training and testing data are drawn from dif-
ferent distributions. Regarding to this, our idea
consists in to build a robust method that works in
different domains. For doing that we build an algo-
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rithm that works independently from MRI vendors
or intensity range of the images. In order to achieve
this goal, we use several different public datasets
and, we always test our methods with cases from
different scanners and image protocols during the
training phase.

Ground truth generation. Working with CNN’s
needs a significant amount of labelled data. Even
though we have plentiful of labelled training
datasets, still there are many task where the
ground-truth is not present. This is a common
problem in quality control algorithms. For exam-
ple, there is no labelled data in the literature for the
classification quality of the brain skull stripping.
The consequence of not having a sufficient amount
of labelled data can lead to a failure of the CNN’s
in prediction time. One tendency in order to
remedy this problem is to generate synthetic
data starting from the real one, different being
the strategies adopted by the researchers for this
purpose. Consequently, we dedicate a part of
this thesis to build methods for generate synthetic
ground-truth in order to provide data needed by
the different methodologies developed.

Experimental. In this thesis, we treat several problems
related to the image quality control. When we load
the medical images in a software is always am-
biguous the storage of them in the memory. Nor-
mally, the information regarding the data storage
are contained in the DICOM file (Digital Imag-
ing and Communications in Medicine). DICOM is
a specification for the creation, transmission, and
storage of digital medical image and reports data.
However, due to the different process applied to
the medical images, the information contained in
the DICOM can be corrupted or lost. For this rea-
son, we build a method based on a deep learning
approach that is capable to recognise the relation
between the different views (axial, sagittal, coro-
nal) and the axis of the matrix that will contain the
data (see Figure 2). The second experiment that
we conduct has the goal to identify the presence of
the skull in the brain MRI images. Recognising the
presence of the skull in the brain images in an au-
tomatic way can be helpful and time-saving when
the number of images to process is big. However,
more important then recognise the presence of the
skull is knowing the quality of the skull-stripped
image. For this reason, we dedicate the last part of
this thesis to build a method which give us a quality
index of the skull-stripped image.

Platform integration. As the last goal, we want to in-
tegrate the code into a web platform based on the
XNAT software. For reaching this goal, we put the
built script inside a container. After this, we inte-

grate and plug this container into the XNAT plat-
form.

2. State of the art

Most of the time, brain MRI image data in their
raw form, are not immediately usable for applying
deep learning algorithms and extracting biologically-
meaningful information. Frequently images need to be
preprocessed using a wide variety of software tools,
optimised and combined together into a preprocessing
pipeline. There are many excellent examples of prepro-
cessing pipelines in the literature, such as those used by
Glasser et al. (2013) or by Strother (2006).
Often pipelines are built using tools contained in FSL2.
FSL is a comprehensive library of analysis tools for
FMRI, MRI and DTI brain imaging data. FSL plat-
form is a collection of different tools for medical im-
ages. Most of them are related to the preprocessing of
the images such as FSL-BET (Smith, 2002), that has the
aim of performing the brain extraction, or FSL-FLIRT
(Jenkinson and Smith, 2001) used for the registration
process. However, after the execution of the preprocess-
ing step, there are not many tools to assess the success
of the preprocessing algorithm and therefore the qual-
ity of the images’ results. Hence, identifying bad pre-
processed datasets using the actual tools is not always
straightforward, and it can be prohibitively time con-
suming for large datasets.
Preprocessing protocols have been developed to extract
metrics that can be viewed as a cohort-level summary
from which outliers are selected for manual quality-
assurance. Gardner et al. (1995) showed that human
observers demonstrated poor sensitivity when evaluat-
ing intentionally degraded MRI volumes, as opposed to
an automated approach, which detected even minimal
noise in the images. One method to reduce the workload
of visually inspecting a large number of MRIs is parallel
processing by multiple investigators, such that each in-
vestigator examines a subset of the data. However, such
an approach can be unreliable, as each investigator uses
a different threshold for accepting or excluding data.
Additionally, this approach is time-consuming, which
makes the task of maintaining and updating the image
quality information of large growing 3D-MRI datasets
in a timely manner challenging.
Although it is possible to find different papers about
each one of the problems mentioned before, there are
very few studies in the literature that directly explore
the general issues of the QC. For example, Bennett and
Miller (2010) shows in his studies that poorly executed
application (or lack thereof) can can compromise the
trustworthiness of a study. The mentioned problems

2https://fsl.fmrib.ox.ac.uk/fsldownloads registration

10.4



A fully automated deep learning quality assessment framework for online brain MRI processing 5

Table 1: Datasets used in this master thesis. The upper table is related to the Campinas- Calgary dataset, this dataset has been used only in the
training phase. The table below is related with all the datsets used in the testing phase.

TRAINING DATASET
Name Vendor Field Modality Brain Mask N. cases used

1.5 T T1 yes 60Siemens 3.0 T T1 yes 60
1.5 T T1 yes 59Philips 3.0 T T1 yes 60
1.5 T T1 yes 60

CAMPINAS-CALGARY

GE 3.0 T T1 yes 60

All 359

TESTING DATASETS
Name Vendors Fields Modality Brain Mask N. cases used
IXI-dataset Philips,GE 3T/1.5T T1/T2 no 581
WMH T1 Philips, Siemens, GE 3T/1.5T T1/T2 no 120
OASIS2 Not specified 3T/1.5T T1/T2 yes 365
ADNI2 Not specified 3T/1.5T T1/Flair yes 194
ATLAS R1.1 Philips, Siemens, GE 1.5T T1 no 219
IBSR Siemens, GE 1.5T T1 yes 18
MICCAI 2016 Siemens, GE 1.5T T1 yes 15
ISBI 2015 Siemens, GE 3.0T T1/T2/Flair yes 5

All 1517

can be compensate by the QC, hence QC it has be-
came a critical issue to solve in brain imaging. This
topic has been explored in the literature, although very
often research is mostly focused on quality assurance
rather than QC. Quality assurance is focused on avoid-
ing the occurrence of problems by improving a process
while QC is focused on finding possible problems in
the output of that process. For example, the Function
Biomedical Informatics Research Network (FBIRN) set
of recommendations (Glover et al., 2012) is solely fo-
cused on quality assurance. In a similar vein, Friedman
and Glover (2006) explore an interesting set of quality
metrics, but they focus on stability, signal-to-noise ra-
tio (SNR), drift, and other hardware performance issues
related to MR scanners, not specifically on the type of
artefacts that can be found in MR imaging even when
complying with the best quality assurance policies.

3. Materials and methods

3.1. Datasets

For addressing the different problems treated in this
thesis we decide to use MRI (magnetic resonance im-
age) from nine public datasets (see Table 1). We make
this decision because we have the necessity of building
methods that are robust to the change between domains.
In order to do this, we decide to use a separate set of
data for the different phase of training and testing. It
has to be noticed that in training phase we only use the

Dataset Calgary-Campinas (Souza et al., 2017), but we
lately test with all the others datasets to prove the gener-
alisation of the methods. All the datasets used are listed
below:

1. Campinas-Calgary 359 dataset
The dataset Campinas-Calgary 3593 is composed
of images of healthy adults (29-80 years) acquired
on scanners from three vendors (Siemens, Philips
and General Electric) at both 1.5 T and 3 T. CC-
359 is comprised of 359 images, 60 subjects per
vendor and magnetic field strength. The dataset
is approximately age and gender balanced, sub-
ject to the constraints of the available images.
It provides consensus brain extraction masks for
all volumes generated using supervised classifi-
cation. Manual segmentation results for twelve
randomly selected subjects performed by an ex-
pert are also provided. The CC-359 dataset allows
investigation of 1) the influences of both vendor
and magnetic field strength on quantitative analy-
sis of brain MRI; 2) parameter optimisation for au-
tomatic segmentation methods; and potentially 3)
machine learning classifiers with big data, specif-
ically those based on deep learning methods, as
these approaches require a large amount of data
(Souza et al., 2017). Figure 3 shows one sample

3http://miclab.fee.unicamp.br/calgary-campinas-359
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(a) (b)

Figure 3: Example of the same slice before and after applying the
mask of the brain-extraction. The slices come from the dataset
CC359. a)Slice with the skull. b)Slice skull-stripped.

of the CC359 before applying the brain extraction
mask and after applied it.

2. IXI dataset
The Information eXtraction from Images (IXI)4

dataset, is a collection of structural MRIs from
581 healthy adults across the lifespan (20−86 years
old). The IXI dataset was collected in 2005/2006
from three sites in the UK (each with a different
scanner system) and includes T1, T2, Proton Den-
sity(PD), and MRA images. Here we only used the
T1 structural images. The dataset is freely avail-
able from the mentioned website. The IXI dataset
has been used in numerous studies investigating
structural properties of the brain and related dif-
ferences due to healthy aging (Ardekani and Bach-
man, 2009; Madan and Kensinger, 2016; Zhang
et al., 2014).

3. White matter intensity dataset MICCAI 2017
Image data used in this dataset are coming from
Medical Image Computing Computer Assisted In-
tervetion (MICCAI)5 challenge 2017. The images
were acquired from five different scanners from
three different vendors in three different hospitals
in the Netherlands and Singapore. For each sub-
ject, a 3D T1 image and a 2D multi-slice Fluid At-
tenuated Inversion Recovery (FLAIR) image are
provided. The manual reference standard is de-
fined on the FLAIR image. From this dataset we
have used 120 cases.

4. OASIS2 Dataset
The Open Access Series of Imaging Studies (OA-
SIS2)6 is a series of magnetic resonance imaging
data sets that is publicly available for study and
analysis. This dataset consists of a longitudinal
collection of 150 subjects aged 60 to 96. Each sub-
ject was scanned on two or more visits, separated

4http://brain-development.org/ixi-dataset/
5https://sites.google.com/site/braintumorsegmentation/
6https://www.oasis-brains.org/data

by at least one year for a total of 373 imaging ses-
sions. For each subject, 3 or 4 individual T1 MRI
scans obtained in single scan sessions are included.
The subjects are all right-handed and include both
men and women. 72 of the subjects were charac-
terised as nondemented throughout the study. 64
of the included subjects were characterised as de-
mented at the time of their initial visits and re-
mained so for subsequent scans, including 51 indi-
viduals with mild to moderate Alzheimers disease.
Another 14 subjects were characterised as nonde-
mented at the time of their initial visit and were
subsequently characterised as demented at a later
visit. In the description of this dataset, there are no
informations about the vendor machine used. From
this dataset we have used 365 cases.

5. ADNI-2 dataset
In the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI-2)7 as explained by Jack et al. (2008)
researchers collect several types of data from study
volunteers throughout their participation in the
study. Data collection is performed using a stan-
dard set of protocols and procedures to eliminate
inconsistencies. Subjects in the baseline ADNI-2
dataset have 1.5T and 3T T1 structural MRI data.
The dataset included a total of n = 5,738 scans ac-
quired 3, 6, 12, and 24 months from the following
participants: 198 healthy controls, 111 individuals
with significant memory complaint, 182 individu-
als with early mild cognitive impairment, 177 in-
dividuals with late mild cognitive impairment and
155 probable Alzheimer’s Disease patients. For
our experiments, we pick a subset of 194 patients
all coming from the healthy control class. Due
to its vastness, no informations about vendors ma-
chines are furnished

6. ATLAS R1.1
The Anatomical Tracings of Lesions After Stroke
(ATLAS R1.1)8 dataset, is an open-source dataset
of 304 T1 MRIs (Liew et al., 2018). 304 MRI
images from 11 cohorts worldwide were collected
from research groups in the ENIGMA Stroke Re-
covery Working Group consortium9. Images con-
sisted of T1 anatomical MRIs of individuals af-
ter stroke. These images were collected primar-
ily for research purposes and are not representative
of the overall general stroke population. For each
MRI, brain lesions were identified and masks were
manually drawn on each individual brain in native
space using MRIcron10.

7. IBSR dataset
Internet Brain Segmentation Repository

7http://adni.loni.usc.edu/adni-go-adni-2-clinical-data-available/
8http://fcon 1000.projects.nitrc.org/indi/retro/atlas.html
9http://enigma.ini.usc.edu/ongoing/enigma-stroke-recovery/

10https://www.nitrc.org/projects/mricron
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(IBSR18)11 dataset which is one of the standard
datasets for tissue quantification and segmentation
evaluation. The dataset consists of 18 MRI vol-
umes including: ten volumes for training , five for
validation and three for testing. For the training
and validation images, the corresponding ground
truth (GT) is provided, while for the testing set
it will not be available. The number of valaible
images as suggetested by the name are 18.

8. ISBI 2015
International Symposium on Biomedical Imaging
(ISBI)12 dataset consist in a longitudinal studies of
multiple sclerosis (MS) patient. The images were
given by the 2015 Longitudinal MS Lesion Seg-
mentation Challenge. The image are acquired in
T1 modality with a magnetic field of 3 tesla. Due
to the bad quality it was possible use just seven
cases of this datasets.

9. MICCAI 2016
The MICCAI 201613 is composed of 15 training
scans acquired in different image domains: 5 scans
(Philips Ingenia 3T), 5 scans (Siemens Aera 1.5T)
and 5 scans (Siemens Verio 3T). For each subject,
3D T1 MPRAGE, 3D FLAIR, 3D T1 gadolinium
enhanced and 2D T2/DP images were provided,
presenting different image resolutions for each im-
age domain (see the organiser’s website for the ex-
act details of the acquisition parameter and im-
age resolutions). Manual lesion annotations for
each training subject were provided as a consensus
mask among 7 different human raters.

3.2. Methods

For the problem treated in this master thesis, a trans-
fer learning approach has been conducted by using an
already pretrained and well-know VGG16 architecture
(see Figure 4). Transfer Learning freezes the bottom
layers of the CNN’s to extract image features vec-
tors from a training set in a different domain, which
can then be used to train a new classifier for this do-
main. The strategy here involves the use of a pre-trained
VGG16 network, developed by Simonyan and Zisser-
man (2014b), as an image feature extraction technique.
The weights that we use are the ones extracted from
the VGG16 trained on ImageNet (Deng et al., 2009).
Even if the medical images may appear to be very dif-
ferent from the images used in ImageNet, Tajbakhsh
et al. (2016) recently showed the potential for knowl-
edge transfer to the medical imaging domain.
Transfer Learning begins with copying (transferring)
the weights from a pre-trained network to the network
we wish to train. The exception is the fully connected

11https://www.nitrc.org/projects/ibsr/
12http://biomedicalimaging.org/2015/
13https://portal.fli-iam.irisa.fr/msseg-challenge/overview

Figure 4: VGG16 archtectures. The block in different colors indicate
the fine tuning of the differents modules.

layers, especially the last one whose number of nodes
depends on the number of classes in the dataset. A com-
mon practice is to replace the last fully connected layer
of the pre-trained CNN with a new fully-connected
layer that has the many neurons as the number of the
classes in the new target application. In our study, we
deal with two and three class classification tasks. There-
fore, the new fully connected layer has two or three neu-
rons depending on the application under study. After
the weights of the last fully connected layers are ini-
tialised, these layers will be fine-tuned with the training
dataset. In general, the early layers of a CNN learn low
level image features, which are applicable to most vi-
sion tasks, but the late layers learn high-level features,
which are specific to the application at hand. Therefore,
fine-tuning the last few layers is usually sufficient for
adapt the CNN to a new task. Hence, the fully con-
nected layers of our pretrained architecture (VGG16)
were replaced with a new fully connected layer, and the
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labelled data were used to train only the added layers
while keeping the rest of the network the same.

3.3. CNN’s settings

The pre-trained VGG16 on Imagenet (Simonyan and
Zisserman, 2014a) consists of approximately 15 milion
of parameters trained using 1.2 milion images labeled
with 1000 semantic class. In the strategy adopted, we
decided to freeze the weights of all the convolutional
layers, that were around 14 milions of parameters, and
we trained the fully connected layers. We decided to
add two fully connected layers one with a fixed size of
1024 and the other with a size depending on the treated
problems. Thus, the trainable parameters were around
500000.
For the training phase we decided to use an early stop-
ping technique approach, hence the number of training
epochs was stopped when a condition was verified. In
machine learning, early stopping is a form of regulari-
sation used to avoid overfitting when training a learner
with an iterative method, such as gradient descent. Early
stopping rules provide guidance such as how many iter-
ations can be run before the learner begins to over-fit. In
the method proposed, we decided to compute a valida-
tion step every epoch. If there was no improving in the
accuracy performance over six sequential validations,
the training of the net was stopped and the weights of
the best validation accuracy epoch stored. We set the
batch size to 32. It has been observed in practice that
when using a larger batch there is a significant degra-
dation in the quality of the model, as measured by its
ability to generalise (Ren et al., 2015). Moreover, the
lack of generalisation ability is due to the fact that large-
batch methods tend to converge to sharp minimisers of
the training function (Keskar et al., 2016). Furthermore
we decided to use Adam optimiser (Kingma and Ba,
2014). In choosing an optimiser what is important to
consider is the network depth (benefit from per-weight
learning rates if the network is deep) and the type of
layers and the type of data. For deciding the learning
rate of the trainable layers we conducted an investiga-
tive analysis. The parameter that we choose ensured
convergence for all the applications. Hence, following
on from what we said, we choose as a final parameters a
learning rate equal to 10−4, batch size of 32, max num-
ber of epochs to 50 a patience epochs equal to 6 (early
stopping condition). As images input, we used the MRI
slices without doing any division in patches, but we re-
sliced the input images according to the input layer of
the VGG16 (224x224x3). Since the VGG16 architec-
ture receives color images as its input in two of the prob-
lems, we simply repeated the first channel and produced
3-channel RGB-like images, and in the remain problem
we decided to adopt another strategy for generate the 3-
channels images. In the next sections we will analyse in
detail the individual modules of the framework.

3.4. Plane orientation recognition
The planes of MRI brain images are categorised into

three different groups axial, sagittal and coronal. For
understanding the relationship between the different ac-
quisition plane and the axis of the variable where the
images are stored we usually rely on the information
contained in the Neuroimaging Informatics Technology
Initiative (Nifti) file header. However, the header’s in-
formation sometimes may be corrupted due to different
reasons such as anonymisation process or use of differ-
ent protocols. This may cause possible errors in future
applied algorithms. In this module, we built an algo-
rithm able to individualise the different views of Brain
MRI images. An important point to stress is that in
these methods we only use images features, similar to
humans, so the network is somehow learning to identify
the brain shape to recognise the plane. The strength of
this method is that we do not need parameters to tune
the learning process.
For all the experiments, we used the Campinas-Calgary
dataset in training phase and all of the others datasets
for the testing phase. For preparing the training data, ac-
cording to the description of the dataset, all the images
were acquired within the same protocol. In the protocol
of medical images, it is possible to find all the informa-
tion about the orientation, number of slices, views etc.
Furthermore, an extra visual check was performed for
avoiding errors. As a consequence of the above, we can
assume to find the same views on the same axis for all
the training cases. After this step, we built the training
dataset by extracting slices from the volume along its
three different planes.
In the initial experiment, we trained the CNN with all
the slices of each case. However, due to the similar-
ity between the extremes slices in the different views,
the results obtained were not good in terms of accu-
racy and time-consuming. So, due to the anatomy of
the brain, where is clear that in the centre of each sin-
gle views is possible to find more structure, we can af-
firm that the most informative slices for this problem are
the ones localised in the centre of the MRI images se-
ries. Hence, it is unnecessary in terms of time to use all
the slices per view. Nevertheless, define where a cen-
tral slice is in a volume with no prior information is not
an easy task. For this reason, we build a function able
to extract the central slice index of all the plane (see
Algortihm 1). This function is based on counting the
number of nonzero pixels over all the slices and assume
as a central slice the one with the maximum number
of it. However, in the first approach tried we noticed
that the black area of the images was not set to zero
as expected. Commonly this problem is caused by the
noise introduced during the acquisition time. Because
of this the procedure described above was failing. So
we decided to add an extra step, and before counting
the nonzero pixels, we performed a histogram thresh-
olding. Assuming that the background occupies a large
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(a) Axial slice of brain MRI. (b) Histogram correspondent to the MRI slice.

Figure 5: Histogram of the intensity distribution of a brain MRI images. The first mode value after the zero value represents the background of the
image.

Algorithm 1 Central slice localisation

1: procedure
2: for each slice S in the volume do
3: Hist← histogram of the slice
4: Threshold← value after the first mode
5: for each pixel in S do
6: if S (x, y) < Thresold then
7: S(x,y)← zero
8: else
9: S(x,y)← one

10: central idx slice← slice max amount of ones

part of the slices and that the mean value of the noise
distribution has values close to the zero value, thresh-
olding the histogram in the first minimum after the first
big mode, will eliminate the noise (See Figure 5). The
MRI histogram was computed as follows: given the in-
tensity value of the native space MRI, the range of the
intensities [0, Imax] was divided into 30 bins of width
Imax/30, where Imax = max(I(x, y, z)).
In order to allow the CNN to work in a more general
way, we decided to use images coming from both skull-
stripped and not skull-stripped cases. The skull-stripped
images were obtained through the multiplication of the
given mask and the native volume of the Dataset CC-
359. Then, as a last step before starting the training
phase, we performed the normalisation of all the vol-
umes. Successively, for building the training set, we
extracted a range of 10 slices around the centre slice of
each plane. Hence, as a training test, we collected 12000
slices, equally distributed in the three class axial, sagit-
tal and coronal. We decided to split the dataset into two
parts composed of 80% (training) and 20% (validation).
This division was conducted to assess the conditions of
the early stop technique.
For the evaluation part, we used all the others datasets il-
lustrated in Table 1. For a correctly use of these datasets,

we individualise the location of the different views by
the use of the header, and we ensure the correctness of
this information by visual inspection of each one.

3.5. Brain-extraction recognition
Our motivation for devising algorithms for recognis-

ing if the MRI is skull-stripped was multifaceted. We
aimed at establishing a method that requires no param-
eter tuning and handles images coming from different
clinical routines. Furthermore, we aimed at building
solid algorithms capable to work with all the modali-
ties acquired (T1, T2, PD, FLAIR).
Even for a human recognising the presence of the skull
is an easy task, but when the number of cases increases
analysing all of it can become a waste of time. For this
reason, often the researchers do not perform the verifi-
cation in all the cases, but they analyse just a few sam-
ples picked from the whole datasets. However, it can
happen that some cases are not uniform with the rest
of the dataset. Moreover, usually the data analysed in
the different medical image algorithm do not come from
the same datasets. Accordingly with the different reason
explained, it can happen to misclassified some cases as
skull-stripped when they are not, or the opposite. This
misclassification can lead to a failure of the following
steps applied to the dataset, with the risk of doing an er-
roneous diagnosis.
As a first step for these methods, we applied the mask to
the 359 cases, and we took the result has a ground truth
for the skull-stripped class. Thus, we built the two-class
data needed for the training of this problem as follow:

• Skull-stripped Brain MRI (359 cases)

• Not skull-stripped Brain MRI (359 cases)

Even if is easily possible extend this problem to all
the views (axial, sagittal, coronal), we decided to deal
with this problem in a slice oriented way; for this rea-
son we extracted only the axial views slices to train
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Figure 6: Procedure used for perform the testing phase of the brain-
extraction recognition.

the net with. For checking the axis where the axial
was stored, we used the first module developed (plane
recognition). This module is described in the section
3.4. Before extracting the slice, we perform the mean
shift and division by the standard deviation by volume
for homogenise the data (Li, 2012). The idea is to al-
low different data sets to be comparable. Following, we
splitted these data as follow: 1) 80% for the training
phase, 2) 20% for the validation phase. Lately, we tested
the CNN in all the others datasets. For performing the
testing phase, we built a function that receive in input
only cases with the skull. Successively, we generated a
random binary variable that indicated whether or not to
apply the brain extraction algorithms. As a next step,
we applied the net for predict the class of the volumes,
and we compare it with the expected classification (see
Figure 6).

3.6. Quality control of the skull stripping
When a brain extraction is performed analysing the

quality in an automatic and unsupervised way, it can
be an interesting contribution to the researcher’s com-
munity. Nowadays there are different public tools used
for accomplishing the brain extraction, for example, the
most used are FSL-BET (Jenkinson et al., 2012), Robex
(Iglesias et al., 2011), BEaST (Bouckaert et al., 2014)
etc. In some of these tools, there is the possibility to
tune some parameters to better adapt the tool to each
particular case. But, tuning these parameters require a
large amount of time. Thus, most of the time these tools
are used with the standard configuration, with the con-
sequence of not having guaranteed in the quality of the
result.
Hence, the primary goal of this module is to give a mea-
sure of the quality of a skull-stripped image. Besides,
we can use the index given in output by the CNN to
build many different tools; for example, one idea is to
integrate this module in a pipeline for building an auto-
matic and unsupervised method to tune the parameters
of the skull stripping.
From the original Calgary Campinas dataset we used
the given mask of the brain extraction as a ground-truth.
Lately, for building the bad skull stripping cases, we de-
cided to make an automated script for corrupting the
correct data mask. In this script, we used morpholog-
ical operations such as dilation and erosion to corrupt
the original masks (ground-truth). The corruption is
performed in a non uniform and controlled way. The
purpose of this decision was to corrupt the data more
realistically. In doing so, we can control what are the
parts to include in the bad skull-stripped case, for ex-
ample, eyes, part of the skull neck and other parts. In
order to follow this line, we built different morphologi-
cal structuring elements, and lately, we used them dur-
ing the dilation and erosion operations. It is important
to highlight that, an essential part of the morphological
operation such as dilation and erosion is the structuring
element used to probe the input image. A structuring
element is a matrix that identifies the pixel in the im-
age being processed and defines the neighborhood used
in the processing of each pixel. Typically a structuring
element is chosen according to the deformation that we
want to have in the input image. In addition, for gen-
erating more realistic bad skull stripping cases, we de-
cided to generate skull stripping volumes starting from
the original cases by applying a brain extraction tool
(FSL-BET) herein the parameters were tuned wrongly.
All of these cases were visually checked for ensuring
the belonging class. One example of the distorted im-
ages are shown in Figure 7 After that we have conducted
two main experiments that are described below:

QC in the original space: In the first experiment,
we decided to train the CNN with the image in their
native space. As the first step of this experiment, we
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(a) (b) (c) (d)

Figure 7: Example of distortions applied on the data. a) Original Slice. b) Slice good skull-stripped. c) Slice corrupted by dilation of the mask. d)
Slice corrupted by erosion of the mask.

performed the mean shift and division by the standard
deviation. After that, we proceed to built the training
set by extracting all the non-black slice from the
generated dataset. Before proceeding with the training,
we checked if all the slices were extracted in the axial
views. So in total, we extracted 70000 slices. As in all
the previous experiments, we replicated the same slice
in the three channels of the VGG input.
For evaluating the CNN, we used the datasets exposed
in the section 3.1. From all the datasets we selected just
the one in which a brain mask extraction was given. So
after considering these masks as good skull-stripped,
we performed the prediction on it using the CNN, and
we finally checked the correctness of the prediction.
Moreover, for testing the CNN in recognising the
negative class, we corrupted the ground-truth in the
same way performed in training. As a result, the CNN
was able to recognise the bad skull-stripped case in
which were present more morphological tissue than the
expected one (dilated mask) for example, eyes part of
skull etc. But it was not the same for the cases were the
bad skull-stripped were caused by the presence of less
tissue of the brain (eroded mask). For this reason, we
decided to implement another method.

QC in the MNI space:

In this experiment, we decided to register all the cases
of Campinas-Calgary dataset to the Montreal Neurolog-
ical Institute (MNI) 1mm space. The MNI defined a
new standard brain by using a large series of MRI scans
on normal controls. To perform the registration we
used FMRIBs Linear Image Registration Tool (FLIRT)
(Jenkinson et al., 2002). The alignment to the MNI stan-
dard space was completed using the affine transforma-
tion process provided by FLIRT, which has 12 parame-
ters or degrees of freedom. The affine process was em-
ployed to keep the shape and proportions of each brain.
The 12 parameters are divided into the following sub-
group: translation, shear, rotation and scale. Moreover,

Figure 8: Input image of the VGG

the FLIRT algorithm gives the possibility to set others
parameters such as interpolation or the reference vol-
ume. In our case, we chose a trilinear interpolation and
the MNI152 template as a reference volume.
The decision to move into the MNI space was guided by
the idea to put in the second channel of the VGG input
image the correspondent slice of the mean volume MNI
and in the third channel the difference between the slice
in analysis and the MNI slice. In the Figure 8 is shown
one example of the built image. We took this choice for
allowing the CNN to capture the difference between the
MNI volume and the slice analysed; this difference can
help in detecting the skull stripping quality. In the pre-
vious approach, the CNN was not able to detect errors
caused by the excessive erosion of the brain structure.
The motivation behind this error was mainly due to the
similarity between the upper slice of the brain and the
extra eroded one. Hence, the CNN was getting lost in
differentiating these slices. We solve this error by using
the mean volume of the MNI as a metric of the expected
volume size. We put in the third channel the difference
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between the two volumes in order to reinforce this dif-
ference. Thus, with the new approach, we solved the
issue of failing when the skull stripping tool was erod-
ing too much the brain structures.
For testing this methodology, we used all the public
datasets containing a manual brain mask and the ones
in which was given only the segmentation mask of the
different classes, where we reconstructed the brain mask
by merging all the classes labels. In this approach, the
final decision is based on the overall scores obtained
by computing the mean over all the slices. However,
it has to be noted that for each slice the CNN gave as
output the probability of belonging to one of the two
classes. Thus, it can happen that the prediction of the
volumes can result in a good skull stripping class even
if it includes some bad skull-stripped slices. For dealing
with this problem different are the strategies that can be
adopted such as correcting the bad slice and make the
prediction again, or we can put a threshold of assess-
ment under which the result of the skull stripping is not
acceptable. After that, as an example of application, we
built a function for automatically tune the parameters of
FSL-BET for having the best skull stripping result. The
scheme of this function is explained in the subsection
4.4. Lately, we tested this function on the WMH dataset
and, we visually checked the correspondence between
the results of the skull stripping, in which the parame-
ters were varied, and the quality index produced by the
CNN.

3.7. Implementation

The architecture that we use is a Tensorflow imple-
mentation of VGG 16. TensorFlow, developed by Abadi
et al. (2015), is an interface for expressing machine
learning algorithms and an implementation for execut-
ing such algorithms. Furthermore is an open source
software library. For the fine-tuning scenarios, we used
the pre-trained VGG16 model provided by Keras (Chol-
let et al., 2015). Keras is a high-level neural networks
API, written in Python and capable of running on top of
TensorFlow.

4. Results & Discussion

We now provide a qualitative and quantitative anal-
ysis of the performance of the developed methods. As
an additional experiment, we conducted a test for eval-
uating the performance of the implemented pipeline for
autotune the skull stripping tool parameter. For each
of the methodology exposed in the section before we
used various combinations of the public datasets. The
cases selected for the different experiments were taken
according to the information given by the description of
the public datasets such as the presence of brain mask
or number of axial slice.

Table 2: Plane Recognition Test. The results show in the table are
computed by classifying the content of the three different axis of the
volume. If one of these views is not recognised correctly all the vol-
ume is classified as wrong.

PLANE RECOGNITION TEST
Name N. cases used Acc. % N. correct classified
IXI 580 99.5% 578
WMH 120 100% 120
ADNI2 194 95.3% 185
ATLAS R1.1 219 100% 219
OASIS2 365 97% 355

General 1479 98.5% 1457

4.1. Plane recognition results

As a first step, we tested the methods plane recogni-
tion. This method has been tested on a total of 1479
cases coming from different datasets. More detail about
the dataset are exposed in the Table 1. Due to the ab-
sence of ground truth, we first conducted a visual in-
spection procedure in order to generate labelled data
needed for these experiments. After that, we com-
puted the accuracy of the correctly predicted MRI cases
when compared to the visually inspected category. The
method reached a mean accuracy of 98.5% (n = 1457)
of correctly classified cases. More detail about the ex-
periments result are reported in Table 2.

Due to the strong difference between the three dif-
ferent views axial, sagittal and coronal this method
achieved really good accuracy in prediction. However,
in some case, the method developed was not able to cor-
rectly classify. This misclassification was mainly due
to the failure on individualising the central slice in the
volume. This error happened because the methods de-
veloped for extracting the central slice mainly relied
on a histogram thresholding. Hence, if the noise of
the background was relevant we were not able to iso-
late the structural part of the MRI volumes from the
background. Thus, the central slice of the volumes was
wrongly detected and as a consequences the CNN was
getting confused in classify this no central slice. In the
way that we performed the training the CNN was mainly
memorising the shape of the central slice of the three
different views, hence it was expected the misclassifi-
cations of slices different from the central. Moreover,
in ordered to decrease the classification error we per-
formed the prediction in all the three axis separately and
in the end we did a majority voting between the three
vector of probability obtained.

4.2. Brain extraction recognition

As a second stage, we evaluated the performance of
the developed methods for recognising the presence of
the skull in the MRI case. Because of the automatic
methods developed for testing the CNN explained in
sec. 3.5, it was possible to analyse all the datasets where
the original images with skull were present. Hence, we
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(a) (b) (c)

Figure 9: Example of cases miss-classified by the brain extraction method. It is clearly evident the presence of most of the skull.

Table 3: Brain extraction recognition test. The result show in the table
are a obtain by computing the mean over all the volume inside each
single dataset.

BRAIN EXTRACTION TEST
Name N. cases used Acc. % N. skull-stripped (BET)
IXI-dataset 581 100% 290
WMH T1 120 99% 60
OASIS2 365 100% 150
ADNI2 194 100% 95
ATLAS R1.1 219 100% 105
IBSR 18 98% 9
MICCAI2016 15 100% 7
ISBI 5 97% 3

General 1517 99.25% 719

conducted an exhaustive test on over 1500 cases (see
Table 3). As expected in this problem, we reached a re-
ally high accuracy over all the cases of 99.25%.
The presence of the skull in one image was easily recog-
nisable by the CNN. This was due to different reasons
such as the strong difference between the intensity of
the skull and the intensity of the other structures in the
brain or the mean volume size. Hence, many are the
distinct features that allow the CNN to clearly distin-
guish the two classes. However, even if the problem
was not considered very difficult some errors of classi-
fication were still present. These errors were due to the
bad skull-stripping result generated by the tools (FSL-
BET) that we used in the testing pipeline. To understand
why these errors happened we decided to show some
cases that were missclasified (See Figure 9). These im-
ages were examples of slices skull-stripped by the use
of FSL-BET with the standard parameters. It was easy
to see that the result of the skull-stripped slices was to-
tally ambiguous. Due to the partial belonging to both
of the classes, it was not an easy task classify these im-
ages in an automatic way. It was clearly visible that
in the slice in Figure 9a was present more than half of
the structure of the skull, even if the brain-extraction
was already performed on it. Moreover, is important to
highlight that these methods concern only to distinguish

Table 4: Testing results on the native spaces and in the MNI space.
The accuracy is computed by classify each volume as true of false
and then compare this with the ground-truth.

QUALITY CONTROL TEST
(NATIVE vs MNI)

Name N. cases used Acc. native space Acc. MNI space
OASIS2 60 89% 95%
ADNI2 40 90% 93%
IBSR 18 100% 100%
MICCAI2016 15 100% 100%
ISBI 5 75% 70%

General 138 90.8% 91.6%

skull-stripped or not skull-stripped brain MRI. Thus, the
case of bad skull-stripping are totally new for the CNN
(not used in training phase) and so this leads to generate
confusion in the prediction of them.

4.3. Quality control

For the evaluation of the performance of this last
module, we used all the datasets where a brain mask
was given. Also, we used the datasets in which the seg-
mentation label of the different structure was present.
From these, we generated a whole brain segmentation
mask by merging all the label of the different class. We
split the experiments into two different parts. First, we
evaluated the performance of the CNN by treating the
problem as a binary classification. Hence, the predic-
tion was done by considering a threshold and the mean
probability computed over all the slices for each case.
As a result, we classified as true (good quality) the cases
where the mean probability computed over all the slices
was above the threshold and we set as false (bad quality)
in the opposite case. The threshold can be set accord-
ing to the required quality of the problem treated. In
these experiments we set a threshold of 0.5. Moreover,
we conducted the experiment for both of the method-
ologies developed: the one in the native space and the
one in the MNI space. Results of these experiments are
shown in Table 4.
Second, we decided to analyse deeper the behaviour of
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Table 5: Result of the performance of the CNN tested on some cases.
The probability is a mean computed over all the slice of each volume.

QUALITY CONTROL TEST
Name dataset Case name P(good skull-stripping)

07 0.95
08 0.93
09 0.97IBSR

11 0.94

01016SACH 0.96
01038PAGU 0.94
08027SYBR 0.95MICCAI

08029IVDI 0.93

01 0.60
02 0.72ISBI
03 0.30

our methodologies. Hence, we checked and reported
individually some cases after registering them into the
MNI spaces (see Table 5). From the result showed in
Table 4 is possible to see that, our method for quality
control as a binary classification, was able to achieve
high accuracy. However, it may happen that one vol-
ume classified as a good quality contains some slices
totally corrupted. For example, in Figure 10 is shown a
case from the dataset MICCAI 2016 in which the over-
all probability to be classified as a good skull-stripped
case was 0.86 but, when we analysed the probability
of each slice was possible to realise that two of them
were corrupted by the presence of one eye. For this rea-
son, we decided to investigate more the probability of
each slice individually rather than considering the over-
all mean probability. The main idea is to communicate
to the user the index of the slice that can be corrupted
even if the case has been classified as good. However,
in Figure 10 is evident that the skull stripping was well
performed (except for the first two slices) and, accord-
ing with this, the overall accuracy of the prediction was
really high. Furthermore, by analysing more in detail
the result of some cases we realised that in the native
space our algorithm was not able to recognise an ex-
tra erosion of the brain. This problem appears because
a slice extra eroded can be easily confused as one lo-
cated in the upper part of the brain. These slices accord-
ing to the typical anatomy are smaller than the central.
For avoiding this error, we decided to move in the MNI
space in order to have a reference of the standard size of
a brain.
Lastly, we computed an extra test by corrupting the
ground-truth. In Table 6 we show the result of the test
and is clearly understandable that in the MNI space the
accuracy regarding the eroded ground-truth is much bet-
ter than the one in the native space. This happens
because this methodology, thanks to the data structure
built as input (image in the first channel, MNI image in
the second and difference in the third channel ), was able

to capture the difference between the mean volume MNI
and the slice. Assuming that the there is no big varia-
tion on the volume between individuals we decided to
use the mean volume MNI as a reference. In this way
we created a metric for evaluating the corruption of the
skull stripping. Hence, thanks to this metric of evalu-
ation we reached good accuracy even when the cases
were of bad quality due to the excessive erosion. How-
ever, some error may appear when a brain is totally dif-
ferent in terms of size from the mean standard MNI vol-
ume. For example, in many different diseases such as
multiple sclerosis, Alzheimer or stroke it can be present
the brain atrophy generation. Brain atrophy, or cerebral
atrophy, is the loss of brain cells called neurons with
the consequent reduction in brain volume. The atrophy
is strictly related to the ventricles enlargement, hence
when there is big atrophy the difference between the
MNI volume (healthy) and the case in the analysis can
be substantial. According to the method developed, the
big difference between the two volumes is interpreted
as bad quality of the skull stripping. But in this case,
the difference between the two volume is not related to
the quality of the skull stripping. For this reason it is
considered a limitation of our methods. However, for
avoiding this problem we can make a crop of the ventri-
cles because usually the atrophy is mainly concentrated
in the ventricles of the brain.

4.4. Application example
To show the potential and the efficacy of our frame-

work we built an application that iteratively autotune
the parameter f of the tool FSL-BET. None of the tools
used for the preprocessing step, incorporate a built-in
quality control. Thus, the only way to control the in-
tegrity of the volume is performing a visual inspection.
Furthermore, most of the time these tools give the pos-
sibility to tune some parameters. The possibility to
tune the parameters is given in order to generalise bet-
ter these tools and let them work in a larger scenario
of images. However, tune these parameters can be te-
dious and a dispendious of time. For this reason, we
built an application that allows the autotuning of these
parameters. The key point of our work is that the dif-
ferent applications developed can be combined together
to the user’s preferences. Hence we can create different
pipelines. In Figure 11 it can be seen how different mod-
ules are used together for reaching one objective that in
this case is the autotune of the parameters. This is just
one of many possible pipelines that can be realised with
the different modules of the framework developed. In
this pipeline we first check in which axis the axial view
is stored, then we analyse the slice for recognising if
the MRI volume is already skull-stripped. In case is not
skull stripping we proceed in applying one of the stan-
dard algorithms for brain extraction that we mentioned
before. After this step, we register the image to the MNI
space, and through the use of another CNN we give an
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Figure 10: Example of good quality skull-stripped case with an error in the first two slice, in fact in the first two images is clearly evident the
presence of one eye.

Table 6: Comparison of the QC of the skull stripping obtained after corrupting the ground truth with dilation and erosion in both spaces MNI and
native. The table shows the mean probabilities of belonging to the positive class (good skull stripping) of some individual cases extracted from
IBSR and MICCAI datasets.

QUALITY CONTROL TEST
NATIVE SPACE MNI SPACE

Name dataset Case name Eroded ground truth Dilated ground truth Eroded ground truth Dilated ground truth
07 0.80 0.28 0.21 0.12
08 0.76 0.35 0.25 0.21
09 0.84 0.27 0.20 0.20IBSR

11 0.78 0.20 0.23 0.15

01016SACH 0.74 0.40 0.15 0.11
01038PAGU 0.84 0.35 0.20 0.18
08027SYBR 0.85 0.23 0.18 0.20MICCAI

08029IVDI 0.73 0.32 0.25 0.23

index of the quality of the skull stripping. As a last step
of the pipeline, we check if the QC index is higher than
a given threshold; if not, the Brain Extraction proce-
dure is repeated by modifying the algorithm (FSL-BET
or ROBEX) parameters. The aim was to build an iter-
ative process that uses, as a metric, the index given by
the CNN to tune the possible parameters of the different
tools; hence we use the quality index, computed from

our module, to build a sort of feedback loop. Figure 13
shows the probability variation of 4 different MRI cases
to be good skull stripping according to the variation of
the parameters f . The parameter f was spanned be-
tween 0.2 and 0.8 with a step of 0.1, and the probability
was computed with the second quality control algorithm
developed QC in the MNI space.
From the graph is possible to understand that the stan-
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Figure 11: Example of a pipeline for analysing the quality of the skull
stripping

dard value of the f parameter ( f = 0.5) has the big
mode. Hence, is the parameter that is more stable over
all the cases. However, if we consider each case individ-
ually it can be seen that is not the best for everyone. For
example, in case 1 and case 4 of the graph the best prob-
ability is reached with f = 0.6. After this, we visually
inspect the skull-stripped volume to ensure the reliabil-
ity of our quality control method.
Figure 12 shows the case 4 after applying on it FSL-
BET with different values of the parameter f . The im-
ages respect totally what the graph shows; in fact when
f = 0.5 the probability to be good is estimated around
0.79 and for f = 0.6 the probability is 0.86. In effect,
by visual analysing the two result was possible to see

the presence of one eye in the one with the lowest prob-
ability (see Figure 12).

5. Conclusions

The evaluation of the quality of the medical images
is not an easy task for different reasons such as the ob-
jectivity of the result or the absence of the ground truth.
In this master thesis, we proposed and developed a fully
automated deep learning quality assessment framework
for online brain MRI processing. The prefixed objec-
tives were achieved and more specifically, the work de-
veloped to reach the goal can be summarised as follows.

Transfer learning approach. Through the use of deep
learning, we were able to solve many problems
faced in this thesis such as the lack of labelled
data or domain adaptation. When large training
data is scarce, such as in medical imaging prob-
lems, a deep learning technique known as transfer
learning has been demonstrated that is very effec-
tive (Ravishankar et al., 2017). For medical image
problems, transfer learning is additionally attrac-
tive due to the heterogeneity of data types (modal-
ities, anatomies, etc.) and clinical challenges. In
conclusion about deep learning, we can say that it
was interesting to see that a model, learnt for an un-
related problem setting, was able to solve a prob-
lem at hand with minimal retraining.

Data. For solving the problem of the domain adapta-
tion we relied upon the adaptability of the pre-
trained CNN. In fact, all the methods developed
were able to work with cases taken from different
domains. In order to prove this, we used nine dif-
ferent datasets during the test phase. Moreover, is
important to point out that the datasets used in the
test were totally new for the CNN.

Ground truth generation. Another important part of
this thesis has been dedicated to generating syn-
thetic labelled data. In order to achieve this,
we mainly worked with morphology techniques.
Through the use of these techniques, we were able
to corrupt the ground truth in a realistic way. It
is really important to generate a realistic corrup-
tion in order to allow the CNN to recognise similar
cases during the classification. Moreover, by cor-
rupting the data, we were able to test the model on
real data taken from different domains.

Experimental. We developed mainly three modules in
this master thesis: 1) plane recognition, 2) brain
extraction recognition 3) quality control of the
skull stripping. In all of them, we used a new
approach based on morphology in order in order
to select the central slice index of the volume and
extract the most informative slices instead of using
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(a) f=0.2 (b) f=0.3 (c) f=0.4 (d) f=0.5 (e) f=0.6 (f) f=0.7 (g) f=0.8

Figure 12: Skull stripping of the same volume and different values of the parameter f of the FSL-BET tool.

Figure 13: BET parameter selection showing the outcome probability
of accurate skull stripping for different autotuned f values.

the whole volume for fine-tuning a CNN.

Platform integration. Regarding the platform integra-
tion, we successfully installed the web platform
XNAT. Moreover, we built a container through the
use of NVIDIA docker in order to plug it into the
XNAT.

Special problems were faced in the module dedicated to
the skull stripping quality. In particular, the CNN was
not able to capture when the skull stripping was exces-
sively eroded. For this reason, we developed a novel ap-
proach based on a metric computed between the volume
analysed and the MNI mean volume. However, many
diseases can influence the volumes of the brain. This
can be problematic for our approach. Therefore, as a fu-
ture work, we can think to crop the ventricles (that is the
structure mainly affected by the atrophy) from the vol-
ume and analyse the rest. Really interesting is the possi-
bility to use the different modules for building different
pipelines. In fact, as an example, we built a pipeline
able to autotune a parameter for the FSL-BET tool. An-
other step that should be investigate in more detail is the
connection between the container and XNAT.
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Abstract

Purpose: The aim of the study is to determine whether the deep features extracted from the mammogram images
using a convolutional neural network (ConvNet) are prognostic of occult invasive disease in ductal carcinoma in situ
(DCIS). The major potential benefit of proposed tool can be to help evaluate the likelihood of patients in developing
invasive ductal carcinoma (IDC).

Methods: In this study, we used the Duke University Medical Center data of Full Field Digital Mammograms
(FFDM) of 340 unique patients. The deep convolutional is pre-trained on non-medical images (e.g, buildings,
insects, animals) and then fine-tuned on indirectly related mammogram images. The ConvNet is fine-tuned using 65
IDC and 135 Atypical Ductal Hyperplasia (ADH) cases respectively and then system is independently tested on 35
ductal carcinoma with occult invasion (DCIS upstaged) and 105 pure DCIS images. The designed tool can output
quantitative score which directly correlates with the severity and prevalence of DCIS.

Results: The deep features were able to distinguish DCIS upstaged cases from pure DCIS cases on patient level
testing on a test data set with an Area under the Curve (AUC) of 0.72.

Conclusion: The performance outperformed the existing methods which used hand crafted traditional Computer
Vision (CV) features. The proposed tool using the deep features extracted from mammogram images can perform
significant role as a biomarker to monitor the DCIS progression.

Keywords: Ductal Carcinoma, Deep Learning, Fine Tuning, Convolutional Neural Nework, DCIS, Atypical Ductal
hyperplasia, DCIS upstaged, digital mammogram, Breast cancer

1. Introduction

Ductal means that the cancer starts inside the milk
ducts, carcinoma refers to any cancer that begins in
the skin or other tissues (including breast tissue) that
cover or line the internal organs, and in situ means "in
its original place". Ductal carcinoma in situ (DCIS)
is defined as existence of abnormal cells inside a milk
duct in the breast. DCIS is known as one of the earliest

form of breast cancer. DCIS is noninvasive, meaning
it is contained within the milk duct and hasn’t invaded
other parts of the breast.

According to the American Cancer Society, about
60,000 cases of DCIS are diagnosed in the United
States each year, accounting for about 1 out of every 5
new breast cancer cases. In recent years, because of the
large scale use of mammography, the incidence of DCIS
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has increased to sixfold. For the diagnosis of DCIS,
we mostly rely on the detection of mammographically
significant micro-calcifications (Holland and Hendriks,
1994). Although, we should be aware of the unusual
radiographic manifestations of this disease; Ikeda
and Andersson (1989) retrospectively analyzed the
mammograms of 190 women with biopsy-proved DCIS
and have shown 30 (16%) had negative mammograms,
and 43 (23%) had mammographic manifestations of
breast malignancy other than micro-calcifications.
There are number of DCIS features linked with more
aggressive biology have been identified, including high
nuclear grade and comedonecrosis, although, many
other features are a matter of further investigation
(Mascaro et al., 2010).

DCIS is considered normally as noninvasive and not
life-threatening, although if abnormal cells grow be-
yond ducts and gland, DCIS may progress into invasive
cancer later on. Among biopsy-proven DCIS patients,
approximately 20-56% are upstaged to reveal invasive
ductal carcinoma (IDC) at the time of definitive surgery,
while pure DCIS patients are not. Chin-Lenn et al.
(2014) reported that out of 148 patients who underwent
total mastectomy (TM), upstaging to invasive cancer at
surgery occurred in 23%. Szynglarewicz et al. (2015)
presented in this study that sixty-three women with pure
DCIS presenting as sonographic mass lesion underwent
core-needle biopsy and 56% of DCIS were upstaged.
There can be number of factors associated associated
with upstaging of DCIS. Studies using multivariate
analysis found that a palpable lesion, a lesion size > 20
mm, a high grade lesion, radiological factors (BI-RADS
category), factors related to CNB technique (modality
of image guidance, size of the core needle, number of
cores), were independently associated with upstaging
of DCIS (Wiratkapun et al., 2011) (Kim et al., 2012).

To understand the concept of DCIS grading, we
need to first revisit different prior stages which leads to
DCIS. Hyperplasia also known as epithelial hyperplasia
or proliferative breast disease is an overgrowth of cells
that line the ducts or milk glands (lobules). As shown
in Fig 1, Ductal Hyperplasia (DH) refers to overgrowth
of cells lining milk ducts. Atypical ductal hyperplasia
(ADH) has increased abnormal growth pattern of cells,
although it is not considered as breast cancer. Rather,
it is a marker that there is risk for breast cancer in the
future. DCIS cases are regarded as stage-0 cancer, and
the cancer cells are still limited within milk ducts. Stud-
ies of loss of heterozygosity in low-grade DCIS and
ADH have revealed similar genetic changes in the two
conditions (Lakhani et al., 1995); this finding confirmed
that these are clonal processes and both fulfill the basic
concept of neoplasia (Pinder and Ellis, 2003a). Invasive
ductal carcinoma (IDC), sometimes called infiltrating
ductal carcinoma, refers to cancer that has surpassed

the wall of milk duct and is invading other breast tissues.

In this paper, we will refer DCIS as negative cases,
upstaged DCIS as positive cases. We will use ADH
cases as negative class during training, so we will refer
them as super-negatives and IDC cases will be used as
positive class during training, so they will be referred
as super-positives. We will target to distinguish pure
DCIS from upstaged DCIS cases. This is a clinically
challenging task with a high inter and intra reader vari-
abilities. It is worth noticing that 10 to 44% of DCIS
patients will go through re-operation to evaluate their
regional lymph nodes because of previously undetected
IDC (Cox et al., 2001). The ability to predict occult
invasion can avoid delays in definitive diagnosis and
can reduced a significant amount of cost (Cox et al.,
2001).

Figure 1: Different Pathology classes of DCIS, Image modified
from (Orenstein, 2014)

The aims of this study were as follows:

1. Propose a potential noninvasive replacement tech-
nique for the traditional invasive methods of grad-
ing DCIS.

2. Address the classification of pure DCIS and up-
staged cases using mammograms in conjunction
with deep learning with artificial neural networks.

3. Demonstrate a baseline application for using Con-
vNet in DCIS upstaging and efficiency.

2. State of the art

In this section, firstly we have discussed the clinical
correlation of DCIS and DCIS upstaged cases and then
we segued to actual models.

There are a number of techniques in literature
targeting histological features and medical imaging
analysis, proposed to predict DCIS upstaging. It is
of paramount importance to realize that about one in
four DCIS diagnoses at core-needle biopsy (CNB)
represent understaged invasive breast cancer. Brennan
et al. (2011) concluded that preoperative variables
significantly associated with under-staging include
high-grade lesion at CNB (vs non high grade lesion,
P < .001), lesion size larger than 20 mm at imaging
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(vs lesions ≤ 20 mm, P < .001), and mammographic
mass (vs calcification only, P < .001). Bagnall et al.
(2001) presented some clinical features associated with
DCIS upstaging; high grade core biopsy DCIS and
>40 calcifications translate to 48% invasive at surgical
histology; high grade core biopsy DCIS and <40
calcifications translate to 15% invasive; non-high grade
core biopsy DCIS resulted in 0% invasive). Dillon
et al. (2006) have shown that some of mammographic
features including size ≥ 5 cm on excision pathology
was linked with higher risk of invasion (P = 0.002). Lee
et al. (2016) demonstrated that immunohistochemical
evidence of human epidermal growth factor receptor 2
overexpression (P=0.010) was also predictive of DCIS
upstaging. O’Flynn et al. (2009) have determined
that there is significant associations with the presence
of invasive disease for cluster size (p=0.0001) and
DCIS grade (p=0.003). Park et al. (2013) constructed
a nomogram and predicted the likelihood of DCIS
invasive cancer with an AUC of 0.71.

On the other hand, Lee et al. (2000) concluded that
mammographic and histologic features cannot be used
reliably to predict cases that are underestimated with
stereotactic core needle biopsy (SCNB). Renshaw
(2002) also stated that neither the radiographic findings,
presence of comedonecrosis, comedo histology, lobular
extension, size of the largest focus, nor aggregate size
was significantly associated with an increased incidence
of invasion. The papers’ above shows that medical
imaging findings, immunohistochemical evidences’
and histological features have very limited power
in predicting DCIS upstaging. Also, most of these
techniques relies on invasive methods.

An increasing number of medical imaging techniques
which align with computer-based classification and
segmentation algorithms are also being examined and
validated by researchers. These analytic methodologies
are being applied to different types of medical images
for DCIS staging. For the same speicific task as we
studied, three have been three previous papers all from
our institution. Shi et al. (2018a) shows that ConvNet
pre-trained on only non-medical images, extracted
deep features were able to distinguish DCIS with
occult invasion from pure DCIS, with an AUC of 0.68.
Using the handcrafted 113 mammographic features,
the multivariate classifier was able to distinguish DCIS
with occult invasion from pure DCIS, with an AUC of
0.70 (Shi et al., 2017a). Zhu et al. (2017) revealed that
algorithmically assessed MRI features predict DCIS
upstaging with an AUC=0.719.

There are a number of CAD schemes proposed in
literature but none of them have been physically imple-
mented in any clinical practice by now for the detection
or screening of the DCIS upstaging. Hence there is

an utmost need for a CAD tool, which can not only
distinguish between DCIS cases and DCIS upstaged
cases, but also can predict the disease quantification on
a mammogram. The task of DCIS upstaging analysis
is very challenging with the use of traditional machine
learning algorithms, since there are no well-defined
characteristics of the DCIS or DCIS upstaged abnormal
cells. In recent years, ConvNets have rapidly emerged
as a widespread machine learning technique in a
number of applications especially in the area of medical
image classification and segmentation. This problem
inspired us to choose ConvNet as the deep artificial
neural network (ANN) for our analysis.

3. Materials

We collected the Full Field Digital Mammograms
(FFDM) from 340 unique patients at Duke University
Medical Center with Institutional Review Board (IRB)
approval. Those patients magnification views of
mammograms were also acquired by a GE Senographe
Essential FFDM system, with a magnification factor
of 1.5 or 1.8 times. The data was categorized into
three groups; ADH, DCIS and IDC. We also excluded
some cases based on the exclusion criteria which is the
presence of any masses, asymmetries, or architectural
distortion in a mammogram; history of breast cancer
or prior surgery; and presence of microinvasion at the
time of initial biopsy.

Specifically from those 340 patients mammogramic
images, 135 of cases were ADH, 140 of cases were
DCIS, and 65 of cases were IDC. DCIS patients
underwent stereotactic core needle biopsy (SCNB) and
were diagnosed with DCIS prior to surgical removal
of the tumor. Among them, 35 cases were found as
invasive later during surgery (either lumpectomy or
mastectomy), and the rest 105 cases were not. The
region of interest (ROI) mask for the ADH, DCIS and
IDC lesion in each subject was delineated by an expert
breast radiologist. We also collected magnification
views of 85 healthy subjects which are free from any
calcifications or masses. We further extracted 7792
patches from these magnification views.

Fig 2 shows an example of segmentation result of
individual microcalcifications and detection of cluster
boundary.

4. Methods

Before we go into details of methodology, the over-
all process is summarized in a form of flowchart in Fig
3. It shows that first step is collection of data in Duke
Department of Radiology, and then micro-calcifcations
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Figure 2: A: Segmented by algorithm, B: delineated by a
radiologist, Image taken from (Shi et al., 2017b)

were delineated by a radiologist. After that, we gener-
ated the Region of Interest’s (ROIs) from the algorithm.
The ConvNet is trained on ROIs of ADH and IDC and
then tested on ROIs of DCIS and DCIS upstaged cases.
In the end, we analyzed the results both quantitatively
and qualitatively.

4.1. Pre-Processing

This section will cover the pre-processing techniques
applied on the magnification views of mammogram im-
ages.

4.1.1. Paddle Detection
Most of the magnification views contains a bright

boundary (paddle), which should not be included when
you extract patches. The first step is detection of rough
ROI from DICOM images excluding those paddles. The
algorithm is based on noise tolerant peak finding algo-
rithm (Yoder, 2011), Gaussian model fitting (Zivkovic,
2004) and subsequently probability distribution of im-
age (Parzen, 1962).

Figure 4: Mask generation from Dicom images

4.1.2. Patch Extraction
The second step is the extraction of patch containing

the breast micro-calcifications by drawing rectangular
bounding box around the ROI manually delineated by
radiologist. Before feeding any image to the system,
pixel intensities of the images were re-scaled to [0,0.9]
and, contrast of the input image is improved by apply-
ing contrasted limited adaptive histogram equalization
(Clipping limit= 0.005)(Zuiderveld, 1994) and gamma

correction (gamma value = 0.5) (Farid, 2001). The pro-
cessed patch is shown at an extreme right in Fig 5.

Figure 5: Region of Interest Patch Extraction

4.1.3. Patch Rescaling
The patches extracted from ADH, IDC or DCIS up-

staged cases are of varying size as shown in Fig 6, where
40 cases of invasive breast cancer (IDC) is shown as
an example. Most of the convolutional neural networks
required a fix image size, that’s why images were re-
scaled to a fixed dimension. In our study, if the input im-
age size is NxM, where N>224 or M>224, then we took
square ROIs of [224x224], randomly shifted to at least
include 80% of the cluster mask. On the other hand,
if N<224 or M<224, we padded image with zeros to
rescaled it to [224x224]. The other way around which
we attempted is to interpolate the patch to [224x224] but
this caused distortions, changing the imaging attributes
like texture, density of tissues associated with the calci-
fications and surrounding tissues.

Figure 6: Sample 40 IDC cases

4.1.4. Patch Neighborhood
In the Bilinear Neural Network (BNN), we would

be taking into account global context by considering a
much larger area surrounding calcifications, based on
the hypothesis that meaningful information lies beyond
the local neighborhood of calcifications.

We considered the fixed image of dimension
[448*448]. If the size of patch is (N,M), and N<448 and
M<448, we extracted a larger patch of [448*448] based
on the centered of smaller region of interest (ROI), by
using 100% pixels only as displayed in Fig 7. If N>448
or M>448, we first centered that patch on original image
and down-sampled ROI to [448*448].
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Figure 3: The overall methodology of presented CAD tool

Figure 7: Local neighborhood of calcifications

4.1.5. Data Augmentation
The data augmentation was performed real time in

the data space to improve the performance of the classi-
fier and to avoid over-fitting. Table 1 shows the various
data augmentation techniques applied only on the train-
ing data.

4.2. Training without Transfer Learning

We trained a three convolutional layer neural network
(ConvNet-3) and a four layer convolutional layer neu-
ral network (ConvNet-4) using the super positives (IDC
cases) and super negatives (ADH cases). Table 2 shows
detailed architecture of (ConvNet-3) and (ConvNet-4).
The input image of [224*224] passes through a number
of convolution and pooling layers. In both of the ar-
chitectures, two fully connected layers were used with

number of neurons as 512 and 256 respectively. The
hyper parameter details are as following; stochastic gra-
dient descent was used as an optimizer, categorical cross
entropy as loss function, sigmoid as an activation func-
tion, batch size of 32, learning rate of 0.0001 and mo-
mentum of 0.9. The final model architecture was se-
lected based on the maximum performance from the
validation data set after a number of experiments.

4.3. Training with Transfer Learning and Fine-tuning

4.3.1. Network Architecture
The transfer learning and fine-tuning approach ap-

plied in the proposed architecture which can be ex-
plained as follows. The VGG16 convolutional neu-
ral architecture was designed and then pre-trained Ima-
geNet model weights were loaded into the system. The
fully-connected layers were removed, then the rest of
the ConvNet was treated as a feature extractor for the
new dataset. Once the features for all images were ex-
tracted, a classifier was attached and trained for the new
dataset. In the end, weights of the pre-trained network
were fine-tuned via backpropagation by un-freezing the
lower convolutional layers and retraining more layers.
We tried different combinations of frozen and fine tuned
layers. The final proposed architecture approach is
shown in Fig 8.

The ConvNet used is an modified version of the
VGG16 model, with a 15 layer weight structure, (13
convolutional (conv) layers and 2 fully connected (fc)
layers) (Page et al., 1982). We used the VGG16 archi-
tecture because it has small (3x3) convolution filters and
depth of 15 layers, which efficiently captures extremely
minute details. The input volume is [224*224*3],
passed through a stack of convolutional layers where
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Table 1: Data Augmentation

Arguments Parameters Comments
Rotation Range 30◦ Random Rotations from -15◦ to + 15◦

Width Shift Range 0.2 Range for random horizontal shifts (fraction of total width)
Width Height Range 0.2 Range for random vertical shift (fraction of total width)

Shear Range 0.2 Shear Intensity (Shear angle in counter-clockwise direction as radians)
Zoom Range 0.2 Range for random zoom.

Horizontal Flip True Randomly flip inputs horizontally

Table 2: Comparing Network Architectures, filter number * filter size (e.g., 64 * 32), filter stride (e.g., str 2), pooling window size (e.g., pool
22,), and the output feature map size (e.g., map size 112 *112)

Model conv1 conv2 conv3 conv4

ConvNet-3 64*32, str 2 128*32, str 2 256*32, str 2
Modified pool 22, str2 pool 22, str2 -

map size 112*112 56*56 28*28
ConvNet-4 64*32, str 2 128*32, str 2 256*32, str 2 512*32, str 2
Modified pool 22, str2 pool 22, str2 pool 22, str2 -

map size 112*112 56*56 28*28 14*14

we used the filters with a small receptive field of [3*3].
The first convolution layer computes the output con-
nected with a local region and results in a volume of
[224*224*64] where 64 is the number of filters. Then,
there is a max pooling layer which reduces’ the size
of each patch by half, for example [224*224*64] will
be down-sampled to [122*122*64]. In total there are
five max-pooling layers with a stride value of 2. More-
over, all hidden layers are also equipped with rectifica-
tion non-linearity (ReLU) (Castro et al., 2008). The
conv. layers are followed with two fully connected lay-
ers with 512 and 256 channels respectively. In the end,
sigmoid layer uses an activation function, giving an out-
put between 0 to 1 for binary classification. The detailed
architecture of VGG16 model is shown in Fig 9.

4.3.2. Network Training and Parameters
The ConvNet was trained using the training and vali-

dation data set. The number of samples that were propa-
gated along ConvNet for each iteration, known as batch
size, was set to 32. The entire set of data passed through
the whole network for 50 times, after that there was no
substantial increase in performance for further epochs.
The network was trained at a small learning rate of
0.00001 to make sure that updates magnitudes were kept
minimal for our transfer learning approach. We used a
considerably large value of 0.9 for momentum, in order
to ensure that the network doesn’t get stuck in local min-
ima during fine tuning. The most optimum results were
obtained using the RMSProp optimizer for training the
bottleneck features, and applying Stochastic gradient
descent optimizer for fine tuning. The binary cross-
entropy was applied as a loss function, and sigmoid as
an activation function. For performance evaluation met-

rics, accuracy, precision and recall were implemented.
The check point for the training was the accuracy on
the validation set so the training will stop automatically
once the accuracy on validation set stopped increasing.
The data is split into training and validation(80%,20%).
The final model architecture was selected based on the
maximum performance from the validation data set.

4.3.3. Comparative Analysis with other Pretrained Net-
work architectures

There can be an argument in favor of using an
architecture with a lesser number of layers instead of
using the VGGG16 like AlexNet (Krizhevsky et al.,
2012), or a more deep convolutional neural network
like ResNet (He et al., 2016a) for pre-training. To be
certain, we performed a comparative analysis between
VGG16, AlexNet and ResNet.

Fig 10 illustrates the design of our proposed
AlexNet, including the different layers in the Con-
vNet architecture. The input image passes through
different sets of layers. These layers consist of the
convolution layer, max-pooling layer and rectified
linear unit (ReLU) layer. Moving to the network’s
rear part, the architecture includes a fully-connected
layer and a sigmoid loss layer, which ensures that the
output of the network represents class to which the
input image belongs. The batch size was set to 32,
stochastic gradient descent was used as an optimizer.
The binary cross-entropy was applied as a loss func-
tion, and accuracy was used for performance evaluation.

The comparative network architecture of VGG16 and
AlexNet is summarized in Table 3 and deep ResNet ar-
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Figure 8: The layer structure of proposed architecture.
The first two convolution (conv) blocks were kept frozen, the conv blocks depicted in yellow color were fine tuned

and lastly, the green block consists of of the fully connected classification layers. It should be noted that for
simplicity, we didn’t show the max-pooling layers.

Figure 9: Detailed Network Architecture, Modified from (Khawaldeh et al., 2017)
The input image is passed through a set of convolution, pooling layers and fully connected layers.

chitecture can be referred in (He et al., 2016a). We
used an 18 layer ResNet, with five covolution blocks,
fixed kernel size of [3*3], stride of 2, 1000 neurons in
the fully connected layer and sigmoid as an activation
function. The floating point operations per second is
1.8 ∗ 109 and near 0.2 million parameters.

4.4. Bilinear Neural Network
We propose bilinear models, a recognition architec-

ture that consists of two feature extractors whose out-
puts are pooled to obtain an image descriptor. There are
two different input streams, the first channel takes ROI
patch as input, and second channel takes surrounding
neighborhood of ROI patch. This second channel will
keep into account of any meaningful and relevant infor-
mation present in encompassing region of patch conse-
quently utilizing the global context.

4.4.1. Training without Transfer Learning
In this experiment, we randomly initialize the weights

of ConvNet following a gaussian distribution and

trained from scratched on super positives (IDC) and
super negatives (ADH) images. We designed a two
channel network here which is not based on any ex-
isting architecture. The first channel inputs an image
of [224*224] and second channel inputs an image of
[448*448]. We kept the number of filters and kernel
size to be small to avoid overfitting. The first channel
has 15488 parameters and second channel has 80000
parameters. There are two fully connected dense lay-
ers for each network and we extract 256 deep features
from each channel. We concatenate the 256 feature vec-
tor from each layer and then used a drop out rate of
0.5. In the end, there are two more fully connected
layers which are pulling the features from both chan-
nel and outputting a continuous score between 0 to 1
for each case using sigmoid activation function. We
also have used Batch Normalization (BatchNorm) (Ioffe
and Szegedy, 2015), a widely adopted technique that en-
ables faster and more stable training of deep neural net-
works (DNNs), also it makes the optimization landscape
significantly smoother. The architecture is presented in
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Figure 10: Layer Structure of AlexNet

Table 3: The network parameters of proposed ConvNets

Model conv2
1 conv2

2 conv3
3 conv3

4 conv3
5

VGG16 64*32, str 2 128*32, str 2 256*32, str 2 512*32, str 2 512*32, str 2
pool 22, str2 pool 22, str2 pool 22, str2 pool 22, str2 pool 22, str2

map size 112*112 56*56 28*28 14*14 7*7
AlexNet 96*112, str 2 128*52, str 2 384*32, str 2 384*32, str 2 256*32, str 2

pool 32, str2 pool 32, str2
map size 55*55 27*27 13*13 13*13 13*13

conv2
1 (The first conv block with two identical convolution layers), filter number * filter size (e.g., 64 * 32), filter

stride (e.g., str 2), pooling window size (e.g., pool 32,), and the output feature map size (e.g., map size 112 *112)

Appendix 1 in Fig 22. For consistency, we will call it
BNN1 through out the paper.

4.4.2. Training with Transfer Learning and Fine-tuning
In this experiment, we didn’t randomly initialize the

weights of ConvNet but used pre-trained weights from
ImageNet. There are also two different feature extrac-
tors based on pre-trained convolutional neural networks.
The CNN stream A is based on VGG16 and CNN
stream B is based on ResNet, and both networks are
initialized from the ImageNet dataset followed by do-
main specific fine-tuning. The entire model is fine tuned
using back-propagation for several epochs (about 45 to
50) and a fairly small learning rate of (l = 0.00001).The
fully-connected layer is invariably positioned as the last
part of the ConvNet architecture and is responsible for
assigning class scores in supervised settings and sig-
moid loss layer is used for the performance evaluation
for each input. This architecture as shown in Fig 11 is
inspired from Lin et al. (2015), however it significantly
differs as in Lin et al. (2015) , they used a single input
channel. For consistency, we will call it BNN2 through
out the paper.

4.5. Performance Evaluation

In medical imaging analysis, particularity, for the bi-
nary classification problem, it is important to note that
positive indicates the disease is present and negative in-
dicates the disease is absent. In our case, Sensitivity
(positive for disease) refers to the proportion of subjects
who have the upstaged DCIS (reference standard posi-
tive). Alternatively, Specificity (negativity in health) is
the proportion of subjects without the upstaged DCIS

and give negative test results.These performance evalu-
ation measures are shown in Eq (1) and Eq (2) .

S ensitivity/Recall =
T P

T P + FN
(1)

S peci f icty =
T N

FP + T N
(2)

The sensitivity (Sen) and specificity (Spe) vary across
the different threshold and the sensitivity is inversely re-
lated with specificity. Then, the plot of sensitivity versus
1-Specificity is called receiver operating characteristic
(ROC) curve and the area under the curve (AUC), as an
effective measure of accuracy.

4.6. Class Activation Maps (CAM)

Class activation maps are a simple technique to get
the discriminative image regions used by a CNN to
identify a specific class in the image. To create the
CAM, we restricted the network to have a global av-
erage pooling layer after last convolutional layer. After
that, we added a dense layer (softmax activation). We
can’t directly apply this technique to existing networks
like VGG16 as they have fully connected layers. To
make it work, we modified existing networks and then
fine-tuned on domain specific data.

The most important block of CAM is global average
pooling (GAP). We have a N dimensional image after
last convolutional layer like in VGG16 we have N=512
number of filters in the last convolutional layer. If we
discard fully connected layer, we can use input image
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Figure 11: Bilinear Neural Network Architecture.
The input image is passed through a set of convolution, pooling layers and fully connected layers.

of any size, for example if our input image has a resolu-
tion of [512*512], the output shape of last convolutional
layer will be 512*64*64. We know that, 512/64 =8, our
spatial resolution mapping will be [8*8]. GAP will take
all 512 channels and spatial average will be returned.
Channels which have high activations will result in high
signals. The final output will be heatmap for every con-
volutional layer. The CAM is also known sometimes as
saliency maps (Li and Yu, 2015).

5. Results

5.1. Quantitative Results

For training and validation of models’, we used
ADH, IDC and negative patches. We divided data into
different configurations for our negative and positive
class as shown in Table 4. Data was partitioned
into training and validation by a 80% and 20% split
respectively.

As explained in methodology, we trained different
ConvNet architectures. In table 5, we briefly sum-
marized these experiment settings. When there is no
transfer learning, it means that network was trained
from scratch on of the data configuration from Table 4.
When there is transfer learning, it means that we used
pretrained weights of ImageNet model. When there is
fine-tuning on top of transfer learning, it meant that we
re-trained model last few layers on domain targeted data
set (C1,C2 or C3). We tried with different combinations
of freezing and fine-tuning of convolutional layers. The
most optimum configuration for VGG16 was; freezing
the first two convolution blocks and fine tuning on last
three convolution blocks, for AlexNet was; freezing
the first two convolutional layers and fine tuning on

last three convolution layers, for ResNet18; freezing
the first four convolution blocks (12 convolutional
layers) and fine tuning on last convolution block (four
convolutional layers with 512 kernels in each layer).

We also proposed two different Bilinear Neural
Network(BNN) architectures which have not been
presented in any literature before. BNN1 is the configu-
ration when we trained model only on domain targeted
dataset (C1,C2 or C3) without any transfer learning or
fine tuning. BNN2 is the configuration, when we used
pre-trained ImageNet weights for models (VGG16 and
ResNet18). For simplicity, we named each model as
with a combination of α and β symbols, as shown in
Table 5. DCIS and DCIS upstaged data was not exposed
to network anytime during training and validation. This
will ensure that there is no over-fitting and we only
used pure DCIS and DCIS upstaged cases for testing
of the models. The results shown in Table 6 is on the
test dataset of 105 DCIS cases and 35 DCIS upstaged
cases. It shows the AUC for various experiment and
data configuration following Table 4 and Table 5.

Fig 12 shows that fine-tuning of VGG16 architecture
significantly improve result on test dataset from AUC
of 0.58 to 0.72. Fig 13 shows the ROC curves for pre-
trained and fine-tuned model of AlexNet (AUC= 0.70)
and ResNet (AUC=0.72). Fig 14a shows the ROC curve
for BNN1 and, Fig 14b shows ROC curve for BNN2,
and demonstrates how transfer learning improved AUC
to 0.68.
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Table 4: Data Configuration

Experiment Name Negative Class Positive Class
C1 ADH IDC
C2 Negative Patches and ADH IDC
C3 Negative Patches ADH and IDC

Table 5: Experiment Configuration : Transfer Learning (TL), Fine-Tuning (FT), Mammograms Data (ADH, IDC and Negative Patches)

Experiment Name ConvNet Model Model Config Model Details
Exp α1 β1 ConvNet-3 TL = No, FT= No Trained only on Mammograms
Exp α1 β2 ConvNet-4 TL = No, FT= No Trained only on Mammograms
Exp α2 β1 VGG16 TL= Yes, FT= No Trained only on ImageNet
Exp α2 β2 AlexNet TL= Yes, FT= No Trained only on ImageNet
Exp α2 β3 ResNet TL = Yes, FT= No Trained only on ImageNet
Exp α3 β1 VGG16 TL = Yes, FT= Yes Trained on ImageNet & Mammograms
Exp α3 β2 AlexNet TL = Yes, FT= Yes Trained on ImageNet & Mammograms
Exp α3 β3 ResNet TL = Yes, FT= Yes Trained on ImageNet & Mammograms
Exp α4 β1 BNN1 TL = No, FT= No Trained only on Mammograms
Exp α4 β2 BNN2 TL = Yes, FT= No Trained only on ImageNet
Exp α4 β3 BNN2 TL= Yes, FT= Yes Trained on ImageNet & Mammograms

Table 6: AUCs for different Experiment Configurations

Data Configurations C1 C2 C3
Experiment Configurations AUC AUC AUC

Exp α1 β1 .55 0.56 0.51
Exp α1 β2 0.58 0.58 0.50
Exp α2 β1 0.58
Exp α2 β2 0.61
Exp α2 β3 0.60
Exp α3 β1 0.70 0.72 0.56
Exp α3 β2 0.71 0.72 0.58
Exp α3 β3 - 0.70 0.57
Exp α4 β1 0.64 0.65 0.59
Exp α4 β2 0.63
Exp α4 β3 0.68 0.68 0.59

Table 7: AUCs for different Experiment Configurations
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(a) AUC Of Exp α2 β1 C2 (b) AUC Of Exp α3 β1 C2

Figure 12: AUC of VGG16 before and after fine-tuning

(a) AUC Of Exp α3 β2 C2 (b) AUC Of Exp α3 β3 C2

Figure 13: AUC of ResNet and AlexNet after fine-tuning

(a) AUC Of Exp α4 β1 C2 (b) AUC Of Exp α4 β3 C2

Figure 14: AUC of Bilinear Neural Network without and with Transfer Learning
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Fig15 shows the clustered column graph for only C2
data configuration for Exp α2, Exp α3 and Exp α4. It
can be seen that transfer learning and fine-tuning subse-
quently helped to improve the performance.

Figure 15: Comparative Performance of Different Architectures

Fig16 shows the clustered column graph for C1, C2
and C3 data configuration for Exp α3, Exp α4. It can be
seen that C2 is best data configuration, very comparable
to C1 but both of them are significantly better than C3.

Figure 16: Comparative Performance of Different Data
Configurations

5.2. Qualitative Results
CAM lets us see which regions in the image were rel-

evant to this class. Zhou et al. (2016) shows that CAM
allows re-using classifiers for getting good localization
results. This will actually show what network is learn-
ing and which parts of image are activated or play sig-
nificant role when exposed to model for testing.

As we have seen in previous section that fine-tuned
VGG16 outperforms the other presented convolutional
neural network architectures, so we presented CAM
only on VGG16 model.

5.2.1. Pretrained VGG16 without Fine-tuning

In Fig 17, we displayed saliency maps for VGG16
model pre-trained on image net weights (No Fine-
tuning). Fig 17 shows saliency maps of two sample
cases, it can be seen that most of activations are ran-
dom. (Only 2 cases are shown for sake of simplicity,
remaining data followed the same trend).

Figure 17: Class Activation Maps on sample DCIS cases

5.2.2. Pretrained VGG16 with Fine-tuning

In this case, we fine-tuned VGG16 on ADH and IDC
cases. The saliency maps are shown in Fig 18, Fig 19,
Fig 20 and Fig 21 of few true positives, false positives,
true negatives, and false negative cases respectively. We
further discuss these saliency maps in 6.

Figure 18: Saliency Maps of few True Positive Cases

Figure 19: Saliency Maps of few False Positive Cases
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Figure 20: Saliency Maps of few True Negative Cases

Figure 21: Saliency Maps of few False Negative Cases

6. Discussion

Our presented study aims to tackle the challenging
DCIS upstaging problem with a lot of unique aspects.
We fine-tuned a ConvNet using a set of super positives
and super negatives images, which are not directly
related to targeted problem, to have a generic target
representation. The reason we have not directly used
the DCIS cases is because of data limitation as we
only have 105 DCIS and 35 DCIS upstaged cases. We
didn’t expose DCIS data to network during training and
validation, hence it was reserved for testing only so it
can serve as an independent test data set.

There may be an argument that unrelated data for
training might not help to learn useful features for DCIS
upstaging prediction. As briefly explained in 1, DCIS
and ADH shared some similar overlapping features and
have revealed similar genetic changes in two diseases;
It is often interpreted as confirmatory evidence that they
are clonal processes and both therefore fulfill the basic
concept of neoplasia. There is a strong argument that
this boundary between ADH and DCIS is not ideal on a
morphological, immunohistochemical, or genetic basis
(Pinder and Ellis, 2003b). Based on this, we used ADH
as negative class for training and DCIS as negative
class for testing as they share common generic features,
and ConvNet would still be able to learn differentiating
features.

On the other hand, we used IDC as a positive class
during training and DCIS upstaged cases as positive
class while testing. He et al. (2016b) demonstrated
DCIS as a true precursor of IDC is indirect but convinc-
ing: IDC is rarely seen without adjacent DCIS (Wong
et al., 2010); DCIS and IDC from the same patient
share similar genetic features Page et al. (1982) and
molecular abnormalities (Castro et al., 2008). Also,
upstaged DCIS is literally a mix of DCIS and IDC.
Based on these findings, it make sense to indirectly
used IDC for fine-tuning to predict DCIS upstaging.

We also have demonstrated in this paper, the impor-
tance of transfer learning, by first training the neural
network on non-domain specific images like animals
and spiders. ConvNet-3, ConvNet-4 and BNN1 are
trained directly on the breast cancer images shows
inferior results. Hence, we first transfer pre-trained
weights from ImageNet model (trained on non-medical
images) which reasonably improve the classification
performance. We also trained VGG16 and AlexNet
from scratch on breast cancer images but models’
couldn’t perform well mainly because of limited data.
This also highlights the significance of transfer learning
when you are facing the challenge of insufficient data
for medical imaging analysis.

Transfer learning is helpful but it is also shows an
inadequate and restricted performance for this chal-
lenging task. Recently, neural networks are proposed
which consist of hundreds of hidden layers and million
of parameters. The lower layer of network learns
only the basic features like shape of edges, blobs
which can be learn from non-medical images. The
deep layers of network learns the features related to
final goal. Therefore, it is crucial to wisely fine-tune
ConvNet, we demonstrated that fine-tuning last few
layers with a smaller learning rate on mammogram
images significantly increase the performance as shown
in Fig 12a and Fig 12b. However, fine-tuning more than
few layers would cause no further improvement and
model will overfit data.

The most optimum results are achieved using VGG16
network with an AUC of 0.72, shown in Fig 12b. The
results through AlexNet model are also comparable
with an AUC of 0.72 but with less sensitivity and
specificity as shown in Fig 12b and Fig 13b. One of
the reason VGG16 performed better than the other
networks is very small convolutional filters of size
(3*3). This small receptive field of VGG16 helped
network to capture the minimal changes, like partic-
ularly appropriate for smaller calcifications, which
can help ConvNet to differentiate DCIS from DCIS
upstaged cases. We have shown in results that AUC
is equal to 0.70 when using pre-trained ResNet. This
proves wrong another common misconception that
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deeper the network is, better the results are, but it is
highly dependent on the amount of data and, when you
have a limited data, it is better to shift to less deeper
architecture.

This process of DCIS upstaging is tedious and
an extremely challenging task for radiologist’s and
pathologist’s and subject to inter- and intra-reader
variabilities. Shi et al. (2017b) shows that histologic
features including nuclear grade and DCIS subtype did
not show statistically significant differences between
cases with pure DCIS and with DCIS upstaged cases.
Only three mammographic features, i.e., the major axis
length of DCIS lesion, the BI-RADS level of suspicion,
and radiologist’s assessment showed reasonable results
with an AUC-ROC equal to 0.62. In our work, we have
shown that transfer learning using non-medical images
and fine-tuning on indirectly related mammogram
images have helped us to achieve an AUC of 0.72.

It is also important to comment on different data
configurations results as shown in Fig 16. From our
experiments, we have concluded that if we use negative
patches in one class and both ADH an IDC cases in
other class, then system performs badly as it learns
only to detect the calcifications and it will treat both
DCIS and DCIS upstaged cases as positive. The best
data division was when we used ADH and few negative
patches as negative class and IDC cases as positive
class. This is an interesting finding as we realized how
to balance training classes in most optimal way for
calcification’s detection versus classification task.

We also conducted numerous experiments based on
hypothesis to consider global context of disease by con-
sidering tissues surrounding DCIS and upstaged DCIS
abnormal cells. We trained numerous networks by
using a combination of different bilinear architectures
training in parallel like VGG16-VGG16 or VGG16-
ResNet. Ganeshan et al. (2011) compared uniformity
values in focal lesions and surrounding tissue and
showed significant differences between DCIS with or
without invasive carcinoma (IC) versus IC (p = 0.0009).
This pilot showed the potential for computer-based
assessments of heterogeneity within focal mammo-
graphic lesions and surrounding tissue to identify
adverse pathological features in mammographic le-
sions. However, our experiments based on extracting
the deep features by exploring the surrounding tissues
of DCIS and DCIS upstaged cases resulted in negative
results and a drop in performance as shown in Fig 14a
and Fig 14b. One of the limitation we faced which
can be a potential reason is limited memory of GPU.
Training two deep architectures in parallel required a
larger RAM, so we had to decrease batch size to 6 to
cope with this issue. Another reason can be difference
in surrounding tissues of DCIS or DCIS upstaged cases

with ADH or IDC cases. We fine-tuned network on
surrounding neighborhood of IDC and ADH cases.
There is no evidence in literature which can proof that
surrounding tissues of IDC correlates with that of DCIS
upstaged or ADH surrounding tissues has same kind of
heterogeneity as of DCIS cases outside the focal lesions.

We will briefly compare here results with existing
solutions using computer vision (CV) and deep learn-
ing based classifiers as presented in 2. Our group
has previously shown that using the handcrafted 113
mammographic features, the multivariate classifier was
able to distinguish DCIS with occult invasion from pure
DCIS, with an AUC of 0.70 (Shi et al., 2017a). How-
ever, this paper was based only on 99 cases and based
on leave one out (LOO) cross validation. However,
when our group using similar CV feautures moved to
140 DCIS cases, and reported the median AUC from
repeated cross validation, resulting in AUC of only
0.61 (Hou et al., 2018). Shi et al. (2018a) shows that
ConvNet pre-trained on non-medical images, extracted
deep features were able to distinguish DCIS with
occult invasion from pure DCIS, with an AUC of 0.68,
however this result was also based on 99 cases and LOO
cross validation. Further disadvantage of this technique
is that feature response and feature selection are driven
by DCIS and DCIS upstaged cases so there is a chance
of over-fitting. Shi et al. (2018b) pre-trained a ConvNet
on ImageNet and Inbreast dataset, and achieved an
AUC of 0.75 but there are certain disadvantages with
that approach also. Firstly, it performs the stability
feature selection on deep learning based extracted fea-
tures (One have to manually pull features from different
layers and check features response to DCIS data) unlike
our process in which we used the fully connected
layers for features extraction. Our newly presented
approach make the whole procedure more viable to
be implemented in clinical practice as it is a single
step, fully automatic approach. Specifically, since we
used the pre-trained network on classification task, the
extracted features were more suited for DCIS upstaging
prediction. Moreover, Shi et al. (2018b) used DCIS
data for training and validation (20% cases (7 positives,
21 negatives) were randomly selected for validation,
while the remaining 80% (28 positives, 84 negatives)
were used for training) which certainly posed the risk
of over-fitting as compare to our approach which was
trained on semi-related data and never exposed to DCIS
and DCIS upstaged data.

We also have plotted the CAM of DCIS and DCIS
upstaged cases. Although, it is visually very difficult
to differentiate between DCIS and DCIS upstaged
cases, hence challenging to comment on CAM for this
classification problem. DCIS upstaged is related with
heterogeneity; local recurrences are seen much more
frequently with high grade DCIS (Lagios, 1995), and
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it can be seen from activation maps of true positives
that ConvNet is detecting this heterogeneity for DCIS
upstaged cases. Also, these activation maps show
that network is not trained on noise or basic computer
vision features (like number or size of calcifications)
but most of deep features are based on other factors
like shape, texture, spread of calcification’s and density
changes around the focal ROI. However, we cannot
validate any claims relating to CAM right now and
this would need further work with radiologists and
pathologists. The results presented here have lower
AUC as normally we expect to see for medical imaging
analysis problems. Our group has assigned the same
task to radiologists’ in past to classify DCIS and DCIS
upstaged cases only based on mammogramic images
and achieved an AUC of 0.69 based on one radiologist
assessment, and other radiologist achieved an AUC
of 0.5 only. This emphasize how hard this task is
and demonstrate significance of our deep learning
based extracted achieving an AUC of 0.72. Keeping in
mind these things into consideration, our result can be
considered as reliable and state of art for differentiating
DCIS from DCIS upstaged cases.

One of the major potential benefit of this CAD
tool can be to help evaluate the likelihood of patients
in developing invasive breast cancer. As, numerous
studies have shown the association between the DCIS
upstaging and IDC. There are number of CAD schemes
available to reliably detect breast calcification’s or
masses on mammograms. Our proposed tool can
be incorporated with these existing CAD schemes,
so when patients go for breast cancer screening, we
can also examine for occurrence of DCIS or DCIS
upstaging. Detection of DCIS at an early or mild stage
can reduce the risk of developing invasive breast cancer
and can notably ameliorate the breast function with
proper intervention.

Our approach had certain limitations. Firstly, we
are still trying to understand the real meaning behind
the deep features that could also be interpretable by a
clinician. Secondly, the size of test data set is small
and results can not be generalizable. Thirdly, the AUC
of 0.72 is not enough to be implemented in clinical
ways so new ways should be sought out to improve the
performance further. Lastly, we plan to combine the
imaging based tool with pathology based tool which
could further strengthen trust in designed classifier.

In summary, we have demonstrated the feasibility
of employing a CAD scheme for prediction of occult
invasive diseases in ductal carcinoma. Although, our
results were promising and provide tools that may be
implemented into practice, we still envision improve-
ments for this tool in the future. For the future work,
we will be testing our best performing model (VGG16

trained on ImageNet and fine-tuned on ADH and IDC
data) on 138 more Duke cases, 115 of these cases are
pure DCIS and 23 of them are upstaged cases and these
cases are currently being annotated by a radiologist.

7. Conclusions

In conclusion, our study demonstrated the feasibility
of using deep features for the radiomics DCIS upstaging
prediction task. Specifically, we proposed a deep learn-
ing based model that was pre-trained on non-medical
images, and fine-tuned on indirectly related mammo-
gram images, applied to mammogram images for DCIS
grading. From our work, we hope to show the medical
imaging community, an alternate way of using the pow-
erful deep learning technique when a large scale dataset
is not available. With statistically significant results, as
well as the ability to provide a quantitative index, this
study may serve as first step in applying this tool in
clinical settings. Future work will explore collabora-
tion with other institutions to include more subjects to
further validate the model.
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Abstract

The Computer-assisted Applications in Medicine (CAiM) group from ETH Zurich has proposed a novel reflector-
based hand-held Speed-of-Sound (SoS) imaging method for breast cancer screening with minor extensions to conven-
tional ultrasound (US) B-mode systems. The reflector acts as a timing reference for the US signals and its tracking
is important for SoS image reconstruction. This thesis work shows an study on automation of reflector delineation
for in-vivo US medical images with the previously proposed optimization algorithm based on Dynamic Programming
(DP) and provides a comparative study with newly proposed deep learning approach based on simple Convolutional
Neural Network (CNN) and U-Net architectures.

Keywords: Ultrasound, Breast cancer, Reflector delineation, Dynamic programming, Deep learning, CNN, U-Net.

1. Introduction

Among U.S. women, breast cancer is the most com-
monly diagnosed cancer and the second leading cause
of cancer death after lung cancer (Ma and Jemal, 2013).
It is a high-prevalence disease affecting more women in
the U.S and other developed countries. However, over
the recent years, breast cancer incidences and mortality
have been increasing in developing countries as well.
Current routine screening consists of X-ray mammog-
raphy, which, however, shows low sensitivity to malign
tumors in dense breasts, for which a large number of
false positives leads to an unnecessary number of breast
biopsies. Also, the use of ionizing radiation advises
against a frequent utilization, for instance, to monitor
the progress of a tumor. Finally, the compression of
the breast down to a few centimeters may cause patient
discomfort. For these reasons, latest recommendations
restrict the general use of X-ray mammography to
biennial examinations in women over 50-year-old (Siu,
2016).

Ultrasound is a safe, pain-free, and widely available
medical imaging modality, which can complement
routine mammographies. The hand-held speed-of-
sound imaging method proposed by Sanabria and

Goksel (2016) transmits US waves through tissue
between a B-mode transducer and a hand-held reflector
and reconstructs a SoS image of sufficient quality
for tumor screening. It only requires a small and
localized breast compression, while allowing for flex-
ible access to arbitrary imaging planes within the breast.

Figure 1: Setup with breast phantom (Sanabria and Goksel, 2016)

The SoS image reconstruction uses the hand-held re-
flector plate as the timing reference, thereby depend-
ing highly on the unambiguous measurement of the US
time-of-flight (ToF) for a good and reliable reconstruc-
tion. The earlier approach uses global optimization
based on Dynamic Programming (DP) similar to the one
applied for the segmentation of bones (Foroughi et al.,
2007) and vessel walls in US (Crimi et al., 2016). This
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(a) Experimental setup

(b) Individual RF line analysis

(c) Global optimization

(d) Reflector fit

Figure 2: Reflector delineation for ex-vivo liver tissue (Sanabria and Goksel, 2016)

approach has been tested on phantoms and ex-vivo sam-
ples and has provided promising results. The main work
of this thesis was focused to verify the reflector delin-
eation step for in-vivo cases, as the high variability in
breast densities affects the tracking, and also to propose
a new deep learning approach for reflector delineation
to be compared with the existing approach.

2. State of the art

The recorded synthetic aperture dataset A(tm,Rx,Tx),
with Rx = 1 . . .N and Tx = 1 . . .N, is a 3D matrix
consisting of N × N radio-frequency (RF) lines in
function of echo time tm, where m = 1 . . . M are dis-
cretization indices. A single time-of-flight (ToF) value
corresponding to the reflector delineation is searched
for each RF line τ = τ(Rx,Tx). Each RF line A(tm)
is a modulated waveform with an oscillatory pattern
(Fig. 2a). Due to the heterogeneous SoS distribution,
which leads to interference and weak scattering effects,
the waveform shape changes for different paths. In the
most extreme case, the reflected ultrasound signals may
fall below the system noise level (fading) at certain
paths and a ToF measurement is not possible for the
corresponding RF lines.

Therefore, individual RF line analysis, for instance,
by picking the peak signal amplitude (Fig. 2b), or
by applying more sophisticated correlation-based or
wavelet-based methods, inherently lead to timing am-
biguities, since different local maxima may be selected

for different transmit-receive (Tx-Rx) pairs. On the
other hand, waveform demodulation, e.g., by applying a
Hilbert transform, leads to a loss of temporal resolution,
which distorts the measurement of small perturbations
∆τ. It is therefore frequent that the calculated ToF
matrices in USCT are heavily post-processed to remove
timing outliers (Chang et al., 2007; Li et al., 2009; Qu
et al., 2015).

Figure 3: Transmit-receive paths for different shift index s (Courtesy
of Sanabria)

The proposed global optimization approach, simul-
taneously evaluates all Tx-Rx traces and minimizes
an energy function to calculate the optimum delay
matrix τ. This approach reduces timing ambiguities
and provides a continuous surface τ and is used for
detecting reflector time delay in RF lines.

Two dimensional algorithm: The algorithm tracks the
reflector in a 2D image (B-scan). The horizontal coor-
dinate is the echo time m and the vertical coordinate is
a list of successive RF lines l, corresponding to adja-
cent Tx-Rx pairs. Adjacent pairs show the same lateral
Tx-Rx separation s = Rx − Tx. For instance, Fig. 2a
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Figure 4: Explanation of multiple echoes observed in in-vivo breast images. Measurements are performed in outer (out), inner (in) and middle
(mid) breast segments. The horizontal axis of the US images indicates the echo time of arrival t of the US echoes, while the vertical axis of the US
images represents the segment width (probe width or channel index 1 . . . 128). With a known distance d between probe and reflector, the speed of
sound (SoS) is calculated as SoS=0.5*d/t, where the 0.5 factor accounts for the propagation from a transmitter element to the reflector back and
forth. Three US echoes can be identified. The first observed echo is a reflection from the breast skin layer. The second echo is generated at the
top reflector surface and may consequently overlap in time with the skin surface echo. The third and subsequent echoes correspond to the back
wall of the reflector. The median SoS provides a measure of ”breast density”, where the SoS variation range ∆SoS provides a measure of ”breast
heterogeneity” ((Sanabria et al., 2018), courtesy of Sanabria)

.

shows the ray paths and a B-scan for s = 0 (same el-
ement used as both Tx and Rx), and Fig. 3 shows the
ray paths for larger s values.For each B-scan Am,l, the
algorithm cumulatively builds a global cost matrix Cm,l

along successive RF lines l for each possible timing can-
didate m. A search window w = −W/2 . . .W/2 of W
samples is iteratively defined with respect to the adja-
cent line l. Also, a memory matrix Em,l records discrete
timing decisions for each l and m. The optimum re-
flector delineation minimizes the cumulative cost, and
following Mm,l backwards the ToF profile τ(l) = tT (l) is
drawn:

Cm,l = min
w

{
Cm+w,l−1 − f1(Am,l, Am+w,l−1)

} − f0(Am,l)

Mm,l = arg min
w

{
Cm+w,l−1 − f1(Am,l, Am,l−1)

}

T (l) =


arg min

m
Cm,l l = L,

MT (l+1),l+1 l = L − 1 . . . 1.
(1)

The cost is evaluated with likelihood f0 and f1
smoothness functions in function the current Am,l and
adjacent Am+w,l−1 B-scan samples. This framework is
very general and is used to introduce regularization
into the energy function, for instance, in terms of ToF
continuity between adjacent Tx index, Rx index pairs,
and/or constraints with respect to allowed reflector
positions and orientations. In the implementation, f0
is formulated as a weighted sum of non-linear terms
fo ∝ Am,l, frel(Am,l), fosc(Am,l), where frel and fosc are
binary step functions that are respectively activated if
A shows a relative maxima at m or if an oscillatory
pattern is identified around m. On the other hand,
f1 allows introducing continuity constraints. Also,

f1 ∝ |Am,l − Am+w,l|,w, fp j(Am,l − Am+w,l), where fp j is
a binary step function that is activated if a phase jump
> π rad occurs between Am,l and Am+w,l.

Figure 5: Echo observed for Plexiglas reflector wall in water medium

As observed in figure 5, the ultrasound signal re-
ceived shows multiple peaks for one echo of the Plexi-
glas reflector and global optimization using the DP al-
gorithm explained earlier is the current state of the art
algorithm used to track the dominating negative peak
consistently across all the RF lines. The main drawback
of the algorithm is that the equation to be optimized by
DP incorporates as regularization information prior in-
formation from observed oscillatory patterns from cal-
ibration experiments in water. These patterns are rep-
resentative of phantom and a few ex-vivo cases, where
the echoes are easily distinguishable from the rest of the
signal, however, they might be difficult to generalize to
real heterogeneous breast tissues.
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(a) Water, cropped & rescaled (Tx = Rx)

(b) Fatty breast, cropped & rescaled (Tx = Rx)

(c) Dense breast, cropped & rescaled (Tx = Rx)

(d) Differentially dense breast, cropped & rescaled (Tx = Rx)

(e) Water (Tx = 64, Rx = 64)

(f) Fatty breast (Tx = 64, Rx = 64)

(g) Dense breast (Tx = 64, Rx = 64)

(h) Differentially dense breast (Tx = 64, Rx = 64)

Figure 6: Ultrasound data for different breast densities compared to water

As observed in Fig. 6, the recorded ultrasound im-
ages show multiple signal packages, corresponding to
different time echoes, which are explained in Fig.4. We
are here interested in tracking the first reflector echo
(surface echo), which gives a clear timing reference for
computation of Speed-of-Sound (SoS). However, other
reverberations are also present, such as internal tissue
reflections at the skin-gland breast layer, and also mul-
tiple reflector reverberations. Thus, one main aspect is
to be able to discriminate the right oscillation package.
This can be partially achieved by cropping a time win-
dow of interest on the base of the known distance value
d between reflector and probe. However, it is unavoid-
able that several echo packages are present within this
window and the chosen reflector tracking strategy needs
also to show discriminatory power.

3. Material and methods

A deep learning approach for segmentation was pro-
posed for reflector delineation to compare and evalu-
ate the performance of the already existing global opti-
mization algorithm using Dynamic Programming (DP).
Two networks were implemented as part of this project
which aims to segment the reflector echo. The main
method is a U-Net based approach, which is a pop-
ular biomedical image segmentation technique (Ron-
neberger et al., 2015), and the second one is a sim-
ple Convolutional Neural Network (CNN). The imple-
mentation of the network and training was written in
Python using Keras API with Tensorflow as back-end,
and the data preparation and pre-processing was done
using Matlab R©.
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Figure 7: Input data extraction workflow run on cluster

3.1. Data preparation

The breast data was obtained using a 128-element
5 MHz linear ultrasound array (L14/5-38) transducer
operated in multistatic mode, each element sequentially
transmitting (Tx) an ultrasound pulse and the rest
receiving (Rx) the reflected signals. The input data
collected from the ultrasound machines are stored as
’.daq’ files and each file contains the data recorded for
one line element in the transducer. Every acquisition
procedure generates 128 daq files with a total size of
≈ 1 GB. Figure 7 shows the workflow for generating
different types of processed data from one set of raw
data files. The ultrasound data is initially read and
stored in one single mat file with ’.vip’ extension so
that it can be reused easily for further processing. The
VIP file contains the data in a 3-dimensional matrix
{time, receiver index, transmitter index} with additional
header information. The data VIP file is then converted
into a distance transformed VIP file {time, transmitter
index, shift index (distance from transmitter)}. The
shift index s varies from −127 to 127 (Fig. 3) and
since all the transmitters do not have that shift, few of
the indexes are left with zeros, as shown in Fig. 7 in
’Distance transformed VIP file’ block.

In the experiments, only the s=0 shift data was
considered as it gives a complete image of dimension
l(128) × t(4156) with all the 128 lines. Since the
distance of the transmitter is already recorded during
measurements, it is not required to process the complete
image. By using the distance measured between reflec-
tor and ultrasound probe and by assuming the nominal
speed of sound in soft tissue as 1540 m/s, a rough
estimate of the reflector echo time is obtained. Keeping
this time as reference, the image is cropped with a
window of −6 µs before and 6 µs after the reference

time. Since the sampling frequency is 40MHz, the
final image dimension after cropping is 128(height) ×
481(width).

Apart from the input images generated for training
the network, several other B-mode images (SAFT, DAS
and TFM shown in Fig. 7) were also generated for later
experiments. Previously, the entire workflow was run
manually using a GUI application which had the limita-
tion to process only one set of acquisition data at a time
and also it took ≈ 25 mins to process one set of files.
Since there were 950 set of files to process, it would
take more than 2 weeks to generate all the required data.
Therefore, few parts of the Matlab code were optimized
and then converted to ’mex’ files to run faster. This took
≈ 9 mins from start to end in order to process the same
set of files on a SGE (Oracle Grid Engine) cluster.

3.2. Ground truth generation

The images generated in section 3.1 were annotated
by 2 readers (R1 by clinician and R2 by -the author
of this work) to get 2 sets of annotated data that can
later measure the performance of the network trained
by different annotators. Annotations were done on the
jet scale images (Fig. 8a) which are more easier for
visual interpretation compared to gray scale images for
manual annotators. Fig. 8b and 8c shows the manual
annotated image and its corresponding annotation ex-
tracted. A total of 398 images collected for a previously
published breast density classification study (Sanabria
et al., 2018) were annotated by both readers and another
124 (out of 450) images collected for menstrual cycle
study were annotated only by the clinician (R1).

Three different ground truth images are generated
from the annotated images for training the network and
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(a) First echo cropped with 12 µs window

(b) Manual annotation

(c) Manual annotation extracted

(d) Single-pixel ground truth

(e) Time dilated (w = 5) ground truth

(f) Time dilated gaussian (w = 9) ground truth

Figure 8: Ground truth generation

to understand its behaviour. The first ground truth im-
age (single-pixel) (Fig. 8d) is created by keeping only
one pixel for every line element annotated by select-
ing the left most pixel from the annotated pixels. The
other two ground truth images(Fig. 8e and 8f) were
created from the previous ground truth images by ap-
plying a box filter (window size, w = 5) and a gaus-
sian filter (window size, w = 9 and standard deviation,
σ = (w − 1)/5 = 1.6) respectively along the line. The
filter sizes were dimensioned to cover half an oscilla-
tion period of the signal (4 pixels), which represents
the manual annotation accuracy. The box filter gives
a dilated image with equal weighting to the dominat-
ing echo oscillation pixels, whereas the gaussian filter
gives a smooth dilation with more weighting to the cen-
ter of the dominating peak. It should be noted that once
the right oscillation period has been identified with any
method, sub-pixel accuracy can be obtained by apply-
ing state-of-the-art interpolation methods (for instance
polynomial fitting (Azar et al., 2010).

3.3. Network architecture
Two different network architectures are proposed

with the goal to segment only the first echo of the re-
flector as close as possible to the ground truth images.

The decision to use CNN’s instead of any simple clas-
sifier such as SVM or k-Nearest Neighbour is because
the reflector echo shows large variance in structure and
characteristics for different breast densities and it is not
easy to model a classifier for this dataset with statistical
or hand-picked features.

3.3.1. U-Net architecture
The network architecture mainly used in this work is

a U-Net based architecture originally proposed by Ron-
neberger et al. (2015) for biomedical image segmenta-
tion. The major advantage provided by using this archi-
tecture is that it is known to work well with small train-
ing datasets. Minor design changes were made to the
original U-Net implementation in order to work with a
dataset of less than 500 images. Fig. 9a shows the final
chosen implementation after trying a few combinations
of downsampling layers with different filter sizes and
number of feature maps for each layer. The input layer
dimension (128×484) is chosen to be a divisible of four
as there are two max-pooling layers, so the input images
were zero-padded to get this dimension. All the con-
volution layers uses ReLU activation functions except
the last layer which uses sigmoid activation function to
generate an output probability map. Larger convolution
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(a) U-Net architecture

(b) Simple CNN architecture

Figure 9: Network architectures

filter sizes were used for larger feature maps in order to
capture more information from the neighboring pixels.

3.3.2. Simplified CNN architecture
Fig. 9b shows the network architecture of a simpli-

fied CNN structure which was used for comparison to
U-net. Contrary to the U-Net architecture, there are no
down-sampling or up-sampling layers in this architec-
ture. Thus all the layers are 2D-convolution layers with
ReLU activation functions except the last layer which
uses a sigmoid activation function. The top layers in the
network use larger filter sizes and the size of the filter is
gradually decreased as it goes deeper into the network.
The size of each feature map is kept constant at every
layer, therefore, there is no constraint on the input layer
size and hence the input images are not padded.

3.4. Network Training

The networks were trained with the breast density
study dataset consisting of a total of 398 images.
The breast density dataset categorizes the breasts into
four categories based on the percentage of glandular
(mammary) tissue. The reference standard for classi-
fication was obtained by additionally acquiring X-ray
mammographies for each dataset, which were evaluated
according to the American College of Radiology (ACR)

Breast Imaging Reporting and Data System (BIRADS)
5th edition. This classification system, which is
used widely, defined four qualitative breast-density
categories: almost entirely fatty (A), scattered areas
of fibroglandular density (B), heterogeneously dense
(C) and extremely dense (D) (Sanabria et al., 2018).
The dataset was acquired for women of a broad age
range, with an average of 56.5 years and a range
of 34–85 years. Different densities of breasts show
variable characteristics for reflector echoes, and so,
each category of the dataset was split into 90% training
data and 10% validation data as shown in Table 1.

Table 1: Data split for training and validation

Breast Category Total Training Validation
(Density) 90% 10%

A ( 0 − 25% ) 73 66 7
B ( 25 − 50% ) 122 110 12
C ( 50 − 75% ) 66 59 7
D ( 75 − 100% ) 28 25 3
n.s. (not specified) 109 98 11

398 358 40
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A second dataset, named ”menstrual cycle” was more
recently measured and annotated by only one reader
R1. This dataset contains 120 images of young women
(mean age 26.6 years with a range of 18–40 years) and
predominantly dense breast categories (65 D, 30 C, 6 B
and 19 A). The dataset was used to further validate the
trained model for unseen data. Since both the datasets
had different set of patients for conducting the study, it
also helps to ensure the network is not over-fitted.

3.4.1. Data augmentation
From a CNN perspective, the breast density dataset

is a relatively small dataset with only 398 annotated im-
ages. In order to increase the amount of training data,
several homogeneous transformations can be applied on
the training images and labels. It is important to under-
stand the characteristics of the data before performing
any augmentation, as all the augmentations may not in-
troduce artifacts in the network. In this case, vertically
flipping the image is a valid augmentation that can be
applied to the dataset as shown in fig. 10 because it pre-
serves the oscillation pattern of the echo in every line
and also the continuity between adjacent channel lines.

(a) Original ground truth image

(b) Vertically flipped ground truth image

Figure 10: Data augmentation

3.4.2. Optimizer
The Adam optimizer, as proposed by Kingma and Ba

(2014), is a common variant to stochastic gradient de-
scent optimizer and it was here used for all the trainings
and both networks. The method computes individual
adaptive learning rates for different parameters from es-
timates of first and second moments of the gradients.
The initial learning rate of 10−3 was found to perform
better compared to other learning rates in the range be-
tween 10−1 − 10−4.

3.4.3. Loss function
There are several different loss functions available

and the selection of the right loss function used for op-
timization is necessary to ensure the convergence of the
network during the training. The different loss func-
tions used for training the network are provided with
the actual equations used for implementation. ytrue,n is
the ground truth label for individual pixels and ypred,n

is the label predicted by the network and N is the total
number of pixels of all the images in a mini-batch.

i Mean squared error (MSE)

MS E =
1
N

N∑

n=1

(ytrue,n − ypred,n)2 (2)

ii Dice coefficient error (DCE) (Milletari et al., 2016)

DCE = 1 − 2 ×∑N
n=1|ytrue,n × ypred,n|∑N

n=1 y2
true,n +

∑N
n=1 y2

pred,n

(3)

iii Jaccard coefficient error (JCE)

JCE = 1−
∑N

n=1|ytrue,n ∗ ypred,n|∑N
n=1(|ytrue,n| + |ypred,n| − |ytrue,n ∗ ypred,n|)

(4)
iv Custom binary cross entropy (CBCE)

CBCE = −
N∑

n=1

{αytrue,nlog(ypred,n)+

β(1 − ytrue,n)log(1 − ypred,n)} (5)

where, α and β are the misclassification costs for
class ’1’ label and class ’0’ label respectively.

Among all the above loss functions tested, the CBCE
loss function (Eq. 5) was the only one that reached con-
vergence. The main reason is that the number of class
’0’ labels were far greater than class ’1’ labels and the
CBCE loss function was able to account for this im-
balance by weighting the misclassification cost of the
two classes differently. The misclassification of class
’1’ was given more weightage compared to class ’0’.
The final values of α and β used in eq. 5 are 25 and 1 re-
spectively. The value of α could be potentially increased
until approx. 50. However, as it is shown afterwards,
this would then classify more pixels as class ’1’, lead-
ing to more false positives in spurious echo signals (for
instance, breast skin echoes or multiple reflector rever-
berations), and increasing the need of post-processing
to remove these. Therefore, α is chosen as a trade off

between sensitivity of reflector detection and specificity
to spurious echo signals.
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3.4.4. Callback function
Three different keras callback functions were in-

cluded during the network training. The Tensorboard
callback was used for debugging the network during
the process of training, the CS Vlogger callback was
used to store the values of the loss functions and met-
rics for each epoch and the Model checkpoint callback
was used to store the weights of the network after every
epoch and only if there is a decrease in the loss function.

3.5. Post processing

The output of the networks are probability maps and
in order to get a binary segmentation mask some post-
processing is applied. The binarization of the output
could also be implemented as the last layer of the net-
work but it is presently not utilizing in order to test dif-
ferent post-processing strategies. The first step is to re-
move the probability values lower than 0.1 because the
output of the network has many non-zero values in this
range close to the echo. In the next step, one maxi-
mum value is selected for every line l and if more than
one value is found then the median of those values is se-
lected. After finding the maximum values for every line,
the median over all lines is calculated which is the con-
sidered as the median index of the images and this con-
nects to the average SoS measurement for each segment
as plotted in Fig. 4. Finally, a box filter is applied to re-
move all outliers outside a window of 3µs (120 indexes)
centering the median index value calculated. Then the
echo time value for each line is re-calculated as the me-
dian of the maximum probability values in the cropped
search window.

3.6. Evaluation Metrics

Several metrics were used for evaluating the training
of the networks and also for comparing the performance
of the current method implemented with the previous
DP approach. The various metrics used for evaluation
are explained with the actual equations used for imple-
mentation.

3.6.1. Binary accuracy (%)
The equation for binary accuracy is given by,

Accuracybinary =
1
N

N∑

n=1

|ytrue,n − ypred,n| × 100 (6)

The binary accuracy is the main metric used for eval-
uating the network training and it is evaluated both for
training and validation data to observe if the network is
over-fitting. The metric is calculated after binarizing the
output probability map from the network with a thresh-
old value of 0.5. For training, it is calculated for every
mini-batch data and averaged over all the batches of an
epoch and for validation it is calculated over the valida-
tion data after every epoch.

3.6.2. Dice similarity coefficient (DSC)
The equation for the dice coefficient is given by,

DS C =
2 ∗ |Itrue ∩ Ipred |
|Itrue| + |Ipred | (7)

The Dice Coefficient is calculated only for class ’1’
to get a better insight of the segmentation as the overall
dice coefficient is very biased because of the domina-
tion of class ’0’. Both the ground truth and predicted
masks are dilated for 5 pixels in the horizontal direc-
tion before calculating the dice in order to capture the
complete dominant peak oscillation, and find the over-
lap without the manual annotation uncertainty region.

3.6.3. Time difference (µs)
The main aim of the thesis work is to track the re-

flector echo time for Speed-Of-Sound computation pur-
poses. Therefore, it is important to calculate the dif-
ference in time between the predicted and ground truth
values. The measure of the difference of time is cal-
culated both pixel-wise, in order to asses outliers, and
image-wise(median of pixel-wise difference per image),
in order to assess the time uncertainty when calculating
the average SoS. These error metrics are also calculated
with both absolute difference and signed difference to
know if the prediction of the first echo is biased more
by the skin echo or the second reflector echo. Since, the
sampling frequency of the signal is 40MHz and to get
the metric result in time units (µs), the difference calcu-
lated pixel-wise or image-wise in indexes is divided by
40.

3.6.4. Mean absolute error (MAE) (µs)
The MAE is calculated on the image-wise time dif-

ference for N images and it is given by,

MAE =
1
N

N∑

n=1

|∆tpred,n − ∆ttrue,n| (8)

3.6.5. Root-mean-square error (RMSE) (µs)
The RMSE is calculated on the image-wise time dif-

ference for N images and it is given by,

RMS E =

√√√
1
N

N∑

n=1

(∆tpred,n − ∆ttrue,n)2 (9)

3.6.6. Execution time (s)
Execution time metric is used to compare the time

taken by the network to predict one image, with the time
taken by the DP approach for the same image. This
helps to identify the approach which is more suitable
for real time application.
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4. Results

This section provides the results obtained from ex-
periments conducted using U-Net, CNN and DP with
optimized parameters and compares their performance.

4.1. Qualitative results

Input and output images are shown for datasets corre-
sponding to different breast densities such as fatty (fig.
12), differentially dense (fig. 13) and dense (fig. 14 &
15). Output images are calculated with both global op-
timization using DP approach (c), and with U-Net (e)
trained with the single-pixel ground truth images (fig.
8d) based on R1 annotations. The results from other
types of ground truth images (time dilated , fig. 8e, and
time dilated Gausssian, fig. 8f) are not provided, as they
were not comparable with the rest of the methods.

(a) Original image1

(b) Ground truth image

(c) Output image from U-Net

(d) Output image from CNN

Figure 11: Comparison of ground truth and predicted images (U-Net,
CNN) for fatty breast (same example as in Fig. 12)

(a) Original image

(b) Ground truth image

(c) Output image from DP

(d) Overlapped image - GT & DP (Green - overlap)

(e) Output image from U-Net

(f) Overlapped image - GT & U-Net (Green - overlap)

Figure 12: Comparison of ground truth and predicted images (DP,
U-Net) for fatty breast
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(a) Original image

(b) Ground truth image

(c) Output image from DP

(d) Overlapped image - GT & DP (Green - overlap)

(e) Output image from U-Net

(f) Overlapped image - GT & U-Net (Green - overlap)

Figure 13: Comparison of ground truth an predicted images (DP, U-
Net) for differentially dense breast

(a) Original image

(b) Ground truth image

(c) Output image from DP

(d) Overlapped image - GT & DP (Green - overlap)

(e) Output image from U-Net

(f) Overlapped image - GT & U-Net (Green - overlap)

Figure 14: Comparison of ground truth an predicted images (DP, U-
Net) for dense breast. In this case, DP wrongly selects the second
reflector echo, so that there is no overlap with the ground truth. U-Net
correctly selects the first echo
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(a) Original image1

(b) Ground truth image

(c) Output image from DP

(d) Overlapped image - GT & DP (Green - overlap)

(e) Output image from U-Net

(f) Overlapped image - GT & U-Net (Green - overlap)

Figure 15: Comparison of ground truth an predicted images (DP, U-
Net) for dense breast (2nd example). In this case, both DP and U-Net
wrongly select the second reflector echo, so that there is no overlap
with the ground truth.

4.2. Quantitative results

The quantitative results section provides all metrics
defined in section 3.6. Fig. 16 & 17 shows the loss
and accuracy graphs for both training and validation
of the U-Net trained with reader R1 ground truth im-
ages. Fig. 18-24 show box plots of the percentile dis-
tribution of the Dice and distance metrics for pixel-wise
and image-wise comparison between different methods.
The consensus between the two readers is also plotted
in all figures as a reference. For these plots, the U-Net
was trained either with the ground truths of reader R1
or reader R2. For metrics evaluation, the predicted im-
ages were compared to the ground truth images of both
readers. For example, ’R1-UNET R2’ compares the val-
idation ground truth images annotated by reader 1 with
the predictions of U-Net trained using the ground truth
images of reader 2.

4.2.1. Training graphs
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Figure 16: Training and validation loss for U-Net
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Figure 17: Training and validation accuracy for U-Net
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4.2.2. Dice coefficient
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Figure 18: Dice coefficient

4.2.3. Pixel-wise time difference
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Figure 19: Pixel-wise time difference
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Figure 20: Pixel-wise time difference (absolute)

4.2.4. Image-wise time difference
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Figure 21: Image-wise time difference
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Figure 22: Image-wise time difference (absolute)

4.2.5. Mean absolute error (MAE)

Table 2: MAE for different methods

Method MAE (µs)

R1 - R2 0.0181
R1 - DP (1st echo) 1.4881
R2 - DP (1st echo) 1.5003
R1 - UNET R1 0.5528
R2 - UNET R1 0.4709
R1 - UNET R2 0.3959
R2 - UNET R2 0.3841
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4.2.6. Root-mean-square error (RMSE)

Table 3: RMSE for different methods

Method RMSE (µs)

R1 - R2 0.0576
R1 - DP (1st echo) 2.3454
R2 - DP (1st echo) 2.3656
R1 - UNET R1 1.3979
R2 - UNET R1 1.3100
R1 - UNET R2 1.1515
R2 - UNET R2 1.1828

4.3. Performance of U-Net on unseen menstrual dataset
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Figure 23: Dice coefficient
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Figure 24: Image-wise time difference

Also, the MAE and RMSE values are 0.3838 and
1.1138 respectively for U-Net prediction for unseen
menstrual data.

4.4. Training & Execution time

The time taken by the U-Net described in section
3.3.1 takes ≈ 6 hours for training with 398 images for
500 epochs on a Nvidia Titan Xp 12GB GPU machine
and it takes ≈ 0.025 s to predict one image, whereas the
time taken by the DP algorithm is to predict one image
is ≈ 1 s on a Dual core 16GB RAM CPU machine.

5. Discussion

From the qualitative images (section 4.1), it can be
observed that both methods, DP and U-Net, are able
to localize the first echo peak significantly better than
CNN. DP always localizes the dominant peak (either
first or second) to just 1 pixel. On the other hand, U-Net
localizes the first peak and sometimes the second peak
to 1-3 pixels and CNN localizes to 2-5 pixels without
any post-processing.

In the case of breast density data, both DP and U-Net
were able to track the first echoes for fatty breasts (Fig.
12) with more dominant first echo. However, when the
second echo becomes more dominant, the DP always
tracks the dominant echo and not the first echo. On
the contrary, U-Net has higher probability of tracking
the first echo for few cases even with other dominant
echoes (Fig. 13 and 14). There are also cases (Fig.
15) where both the methods fail to track the first echo.
It is also observed that the echoes tracked by DP is
more smooth and has less inconsistency along the line
elements when compared to the echoes tracked by
U-Net.

Fig 16 and 17 shows the graphs for the training
loss and accuracy of U-Net for 500 epochs. It can
be observed that the loss function is not entirely
representative of the problem because it looks like the
network is over-fitted with the training data whereas the
accuracy graph on the validation set seems to increase.
It is due to the fact that the loss function used is an
entropy function that is based on probability. When
the network tries to assign few pixels closer to 1, it
decreases the probability of class 0 pixels. These small
changes in probability has a large impact on the final
loss because there are many pixels belonging to class 0.
On the other hand, the metric used for evaluation cannot
account for this as it is a binary accuracy function that
binarizes the output with a threshold of 0.5 before
calculating the accuracy. Fig 23 and 24 shows that the
network does not over-fit as the dice and time difference
metrics works good even for unseen ’menstrual study’
dataset. Additionally, the MAE and RMSE metrics for
the network validated with ’menstrual study’ dataset
are approximately equal to the ’breast density study’
dataset.
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Figure 25: Histogram distribution for different methods for pixel-wise time difference (50 bins)

From the box plots (18-22), it is observed that there
is a certain level of disagreement even between the two
readers which gives a top boundary of achievable per-
formance. When comparing the medians in all the box
plots, the U-Net method trained with the ground truth
images from reader 1 is relatively close to the manual
annotator compared to the rest of the methods. It can
also be observed that DP fails for many cases due to
frequent false hits in second echo than U-Net. This can
be seen more clearly from Fig. 25 which shows the
histograms for the image-wise time difference metric,
wherein the second histogram peak with a distance of
≈ +4 µs is significantly high for DP compared to the
other methods.

6. Conclusions

This thesis proposed a deep learning approach
based on simple CNN and U-Net architectures for
the automation of reflector delineation for in-vivo US
medical images and compared it against the previous
state-of-the-art global optimization algorithm based on
DP.

Based on the study, the DP approach works well in
tracking the dominant echo but it fails to track the first
echo in the presence of a dominant second echo. The
newly proposed U-Net based approach works relatively
better than the DP based approach. Additionally, the
execution time of the U-Net based approach outper-
formed the DP based approach (by 40x) for real time

application unless significant implementation changes
are made to the DP algorithm to run on a GPU machine.

The future works can involve: (1) Using pre-
processed images (making the first echo dominant)
for training the U-Net. When the input images were
pre-processed, DP showed remarkable improvement in
tracking the right echo, almost equal to manual an-
notators. The pre-processing involves overlapping the
two reflector echoes according to their known separa-
tion (pre-defined based on the thickness of the reflec-
tor), thereby making the first echo more dominant. This
is expected to improve the performance by suppressing
the skin echo and second echo. (2) Training the network
with the whole 3D-data (s = 1 . . .N), instead of only us-
ing the 2D images (s = 0) can enhance the performance.
(3) Using the output probability map of U-Net as input
weights for the optimization using DP. U-Net is compar-
atively robust in tracking dominant echo and DP tracks
the echo more continuously along all the line elements,
it might be a very good approach going forward.
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Abstract

The accurate diagnosis of Alzheimer’s disease and its early stage, mild cognitive impairment, is essential for timely
treatment and possible delay of the disease. In recent years there has been a great interest in using neuroimaging
data in combination with machine learning techniques in order to correctly and promptly diagnose Alzheimer. Recent
success of deep learning in computer vision has improved such research and its use is likely to grow rapidly. However,
common limitations with these implementations are the requirement of large amounts of labeled training images and
multiple processing steps for feature extraction. The present work attempts to solve this issue by using transfer
learning, where popular architectures, such as VGG and Inception, are initialized with pre-trained weights from large
datasets of natural images and the fully-connected layer is re-trained with only a small number of structural MRI
brain scans. The proposed approach consists on preprocessing the MRI volumes, followed by a selection of the most
informative slices and finally, retraining the final layer of a network in order to perform both binary classification and
multi-class classification. Performance was evaluated for classification of Alzheimer’s disease versus mild cognitive
impairment and normal controls on the Alzheimer’s Disease National Initiative (ADNI) and the Open Access Series
of Imaging Studies (OASIS) datasets of 3D structural MRI brain scans. The proposed implementation demonstrates
that with a smaller training size and fewer processing steps, comparable or even better performance is reached than
current state-of-the-art methods, resulting in high and reproducible accuracy rates.

Keywords: Alzheimer’s disease, mild cognitive impairment, magnetic resonance imaging, deep learning, transfer
learning, convolutional neural network, computer aided diagnosis

1. Introduction

1.1. Alzheimer’s Disease

Alzheimer’s Disease (AD) is an irreversible neurode-
generative disease that results in a loss of mental func-
tion due to the progressive death of brain cells. It is
characterized by a decline in memory, thinking, prob-
lem solving and ability to formulate and use language.
This decline occurs because neurons in the section of
the brain involved in cognitive function are deteriorated
and no longer function properly. The damage eventu-
ally causes dementia and affect parts of the brain that
enable a person to carry out basic bodily functions, such
as speaking and swallowing, which can ultimately lead
to the individual’s death. AD is currently the most com-
mon neurodegenerative disorder and the most frequent
cause of dementia. It is also considered the main cause
of death for people over 65 years old (Brookmeyer et al.,

2007). According to the World Alzheimer’s report of
2017, there was an estimate of 47 million people world-
wide diagnosed with Alzheimer’s or a related dementia.
The incidence of AD is expected to rise as the popula-
tion of oldest adults increases due to gains in life ex-
pectancy. AD is expected to double every 20 years,
reaching 76 million in 2030 and 131.5 million in 2050
(Sabbagh and Decourt, 2017). This means that 1.2%
of the world population will be affected by AD, with a
major prevalence in Europe and North America. The
global cost of Alzheimers and dementia is estimated to
be $605 billion, which is equivalent to 1% of the entire
world’s gross domestic product. By 2050, costs associ-
ated with dementia could rise up to $1.1 trillion (Asghar
et al., 2017). The impact of AD on patients and their
families, the health care system, and society, is enor-
mous and growing, which makes finding effective so-
lutions to reduce the physical, emotional and financial
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burdens of this disease a worldwide priority.
Unfortunately, up to this day, no cure has been found

for Alzheimer’s disease. The current goal of treatment
is to slow the progression of the disease and manage its
symptoms. Although this is very difficult, it is possi-
ble to a certain extent if it is diagnosed relatively early
on. However, present research shows that most people
living with Alzheimer’s have not received a formal di-
agnosis (Jeon et al., 2017). In high income countries,
only 20-50% of dementia cases are recognized, whereas
in low and middle income countries, less than 10% of
cases are diagnosed (Prince et al., 2013). Even in the
latest stages of the disease, diagnosis is inaccurate 50%
of the time (Boise et al., 2004).

The problematic nature of diagnosing AD resides on
the fact that its symptoms (confusion, memory loss, de-
creased vision and hearing) also manifest themselves in
a normal healthy aging process and in other types of
dementia. A healthy aging process may involve a de-
crease in hearing and vision. It is also common to have
a slight decline in memory, however, cognitive decline
that impacts daily life is not considered a normal part
of aging. Dementia is an overall term that describes a
group of symptoms associated with a decline in cogni-
tive skills severe enough to reduce a person’s ability to
perform everyday activities. It can result from various
diseases that cause damage to brain cells, like Parkin-
son’s or Huntington’s disease. Hence, it is important for
physicians to correctly identify the cause of dementia as
it can lead to timely treatment and a delay in morbidity
(Petersen et al., 2001).

The early diagnosis of AD is primarily associated to
the detection of Mild Cognitive Impairment (MCI), an
intermediate stage between the expected cognitive de-
cline of normal aging and the more serious decline of
dementia. Figure 1 shows the different evolution of
normal aging and dementia. MCI symptoms involve
problems with memory, language, thinking and judg-
ment that are greater than normal aging related changes.
Although the memory complaints and deficits of MCI
do not notably affect the patient’s daily activities, it has
been reported that individuals with MCI have a high risk
of progression to Alzheimer’s or other forms of demen-
tia (Gauthier et al., 2006).

Current diagnosis of MCI or AD relies mostly on sub-
jective clinical observations and cognitive tests which
include patient history, a mini mental state examination
(MMSE), as well as physical and neurobiological exams
(Sarraf and Tofighi, 2016). Up to this day, there is no
single test that can effectively diagnose AD. According
to the Alzheimers Association, AD can only be proba-
ble during the patient life, whereas a definite diagnosis
requires postmortem histopathological confirmation.

Research efforts are focused on discovering an ac-
curate way of detecting the disease. In recent years,
a number of researchers have identified disease spe-
cific biomarkers of AD. This reliable identification of

biomarkers supports a major change in the diagnosis
of dementia as it allows physicians to combine clini-
cal observations with in-vivo biological manifestations
and integrate the information into the diagnosis pro-
cess (Dubois et al., 2010). These identifiable imaging
biomarkers have been effectively used for the diagnosis
or prognosis of AD due to their advantages of visualiza-
tion and quantitative measurements by neuroimaging.

Among the different neuroimaging modalities, struc-
tural magnetic resonance imaging (sMRI) has been rec-
ognized as a promising indicator for the early diagno-
sis of Alzheimer’s Disease and its progression (Bron
et al., 2015). AD has a certain progressive pattern of
brain tissue damage. It shrinks the cerebral cortex of the
brain and enlarges the ventricles. Research suggests that
the thickness of the cortex in the brain and the size of
the ventricles are representative biomarkers for predict-
ing and diagnosing Alzheimer’s Disease (Querbes et al.,
2009). Figure 2 displays the aforementioned biomarkers
on axial sMRI scans of a normal control (NC), a patient
with late MCI and a patient with severe AD.

Another quantifiable biomarker provided by an sMRI
scan is the degree of neural degeneration and the af-
fected brain zones. About 5% of neurons die each year
in someone with Alzheimers, compared to less than
1% in a senior who is aging normally (O’Kelly, 2016).
Since brain cells in the damaged regions have degener-
ated, they display lower intensities on the sMRI scan.
This provides additional information for the diagnostic
criteria.

Identifying the visual distinctions between sMRI im-
ages of AD, MCI and senior patients with normal ag-
ing requires extensive knowledge and experience, which
must be also combined with additional clinical observa-
tions in order to accurately classify the data. However
in some cases this distinction is not so easily notice-
able. Early signs of AD are difficult to differentiate from
MCI; similarly, scans of healthy aged subjects are diffi-
cult to distinguish between an early MCI stage. While
promising, brain imaging remains an underutilized re-
source for aiding medical experts in performing early
diagnosis due to limitations of the human eye. There-
fore, the development of an assertive and automatic tool
for classifying scans between healthy, MCI and AD pa-
tients is of great interest to clinicians.

Classification between scans can be achieved through
automated analysis of sMRI images with machine learn-
ing. Recent studies have shown that machine learn-
ing algorithms were able to predict AD more accurately
than experience clinicians (Klöppel et al., 2008), mak-
ing it an important field of research for computer aided
diagnosis. Attention in medical imaging has thus been
shifted into finding biomarkers and applying machine
learning techniques to perform automatic early detec-
tion of AD. A multitude of machine learning methods
have been tried for this task in recent years, including
support vector machines, independent component anal-
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Figure 1: The course of Alzheimer’s disease evolves continuously through a stage known as mild cognitive impair-
ment.

Figure 2: Axial sMRI brain scans of (a) normal control, (b) mild cognitive impairment and (c) Alzheimer’s dis-
ease subjects from the ADNI dataset. Representative biomarkers for detecting Alzheimer are highlighted: in blue,
shrinkage of cerebral cortex; in red, ventricle enlargement.

ysis and penalized regression. While these statistical
machine learning methods have proved to be effective in
diagnosing AD from neuroimages, recent deep learning
methods, such as convolutional neural networks, have
outperformed the traditional statistical methods.

1.2. Deep Learning
Deep learning (DL) is a subfield of machine learning,

based on learning data representations. Learning can be
supervised, in which a label or groundtruth is provided
to train the algorithm; or unsupervised, were there is no
previous criteria and the computer itself determines the
classes of the images. Convolutional neural networks
(CNNs or convnets), whose design is roughly similar
to the human vision system, are the pillar algorithms of
deep learning. They are one of the best models for solv-
ing perceptual problems, such as identifying images,
classifying and clustering them. CNNs have recently
attracted much attention as they have proven to be able

to recognize thousands of object categories from natural
image databases, as shown on the ImageNet challenge,
a benchmark of machine learning performance (Dean
et al., 2018). In this annual competition, teams com-
pete to classify millions of images into categories. A
milestone year was 2012, when Alex Krizhevsky used
the first neural network entry and won the competition
by dropping the classification error record from 26% to
15%, an astounding improvement at the time (Zheng
et al., 2018). Since then, every winning entry has used
a deep learning architecture, with performance now ex-
ceeding that of humans (Zaharchuk et al., 2018).

The core of CNNs are convolutional layers which can
extract local features (e.g. edges) across an input im-
age through convolution. Each node in a convolutional
layer is connected to a small subset of spatially con-
nected neurons. To reduce computational complexity, a
max pooling layer follows convolutional layers, which
reduces the size of feature maps by selecting the maxi-
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Figure 3: Example of a CNN architecture: an input image, in this case a 2D slice, is processed throughout the network
over many layers and the output neurons hold the probabilites for belonging to a class.

mum feature response in a local neighborhood. Pairs of
convolutional and pooling layers are followed by a num-
ber of fully-connected layers, where a neuron in one
layer has connections to all activations in the previous
layer. Fully-connected layers help learning non-linear
relationship among the local features extracted by con-
volutional layers. Finally, a soft-max layer follows the
fully-connected layers, which normalizes the outputs to
desired levels. Figure 3 displays an example of a CNN
architecture used for classification. CNNs are trained
with the back-propagation algorithm, where in each it-
eration, weights associated with the neurons in the con-
volutional layers are updated in a way that minimizes a
cost function. When training from scratch, the weights
are typically initialized randomly, drawing from a nor-
mal distribution.

CNNs have become a popular neural network archi-
tecture, with the potential to revolutionize entire indus-
tries, including medical imaging analysis. The main
power of a CNN lies in its deep architecture which al-
lows the extraction of a set of discriminating features
from images. These features help the network identify
to which class the image belongs to and assign its cor-
responding label. However, training a deep CNN from
scratch is not a simple task. First, a huge amount of
labeled data is required. In the medical domain, this
requirement is difficult to meet as obtaining expert an-
notations is timely, expensive and prone to variability.
Diseases might be scarcely represented and data could
be protected due to ethical reasons. Second, training a
deep CNN requires extensive computational and mem-
ory resources. Without the appropriate equipment, the
training process becomes extremely time consuming.
Third, training requires careful and tedious tuning of
many parameters which, done incorrectly can result in
over-fitting and convergence issues. Overall, training
a network from scratch requires a large amount of la-
beled training data and a great deal of expertise to en-
sure proper convergence.

A more attractive alternative to training from scratch
is to fine-tune a CNN that has already been trained using
a large set of labeled natural images, like the ones pro-
vided on the ImageNet database. This pre-trained net-
work would have already learned features that are useful

for problems, like image classification. Through trans-
fer learning, these extracted features can be used as a
starting point to work in a different and smaller dataset,
requiring only to fine tune the final layers. Transfer
learning has proven to be robust and faster than training
from scratch. It has already been applied in the medical
imaging field, with results demonstrating that the use of
a pre-trained CNN with adequate fine-tuning could per-
form as well as a CNN trained from scratch (Tajbakhsh
et al., 2016).

In the present master thesis, popular CNN architec-
tures were implemented to solve the AD diagnosis prob-
lem by using transfer learning. The first architecture,
VGG, is a 16-19 layer network built by Oxford’s Vi-
sual Geometry Group, hence the name VGG (Simonyan
and Zisserman, 2014). The second architecture, Incep-
tion V3, is a variant of the GoogLeNet model which
was a state of the art image recognition net in 2014
(Szegedy et al., 2017). These architectures are both pre-
vious winners of the ImageNet challenge and are open
source, meaning that the architectures, as well as the
pretrained weights, are readily available online. Al-
though the architectures are trained on a different do-
main (natural images from the ImageNet database), we
demonstrate that with the help of transfer learning, the
pre-trained weights of these networks can be adapted to
our database of brain sMRI scans.

1.3. Data acquisition

The structural MRI scans used in the present work
were obtained from two well-known public dementia
datasets. The first one, the Open Access Series of
Imaging Studies (OASIS), is a project aimed at mak-
ing neuroimaging data sets of the brain freely available
to the scientific community. OASIS provides crossec-
tional MRI scans of nondemented and demented older
adults (Marcus et al., 2007). The second dataset comes
from the Alzheimers Disease Neuroimaging Initiative
(ADNI) , which unites researchers with study data as
they work to define the progression of Alzheimers dis-
ease. ADNI researchers collect, validate and utilize
data, such as structural MRI images, as predictors for
the disease. Study participants include Alzheimers dis-
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ease patients, mild cognitive impairment subjects and
elderly controls (Mueller et al., 2005).

1.4. Aim and Objectives

The aim of this master thesis is to develop a com-
puter aided diagnosis tool in order to detect Alzheimer’s
disease and its early stage, mild cognitive impairment,
using transfer learning on structural MRI images. In
particular, our objectives are:
• Present a state of the art review on the diagnosis of

AD based on structural MRI images and machine
learning techniques.

• Fine tune pre-trained CNN architectures to per-
form the difficult diagnostic task of classification
between three classes of subjects: NC, MCI and
AD patients.

• Identify which of the pre-trained CNN architec-
tures adapts better to our classification problem.

• Implement the developed architectures on different
dementia datasets to confirm robustness of the pro-
posed model.

• Compare the proposed deep learning approach
with state of the art machine learning methods for
AD diagnosis.

1.5. Organization of the document

This document is organized in the following manner.
First, a state of the art, background and theory are pre-
sented in section 2. Next, in section 3 a description of
the materials and methods is provided. In Section 3.2,
all the steps of the proposed method are described. In
section 4, the results and all relevant findings are pre-
sented. The discussion of results and findings is pre-
sented in section 5. Finally, section 6 concludes and
present future work possibilities.

2. State of the art

2.1. Classical machine learning methods

Several studies have demonstrated that it is possible
to automatize the diagnosis of Alzheimers disease us-
ing computer aided systems based on machine learning
in combination with structural MRI images. Among the
many approaches, classical methods, like support vec-
tor machines (SVMs), have been extensively used in
the area providing good results. An interesting work
is the one of Klöppel et al. (2008) who used SVMs with
linear kernels for the classification of gray matter sig-
natures and compared their results against the perfor-
mance achieved by expert radiologists. They demon-
strated that their algorithm provided a better diagnosis
of Alzheimer than the one of human experts, reaching
an accuracy value of 93%, whereas radiologists perfor-
mance ranged between 80%-90% when discriminating
between AD and NC patients.

One recent method using the ADNI dataset is the one
of Jha et al. (2017), which uses a dual-tree complex
wavelet transform for extracting features from an sMRI.
The dimensionality of the feature vector is reduced by
using principal component analysis (PCA) and the re-
duced feature vector is sent to a feed-forward neural
network (FNN) in order to distinguish AD and NC sub-
jects, achieving an accuracy of 90.06%.

Another work is the one of Liu et al. (2016), who ex-
tracted multi view features using several selected tem-
plates from the ADNI dataset. Tissue density maps of
each template were used then for clustering subjects
within each class in order to extract an encoding feature
of each subject. Finally, an ensemble of SVMs were
used to perform classification, resulting in accuracy val-
ues of 93.83% for AD vs MC and 89.1% for MCI vs
NC.

An example of a classical machine learning method
using the OASIS dataset is the one of Amulya et al.
(2017), who extracted texture features using a Gray-
Level Co-occurrence Matrix (GLCM) method and
performed classification between AD and NC using
SVMs. Obtaining an accuracy value of 75.71%.

2.2. Deep Learning methods

Although classical machine learning methods have
proven to be efficient in diagnosing AD, recently deep
learning techniques have outperformed these methods
by a large margin. Such is the case of Payan and Mon-
tana (2015), who designed a predictive algorithm to dis-
tinguish AD, MCI and NC subjects by combining a
sparse autoencoder with a 3D CNN architecture, ob-
taining an accuracy value of 95.39% for classifying AD
from NC subjects. In this work they also implemented
a three way classifier, obtaining an accuracy value of
89.4% for discriminating AD, MCI and NC subjects.

Gupta et al. (2013) employed 2D CNN for slice-wise
feature extraction of sMRI scans. To boost the classi-
fication performance, the CNN was pretrained using a
Sparse Autoencoder (SAE), reaching a final accuracy
of 94.7% for detecting AD from NC.

The work of Hosseini-Asl et al. (2016) aimed to ex-
tract features related to AD variations of anatomical
brain structures, such as ventricles size, cortical thick-
ness and brain volume, using a three dimensional convo-
lutional autoencoder. The autoencoder is pretrained to
capture anatomical shape variations in structural brain
MRI scans. The encoder is fed into fully connected lay-
ers which are then trained for each specific AD classi-
fication task. Their experiments on the ADNI dataset
have shown better results compared to several conven-
tional classifiers. In addition, they perform three 2-way
classifiers, obtaining an overall accuracy of 97.6% for
AD vs NC, 95% for AD vs MCI and 90.8% for MCI vs
NC classification.
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Table 1: State of the art algorithm comparison for automatic classification of sMRI images.

CLASSIFICATION ACCURACY (%)
AUTHOR YEAR METHOD DATABASE NUMBER OF

SUBJECTS AD/NC AD/MCI MCI/NC AD/MCI/NC

Sarraf et al. 2016 LeNet and GoogleNet ADNI
AD: 211
NC: 91 98.84

Hossein-Asl
et al. 2016 3D-ACNN ADNI

AD: 70
NC: 70
MCI: 70

97.60 95.00 90.80

Hon and Khan 2017 Fine-tuning VGG16 OASIS
AD: 100
NC: 100 96.25

Payan and
Montana 2015 Autoencoder and 3D-CNN ADNI

AD: 755
NC: 755
MCI: 755

95.39 86.80 92.10 89.40

Gupta et al. 2013 2D CNN ADNI
AD: 200
NC: 232
MCI: 411

94.70 88.10 86.35 85.00

Liu et al. 2016 Multitemplate and SVMs ADNI
AD: 97
NC: 128
MCI: 234

93.83 89.10

Islam and
Zhang 2017 Deep neural network OASIS

AD: 100
NC: 135 93.13

Kloppel et al. 2008 SVMs with linear kernels
Private
dataset

AD: 20
NC: 20 93.00

Jha et al. 2017 Complex wavelet transform ADNI
AD: 28
NC: 98 90.06

Amulya et al. 2015 GLCM and SVMs OASIS
AD: 100
NC: 135 75.71

The best accuracy to date was obtained in the work
of Sarraf et al. (2016), in which popular CNN architec-
tures, such as LeNet and Inception model from Google
were used for classifying AD from NC subjects, reach-
ing accuracy values of 98.84% when using sMRI scans
from the ADNI database.

The above mentioned studies were all developed us-
ing sMRI brain scans from the ADNI dataset. However,
some other works have evaluated their performance us-
ing the OASIS dataset. This is the case of Islam and
Zhang (2017) who developed a deep neural network
inspired on the Inception V4 model for AD detection.
This deep learning method obtained a final accuracy of
93.12% which is far greater than using conventional ma-
chine learning methods. More recently, Hon and Khan
(2017), applied transfer learning on pre-trained archi-
tectures, such as VGG-16 and Inception V4, achieving
an accuracy of 96.25%

Table 1 contains a summary of the state of the art, de-
scribing the implemented methods, the number of sub-
jects used in each study and their reported performance.
Although a direct comparison of these studies is diffi-
cult, as each study uses different datasets and process-
ing protocols, the table provides a general overview of
typical accuracy measures achieved in the classification
of sMRI images. In the mentioned studies, a problem

of sMRI classification is usually tackled with complex
multistage pipelines for feature extraction. Moreover,
not all the methods are capable of performing three way
classification. In contrast, the present master thesis pro-
poses to develop a deep learning based algorithm that
has the potential to simplify the classification pipeline
by using transfer learning and significant 2D slices in-
stead of whole MRI volumes. It also tackles the clas-
sification problem of classifying subjects between NC,
MCI and AD by performing 2-way and 3-way classifi-
cation.

3. Material and methods

3.1. Materials

3.1.1. ADNI dataset
In this study, the efficiency of the proposed method

is evaluated on the Alzheimers Disease Neuroimag-
ing Initiative (ADNI) database available at (http://
adni.loni.usc.edu/). There are different data collections
of sMRI images: ADNI-1, ADNI-GO, ADNI-2 and
ADNI-3. For this work, only raw T1-weighted MRI
scans from ADNI-2 were considered. The reason be-
ing that ADNI-2 already includes patients from ADNI-1
and ADNI-GO. Moreover, the majority of publications
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(a) ADNI-2 raw sMRI (b) OASIS-1 preprocessed sMRI

Figure 4: Sample sMRI volumes from ADNI and OASIS datasets.

Table 2: Statistical data of the ADNI participants.

ADNI SUBJECTS AD MCI NC

No. of patients 100 100 100
Age(years) 75.3±7.4 74.7±7.4 75.8±5.1

Gender(M/F) 67/33 56/44 48/52

report their results using this dataset. Therefore, in or-
der to compare our results with the state of the art, the
ADNI-2 data collection was selected. An example of an
ADNI volume is shown in Figure 4.a. Since there are
patients that have multiple images taken during a pe-
riod of time, only the baseline images from each subject
were selected. Table 2 describes the demographics of
the patients in our collection, which is broken into three
groups: AD, MCI and NC.

For a balanced dataset, we sampled 100 scans from
each group for a total of 300 scans. All the images come
in NIfTI-1 format (extension .nii) and include correc-
tions for gradient warping and image inhomogeneity.
Further preprocessing was performed (skull stripping,
registration and normalization) and the most informa-
tive slices from the volume were selected and saved in
JPG format for fine tuning the CNN.

3.1.2. OASIS subjects
A second dataset was employed in order to be able

to confirm the robustness of the proposed implemen-
tation. This dataset consisted on sMRI volumes from
the Open Access Series of Imaging Studies (OASIS),
accessible at (http://www.oasisbrains.org). OASIS pro-
vides two types of data: cross-sectional and longitudi-
nal. Since the aim of this work is to differentiate be-
tween AD and NC patients through the brain images,
we used the cross-sectional data from OASIS-1. An ex-
ample of an OASIS volume is shown in Figure 4.b. The
dataset consists of 416 subjects whose ages are between

Table 3: Statistical data of the OASIS participants.

OASIS SUBJECTS AD NC

No. of patients 100 100
Age (years) 75.91±8.98 77.75±6.99

Gender (M/F) 28/72 29/71

18 and 96. For the experiments, 200 subjects were ran-
domly picked, 100 from the AD group and 100 from the
NC group. The demographics of the selected patients
are displayed in Table 3. All images come in 16-bit An-
alyze 7.5 format. No further preprocessing was required
as images were already, intensity inhomogeneity cor-
rected, skull stripped, registered and normalized. Only
the most informative slices were selected and saved in
JPG format for fine tuning.

3.2. Methods

The proposed method consists of three important
stages: (1) preprocessing of ADNI-2 volumes, in which
skull stripping and affine registration is performed, (2)
slice selection, in which central and highest entropy
slices are extracted from the volume and (3) classifica-
tion using transfer learning. As the volumes provided
by OASIS-1 were already skull-stripped and registered,
they do not require any further preprocessing. Only
the slice selection and classification steps apply to this
dataset. Figure 5 displays a block diagram of the pro-
posed implementation.

3.2.1. Preprocessing
1. Skull stripping: The first preprocessing step

applied to the raw sMRI volumes for the ADNI-2
dataset was to remove all non-brain tissue from the
images. The Robust Brain Extraction (ROBEX) is
a solution to solve the problem of brain extraction
from MRI under almost any condition with the
benefit of no parameter settings. In the work of
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Figure 5: Block diagram of the proposed implementation.

Iglesias et al. (2011), it was demonstrated that
ROBEX performed better than six other popular
algorithms (FSL-BET, BSE, FreeSurfer, AFNI,
BridgeBurner and GCUT). Due to its ease of use,
lack of parameters and its good performance,
ROBEX was used in this first step.

2. Image registration: In the second preprocess-
ing step, FMRIB’s Linear Image Registration Tool
(FLIRT) was used to perform linear registration
applying an affine transformation. In this case,
each brain was normalized in shape and pose to
the MNI152 standard space. The alignment to
the standard space was completed using the affine
transformation process provided by FLIRT, which
has 12 parameters or degrees of freedom. This pro-
cess consists of aligning the subject image to the
standard space applying 12 parameters, 3 on each
sub-group: translation, shear, rotation and scale
(Jenkinson and Smith, 2001). The affine transfor-
mation was employed to keep the shape and pro-
portions of each brain. This linear registration pro-
cess helps to compare different substructures inde-
pendently of the actual size of each brain. FLIRT
has several parameters that need to be tuned to per-
form the registration.

The parameters used on FLIRT were the following:

• bins: 256 ( enabled 256 bins in the intensity
histogram).

• cost: corratio (cost function correlation ra-
tio).

• dof: 12 (3 for translation, 3 for shear, 3 for
rotation and 3 for scale).

• interp: trilinear (method to estimate the cen-
tral point of each voxel.

• ref: <path> (MNI152 template filename).
• in: <path> (input image filename).
• out: <path> (registered image filename).

3.2.2. Slice selection
The second major step on this work was to select the

most informative slices from the volume. A 3D sMRI
volume is composed by several slices that may not con-
tain useful information for detecting AD and might mis-
lead the network during training. This is the case of the
first and last slices of the volume, which consist mostly
of background. In order to provide the best possible data
for training, slices that contain the most relevant infor-
mation of the brain tissue need to be selected. In the
present work, this is done by means of two methods: (1)
selecting central slices and (2) selecting the slices with
the highest entropy. The entropy provides a measure of
variation in an image. Hence, the images with the high-
est entropy values can be considered as the most infor-
mative slices of the volume. The reason behind picking
the highest slice from all slices is that it retains more rel-
evant information about the brain tissues as compared to
earlier slices and later slices in the volume. The possible
direction of the slices are sagital, coronal, and axial. In
this research, the axial view was chosen as it is the view
that reports the highest accuracy values for AD detec-
tion (Glozman and Liba, 2016).

1. Central slices: 31 axial slices were selected and
extracted from the center of the volume. The slices
were saved in JPG format and, in order to be com-
patible with the pre-trained models of VGG and
Inception, the images were resized to be 150x150
for VGG, and 299x299 for Inception. The same
process is repeated and applied to all the subjects
from both datasets, OASIS and ADNI, resulting in
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a total of 6200 images for OASIS and 9300 images
from ADNI,

2. Highest entropy slices: The entropy values of
all slices in the sMRI volume were computed.
The 31 axial slices with the highest entropy val-
ues were extracted from the volume. The selected
slices were saved in JPG format and resized to be
150x150 for VGG, and 299x299 for Inception. The
same process is repeated and applied to all the sub-
jects from both datasets, OASIS and ADNI, result-
ing in a total of 6200 images for OASIS and 9300
images from ADNI.

Table 4, shows a summary of the number of volumes,
slices and images used from each database. Experi-
ments were performed with both central slices and the
highest entropy slices in order to compare the perfor-
mance and determine which of the two methods achieve
higher accuracy values.

3.2.3. Network architecture and training
The data was randomly divided into 80% training and

20% validation sets on the subject level, rather than on
the slice level, to avoid possible bias of having data of
the same subject at both the training and testing sets.
More details are provided in table 5.

To increase the amount of data available to the net-
work, mirrored images flipped horizontally were added
to the training set. Other methods of data augmentation,
like scaling, rotating or random cropping were avoided
in order to preserve the diagnostic value of the images.

Due to the limited amount of training data, pre-
trained networks were used instead of training from
scratch. All layers were initialized with ImageNet
weights and biases. Only the last fully-connected (FC)
layers of the networks were replaced in order to work
with our three classes (AD, MCI, NC), instead of the
original 1000 ImageNet classes. The previous layers
remained frozen because the existing weights are valu-
able at finding and summarizing features that are useful
for image classification problems. Earlier layers in the
model contain general features, such as edge or shape
detectors, which are ubiquitous for many image clas-
sification tasks, whereas the last layers contain higher
level features (Weng et al., 2017). This not only pro-
vides a robust set of pre-trained weights to work with,
but it also allows the use of different architectures to test
the power of transfer learning. The following CNN ar-
chitectures, loaded with pre-trained ImageNet weights,
were used in the present work:

1. VGG-16: This network is characterized by its sim-
plicity, using only 33 convolutional layers stacked
on top of each other in increasing depth. The ”16”
stands for the number of weight layers in the net-
work. Reducing volume size is handled by max

pooling. Two fully-connected layers, each with
4,096 nodes are then followed by a softmax clas-
sifier (Simonyan and Zisserman, 2014). For our
transfer-learning implementation, the architecture
was frozen up until the last convolutional part and
the original fully connected layers were replaced
with three new ones: (1) a dense layer with a ReLu
activation function (2) a dropout of 0.03 and (3)
a softmax classifier. Figure 6 displays the frozen
and the new FC layers implemented on VGG-16.
Training was done with a batch size of 40, a learn-
ing rate of 0.001 and using an RMSprop opti-
mization model. An early stopping strategy was
adopted to monitor the validation accuracy with a
patience set to 5 epochs.

2. VGG-19: Made by 19 layers using small convolu-
tion filters of size 3x3. As in the previous case, a
classifier model consisting of three fully connected
layers was built: (1) a dense layer with a ReLu ac-
tivation function (2) a dropout layer of 0.03 and (3)
a softmax classifier. The layers were frozen up to
the last convolutional block and the three new built
FC layers were added on top of the frozen architec-
ture. The resulting architecture is shown in Figure
7. Training was done with a batch size of 40, a
learning rate of 0.001 and using an RMSprop op-
timization model. Training was stopped when the
accuracy did not improve after 5 epochs.

3. Inception V3: A variant of deep learning archi-
tecture built by Google, made of 22 layers with a 4
parallel pathway of 1x1, 3x3 and 5x5 convolutions.
The architecture allows the model to recover both
local features via smaller convolutions and high
abstracted features via large ones (Szegedy et al.,
2016). For our transfer-learning implementation,
the first layers remained unchanged, whereas the
last FC layers were replaced with: (1) flatten layer,
(2) dense layer with ReLu activation, (3) dropout
of 0.2, (4) dense layer with ReLu activation and
(5) a softmax classifier. Figure 8 displays the fi-
nal configuration of the model. Training was done
with a batch size of 8 and an Adam optimizer with
a learning rate of 0.01. Training was stopped when
the accuracy did not improve after 10 epochs.

The input of these CNNs models are the sMRI slices,
and the output is the probability distribution over the
three classes. The slice is labeled according to the
largest probability class. The predicted label is then as-
signed to the patient by majority voting of all slices.

3.3. Evaluation metrics

The performance of disease classification is evaluated
by computing the accuracy and the confusion matrix on
the obtained predictions from the CNNs.
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Table 4: Number of patients, slices and images from OASIS and ADNI datasets used for training and validation.

Class OASIS DATASET ADNI DATASET
No.patients No.slices No.images No.patients No.slices No.images

AD 100 31 3100 100 31 3100
MCI - - - 100 31 3100
NC 100 31 3100 100 31 3100

TOTAL 200 31 6200 300 31 9300

Table 5: Statistics on training and validation data.

Class OASIS DATASET ADNI DATASET
Training Validation Training Validation

AD 2480 620 2480 620
MCI - - 2480 620
NC 2480 620 2480 620

Total no. slices 4960 1240 7440 1860

Figure 6: VGG-16 transfer learning layout.

Figure 7: VGG-19 transfer learning layout.

Figure 8: Inception V3 transfer learning layout.
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3.3.1. Confusion matrix
The performance is calculated on the essence of the

overall confusion matrix, which holds the correct and
incorrect classification results.

3.3.2. Accuracy
The accuracy is one common empirical measure to

access effectiveness of a classifier. It is calculated as
the sum of correct classifications, divided by the total
number of classifications, as shown in Equation 1:

Accuracy =
T P + T N

T P + T N + FP + FN
(1)

3.4. Software environment

The proposed deep learning implementation was de-
veloped on Python using Keras with Tensorflow back-
end. Keras Applications contained the CNN architec-
tures used in this work, which are VGG-16, VGG-19
and Inception V3. ImageNet weights were downloaded
automatically when instantiating a model. The imple-
mentation was developed on Ubuntu 14.04 running an
Intel R© Core TM i7, with a processing speed of 3.60GHz
and 31GB of RAM. Training was performed with a TI-
TAN X (Pascal) GPU.

4. Results

In this section, the experimental results are presented
for both OASIS and ADNI datasets. For the OASIS im-
ages, only 2-way classification was performed (AD vs
NC) as the database does not provide the MCI class.
Whereas for the ADNI dataset, classification results are
presented using three binary classifiers (AD vs NC, AD
vs MCI and NC vs MCI), and one 3-way classifier (AD
vs NC vs MCI). The experiments were mainly divided
in two sections: (1) using central slices and (2) using
highest entropy slices. A 5-fold cross-validation strat-
egy was used to evaluate the performance of the method.
The average accuracy of all 5-folds is computed and re-
ported for each of the implemented architectures. For
a better visualization of the multi-class problem, a con-
fusion matrix and examples of correctly and incorrectly
classified slices are displayed. Finally, a comparison be-
tween the proposed method and the state of the art is
performed.

4.1. OASIS dataset

4.1.1. 2-way classification
The first set of experiments were performed with the

OASIS dataset. As the data was already preprocessed, it
was faster to implement into our transfer-learning layout
and to fine-tune the parameters for further experiments
with the ADNI dataset. Table 6 shows the individual
accuracy of VGG-16, VGG-19 and Inception V3 archi-
tectures for a 2-way classification between AD and NC

on the OASIS dataset. The highest accuracy value was
99.84% obtained from fine-tuning VGG-16 on the slices
with highest entropy. Table 7 shows the comparison of
the proposed implementation against the state of the art
techniques in terms of accuracy and training size on the
OASIS dataset. The comparison demonstrates that the
proposed method surpasses all of the previous works in
terms of accuracy.

4.1.2. ADNI dataset
4.2. 3-way classification

After obtaining good performance with the OASIS
dataset, we decided to begin our tests with the prepro-
cessed ADNI slices. The first experiment performed
with ADNI was to implement the 3-way classification
between AD, NC and MCI. Table 8 shows the individual
performance of VGG-16, VGG-19 and Inception V3 ar-
chitecture for a 3-way classification between AD, MCI
and NC on the ADNI-2 dataset. The highest accuracy
value was 66 .23% obtained from fine-tuning Inception-
V3 on the highest entropy slices. For a better under-
standing of the multi-class problem, the confusion ma-
trix from Inception V3 is displayed in Figure 9. In ad-
dition, examples of correctly and incorrectly classified
slices from Inception V3 are shown in Figure 10. As
the performance was not as good as the one obtained
with OASIS, we decided to simplify the 3-way classifi-
cation task into three binary and simpler classifications
in order to achieve better results.

4.3. 2-way classification

Table 9 reports the individual performance of VGG-
16, VGG-19 and Inception V3 models respectively, for
a three binary classification: AD vs NC, AD vs MCI
and NC vs MCI. For discriminating AD vs NC, the best
accuracy was 98.52%, obtained using VGG-16 on the
highest entropy slices. The highest accuracy obtained
for classifying AD vs MCI subjects was 75.44% ob-
tained from fine-tuning Inception V3 on the highest en-
tropy slices. Finally, for classifying NC vs MCI sub-
jects, the best accuracy was 82.27% once again obtained
from using Inception V3 and the highest entropy slices.
In order to know if the obtained accuracy values were
above average, we compare all the classification tasks
with the state of the art. Table 10 shows the comparison
between the proposed implementation and the state of
the art methods working on the ADNI dataset. The com-
parison demonstrates that our implementation outper-
forms the majority of the techniques when classifying
between AD and NC. Reaching comparable results as
the ones obtained from Sarraf and Tofighi (2016) which
currently hold the best performance. However, when
introducing the MCI class, our performance drops dras-
tically. The obtained results were only able to surpass
the implementation proposed by Liu et al. (2016).
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Table 6: Tested models and corresponding average accuracy(%) from 5-fold cross validation on the OASIS dataset
for a binary classification between AD and NC subjects.

Slice Class OASIS accuracy (%)

VGG-16 VGG-19 InceptionV3

Central ADvsNC 98.68 96.51 93.66
Entropy ADvsNC 99.84 97.62 95.43

Table 7: Comparison with the state of the art in terms of accuracy and training size on the OASIS dataset.

ACCURACY (%)AUTHOR YEAR METHOD NUMBER OF
SUBJECTS AD/NC

Hon and Khan 2017 Fine-tuning Inception V4
AD: 100
NC: 100 96.25

Islam and Zhang 2017 Deep neural network
AD: 100
NC: 135 93.13

Amulya et al. 2015 GLCM and SVMs
AD: 100
NC: 135 75.71

Proposed method 2018 Fine-tuning VGG-16
AD: 100
NC: 100 99.84

Table 8: Tested models and their corresponding average accuracy (%) from 5-fold cross validation on the ADNI
dataset for a 3-way classification between AD, MCI and NC.

Slice Class ADNI accuracy (%)

VGG-16 VGG-19 Inception V3

Central AD vs MCI vs NC 50.32 61.16 63.67
Entropy AD vs MCI vs NC 51.88 62.23 66.23

Table 9: Average accuracy (%) achieved through across 5 folds on the ADNI dataset for three binary classifications.

ADNI accuracy (%)
Slice Class VGG-16 VGG-19 Inception V3

AD vs NC 98.24 98.04 91.21

AD vs MCI 74.36 55.79 65.16Central
NC vs MCI 77.87 69.54 64.93

AD vs NC 98.52 96.11 91.56

AD vs MCI 65.74 68.77 82.27Entropy
NC vs MCI 78.57 70.14 75.44

5. Discussion

Transfer learning was performed on three different
architectures: VGG-16, VGG-19 and Inception V3
on two different datasets, OASIS and ADNI, with
two different sets of inputs, central slices and highest
entropy slices. The reported results demonstrate that
fine-tuning a network with a small dataset can be used
instead of training a network from scratch.

When comparing the performance of each network,
we can identify that the VGG-16 model resulted in a
higher level of accuracy than VGG-19 and Inception V3
when classifying between AD and NC subjects, with the
highest overall accuracy rate of 99.84% for OASIS and
98.52% for ADNI. However, when performing a 3-way
classification between AD, NC and MCI, the architec-
ture that provided a better performance was Inception
V3, followed by VGG-19 and lastly VGG-16, with ac-
curacy values of 66.23%, 62.23% and 51.88% respec-
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Figure 9: Normalized confusion from Inception V3 for mulit-class classification of ADNI dataset.

(a) True: AD
Predicted: AD

(b) True: MCI
Predicted: MCI

(c) True: NC
Predicted: NC

(d) True: AD
Predicted: MCI

(e) True: MCI
Predicted: NC

(f) True: NC
Predicted: MCI

Figure 10: Example of correct (top) and incorrect (bottom) classification of slices by Inception V3.
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Table 10: Comparison with the state of the art in terms of accuracy and training size on ADNI dataset.

CLASSIFICATION ACCURACY (%)
AUTHOR YEAR METHOD NUMBER OF

SUBJECTS AD/NC AD/MCI MCI/NC AD/MCI/NC

Sarraf et al. 2016
LeNet and
GoogleNet

AD: 211
NC: 91 98.84

Hossein-Asl
et al. 2016 3D-ACNN

AD: 70
NC: 70

MCI: 70
97.60 95.00 90.80

Payan and
Montana 2015

Autoencoder
and 3D-CNN

AD: 755
NC: 755

MCI: 755
95.39 86.80 92.10 89.40

Gupta et al. 2013 2D-CNN
AD: 200
NC: 232

MCI: 411
94.70 88.10 86.35 85.00

Liu et al. 2016
Multitemplate

and SVMs

AD: 97
NC: 128

MCI: 234
70.10 77.40

Kloppel et al. 2008
SVMs with
linear kernel

AD: 20
NC: 20 93.00

Jha et al. 2017
Complex
wavelet

transform

AD: 28
NC: 98 90.06

Proposed
method 2018

Fine-tuning
VGG-16

AD: 100
NC: 100

MCI: 100
98.52 65.74 78.57 51.88

Proposed
method 2018

Fine-tuning
Inception V3

AD: 100
NC: 100

MCI: 100
91.56 75.44 82.27 66.23

tively. In a similar manner, when performing a binary
classification between AD vs MCI, Inception V3 out-
performed the rest of the networks, with an accuracy of
82.27%. The same happened when classifying NC vs
MCI subjects, with Inception V3 giving the highest ac-
curacy of 75.44%.

The different performance in the architectures might
be due to the complexity of the problem and the
architecture of the models. When performing a simpler
task, which is classifying AD against NC, VGG-16 and
VGG-19 perform well. However, when introducing a
third class, the MCI class, which visually is very similar
to the AD and NC subjects, the problem increases
greatly in complexity. As mentioned previously,
Inception V3 uses parallel pathways with different sizes
of convolutions. The architecture allows the model to
recover local features by using smaller convolutions
and high abstract features by using larger ones. This
ability to extract different types of features may be the
reason why it outperforms VGG-16 when classifying
MCI subjects.

The confusion matrix displayed in Figure 9 provides
us a better understanding of the multi-class problem. In
this image we can observe clearly how the network con-
fuses the MCI class with AD and NC subjects. The
probability of MCI of correctly being classified as MCI
is only of 34%. Whereas, in the majority of the cases
MCI is actually being classified as NC with a probabil-
ity of 40%. A similar thing occurs when classifying NC
subjects. The majority of NC cases are actually being
classified as MCI patients, with a probability of 45%
and a probability of being correctly classified as NC of
only 41%. On the other hand, the AD class is the only
that is being correctly identified by the network, with
a probability of 51% of being correctly classified, and
a probability of 0.35% of being considered as an MCI
case.

The reason behind this misclassification can be com-
prehended when looking at Figure 10, in which ex-
amples of correct and incorrect classifications are dis-
played. The difference in ventricle size is usually bigger
between AD subjects and the rest of the classes. How-
ever, MCI and NC subjects have similar features that
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might confuse the network. One way to solve this prob-
lem might be to provide additional information to the
network, like clinical data or other type of neuroimaging
data, like fMRI or PET. In this way the network could
have more elements to perform a more accurate diagno-
sis.

Another way to solve the difficult multi-class classi-
fication problem is to reduce its complexity, just like
we did in the present work by performing three binary
classifications. As shown in Table 9, we obtained a bet-
ter performance when classifying AD vs MCI, with an
overall accuracy of 82.27% when performing on Incep-
tion V3. Whereas for the classification of NC vs MCI,
the highest value was 75.44%, once again on Incep-
tion V3. These results, although not perfect, increased
considerably regarding the previous experiment. With
a better fine tuning and with additional data, accuracy
values are expected to increase.

Regarding the experiments with central and highest
entropy slices, all of the reported results demonstrated
that the highest entropy slices obtained a higher perfor-
mance. This means that slices containing key biomark-
ers for AD detection are not necessarily always posi-
tioned in the center of the brain volume. Hence, the
highest entropy slice selection is a good approach for
selecting the most informative images for performing
AD classification.

Reported results demonstrate that OASIS dataset
gives a slightest better performance than ADNI, prob-
ably because the images from OASIS were already pre-
processed. This means that a more detailed preprocess-
ing on the ADNI images could improve the accuracy
values. Another reason of decreased performance is the
fact that the ADNI dataset comes from different insti-
tutes and from different MRI scanners, unlike OASIS in
which data is more uniform. This difference in data ac-
quisition could pose an explanation behind the reduced
accuracy in ADNI.

Comparable or even better performance than most
state of the art methods was achieved when classify-
ing AD patients from NC. As shown in Table 10. The
results obtained from fine-tuning VGG-16 managed to
surpass all of the methods, except the one of Sarraf and
Tofighi (2016), who obtained an accuracy of 98.84%
which is slightly better than our accuracy of 98.52%.
When performing a 3-way classification we could not
surpass the works of Payan and Montana (2015) and
Gupta et al. (2013) who obtained accuracy values of
89.40% and 85.00% respectively, whereas our accuracy
was only of 66.23% when performing fine-tuning with
Inception V3. When performing three binary classifica-
tions, the accuracy values improved but results compa-
rable to those of the state of the art were not achievable.
We were only able to surpass the accuracy obtained by
Liu et al. (2014) which was 70.10% for ADvsMCI and
77.40% for MCIvsNC compared to our 75.44% for AD-
vsMCI and 82.27% for MCIvsNC.

6. Conclusions

Deep learning methods have become prevalent in
computer vision applications. In medical imaging, due
to a much smaller amount of labeled data, these tech-
niques face many challenges. An alternative to training
a CNN from scratch is to fine tune only the final layers
of a network that has already been trained. In this paper,
a transfer learning based method is proposed in order to
identify AD, MCI and NC patients from structural MRI
images. Popular architectures like VGG-16, VGG-19
and Inception V3 were tested, with VGG-16 providing
the highest accuracy values when performing classifica-
tion between AD and NC subjects, whereas Inception
V3 provided a better performance when introducing the
MCI class into the classification problem.

In this work two datasets, OASIS and ADNI, were
used for the first time to compare the performance of a
deep learning approach for Alzheimer’s disease classifi-
cation. The obtained results demonstrate the robustness
of transfer learning, as high accuracy values were ob-
tained for both datasets when distinguishing AD from
NC subjects. The performed experiments demonstrate
that higher accuracies were obtained for the OASIS
dataset.

A novelty of this approach was the use of an entropy
based technique in order to select the most informa-
tive slices instead of the whole volume for fine-tuning
a CNN. The pre-trained CNN architectures were tested
on images from ADNI and OASIS datasets, where slices
were extracted from sMRI scans and then used to fine-
tune the models.

In this work a state of the art review on the diag-
nosis of AD based on structural MRI images and ma-
chine learning techniques was presented. As reported
on this work, the proposed approach provides perfor-
mance comparable to state of the art despite having
fewer processing steps and a smaller training set.

Reported results suggest that with the available data,
the network can successfully learn to classify two
classes AD vs NC. However, when faced with a three-
way classification task, the proposed approach does not
achieve good accuracy. The reason for this is not only
the limited amount of data but also the ambiguity of it,
as the MCI images are very similar to the AD and NC
classes.

Future improvements need to be done regarding the
three way classification problem. Possible solutions
could be to increase the number of data and integrate
clinical information about the patient into the network.
Another possible approach is to implement modality fu-
sion between PET, fMRI and sMRI images in order to
provide more information to the network and increase
its diagnosing accuracy.
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Abstract

Recently, researchers from both the computer vision and the natural language processing communities have
dramatically shaped queries on a challenging task - Visual Question Answering (VQA). Given an image and a ques-
tion in natural language, it requires reasoning over visual elements of the image and general knowledge to provide
the correct answer.

In this thesis, we propose a fusion scheme with attention network, Weighted Multimodal Low-rank Bilinear
Attention Network (WMLB), that outperform the state-of-the-art VQA bilinear models in the most common global
VQA dataset. We then transfer our work to the very first VQA methodology in the retinal domain to tackle Diabetic
Retinopathy (DR) which is the main source of visual impairment in adults aged 20-74 years. We compare our
WMLB with some of the bilinear models providing our state-of-the-art results in both global and retinal domains.
We will make our work publicly available.
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1. Introduction

This thesis aims to investigate the VQA for Diabetic
Retinopathy Screening (DRS). The problems are iden-
tified in two main areas: VQA and its applications in
DRS.

The structure of this section is as follows. Firstly, an
overview of the VQA is provided in Section 1.1. The
motivation of the project for DRS is then explored in
Section 1.2. Next, the objectives of the thesis are de-
scribed in depth in Section 1.3. Finally, the structure
of the document is discussed in Section 1.4.

1.1. Visual Question Answering

The importance of computer science has prolifer-
ated in recent decades. This comes from the fact that
computer science is a crucial part shaping industry
and society with the intent of improving people’s qual-
ity of life. Machine vision is one field of computer sci-
ence. It aims at extracting and analyzing useful in-
formation from images and videos for industrial and
medical applications, for example, medical imaging
(Meyer-Baese and Schmid, 2014), signature identifi-
cation (Sulong et al., 2014), optical character recogni-
tion (Trier et al., 1996), handwriting recognition (Xu
et al., 1992), object recognition (Lowe, 1999), pattern
recognition (Fukunaga, 2013), Simultaneous Localiza-
tion and Mapping (SLAM) (Engelhard et al., 2011) and
the like.

Natural-language processing (NLP) is another field
of computer science studying how computers and hu-
man languages interact; in particular, how to utilize
the power of computers to learn the significant vol-
umes of human language data. As technology is mov-
ing very fast and growingly making the communica-
tion platforms more approachable, NLP will become
an essential technology in bridging the gap between
human communication and digital data. The num-
ber of NLP applications is steadily increasing like ma-
chine translation (Koehn et al., 2007), fighting spam
(Heymann et al., 2007), information extraction (Finkel

Figure 1: Examples from balanced VQA v1 dataset. Image was taken
from Goyal et al. (2017)

et al., 2005), summarization (Aone et al., 1997), ques-
tion answering (Kafle and Kanan, 2017), just to name
a few.

Current research in computer vision and deep
learning have emerged great progress in many com-
puter vision problems, especially image classifica-
tion and image segmentation on the rise of Convo-
lutional Neural Network (CNNs) given enough data.
Similar to CNN for computer vision, deep learning
(also known as deep structured learning or hierarchi-
cal learning) architectures, for examples, Recurrent
Neural Networks (RNNs), Long Short-term Memory
(LSTM) models and memory-based models, have pro-
duced a very high performance (even superior to ex-
perts in some circumstances) in vast amounts of NLP
tasks.

VQA is a critical and engaging task because it com-
bines two significant fields of computer science: ma-
chine vision and NLP. In a VQA task (refer to Figure 1),
the inputs are a raw image with no other information
and a question about the visual contents of the corre-
sponding image. The goal is to find a short answer to
the question (typically a few words or a short phrase).

In a VQA task, machine vision techniques are em-
ployed to understand the image, while NLP tech-
niques are to understand the question. In fact, all of
the components of a VQA model must be effectively
combined to produce the right answer concerning the
context of the image. However, this is a challenging
task as each component (in a total of four, we will
discuss in detail in section 2) in a VQA model must
perform well before they are combined. Besides, ma-
chine vision and NLP have developed distinct archi-
tectures for their tasks.

In VQA, questions can be arbitrary and they may
contain many sub-problems in computer vision, for
example:

− Object recognition - What is in the basket?
− Object detection - Are there any birds in the wa-

ter?
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− Attribute classification -What color is the surf-
board?

− Scene classification - Is this in America?
− Counting - How many kids have their hands up

in the air?

Variants include binary (yes/no), multiple-choice
and short answer settings. Beyond these, many more
complex questions can be asked, for example, the
spatial information (what is behind the table?), the
common-sense reasoning (why is the boy laughing?),
and encyclopedic knowledge about a specific element
from the image (how is the egg prepared?). In this
respect, VQA establishes a complete AI-task, as it re-
quires multimodal knowledge beyond a single sub-
domain as well as comforts the increased interest in
VQA (Wu et al., 2017).

There are many potential applications for VQA. The
most immediate is a computer-human interaction
tool for blind people and visually-impaired users as a
natural way to query for visual content. A VQA sys-
tem can also refer to many machine vision sub-tasks
such as object recognition, image segmentation, im-
age captioning, decision making to name a few. Ac-
cording to Kafle and Kanan (2017), another obvious
application is to integrate VQA into image retrieval
systems. This could have a huge impact on social me-
dia or e-commerce. VQA can also be used with educa-
tional or recreational purposes.

1.2. Motivation

DR or diabetic eye ailment is the primary source of
visual impairment in adults aged 20-74 years. It is a
condition in which harm jumps out at the blood ves-
sels of the light-delicate tissue at the back of the retina
because of diabetes mellitus. The more we have dia-
betes, and the less controlled our glucose is, the more
probable we are to build up this eye entanglement.
DR can create in anyone who has type-1 or type-2 di-
abetes.

Retina recognizes light and changes over it to sig-
nals sent through the optic nerve to the brain. When
high glucose levels harm blood vessels in the retina,
individuals with diabetes can have diabetic retinopa-
thy. In some cases, new irregular blood vessels mul-
tiply on the surface of the retina (anomalous fresh
recruits vessels develop on the retina), which can
prompt scarring and cell misfortune in the retina.
Blood vessels can close, preventing blood from going
through; or they can swell, release liquid, or hemor-
rhage. These progressions can take our vision.

According to Solomon et al. (2017), DR positioned
as the fifth most regular reason for direct to severe vi-
sual debilitation and the fifth most fundamental rea-
son for preventable visual impairment from 1990 -
2010. In 2010, more than 33% of around 285 million
individuals worldwide with diabetes had indications

of DR, and 33% of these were burdened with vision-
debilitating DR. These evaluations were expected to
rise further because of the maturing of the populace,
expanding predominance of diabetes, and expanding
of life expectancy of those with diabetes.

Longer diabetes term and poorer glycemic and cir-
culatory strain control are emphatically connected
with DR. It is the primary source of visual deficiency in
the working-age population of the developed world.
It is estimated to influence around 93 million individ-
uals, 17 million with Proliferative Diabetic Retinopa-
thy (PDR), 21 million with diabetic macular edema,
and 28 million with vision-threatening DR around the
world. This information features the significant over-
all general wellbeing weight of diabetic retinopathy
and the significance of modifiable hazard factors in its
event.

Lee et al. (2015) investigated that progression to vi-
sion weakness is challenging to be impeded or averted
because DR frequently indicates few symptoms until
it is too late to give excellent treatment. Currently, de-
tecting DR is a time-consuming and manual process
that requires a prepared clinician to look at and as-
sess digital shading fundus photos of the retina. When
human readers submit their reviews, regularly a day
or two later, the postponed comes promptly lost de-
velopment, miscommunication, and prolonged treat-
ment.

Figure 2: Diabetic Retinopathy: four severe retinal lesions including
MA, HE, EX and SE

Figure 2 illustrates key terms for DR. Microa-
neurysms (MA) are the most constant clinically no-
ticeable changes of diabetic retinopathy. They are lo-
calized capillary dilatations which are typically saccu-
lar.

Retinal Hemorrhages (HE) is a turmoil of the eye
in which bleeding happens into the light touchy tis-
sue on the back mass of the eye. Retinal HE can hap-
pen because of shaking, especially in youthful babies
(shaken infant disorder) or from severe hits to the
head. Hypertension can cause a retinal MA, retinal
vein impediment (a blockage of a retinal vein), or dia-
betes mellitus (which makes little delicate veins shape
which is effortlessly harmed.

Cotton-wool spots (CWS), alluded to as Soft Exu-
dates (SE) are nerve fiber layer infarcts or pre-narrow
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blood vessel impediments. They are an ischemic oc-
casion of a little measure of tissue. Hard Exudates (EX)
represent the collection of lipid in or under the retina
optional to vascular spillage. The watery part of the
transudative or exudative liquid is retained substan-
tially more quickly than the lipid segment. In this way,
the lipid develops in or under the retina and winds up
evident as discrete yellowish deposits.

Capillary occlusion happens in both diabetes mel-
litus and hypertension (HTN); therefore CWS happen
in the two conditions. (Hard) Exudate is very typical in
diabetic retinopathy (really diabetic macular edema)
because of spillage from harmed veins, and VEGF ini-
tiated spillage. Exudate is not exceptionally regular in
HTN; it is generally just observed in threatening hy-
pertension.

1.3. Objectives

To differentiate between the VQA for natural images
and the VQA for retinal images, from this point, I name
them "Natural Visual Question Answering" and "Reti-
nal Visual Question Answering", respectively.

This thesis encompasses the following objectives:

− Explore four components of a VQA model, and
propose an effective system for the Retinal VQA,

− Propose a fusion scheme for the natural VQA,
− Evaluate the importance of an attention scheme

in a VQA model,
− Prepare an image model for the retinal VQA,
− Prepare a question model for the retinal VQA,
− Prepare question/answer groundtruth for the

retinal VQA,
− Propose the first and a complete Retinal VQA

model for DRS.

1.4. Structure of the Document

The structure of the rest of the document is as fol-
lows:

Section 2 presents the Natural VQA including
datasets, evaluation metrics, VQA algorithms, and
four core components of a VQA model.

Section 3 addresses the first Retinal VQA model in-
cluding: datasets, groundtruth generation, evaluation
metrics, and our proposed model.

Section 4 presents our implementations for the
Retinal VQA algorithm including tools used, techni-
cal details and image/question/fusion scheme model
training.

Section 5 and 6 highlights the results and the dis-
cussion, respectively.

Section 7 gives conclusions and future directions
for the completion and extension of this work.

2. State of the art

This section presents the Natural VQA including
datasets, evaluation metrics, VQA algorithms, and
four core components of a VQA algorithm.

2.1. Datasets

2.1.1. COCO-QA
QA sets are made for photos using a figuring that

gets them from the COCO dataset. COCO-QA com-
prises 38,948 testing and 78,736 preparing QA sets.
Most questions get some data about the dissent in the
photo (69.84%), with a different request being tied in
with shading (16.59%), including (7.47%) and region
(6.10%). The more critical piece of the request has
a single word answer, and there are only 435 unique
answers. These restrictions on the proper reactions
make evaluation immediate.

The shortcoming of COCO-QA is that it merely has
four kinds of request, and these are limited to the
kinds of things depicted in COCO’s subtitles. The most
noteworthy lack of COCO-QA is relied upon to blem-
ishes in the count that was used to create the QA sets.
Longer sentences are separated into little pieces for
effortlessness of controlling; nevertheless, in tremen-
dous quantities of these cases, the computation does
not adjust well to the closeness of explanations and
syntactic assortments in sentence progression. These
results in cumbersomely communicated request, with
various containing semantic faults, and others being
jumbled.

2.1.2. The VQA Dataset
The VQA dataset is the most popular dataset for the

VQA undertaking. This dataset was discharged as a
component of the VQA challenge. It is split into two
parts: one dataset includes conceptual clip-art scenes
made from models of creatures and people to evac-
uate the need to process noisy pictures and perform
high-level reasoning, and another dataset comprises
right pictures from MS-COCO. Inquiries and answers
are created from swarm sourced specialists and 10 an-
swers are acquired for each inquiry from unique spe-
cialists. Answers are ordinarily a word or a short ex-
pression. Roughly 40% of the inquiries have a yes or
no answer. For assessment, both multiple choice for-
mats and also open-ended answer generation are ac-
cessible.

The first VQA dataset has 204,721 MS-COCO pic-
tures with 614,163 inquiries and 50,000 abstract pic-
tures with 150,000 inquiries. The 2017 cycle of the
VQA challenge has a greater dataset with an aggregate
of 265,016 MS-COCO and abstract pictures and an av-
erage of 5.4 inquiries for each picture. The correct
number of inquiries is not said on the challenge site.
The VQA daataset comprises both abstract animation
images and real images from COCO. Most work on this
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dataset has concentrated exclusively on the segment
including real-world imagery from COCO, which we
allude to as COCO-VQA.

COCO-VQA comprises of three inquiries for each
picture, with ten answers for each inquiry. Ama-
zon Mechanical Turk (AMT) laborers were utilized
to create inquiries for each picture by being asked
to "Stump an intelligent robot," and a different pool
of specialists was hired to create the responses to
the inquiries. Contrasted with other VQA datasets,
COCO-VQA comprises a moderately substantial num-
ber of inquiries (614,163 total, with 248,349 for train-
ing, 121,152 for validation, and 244,302 for testing).
Ten independent annotators then reply each of the in-
quiries. The different answers per question are uti-
lized as a part of the consensus-based assessment
metric for the dataset.

2.1.3. Visual Genome

Visual Genome comprises of 108,249 pictures that
arise in both YFCC100M and COCO pictures. It com-
prises 1.7 million QA sets for pictures, with an aver-
age of 17 QA sets for each picture. Visual Genome is
the most significant VQA dataset. Since it was just as
of late presented, no techniques have been assessed
on it past the baselines set up by the creators. Visual
Genome comprises of six sorts of ‘W’ questions: Who,
What, When, How, Where, and Why. Two particular
methods of information accumulation were utilized
to make the dataset.

Visual Genome has significantly more notewor-
thy answer variety contrasted with different datasets.
The 1000 answers that arise most regularly in Visual
Genome cover 65% of all answers in the dataset, while
they cover 100% for DAQUAR and COCO-QA and 82%
for COCO-VQA. Visual Genome’s long-tailed alloca-
tion is additionally seen in the length of the appropri-
ate responses. Just 57% of answers are single words,
compared to 100% of answers in COCO-QA, 90% of
answers in DAQUAR, and 88% of answers in COCO-
VQA. This variety of answers makes open-ended as-
sessment significantly additionally tricky. Further-
more, because the classes themselves are required to
entirely have a place with one of the six "W" types, the
assorted variety in the answer may at time artificially
stem just from varieties in stating which could be
wiped out by provoking the annotators to pick more
brief answers. For instance, Where is the motorbike
parked? can be replied with "on the street" or all the
more compactly with "street."

Visual Genome has no binary (yes/no) questions.
The dataset makers contend that this will boost utiliz-
ing more complicated questions. This is opposite to
The VQA Dataset, where "yes" and "no" are the more
regular answers in the dataset.

2.2. Evaluation metrics for Natural VQA

VQA represented as either a multiple-choice or
an open-ended task for evaluation. Multiple-choice
refers to a task where a VQA model selects an answer
from many options, while the output can be a word
or a short phrase for the open-ended task. For both
tasks, simple accuracy is as follows:

simple accuracy = correct answers

number of questions
(1)

However, the simple accuracy is ’strict’ in semantic
scenarios as there are wrong answers which might be
more acceptable than the others. For instance, a sys-
tem is asked ’which color of the umbrella in the pic-
ture?’. If the correct answer is ’yellow,’ then two out-
puts ’orange’ and ’cat’ will be penalized in the same
way. Due to this problem, some alternatives were pro-
posed for an open-ended task which is robust to inter-
human variability in phrasing the answers. One of
those is consensus metric (open-ended accuracy). For
the VQA dataset, open-ended accuracy is computed
as below:

open-ended accuracy = min(
N

3
,1) (2)

where N is the number of humans that said the
same answer as the algorithm. That is an answer will
get the full mark if there are more than three humans
gave the same answer. Due to human-agreement, the
maximum open-ended accuracy is only 83.3% for the
COCO-VQA.

2.3. VQA algorithms

These systems differ significantly in how they in-
tegrate the question and image features. Kafle and
Kanan (2017) used a survey to assess the various VQA
techniques:

− Combining the image and question features
using simple mechanisms, e.g., concatenation,
element-wise multiplication, or element-wise
addition, and then giving them to a linear clas-
sifier or a neural network,

− Combining the image and question features us-
ing bilinear pooling or related schemes in a neu-
ral network framework,

− Having a classifier that uses the question features
to compute spatial attention maps for the visual
features or that adaptively scales local features
based on their relative importance,

− Using Bayesian models that exploit the un-
derlying relationships between question-image-
answer feature distributions, and

− Using the question to break the VQA task into a
series of sub-problems.
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Figure 3: Simplified illustration of the classification based frame-
work for VQA. In this framework, image and question features are
extracted, and then they are combined so that a classifier can pre-
dict the answer. A variety of feature extraction methods and al-
gorithms for combining these features have been proposed, and
some of the more common approaches. are listed in their respec-
tive blocks in the figure

To the best of our knowledge, the VQA model in-
cludes four learnable elements (refer to Figure 3):

− A question model with the purpose of encoding
questions,

− An image model to extract visual feature,
− A fusion model to combine visual features and

encoded question,
− An attention scheme to "pay more attention" to

specific regions of the given image.

Next, we will discuss each component in detail.

2.4. Question model

The purpose of a question featurization in a VQA
method is to encode the input question. A wide op-
tions have been developed including bag-of-words
(BOW), LSTM encoders (Hochreiter and Schmidhu-
ber, 1997), Gated Recurrent Units (GRU) (Cho et al.,
2014), and skip-thought vectors (Kiros et al., 2015).

2.4.1. Bag-of-words
The BOW model is a simplified presentation em-

ployed in NLP. In this technique, a sentence or a doc-
ument is represented by its owns words taking no ac-
count of grammar and even word order with the pur-
pose of maintaining multiplicity. For example, given
two sentences as follows:

− Henry likes to play soccer. Pete likes soccer too.
− Henry also likes to play volleyball.

Based on these given sentences, BOW algorithm
breaks them into two lists of words as follows:

− ’Henry’, ’likes’, ’to’, ’play’, ’soccer’, ’Pete’, ’too’
− ’Henry’, ’also’, ’likes’, ’to’, ’play’, ’volleyball’

Finally, BOW represents each sentence as a dictio-
nary format:

− {’Henry’:1, ’likes’:2, ’to’:1, ’play’:1, ’soccer’:2,
’Pete’:1, ’too’:1}

− {’Henry’:1, ’also’:1, ’likes’:1, ’to’:1, ’play’:1, ’volley-
ball’:1}

Zhou et al. (2015) adopted BOW in their simple
baseline for VQA with no more than 10 lines of codes
in Torch. In their work, The input question, the ques-
tion is first encoded into a vector by the one-hot en-
coder. Then, the encoded vector is transformed to
word vector before concatenating them with the vi-
sual vector.

2.4.2. Long Short-term Memory
LSTM blocks were first introduced by Hochreiter

and Schmidhuber (1997). They are usually employed
to build RNNs’ layer. A LSTM has been used success-
fully in the classification tasks, especially effective for
time series tasks such as forecasting and NLP. A com-
mon LSTM unit includes four components: a cell, an
input gate, an output gate and a forget gate (see figure
4 1). In a common LSTM block, the cell is for remem-
bering the signal for a short period; the other gates can
be seen as feedforward nodes in a neural network and
are connected to the cell.

Figure 4: Left: a common LSTM block with forget gate includes four
components: a cell, an input gate, an output gate and a forget gate.
Right: a GRU block comprises a cell, an update gate and a reset gate

To summarize, the output of each node can be de-
rived by the set of equations below:

ft =σg (W f xt +U f ht−1 +b f ) (3)

it =σg (Wi xt +Ui ht−1 +bi ) (4)

ot =σg (Wo xt +Uoht−1 +bo) (5)

ct = ft ◦ ct−1 + it ◦σc (Wc xt +Uc ht−1 +bc ) (6)

ht = ot ◦σh(ct ) (7)

1Figure 4 is contributed by user BiObserver under the CC BY-SA
4.0 license at https://commons.wikimedia.org/wiki/File:
Long_Short_Term_Memory.png
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where the initial values are c0 = 0 and h0 = 0 and the
operator ◦ denotes the Hadamard product (entry-wise
product). The subscripts t refer to the time step.

Figure 5: Malinowski et al. (2015) used LSTMs into which each word
in the question is fed. The predicted answers (in orange color) were
generated by subsequent time-steps.

A number of VQA algorithms have utilized LSTMs
to encode questions. Antol et al. (2015) used LSTM to
extract word feature from the one-hot encoded ques-
tion. In Malinowski et al. (2015) (see figure 5), LSTMs
were used to be fed each word in the question. Then,
the predicted answers (in orange color) were gener-
ated by subsequent time-steps. Another example can
be found in Gao et al. (2015) where two LSTMs were
used: one was fed with visual features, and another
one was used to predict the answer.

2.4.3. Gated Recurrent Units

Similar to LSTM, GRU is a gating mechanism for
building layer in RNNs. It was developed by Cho et al.
(2014). A common GRU has three elements: a cell and
two gates (update gate and reset gate), compared to
three gates in LSTM (see figure 4). Its performance on
time-series tasks was proved to be on par with LSTM,
though with fewer parameters

The output can be derived as follows:

zt =σg (Wz xt +Uz ht−1 +bz ) (8)

rt =σg (Wr xt +Ur ht−1 +br ) (9)

ht = (1− zt )◦ht−1 + zt ◦σh(Wh xt +Uh(rt ◦ht−1))
(10)

where xt is input vector, ht is output vector, zt is
update gate vector, rt represents reset gate vector and
W , U and b: parameter matrices and vector. The op-
erator ◦ denotes the Hadamard product. At first, t = 0
and the output vector is h0 = 0.

Lu et al. (2017) proposed to use GRU to extract word
feature as follows: first, the question is one-hot en-
coded. Then, they applied a linear transformation to
extract the feature vector for each word and sequen-
tially fed into GRU for the last step encoding. At each
time-step, the GRU block updates the update and re-
set gate and outputs a hidden state.

2.4.4. Skip-thought vectors

Skip-though vectors algorithm was introduced by
Kiros et al. (2015) and has been used in most of the
state-of-the-art VQA models (we will discuss in de-
tails in Section 2.6). In this thesis, we also used skip-
thought vectors to extract word features.

Skip-though vectors (see Figure 6) is an
unsupervised-learning approach for generic, dis-
tributed sentence encoder. In this approach, the
authors developed an encoder-decoder methodology
using the semantic and continuity of text from books
with the purpose of reconstructing surrounding
sentences given an encoded context. As a result, sen-
tences, which are semantic-related, are represented
by a similar vector. During the training, Pearson
correlation is incorporated for early stopping.

One of the best advantages of skip-though vectors
is the ability to expand vocabulary. In specific, a pre-
trained model can be ’fine-tuned’ such that our vo-
cabulary can reach up to million words. This feature
is crucial for this thesis as we have a huge number of
’unknown’ words when we propose to use VQA for the
DRS problems (we will discuss how we expand the vo-
cabulary for our project in section 4.3).

Kiros et al. (2015) evaluated skip-thought vectors
on eight different tasks: semantic relatedness, para-
phrase detection, image-sentence ranking, question-
type classification and four benchmark sentiment and
subjectivity datasets. In summary, skip-thought vec-
tors can produce highly generic sentence representa-
tions that are robust and perform well in practice.

2.5. Image model

An image extractor in a VQA model is responsible
for extracting the visual features of the input image.
For image features, most algorithms use CNNs that
are pre-trained on ImageNet (Krizhevsky et al., 2012).
An overview of different VQA approaches that were
evaluated on COCO-VQA dataset, and their designs
can be seen in Table 1. Table 1 shows that the popu-
lar choices for an image model are VGGNet (Simonyan
and Zisserman, 2014), ResNet (He et al., 2016), and
GoogLeNet (Szegedy et al., 2015).

These common choices for an image model come
from that fact that VGGNet, ResNet, and GoogLeNet
outperformed the rest on ImageNet challenge. Fig-
ure 7 compares the most popular networks with their
corresponding top-1 accuracy and number of param-
eters.

2.5.1. VGGNet

VGGNet was introduced by Simonyan and Zisser-
man (2014). At the ILSVRC 2014 competition, VGGNet
was the runner-up. VGGNet comprises 16-19 (VGG-
16 or VGG-19) convolutional layers with an enormous
amount of 3×3 fixed size convolution filters which is
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Figure 6: Kiros et al. (2015) trained skip-thought vectors on a huge amount of novels with a diversity genres. In this figure, unattached arrows
are connected to the encoder output. Colors indicate which components share parameters. < eos > is the end of sentence token.

Figure 7: Top-1 accuracy and size of parameters of popular
networks on ImageNet challenge. As can be seen, VGGNet,
GoogLeNet/Inception and ResNet surpass all other architectures.
This figure was prepared by Kafle and Kanan (2017)

Table 1: Overview of different VQA approaches that were evaluated
on COCO-VQA and their designs. This table was redistributed from
Kafle and Kanan (2017)

similar to AlexNet. Despite its widespread use for im-
age feature extraction, VGGNet is by far the most ex-
pensive architecture as it consists of 138 million pa-
rameters.

2.5.2. GoogLeNet

Szegedy et al. (2015) won the ILSVRC 2014 with
GoogLeNet (Inception) at 6.67% top-5 accuracy which
is near human-level performance. LeNet inspired
GoogLeNet with the use of batch normalization, im-
age distortions, and RMSprop. This network was dili-
gently designed to have the ability to grow in the
depth while maintaining a constant computational

Figure 8: a) He et al. (2016) introduced residual block used in
ResNet. b) Inception module was used in GoogLeNet (Szegedy
et al., 2015)

complexity. Consequently, the number of parameters
dropped from 60 million (AlexNet) to 4 million in a
22-layer network. Their design was inspired by Heb-
bian principle and the and the intuition of multi-scale
processing. In the end, an efficient ’Inception’ module
(see figure (see figure 8b) was proposed.

2.5.3. ResNet
At the ILSVRC 2015, ResNet, which was developed

by He et al. (2016), was the winner as it achieved
3.57% top-5 accuracy that even surpasses human-
level performance on this dataset. In ResNet, skip-
connection block (see figure 8a) was introduced with
the purpose of learning the reference to input layers
instead of from unreferenced functions. With the use
of these skip-connection blocks, ResNet152, which
has a depth of 152 layers, still has fewer parameters
than VGGNet, though better performance.

2.6. Fusion scheme

For the task of VQA, the goal is to predict the most
likely answer given a question q ∈Q and image v ∈V.
The problem can be formulated as following:

â = argmin
a∈A

pΘ(a|q,v) (11)

where â denotes the predicted answer, and Θ rep-
resents the whole set of parameters of the model.

The problem solving of learning a classifier, as
shown in Equation 11, becomes more straightforward
as multimodal pooling, Ω(q, v), is capable of efficient
encoding the relationship between image and ques-
tion features.

14.8



Visual Question Answering for Diabetic Retinopathy Screening 9

One of the most well-known tools for fusing multi-
modal features are multimodal pooling. Next, we will
explore the state-of-the-art algorithms for the Natural
VQA inspired by this technique.

2.6.1. Multimodal Compact Bilinear
Fukui et al. (2016) developed Multimodal Compact

Bilinear (MCB) based on the concept of bilinear pool-
ing by applying a linear transformation for every pair
of visual and textual features:

fi =
N∑

j=1

M∑
k=1

wi j k q j vk +bi = qT Wi v +bi (12)

where q and v are textual and visual features; W and
bi denote a weight matrix and bias vector for the out-
put fi , respectively.

Note that the number of parameters for a classifier
of Equation 12 is L × N × M , where L is the number
of output features. For example, if L = N = M = 2000,
the number of parameters will be around 1010 which
is extraordinary expensive 2.

Thus, MCB, which is inspired by Pirsiavash et al.
(2009), proposed the low-rank bilinear mechanism to
overcome the parameter explosion issue as below.

As suggested by Pirsiavash et al. (2009), weight ma-
trix can be estimated as Wi = Qi VT

i where Q ∈RN×d

V ∈RM×d . Here, d is the restriction parameter on the
rank of W which is the key element to compact the
rank of output fi , thus the name ’Multimodal Com-
pact Bilinear’.

Substituting Qi and Vi into Equation 12, we obtain:

fi = qT Qi VT
i v +bi (13)

=1(QT
i q ◦VT

i v)+bi (14)

where ◦ denotes Hadamard product. Next, we rede-
fine Q ∈ RN×d and V ∈ RM×d after replacing 1 with
P ∈Rd×c to get the projected output f of MCB model
as below:

f = PT (QT q◦VT v)+b (15)

where d and c are hyper-parameters of joint em-
beddings and the dimension of output, respectively.

2.6.2. Multimodal Low-rank Bilinear
Kim et al. (2016) claimed that bilinear models like

MCB, though provide rich representation, tend to be
high-dimensional such that limiting the applicability
to computationally complex tasks. Hence, Kim et al.
(2016) proposed Multimodal Low-rank Bilinear (MLB)

2A model with 10 billion float32 scalars needs 40Go to hold, while
a Titan 1080 Ti hold about 12Go

Figure 9: a) MCB: only Wo is trainable. b) MLB: Wq ,Wv and Wo are
learnt, while Tc is fixed. c) MUTAN: all four elements are trained.
d) Proposed: similar to MLB with addition tensor Wq

algorithm with the purpose of one step further reduc-
ing the rank of bilinear by utilizing the concept of bi-
linear pooling and Hadamard product. MLB outper-
forms MCB algorithm on all tasks of the VQA dataset.
The idea of MLB is as below:

Continuing from Equation 15, the authors sug-
gested that Q and V can have their own bias vectors.
Hence, Equation 15 becomes:

f = PT ((QT q+bq )◦ (VT v+bv ))+b (16)

It can be rewritten as:

f = PT (QT q◦VT v+Q′T q◦V′T v)+b’ (17)

where Q′T = diag(bv ) ·QT , V′T = diag(bq ) ·VT and
b’ = b+PT (bq ◦bv ).

Next, non-linear activations such as sigmoid or
tanh are applied to increase the representative capac-
ity of model. Now, the equation above becomes:

f = PT (σ(Qq)◦σ(Vv))+b (18)

Finally, Kim et al. (2016) proposed to apply the acti-
vation function after the Hadamard product as an al-
ternative choice to remove the double gradient calcu-
lations. Hence, the final model is formulated as fol-
lows:

f = PTσ(Qq◦Vv)+b (19)

2.6.3. MUTAN
As discussed in Section 2.6.2, bilinear models are

computational expensive. Ben-younes et al. (2017),
hence, aimed to parametrize efficiently bilinear inter-
actions between image and question features. MU-
TAN was inspired by the concept of multimodal
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tensor-based Tucker decomposition. To the best of
our knowledge, currently, MUTAN is the state-of-the-
art algorithm of Natural VQA.

In Tucker-decomposition domain, Equation 12 can
be reformed:

f = (T ×1 q)×2 v (20)

where T ∈ Rdq×dv×A, operator ×i denotes the i-
mode product between a tensor and a vector. Full ten-
sorT is then Tucker decomposed into 3-way tensor to
obtain:

T = ((Tc ×1 Wq )×2 Wv )×3 Wo (21)

where Wq ∈Rdq×tq , Wv ∈Rdv×tv and Wo ∈RA×tq

In general, we can summarize: T =
{Tc ,Wq ,Wv ,Wo}.

Figure 9 compares the tensor designs between
MCB, MLB, MUTAN and our proposed algorithm
which will be discussed in Section 3.4.

The literature on Ben-younes et al. (2017) has
shown that the intra-modal projection matrices,
Wmcb

q ,Wmcb
v in MCB are fixed diagonal, Tc is a sparse

fixed tensor, and only the Wo is learnable.
In the analysis of Tucker decomposition, Ben-

younes et al. (2017) also found that bilinear inter-
action, which is used in MLB, corresponds to a
canonical decomposition of the tensor where Wmcb

q =
{IR ,Wq ,Wv ,Wo} and tq = tv = to = R. That is three
elements Wq ,Wv and Wo are learnt, while Tc is fixed.

Different from MCB and MLB, MUTAN was de-
veloped such that all of four components of tensor
T = {Tc ,Wq ,Wv ,Wo} are trainable, whileTc is decom-
posed by low-rank Tucker.

2.7. Attention scheme

Explored by Fukui et al. (2016), attention scheme
utilize a distribution probability α over S × S lattice
place. Attended visual feature is then defined as:

v̂ = ‖G
g=1

S∑
s=1

αg ,s Fs (22)

where ‖ denotes the concatenation of G glimpses,
αg ,s represents the distribution probability of glimpse
g on s region.

Notice that image features extracted from the last
convolution layer of ResNet152 have the dimension
of 14 × 14 × 2,048. Fukui et al. (2016) proposed to
use two convolutional layers to predict the attention
weight for each 14× 14 grid. Then, the authors took
a weighted sum of the spatial vectors with the nor-
malized soft attention map to generate the attended
visual representation. Finally, they suggested employ-
ing multiple "glimpses" before being merged with the
language representation to produce sufficient atten-
tion to salient locations.

In this thesis, we also use attention mechanism
to obtain a better-fused representation. Figure
10 demonstrates a scheme to generate attention
heatmap.

Figure 10: The original image is shown on the top. The mid-
dle image represents guided Grad-Cam. The bottom image shows
heatmap for attention scheme.

3. Retinal Visual Question Answering

This section addresses our work - the first Reti-
nal VQA. This section comprises four sub-sections:
datasets, VQ pair groundtruth generation, evaluation
metrics and our proposed method. The detail of im-
plementation will be discussed later in Section 4.

3.1. Datasets

3.1.1. Kaggle - Diabetic Retinopathy Detection
DR is the most common reason for avoidable vi-

sion weakness, mostly influencing working age popu-
lation. Late research has given a superior comprehen-
sion of necessity in clinical eye mind practice to rec-
ognize better and less expensive methods for identifi-
cation, administration, determination, and treatment
of retinal sickness. The significance of DR screening
projects and trouble in accomplishing the depend-
able early determination of diabetic retinopathy at a
sensible cost needs thoughtfulness regarding create
computer-aided diagnosis tool.

Notice the danger of DR, California Healthcare
Foundation sponsored the challenge Kaggle DR De-
tection in 2015 with prestigious $100,000 prize pool.
The purpose of this challenge is to classify DR im-
ages into five possible grades from 0 to 4. Submissions
were evaluated by the quadratic weighted kappa met-
ric, which measures the agreement between two rat-
ings. Typically, the value of the weighted kappa lies in
the range from -1 to 1, where -1 and 1 represent the
complete disagreement and agreement between two
raters.
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Figure 11: Three sample pairs from Kaggle DR Detection. Top: left
field. Bottom: right field.

The challenge organizers provided a large, high-
resolution dataset. In particular, the dataset com-
prises around 25,000 pairs (left and right) retinal im-
ages, where each image has a resolution of 4,752 ×
3,168. One of the challenges of this competition is
that the images came from different modality cameras
which affected the consistency of the dataset. Another
challenge is the presence of noise and variation within
the dataset (refer to Figure 11). Hence, preprocessing
dataset plays a vital role in this challenge.

For each image, a clinician rated the severity of DR
on a scale of 0 to 4 as follows:

− No DR
− Mild
− Moderate
− Severe
− PDR

In this thesis, we used the dataset of Kaggle DR De-
tection to build an image model for the Retinal VQA.
The details of training will be discussed later in Sec-
tion 4.4.

3.1.2. Indian Diabetic Retinopathy Image Dataset
Indian Diabetic Retinopathy Image Dataset

(IDRID) is a challenge organized by IEEE Interna-
tional Symposium on Biomedical Imaging (ISBI-
2018), Washington D.C. The challenge comprised two
phases and was divided into three sub-challenges:
(i) lesion segmentation, (ii) disease grading and (iii)
optic disc and fovea detection. In this challenge, the
organizers provided the high-quality dataset with the
resolution of 4,288×2,848.

Lesion segmentation is the first sub-challenge of
IDRID. In this sub-challenge, participants were asked
to segment images into four severe retinal lesions
(four sub-tasks) including MA, HE, EX and SE (see Fig-
ure 2). The dataset for this sub-challenge includes two
cases: apparent retinopathy (81 images) and no ap-
parent retinopathy (NAR) (89 images). Then, it was
divided into two sets: train (67%) and test set (33%).

The second sub-challenge refers to disease grading
(see the left of figure 12). Similar to Kaggle DR De-
tection challenge, this sub-challenge aims to detect

Figure 12: Left: from left to right and top to bottom: (a) Grade 1:
Mild - non-proliferative diabetic retinopathy (NPDR), (b) Grade 2:
Moderate - NPDR, (c) Grade 3: severe - NPDR, and (d) Grade 4:
proliferative diabetic retinopathy (PDR). Right: an example of optic
disc and fovea coordinates

the disease severity level of DR and Diabetic Macular
Edema (DME). In this sub-challenge, the participants
build models to differentiate the grades of DR (five lev-
els) and DME (three levels). The dataset includes 516
images with expert annotations.

The last sub-challenge refers to the optic disc (OD)
and fovea detection (see the right of Figure 12). The
purpose of this sub-challenge is to localize the OD and
fovea coordinates from the retinal images. In this sub-
challenge, a total of 516 images were given.

In this thesis, all of the QA pairs were generated
from the first sub-challenge dataset (refer to Section
3.3). Besides, we trained two of our image models on
the dataset of the second sub-challenge correspond-
ing to two disease severity level of DR and DME. The
details of training process will be discussed in Section
4.4. We can also expand the QA-pair groundtruth from
the fovea and OD coordinates groundtruth; however,
due to time limitation, we will leave this task for future
work.

3.2. Evaluation metrics for Retinal VQA

Section 2.2 elaborated on the evaluation metrics
used in Natural VQA. In this section, we present the
evaluation metrics for Retinal VQA.

Different from popular COCO-VQA with 600,000
questions/answers (QA) for train/valid/test
sets in total, in this thesis, we generated the
questions/answers-pair groundtruth on our own
based on the segmentation groundtruth from IDRID
(see Section 3.3 for more details). That explains why
open-ended accuracy is not appropriate for retinal
task.

Instead, we propose to use two evaluation metrics:
simple accuracy (refer to Equation 1) and weighted
accuracy.

Section 3.3 indicated that we have a total of 222,360
QA pairs with severe imbalanced yes/no/undefined
answer. In specific, most answers are ’no’ (83%),
with other answers being ’undefined’ and ’yes’, 11%
and 6%, respectively. In this case, we propose to use
weighted accuracy as following:
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weighted accuracy = 1

n

n∑
i=0

Ti

Ni
(23)

where Ti denotes the number of correct predictions
for the answer i , for example, ’yes’, and Ni represents
the total number of answer i . Using weighted accu-
racy, we ensure that ’yes,’ ’no’ and ’undefined’ an-
swers have the same weight.

3.3. QA-pair groundtruth generation

This section outlines our approach generating QA
pair groundtruth for the Retinal VQA. For this task, it is
crucial to generating a diverse set of QA pairs that can
match the DR problem, thus evaluate the feasibility of
Retinal VQA. The ability to expand the groundtruth for
data-demanding models such as deep learning mod-
els and out-of-vocabulary also plays a vital role.

As mentioned in Section 3.1, all of our QA pair
groundtruth so far has come from the sub-challenge
2 - lesion segmentation - of IDRID. Before acquiring
auto-generate QA pair groundtruth, there is a further
step to preprocess and clean the binary groundtruth
images before being fed into groundtruth generation
program. This step is described below.

Segmented groundtruth images of four cases (mi-
croaneurysms, soft exudates, hard exudates, and
hemorrhages) are initially transformed to have sim-
ilar affine transformation as the preprocessed image
which is used to train image model. To be clear,
we trained our image model before generating QA
groundtruth. During the task of image model train-
ing, we have applied many preprocessing techniques
to obtain a normalized and consistent dataset before
feeding into ResNet (see Section 4.4) using ImageMag-
ick which is a low-level command-line image process-
ing tool. That is we have to do reverse engineering to
transform groundtruth image to get the same trans-
formation of the normalized image. Figure 13 sum-
maries our reverse engineering technique to trans-
form segmented image to get the similar affine trans-
formation of the processed image.

Figure 13: Top: original image, bottom: segmented image. From left
to right: original, convert to gray-scale, remove left and right back-
ground, pad background to top and bottom borders to get square
resolution

After getting transformed groundtruth images, we
are ready to generate QA pairs automatically. At this

point, we propose to create three types of questions
and one type of answer (yes/no/undefined). In par-
ticular, three types of questions include (i) Is there
X in the fundus? (ii) Is the X larger/smaller than
the Y? (iii) Is there any X in Z location? As can be
seen, the first type of question represents a classifi-
cation/segmentation task, while the second and the
third kinds describe a semantic/quantitative segmen-
tation and localization task, respectively. In this sense,
VQA proves how challenging it is by referring to three
sub-tasks of computer vision at the same time. In fact,
the types of questions can be expandable, thus be-
comes more complicated. An example is the COCO-
QA dataset of Natural VQA with more than 60 types of
questions.

Next, we investigate how each type of questions are
generated.

First, "Is there X in the fundus?" is a classifica-
tion/segmentation question where the possible an-
swers are "yes" or "no." An example of this is "Is there
microaneurysms in the fundus?" Generating this type
of QA groundtruth is straight-forward: we count the
number of non-zero pixels in a binary groundtruth. If
this number is greater than 0, we return the answer
"yes," if not, we mark as "no."

Second, "Is the hard exudates larger than the mi-
croaneurysms?" is an example of the second type of
semantic/quantitative segmentation task. For this
type of question, we also count the number of non-
zero pixels in hard exudates and microaneurysms bi-
nary images. If hard exudates have more non-zero
pixels than microaneurysms, we mark ’yes’; other-
wise, the answer is ’no.’ Different from the first kind
of question, the second type comprises another pos-
sible answer which is "undefined." "Undefined" is set
when we examine the NAR image where there is no
sign of DR.

Third, "Is there any X in Z location?" is the last
type of question that we generate for the Retinal VQA
problem which asks the VQA algorithm to be capa-
ble of localizing and decoding. One example can be
seen in the following sample: "Is there any microa-
neurysms in 0_0_16_16 location?" Here, 0_0_16_16
is an encoded location where 0_0 is x, y coordinates
and 16_16 is the size of the moving window. Again,
the groundtruth generation task becomes straight-
forward as the expected answer is "yes" when there is
X in the 16 t i mes16 window, and "no," otherwise.

Note that, in total we have 170 images for QA gener-
ation (81 DR + 89 NAR). That is with the moving square
window size 16; we can generate about 220,000 QA
pairs which is sufficient to train a VQA model. How-
ever, as mentioned above, the QA groundtruth will be
more diverse if there are more types of questions and,
of course, more images in the dataset. We leave this
task for our future work.

Last but not least, we strictly follow COCO-QA to
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Figure 14: A sample of QA groundtruth

obtain standard QA pair groundtruth (refer Figure 14).
To elaborate on that, we first adopt Pandas dataframe
to construct a table of groundtruth where each row re-
fer to a unique question ID. Next, we reconstruct this
dataframe to a JSON format which is a list of dictionar-
ies where the keys and values of a dictionary can be
seen above. Here, answer occurrence is set to 10 be-
cause the groundtruth is auto-generated but not man-
ual in the Natural VQA.

3.4. Weighted Multimodal Low-rank Bilinear Atten-
tion Network

In this section, we introduce a simple yet effi-
cient VQA algorithm which outperforms state-of-the-
art bilinear models in both Natural and Retinal VQA
datasets. WMLB was inspired by MLB in the sense of
low-rank bilinear pooling.

Recall that a full tensor T can be Tucker decom-
posed into three-way tensor as below:

T = ((Tc ×1 Wq )×2 Wv )×3 Wo (24)

where Wq ∈Rdq×tq , Wv ∈Rdv×tv and Wo ∈RA×tq

Kafle and Kanan (2017) pointed out that question
only models perform substantially better than image
models. Inspired by this study, we propose to use a
weighted model such that question have more weight
than image features. We have tried with many combi-
nations; finally, the best combination turns out to be
that question’s weight doubles image’s. In short, our
model can be formulated:

T = ((Tc ×1 (Wq ◦Wq ))×2 Wv )×3 Wo (25)

Intuitively (refer to Figure 9), we take the Hadamard
product of question feature with itself before being
Tucker decomposed to train VQA model.

Overall, Figure 15 illustrates our proposed VQA al-
gorithm. Notice that, our fusion scheme is fed with (i)
visual features, which are the outputs of the last con-
volution layer of ResNet152 and have 14× 14× 2,048
dimensions, and (ii) word features with the dimension
of 2,400 produced by skip-thought vectors.

We employ the same kind of multi-glimpse atten-
tion mechanisms proposed by Fukui et al. (2016). We
first employ WMLB to calculate the word embeddings
score. Together with visual features, we then compute
the global image features with 1×1×2,048 of dimen-
sion by taking the weighted sum of these scores. Af-
ter that, we fuse global image and question features
by using WMLB to output an N -size vector where N
represents the number of top answers. Finally, we can
predict the answer by a softmax function.

Figure 15: Our proposed WMLB attention scheme for Retinal VQA.
This figure was redistributed from Ben-younes et al. (2017)

4. Retinal Visual Question Answering Implementa-
tions

4.1. Tools

As most of this thesis was from a distance and we
have to handle extensive datasets, operating-system-
level virtualization and low-level processing images
tool are essential for this project. Our project is de-
veloped in Python, and we have used the following li-
braries and tools:

First, Docker is operating-system-level virtualiza-
tion and mainly developed for Linux. Docker allows
parallel independent containers by isolating the avail-
able resources that can package dependencies and
application. For example, we can query for more re-
sources (RAM, GPU, and CPU) for more cumbersome
tasks. In case of a light task, we can ask Docker for
a sufficient resource without stopping the work from
the others.

Second, ImageMagick is a low-level image process-
ing tool with the purpose of converting, transform-
ing and editing raw images with high speed, thanks
to parallel and multi-threading. ImageMagick can be
called by bash command in Linux. In this project, we
use ImageMagick for preprocessing images.

Third, Augmentor is a Python image augmenta-
tion library which allows for more exceptional grained
control over augmentation. In this thesis, Augmentor
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was responsible for automating image augmentation
to balance classes in the dataset.

4.2. Technical details

The proposed method has been implemented in
the Python language, using PyTorch. All experiments
have been run on a GNU/Linux machine box run-
ning Ubuntu 16.04, with 32 GB RAM. CNN training has
been carried out on two GTX 1080 Ti (NVIDIA Corp,
United States) with 24 GB RAM in total.

4.3. Question model training

Recall that the purpose of a question model in a
VQA method is to encode the input question. In this
thesis, we use skip-thought vectors to extract word
features.

One of the challenges of transferring VQA to the
retinal domain is to make question model ’under-
stand’ new words which have not been seen be-
fore. To overcome this shortcoming, there are two
options. The first option is to train skip-thought
from the scratch which is time-consuming. Kiros
et al. (2015) proposed the second option which was
inspired by the "Translation Matrix." In particular,
the authors constructed a mapping matrix from the
trained Word2Vec, Qw2v , to a word embedding RNN,
Qst . Notice that the vocabulary in Qw2v is much
greater than in Qst .

This simple vocabulary expansion method pro-
posed in skip-though vectors is used in this thesis.
Next, we will describe in detail how we train the map-
ping, qst = Wqw2v , to extend vocabulary to the scope
of Retinal VQA.

First, a Word2Vec model trained on Google News
covering up to 100 billion words is employed. This
pre-trained model contributed by Mikolov et al. (2013)
ensures that unseen words in Retinal VQA was learnt.

Second, we train a linear regression model, W, with-
out regularization to map the Word2Vec embedding
space linearly above to the skip-thought embedding
space.

Finally, we apply the mapping qst = Wqw2v to gen-
erate word features.

4.4. Image model training

The choice of ResNet152 (see Figure 16) for our
model comes from the fact that ResNet produces
superior performance over VGGNet or GoogLeNet
across multiple algorithms (Kafle and Kanan, 2017).
This is evident from the models that use identical
setup and only change the image representation.

Figure 16: ResNážźt2, VGGNet-16 and VGGNet-19. This figure was
redistributed from lecture notes prepared by Fei-Fei Li.

4.4.1. Preprocessing
Both Kaggle DR and IDRID datasets come from dif-

ferent models and types of cameras, thus affect the vi-
sual appearance. We encounter noise and variance
as some images contain artifacts, be out of focus,
underexposed, or overexposed. Consequently, pre-
processing techniques, that normalize images into a
range that similar or standard to the distribution of
the whole dataset, is essential. We adopt low-level lan-
guage ImageMagick for this task due to large datasets
(around 50,000 high-resolution images in total). In the
end, we manage to preprocess both datasets in only
one hour.

In this thesis, we apply a series of preprocessing
techniques to standardize both datasets. These algo-
rithms are called sequentially:

1. -fuzz 10% -trim +repage: this command initially
searches for a target color (in this case, back-
ground) and mark all neighbor pixels within a
distance as equivalent. Then, it removes the
background borders to obtain an only-object
frame.

2. -extent $size is used to pad the borders
(top/bottom or left/right) with background
color to obtain a square frame.

3. -background black sets the background color to
black.

4. -gravity center centers the object within image.
5. -equalize -colorspace RGB performs histogram

equalization on the image channel-by-channel.
6. -modulate brightness (optional) varies the

brightness, saturation, and hue of an image.
7. -sigmoidal-contrast contrastxmid-point (op-

tional) increases the contrast of an image with-
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out saturating highlights or shadows. Here, con-
trast denotes the level to increase the contrast,
and the mid-point represents where the maxi-
mum change ’slope’ in contrast should fall in.

4.4.2. Balancing dataset and image augmentation

Both Kaggle DR and IDRID datasets contain five DR
grades (IDRID also provided three DME levels), and
the distribution of classes in both cases was imbal-
anced (see table 2). This leads to biased and inaccu-
rate supervised model. To cope with this, we propose
to use an up-sampling technique, into which image
augmentation is incorporated, to enable the balance
of training set.

Table 2: Imbalanced classes in Retinal VQA datasets

First, we split the training set into two parts: train-
ing (80%) and validation (20%) with corresponding to
proportions in each class.

Second, we apply image augmentation through
different ways including rotation (10 degrees), flip
left/right and flip top/bottom on the classes, which
has fewer samples, to acquire balanced dataset. For
example of the Kaggle DR (see table 2), we fix class 0
and apply image augmentation on the others to ob-
tain 25810 samples for each class.

4.4.3. Evaluation metric

Inspired by Kaggle DR challenge, the evaluation
metric for training model is the quadratic weighted
kappa which measures the agreement between ac-
tual and predicted labels. Typically, the value of the
weighted kappa lies in the range from -1 to 1, where
-1 and 1 represent the complete disagreement and
agreement between two raters - A (groundtruth) and
B (predicted).

First, an N × N matrix H is formulated such that
Hi j refers to the number of images that were derived
a rating i and j by A and B , respectively.

Second, an N ×N matrix of weights w is then calcu-
lated:

wi j = (i − j )2

(N −1)2 (26)

Third, assume that there is no correlation between
rating scores, an N ×N histogram matrix of expected

ratings E is computed as the outer product between
each rater’s histogram vector of ratings, normalized
such that E and H have the same sum.

Finally, from these three matrices above, the
quadratic weighted kappa is calculated:

κ= 1−
∑

i j wi jHi j∑
i j wi jEi j

(27)

4.4.4. Training

In this project, we use Adam optimizer with a learn-
ing rate of 10−4 and momentum of 0.9. Batch size is set
to 512. We also adopt early stopping to cope with over-
fitting. The loss function is cross entropy, while the
evaluation metric is the quadratic weighted kappa.

As the dataset is significant, we train three
ResNet152 models (one on KaggleDR and two on
IDRID DR and DME) from scratch. The training time
for Kaggle dataset is around 11 hours, while it takes
45 minutes for IDRID cases. At the end, the quadratic
weighted kappa for training and validation sets are
0.86 and 0.4, respectively.

4.5. Fusion and attention schemes training

After extracting image and question features from
ResNet152 and skip-thought vectors, we feed them
into the fusion block as shown in Figure 15. This sec-
tion describes the training process of WMLB with at-
tention mechanism.

4.5.1. Preprocessing

Image
ResNet152 first extracts image features before be-

ing stored in HDFStore format where the key name is
the image ID. One of the advantages of HDFStore is its
dict-like data store such that during training batch of
image feature vectors are easily retrieved provided the
list of image IDs.

Question
We initially clean QA pair groundtruth. This pro-

cess includes: make all characters lowercase, remove
periods and articles, convert number words to dig-
its, add apostrophe if a contraction is missing, for ex-
ample, ’dont’ becomes ’don’t,’ replace all punctuation
with space.

Next, we tokenize each sentence into a list of words.
For example, "Is the retinal hemorrhage larger than
the hard exudate?" becomes [’is’, ’the’, ’retinal’, ’hem-
orrhage’, ’larger’, ’than’, ’the’, ’hard’, ’exudate’].

Then, we generate the vocabulary from the QA
groundtruth.

Finally, we save word features to pickles after ex-
tracting them from the skip-thought method.
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4.5.2. Loss function

We employ cross entropy loss for multi-class train-
ing. It can be seen as belows:

L(p, y) =
M∑

c=1
yo,c log(po,c ) (28)

where M denotes the number of classes, y repre-
sents the binary indicator (0 or 1) if class label c is the
correct classification for observation o, and p is the
predicted probability observation o is of class c.

4.5.3. Training

Similar to image model training, we employ Adam
optimizer with learning rate and momentum of 10−4

and 0.9, respectively. Batch size is set to 512 for no
attention and 128 for attention models. The reason is
that the later models are very memory-consuming.

We also adopt early stopping to cope with overfit-
ting. The loss function is cross entropy, while the
evaluation metric are simple and weighted accuracies.
The training time for no attention networks is around
4 hours, while it takes 40 hours for attention architec-
tures.

5. Results

5.1. Natural Visual Question Answering

Figure 17: Comparison of performance of five models over training
epochs on VQA v1 dataset

Figure 17 and 18 present the top-1 accuracy of VQA
v1 and v2 test-set of our model to compare with other
models over epochs.

Interestingly, Figure 17 illustrates that the accura-
cies of all models on VQA v1 tend to converge much
faster compared to v2 (Figure 18). Similar behavior
can also be seen in the Retinal VQA dataset (refer to
Figure 20). This correlation is related to the diversity
and the number of questions in the groundtruth.

From the Figure 18, we can see those bilinear mod-
els outperform other models by 7%. MUTAN, which

is the current state-of-the-art bilinear model compris-
ing four learnable components, tends to fluctuate dra-
matically before convergence. After going up gradu-
ally, our model remains steady from epoch 40 with the
accuracy of 51%. Note that the reported metric is top-
1 or simple accuracy which is calculated by Equation
1.

Figure 18: Comparison of performance of five models over training
epochs on VQA v2 dataset

Table 3 compare out WMLB with other single mod-
els on VQA test-dev on open-ended accuracy. It can
be seen from the data in Table 3 that attention mecha-
nism has boosted the performance by around 3%. The
overall accuracy of our model is approximately 0.04%
and 0.31% above the next best model on the Open-
Ended task of VQA v1 and v2, respectively. The ma-
jor improvements are from yes-or-no (Y/N) on VQA
v1 and number (No.) on VQA v2.

5.2. Retinal Visual Question Answering

Figure 19 presents the summary statistics of the
training process of our approach WMLB on the Reti-
nal VQA dataset. Similar to VQA v1, the performance
on validation is likely to rise sharply before fluctuating
around a steady line.

Figure 19 compare our approach with the two state-
of-the-art methods. The first observation we can
make is that our method WMLB produces superior
performance over MLB and MUTAN as it reaches the
peak at 91.92%, while the maximum accuracies are
90.97% (MLB) and 90.82% (MUTAN). Interestingly,
MLB and our approach WMLB tend to reach the peaks
rapidly (at epoch 10 and 30) compared to 95 of MU-
TAN.

Table 4 compares the simple and weighted accura-
cies of our model to other bilinear models. What is
striking in Table 4 is the the ability to deal with bias
problem in our approach (also refer to Figures 20 and
22). In particular, it provides the highest number of
correct ’Yes’ and ’Undefined’ answers in a great imbal-
anced groundtruth. As a result, WMLB outperforms
all the previous methods on the test set in both evalu-
ation metrics: simple and weighted accuracies.
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Table 3: Grounding accuracy on VQA v1 and v2 datasets

Table 4: Grounding accuracy on Retinal VQA dataset. Note that (*) denotes the number of correct answers, and ’Un.’ represents ’Undefined’

Figure 19: Train/val accuracy and loss over epochs of our method
on the Retinal VQA dataset

6. Discussion

Despite many proposed methods for VQA, it is hard
to argue which general techniques outperform the
rest, though bilinear pooling methods are current
state-of-the-art. As discussed, a VQA system com-
prises four learnable components: question model,
image model, fusion and attention schemes. To im-

Figure 20: Comparison of performance of thee bilinear models on
the validation set on the Retinal VQA dataset

prove the performance, hence, we have four options
to refine. In this section, we analyze further four ele-
ments in a VQA method and investigate a possibility
to reduce training time.

The first element of a VQA system is the visual
extractor. Data from several studies suggest that
ResNet produces superior performance over VGGNet
or GoogLeNet across multiple algorithms. This leads
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Figure 21: Number of correct answer per type in different models

to a concern: "Is there any visual extractor which pro-
vides better performance than ResNet?" The answer is
yes. Anderson et al. (2017) published a paper in which
they described how image features from bottom-
up attention outperform traditional grid-like feature
maps from a CNN. Figure 23 demonstrates that Top-
down visual attention mechanisms enable deeper im-
age understanding through fine-grained analysis and
even multiple steps of reasoning.

The second question in this study sought to deter-
mine the importance of the word model which is one
of two distinct data streams in VQA. This thesis further
supports that a weighted model outperforms a ’bal-
ance’ model with the same setup. In other words, cur-
rent VQA systems are more dependent on the ques-
tion than visual content. A possible explanation for
this might be that the Natural VQA datasets tend to
have a strong bias on textual content.

Fusion and attention schemes can be combined in
one block to be the brain of a VQA system. This the-
sis confirms that models with attention network are
superior than without attention architectures (Table 3
and 4). However, Kafle and Kanan (2017) pointed out
that attention alone is not sufficient for a good VQA,
but incorporating attention into a strong fusion base-
line does.

One of the weaknesses of WMLB, in specific, and
bilinear models, in general, is the training time. In
particular, it currently takes WMLB 50 hours to train
on VQA v2 dataset on 100 epoch. To boost the
performance by 1-2%, several studies have revealed
that data augmentation from Visual Genome, which
triples the size of our training set, would support. That
is the training time might take 150 hours for two Ti-
tan 1080 Ti GPUs and 300 for a single GPU which is
dramatically exhaustive. To overcome this shortcom-
ing, Teney et al. (2017) suggested a list of findings in-
cluding sigmoid outputs, soft training targets, image
features from bottom-up attention, gated tanh activa-
tions, output embeddings initialized using GloVe and
Google Images, large mini-batches, and smart shuf-
fling of training data. Employing these findings in

their study, Teney et al. (2017) won the first place in
the 2017 VQA Challenge, though with a relatively sim-
ple model and considerable training time of 12 hours.

We believe these findings from Teney et al. (2017)
would help our future work in both Natural and Reti-
nal domains.

7. Conclusions

VQA has a pivotal role in computer vision and natu-
ral language processing that prerequisites a system to
perform much more than a single task. An algorithm
that can give a right answer to an arbitrary question is
the goal of artificial intelligence in our daily life.

In this thesis, we examine the danger of DR: the
longer a man has diabetes, the higher his or her odds
of treating DR as it is the primary source of visual im-
pairment in individuals matured 20 to 74. We, hence,
are motivated to build a computer-aided disease diag-
nosis in retinal image investigation with thu purpose
of easing mass screening of population with diabetes
mellitus and help clinicians in using their opportunity
more productively.

This thesis introduces a multimodal fusion scheme
WMLB between image and question data streams
in both Natural and and the very first Retinal VQA.
WMLB is evaluated on the most recent VQA dataset
reaching state-of-the-art among bilinear approaches.
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