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Abstract: This paper presents an identification method for non linear models of Unmanned
Underwater Vehicles (UUV’s). The proposed method operates both off-line and recursively
and can be applied to a quite general class of non linear multivariable models. The validity
of the method is demonstrated through an application to the identification of the uncoupled
non linear surge-yaw-pitch dynamics of the URIS underwater robotic vehicle
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1. INTRODUCTION

The application of system identification techniques to
marine vehicles is concerned with the estimation, on
the basis of experimental measurements, of a number
of parameters or of hydrodynamic derivatives that
characterise the vehicle’s dynamics [1]. Such
measurements, collected during full-scale trials by
the ‘on-board sensors, are processed by a parameter
estimation routine [6]. The identification methods
proposed in the recent years for UUV identification
generally operate off-line and the underlying
mathematical models are of the scalar type.
Furthermore, they are essentially deterministic, since
the effects of disturbances affecting the UUV
dynamics and of measurement noise are not taken
into consideration [2, 3]. In [10] we applied the
proposed method to the identification of GARBI
UUV. In that case we used the experimental data
obtained during a previous identification of GARBI
[9]. The experimental set-up was complex so, only a
few experimental data was available. In this paper,
we applied the proposed method to URIS UUV. The
lab set-up mounted for URIS identification is better,
allowing us to carry out an exhaustive
experimentation, so the quality of the model is
improved. A concise review of the UUV
mathematical models generally used in the literature
is presented in section 2. In scction 3 the

identification method is described in the off-line
mode and a recursive identification algorithm is
presented in subsection 3.1. In section 4 a description
of URIS underwater robotic vehicle and the
experimental set-up is reported and, in section 5, the
identification results obtained from real experiments
are shown. Finally some concluding remarks are
done in section 6.

2. UUV MATHEMATICAL MODELS

The mathematical model of a wide class of UUVs
can be expressed [5], with respect to a local body
reference system, by a set of non linear coupled
Newtonian equations of the form:

M(x,0)x = f(x,£) + () + g(x,1) 1)

where x(f) € R%is the vehicle’s state vector,
generally constituted by linear and angular velocities,
ie. x =[u,v,w, p.q,7]" consisting of surge, sway,
heave, roll rate,\ pitch rate and yaw rate,
M(x,t)e R*® is the body inertial matrix
including hydrodynamic added masses, f(X,?)

5 . ) . .
€ R is the vector of kinematic forces and moments,



7(t)e R® is the vector of control forces and
moments from thrusters and control surfaces,
g(x,f) € R® is a vector including all the other
hydrodynamic forces and moments.

Identification of the complete set of coefficients and
hydrodynamic derivatives which appear in Equation
(1) is a rather complex task, owing to the very high
number of parameters, to nonlinearities and to space-
time variant effects. The UUV considered in this
paper, better described in Section 4, will be assumed
to be adequately described by three decoupled
motions, i.e. surge ¥, yaw rand pitch q. Such
motions can be described, in a more compact form
[9] by the following set of decoupled equations:

X, =ox, + B, lxi| +y7,+6, i=13 @

where the index values i =1 corresponds to surge,
i=2 to yaw and i =3 to pitch. The coefficients
o, and [ are the linear and quadratic drag

1
coefficients, y; is the inverse of the diagonal

element of the reduced order vehicle inertia matrix
and &,is a bias term that can take into account

buoyancy effects as well as other exogenous forces
or moments. The term 7, represents the active force
or moment excited by thrusters.

3. IDENTIFICATION METHOD

As it can be easily recognised, the UUV decoupled
dynamics, as expressed by Equation (2) is a
particular case of a more general class of non linear
system that are linear with respect to the system
parameter vector:

X = g(x(1),7(1)0
3)
Ve =x(t) +e

where X =[x, X, x;]"is the state vector and
7 =[r, 7,7,] is the vector of active force and

moments applied by the thrusters and ¢ € R™*Pisa
matrix valued function depending only on state and
control vectors, while & € R"™ is a constant and

unknown parameter vector that characterises the
system dynamics.
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A discrete-time measurement vector ), corrupted by

zero-mean gaussian noise €, is assumed.

The identification problem consists of estimating the
unknown parameter vector & on the basis of a finite
number of discrete time measurements of input
vectors {r,}"; and output vectors { Vi }kN=1 .
According to the Output Prediction Error method [6],

identification of parameter vector @ is equivalent to
the minimization of a scalar cost function of the
form:

N
JO) =~ T Az, )
N &

The cost function is constituted by a weighted sum of
squares of prediction errors g(z,), which are the

difference between the observed output vectors and
the one-step prediction of the output p,, i.e.:

& =Y~ )
The positive definite matrices {A ' },"":1 consist of

weights that should take into account the reliability
of measurements at each discrete time instant.
It is worth noting that if the measurement noise

vector e, is zero-mean then:

Ve = X(t,) ™

where £(z, ) denotes the expected state vector at time
t,- In order to determine a solution to the

minimization of the cost function expressed by
Equation (5), it is necessary that an estimate of one-
step output predicted output j, is available. For this
purpose, let us formally integrate both sides of state
equation in Equation (8) between two subsequent
time instants ¢, and ¢, obtaining:

wt) -3 =[ P ey 1o ®

UB] .
If, taking into account Equation (11), it is assumed

thatx(t, ,)=Y,, where Y, is a properly
filtered version of the output vector y,_,, i.e. if we

assign to the unknown state vector a corresponding
filtered output, then we obtain the following estimate
for the state vector at time ¢, :

')’e(tk)'—"j;kﬂ +Fk9 )
where
F= [9G(s),e(s))ds (10)

{1



and thus, we can achieve an evaluation of the one-
step prediction error of Equation (10) in the form:

& =Y, ~Yia—FEO (1

By inserting this evaluation of the one-step prediction
error into the cost function expression of Equation
(4), it is finally possible to find the value of the
parameter vector @, (N)that minimizes the cost

function on the basis of N observations. In fact, it can
be easily demonstrated [5] that, under a regularity
condition of the matrix appearing in the normal
equation, such problem admits a unique solution
obtained through the Least Squares (LS) algorithm:

0,5(N) = (F"(N) A(N)- F(N))™- (12)
FT(N)-A(N)-Y(N)
where A(N), F(N), Y(N) are:

A0 0
A, 0
A(N)= 2 (13)
0 0o .. Ay
- i 371—?0 |
;; yZ—j\il
z = . 14
rvyel. | YD) (19
LFN_ _;N—y]v’—l_

The elements of the compound matrix F(N)can be

obtained by using a numerical integration algorithm
[8] that takes into account the form of the filtered
output vector.

3.1. Recursive identification

The above presented identification method operates
off-line, in the sense that the parameter estimation is
done by collecting a long enough record of input-
output data and then processing them in one shot. If
the identified model has to be used for prediction or
control, however, this procedure may be not
adequate. Furthermore, the method presumes that the
parameter vector is time invariant, but in the case of
an underwater vehicle this assumption is generally
quite unrealistic, as far as a relatively long time
horizon is considered. It is possible to extend the
above identification algorithm to a recursive mode, in
such a way that also slowly time variant parameter
can be recursively estimated. The basic idea is to

compute the new parameter vector estimate 6(k) at

time k by adding some correction vector to the

previous parameter estimate €(k—1). It can be

demonstrated  that the following Recursive Least
Squares (RLS) estimate can be deduced.

6(k)=0(k-1)+T (¥, - F,O(k-1))
Ty =B F (Al + BB F)" (15)

1
Fo==U-TF)E,

where

12x12 12x3 3x12 3x12
P, e R I, eR™ F, eR*™,Y, eR

The RLS algorithm has been deduced under the
assumption that the weighting matrices have the form

0 0
1 0 (16)
01

The algorithm generally converges to the true
parameter vector. As remarked [7], the RLS
algorithm is capable to take into account time-
invariant processes as well as non-stationary systems.
The real parameter A€ (0,1], often called

forgetting factor, takes into account that most recent
data are weighted more than old ones. The

adjustment of A is generally a tradeoff between high
robustness against disturbances ( large A) and

tracking capability (small A ). The forgetting factor
is generally set bewteen 0.9 and 1. The algorithm

RLS requires an initial parameter estimate é(O) and
an initial assignement of the positive definite matrix
P,, that generally should reflect the degree of a-
priori knowledge about unknown parameter vector

(61, [7].

4. DESCRIPTION OF URIS UUV AND
EXPERIMENTAL SET-UP

URIS robot was developed at the University of
Girona with the aim of building a small-sized AUV.
The hull is composed of a stainless steel sphere with
a diameter of 350mm, designed to withstand
pressures of 3 atmospheres (30 meters depth). On the
outside of the sphere there are two video cameras
(forward and down looking) and 4 thrusters (2 in X
direction and 2 in Z direction). Due to the stability of
the vehicle in pitch and roll, the robot has four
degrees of freedom (DOF); surge, sway, heave and
yaw. Except for the sway DOF, the others DOFs can
be directly controlled. The robot has an onboard PC-
104 computer, running the real-time operative system
QNX. In this computer, the low and high level
controllers are executed. An umbilical wire is used



for communication, power and video signal

transmissions. The navigation system [4] is currently
being executed on an external computer. All the
experiments were carried out in a water tank located
in our lab (see Fig. 2).

Fig. 1. (left) URIS in the water tank. (right) URIS

reference frame

Water tank used in the identification

Fig. 2.
experiments.

5. IDENTIFICATION

5.1. Methodology

The identification method has been tested with data
measured with URIS UUV during experiments where
the three motions (surge, pitch and yaw) were excited
separately. The unique variables measured were the
propeller angular speed and the robot position.
Force/torque was computed using the thruster model
and speed was computed through numerical
differentiation.

5.2. Identification results for the yaw DOF

Six different trials were run for the yaw DOF, 4 using
step signals and 2 using PBRS signals. Four of them
(3 steps and 1 PBRS) where validated and 2 were
discarded. In all cases, no significant improvement
was observed taking into account the quadratic
damping, For this reason, it was considered to be
zero. This is usual for very low speed robots like the
one considered here. Table 1 shows the results of the
validated experiments as well as their average. The
estimated parameters are shown together with their
standard deviation and the cost of the whole
experiment.

Table 1 Parameter results for yaw DOF

Exp o Y2 3, J,
] 0 1.1865 0.6261 -0.017 5.7759¢-4
c 0.0031 0.0015 0.0006
0 1.3449 0.6178 0.1076  6.9684e-4
2 c 0.0053 0.0024 0.0010
0 1.1635 0.4221 -0.255 8.7854¢-4
3 o 0.0029 0.0010 0.0011
6 1.2326  0.3468 0.1268 0.0020
' c 0.0053 0.0014 0.0021
Mean 0 1.2426 0.5173 -0.050 8.38¢-04
s 0.00355 0.00145 0.001

Lets us consider in the following paragraphs,
experiment 3 as a case of study to illustrate the
procedure. Fig. 3 shows the input signals (force and
the filtered force, acceleration, speed and position)
of the experiment (note that acceleration is shown
only for clarity, it is not used in the identification).
The statistical validation of the results is reported in
Fig. 4. It shows, from the top to the bottom, the
residuals, their histogram and the normalized
autocorrelation function. The residuals are clearly
gaussian and zero-mean and after 0.5 seconds lag, the
residuals are clearly within the 95% confidence
region. Hence, results can be considered statistically
good. The performance of the model is presented in
Fig. 5, where the measured velocity is compared with
the simulated velocity. The top graphic, reports the
measured velocity compared with the one step
predicted velocity evaluated in working point of the
previous measured velocity. The bottom graphic
shows the measured velocity compared with the one
simulated by the model. In both cases, a very good
agreement can be observed. Finally, Fig.5 and Fig.6
show the long term simulation capability of the
model with respect to the measured values, for yaw
velocity and yaw angle.

Fig. 3. Input signals for yaw DOF (experiment 3)



Fig. 4. Statistical validation for yaw DOF
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Fig. 6. Position response for yaw DOF

5.3. Identification results for surge and pitch

Table 2 show analogous results obtained for surge
DOF validated experiments, while Fig.7 and 8 show
the performance of the model. The same is reported
for pitch in table 3, Fig.9 and 10. Finally, the chosen
model after averaging the validated experiments is
shown in Table 5.

Table 2 Parameter results for surge DOF

Exp o T 8 i
| 0 0.3243 0.0178 -0.0018 1.630e-4
o 0.0023 0.0001 0.0002
2 0 0.3185 0.0201 0.0041 1.895e-4
o 0.0016 0.0001 0.0001
3 §) 0.3237 0.0173 0.0013 1.892e-4
o 0.0016 0.0001 0.0002
Mean 0 0.3222 0.0184 0.0012 1.805e-4
o) 0.0018 0.0001 0.00016
Table 3 Parameter results for pitch DOF
Exp o3 ¥ Js
I 0 0.6486 1.0175  6.4228e-4
o 0.0013  0.0007
5 0 0.6586  0.8697  4.3642e-4
o 0.0009  0.0004
3 0 0.6895 1.0735  5.3489¢-4
o 0.0019  0.0011
Mean Param 0.66395 09885 5.5032e-4
o 0.0011 0.0006
Table 4 Summary of results
DOF o B ¥ 5 J
Surge 0,3302 0 0,0169 -0,0070 1.572e-4
Pitch 0.6514 0 0.8052 0 3.764e-4
Yaw 1.1006 0 0.5236 -0.0435 1.038e-4
!
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Fig. 7. Speed response for surge DOF .
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Fig, 8. Statistical validation for surge DOF
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Fig. 9. Speed response for pitch DOF
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Fig. 10. Statistical validation for pitch DOF

5.4. Recursive identification results

The recursive identification algorithm has also been
tested on the basis of simulated data, obtained from
In this case the
parameter to be estimated is constituted by the vector

the model identified off-line.

9'_'[“1 ) az‘\”z 6, a; ¥, ]T€R8

and the data were generated through a simulated

model.
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Fig.11. Convergence of RLS algorithm

The results obtained by the RLS algorithm are shown
in Fig. 11, where the convergence pattern of the first
four components of the estimated parameter vector to

the true one is illustrated.

6. CONCLUSIONS

An identification method for a wide class of non
linear systems has been presented. The method,

operating off-line, has

been applied to the

identification of URIS UUV on the basis of real data.
The results obtained indicate that the method can
achieve excellent numerical performance. The
identified model has proven to be statistically good
and will be used in the near future for simulation and
control.

7.
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