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Abstract: This paper presents an identification method for the off-line identification of 
non linear models of Unmanned Underwater Vehicles (UUV’s). The proposed method 
can be applied to a quite general class of non linear multivariable models and is 
characterised by an excellent numerical performance. The validity of the method is 
demonstrated through an application to the identification of the dynamic behaviour of the 
URIS underwater robotic vehicle.                              
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1. INTRODUCTION 

 
The application of system identification techniques to 
naval vehicles is concerned with the estimation, on 
the basis of experimental measurements, of a number 
of parameters or of hydrodynamic derivatives that 
characterise the vehicle’s dynamics (Abkowitz, 
1980). Such measurements, collected during full-
scale trials by the on-board sensors, are  processed by 
a  parameter estimation routine (Ljung, 1987). 
The identification methods that, in the recent years, 
have been proposed for UUV identification generally 
operate off-line and the underlying mathematical 
models are of the scalar type. Furthermore, they are 
essentially deterministic, since the effects of 
disturbances affecting the UUV dynamics and of 
measurement noise are not taken into consideration 
(Caccia, 2000). An on-line deterministic 
identification method that has been most recently 

proposed (Smallwood, 2001) is limited to  scalar 
decoupled models. 
In (Tiano, 2002) we applied the proposed method to 
the identification of GARBI UUV. In that case we 
used the experimental data obtained during a previous 
identification of GARBI (Ridao, 2001). The 
experimental set-up was complex so, only a few 
experimental data was available. In this paper, we 
applied the proposed method to URIS UUV. The lab 
set-up mounted for URIS identification is better, 
allowing us to carry out an exhaustive 
experimentation, so the quality of the model is 
improved. 
A brief review of the UUV mathematical models 
generally used in the literature is presented in sub-
section 1.1 of this paper. In section 2 a general 
method is presented for the off-line identification of a 
wide class of non linear continuous-time systems. 
Some of the numerical aspects of the method are 
discussed in sub-section 2.1. In section 3 a description 



     

of URIS underwater robotic vehicle and our 
experimental set-up is reported and, in section 4, the 
identification results obtained for the identification of 
URIS are shown. Finally some concluding remarks 
are done in section 5. 
 
 
1.1 UUV Mathematical models 
 
An UUV can be modelled using the basic physical 
laws governing the dynamic behaviour of a system. 
As described in the literature (Fossen, 1994), the non-
linear hydrodynamic equation of motion of an 
underwater vehicle with 6 DOF, in the body fixed 
frame, can be conveniently expressed as: 
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The resultant force and moment exerted by the 
thrusters Bτ  is obtained from (2) and (3), while 
equation (4) provides the force exerted by thruster i, 
see (Newman, 1989) for details. 
Identification of the complete set of coefficients and 
hydrodynamic derivatives which appear in Equation 
(1) is a rather complex task, owing to the very high 
number of parameters, to nonlinearities and to space-
time variant effects. The identification problem can 
be much more easily approached if the fo llowing 
simplifications apply: 

• D(Bν) consists of the lineal and quadratic 
damping  forces and can be assumed 
diagonal. 

• BMRB and  BMA can be assumed diagonal (this 
is true for URIS UUV due to its spherical 
shape see 3). 

• the body frame is located at the gravity 
centre 

Moreover, if the robot is actuated in a single DOF 
during the identification experiments, further 
simplifications can be carried out. Let us consider, for 
instance, the dynamic equation for the yaw DOF: 
 

· · ·

· ·

| | | |( ) ( )·
( )· (

)·

p Z

rb b r r

X

r V U

q p

N

v u

q p

x c s B y s B N N r

M I p

r
I N r mv Y mu X

K r

τ

θ φ θ− − +

−

−

+ −
+ = − + − − +

+

&   (5) 

which follows the standard notation proposed in  
(Fossen, 1994). If we excite the robot in a single 
DOF, yaw in this case, in such a way that: 
 

• r≠0  and  u=v=w=p=q=0 
• θ=φ=0 

 
then we run an uncoupled experiment so, equation (5) 
becomes: 
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The same procedure can be applied to each degree of 
freedom so, we can consider a generic uncoupled 
equation of motion for degree i as: 

i i i i i i i i ix v x xα γ τ δ= + + +&            (7) 

where the state variable x represents speed in our 
model. Hence, things become more easy if we use 
equation (7) for the identification. It is worth to note 
that the terms of equation (5) not present in equation 
(6), will be identified by running an uncoupled 
experiment of the corresponding degree of freedom. 
Hence, if we run n experiments (n is the number of 
DOFs) we can get the complete model. 
 
 

2. IDENTIFICATION METHOD 
 
As it can be easily recognised, the UUV decoupled 
dynamics, as expressed by Equation (7) is a particular 
case of a more general class of non linear system that 
are linear with respect to the system parameter vector. 
If it is assumed that the state vector nRx ∈ is 
completely controllable by the control vector 

mR∈τ and completely observable at discrete time 
instants { } 0≥kkt through the output vector n

k Rty ∈)( , 

corrupted by the additive zero-mean noise vector 
n

k Rte ∈)( , the system dynamics can be expressed 

by: 
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where nxlR∈φ is a matrix valued function depending 

only on state and control vectors, while lR∈θ  is a 
constant and unknown parameter vector that 
characterises the system dynamics. 
The identification problem consists of estimating the 
unknown parameter vector θ  on the basis of a fin ite 
number of discrete time measurements of input 
vectors { } 1

N
k k

τ
=

 and output vectors { } 1
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According to the Output Prediction Error method 
(Ljung, 1987), identification of parameter vector θ  is 
equivalent to the minimization of a scalar cost 
function of the form: 
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The cost function is constituted by a weighted sum of 
squares of prediction errors )( ktε , which are the 
difference between the observed output vectors and 
the one-step prediction of the output )(ˆ kty , i.e.: 

)(ˆ)()( kkk tytyt −=ε               (10) 

The positive definite matrices { }N

kktW 1
1 )( =

− consist of 

weights that should take into account the reliability of 
measurements at each discrete time instant. For 
example, if the noise vector sequence,{ }N

kkte 1)( =
 is the 

realisation of a zero-mean stochastic process with 
uncorrelated components and known finite second 
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order moments, a “reasonable” choice of the 
weighting matrix sequence could consist of the 
diagonal matrix  of the individual component 
variances. 
It is worth noting that if the measurement noise vector 

)( ktε  is zero-mean then: 

)(ˆ)(ˆ kk txty =                            (11) 

where )(ˆ ktx denotes the expected state vector at time 

kt . 

In order to determine a solution to the minimization 
of the cost function expressed by  Equation (9), it is 
necessary that an estimate of one-step output 
predicted output )(ˆ

kty is available . For this purpose, 

let us formally integrate both sides of state equation 
in Equation (8) between two subsequent time instants 

1−kt  and kt , obtaining: 
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If, taking into account Equation (11), it is assumed 
that 

1 1( ) ( ),k kx t y t− −= %  where 
1( )ky t −%  is a properly 

filtered version of the output vector 
1( )ky t −

, i.e. if we 

assign to  the unknown state vector a corresponding 
filtered output, then we obtain the following estimate 
for the state vector at time 

kt  : 
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and thus,  we can achieve an evaluation of the one-
step prediction error of Equation (10) in the form: 

1( ) ( ) ( )k k k kt y t y t Fε θ−= − − ⋅% %  

By inserting this evaluation of the one-step prediction 
error into the cost function expression of Equation 
(9), it is finally possible to find the value of the 
parameter vector )(NLSθ that minimizes the cost 

function on the basis of N observations. In fact, it can 
be easily demonstrated (Lijung, 1994) that, under a 
regularity condition of the matrix appearing in the 
normal equation, such problem admits a unique 
solution obtained through the Least Squares (LS) 
algorithm : 
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The elements of the compound matrix ( )F N can be 
obtained by using a numerical integration algorithm 
(Press, 1992) that takes into account the form of the 
filtered output vector. 
 
2.1 Numerical aspects of the LS algorithm 
 

The main improvements of the proposed LS 
identification algorithm with respect to other 
apparently analogous techniques previously proposed 
like (Caccia, 2000) or (Smallwood, 2001) derive from 
its better numerical performance. The proposed 
algorithm, in fact, transforms the non linear 
differential Equation (8) into an integral equation 
expressed by Equation (12) and then the integrals 
expressed by Equation (14) are approximated by 
using the measured output data via a suitable 
numerical integration routine. If the integration 
routine, the integration step and the weighting matrix 
W  of Equation (14) are properly chosen, it has been 
demonstrated that the proposed method exhibits also 
a better robustness with respect to measurement 
errors. Another important practical improvement 
derives from the reduction of the measurement 
hardware, since, by the proposed method, there is no 
need to use acceleration sensors. 

 
 

3. DESCRIPTION OF URIS UUV AND THE 
EXPERIMENTAL SET -UP 

 
URIS robot was developed at the University of 
Girona with the aim of building a small-sized UUV. 
The hull is composed of a stainless steel sphere with a 
diameter of 350mm, designed to withstand pressures 
of 3 atmospheres (30 meters depth). On the outside of 
the sphere there are two video cameras (forward and 
down looking) and 4 thrusters (2 in X direction and 2 
in Z direction). Due to the stability of the vehicle in 
pitch and roll, the robot has four degrees of freedom 
(DOF): surge, sway, heave and yaw. Except for the 
sway DOF, the others DOFs can be directly 
controlled. The robot has an onboard PC-104 
computer, running the real-time operative system 
QNX. In this computer, the low and high level 
controllers are executed. An umbilical wire is used 
for communication, power and video signal 
transmissions. The navigation system (Carreras, 
2003) is currently being executed on an external 
computer. All the experiments were carried out in a 
water tank  located in our lab (see Fig. 2). 
 

    
Fig. 1.  (left) URIS in the water tank. (right) URIS 

reference frame 

(15) 



     

 
Fig. 2.  Water tank used in the identification 

experiments. 
 
 

4. IDENTIFICATION 
 
4.1 Methodology 
 
The identification method has been tested with data 
measured with URIS UUV during experiments where 
the three motions (surge, pitch and yaw) were excited 
separately. The unique variables measured were the 
propeller angular speed and the robot position. 
Force/torque was computed using the thruster model 
and speed was computed through numerical 
differentiation. The identification process was 
organised as follows: 
Phase 1: Uncoupled experiments. The experiments 
excite the vehicle in one DOF, the input signals used 
were STEPs and PRBSs signals. 
Phase 2: Data validation. The goal of this phase is to 
discard bad experiments, or part of them, like for 
instance when the force exerted by the wire cannot be 
neglected. 
Phase 3: Filtering. To reduce the effects of 
measurement noise, variables were filtered. Position 
and force were filtered using Hamming filter and 
velocity was computed through position 
differentiation by means of a Savitzky -Golay filter. 
Phase 4: Off-line identification. Equation (7) was 
used for estimating the model parameters as well as 
its standard deviation. 
Phase 5: Statistical validation. The residuals of the 
model (so the one step prediction error) are 
statistically analysed. They should be gaussian, zero-
mean and not autocorrelated. 
Phase 6: Test selection & Mean values. From the 
previous phase, outliers in the experiments are 
detected and discarded. The results of the best ones 
are averaged to get the final values of the estimation.   
Phase 7: Simulation . Finally, the identified model is 
used to simulate a true experiment. Real and 
simulated results, when both real system and model 
are subject to the same initial conditions and control 
inputs, are plotted for comparison. 
 

4.2 Thruster identification 

The static thruster model described in equation (4) is 
identified. A more complex dynamical model is not 
necessary since they are controlled on speed and their 

dynamics is much more faster than the robot dynamics. 
Thrust coefficients for  horizontal and vertical thrusters are 
computed for both  directions (see table 1).  For details 
referring to the procedure for this identification see (Ridao, 
2001). 

Table 1 Thrust coefficients  
 
CT   [ NN//rr ppmm22 ]] Positive sense Negative sense 
Horitzontal 
Thursters  

1.43·10-5 1.48·10-5 

Vertical 
Thrusters  1.29·10-5 1.25·10-5 

 
4.3 Identification results for the yaw DOF 
 
Six different trials were run for the yaw DOF, 4 using 
step signals and 2 using PBRS signals. Four of them 
(3 steps and 1 PBRS) where validated and 2 were 
discarded. In all cases, no significant improvement 
was observed taking into account the quadratic 
damping. For this reason, it was considered to be 
zero. This is usual for very low speed robots like the 
one considered here. Table 2 shows the results of the 
validated experiments as well as their average. The 
estimated parameters are shown together with their 
standard deviation and the cost of the whole 
experiment. 

 
Table 2 Parameter results for yaw DOF  

Exp  ααψψ γγψψ   δδψψ  JJψψ  

θ 1.1865 0.6261 -0.017 5.7759e-4 
1 

σ 0.0031 0.0015 0.0006  

θ 1.3449 0.6178 0.1076 6.9684e-4 
2 

σ 0.0053 0.0024 0.0010  

θ 1.1635 0.4221 -0.255 8.7854e-4 
3 

σ 0.0029 0.0010 0.0011  

θ 1.2326 0.3468 0.1268 0.0020 
4 

σ 0.0053 0.0014 0.0021  

Mean θ 1.2426 0.5173 -0.050 8.38e-04 

 σ 0.00355 0.00145 0.001  

 
Note that physical parameters of the vehicle can be 
easily computed from those shown in table 2 by 
applying equation (6). Lets us consider in the 
following paragraphs, experiment 3 as a case of study 
to illustrate the procedure. Fig. 3 shows the input 
signals (force and the filtered force, acceleration, 
speed and position)  of the experiment  (note that 
acceleration is shown only for clarity, it is not used in 
the identification). The statistical validation of the 
results is reported in Fig. 4. It shows, from the top to 
the bottom, the residuals, their histogram and the 
normalized autocorrelation function. The residuals are 
clearly gaussian and zero-mean and after 0.5 seconds 
lag, the residuals are clearly within the 95% 
confidence region. Hence, results can be considered 
statistically good. The performance of the model is 
presented in Fig. 5, where the measured velocity is 
compared with the simulated velocity. The top 



     

graphic, reports the measured velocity compared with 
the one step predicted velocity evaluated in the 
working point of the previous measured velocity. The 
bottom graphic shows the measured velocity 
compared with the one simulated by the model. In 
both cases, a very good agreement can be observed. 
Finally, Fig.5 and Fig.6 show the long term 
simulation capability of the model with respect to the 
measured values, for yaw velocity and yaw angle. 

0 2 4 6 8 10 1 2 1 4 1 6 1 8 2 0 - 2 
0 
2 
4 Force [N] 

0 2 4 6 8 10 1 2 1 4 1 6 1 8 2 0 -0.5 
0 

0.5 
1 Angular acceleration [rad/s 2] 

0 2 4 6 8 10 1 2 1 4 1 6 1 8 2 0 -0.5 
0 

0.5 
1 

0 2 4 6 8 10 1 2 1 4 1 6 1 8 2 0 - 5 
0 
5 

1 0 

Time [s] 

Angular speed [rad/s] 

Heading [rad] 

Fig. 3.  Input signals for yaw DOF (experiment 3) 
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Fig. 4.  Statistical validation for yaw DOF 
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Fig. 5.  Speed response for yaw DOF 

 
4.3 Identification results for the other DOFs 
Table 3 show analogous results obtained for surge 
DOF validated experiments, while Fig.7 and 8 show 
the performance of the model. The same is reported 

for pitch in table 4, Fig.9 and 10. Finally, the chosen 
model after averaging the validated experiments is 
shown in Table 5. 

0 2 4 6 8 10 12 14 16 18 
-1 

0 

1 

2 

3 

4 

5 

6 
Measured Position vs. Simulated Position [rad] 

Time [s] 

Simulated  

Measured  

 
Fig. 6.  Position response for yaw DOF 

 

Table 3 Parameter results for surge DOF  
 

Exp  ααxx γγxx δδxx JJxx 

θ 0.3243 0.0178 -0.0018 1.630e-4 
1 

σ 0.0023 0.0001 0.0002  

2 θ 0.3185 0.0201 0.0041 1.895e-4 

 σ 0.0016 0.0001 0.0001  

3 θ 0.3237 0.0173 0.0013 1.892e-4 

 σ 0.0016 0.0001 0.0002  

Mean θ 0.3222 0.0184 0.0012 1.805e-4 

 σ 0.0018 0.0001 0.00016  
 
 

Table 4  Parameter results for pitch DOF 
 

Exp  ααθ γγθ JJθ 

θ 0.6486 1.0175 6.4228e-4 
1 

σ 0.0013     0.0007  

θ 0.6586 0.8697 4.3642e-4 
2 

σ 0.0009 0.0004  

θ 0.6895 1.0735 5.3489e-4 
3 

σ 0.0019     0.0011  

Mean θ 0.66395 0.9885 5.5032e-4 

 σ 0.0011 0.0006  
 

Table 5 Summary of results 
 

DOF α β γ δ J 

Surge 
Pitch 
Yaw 

00,, 33330022  
00.. 66551144 
11.. 11000066 

0 
0 
0 

00,, 00116699  
00.. 88005522 
00.. 55223366 

--00,, 00007700  
0 
--00.. 00443355 

11.. 557722ee-- 44  
33.. 776644ee-- 44 

11.. 003388ee-- 44 
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Fig. 7.  Speed response for surge DOF 
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Fig. 8.  Statistical validation for surge DOF 
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Fig. 9.  Speed response for pitch DOF 
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Fig. 10.  Statistical validation for pitch DOF 
 
 

5 CONCLUSIONS 
 

An identification method for  a wide class of non 
linear systems has been presented. The method,  
operating off-line, has been applied to the 
identification of URIS UUV on the basis of real data. 
The results obtained indicate that the method can 
achieve excellent numerical performance. The 
identified model has proven to be statistically good 
and will be used in the near future for simulation and 
control. 
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