
Direct Policy Search Reinforcement
Learning for Robot Control

Andres El-Fakdi 1, Marc Carreras and Narcís Palomeras
University of Girona, Spain

Abstract.
In this paper, we present Policy Methods as an alternative to Value Methods

to solve Reinforcement Learning problems. The paper proposes a Direct Policy
Search algorithm that uses a Neural Network to represent the control policies. De-
tails about the algorithm and the update rules are given. The main application of
the proposed algorithm is to implement robot control systems, in which the gener-
alization problem usually arises. In this paper, we point out the suitability of our
algorithm in a RL benchmark, that was specially designed to test the generalization
capability of RL algorithms. Results check out that policy methods obtain better
results than value methods in these situations.

Keywords. Reinforcement learning, Direct Policy Search and Robot Learning

1. Introduction

A commonly used methodology in robot learning is Reinforcement Learning (RL) [1].
In RL, an agent tries to maximize a scalar evaluation (reward or punishment) obtained
as a result of its interaction with the environment. The goal of a RL system is to find
an optimal policy which maps the state of the environment to an action which in turn
will maximize the accumulated future rewards. Most RL techniques are based on Finite
Markov Decision Processes (FMDP) causing finite state and action spaces. The main
advantage of RL is that it does not use any knowledge database, so the learner is not
told what to do as occurs in most forms of machine learning, but instead must discover
actions yield the most reward by trying them. Therefore, this class of learning is suitable
for online robot learning. The main disadvantages are a long convergence time and the
lack of generalization among continuous variables.

The dominant approach for solving the RL problem has been the use of a value-
function but, although it has demonstrated to work well in many applications, it has sev-
eral limitations. If the state-space is not completely observable (POMDP), small changes
in the estimated value of an action cause it to be, or not be, selected; and this will deto-
nate in convergence problems [2]. Over the past few years, studies have shown that ap-
proximating directly a policy can be easier than working with value functions, and better
results can be obtained [3,4]. Instead of approximating a value function, new methodolo-

1Correspondence to: Andres El-Fakdi, Edifici PIV, Campus Montilivi, Universitat de Girona, 17071 Girona,
Spain. Tel.: +34 972 419 871; Fax: +34 972 418 259; E-mail: aelfakdi@eia.udg.es.

gies approximate a policy using an independent continuous function approximator with
its own parameters, trying to maximize the expected reward. Examples of direct policy
methods are the REINFORCE algorithm [5], the direct-gradient algorithm [6] and cer-
tain variants of the actor-critic framework [7]. The advantages of policy methods against
value-function based methods are various. A problem for which the policy is easier to
represent should be solved using policy algorithms [4]. Working this way should repre-
sent a decrease in the computational complexity and, for learning control systems which
operate in the physical world, the reduction in time-consuming would be notorious. Fur-
thermore, learning systems should be designed to explicitly account for the resulting vi-
olations of the Markov property. Studies have shown that stochastic policy-only methods
can obtain better results when working in POMDP than those ones obtained with deter-
ministic value-function methods [8]. On the other side, policy methods learn much more
slowly than RL algorithms using value function [3] and they typically find only local
optima of the expected reward [9].

We propose the use of an online Direct Policy Search (DPS) algorithm, based on
Baxter and Bartlett’s direct-gradient algorithm OLPOMDP [10], for its application in the
control system of a real system, such as a robot. This algorithm has the goal of learning a
state/action mapping that will be applied in the control system. The policy is represented
by a neural network whose input is a representation of the state, whose output is ac-
tion selection probabilities, and whose weights are the policy parameters. The proposed
method is based on a stochastic gradient descent with respect to the policy parameter
space, it does not need a model of the environment to be given and it is incremental,
requiring only a constant amount of computation step. The objective of the agent is to
compute a stochastic policy [8], which assigns a probability over each action.

The work presented in this paper is the continuation of a research line about robot
learning using RL, in which a more conventional value-function algorithm was first in-
vestigated [11,12]. The robot task used to test the algorithm was the learning of a target
following behavior with an underwater robot. This robot task has already been tested
in a simulation environment, obtaining very satisfactory results [13] . In this paper, we
describe in detail our DPS algorithm and show its efficiency in a RL benchmark, the
"mountain-car" task, to show the high generalization capability of policy methods.

2. The DPS algorithm

A partially observable Markov decision process (POMDP) consists of a state space S, an
observation space Y and a control space U. For each state i ∈ S there is a deterministic
reward r(i). As mentioned before, the algorithm is designed to work on-line, at every time
step the learner (our robot) will be given an observation of the state and, according to the
policy followed at that moment, it will generate a control action. As a result, the learner
will be driven to another state and will receive a reward associated to this new state. This
reward will allow us to update the controller’s parameters that define the policy followed
at every iteration, resulting in a final policy considered to be optimal or closer to optimal.
The algorithm procedure is summarized in Table 1. The schema of the ANN, used to
implement the control policy, can be seen in Figure 1.

The algorithm works as follows: having initialized the parameters vector θ0, the
initial state i0 and the gradient z0 = 0, the learning procedure will be iterated T times. At

Table 1. Algorithm: Baxter & Bartlett’s OLPOMDP

1

(,)

(,)
t

t

u t
t t

u t

y
z z

y

µ θ
β

µ θ+

∇
= +

1 1 1()t t t tr i zθ θ α+ + += +

1: Given:
• 0T >
• Initial parameter values

0
Kθ ∈�

• Arbitrary starting state i0

2: Set z0 = 0 (z0

K∈�)

3: for t = 0 to T do
4: Observe state yt

5: Generate control action ut according to current policy
(,)tyµ θ

6: Observe the reward obtained r(it+1)

7: Set

8: Set

9: end for

OLPOMDP algorithm

every iteration, the parameters gradient zt will be updated. According to the immediate
reward received r(it+1), the new gradient vector zt+1 and a fixed learning parameter
α, the new parameter vector θt+1 can be calculated. The current policy µt is directly
modified by the new parameters becoming a new policy µt+1 that will be followed next
iteration, getting closer, as t → T to a final policy µT that represents a correct solution
of the problem.

In order to clarify the steps taken, the next lines will relate the update parameter
procedure of the algorithm closely. The controller uses a neural network as a function
approximator that generates a stochastic policy. Its weights are the policy parameters that
are updated on-line every time step. The accuracy of the approximation is controlled by
the parameter β ∈ [0, 1).

The first step in the weight update procedure is to compute the ratio:

∇µut(θ, yt)
µut(θ, yt)

(1)

State
Input

S
of

t-
M

ax

o1

on

1ξ

nξ

Figure 1. Schema of the ANN architecture used.

S
of

t-
M

ax

o1

oj

1ξ

jξ

on nξ

Action
Selected!

ej=1-Prj

e1=-Pr1

en=-Prn

1
oδ

o
nδ

1
hδ = 11w

1nw

∑'
1 1()hoϕ ×

a) b)

Figure 2. (a) Soft-Max error computation for every output. (b) Gradient computation for a hidden-layer neu-
ron.

for every weight of the network. In an AANs, like the one used in the algorithm, the
expression defined in step 7 of Table 1 can be rewritten as:

zt+1 = βzt + δtyt (2)

At any step time t, the term zt represents the estimated gradient of the reinforcement
sum with respect to the network’s layer weights. In addition, δt refers to the local gradient
associated to a single neuron of the ANN and it is multiplied by the input to that neuron
yt. In order to compute these gradients, we evaluate the soft-max distribution for each
possible future state exponentiating the real-valued ANN outputs {o1, ..., on}, being n
the number of neurons of the output layer [14].

After applying the soft-max function, the outputs of the neural network give a
weighting, ξj ∈ (0, 1), to each of the vehicle’s thrust combinations. Finally, the proba-
bility of the ith thrust combination is then given by:

Pr
i

=
exp(oi)

n∑
z=1

exp(oz)
(3)

Actions have been labelled with the associated thrust combination, and they are cho-
sen at random from this probability distribution. Once we have computed the output dis-
tribution over the possible control actions, next step is to calculate the gradient for the
action chosen by applying the chain rule; the whole expression is implemented similarly
to error back propagation [15]. Before computing the gradient, the error on the neurons
of the output layer must be calculated. This error is given by next expression:

ej = dj − Pr
j

(4)

The desired output dj will be equal to 1 if the action selected was oj and 0 otherwise
(see Figure 2). With the soft-max output error calculation completed, next phase consists
in computing the gradient at the output of the ANN and back propagate it to the rest of
the neurons of the hidden layers. For a local neuron j located in the output layer we may
express the local gradient for neuron j as:

δo
j = ej · ϕ

′
j(oj) (5)

Where ej is the soft-max error at the output of neuron j, ϕ
′
j(oj) corresponds to the

derivative of the activation function associated with that neuron and oj is the function
signal at the output for that neuron. So we do not back propagate the gradient of an error
measure, but instead we back propagate the soft-max gradient of this error. Therefore,
for a neuron j located in a hidden layer the local gradient is defined as follows:

δh
j = ϕ

′
j(oj)

∑

k

δkwkj (6)

When computing the gradient of a hidden-layer neuron, the previously obtained gra-
dient of the following layers must be back propagated. In Equation 6 the term ϕ

′
j(oj)

represents de derivative of the activation function associated to that neuron, oj is the
function signal at the output for that neuron and finally the summation term includes
the different gradients of the following neurons back propagated by multiplying each
gradient to its corresponding weighting (see Figure 2).

Having all local gradients of all neurons calculated, the expression in Equation 2 can
be obtained and finally, the old parameters are updated following the expression:

θt+1 = θt + γr(it+1)zt+1 (7)

The vector of parameters θt represents the network weights to be updated, r(it+1) is
the reward given to the learner at every time step, zt+1 describes the estimated gradients
mentioned before and γ is the learning rate of the DPS algorithm.

3. Experimental Results

3.1. The "mountain-car" task.

The "mountain-car" benchmark [16] was designed to evaluate the generalization capa-
bility of RL algorithms. In this problem, a car has to reach the top of a hill, see Figure 3.
However, the car is not powerful enough to drive straight to the goal. Instead, it must
first reverse up the opposite slope in order to accelerate, acquiring enough momentum to
reach the goal. The states of the environment are two continuous variables, the position
p and the velocity v of the car. The action a is the force of the car, which can be positive
and negative. The reward is -1 everywhere except at the top of the hill, where it is 1.
The dynamics of the system can be found in [16]. The episodes in the mountain-car task
start in a random position and velocity, and they run for a maximum of 200 iterations
or until the goal has been reached. The optimal state/action mapping is not trivial since
depending on the position and the velocity, the action has to be positive or negative.

3.2. Results with a value-function algorithm

To provide a performance baseline, the classic Q_learning algorithm, which is based on
a value function, was applied. The state space was finely discretized, with 180 states for
the position and 150 for the velocity. The action space contained only three values, -1,
0 and 1. Therefore, the size of the Q table was 81000 cells. The exploration strategy
was an ε − greedy policy with ε set at 30%. The discount factor was γ = 0.95 and

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
goal
r =1

r = -1

gravity

altitude (a)

position (p)

a = sin(p)

Figure 3. The "mountain-car" task domain.

the learning rate α = 0.5, which were found experimentally. The Q table was randomly
generated at the beginning of each experiment.In each experiment, a learning phase and
an evaluation phase were repeatedly executed. In the learning phase, a certain number of
iterations were executed, starting new episodes when it was necessary. In the evaluation
phase, 500 episodes were executed. The effectiveness of learning was evaluated by look-
ing the averaged number of iterations needed to finish the episode. After running 100
experiments with discrete Q_learning, the average number of iterations when the optimal
policy had been learnt was 50 with 1.3 standard deviation. And the number of learning
iterations to learn this optimal policy was 1x107 learning iterations. Figure 4a shows the
effectiveness evolution of the Q_learning algorithm in front of the learning iterations. It
is interesting to compare this mark with other state/action policies. If a forward action
(a = 1) is always applied, the average episode length is 86. If a random action is used,
the average is 110. These averages depend highly on the fact that the maximum number
of iterations in an episode is 200, since in a lot of episodes these policies do not fulfill
the goal.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
7

40

60

80

100

120

140

160

180

Q_learning, Learning Iterations

50

51

random action

forward action

Ite
ra

tio
ns

 to
G

oa
l

Q_learning

0 40.000 80.000 120.000 160.000 200.000
40

60

80

100

120

140

160

DPS, Learning Iterations

Ite
ra

tio
ns

to
 G

oa
l

random action

forward action

52

53

a) b)

Figure 4. a) Effectiveness of the Q_learning algorithm with respect to the learning iterations. After converging,
the effectiveness was maximum, requiring only 50 iterations to accomplish the goal. b) Effectiveness of the
DPS algorithm with respect to the learning iterations. The convergence time was much smaller, while a similar
effectiveness (52 iterations) was achieved.

-5 0 5

-1

-0.5

0

0.5

1

Figure 5. The hyperbolic tangent function.

3.3. Results with the DPS algorithm

A one-hidden-layer neural-network with 2 input nodes, 10 hidden nodes and 2 output
nodes has been used to generate a stochastic policy. One of the inputs corresponds to the
vehicle’s position, the other one represents the vehicleŠs velocity. Each hidden and out-
put layer has the usual additional bias term. The activation function used for the neurons
of the hidden layer is the hyperbolic tangent type, see Equation 8 and Figure 5, while the
output layer nodes are linear. The two output neurons have been exponentiated and nor-
malized as explained in section 2 to produce a probability distribution. Control actions
are selected at random from this distribution.

tanh(z) =
sinh(z)
cosh(z)

(8)

In each experiment, a learning phase and an evaluation phase were repeatedly ex-
ecuted. In the learning phase, 500 number of iterations were executed, starting new
episodes when it was necessary. In the evaluation phase, 200 episodes were executed.
The effectiveness of learning was evaluated by looking the averaged number of iterations
needed to finish the episode. After running 100 experiments with the DPS algorithm, the
average number of iterations when the optimal policy had been learnt was 52.5. And the
number of learning iterations to learn this optimal policy was 40.000 learning iterations.
Figure 4b shows the effectiveness evolution of the DPS algorithm in front of the learning
iterations.

3.4. Comparison

After performing the experiments with the Q_learning algorithm and the DPS algorithm
it can be concluded:

Simplicity A very simple NN configuration was able to learn the necessary policy.
However, Q_learning, which was affected by the generalization problem, required
81000 cells to obtain a similar policy.

Effectiveness The minimum iterations to goal achieved by DPS (52.5) was practically
equal than the ones achieved by Q_learning (50).

Swiftness Although policy methods learn usually slower than value methods, in this
case, the DPS algorithm was much faster than Q_learning (affected by the gener-
alization problem)

4. Conclusions and Further Work

This paper has presented Policy Methods as an alternative to Value Methods to solve
Reinforcement Learning problems. The paper has proposed a Direct Policy Search algo-
rithm based on Baxter and Bartlett’s direct-gradient algorithm, with a Neural Network to
represent the policies. Details about the algorithm with all the update rules were given.
The main application of the proposed algorithm is to implement robot control systems,
in which the generalization problem usually arises. In this paper, we have pointed out the
suitability of our algorithm in a RL benchmark, specially designed to test the generaliza-
tion capability of RL algorithms. Results have shown better results of policy methods in
these situations. Future work will consist on testing the DPS algorithm with real robots.

References

[1] R. Sutton and A. Barto. Reinforcement Learning, an introduction. MIT Press, 1998.
[2] D.P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Bel-

mont, MA, 1996.
[3] R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for rein-

forcement learning with function approximation. Advances in Neural Information Processing
Systems, 12:1057–1063, 2000.

[4] C. Anderson. Approximating a policy can be easier than approximating a value function.
Technical Report Computer Science CS-00-101, Colorado State University, 2000.

[5] R. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

[6] J. Baxter and P.L. Barlett. Reinforcement learning in POMDPs via direct gradient ascent. In
Proceedings of the Seventeenth International Conference on Machine Learning, 2000.

[7] V.R. Konda and J.N. Tsitsiklis. On actor-critic algorithms. SIAM Journal on Control and
Optimization, 42(4):1143–1166, 2003.

[8] S.P. Singh, T. Jaakkola, and M.I. Jordan. Learning without state-estimation in partially ob-
servable markovian decision processes. In Proceedings of the Eleventh International Confer-
ence on Machine Learning, New Jersey, USA, 1994.

[9] N. Meuleau, L. Peshkin, and K. Kim. Exploration in gradient-based reinforcement learning.
Technical Report AI Memo 2001-003, MIT, 2001.

[10] J. Baxter and P.L. Bartlett. Direct gradient-based reinforcement learning i: Gradient estima-
tion algorithms. Technical report, Australian National University, 1999.

[11] M. Carreras, P. Ridao, and A. El-Fakdi. Semi-online neural-q-_learning for real-time ro-
bot learning. In IEEE/RSJ International Conference on Intelligent Robots and Systems, Las
Vegas, USA, 2003.

[12] M. Carreras and P. Ridao. Solving a RL generalization problem with the SONQL algorithm.
In Seventh Catalan Conference on Artificial Intelligence, 2004.

[13] A. El-Fakdi, M. Carreras, N. Palomeras, and P. Ridao. Autonomous underwater vehicle con-
trol using reinforcement learning policy search methods. In IEEE Conference and Exhibition
Oceans’05 Europe, June 2005.

[14] Aberdeen D. A. Policy Gradient Algorithms for Partially Observable Markov Decision
Processes. PhD thesis, Australian National University, 2003.

[15] S. Haykin. Neural Networks, a comprehensive foundation. Prentice Hall, 2nd ed. edition,
1999.

[16] A.W. Moore. Variable resolution dynamic programming: Efficiently learning action maps on
multivariate real-value state-spaces. In Proceedings of the Eighth International Conference
on Machine Learning, 1991.

