
Contract-Based Cooperation for Ambient Intelligence:
Proposing, Entering and Executing Contracts

Autonomously

Fatma Başak Aydemir
∗

Dept of Computer Engineering
Boğaziçi University

İstanbul, Turkey
basak.aydemir@boun.edu.tr

ABSTRACT
Ambient Intelligence (AmI) describes environments that sense and
react to the humans in time to improve their living quality. Software
agents are important in realizing such environments. While existing
work has focused on individual agent’s reactions, more interesting
applications will take place when the agents cooperate to provide
composed services to humans. When cooperation is required, the
environment needs mechanisms that regulate the agents’ interac-
tions but also respect their autonomy. Accordingly, this paper de-
velops a contract-based approach for offering composed services.
At runtime, agents autonomously decide whether they want to enter
contracts. Agents then act to fulfill their contracts. Ontologies are
used to capture domain information. We apply this multiagent sys-
tem on an intelligent kitchen domain and show how commitments
can be used to realize cooperation. We study our application on
realistic scenarios.

Keywords
Agents, commitments, ontologies

1. INTRODUCTION
Ambient Intelligence (AmI) indicates environments that are aware

of and responsive to human presence. Besides various types of sen-
sors and nanotechnology, software agents are one of the emerging
technologies for AmI. Intelligent agents are used for a wide range
of tasks from searching for information to adaptive decision mak-
ing [11]. With this aspect of it, AmI can be realized by a multiagent
system. Multiagent systems are systems where multiple intelligent
agents interact [10]. These interactions are generally given a mean-
ing using commitments, which are contracts among agents to sat-
isfy certain properties [8]. Using contracts among agents regulate
the interactions and enable cooperation among them.

∗This paper is based on the STAMI 2011 workshop paper [2] at
IJCAI. The author is supported by Boğaziçi University Research
Fund under grant BAP5694, by the Scientific and Technological
Research Council of Turkey (TÜBİTAK) 2210 National Graduate
Scholarship Program.

In this paper, we propose an AmI system which consists of au-
tonomous agents. The system is dynamic in various ways: re-
sources can be added or consumed, agents may enter and leave the
system or they can change the services they provide. We follow a
user centered design focusing on the user’s needs and demands [7]
for this system, as it is consistent with the human-centric nature of
the AmI systems. One of the intelligent agents represents the user
of the system and it is called User Agent (UA). Other agents coop-
erate with UA in order to satisfy the user’s needs. One distinguish-
ing aspect is that predefined contracts, which are generated before
agent interaction, do not exist in the system. Such static structures
do not apply well to the dynamism of the system described above.
Instead of relying on predefined contracts, relevant contracts are
created in conformity with the internal states of the parties during
agent interactions. The internal states of the agents are not visible
to other agents and the agents decide whether or not to take part in
the contracts themselves. When a contract cannot be created, it is
UA’s duty to establish another one that guarantees realization of the
properties needed to satisfy the user.

The rest of the paper is organized as follows: Section 2 explains
the advantages of the dynamically generated contracts over the stat-
ically generated ones. Section 3 describes the overall system ar-
chitecture and explains the contract evolutions. Section 4 demon-
strates the application of the system on an example domain. Section
5 studies the system over selected scenarios and Section 6 compares
the system with the related work.

2. CONTRACTS FOR AMBIENT INTELLI-
GENCE

A contract between agents X and Y is represented as CC(X,Y,Q,P)
and interpreted as the debtor agent X is committed to bring the
proposition P to the creditor agent Y when the condition Q is real-
ized. Contracts assure that the creditor obtains the promised prop-
erties and ease the process of tracing the source of possible ex-
ceptions. In some multiagent systems, the system is designed so
that the role of the agents are set, agent capabilities do not change,
the resources to realize these capabilities are determined and the
agents’ access to these resources are unlimited. In such static en-
vironments, contracts can be specified during compile time and
agents can follow these contracts at run time. Since the system
is not going to change at run time, there is no reason to attempt to
generate the contracts at run time.

Consider a multiagent AmI system with UA and two other agents,
Agent 1 and Agent 2. Assume that the following contracts are gen-
erated at design time and adopted by the agents:



1. CC(Agent 1, UA , Service 1 Request, Service 1)

2. CC(Agent 2, UA , Service 2 Request, Service 2)

That is, if UA requests Service 1, then Agent 1 will always provide
that service. Similarly, if UA requests Service 2, then Agent 2 will
always provide that service. These two contracts work well as long
as the agents of the system, their capabilities, the resources and the
user preferences do not change.
Scarce Resources: The scenario depicted above is far from being
realistic. Any change in the environment prevents the system from
satisfying the user’s needs. Consider the case that the resources
necessary to provide the services 1 and 2 are not available any
more. For example, Agent 1 may run out of Resource 1 that is
fundamental to serve Service 1. So, Agent 1 fails to serve Service
1 when requested, although it is committed to serve it. This leads to
an overall system failure since UA is not served a part of the service
bundle. In such cases, the statically generated contracts described
above are not sufficient to realize the user’s preferences. Instead,
the agents should decide whether or not to take part in the contracts
and also they should try to generate new contracts that may help to
fulfill the former ones. For the Scarce Resource 1 example, Agent
1 may ask for a new contract including the following commitment:
CC(Agent 1, UA , Resource 1, Service 1), which means that if
UA provides Resource 1, then Agent 1 can provide Service 1. If
UA accepts the new proposed contract and provides Resource 1 to
Agent 1, Agent 1 provides Service 1 to UA . Service 1 would not
be provided if the later contract had not been generated by Agent 1
dynamically.
Dynamic Environment: In an open environment, agents may
leave the system, the agents that have left the system may come
back, or new agents may enter the system. When UA tries to serve
a bundle, states of the agents should be considered. It is not rational
to wait for a service from an agent that has already left the system,
although it is committed to serve it. So, the appropriate agents
should be carefully selected before agreeing on any commitment.
For example, in the above scenario, Agent 1 decides to leave the
system for some reason, meanwhile, a new agent, Agent 3, which
offers the same services as Agent 1 enters the system. Although
there is a contract agreed on with Agent 1, in order to receive Ser-
vice 1, UA should make another contract with Agent 3: CC(UA
, Agent 3, Service 1 Request, Service 1). If UA can dynamically
create a new contract with Agent 3, it can ensure receiving Service
1.

Dynamically Changing Services: A multiagent system does
not necessarily contain agents that have fixed services. Agents may
learn new services or stop some of the existing ones. In such cases,
making prior arrangements to serve a bundle may not work due to
change of agent services. The agents to be interacted with should
be carefully selected according to the services they offer. In such
systems, it may also be impossible to serve a predetermined bundle,
the service bundle may be generated dynamically too.

3. APPROACH
We develop a contract-based multiagent system for ambient in-

telligence. The agents cooperate by creating and carrying out con-
tracts that they dynamically generate at run time.
Architecture: Main components of the system are depicted in
Figure 1. Agents are shown in rectangle nodes and the ontologies
are shown in ellipse nodes. Line edges describe two way interaction
whereas dashed edges represent access to the ontologies.

There is one UA which interacts with all of the agents in the
system. UA keeps track of the user’s needs and desires and tries to

UA

Environment
Ontology

Domain
Ontology

Agent
1

Agent
2

Agent
3

Figure 1: Architecture of the system

provide the user her preferred set of services. Elements of this set
are often served by various agents, so other agents cooperate with
UA to offer their services. UA usually starts the communication,
however other agents are also able to make contract requests. All
agents make the decision for whether or not entering in a contract
themselves.

There are two ontologies that are accessible by all of the agents in
the system. An ontology is the description of the conceptualization
of a domain [1]. Elements that are described in an ontology are
the individuals, that are the objects of the domain; classes, that
are collections of objects; attributes, that are properties of objects;
relations that are the connections between objects and rules defined
on these elements [5].

The first ontology is the environment ontology, which describes
the environment. The agent, contract and service bundle descrip-
tions as well as additional spatial information about the environ-
ment is described in the environment ontology. Although the de-
scriptions for the agent and contract structures are depicted in this
ontology, information about individuals are not kept in here. The
information not revealed in this ontology is a part of the agent’s
initial state and managed by the related agent itself. The second
ontology is the domain ontology. In this ontology, detailed descrip-
tions of the services and the other domain dependent information
are provided.

Reasoner
Message
Manager

Inventory
Manager

Contract
Manager

Domain
Ontology

Environment
Ontology

Agent

Figure 2: Architecture of an agent

Figure 2 depicts the structure of an agent. Each agent in the
system has access to the environment ontology and the domain on-
tology. Every agent has a local inventory where it keeps the avail-
ability information on the service resources. The inventory of an
agent is consulted first to decide if the necessary service resources
are available. The information about the agent’s inventory is pri-
vate and it is not shared with the other agents of the system. The
contract manager of an agent manages the contracts of the agent.
It updates the contract states, traces the fulfillment of the proposi-
tions and conditions. Obviously, each agent handles its contracts
itself so there is not a common contract base of the system as it is



not the case in the real life. The reasoner of the agent makes the de-
cisions, takes actions and handles messages. Contract Lifecycle:

conditional

released cancelled

requestedstart

active

rejected

fulfilled

release
cancel

inform inform

confirm

reject

Figure 3: Commitment states as nodes and message types as
edges

In our system, the interaction among agents is conducted via mes-
sages and it is based on contracts between two agents. Contracts are
dynamic entities of the system end their states are updated by the
agents after receiving or sending certain type of messages. States
of contracts used in the system are:

• requested: These contracts are requested from an agent, how-
ever the reply for the request has not been received yet.

• rejected: These contracts are the ones that are requested and
got a negative respond in return. They do not have any bind-
ing effect on either of the parties.

• conditional: These contracts are agreed on and created by
both parties. However, their conditions and propositions re-
main unsatisfied.

• cancelled: These contracts are cancelled by the debtor.

• active: These contracts are agreed on and created by both
parties. Moreover; their conditions are satisfied by the credi-
tor.

• released: These contracts are released by the creditor, so the
debtor of these contracts are no longer committed to fulfill
the propositions of the contracts.

• fulfilled: These contracts are agreed on and created by both
parties. Their conditions and propositions are satisfied.

The message types used to carry these contract, their conditions
and propositions are listed below:

• request: These messages are used to form a contract, thereby
leading the contract to its requested state.

• reject: A reject message changes the contract state from re-
quested to rejected.

• confirm: A confirm message updates the states of the re-
quested contracts to conditional.

• cancel: A cancel message carries a contract that is cancelled
by the debtor. The cancel message changes the state of the
contract from conditional to released.

• release: A release message carries a contract that is released
by the creditor. The release message changes the state of the
contract from conditional to released.

• inform: An inform message is used to fulfill the conditions
of the conditional contracts (thereby, making the contract ac-
tive) or the propositions of the active contracts (thereby, mak-
ing the contract fulfilled).

Find
service
providers

Failure

Send
requests

Wait
for

replies

All
con-

firmed?

Send
Reply

Send con-
ditions Success

found

not found

receive
confirm

receive
reject

receive
request

yes

send reject

send confirm

no

send
request

Figure 4: Workflow of User Agent

Figure 3 explains the state changes of contracts. A contract is
created when it is requested by an agent. If the agent that receives
the request rejects the contract its state is changed to rejected. If
the contract is accepted by the other party, its state is changed to
conditional. Contracts that are in conditional state. may be can-
celled by the debtor agent or may be released by the creditor agent.
If the condition of the contract is provided, it is state is changed to
active. When the proposition of the contract is made available by
the debtor, its state is changed to fulfilled.
Agent Lifecycle: Workflow diagram for UA is given in Fig. 4.
When UA tries to establish the contracts for a service bundle, it
starts with getting the addresses of the agents that provides the
services from the bundle. If it cannot find any agents for one or
more services, the bundle cannot be served (Failure). If there are
agents that serve the services of the bundle, UA sends them con-
tract requests and starts waiting for the replies. Once it receives
a confirmation for a contract, it checks whether it gathers confir-
mation for all contracts it has requested. If there are still some
contracts to be confirmed, UA continues to wait for the replies. If
all of the contracts are confirmed, UA provides the conditions of
the contracts. UA ’s duty ends here as it is the other agents’ duty
to provide the services promised and the exceptions are not in the
scope of this work. If UA receives a rejection instead of a con-
firmation, it searches for other agents that serve the same service
immediately. If there are no such agents, UA cannot provide the
bundle to the user (Failure). If there are other agents serving the
same service, UA repeats the process of requesting contracts. UA
may also receive a contract request as a reply for its initial request.

When an agent including UA receives a contract request, it should
decide to create it or not. There are three possible reactions that it
may take: 1) Rejecting to create the contract, 2) Creating the con-
tract in line with the requester’s desire, 3) Requesting another con-
tract that has the same proposition as the contract requested by the
requester with a different set of conditions. It is assumed that agents



Algorithm 1: Request Received
Input: request:Request Message received
Output: m:Message to send

1 String id=request.getConversationID();
2 Contract c=request.getContent();
3 boolean found=false;
4 for i← 1 to contracts.size() do
5 if contracts(i).conversationID==id then
6 similarity=getSimilarity(c.proposition,

contracts(i).proposition);
7 if similarity>threshold then
8 m.type← confirm
9 else

10 m.type← reject

11 found = true;
12 break;

13 if !found then
14 ResourceList rList=c.getProposition();
15 ResourceList missing;
16 for i← 1 to gList.size() do
17 Resource r=rList.elementAt(i);
18 double invQ=Inventory.getResourceQuantity(r);
19 if g.RequestedQuantity > invQ then
20 missingResources(g,missing);
21 if missing.size()!=0 then
22 m.type← request;
23 c.condition← missing;
24 m.add(c);
25 return m

26 m.type← confirm;
27 m.add(c);
28 return m

are willing to create contracts unless they lack necessary amount of
ingredients and they do not receive any contract requests beyond
their serving capabilities.

Algorithm 1 explains the behavior of an agent other than UA
when it receives a request message. The message received can start
a new conversation between the agents, or it might carry on a pre-
vious one. So, an agent checks whether the message is part of a
previous conversation or not (line 5). If the message is related to
a previous contract, it retrieves the contract from its contract base
and calculates the similarity between the conditions of the two con-
tracts (line 6). If the similarity is above a threshold set by the agent
itself (line 7), it confirms the contract and prepares a confirmation
message to be sent to the requester via the message manager of the
agent (line 8). If the similarity is below the threshold, a rejection
message is prepared instead of the confirmation message (line 10).
If the message is not related to any other conversation, the agent
checks its inventory for the proposition (line 18). If the proposi-
tion is not ready in the inventory (line 19), for this time the agent
checks the inventory for the ingredients of the proposition. If there
are some missing ingredients (line 21), the agents prepares a re-
quest message asking for the missing ingredients in return of the
proposition of the contract and returns this message (lines 20-25).
Otherwise, the agent prepares a confirm message (lines 26,27).

In addition to receiving a request message, an agent can also
receive an inform message. If that is the case, the agent extracts the
messages to get its content and finds relevant contracts through its

contract manager. If it finds a contract whose condition matches the
content and whose state is conditional, it updates the state to active.
This means that, the agent itself is now responsible to carry out the
rest of the contract by bringing about its proposition. On the other
hand, if it finds a contract whose proposition matches the content
and its state is active, meaning if the sender agent is fulfilling a
contract, it updates its state to fulfilled.

4. EXAMPLE DOMAIN
We apply our approach on an AmI kitchen domain. An AmI

kitchen consists of various autonomous agents such as Coffee Ma-
chine Agent (CMA), Tea Machine Agent (TMA), Fridge Agent
(FA) and Mixer Agent (MA), which represent devices in a regu-
lar kitchen. Each of these agents provide different services. The
agents use some ingredients related to their services as resources.
For example, CMA, which serves coffee, has coffee beans and wa-
ter in its inventory. It may also have some coffee ready in its in-
ventory. Similarly, TMA which serves Tea is expected to have tea
leaves and water. On the other hand, FA has some cake to serve.
UA of the system tries to serve the user a service bundle which is
a menu consisting of several beverages and dishes for this domain.
Each element of a menu is usually served by a different agent of
the kitchen.

The user of the system is satisfied when she gets the exact menu
she prefers. Establishing contracts is a necessity in such a system
for user satisfaction since the static contracts will not work for the
reasons described in Section 2. Agents of the system may get bro-
ken, broken ones may be fixed or replaced, or new agents may enter
the system, so the assuring power of the predefined contracts estab-
lished between agents is limited. The availability of the resources
is limited, so the agents do not always have access to the resources
they need.

The environment ontology of this system describes the agent
structure, contract structure and spatial information about the kitchen
such as the temperature and humidity level. The domain ontology
of this environment is a food ontology, in which various types of
food and beverages together with their ingredients are described.
Agents use the recipes provided in the ontology for their services.
In this ontology. the ingredients and types of some most popular
items such as coffee and tea, are carefully classified and some sim-
ilarity factor is placed between pairs that are substitutable. The sim-
ilarity factor shows how well these items can substitute each other.
Higher the similarity factor is, stronger the similarity relationship
between the items that are compared to. These similarity factors
are used to serve the demanded dish with a slightly different recipe
when the original ingredients are not available in the inventory of
the agent and UA cannot establish a contract that promises the miss-
ing ingredient. In such cases, the agent may try to prepare the dish
using the substitude of the missing ingredient. Let’s consider three
types of Flour that are classified under Wheat Flour class. These
types are All Purpose Flour, Cake Flour, and Bread Flour. All Pur-
pose and Cake Flour are 0.7 similar, whereas Cake Flour and Bread
Flour are 0.8 similar. When a service which requires one of these
types of flour is requested, and the exact resource is not available,
the resource that are similar may be substituted by one of the other
types, leading to the same service served with tolerably different
resources.

The detail level of a domain ontology changes from system to
system. Agents of another kitchen may use a domain ontology just
for the ingredients without the similarity relationship. Another one
may also include the types of silverware that should be used with a
specific dish.



Figure 5: A caption from example domain ontology, represent-
ing flour class

4.1 Scenario 1
For the first scenario, user tells UA that she wants a menu con-

sisting of two different services, coffee and cake, which should be
served together. UA needs to find the agents serving the menu
items, for this case they are CMA and FA . Then, UA needs to
establish contracts for all of the items in the menu and receive the
items. CMA needs some coffee beans to serve coffee and it man-
ages to create a contract when it accepts to provide coffee beans to
CMA . Once all contracts are established, UA fulfills the conditions
of the contracts and gets served.

4.2 Scenario 2
For the second scenario, UA again tries to serve a coffee and cake

menu of the user’s choice. The menu item coffee is served by CMA
and the cake is served by MA. UA establishes a contract with CMA.
However, MA is out of cake flour which is essential for serving a
cake. It requests some from UA , however UA cannot provide it and
after consulting the domain ontology, UA offers bread flour, which
is a replacement for the original ingredient. Once again, after all
contracts are established, UA fulfills the conditions of the contracts
and gets served.

4.3 Scenario 3
The third scenario begins similar to the second one. UA tries

to establish contracts for the coffee and cake menu. It establishes
one with CMA . MA asks for a substitute for the cake flour, which
is an ingredient to make the cake. Not being able to provide the
cake flour, UA offers bread flour. However, this time MA does not
find the substitute similar enough to replace the original item. UA
cannot establish a contract with Mixer Agent and looks for another
agent that can provide cake. It discovers FA and establishes a con-
tract with it. UA fulfills the conditions and waits for the services
but CMA gets broken and does not respond.

5. RESULTS
JADE [3] agent development framework is used to implement

the agents, which natively provides the messaging system, the yel-
low pages and the distributed system architecture. The yellow pages
service is given by the Directory Facilitator (DF) Agent of each
container and once the agents register their services to the DF, oth-
ers can find them through a query to the DF. The agent implemen-
tation is separated from the underlying details of the messaging
service.

5.1 Execution of Scenario 1

FA UA CMA
M1: request(CC(CoffeeRequest,Coffee))M2: request(CC(CakeRequest,Cake))

M3:confirm(CC(CakeRequest,Cake))
M4: request(CC(CoffeeBeans,Coffee))
M5: confirm(CC(CoffeeBeans,Coffee))

M6: inform(CakeRequest)
M7: inform(CoffeeBeans)

M8: inform(Cake)
M9: inform(Coffee)

Figure 6: Sequence Diagram for Scenario 1

MA UA CMA
M1: request(CC(CoffeeRequest,Coffee))M2: request(CC(CakeRequest,Cake))

M3: request(CC(CakeFlour,Cake))
M4: confirm(CC(CoffeeRequest,Coffee))

M5: request(CC(BreadFlour,Cake))
M6: confirm(CC(BreadFlour,Cake))

M7: inform(BreadFlour)
M8: inform(CoffeeRequest)M9: inform(Cake)

M10: inform(Coffee)

Figure 7: Sequence Diagram for Scenario 2

Figure 6 depicts the scenario described in section 4.1. For sim-
plicity, agent names are omitted from the contracts. In order to
realize the scenario, UA sends request messages to start conversa-
tion (M 1 and M 2). FA immediately sends a confirmation back
(M 3). On the other hand CMA is in need of some coffee beans,
so it sends a request message back (M 4). UA accepts this offer
(M 5). By accepting CMA’s request, UA establishes all contracts
necessary to serve the menu. It sends an inform message to realize
the condition of the contract with FA (M 6). It also sends an inform
message to deliver the condition of the contracts with CMA (M 7).
FA and CMA send the propositions of the corresponding contracts
(M 8, 9).

5.2 Execution of Scenario 2
For the scenario described in Section 4.2, the flow of communi-

cation is depicted in Fig. 7. UA sends relevant request messages to
start conversation (M 1 and M 2). Mixer Agent immediately makes
a request for cake flour, since it does not have the necessary amount
of flour to bake the cake (M 3). Unfortunately, UA cannot provide
cake flour, but it consults the domain ontology for the most simi-
lar item and it finds out that it is the bread flour and luckily, it can
provide bread flour, so it makes a contract request back with bread
flour as condition and cake as proposition (M 5). The substitute
satisfies MA and it accepts to take part in the contract (M 6). So,
UA establishes all contracts that it needs to do, since CMA has al-
ready accepted the request with M 4. UA sends inform messages to
both agents, satisfying the conditions of the contracts (M 7, 8). Af-
ter receiving the conditions, agents serve the propositions of their
contracts (M 9, 10).

5.3 Execution of Scenario 3
The communication flow between agents for the scenario de-

scribed in Section 4.3 is represented in Fig. 8. The scenario starts
with UA’s sending contracts requests to service providers MA and
CMA (M 1, 2). CMA sends a confirmation (M 3) whereas MA re-
quests another contract, demanding cake flour to provide cake (M
4). Unable to provide cake flour, UA requests yet another contract,
offering bread flour to get some cake from MA (M 5). MA does
not find bread flour similar enough to cake flour, so it rejects the
contract offered by UA (M 6). UA searches for another agent that
can provide cake service, so it discovers FA. It makes a request (M
7) and receives confirmation in return (M 8). With this confirma-



CMA UA MA FA
M1: request(CC(CakeRequest,Cake))M2: request(CC(CoffeeRequest,Coffee))

M3: confirm(CC(CoffeeRequest,Coffee))
M4:request(CC(CakeFlour,Cake))

M5: request(CC(BreadFlour,Cake))

M6: reject(CC(BreadFlour,Cake))

M7: request(CC(CakeRequest,Cake))

M8: confirm(CC(CakeRequest,Cake))M9: inform(CoffeeRequest)
M10: inform(CakeRequest)

M11: inform(Cake)

Figure 8: Sequence Diagram for Scenario 3

tion, UA gets confirmation for all contracts to get services for the
cake and coffee bundle, so it fulfills the conditions of the contracts
(M 9, 10). FA provides the service it is committed to serve (M 11),
however CMA gets broken and cannot provide the service. After
a certain time, UA gives up hope on CMA and starts looking for a
new agent to provide the same service.

6. DISCUSSION
The main contribution of our work is to dynamically generate

and use contracts to ensure that the user’s needs are satisfied in a
dynamic environment. Unlike Hagras et al., we do not assume that
any agent serving a person must always and immediately carry out
any requested actions [6]. Instead, we develop a model for an open
dynamic system where the continuity of the services are secured,
even when some agents stop working or leave the system, without
being noticed by the user.

Although it is assumed that the agents are willing to cooperate
under certain conditions in Section 5, the model which is repre-
sented in this paper does not have a predefined communication pro-
tocol. The existence of less or more cooperative agents in the sys-
tem does not destroy the system’s ability to operate. We can also
say that the agents in the system do not have designated roles, as
they can change the services provided by them.

We benefit from the ontologies to achieve a high degree of inter-
operability; however, the contracts that are generated in the system
are not kept in ontologies like in the case of Fornara and Colom-
betti [4]. Since the evolution of the contracts are handled by the
agents, our model deliberately lacks a central monitoring system,
which has access the information on all of the transactions. Hence,
contracts are also kept independently.

Unlike some AmI frameworks such as Amigo [9], our applica-
tion does not offer a low level interoperation structure. In Amigo
framework agents do not have any options but to provide their ser-
vices when their relevant methods are called by the other agents.
Also, in that framework, exact structure of the service methods of
the provider agent such as the parameters and the name and so on
should be known by the demanding agent. Instead of such frame-
work, we provide a high level interaction model where agents will-
ingly provide their services or not. It is not necessary for the de-
manding agent to know the details about the provider agent’s meth-
ods.

Future work may include the development of a policy for ex-
ceptions. The sanctions that will be applied to an agent that does
not follow a contract should be set to avoid the abuse of the sys-
tem. Also, the cancellation and release policies for agents should
be defined, so that the agents can inform the other party when they
cannot deliver the services they are committed to.

7. REFERENCES

[1] E. Aarts. Ambient intelligence: A multimedia perspective.
IEEE Multimedia, 11:12–19, 2004.

[2] F. B. Aydemir and P. Yolum. Contract-based cooperation for
ambient intelligence. In The Workshop on Space Time and
Ambient Intelligence, Barcelona, July 2011. accepted.

[3] F. Bellifemine, A. Poggi, and G. Rimassa. JADE–A
FIPA-compliant agent framework. In Proceedings of PAAM,
volume 99, pages 97–108, 1999.

[4] N. Fornara and M. Colombetti. Ontology and time evolution
of obligations and prohibitions using semantic web
technology. Declarative Agent Languages and Technologies
VII, pages 101–118, 2010.

[5] T. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. International Journal of
Human-Computer Studies, 43(5-6):907–928, Nov. 1995.

[6] H. Hagras, V. Callaghan, M. Colley, G. Clarke,
A. Pounds-Cornish, and H. Duman. Creating an
ambient-intelligence environment using embedded agents.
Intelligent Systems, IEEE, 19(6):12–20, 2004.

[7] D. Saffer. Designing for Interaction:Creating Smart
Applications and Clever Devices. Peachpit Press, 2006.

[8] M. P. Singh. An ontology for commitments in multiagent
systems. Artificial Intelligence and Law, 7(1):97–113, 1999.

[9] G. Thomson, D. Sacchetti, Y.-D. Bromberg, J. Parra,
N. Georgantas, and V. Issarny. Amigo Interoperability
Framework: Dynamically Integrating Heterogeneous
Devices and Services. Constructing Ambient Intelligence,
pages 421–425, 2008.

[10] M. J. Wooldridge. An introduction to multiagent systems.
Wiley, 2002.

[11] WP12. D12.2: Study on Emerging AmI Technologies. Future
of Identity in the Information Society Consortium,
www.fidis.net., October 2007.


