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ABSTRACT
The ability to negotiate successfully is critical in many so-
cial interactions. The dissemination of applications such
as the Internet across geographical and ethnic borders is
opening up opportunities for computer agents to negotiate
with people of diverse cultures. These automated negotia-
tors should be able to proficiently interact with their human
partners. This paper presents an agent design for negoti-
ating with people in settings where participants repeatedly
need to agree on the exchange of scarce resources, but agree-
ments are not binding. Such settings characterize many in-
teractions in the real world. A major challenge of model-
ing people’s behavior in such settings is that people retal-
iate or reward each other’s actions over time, despite the
absence of direct material benefit. In addition, people’s be-
havior is highly dependent on social and cultural factors. To
meet this challenge, our approach combines machine learn-
ing techniques of people’s negotiation behavior in a game
with decision theory. Our Personality Adaptive Learning
(PAL) agent explicitly reasons about the tradeoff between
being reliable and generous towards people and the ramifi-
cations of its actions on its future success, given its model of
how people retaliate and reward its actions. In our empirical
investigation we performed extensive human subject trials
which were used to train models of people’s behavior. We
compared the performance of PAL with new people. Our
preliminary results show that when learning models from
subjects in Israel, PAL was able to outperform new people
in Israel in all dependency relationships. Our hypothesis is
that these results will also generalize to models learned from
data collected in the U.S. and Lebanon.

1. INTRODUCTION
Negotiation is a tool widely used by humans to resolve dis-

putes in settings as diverse as business transactions, diplo-
macy and personal relationships. Computer agents that ne-
gotiate successfully with people have profound implications:
They can negotiate on behalf of individual people or organi-
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zations (e.g., bidders in on-line auctions (Kamar et al., 2008;
Rajarshi et al., 2001)); they can act as training tools for peo-
ple to practice and evaluate different negotiation strategies
in a lab setting prior to embarking on negotiation in the real
world (e.g., agents for negotiating a simulated diplomatic
crisis (Lin et al., 2009)); or work autonomously to reach
agreements for which they are responsible (e.g., computer
games, systems for natural disaster relief (Schurr et al., 2006;
Murphy, 2004)). (Haim et al., 2010) shows that people’s cul-
tural diversity affects the accuracy of prediction models on
human negotiation behavior.

The purpose of this paper was to investigate the role of
culture in learning and adapting people’s negotiation be-
havior with computer agents. Our goal was to be able to
build a computer agent that can learn and adapt in order to
negotiate proficiently with people across different cultures.
Culture is a key determinant of the way people interact
and reach agreements in different social settings. Advancing
technology such as the Internet requires that computer sys-
tems negotiate proficiently with people across geographical
and ethnic boundaries. It is thus important to understand
the decision-making strategies that people of different cul-
tures deploy when computer systems are among the mem-
bers of the groups in which they work, and to determine
their responses to the different kinds of decision-making be-
havior employed by others.

This paper investigates the hypothesis that explicitly rep-
resenting behavioral traits that vary across cultures will im-
prove the ability of computer agents to learn and adapt hu-
man negotiation behavior. We expect that in turn this will
improve the performance of computer agents when negoti-
ating with people. To evaluate this hypothesis, we devel-
oped the Personality Adaptive Learning (PAL) agent that
combines machine learning of people’s negotiation behav-
ior in the game with decision theory. The PAL agent ex-
plicitly reasons about the tradeoff between being reliable
and generous towards people and the ramifications of its ac-
tions on its future success, given its model of how people
retaliate and reward its actions. It learned separate mod-
els from human negotiation behavior data. This data was
collected in laboratory conditions from three different coun-
tries: Israel, Lebanon and the U.S. We used an identical ne-
gotiation scenario in each country which required people to
complete a task by engaging in bilateral negotiation rounds
with non-binding agreements. The negotiation protocol in-
cluded alternating take-it-or-leave-it offers for the exchange
of resources. Agreements were not binding, and participants
were free to choose the extent to which they fulfilled their



commitments. The main contribution of this work is that
it suggests a new paradigm of automatic agents which can
negotiate with people across cultures by combining the indi-
vidual learner models into an agent’s decision-making model,
and by adapting the learning to a specific culture.

2. RELATED WORK
There is a body of work in the psychological and social sci-

ences that investigates cross-cultural behavior among human
negotiators (De Dreu and Van Lange, 1995; Gelfand and
Dyer, 2001; Gelfand et al., 2002). However, there are scant
computational models of human negotiation behavior that
reason about cultural differences. In artificial intelligence,
past works have used heuristics, equilibrium strategies and
opponent modeling approaches toward building computer
agents that negotiate with people. For a recent compre-
hensive review, see Lin and Kraus (2010). Within repeated
negotiation scenarios, Kraus et al. (2008) modeled human
bilateral negotiations in a simulated diplomatic crisis char-
acterized by time constraints and deadlines in settings of
complete information. They adapted equilibrium strategies
to people’s behavior using simple heuristics, such as con-
sidering certain non-optimal actions. Jonker et al. (2007)
designed computer strategies that involve the use of conces-
sion strategies to avoid impasses in the negotiation. Byde
et al. (2003) constructed agents that bargain with people
in a market setting by modeling the likelihood of accep-
tance of a deal and allowing agents to renege on their offers.
Kenny et al. (2007) constructed agents for the training of
individuals to develop leadership qualities and interviewing
capabilities.

Recent approaches have used learning techniques to model
the extent to which people exhibit different social prefer-
ences when they accept offers in one-shot and multiple in-
teraction scenarios (Gal et al., 2009; Oshrat et al., 2009; Lin
et al., 2008). Learning techniques have also been applied to
model gender differences (Katz and Kraus, 2006) and the be-
lief hierarchies that people use when they make decisions in
one-shot interaction scenarios (Gal and Pfeffer, 2007; Ficici
and Pfeffer, 2008).

To date, all work on human-computer negotiation assumes
that agreements are binding and have relied on prior data
of people’s negotiation behavior. A notable exception is the
work by Kraus and Lehmann (1995) where they proposed an
agent for negotiating with multiple participants which may
renege on agreements. This work, however, was restricted
to the specific domain of the game of diplomacy.

This research extends the human-computer negotiation in
its focus on situations where agreements are not binding.

3. IMPLEMENTATION USING THE COL-
ORED TRAILS TEST-BED

Our study was based on the Colored Trails (CT) game
(Grosz et al. (2004)), a test-bed for investigating decision-
making in groups comprising people and computer agents.
Colored Trails is a free software and is available for download
at http://www.eecs.harvard.edu/ai/ct. The CT configu-
ration we used consisted of a game played on a 7x5 board
of colored squares with a set of chips. One square on the
board was designated as the goal square. Each player’s icon
was initially located in one of the non-goal positions, eight
steps away from the goal square. To move to an adjacent

square a player needed to surrender a chip in the color of
that square. Players were issued 24 colored chips at the
onset of the game.

Figure 1 shows the CT board game, in which there are two
players, “me” and “O”. The board game is shown from the
point of view of the “me” player. The relevant path from the
point of view of the “me” player is outlined. Figure 2 shows
the chips that both players possess at the onset of the game.
Both the “me” and “O” players are missing three chips to get
to the goal. The “me” player is lacking three yellow chips,
while the “O” player is lacking three grey chips. In addition,
each player has the chips that the other player needs in order
to get to the goal. For example, the “me” player has ten grey
chips. Figure 3 shows an example of a proposal made by the
“me”player to give two grey chips to the“O”player in return
for two of its yellow chips.

Figure 1: An example of a CT Board

Figure 2: Chip Display Panel (showing the chips
possessesd by both participants)

At the onset of the game, one of the players was given the
role of proposer, while the other was given the role of respon-
der. The interaction proceeded in a recurring sequence of
phases. In the communication phase, the player designated
as the proposer could make an offer to the other player, who
was designated the responder. In turn, the responder could
accept or reject the offer. If the offer was rejected, then
players switched roles: the responder became the proposer
and the proposer became the responder. This sequence of
alternating offers continued until an offer was accepted, or
the time limit for the communication phase was up. In the
transfer phase, both players could choose chips to transfer
to each other. The transfer action was done simultaneously,
such that neither player could see what the other player
transferred until the end of the phase. In particular, players
were not required to fulfill their commitments to an agree-
ment reached in the communication phase. A player could



Figure 3: Communication Panel (used by partici-
pants to make offers)

choose to transfer more chips than it agreed to, or any sub-
set of the chips it agreed to, including transferring no chips
at all. In the movement phase, players could manually move
their icons across one square on the board by surrendering
a chip in the color of that square. At the end of the move-
ment phase, a new communication phase began. Players
alternated their roles, such that the first proposer in the
previous communication phase was designated as a respon-
der in the next communication phase, and vice versa. These
phases repeated until the game ended, which occurred when
one of the following conditions held: (1) at least one of the
participants reached the goal square; or (2) at least one of
the participants remained dormant and did not move for
three movement phases. When the game ended, both par-
ticipants were automatically moved as close as possible to
the goal square, and their score was computed as follows:
100 bonus points for getting to the goal square, 5 bonus
points for any chip left in a player’s possession; a 10 point
penalty for each square left in the path from a player’s final
possession to the goal square.

These parameters were chosen so that getting to the goal
was by far the most important component, but if a player
could not get to the goal it was preferable to get as close
to the goal as possible. Note that players had full view of
the board and each others’ chips, and thus they had com-
plete knowledge of the game situation at all times during
the negotiation process.

One of the advantages of using CT for cross-cultural stud-
ies is that it provides a realistic analog to task settings,
highlighting the interaction among goals, tasks required to
achieve these goals and resources needed for completing tasks.
In CT, chips correspond to agent capabilities and skills re-
quired to fulfill tasks. Different squares on the board repre-
sent different types of tasks. A player’s possession of a chip
of a certain color corresponds to having the skill available for
use at that time. Not all players possess chips in all colors,
much as different agents vary in their capabilities. Travers-
ing a path through the board corresponds to performing a
complex task whose constituents are the individual tasks
represented by the colors of each square.

CT is thus particularly suitable for modeling negotiation
that occurs between people of different cultures, in which ne-
gotiation processes are conducted within task contexts and
involve the exchange of resources (for example, within diplo-

matic negotiations for trade agreements or peace treaties).
In addition, it has been shown that people who use CT
generally display more cooperative behavior than identical
decision-making scenarios that involve more abstract rep-
resentations, such as payoff matrices or decision-trees (Gal
et al., 2007). This incentive for cooperation may allow both
parties in negotiation to reach agreements more quickly.
Both of these are important qualities to multi-cultural dis-
putes that are often volatile.

4. THE PAL AGENT
As already discussed, in order to enable computer-agents

to negotiate proficiently with people across geographical and
ethnic boundaries, it is important to understand the decision-
making strategies that people of different cultures employ
when they negotiate with computer systems. Therefore, we
developed a new agent named PAL (Personality Adaptive
Learning). The PAL agent is based on:

1. Learning: Data collection was used to build predictive
models of human negotiation behavior:

• Reliability Model - the extent to which a person
was reliable in the negotiation.

• Acceptance Model - the likelihood of accepting a
given proposal.

• Agent Reached Goal Model - the likelihood of the
agent getting to the goal.

Data was collected from an identical negotiation sce-
nario of human negotiation behavior under laboratory
conditions in different countries.

2. A utility function that used these models. The PAL
aims to maximize its expected utility.

For a detailed explanation of the PAL learning models and
utility functions, see appendix A.

4.1 Potential Features
For the various learning models we used the the following

set of potential. Each feature is described from the point of
view of a general player in the game. We also considered the
symmetrical feature from the point of view of the opponent
player.

• The current round in the game.

• The current score of a player in a specific round mea-
sures the score in the game given its current set of
chips.

• The resulting score of a player in specific round mea-
sures the score that the player would receive in the
case that both players sent all of the promised chips
according to the proposal.

• The score-base-reliability of a player in the game in
a specific round is the extent to which the player ful-
filled an agreement. It computes reliability measures
solely for negotiation rounds in which agreements were
reached.

• The weighted score-base-reliability is a weighted aver-
age of the score-base-reliability.



• The generosity of a player in a specific round. This
feature clustered the chip sets offered by both players
in a specific round into three classes measuring the
difference in the number of chips proposed.

• The dependency role of a player in a specific round can
be one of two classes: task independent, task depen-
dent.

• Missing chips: this feature includes the total number
of chips that a player needed to get to its goal given
its position on the board in a specific round.

• The dormant round of a player in a specific round is the
player’s current number of no consecutive movement.
When the player moves, the number is re-initialized to
zero. If this number exceeds 3, the game is over. Note
that according to the data we collected for building the
agent reached-goal model, people in Lebanon played
the game but did not move. In this case, this feature
was very important.

Table 1 (left side) lists the set of optimal features chosen
to be the potential features of the learning models. The
selection process for the features was carried out by hand on
a held-out test-set that was not used to evaluate the learning
modules. This means that we evaluated the learning models
from the 90% of the collected data we have, and we tested
these models on the remaining 10% of the data.

4.2 Decision-making
This section provides a high-level description of how PAL

makes decisions in the game. PAL combines backward in-
duction with predictive models of human behavior. It uses
an Expectimax tree with two types of nodes. Decision nodes
in the tree correspond to decisions by PAL (what offers to
make, how reliable to be, whether to accept an offer). Edges
emanating from decision nodes are labeled with possible ac-
tions for PAL’s decisions. Chance nodes in the tree corre-
spond to decisions made by people. Edges emanating from
chance nodes are labeled with probabilities that predict peo-
ple’s behavior. An example of a decision tree for making
offers in the game is shown in Figure 4.

P(accept)) P(reject))

offer2 offer1

PAL sends as agreed

PAL does not 

send
PAL sends partially

P(does 

not send)
P(send)

A1: 

PAL chosen proposal

B1: 

Human acceptance

………

….

……

…

……..

A2: 

PAL Transfer

B2: 

Human Transfer
Human 

Transfer

Human 

Transfer

P(does not 

send)
P(send)

……

….

……

…

Figure 4: One round of a decision tree for PAL mak-
ing offers.

Let s be the current state in the game that encompasses
players’ positions on the board, their chips, and the history
of past offers. Leaves in the tree are labeled with PAL’s
expected utility given its model of reaching the goal at s.
Appendix A.1.1 describes how the agent reaches the goal
model. This represents PAL’s valuation function.

We define a round as a sequence including an offer made
by a proposer player at s, a response made by a responder
player and transfer decisions for both players. (Note that
chips can be transferred regardless of whether an offer is
accepted. In case of rejection, this is a way of being gener-
ous, for instance). Suppose that PAL is a proposer at the
beginning of a round. Then for each possible offer of PAL
in state s (e.g., node A1), it considers the probability that
the person accepts the offer at s (e.g., node B1). PAL then
decides whether to send its promised chips at s (e.g, node
A2) given its model of people’s reliability (node B2). At the
end of a round, PAL transitions to state s′ which extends
the history to include the results of the round. At this point
PAL can consider decisions for the next round or it can gen-
erate a leaf as described above. PAL chooses the offer that
maximizes its expected utility given the decision tree.

It is easy to see that the size of the tree is exponential to
the number of rounds. For tractability, PAL considers only
two rounds. In addition, it only considers all-or-nothing
transfers when reasoning about how many chips to transfer.
The approach for choosing whether or not to accept offers
and whether or not to transfer chips is similar and is omitted
for brevity.

4.3 Learning Algorithm
Our study was based on the Weka framework (http://

www.cs.waikato.ac.nz/ml/weka/), a repository of machine
learning algorithms that is freely available on the web. We
used the Multilayer-perceptron (MLP) learner to model all
prediction tasks. With its remarkable ability to derive mean-
ing from complicated or imprecise data, MLP can be used
to extract patterns and detect trends that are too complex
to be noticed by either humans or other computational tech-
niques. In addition, MLP has the ability to learn how to do
tasks based on the data given for training or initial experi-
ence. It does not make any assumption regarding the un-
derlying probability density functions or other probabilistic
information about the pattern classes under consideration
in comparison to other probability based models. In turn,
it yields the required decision function directly via training.

5. EMPIRICAL METHODOLOGY

5.1 Data Collection
In order to build culture-based models for the PAL agent,

we collected data from three countries: Lebanon, the U.S.
and Israel. In each country a human played against dif-
ferent computer agents and also played human versus hu-
man. (Haim et al., 2010) describes in detail the collected
data where a human played against the specific agent named
(Personality, Utility Rule Based) PURB agent.

These models were used to play against PAL. 63 subjects
from the Information System Department of Ben Gurion
University in Israel played the CT game against the PAL
agent. Each participant was given an identical 30 minute
tutorial on CT. This tutorial consisted of a written descrip-
tion of the CT game, as well as a short movie that explained



Table 1: Features used for Learning Modules

Model Feature set
Reliability CS, RS, WPR, NC and OC
Acceptance CS, RS, OG, NC and OC
Agent reached Goal CS, PR, R and DR(only in Lebanon)

Feature Description
Key (FBP=For Both Players)
CS Current Score(FBP)
RS Resulting Score(FBP)
PR Previous Reliability(FBP)
NC Needed chips to reach the goal (FBP)
OC Other chips (FBP)
WPR Weighted Previous Reliability(FBP)
OG Offer Generosity
R player’s Role(FBP)
DR Dormant Round Number(FBP)

the rules of the game using a different board than those used
in the study. Participants were seated in front of terminals
for the duration of the study and could not speak to each
other or see the other terminals. All participants played
one or two games with the PAL agent, but were told they
would be playing with different people. Authorization for
this slight deception was granted by the ethics review board
of the institutions that participated in the study. Subjects
were given an extensive debriefing at the end of the study
which revealed this fact and explained the study.

The study included the CT game. We used three different
types of boards. In all of these boards, there was a single
distinct path from each participant’s initial location to its
goal square. One of the board types exhibited a symmet-
ric dependency relationship between players: neither player
could reach the goal given its initial chip allocation, and
there existed at least one exchange such that both players
could reach the goal. We referred to players in this game
as task co-dependent. The other board types exhibited an
asymmetric task dependency relationship between players:
one of the players, referred to as task independent, possessed
the chips it needed to reach the goal, while the other player,
referred to as task dependent, required chips from the task-
independent player to get to the goal and vice versa. An
example of the co-dependent board is shown in Figure 1.
In this game both “me” and “O” players were missing three
chips to get to the goal. The relevant path from the point
of view of the “me” player is outlined.

To standardize our experiments, people were designated
as first proposers and the PAL agent was designated as the
first responder in all of the CT games we ran. Each sub-
ject was randomly assigned one of the following dependency
roles: a task co-dependent participant that was paired with
a task co-dependent PAL agent; a task independent partic-
ipant that was paired with a task dependent PAL agent; or
a task dependent participant that was paired with another
task independent PAL agent.

5.2 Evaluation Criteria
The criteria we used to evaluate the PAL agent is the ben-

efit criteria. The benefit criteria is the final score minus the
initial score, which is the same for each board. We compared
the PAL agent’s benefits versus the opponent’s benefits.

6. RESULTS AND DISCUSSION
Our preliminary results show that when learning models

from subjects in Israel, PAL was able to outperform new
people in Israel in all dependency relationships. Table 2

Table 2: PAL vs Israeli human benefit results
Number of PAL Opponent
games benefit benefit

Agent-TI 18 27.5 -11.95
Human-TI 18 82.77 2.5
Both-DD 27 78.7 33.88

lists, for each game condition, the number of games in this
condition and the benefits of PAL versus opponent’s bene-
fits. In case of Agent-TI, where PAL was task independent
and the opponent was dependent, PAL’s benefit was 39.45
points more than the opponent. In case of Human-TI, where
PAL was task dependent and the opponent was independent,
PAL’s benefit was 80.27 points more than the opponent. In
the last game condition, BOTH-DD, where both PAL and
the opponent were task dependent, PAL’s benefit was 44.82
points more than the opponent.

We hypothesize that these results will also generalize to
models learned from data collected in the U.S. and Lebanon.

7. CONCLUSIONS
This paper presents our approach of combining machine

learning of people’s negotiation behavior in the game with
decision theory. Our PAL agent explicitly reasons about the
tradeoff between being reliable and generous towards peo-
ple and the ramifications of its actions on its future success,
given its model of how people retaliate and reward its ac-
tions. The agent learned separate models for whether or
not people accept offers, the extent to which they commit
to agreements, and the effect of its own reliability on the
agent’s future success.

It focused on a repeated negotiation setting in which par-
ticipants need to accrue and exchange resources in order to
complete their individual goals, and agreements were not
binding. This setting was implemented using the Colored
Trails game that consists of a computer board game which
provided a task analogous to the types of interactions that
occur in the real world.

Our results showed preliminary results for a cohesive agent
such as PAL, that has a good chance of negotiating success-
fully with people from disparate cultures.
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APPENDIX
A. PAL UTILITY FUNCTIONS

A.1 General features
In this section we define a general set of features for the

PAL agent to be used by the various potential utility func-
tion model formulas. Below we present a description of the
layout of the features’ notations.

Without loss of generality, for any two participants i and
j, where i, j ∈ {a, h}, a refers to the agent, h refers to the
human, within a specific game board type brd, let posi de-
note the position of player i on the board, posi

∗ denotes a
new position (after a player moves), and d̄ = (di, dj) denotes
the dormant rounds of the players in the game.

Let ci denote the set of chips that i possesses at phase n in
the game. An action that is performed in the game by any
player is noted as ac. ac can be a single action or a sequence
of actions. Let moki denote i making an offer, where k is
the round type, k = 1, 2, where 1 relates to making an offer
and 2 relates to making a counter offer.

An offer proposed by the proposer i is defined as ōi =
(oi, oj), where oi ⊆ ci is the set of chips that i proposes to
send to j, and let o+

i ⊆ ci be the set of chips actually sent
by i following an agreement ōi.

The set of offers that i can propose is defined as ôi. This
phase is called the communication phase. In this phase, the
player playing the role of the ”Proposer” is entitled to make
an offer to the opponent. A player can offer to send and
receive as many chips as he wants as long as each player has
at least that amount of chips. The player playing the role
of the ”Responder” can accept or reject the proposal, but in
this round cannot make an offer of its own. After an offer
is proposed, let rokj denote that j responded to an offer.
The response can be acceptj when j accepts i’s proposal, or
rejectj when j rejects i’s proposal.

Then, the next phase is the exchange phase defined by ex,
and after exchanging chips, the movement phase defined by
mv begins. Let ci

∗ denote the chip i uses to move. i’s move
to another position given the chip needed for this move is de-
fined bymovei(posi

∗, ci
∗). In general, α ∈ {moki, ro

k
i,mv, ex}

is defined as the phase in the game. Let si(brd, ci, posi, α, di, ri)
denote the state of i given the tuple (board, chips, position,
phase, dormant, round), and let s̄ = {si, sj} be the state of
both players. When a specific parameter within the state si
shall not be changed by an action, it will be noted as NULL.

An additional required parameter for the utility function
is defined as v̄i, which relates to the reliability parameters
within the models that need to be recalculated when execut-
ing the expected score formula. These reliability parameters
are the score-based-reliability and the weighted score-based-
reliability. The score-based-reliability of a player at specific
round is the extent to which a player fulfilled an agreement
at this round. It computes reliability measures solely for
negotiation rounds in which agreements were reached. This
is defined as the ratio between the score to j given the chips
that i actually transferred, and the score that j would receive
if i fulfilled its agreement. We also consider the symmetrical
notations from j’s perspective.

Before describing the utility functions, we present some
general notations that are used within these formulas:

• ”‖” refers to events that occur in parallel.

• ”;” refers to actions that occur sequentially.

• ”`” refers to a parameter whose value will be changed.

• ”→” refers to a change that is done on the left side of
the → and results on the right side of the →.

We first present a detailed list of how states are changed
based on the actions taken by the players.

• s̄[ac1; ac2] = (s̄[ac1])[ac2]
The state resulting from the performance of two se-
quential actions is equivalent to executing the first ac-
tion on the state and then the second one. For ex-
ample, s̄[ōi; acceptj ] denotes the state after a player i
proposes an offer, and then player j accepts it.

• s̄[ōi]→ (ὰ = rokj when α = moki)
Proposing an offer ōi in a given state s causes the phase
to be changed to a phase of response to an offer.

• s̄[accepti]→ (ὰ = ex)
Accepting an offer causes the phase of the state to be
changed to chip exchanges.

• s̄[o+
j ||o

+
i ]→ (c̀i = ci∪oj+ \oi+, c̀j = ci∪oi+ \oj+; ὰ =

mv, i 6= j; i, j ∈ {a, h}.
Chip exchange in a given state s̄ causes both players’
chips to be updated according to the ones sent and
received. For example, assume a has 24 chips, 5 are
grey and none are yellow, and assume a sent 2 grey
chips and received 1 yellow chip. This will cause a’s
set of chips to be updated to a total amount of 23
chips, 3 grey and 1 yellow. The same update is done
to the opponent’s chip set.

• s̄[ōi; accept; o+
j ||o

+
i ] ≡ (s̄[o+

j ||o
+
i ]).

Making an offer, accepting it and exchanging chips is
equivalent to the state resulting from chip exchanges.

•

s̄[rejecti]→
{
ὰ = mo2

j α = roi
1, i 6= j; i, j ∈ {a, h}

ὰ = ex α = roi
2, i 6= j; i, j ∈ {a, h}

Rejecting a proposal causes the phase of the state to
be changed to placing a counter offer if it was the 1st
response to an offer, otherwise the phase is changed to
chip exchange.

• s̄[NULL] = (s̄)
No action does not change the state.

• s̄[movei(pos∗i , c∗i ),¬(movej)] → ((c̀i = ci \ ci∗), d̀i =

0, d̀j = dj + 1, i 6= j; i, j ∈ {a, h})
A move by player i and NOT by player j causes the
set of chips of player i to be updated and its dormant
type to become zero. The dormant type of player j is
increased by 1 since he has not moved.

• s̄[movei,movej ] → ((c̀i = ci \ ci∗), d̀i = 0, (c̀j = cj \
cj
∗), d̀j = 0, i 6= j; i, j ∈ {a, h})

A move by both players causes their sets of chips to
be updated and their dormant type to become zero.

We now provide a detailed description of changing v̄, which
causes the weighted previous reliability and previous relia-
bility parameters to be re-calculated for both players.



• v̄[ac1; ac2] = (v̄[ac1])[ac2]
The change in v̄ after two sequential actions is the same
as the change in v̄ after the first action is performed,
and then, re-calculate according to the second action.

•

v̄[ōi; accept; o
+
j ||o

+
i ]→


`wpri = ōi = lao, lao 6= −1

(0.7× `pri ōi)+

(0.3× wpriōi )
`wpri = 1 lao = −1

Proposing an offer, accepting it and exchanging chips
causes parameter wpri (Weighted Previous Reliabil-
ity) to be updated. If it is the 1st accepted offer, this
parameter will be a constant, otherwise, it will be cal-
culated according to the specified formula.

A.1.1 Agent reach the goal model
Based on the definitions above, let ESi(s̄, ac, v̄, d̄) be the

expected score of i given the tuple (state, action, reliability
traits, dormant). This is the expected score that will be used
by the utility function. In addition, let P (Gi|s̄, v̄) denote the
probability that i will reach the goal given a state s̄ and v̄,
and let P (¬Gi|s̄, v̄) denote the probability that i will not
reach the goal. The expected score of reaching the goal or
not reaching the goal is calculated by a heuristic function
hi.

A.2 Utility of chip transfer
The transfer model is used to predict the opponent’s trans-

fer behavior, and thereby determine the PAL transfer strat-
egy. We assume that the possible values that will be consid-
ered for o+

j (the opponent’s actually transferred chips) will
be {oj} or {∅}}. This means that the opponent will send all
the chips as agreed, or he will send nothing from the agreed
proposal. Note that all the probabilities within these utility
functions are calculated using the learned models.

1. ESa(s̄, NULL, v̄) = P (Ga|s̄, v̄)× ha(s̄, Ga, v̄) +
(1− P (Ga|s̄, v̄))× ha(s̄,¬Ga, v̄)
This is the basis of the recursion function. It denotes
the expected score when the state and the phase do
not change.
This is measured as the probability of reaching the goal
when the agent is in the given state multiplied by a
heuristic function to reach the goal plus the probability
of not reaching the goal when the agent is in the given
state multiplied by a heuristic function not to reach
the goal.

2. ESa(s̄, ōi; acceptj ; o
+
a , v̄) =∑

o+
h
⊆ch

P (o+
h |s[ōi; acceptj ], ōi, v̄)×

ESa(s̄[ōi; acceptj ; o
+
h ||o

+
a ], NULL, v̄[oi; acceptj ; o

+
h ||o

+
a ])

Denotes the expected score of a proposal i offered and
j accepted, and o+

j ; o+
i were sent.

This is measured as the sum of the probabilities of the
opponent to send o+

j multiplied by the

expected score of the state after o+
h ; o+

a were sent.
Note: this formula is a general one. Actually, in PAL,
the only possible values that will be considered for o+

j

will be o+
j or {∅}}.

3. Let o∗a be argmax
o+
a ⊆oa

(ESa(s̄, ōi; acceptj ; o
+
a , v̄))

o∗a will be the actual chips that will be transferred, and

is calculated by performing the expected score of the
agent from each subset of the agent’s chips of the offer.
The o+

a that yields the highest expected score value is
the o∗a.

A.3 Utility of accepting an offer
This model is used by PAL to decide whether to accept

or reject a specific offer that was proposed by the opponent.

1. ESa(s̄, ōh; accepta; v̄) = ESa(s̄, ōh; accepta; o∗a; v̄)
Denotes the expected score for accepting the proposed
offer. This is calculated by using the expected util-
ity of transferring chips given the following parame-
ters: the current state within the game, the opponent’s
proposed offer, PAL accepting it, transferring o∗a and
the previous reliability parameters that need to be re-
calculated to predict this expected score.

2. ESa(s̄, ōh; rejecta; v̄) = ESa(s[ōh; rejecta], NULL, v̄)
Denotes the expected score for rejecting the proposed
offer. This is calculated by using the utility formu-
las of the transfer model given the following parame-
ters: the current state of the game, the opponent’s pro-
posed offer, PAL rejecting it (and therefore no chips
are sent which is referred to as the NULL parameter),
and the previous reliability parameters that need to be
re-calculated to predict this expected score.

3. Let ac∗ be argmaxaca⊆{accepta,rejecta}(ESa(s̄, ōh; aca; v̄))
Deciding on whether to accept or reject an offer by
PAL is done by taking the action that yields the high-
est expected score.

A.4 Utility of an offer
The purpose of the following utility function is to decide

which offer PAL will propose the opponent. This is done by
estimating the expected score of each possible offer.

1. ESa(s̄, ōa, v̄) = P (accepth|s̄[ōa], ōa, v̄)×
ESa(s̄, ōa; accepth; o∗a; v̄)+(1−P (accepth|s̄[ōa], ōa, v̄))×
ESa(s̄[ōa, rejecth], NULL, v̄)
The expected score of a specific optional offer is calcu-
lated by using the probability that the opponent will
accept this offer multiplied by the expected score of
PAL given the state, the proposed offer, accepting the
offer by the opponent, the actual chips PAL will trans-
fer if this is the chosen offer, and the reliability pa-
rameters that might be recalculated. In addition, the
probability that the opponent will reject this offer and
the expected score in such a case need to be calculated.

2. Let ō∗a be argmaxōa⊆ôi(ESa(s̄, ōa, v̄)))
The actual offer that will be proposed will be the one
that gives the highest expected score in comparison to
the other optional offers.


