
Automatic Agent Protocol Generation from Argumentation
Ashwag Omar Maghraby

School of Informatics
The University of Edinburgh

Edinburgh EH8 9LE, UK

A.O.Maghraby@sms.ed.ac.uk

ABSTRACT
Research on argumentation has concentrated on abstract
specification of arguments between a protagonist and an
antagonist. However, as we build complete multi-agent systems
that involve argumentation, there is a need to produce concrete
implementations in which these abstract specifications are realised
via protocols coordinating agent behavior. This creates a gap
between argument specification and implementation which we
bridge using a combination of transformational synthesis and
model checking. The resulting system provides engineers with a
means of moving rapidly from argument specification to
implementation, using the Argument Interchange Format as the
specification language and the Lightweight Coordination Calculus
as an implementation language.

Categories and Subject Descriptors
I.2.2 [Automatic Programming]: Program synthesis, Program
transformation, and Program verification; D.2.4 [Software
Engineering] Software/Program Verification-Model checking

General Terms
Languages, Design, Verification

Keywords
Transformational Synthesis, Interaction models, Argumentation,
Dialogue Game, Verification, Model Checking

1. INTRODUCTION
Today, argumentation [1] is gaining more prominence since it is
being used as part of the high level specification of multi-agent
systems (MAS). However, the argumentation community faces
various problems, such as the lack of a shared interchange format
for arguments along with the lack of ability to implement complex
systems of arguments from high-level specifications. The first
problem is addressed by the Argument Interchange Format (AIF)
[2,3], but it is here we present an approach for tackling the second
problem.
To solve the first problem, the argumentation community has
developed AIF [2,3], which provides a common language to
exchange argumentation concepts among agents in a MAS.
However, AIF does not solve the implementation problem. The
AIF language is abstract, concerned with only the structure of
argument, while implemented multi-agent systems are concrete
and need social constraints via protocols. This means that there is
a gap between argument specification languages and multi-agent
systems implementation languages.

This research describes an approach which bridges the gap
between argument specification and multi-agent implementation
using a combination of transformational synthesis and model
checking. The resulting system provides engineers with a means
of moving rapidly from argument specification to implementation
in a peer-to-peer setting. It uses AIF as an example of an
argumentation language and Lightweight Coordination Calculus
(LCC) [4,5], an executable specification language, as a multi-
agent implementation language.

2. PROBLEM DESCRIPTIONS AND
MOTIVATION
AIF is an effective argument structure language. It enables users
to structure arguments using diagramatic linkage of natural
language sentences. However, AIF is not an executable
specification language. It specifies the properties that define an
argument without prescribing how that argument may be made
operational. An example of this problem is shown in Figure 1
[2,3]. This concerns a multi-agent persuasion dialogue where N
(N ≥ 2 and unbounded) agents are involved in a discussion about
the flying abilities of a bird called "P":

1. There are two arguments: one for ~flies(P) and one for
flies(P);

2. The argument for ~flies(P) is composed of one Rule of
inference Application node (RA-node that define the support
or inference of argument), namely Modus Ponens and two
child nodes (premises);

3. The argument for flies(P) is composed of one RA-node,
namely defeasible Modus Ponens and two child nodes
(premises);

4. The argument for ~flies(P) has a higher degree of support
because the premises support it with a higher degree of
probability (1 degree). Conversely, the argument for flies(P) is
weak because the premises support it with only 0.8 degree (a
low probability). So ~flies(P) is preferred to the argument for
flies(P). That is why the intermediate Preference Application
node (PA-node that defines the value judgments or preference
orderings of argument), namely Logical attack, linking
~flies(P) to flies(P).

In particular, this example demonstrates that a persuasion
dialogue can be specified abstractly by using arguments expressed
in AIF. However, this is a long way from the machinery required
to build a concrete discussion system since the AIF is used to
represent data not to process data (not to represent argumentation
protocol).
Chesnevar et al. [2] and Willmott et al. [3] suggest a way to solve
this problem by identifying two elements: (1) Locutions, which
are particular words, phrases or form of expressions which are
used by agents, and (2) Interaction Protocols, which define

Cite as: Bridging the Specification-Protocol Gap in Argumentation,
Ashwag Omar Maghraby, Proc. of 13th European Agent Systems
Summer School (EASSS 2011), July 11-15 2011. Copyright © 2011,
European Agent Systems Summer School (http://eia.udg.edu/easss2011/).
All rights reserved.

Figure 1: Specification in AIF of the Arguments Exchanged
by Agents Discussing the Flying Abilities of the "P" Bird

communication between agents via a set of rules governing how
two or more agents should interact in order to reach a specific
goal. However, these papers only give some suggestions for
solving the AIF implementation problem. The only study which
has attempted to solve the AIF problem is in [6]. This study
extends AIF to represent argumentation based dialogues. It also
represents interaction protocols using LCC. The result of this
study supports the idea that protocol rules could be represented as
a part of the dialogue. However, this study was limited in several
ways. Firstly, it is limited to dialogues between two agents.
Secondly, it does not explain how to (semi)automatically
synthesise protocols for the given argumentation, it only gives an
example of argumentation in LCC.

In this paper, I will present another approach (which is a
continuation of Modgil and McGinnis [6], Chesnevar et al. [2]
and Willmott et al. [3]) to solve this problem. As shown in
Figure 2, our approach consists of two parts. Section 3 provides
an overview of part one which is used to bridge the gap between
AIF and LCC by using a transformational synthesis. Part one was
built in two stages: (1) definition of a new high level control flow
specification language for multi-agent protocols called Dialogue
Interaction Diagram (DID), which is allowed to specify the
argument protocol in an abstract way by extending the AIF; (2)
implementation of a tool which automatically synthesises concrete
LCC protocols from DID specifications using a new pattern-based
synthesis method.

Part two consists on proposing a verification methodology based
on model checking to check the semantics of the DID

specification used as a starting point against the semantics of the
synthesised LCC protocol. In Section 4 we explain the model
checker, which was built in three stages: (1) mapping the LCC
specification in equivalent Coloured Petri Nets (CPNs); (2)
generating Standard ML (Meta-Language) specifications [7,8]
the key properties inferred from the DID specification (3)
verifying the properties defined in (2) over the state space graph
generated from the CPN obtained in (1).

3. TRANSFORMATIONAL SYNTHESIS
This section describes how our approach bridges the gap between
an argument specification language and an agent's implementation
language by: (1) Defining DID as a high level argument
specification language for multi-agent protocols; (2) Synthesising
concrete LCC protocols from DID specifications.

3.1 Argument Specification Language
As mentioned in the previous sections, the AIF language is
intuitive but too abstract, while multi-agent protocol languages
such as LCC are concrete but it contain too much detail which are
for everyday use by argumentation protocol designers and
difficult to learn and this means that we need a language in the
middle between AIF and LCC. Also, specifying argumentation
protocols using programming-level protocol languages is error-
prone, and a higher-level graphical language can help avoid low-
level errors that can occur and that means we need a high level
language. In this section, we propose a new high-level
specification language for multi-agent protocols called a Dialogue
Interaction Diagram (DID), which is an extension of AIF (the
extension of AIF to DID is not added automatically. In practice,
DID is a new layer on top of AIF). DID is used to specify the
dialogue game protocol in an abstract way. It provides
mechanisms to represent interaction protocol rules between N ≥ 2
agents by allowing the designer to specify the permitted moves
and their relationship to each other.

DID is a recursive visual language which restricts agents moves to
only unique-moves (agents can make just one move before the
turn-taking shifts and agents can reply just once to the other
agent’s move) and immediate-reply moves (the turn-taking
between agents switches after each move - moving from a level to
the next level- and each agent must reply to the move of the
previous agent). These assumptions are commonly made in
argument specification languages like the AIF and they help to
keep the specifications in these languages compact.

1 2
1

3 2

Figure 2: Overall structure of this research

Part 1
DID

LCC

Automatic
transformation

 By using LCC-Argument patterns

DID properties
(Standard ML
specification)

Result (True /False)

Automatic
transformation

 CPNs
 State space

Part 2

 Verification process

 (General behaviour property
checking code in SML)

Automatic
generation

 3.1.1 DID Formal Definition
Our formal definition of the DID is based on the standard
terminology considered for the specification of protocols in
dialogue games (Dialogue games are interactions between two or
more agents, where each agent makes a move by speaking in a
common communication language and according to combination
rules) [8] :

1. Locutions: represent the set of permitted moves. As in [6] the
parameters of the locutions are arguments expressed in AIF,
what makes the DID an extension of AIF;

2. One Commitment Store (CS) for each participant. The CSs of
the participants reflect the state of the dialogue;

3. Commitment rules (post-conditions): define the propositional
commitments made by each participant with each move
during the dialogue;

4. Structural rules (reply rules or dialogue rules): define legal
moves in terms of the available moves that a participant can
select to follow on the previous move;

5. Turn Taking (Next player).

In order to represent argument protocol in full, more concepts are
required, therefore, we have added to DID the following concepts:

1. Precondition rules define the pre-conditions under which the
move will be achieved;

2. Locution types (Act types);

3. Sender and receiver agent's roles.

The most notable differences between DID and existing languages
for argumentation-based interaction protocols are:

1. DID arguments are expressed in AIF. Others have assumed
specific argument formats which are dependent on the type of
dialogue or the particular context of application considered;

2. DID allows the specification of dialogues between N ≥ 2
agents, while existing works mainly focus on 2 agent
dialogues. For an extensive review of the state of the art in the
field of argumentation-based dialogues in MAS we refer the
reader to [1,11].

3. DID is easier to use because it is a high-level graphical
language and people in agent community are familiar with
high level language or graphical notation language like Agent
UML [12].

3.1.2 DID Elements
The basic element of every DID is a locution which is represented
as an icon. A locution icon (as shown in Figure 3) is simply a
rectangle divided into three sections. The topmost section contains
the name of the locution. The left hand section contains sender
attributes (Role name, Role arguments, and Agent ID), and the
right hand section contains receiver attributes (Role name, Role
arguments, and Agent ID). A rhombus shape represents conditions
which apply to each move; when connected to the left hand
section it represents sender conditions and when connected to the
right hand section it represents receiver conditions. Dotted
rectangles represent the locution type: Starting (can be used to
open a dialogue), Termination (can be used to terminate the
dialogue), and Recursive locution (can be used to remain in the
dialogue).

Locution name
Role Name Role Name
Role Arguments Role Arguments
Agent ID Agent ID

Figure 3: Locution icon

3.1.3 DID Example
Figure 4 shows a partial DID structure of a persuasion dialogue. A
DID is created by linking the locution icons together. The links
between locution icons represent reply relations between
arguments. In Figure 4, there are three locutions: two attack
locutions which has a reply move (claim, and why), and one
surrender locution which does not have a reply move (concede).
There are three types of locution: starting (claim), termination
(concede), and recursive (why) locution.

In this example, a dialogue always starts with a claim and ends
with a concede locution. A rhombus shape represents conditions
which applies to each move. The variable KB (knowledge base
list) represents the agent’s private knowledge represented as
arguments expressed in the AIF. The variable CS (commitment
store list) contains a set of arguments expressed in the AIF to
which the player has committed during the discussion. Initially the
CS is empty.

In this dialogue, Agent1 can open the discussion by sending a
claim(Ʊ) locution if he is able to satisfy AddToCS(Ʊ,CSP)

Locution type

Sender
Information

Receiver
Information

 Sender
condition

 Receiver
condition

Figure 4: Partial DID for a Persuasion Dialogue

NotFindInKBorCS
(Ʊ,KBO,CSO)

Recursive Locution

why(Ʊ)
ReplyToClaimO

KBP,CSP
IDO IDP

Starting Locution

claim(Ʊ)
startClaimP startClaimO

KBO,CSO

IDO

KBP,CSP

IDP

AddToCS
(Ʊ, CSP)

KBO,CSO

ReplyToClaimP

Termination Locution

KBO,CSO

ReplyToClaimP ReplyToClaimO
KBP,CSP

IDO IDP

concede(Ʊ)

AddToCS
(Ʊ, CSO)

FindInKBorCS
(Ʊ,KBO,CSO)

condition (AddToCS(Ʊ,CSP) is used to update agent commitment
store CSP by adding Ʊ to it). Then, turn-taking switches to
Agent2. Agent2 has to choose between two different possible reply
locutions: why(Ʊ) or concede(Ʊ). Agent2 will make his choice
using the conditions which appear in the rhombus shape. In order
to choose concede(Ʊ), Agent2 must be able to satisfy the two
conditions which connect with concede: Condition 1:
FindInKBorCS(Ʊ, KBO,CSO) which is used to check whether Ʊ is
acceptable in the agent argumentation system KBO and CSO or not.
If Ʊ is acceptable, this constraint returns true; Condition 2:
AddToCS(Ʊ, CSO) AgentO will use this constraint to update its
commitment store by adding Ʊ to CSO. If Agent2 is not able to
satisfy these conditions, Agent2 will send why(Ʊ). After that, the
turn switches to Agent1, and so forth.

Although; this example is for 2 agents, DID can handle more than
2 agents interactions protocol but at the cost of more complex
graphical notation.

3.2 Implementation Language
To support formal analysis and verification, the AIF [2,3]
community suggests using a process and declarative language to
implement the dialogue games protocol. For this reason we
choose LCC, a declarative, process calculus-based, executable
specification language used for specifying the message-passing
behavior of MAS interaction protocols.

The abstract syntax of a LCC clause [4,13] is shown in Figure 5.

 Framework := {Clause,….}
Clause := Agent :: Dn
Agent := a(Role, Id)
Dn := Agent | Message | null C | Dn then Dn | Dn or Dn
Message := M ==> Agent | M ==> Agent C | M <== Agent
 | C M <== Agent
C := Term | C and C | C or C
Role := Term
M := Term

Figure 5: The abstract Syntax of LCC

In an LCC framework each of the N ≥ 2 agents is defined with a
unique identifier id and plays a role. Each agent, depending on its
role, is assigned an LCC protocol. A LCC protocol can be
recursively defined as a sequential composition (denoted as then)
or choice (denoted as or) of LCC protocols. In an LCC protocol
agents can change role, exchange (receive or send) messages and
exit the dialogue under a certain constraint C (null C). A
constraint is defined as a propositional formula defined over terms
(variables and constants) connected by or and and operators.

Messages M are the only way to exchange information between
agents. An agent can send a message M to other agent (M ==>
Agent), and receive a message from another agent (M <==
Agent). There are two types of constraints over the message
exchanged: pre- and post-condition. Pre-conditions (M ==> Agent
C) specify the required conditions for an agent to send a
message and for the receiver to accept and process it. Post-
conditions (C M <== Agent) explain the states of the sender
after sending a message and of the receiver after receiving a
message. An agent can check the satisfaction of the constraints
inspecting private or shared knowledge.

3.2.1 An Example LCC protocol
We now demonstrate LCC using the simplest example of a
persuasion protocol between two agents P and O. P and O have
arguments for and against Ʊ. Agent P sends a claim message Ʊ
and agent O receives this claim message Ʊ. A fragment of LCC
protocol for this interchange in this argument is:

a(R1,P)::
 claim(Ʊ) ==> a(R2, O) C1
 then
 a(R3,P).
a(R2,O)::
 claim(Ʊ) <== a(R1, P)
 then
 a(R4,O).

This is read as: role R1 of agent P sends a claim message, which
is achieved by the constraint C1, to the role R2 of agent O and
then role R2 of agent O receives the claim message from role R1
of agent P. Then P change its role to R3 and O change its role to
R4.

3.3 Synthesis of Concrete Protocols from DID
The main aim of this research (as shown in Figure 2-part1) is to
automatically synthesise LCC protocols from DID specifications
by recursively applying LCC-Argument patterns.

3.3.1 LCC- Argument Patterns
LCC-Argument patterns were first described in the structured
design method by Grivas [5]. The general idea is analogous to that
used in Techniques editing [14], to synthesise Prolog clauses. The
most notable differences between our LCC-Argument patterns
and Grivas' [5] patterns are: 1. Grivas did not base his system on a
high level language; 2. Grivas describes the patterns which
appearing in general LCC protocols, while our patterns are
specific to argumentation. LCC-Argument patterns are generic
LCC argument codes which are independent of any particular
algorithm or problem domain. LCC–Argument patterns provide
generalised pieces of LCC code which can be reused by software
engineers to implement part of a LCC specification. The reuse of
patterns could potentially reduce the effort of building interaction
protocols. Maghraby [15] describes these patterns in details. To
expedite our argument, we will not repeat these here. Instead we
will describe the simplest LCC-Argument pattern called the
Starter pattern. This pattern is used to start the dialogue between
two agents (P and O). To explain this pattern we will use the
following five general characterisations [16,17]: 1.Problem: a
statement or a question of the problem which describes the
problem that the pattern solves; 2.Solution: relationship between
the pattern's roles which describes how to realize the desired
outcome, often including a diagram which describes how the
problem is solved; 3.Context (Pre-conditions): the initial
configuration of the protocol before the pattern is applied;
4.Consequence (Post-conditions): the configuration of the
protocol after the pattern has been applied; 5.Structure: identify
the pattern's structure, its roles and their relations.

Starter pattern
1. Problem: How to start a dialogue?;

2. Solution: This pattern is composed of two roles: sender
role,RP1 , and receiver role,RO1.The general idea of this pattern
(as shown in Figure 6) is that the agent with role RP1 sends an

initial message, SL(Ʊ), to the agent playing role RO1 and then
both change their roles in order to remain in the dialogue;

3. Context: Use Starter Pattern when P agent has not already
started a dialogue;

4. Consequence: (a) Both P and O agents engage in a dialogue;
(b) P agent is committed to Ʊ ϵ CS P (updated its commitment
store by adding Ʊ to it); (c) Both P and O change their roles
so as to remain in dialogue;

5. Structure: Starter Pattern structure is shown in Figure 7. SL
represents the starter locution and C1(Ʊ,CSP) represents a
Boolean function (or condition) with parameters Ʊ and CSP.
In case C1(Ʊ,CSP) returns true the locution SL can be uttered.

Figure 6: Starter Pattern Solution
 a(RP1(KBP,CSP, Ʊ, IDO),IDP)::

SL(Ʊ) ==> a(RO1(KBO,CSO),IDO) C1(Ʊ, CSP)
 then

a(RP2 (KBP,CSP),IDP).
 a(RO1(KBO,CSO, IDP),IDO)::

SL(Ʊ) <== a(RP1(KBP,CSP),IDP)
then
a(RO2(KBO,CSO),IDO).

Figure 7: Starter Pattern Structure

 a(startClaimP(KBP,CSP, Ʊ,IDO),IDP) ::=
claim(Ʊ) => a(startClaimO(_ ,_ ,IDP),IDO)
<-- AddToCS(Ʊ, CSP)

 then
 a(replyToClaimP(KBP,CSP, Ʊ,IDO),IDP).
 a(startClaimO(KBO,CSO,IDP),IDO) ::=

 claim(Ʊ) <= a(startClaimP(_ , _ , Ʊ,IDO),IDP)
 then
a(replyToClaimO(KBO,CSO, Ʊ,IDP),IDO).
Figure 8: General LCC Protocol for Claim Locution

3.4 Example
Due to space limitations, a full description of the LCC protocol
generated from the DID specification depicted in Figure 4 is not
possible. Instead we will describe how to automatically
synthesise, using the Starter Pattern (Figure 7), a partial LCC
protocol (Figure 8) from the starting locution (the claim) from the
DID in Figure 4:
1. Determine the starting locution (SL) in the DID. As we can

see from Figure 4, there is one starting locution which is
located at the top of the DID, SL=claim;

2. Apply the Starting Pattern. . By matching variables from the
pattern (Figure 7) with variables from the DID (Figure 4). In
this example :

a. Matching SL to claim;

b. Matching the sender role RP1 with the sender role
startClaimP from the claim locution;

c. Matching the receiver role RO1 with the receiver role
startClaimO from the claim locution;

d. Matching C1(Ʊ,CSP) in the sender role with AddToCS(Ʊ,
CSP) in the rhombus shape which is connected to the left
hand section of claim locution;

e. Matching the lines after the word "then" in both the sender
and receiver roles to the why (or concede) locution icon .
We match the lines after "then" with the roles of the
locution of the next level of DID. When we move from level
to the next level in the DID, the turn-taking between agents
switches denoting that the sender will be in the right hand
section of the locution icon and the receiver will be in the
left hand section of the locution icon. Therefore (e) consists
in:

e1. Matching the sender role RP2, with the sender role
replyToClaimP from the right hand section of the why
(or concede) locution;

e2. Matching the receiver role RO2, with the receiver role
replyToClaimO from the left hand section from the why
(or concede) locution.

4. MODEL CHECKING
Our model checker (as shown in Figure 2- part 2) was built in
three stages: (1) automatically mapping the LCC specification into
an equivalent Coloured Petri Net (CPN) [18]. The formal
semantics of the CPN models allow us to prove that certain
(un)desirable properties are (un)satisfied in a LCC protocol; (2)
automatically generating DID properties as a Standard ML
specification. For instance, in the DID shown in Figure 4 the
claim locution is a starting locution, therefore we can infer as a
significant property that every LCC synthesised dialogue should
start with a claim locution; (3) automatically verifying the
satisfaction of the Standard ML specification in the state-space
graph computed from the LCC protocol.

4.1 Mapping the LCC Specification into a
CPN
CPNs are defined as Petri Nets (PNs) which have been extended
with the notion of colors or types. As a variant of PN CPNs are
defined as networks of input/output places (ovals), transitions
(squares) and arcs (arrows connecting places with transitions and
transitions with places). Colours (types) and tokens are used to
simulate the network flow. For instance, the CPN modeled in the
CPN tool1

1 http://cpntools.org/

 (depicted in Figure 9), the StartClaimP is a transition
with input places Open and P and output place claim1 and
ChangeRole1. The Message colour is a composed type
(comprising topic, sender identifier and receiver identifier) used to
represent messages exchanged between agents, while the Role
colour is used to represent the agent's profile (played role, agent's
identifier, agent’s private knowledge based, agent’s CS, topic and
other agent's identifier). For the example depicted in Figure 9 an
agent can send a claim if an open place is active (there is a token

P
RP1 O

RO1

RO2

O

SL(Ʊ)
Change

to Change
to

1 2

P

RP2

in Topic state) and an agent playing role StartClaimP is active
(there is a token in state P).

 One of the key features of CPNs is their ability to construct large
models in a hierarchical manner [19] by using a set of CPN
modules called subpages to build superpages. The pages interact
with each other and with superpage through a substitution
transitions and a set of interfaces (fusion places).

A substitution transition is a transition (drawn as rectangular
double lines boxes in Figure 10) which is located in a superpage
and refined by a subpage. A fusion place is composed of one
socket place and one port place. In practice, sockets and ports
represent the same places and store the same information, but the
sockets are located in the superpages whereas the ports are located
in the subpages. There are three different types of sockets/ports:
(1) Input sockets which are assigned to input ports and receive
date from other CPNs models; (2) output sockets which are
assigned to output ports and send data to other CPNs models; (3)
input/output sockets which are assigned to input/output port and
receive/send data from/to other CPNs models.

The steps applied to get the CPNs files from LCC protocol are as
follows:

1. Generation of a CPN subpage for each LCC role. This page
represents the different internal behviours of each role. Each
role (as shown in Figure 9) has at least one input port and one
output port.

2. Generation of one CPN superpage which describes the
interaction between roles where messages passed between two
roles determine the interaction between the subpages of the
two roles (shown in Figure 10 and explained in detail in
Section 4.4).

4.2 Generating DID Properties
Our tool can automatically generate from the DID specification
used as starting point a set of properties, expressed as Standard
ML specifications, which can be verified over the synthetised
LCC protocol. For the persuasion dialogue explained in Section
3.1.3 the tool identified five properties:

1. Property-1 Dialogue opening: This property should guarantee
that the LCC protocol will start if and only if a proposal agent
sends a starting DID locution.

2. Property-2 Termination of a dialogue: This property should
guarantee that the LCC protocol will end when a specific agent
sends a DID termination locution.

3. Property-3 Turn taking between agents: This property should
guarantee that in the LCC protocol the turn-taking between
agents switches after each move (after agent sends a message).

4. Property-4 Message Sequence: This property should guarantee
that the LCC protocol message exchange respects the DID. For
instance for the DID depicted in Figure 4 one thing that should
be proved is that after an agent makes a claim the other agent
can only answer with a concede or a why locution.

5. Property-5 Recursive Message: This property should guarantee
that the LCC protocol recurs when agent sends a message with a
recursive DID locution.

These five properties are provided by the module checker
system. However, the system allows users to add and run more
properties.

4.3 Verification of Properties
Proof of the properties generated from the DID (explained in
Section 4.2) over the CPNs resulting from the LCC protocols
synthesised (explained in Section 4.1) is supported by a state
space technique [20].

For developing our model checker we used the CPN tool which
allows to automatically compute all possible execution states
resulting from the exhaustive enactment of a CPN model.

The verification process consists on automatically checking the
satisfaction of the properties specified in Standard ML over the
obtained state space graph. A report is presented to the user
indicated which properties are satisfied and which are unsatisfied.

Figure 9: CPN Protocol Graph for startclaimP LCC Role

out Role

Role

out

claim1

Change
Role1

StartClaimP

Message

P Open

In Topic

1`("P",[("The car is safe","it has an aribag")],

 [], "" ,"O")

1`"The car is safe"

(t, IDP, IDO) (t)
[addToCS(CSP,t)]

 (IDP, KBP,CSP,IDO)

("replyToClaimReceiverP",IDP, KBP,CSP, t, IDO)

Place

Arc

Type
d

Transition

Input
port

Output
port

Token

4.4 Example
4.4.1 Mapping the LCC Specification into CPNs
Due to space limitation an exhaustive description of the mapping
of the LCC protocol presented in Figure 8 into a CPN model is
not possible, instead we describe below sections of the resulting
CPN model which capture the main features of our modelling
approach.

As described earlier in section 4.1, the first step to map the LCC
specification into a CPN model is to construct a new CPN
subpage for each role in the LCC protocol. As we can see from
Figure 8 in our example there are two main roles: startclaimP and
startclaimO. Therefore two subpages are created: startclaimP and
startclaimO. The resulting subpages are similar , therefore, we will
only describe one of them, the startclaimP subpage.

StartClaimP Subpage
As described earlier in section 3, the startclaimP role begins by
sending an initial message, claim(Topic), to the startclaimO role
and then changes its role to replyToClaimReceiverP.

Figure 9 shows the subpage startclaimP, resulting from mapping
the LCC role with the same name into a CPN. The name of the
role is represented by the transition startclaimP. To model this, an
agent with agent identifier (IDP) and role parameters (KBP , CSP ,
IDO) can introduce a starting claim locution which we specify as a
type Role and we assign a token of type Role to the place P.

When a token of type Message is present in the place claim1, it
means that a message has been sent from an agent playing the role
startclaimP to an agent playing the role startclaimO which
specifies all this information (topic t, sender agent IDP, receiver
agent IDO).

The condition under which the role can be sent this message is
represent as a transition, startclaimP, condition.

The changing of role startclaimP to replyToClaimReceiverP is
represented by the output place changeRole1, which is of type
Role. The name of the new role and its parameters are captured in

the output inscription arc from startclaimP transition to the place
changeRole.

The open input place, which is of type Topic, represents the
required data to start a dialogue.

Secondly, constructing one protocol superpage to describe the
general interaction relation between startclaimP, startclaimO,
replyToClaimReceiverP and replyToClaimSenderO roles.

Protocol Superpage

The resulting superpage is shown in Figure 10. The four roles are
represented by the substitution transition. The message claim
between startclaimP and startclaimO is represented by the place
claim1. The role changing relation between startclaimP and
replyToClaimReceiverP is represented by the place ChangeRole1
and the role changing relation between startclaimO, and
replyToClaimSenderO is represented by the place ChangeRole2.
Connect the open place, which represents the required data to start
a dialogue, with startclaimP substitution transition.

Thirdly, generate state space. State space cannot be generated
unless all places in subpages have been initialized. To initialize
places tokens, we use a simple car safety example. Two agents P
and O interchange argument. Where each agent has its own KB
and CS. Agent P has: (1) KBP =[("The car is safe","it has an
aribag")]; (2) CSP =[""]. Agent O has (1) KBO =[("it has an
aribag","The car is safe")]; (2) CSO =[""]. Therefore, as shown in
Figure 9, we initialize P palce with ("P",[("The car is safe","it has
an aribag")], [], "" ,"O"). Agent P want to open a dialogue by
sending a claim message "My car is safe" to agent O. Therefore,
as shown in Figure 9, we initialize Open place with "The car is
safe".

 4.4.2 Verification of the LCC Protocol
Over the CPN depicted in Figure 10 there is one property
(Property-1 Dialogue opening) which can be verified. Figure 11
shows the Standard ML specification of this property. Function
CheckProperty1 compares the first message in the state space
graph constructed from the CPN shown in Figure 9 and Figure
10 with the starting claim locution from the DID in Figure 4.

Lines 3-5 explain how to get from the state space graph the first
exchanged message. Line 6 compares the first exchanged in the
state space graph with the starting locution from the DID. Lines
8 to 11 are used to inform the user of the result of the
comparison. A positive (negative) result indicates that Property
1 is satisfied (unsatisfied).

For space reasons we only show here how we verified Property 1,
but we have proved the satisfaction of all the properties explained
in Section 4.2 over the LCC protocol synthesised from the whole
DID persuasion dialogue from where the partial DID depicted in
Figure 4 was extracted.

5. CONCLUSION
This paper describes an approach to bridging the gap between
argument specification and multi-agent implementation using AIF
as an example of an argumentation language and LCC as an
example of a multi-agent implementation (coordination) language.
The proposed approach is based on a pattern-based synthesis
method and it allows us to automatically transform the new
specification argument language (DID) to peer-to-peer LCC
protocols. Model checking is used to ensure that key properties of
the DID specification are preserved by the resulting LCC

Open

Figure 10: CPN Protocol Graph for Claim Locution

claim1 StartClaimP StartClaimO

Change
Role1

Change
Role2

 ReplyToClaimP ReplyToClaimO

protocol. Based on this approach, we have implemented a tool
which automatically synthesises LCC protocols from DID
specifications. The tool has been provided with a model checker
which automatically verifies that the LCC protocols synthesised
by the tool preserving the properties from the DID specification
used as starting point. As future work we would like to explore
the tool’s functionality in the context of complex dialogues such
as embedded agent dialogues.

 1 fun CheckProperty1(DIDoDmessages) =

2 let
3 val arcMove1=st_BE(ArcToBE(2))
4 val arcMove1Size = String.size(arcMove1)
5 val message1= extractString(arcMove1,
 "l=",",", arcMove1Size ,0)
6 val checkODM =

 compare(DIDoDmessages , message1)
 7 in
 8 if (checkODM) then
 9 "Property 1(Dialogue opening) is Satisfied"
 10 else
 11 "Property 1(Dialogue opening) is not
 Satisfied"

 12 end;
Figure 11: Property 1 as an Standard ML Function.

6. 5BACKNOWLEDGMENTS
I would like to thank my supervisors, Prof. David Robertson, Dr.
Adela Grando and Michael Rovatsos from Edinburgh University,
for their supervision and contributions to this work.

7. 6BREFERENCES
 [1] Rahwan I. and Moraitis P. 2009. Argumentation in Multi-

Agent Systems. In Proceedings of the 5th International
Workshop on Argumentation in Multi-Agent Systems
(ArgMAS2008).

 [2] Chesnevar, C., McGinnis, J., Modgil, S., Rahwan I., Reed,
C., Simari, G., South, M., Vreeswijk, G., Willmott, S. 2007.
Towards an argument interchange format. The Knowledge
Engineering Review, 21(4), 293–316.

 [3] Willmott, S., Vreeswijk, G., Chesnevar, C., South, M.,
McGinnis, J., Modgil, S., Rahwan I., Redd C., Simari G.,
2006. Towards an Argument Interchange Format for Multi-
Agent Systems. In Proceedings of the 3ed International
Workshop on Argumentation in Multi-Agent Systems
(ArgMAS2006).

 [4] Robertson D. 2004. Multi-agent coordination as distributed
logic programming. In ”Logic programming” 20th
International Conference, Proceedings, Lecture Notes in
Computer Science, 3132,416-430.

 [5] Grivas A. 2005. A Structural Synthesis System for LCC
Protocols. PhD thesis, University of Edinburgh.

[6] Modgil S. and McGinnis J. 2007. Towards Characterising
Argumentation Based Dialogue in the Argument Interchange
Format. In Proceedings of the 4th International Workshop on

Argumentation in Multi-Agent Systems (ArgMAS2007), 80-
93.

[7] Jensen K. and Kristensen L. 2009. Coloured Petri Nets
Modelling and Validation of Concurrent Systems. Springer
Verlag, 43–77.

[8] Ullman J. 1998. Elements of ML Programming. Prentice-
Hall,Englewood Cliffs.

[9] Prakken, H. 2000. On dialogue systems with speech acts,
arguments, and counterarguments. Springer Verlag, 224–238.

 [10] Rahwan I., Zablith F. and Reed C. 2007. Laying the
Foundations for a World Wide Argument Web. Artificial
Intelligence Journal, 171(10-15),897—921.

[11] Maudet N., Parsons S., and Rahwan I. 2007. Argumentation
in Multi-Agent Systems: Context and Recent Development.
In Proceedings of the 3ed International Workshop on
Argumentation in Multi-Agent Systems (ArgMAS2006).

[12] Bauer B., Müller J., and Odell J.: Agent UML: A Formalism
for Specifying Multiagent Interaction. Agent-Oriented
Software Engineering, Paolo Ciancarini and Michael
Wooldridge eds., Springer, Berlin, pp. 91-103, 2001.

[13] Hassan F., Robertson D., and Walton C. 2005. Addressing
Constraint Failures in Agent Interaction Protocol. Centre for
Intelligent Systems and their Applications, University of
Edinburgh.

 [14]Bowles A., Robertson D., VasconcelosW., Vargas-Vera M.,
and Bental D. 1994. Applying prolog programming
techniques. International Journal of Human-Computer
Studies, 41(3), 329–350.

[15] Maghraby A. 2011. LCC argument patterns. School of
Informatics, Edinburgh university.

DOI= Uhttp://homepages.inf.ed.ac.uk/s0961321/index.htmlU

[16] Appleton B. 1998. Patterns and Software: Essential Concepts
and Terminology. Object Magazine Online ,3(5). DOI=
Uhttp://www.bradapp.net/U

[17] TaylorG. and Wray R. 2004. Behavior Design Patterns:
Engineering Human Behavior Models. In Proceedings of the
2004 Behavioral Representation in Modeling and Simulation
Conference (BRIMS).

[18] Jensen K. 1997. Coloured Petri Nets:Basic Concepts,
Analysis Methods and Practical Use. Basic Concepts.
Monographs in Theoretical Computer Science, Springer-
Verlag.

[19] Jensen K., Kristensen L., and Wells L. 2007. Coloured Petri
Nets and CPN Tools for modelling and validation of
concurrent systems. Int.J.Softw.Tools Technol.Transf.,
9(3):213–254.

[20]Jensen K., Christnsen S. and Kristensen L. 2006. CPN Tools
State Space Manual. University of Aarhus, Department of
computer science.

http://homepages.inf.ed.ac.uk/s0961321/index.html�
http://www.bradapp.net/�

	1. INTRODUCTION
	2. PROBLEM DESCRIPTIONS AND MOTIVATION
	3. TRANSFORMATIONAL SYNTHESIS
	3.1 Argument Specification Language
	3.2 Implementation Language
	3.2.1 An Example LCC protocol

	3.3 Synthesis of Concrete Protocols from DID
	3.4 Example

	4. MODEL CHECKING
	4.1 Mapping the LCC Specification into a CPN
	4.2 Generating DID Properties
	4.3 Verification of Properties
	4.4 Example
	4.4.1 Mapping the LCC Specification into CPNs

	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

