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Abstract 
The purpose of this paper is to propose a Neural-
Q_learning approach designed for online learning of 
simple and reactive robot behaviors. In this approach, 
the Q_function is generalized by a multi-layer neural 
network allowing the use of continuous states and 
actions. The algorithm uses a database of the most 
recent learning samples to accelerate and guarantee the 
convergence. Each Neural-Q_learning function 
represents an independent, reactive and adaptive 
behavior which maps sensorial states to robot control 
actions. A group of these behaviors constitutes a 
reactive control scheme designed to fulfill simple 
missions. The paper centers on the description of the 
Neural-Q_learning based behaviors showing their 
performance with an underwater robot in a target 
following task. Real experiments demonstrate the 
convergence and stability of the learning system, 
pointing out its suitability for online robot learning. 
Advantages and limitations are discussed. 
 
Keywords: artificial learning, robotics, and reactive 
control. 

1. Introduction 

A commonly used methodology in robot learning is 
Reinforcement Learning (RL) [9]. In RL, an agent tries 
to maximize a scalar evaluation (reward or 
punishment) of its interaction with the environment. 
The goal of a RL system is to find an optimal policy 
which maps the state of the environment to an action 
which in turn will maximize the accumulated future 
rewards. Most RL techniques are based on Finite 
Markov Decision Processes (FMDP) causing finite 
state and action spaces. The main advantage of RL is 
that it does not use any knowledge database, as do 
most forms of machine learning, making this class of 
learning suitable for online robot learning. The main 
disadvantages are a longer convergence time and the 

lack of generalization among continuous variables. 
The latter is one of the most active research topics in 
RL. 
 
Many RL-based systems have been applied to robotics 
over the past few years.  Most of them use classic RL 
algorithms combined with various methodologies 
which reduce the generalization problem. In [8], an 
instance-based learning algorithm was applied to a real 
robot in a corridor-following task. Also, for the same 
task, in [7] a hierarchical memory-based RL was 
proposed. A very common approach is the use of 
Q_learning [12] as the base of the learning algorithm 
due to the good learning capabilities in discrete 
domains: online and off-policy. Many generalization 
techniques have been applied to Q_learning. In [10] a 
memory-based implementation was proposed for 
vision-guided behavior acquisition and [11] shows a 
state/action quantification by a set of triangular 
patches. Also, many proposals combine Q_learning 
and Neural Networks (NN) (see [5]  for an overview). 
Finally, several recent publications have pointed to the 
possibility of solving the RL problem by estimating 
the policy function instead of the value function. In 
[2], a practical application for controlling an 
autonomous helicopter was presented.  
 
This paper proposes a Neural-Q_learning (NQL) 
approach designed for online learning of simple and 
reactive robot behaviors. Our approach differentiates 
from other NQL proposals in that we implement the 
Q-function into a NN directly instead of breaking the 
problem down into a finite set of actions, features or 
clusters. This NQL implementation, known as direct 
Q_learning [3], is the simplest and straightest way to 
generalize with a NN. This implies more learning 
capabilities and causes instability in the learning of the 
optimal state/action mapping. To avoid this problem, 
the proposed algorithm introduces a database of the 
most recent and representative learning samples from 
the whole state/action space. These samples are 



repeatedly used in the NN weight update phase, 
assuring the convergence of the NN to the optimal 
Q_function. To preserve the real time execution of the 
behavior, two different execution threads, one for 
learning and another for output generation, are used. 
This NQL algorithm was conceived to learn the 
internal state/action mapping of a reactive behavior. 
By combining several NQL-behaviors, a high level 
control scheme can be designed to achieve simple 
tasks with an autonomous robot. Behavior 
coordination is done through a hybrid coordinator [4] 
which does not need any tuning phase.  
 
This paper demonstrates the feasibility of the proposed 
NQL algorithm with real experiments using the 
underwater vehicle URIS in a target following task, 
see figure 1. Experiments were carried out in a water 
tank. A reactive control system with four behaviors, 
wall avoidance, teleoperation, target following and  
target recovery, was used. The target following 
behavior was learnt using the proposed NQL 
algorithm. Results show the convergence of the NQL-
based behavior into an optimal policy, and therefore, 
the achievement of the task. 
 
The structure of this paper is as follows. In section 2, 
an overall description of the behavior-based control 
scheme is done. Section 3 describes the proposed 
Neural-Q_learning algorithm. In section 4, the 
experimental setup designed to carry out the target 
following task with URIS’s AUV is presented. Section 
5 shows and discusses the obtained results. And 
finally, conclusions are presented in section 6. 
 
 

 

Figure 1: URIS’s underwater vehicle during the target 
following task in a water tank. 

 

2. Behavior-based Control Scheme 

A set of simple behaviors and a coordinator constitute 
the behavior-based control scheme [1]. For a given 
task, the behaviors, with the corresponding priorities 
among them, must be determined. Each behavior has 
an independent goal which tries to accomplish by 
perceiving the state of the environment and proposing 
a control action.  
 
The coordinator is in charge of choosing the final 
action to be followed. An hybrid coordinator [4] 
between competitive and cooperative methodologies is 
used. The general structure is shown in figure 2. This 
coordinator is based on normalized behavior outputs. 
Each output contains a three-dimensional vector “vi” 
which represents the velocity proposed by the behavior 
and, associated with this vector, an activation level 
“ai” indicates the level of need of controlling the robot. 
This value is between 0 and 1, see figure 3.  
 
The hybrid coordination system is implemented with a 
set of hierarchical hybrid nodes, see figure 3. These 
nodes have two inputs and generate a merged 
normalized control response. One of the inputs is used 
by a dominant behavior which suppresses the 
responses of the non-dominant behavior when the first 
is   completely  activated  (ai=1).  However,  when  the  
 

NQL-Behav ior 1

NQL-Behav ior 2

NQL-Behav ior 4S
T
I

M
U
L
U
S

NQL-Behav ior 3se
ns

or
s

HYBRID 
COORDINATOR

n21

D

ND

n34

D

ND

n2’1’

D

ND

co
nt

ro
l 

ac
tio

n

 
Figure 2: Behavior-based architecture with the hybrid 

coordination system. 
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Figure 3: Normalized output of a behavior and 

equations of the hierarchical hybrid node. 



dominant behavior is only partially activated (0<ai<1), 
the final  response will be a combination of both 
inputs. The basic idea is to use the optimized paths 
from cooperation when the predominant behavior is 
not completely active. Non-dominant behaviors can 
modify the responses of dominant behaviors slightly 
when they aren’t completely activated. When non-
decisive situations occur, cooperation between 
behaviors is allowed. Nevertheless, robustness is 
present when dealing with critical situations. The 
hybrid nodes do not need any tuning phase. The 
coordination of a set of behaviors is defined 
hierarchically, classifying each behavior depending on 
its priority. 

3. Neural-Q_learning Based Behaviors 

A Neural-Q_learning approach is used to learn the 
mapping between the state and action spaces (policy). 
The state space is the sensor information perceived by 
the robot and is needed by the behavior in order to 
accomplish its goal. The action space is the velocity 
set-points the robot should follow.  

3.1   Q_learning 

Q-learning [12] is a temporal difference algorithm, see 
[9], designed to solve the reinforcement learning 
problem (RLP). Temporal difference  algorithms solve 
the RLP without knowing the transition probabilities 
between the states of the Finite Markov Decision 
Problem (FMDP), and therefore, in our context, the 
dynamics of the robot environment does not have to be 
known. Temporal difference methods are also suitable 
for learning incrementally, or online robot learning. 
The importance of online learning resides in the 
possibility of executing new behaviors without any 
previous phases such as “on-site manual tuning” or 
“data collection + offline learning”. Another important 
characteristic of Q_learning is that it is an off-policy 
algorithm. The optimal state/action mapping is learnt 
independently of the policy being followed, which is 
very important in our approach because all the 
behaviors can be learnt even if they are not controlling 
the vehicle.  
 
The original Q_learning algorithm is based on 
FMDPs. It uses the perceived states (s), the taken 
actions (a) and the received reinforcements (r) to 
update the values of a table, denoted as Q(s,a) or Q-
function. If state/action pairs are continually visited, 
the Q values converge to a greedy policy, in which the 
maximum Q value for a given state points to the 
optimal action. Figure 4 shows the Q_learning 

algorithm. There are several parameters which define 
the learning evolution: 
• γ: discount rate [0 1]. Maximization of future 
rewards. For γ=0, only immediate rewards are used. 
• α: learning rate [0 1].  
• ∈: random action probability [0 1]. Exploitation 
versus exploration. ∈-greedy action. 
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Figure 4: Q_learning algorithm. 

 

3.2   Neural Q_learning 

When working with continuous states and actions, as 
is usual in robotics, the Q-function table becomes too 
large for the required state/action resolution. In these 
cases, tabular Q-learning needs a very long learning 
time and memory requirements which makes the 
implementation of the algorithm in a real-time control 
architecture impractical. The use of a Neural Network 
(NN) to generalize among states and actions reduces 
the number of values stored in the Q-function table to 
a set of NN weights. The implementation of a feed-
forward NN with the backpropagation algorithm [6] is 
known as direct Q_learning [3].  
 
The Direct Q-learning algorithm has no convergence 
proofs and turned out to be unstable when we tried to 
learn a behavior. The instability was caused by the 
lack of weight updating in the whole state/action 
space. The optimal Q-function was only learnt in the 
current state zone. The Q-values learnt in past states 
were not maintained and therefore had to be learnt 
each time causing the instability. 
 
To solve this limitation the proposed Neural-
Q_learning based behaviors maintain a database of the 
most recent learning samples. All the samples of this 
database are used at each iteration to update the 
weights of the NN. This assures a generalization in the 
whole visited state/action space instead of a local 
generalization in the current visited space. Each 
learning sample is composed of the initial state st, the 
action at, the new state st+1 and the reward rt. The 
action used by the NQL behaviors, is the one sent by 



the coordinator to the low-level control system. For 
this reason, a feedback of the last generated control 
action is needed, see figure 2. Finally, in order to 
prevent a huge database, each new learning sample 
substitutes old samples closer than a threshold. The 
distance between samples is geometrically computed 
from both {st, at, rt} vectors. It is important to maintain 
a database with the most recent samples to keep the 
current dynamics of the environment. 
 

The structure and phases of the proposed neural 
Q_learning algorithm is shown in figure 5. The 
Q_function approximated by the NN is:  

1 1t+1a
ˆ ˆ+  max

t t t t t
Q(s ,a ) = r Q(s ,a )γ + +

 

Therefore, its inputs are the continuous state and 
actions, and the output is the Q_value. According to 
the output value, the error is found and the weights are 
updated using the standard backpropagation algorithm. 
A two layer NN has been used with a hyperbolic 
tangent and lineal activation functions for the first  and 
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Figure 5: Neural Q_learning algorithm structure. 

 

second layers respectively. Weights are initialized 
randomly. To find the action which maximizes the 
Q_value, the network evaluates all the possible actions 
which could be applied. Although actions are 
continuous, a finite set, which guarantees sufficient 
resolution, is used.  
 
To maintain the real time execution of the behavior, 
two threads are used. The more priority thread is in 
charge of acquiring new learning samples and 
generating control actions at the frequency of the 
behavior-based control system. Phases 1,2 and 4 are 
computed in this thread, see figure 5. The second 
thread  is used to continually update the weights of the 
NN, phase 3. It has less priority than the rest of the 
control processes and therefore it will use the 
remaining computational power to learn the NQL-
based behaviors. 

3.3   Reinforcement Function 

The reinforcement function determines the policy 
learnt by the behavior. The definition of this function 
requires knowledge from a human designer. The 
function associates each state with a reward “r”. In our 
approach, we have reduced the possible values to 
three: {-1, 0, 1}. By associating the desired states with 
“r=1” and the undesired with “r = -1”, the algorithm 
learns how to act. 

4. URIS’s Experimental Setup 

The proposed target following task, to test the NQL-
based behaviors, consisted of following a target by 
means of a color camera.  Experiments were carried 
out with the small-sized underwater robot URIS (hull 
∅ 0.35m), an Autonomous Underwater Vehicle 
(AUV) developed at the University of Girona. URIS is 
a non-holonomic robot stable in pitch and roll, where 
only x, z and yaw degrees of freedom (DOF) can be 
controlled.  
 
A water tank (4.5 m. diameter and 1.2 m. depth) was 
used to test the control system and to perform the 
learning experiments, see figure 6. Due to the 
shallowness of the tank, the vehicle was only moved in 
the horizontal plane maintaining an intermediate 
depth. The position and the velocity of the vehicle was 
computed by a computer vision system which used a 
down looking camera attached to URIS and a coded 
pattern placed on the bottom of the tank. The pattern 
contains several dots with two different colors, gray 
and black. The vision system estimates the six-
dimensional  position  of  the  vehicle  by  tracking  the  

(1) 



   
Figure 6: Water tank with the positioning pattern used 

in the experiments with URIS. 
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Figure 7: URIS’s target following task scheme. 

 
detected dots and solving the equations of the 
projective geometry. The pattern also contains some 
marks to reset the estimated position to an absolute 
position inside the water tank. The vehicle’s velocity is 
also estimated. The main utility of this positioning 
system was to provide velocity feedback to the low 
level controller ( , ,x z yaw& && ). Also the absolute position 
was used by the behavior-based high level control 
system. 
 
The control architecture of the robot was based on a 
real time distributed object oriented framework which  
assures the deadlines of all the task. Three different 
computers were used in these experiments, the 
onboard PC-104 which runs QNX and contains all the 
control objects, an external PC running Windows 
which computes the vision objects, and finally, another 
external PC running QNX used as HMI. 
  
The control scheme of the target following task can be 
seen in figure 7. Four behaviors were used. The wall 
avoidance behavior had the highest priority and 
prevented the vehicle to collide with the walls of the 
water tank. The teleoperation behavior was used to 
move manually the robot. The target following 

behavior was the one learnt with the proposed NQL 
algorithm. And finally, the target recovery behavior 
spun the robot in order to find the lost target. The 
output action of each behavior was a 2D-speed vector 
(X and Yaw velocities) and an activation level, which 
determined the final output according to the hierarchy 
of behaviors. 

5. Results 

As previously stated, the experiments were designed to 
test the feasibility of the NQL-based behaviors. The 
target following behavior was implemented with 2  
different NQL algorithms (one for each DOF, X and 
Yaw). In these experiments, only one NQL algorithm 
was learnt at a time, no simultaneous learning between 
different DOFs or behaviors was tested. Each DOF 
received information about the current state and the 
last action taken. The state was the position of the 
target in the image as well as its derivative. A 
reinforcement function gave different rewards (-1, 0 or 
1) depending on the distance at which the target was 
detected. Activation was 1 when the target was seen. 
 
Several trials were carried out in order to find the best 
learning performance. The sample time of the NQL-
based behaviors was set at 0.3 [s], while the one of the 
low level controllers was 0.1 [s]. The robot was able to 
learn how to move in both DOFs achieving the target 
following task. The parameters we used in the NQL 
algorithms can be seen in table 1, and figure 8 shows 
the normalization used for the target states. The learnt 
state/action optimal mappings can be seen in figures 9 
and 10. Note the obtained non-lineal mappings. 
 

 Table 1: Specifications of the target following  
NQL behavior 

Sensors color camera + target detection by color 
segmentation + object tracking 

Codification [fx, fy] : normalized target position [-1, 1] 
Activation if target detected af= 1; else af= 0  
DOF X YAW 
State fx : position 

fvx : derivative 
fy : position 
fvy : derivative 

Action afx : lineal speed (X) afy:angular speed (yaw) 
Reinfor-
cement 
function 

If  0.4>fx>0.1: rfx = 1 
if 0.5>fx>0.4: rfx = 0 
else rfx = -1 

If  |fy| < 0.2 : rfy = 1 
else if |fy| < 0.4 : rfy = 0 
else rfy = -1 

NQL 
parameters 

α=0.1; γ=0.9; ∈=0.3 
database size = 50 
samples 

α=0.1; γ =0.9; ∈=0.3 
database size = 50 
samples 

NQL 
structure 

inputs=3: [fx, fvx, afx] 
output: Q_value 
layer 1: 6 neurons 
layer 2: 1 neuron 

inputs= 3 : [fy, fvy, afy] 
output: Q_value 
layer 1: 6 neurons 
layer 2: 1 neuron 
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Figure 8: Coordinates of the target respect URIS. 

 
Figure 9: State/action mappings learnt for the target 

following behavior in the X DOF. 

 
Figure 10: State/action mappings learnt for the target 
following behavior in the Yaw DOF. 
 
The NQL behaviors showed a good robustness and 
presented a small convergence time (only 40 [s]). 
Figure 11 shows six consecutive learning attempts by 
the target following behavior in the Yaw DOF. The 
figure also shows that the averaged reward increased, 
demonstrating that the behavior was being learnt. In 
this experiment, the robot was learning how to turn in 
order to keep the target in the center of the image. It 
can be seen that the algorithm starts exploring the state 
in order to find maximum rewards. Once the whole 
state had been explored, the algorithm exploited the 
learnt Q_function and obtained  the maximum 
rewards.  

 

Figure 11: Behavior convergence proof. Results of six 
different learning trials  of the target following 

behavior in the Yaw DOF. The averaged rewards over 
the last 20 iterations are shown. The average of the six 

experiments can also be seen. Accumulated rewards 
increased in measure as the behavior was learnt. 

 

Figure 12: Online learning evolution and behavior 
testing of the target following behavior in the X DOF. 

The states, rewards and actions are shown above. 

 
Figures 12 and 13 show a typical online learning 
evolution of the X and Yaw DOFs respectively. It can  
be seen how the vehicle explored the state in the 
learning phase. For the X DOF, the learning time was 
100 seconds and for the Yaw DOF was 60 seconds 
approximately. This difference was due to the fact that 
the optimal mapping for the X DOF is more nonlinear 
than for the Yaw DOF, see figures 9 and 10. 
Immediately after the learning phase, the behavior was 
tested applying with the teleoperation behavior, an 
action that moved the vehicle away from the target. It 
can be seen that when the target following behavior 
took control, the target was reached again. 
 

testing learning phase 

teleoperation behavior 



 
 

 
Figure 13: Online learning evolution and behavior 
testing of the target following behavior in the Yaw 
DOF. The states, rewards and actions are shown 

above. 

6. Conclusions  

A proposal of Neural-Q_learning based behaviors have 
been presented and tested with a real robot in a target 
following task. The approach proved suitable for 
learning behaviors from a reactive control scheme. The 
Neural Network generalization of the Q_function was 
able to map an optimal state/action policy in a short 
time. The use of a database with the most significant 
learning samples assures the convergence of the 
algorithm. The paper has demonstrated the algorithm’s 
suitability showing real results with the underwater 
robot URIS. In the presented work, each DOF was 
learnt independently. Future work will concentrate on 
simultaneously learning different DOFs and behaviors. 
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