
Learning Reactive Robot Behaviors
with a Neural-Q_Learning Approach

Marc Carreras, Pere Ridao, Rafael Garcia and Zoran Ursulovici

Institut d’Informàtica i Aplicacions, Universitat de Girona
{marcc,pere,rafa,zoranu}@eia.udg.es

Abstract
The purpose of this paper is to propose a Neural-
Q_learning approach designed for online learning of
simple and reactive robot behaviors. In this approach,
the Q_function is generalized by a multi-layer neural
network allowing the use of continuous states and
actions. The algorithm uses a database of the most
recent learning samples to accelerate and guarantee the
convergence. Each Neural-Q_learning function
represents an independent, reactive and adaptive
behavior which maps sensorial states to robot control
actions. A group of these behaviors constitutes a
reactive control scheme designed to fulfill simple
missions. The paper centers on the description of the
Neural-Q_learning based behaviors showing their
performance with an underwater robot in a target
following task. Real experiments demonstrate the
convergence and stability of the learning system,
pointing out its suitability for online robot learning.
Advantages and limitations are discussed.

Keywords: artificial learning, robotics, and reactive
control.

1. Introduction

A commonly used methodology in robot learning is
Reinforcement Learning (RL) [9]. In RL, an agent tries
to maximize a scalar evaluation (reward or
punishment) of its interaction with the environment.
The goal of a RL system is to find an optimal policy
which maps the state of the environment to an action
which in turn will maximize the accumulated future
rewards. Most RL techniques are based on Finite
Markov Decision Processes (FMDP) causing finite
state and action spaces. The main advantage of RL is
that it does not use any knowledge database, as do
most forms of machine learning, making this class of
learning suitable for online robot learning. The main
disadvantages are a longer convergence time and the

lack of generalization among continuous variables.
The latter is one of the most active research topics in
RL.

Many RL-based systems have been applied to robotics
over the past few years. Most of them use classic RL
algorithms combined with various methodologies
which reduce the generalization problem. In [8], an
instance-based learning algorithm was applied to a real
robot in a corridor-following task. Also, for the same
task, in [7] a hierarchical memory-based RL was
proposed. A very common approach is the use of
Q_learning [12] as the base of the learning algorithm
due to the good learning capabilities in discrete
domains: online and off-policy. Many generalization
techniques have been applied to Q_learning. In [10] a
memory-based implementation was proposed for
vision-guided behavior acquisition and [11] shows a
state/action quantification by a set of triangular
patches. Also, many proposals combine Q_learning
and Neural Networks (NN) (see [5] for an overview).
Finally, several recent publications have pointed to the
possibility of solving the RL problem by estimating
the policy function instead of the value function. In
[2], a practical application for controlling an
autonomous helicopter was presented.

This paper proposes a Neural-Q_learning (NQL)
approach designed for online learning of simple and
reactive robot behaviors. Our approach differentiates
from other NQL proposals in that we implement the
Q-function into a NN directly instead of breaking the
problem down into a finite set of actions, features or
clusters. This NQL implementation, known as direct
Q_learning [3], is the simplest and straightest way to
generalize with a NN. This implies more learning
capabilities and causes instability in the learning of the
optimal state/action mapping. To avoid this problem,
the proposed algorithm introduces a database of the
most recent and representative learning samples from
the whole state/action space. These samples are

repeatedly used in the NN weight update phase,
assuring the convergence of the NN to the optimal
Q_function. To preserve the real time execution of the
behavior, two different execution threads, one for
learning and another for output generation, are used.
This NQL algorithm was conceived to learn the
internal state/action mapping of a reactive behavior.
By combining several NQL-behaviors, a high level
control scheme can be designed to achieve simple
tasks with an autonomous robot. Behavior
coordination is done through a hybrid coordinator [4]
which does not need any tuning phase.

This paper demonstrates the feasibility of the proposed
NQL algorithm with real experiments using the
underwater vehicle URIS in a target following task,
see figure 1. Experiments were carried out in a water
tank. A reactive control system with four behaviors,
wall avoidance, teleoperation, target following and
target recovery, was used. The target following
behavior was learnt using the proposed NQL
algorithm. Results show the convergence of the NQL-
based behavior into an optimal policy, and therefore,
the achievement of the task.

The structure of this paper is as follows. In section 2,
an overall description of the behavior-based control
scheme is done. Section 3 describes the proposed
Neural-Q_learning algorithm. In section 4, the
experimental setup designed to carry out the target
following task with URIS’s AUV is presented. Section
5 shows and discusses the obtained results. And
finally, conclusions are presented in section 6.

Figure 1: URIS’s underwater vehicle during the target
following task in a water tank.

2. Behavior-based Control Scheme

A set of simple behaviors and a coordinator constitute
the behavior-based control scheme [1]. For a given
task, the behaviors, with the corresponding priorities
among them, must be determined. Each behavior has
an independent goal which tries to accomplish by
perceiving the state of the environment and proposing
a control action.

The coordinator is in charge of choosing the final
action to be followed. An hybrid coordinator [4]
between competitive and cooperative methodologies is
used. The general structure is shown in figure 2. This
coordinator is based on normalized behavior outputs.
Each output contains a three-dimensional vector “vi”
which represents the velocity proposed by the behavior
and, associated with this vector, an activation level
“ai” indicates the level of need of controlling the robot.
This value is between 0 and 1, see figure 3.

The hybrid coordination system is implemented with a
set of hierarchical hybrid nodes, see figure 3. These
nodes have two inputs and generate a merged
normalized control response. One of the inputs is used
by a dominant behavior which suppresses the
responses of the non-dominant behavior when the first
is completely activated (ai=1). However, when the

NQL-Behav ior 1

NQL-Behav ior 2

NQL-Behav ior 4S
T
I

M
U
L
U
S

NQL-Behav ior 3se
ns

or
s

HYBRID
COORDINATOR

n21

D

ND

n34

D

ND

n2’1’

D

ND

co
nt

ro
l

ac
tio

n

Figure 2: Behavior-based architecture with the hybrid

coordination system.

vi=(vi,x, vi,z , vi,yaw);

ai=[0 1]

vi=(vi,x, vi,z , vi,yaw);

ai=[0 1]

rd

rnd

ri
Dominant

Non-dominant

ni

ai ad + and ·(1 - ad)
2

if (ai>1) ai=1

ai ad + and ·(1 - ad)
2

if (ai>1) ai=1

Vi Vd·ad/ai +vnd ·and·(1 - ad)
2 /ai

if (|vi|>1) vi= vi /|vi|

S bdbd

bndbnd
S

X
xi

vi

Y

Z

yawi

zi

X
xi

vi

X
xi

vi

Y

Z

yawi

zi
Y

Z

yawi

zi

Figure 3: Normalized output of a behavior and

equations of the hierarchical hybrid node.

dominant behavior is only partially activated (0<ai<1),
the final response will be a combination of both
inputs. The basic idea is to use the optimized paths
from cooperation when the predominant behavior is
not completely active. Non-dominant behaviors can
modify the responses of dominant behaviors slightly
when they aren’t completely activated. When non-
decisive situations occur, cooperation between
behaviors is allowed. Nevertheless, robustness is
present when dealing with critical situations. The
hybrid nodes do not need any tuning phase. The
coordination of a set of behaviors is defined
hierarchically, classifying each behavior depending on
its priority.

3. Neural-Q_learning Based Behaviors

A Neural-Q_learning approach is used to learn the
mapping between the state and action spaces (policy).
The state space is the sensor information perceived by
the robot and is needed by the behavior in order to
accomplish its goal. The action space is the velocity
set-points the robot should follow.

3.1 Q_learning

Q-learning [12] is a temporal difference algorithm, see
[9], designed to solve the reinforcement learning
problem (RLP). Temporal difference algorithms solve
the RLP without knowing the transition probabilities
between the states of the Finite Markov Decision
Problem (FMDP), and therefore, in our context, the
dynamics of the robot environment does not have to be
known. Temporal difference methods are also suitable
for learning incrementally, or online robot learning.
The importance of online learning resides in the
possibility of executing new behaviors without any
previous phases such as “on-site manual tuning” or
“data collection + offline learning”. Another important
characteristic of Q_learning is that it is an off-policy
algorithm. The optimal state/action mapping is learnt
independently of the policy being followed, which is
very important in our approach because all the
behaviors can be learnt even if they are not controlling
the vehicle.

The original Q_learning algorithm is based on
FMDPs. It uses the perceived states (s), the taken
actions (a) and the received reinforcements (r) to
update the values of a table, denoted as Q(s,a) or Q-
function. If state/action pairs are continually visited,
the Q values converge to a greedy policy, in which the
maximum Q value for a given state points to the
optimal action. Figure 4 shows the Q_learning

algorithm. There are several parameters which define
the learning evolution:
• γ: discount rate [0 1]. Maximization of future
rewards. For γ=0, only immediate rewards are used.
• α: learning rate [0 1].
• ∈: random action probability [0 1]. Exploitation
versus exploration. ∈-greedy action.

1. Initialize arbitrarily
2. Repeat:
 (a) s the current state

ˆ (b) choose an action that maximizes over all
 (c) -greedy action, carry out action in the world with pro

ˆ

t

t t

t

(s,a)

a Q(s ,a) a
a

Q

ε

←

1 1t+1a

bability
 (1-), otherwise apply a random action (exploration)
 (d) Let the short term reward be , and the new state be s

ˆ ˆ ˆ ˆ (e) [- + max
t t+1

t t t t t t t t t

r
Q(s ,a) = Q(s ,a)+ r Q(s ,a) Q(s ,a

ε

α γ + +])

Figure 4: Q_learning algorithm.

3.2 Neural Q_learning

When working with continuous states and actions, as
is usual in robotics, the Q-function table becomes too
large for the required state/action resolution. In these
cases, tabular Q-learning needs a very long learning
time and memory requirements which makes the
implementation of the algorithm in a real-time control
architecture impractical. The use of a Neural Network
(NN) to generalize among states and actions reduces
the number of values stored in the Q-function table to
a set of NN weights. The implementation of a feed-
forward NN with the backpropagation algorithm [6] is
known as direct Q_learning [3].

The Direct Q-learning algorithm has no convergence
proofs and turned out to be unstable when we tried to
learn a behavior. The instability was caused by the
lack of weight updating in the whole state/action
space. The optimal Q-function was only learnt in the
current state zone. The Q-values learnt in past states
were not maintained and therefore had to be learnt
each time causing the instability.

To solve this limitation the proposed Neural-
Q_learning based behaviors maintain a database of the
most recent learning samples. All the samples of this
database are used at each iteration to update the
weights of the NN. This assures a generalization in the
whole visited state/action space instead of a local
generalization in the current visited space. Each
learning sample is composed of the initial state st, the
action at, the new state st+1 and the reward rt. The
action used by the NQL behaviors, is the one sent by

the coordinator to the low-level control system. For
this reason, a feedback of the last generated control
action is needed, see figure 2. Finally, in order to
prevent a huge database, each new learning sample
substitutes old samples closer than a threshold. The
distance between samples is geometrically computed
from both {st, at, rt} vectors. It is important to maintain
a database with the most recent samples to keep the
current dynamics of the environment.

The structure and phases of the proposed neural
Q_learning algorithm is shown in figure 5. The
Q_function approximated by the NN is:

1 1t+1a
ˆ ˆ+ max

t t t t t
Q(s ,a) = r Q(s ,a)γ + +

Therefore, its inputs are the continuous state and
actions, and the output is the Q_value. According to
the output value, the error is found and the weights are
updated using the standard backpropagation algorithm.
A two layer NN has been used with a hyperbolic
tangent and lineal activation functions for the first and

Reinforcement
function

state s t+1 action at

Q(st,i ,a t,i) = rt,i +γ · maxQa’(st+1,i,a’)

Back-
propagation
learning

unit
delay

s t+1 rt s t at

amax|Q(s
t+1

,a
max

)
=max(Q(s,a))

Q(s
t+1

,a
max

)

ε-greedy

amax

P
H

A
S

E
 1

P
H

A
S

E
 2

P
H

A
S

E
 3

R
E

W
A

R
D

C

O
M

P
U

TA
TI

O
N

N
N

 W
E

IG
H

TS

U
P

D
A

T
E

A
C

TI
O

N

S
E

L
E

C
T

IO
N

S

LE
A

R
N

IN
G

S

A
M

P
L

E
S

 U
P

D
A

T
E

1

-1
A

-1

0

10

P
H

A
S

E
 4

action at+1

s t+1

Figure 5: Neural Q_learning algorithm structure.

second layers respectively. Weights are initialized
randomly. To find the action which maximizes the
Q_value, the network evaluates all the possible actions
which could be applied. Although actions are
continuous, a finite set, which guarantees sufficient
resolution, is used.

To maintain the real time execution of the behavior,
two threads are used. The more priority thread is in
charge of acquiring new learning samples and
generating control actions at the frequency of the
behavior-based control system. Phases 1,2 and 4 are
computed in this thread, see figure 5. The second
thread is used to continually update the weights of the
NN, phase 3. It has less priority than the rest of the
control processes and therefore it will use the
remaining computational power to learn the NQL-
based behaviors.

3.3 Reinforcement Function

The reinforcement function determines the policy
learnt by the behavior. The definition of this function
requires knowledge from a human designer. The
function associates each state with a reward “r”. In our
approach, we have reduced the possible values to
three: {-1, 0, 1}. By associating the desired states with
“r=1” and the undesired with “r = -1”, the algorithm
learns how to act.

4. URIS’s Experimental Setup

The proposed target following task, to test the NQL-
based behaviors, consisted of following a target by
means of a color camera. Experiments were carried
out with the small-sized underwater robot URIS (hull
∅ 0.35m), an Autonomous Underwater Vehicle
(AUV) developed at the University of Girona. URIS is
a non-holonomic robot stable in pitch and roll, where
only x, z and yaw degrees of freedom (DOF) can be
controlled.

A water tank (4.5 m. diameter and 1.2 m. depth) was
used to test the control system and to perform the
learning experiments, see figure 6. Due to the
shallowness of the tank, the vehicle was only moved in
the horizontal plane maintaining an intermediate
depth. The position and the velocity of the vehicle was
computed by a computer vision system which used a
down looking camera attached to URIS and a coded
pattern placed on the bottom of the tank. The pattern
contains several dots with two different colors, gray
and black. The vision system estimates the six-
dimensional position of the vehicle by tracking the

(1)

Figure 6: Water tank with the positioning pattern used

in the experiments with URIS.

TARGET RECOVERY

HYBRID
COORDINATOR

LOW-LEVEL
CONTROL

URIS

TARGET FOLLOWING

nc

D

ND

T
A

R
G

E
T

 P
O

S
IT

IO
N

 A
N

D
 D

E
R

IV
A

T
IV

E

U
R

IS
 P

O
SI

T
IO

N
 A

N
D

 V
E

L
O

C
IT

Y

st

at-1
NQL x dof

NQL y dof

a’x

a’y

TELEOPERATION

WALL AVOIDANCE

nc

D

ND

nc

D

ND

sx,ax,r xsx,ax,r xsx,ax,r x

sx,ax,rxsx,ax,rxsx,ax,rx

ENVIRONMENT
PERCEPTION:

TARGET CAMERA

POSITIONING CAMERA

at

, ,X Z Yaw& & &

MANUAL
COMMANDS

Figure 7: URIS’s target following task scheme.

detected dots and solving the equations of the
projective geometry. The pattern also contains some
marks to reset the estimated position to an absolute
position inside the water tank. The vehicle’s velocity is
also estimated. The main utility of this positioning
system was to provide velocity feedback to the low
level controller (, ,x z yaw& &&). Also the absolute position
was used by the behavior-based high level control
system.

The control architecture of the robot was based on a
real time distributed object oriented framework which
assures the deadlines of all the task. Three different
computers were used in these experiments, the
onboard PC-104 which runs QNX and contains all the
control objects, an external PC running Windows
which computes the vision objects, and finally, another
external PC running QNX used as HMI.

The control scheme of the target following task can be
seen in figure 7. Four behaviors were used. The wall
avoidance behavior had the highest priority and
prevented the vehicle to collide with the walls of the
water tank. The teleoperation behavior was used to
move manually the robot. The target following

behavior was the one learnt with the proposed NQL
algorithm. And finally, the target recovery behavior
spun the robot in order to find the lost target. The
output action of each behavior was a 2D-speed vector
(X and Yaw velocities) and an activation level, which
determined the final output according to the hierarchy
of behaviors.

5. Results

As previously stated, the experiments were designed to
test the feasibility of the NQL-based behaviors. The
target following behavior was implemented with 2
different NQL algorithms (one for each DOF, X and
Yaw). In these experiments, only one NQL algorithm
was learnt at a time, no simultaneous learning between
different DOFs or behaviors was tested. Each DOF
received information about the current state and the
last action taken. The state was the position of the
target in the image as well as its derivative. A
reinforcement function gave different rewards (-1, 0 or
1) depending on the distance at which the target was
detected. Activation was 1 when the target was seen.

Several trials were carried out in order to find the best
learning performance. The sample time of the NQL-
based behaviors was set at 0.3 [s], while the one of the
low level controllers was 0.1 [s]. The robot was able to
learn how to move in both DOFs achieving the target
following task. The parameters we used in the NQL
algorithms can be seen in table 1, and figure 8 shows
the normalization used for the target states. The learnt
state/action optimal mappings can be seen in figures 9
and 10. Note the obtained non-lineal mappings.

 Table 1: Specifications of the target following
NQL behavior

Sensors color camera + target detection by color
segmentation + object tracking

Codification [fx, fy] : normalized target position [-1, 1]
Activation if target detected af= 1; else af= 0
DOF X YAW
State fx : position

fvx : derivative
fy : position
fvy : derivative

Action afx : lineal speed (X) afy:angular speed (yaw)
Reinfor-
cement
function

If 0.4>fx>0.1: rfx = 1
if 0.5>fx>0.4: rfx = 0
else rfx = -1

If |fy| < 0.2 : rfy = 1
else if |fy| < 0.4 : rfy = 0
else rfy = -1

NQL
parameters

α=0.1; γ=0.9; ∈=0.3
database size = 50
samples

α=0.1; γ =0.9; ∈=0.3
database size = 50
samples

NQL
structure

inputs=3: [fx, fvx, afx]
output: Q_value
layer 1: 6 neurons
layer 2: 1 neuron

inputs= 3 : [fy, fvy, afy]
output: Q_value
layer 1: 6 neurons
layer 2: 1 neuron

1 -1fx0

fx
fy

1

-1

0

fy

camera
target

URIS

field of view

Figure 8: Coordinates of the target respect URIS.

Figure 9: State/action mappings learnt for the target

following behavior in the X DOF.

Figure 10: State/action mappings learnt for the target
following behavior in the Yaw DOF.

The NQL behaviors showed a good robustness and
presented a small convergence time (only 40 [s]).
Figure 11 shows six consecutive learning attempts by
the target following behavior in the Yaw DOF. The
figure also shows that the averaged reward increased,
demonstrating that the behavior was being learnt. In
this experiment, the robot was learning how to turn in
order to keep the target in the center of the image. It
can be seen that the algorithm starts exploring the state
in order to find maximum rewards. Once the whole
state had been explored, the algorithm exploited the
learnt Q_function and obtained the maximum
rewards.

Figure 11: Behavior convergence proof. Results of six
different learning trials of the target following

behavior in the Yaw DOF. The averaged rewards over
the last 20 iterations are shown. The average of the six

experiments can also be seen. Accumulated rewards
increased in measure as the behavior was learnt.

Figure 12: Online learning evolution and behavior
testing of the target following behavior in the X DOF.

The states, rewards and actions are shown above.

Figures 12 and 13 show a typical online learning
evolution of the X and Yaw DOFs respectively. It can
be seen how the vehicle explored the state in the
learning phase. For the X DOF, the learning time was
100 seconds and for the Yaw DOF was 60 seconds
approximately. This difference was due to the fact that
the optimal mapping for the X DOF is more nonlinear
than for the Yaw DOF, see figures 9 and 10.
Immediately after the learning phase, the behavior was
tested applying with the teleoperation behavior, an
action that moved the vehicle away from the target. It
can be seen that when the target following behavior
took control, the target was reached again.

testing learning phase

teleoperation behavior

Figure 13: Online learning evolution and behavior
testing of the target following behavior in the Yaw
DOF. The states, rewards and actions are shown

above.

6. Conclusions

A proposal of Neural-Q_learning based behaviors have
been presented and tested with a real robot in a target
following task. The approach proved suitable for
learning behaviors from a reactive control scheme. The
Neural Network generalization of the Q_function was
able to map an optimal state/action policy in a short
time. The use of a database with the most significant
learning samples assures the convergence of the
algorithm. The paper has demonstrated the algorithm’s
suitability showing real results with the underwater
robot URIS. In the presented work, each DOF was
learnt independently. Future work will concentrate on
simultaneously learning different DOFs and behaviors.

Acknowledgments

This research was sponsored by the Spanish
commission MCYT (DPI2001-2311-C03-01).

References

[1] R. Arkin, Behavior-based Robotics. MIT Press,
1998.

[2] J.A. Bagnell and J.G. Schneider, ‘Autonomous
Helicopter Control using Reinforcement
Learning Policy Search Methods’, IEEE
International Conference on Robotics &
Automation, Korea, 2001.

[3] K. Baird, ‘Residual Algorithms: Reinforcement
Learning with Function Approximation’,

Machine Learning: Twelfth International
Conference, San Francisco, USA, 1995.

[4] M. Carreras, J. Batlle and P. Ridao, ‘Hybrid
Coordination of Reinforcement Learning-based
Behaviors for AUV control’, IEEE/RSJ IROS,
Hawaii, USA 2001.

[5] C. Gaskett, D. Wettergreen and A. Zelinsky, ‘Q-
learning in continuous state and action spaces’,
Proc. of the 12th Australian Joint Conference on
Artificial Intelligence, Sydney, Australia, 1999.

[6] S. Haykin, Neural Networks, a comprehensive
foundation. Prentice Hall, 2nd ed., 1999.

[7] N. Hernandez and S. Mahadevan, ‘Hierarchical
Memory-Based Reinforcement Learning’,
Fifteenth International Conference on Neural
Information Processing Systems, Denver, USA,
2000.

[8] W.D. Smart and L.P. Kaelbling, ‘Practical
Reinforcement Learning in Continuous Spaces’,
Intern. Conference on Machine Learning, 2000.

[9] R. Sutton, and A. Barto, Reinforcement Learning,
an introduction. MIT Press, 1998.

[10] Y. Takahashi, M. Takada, and M. Asada,
‘Continuous Valued Q-learning for Vision-
Guided Behavior Acquisition’. Intern.
Conference on Multisensor Fusion and
Integration for Intelligent Systems, 1999.

[11] M. Takeda, T. Nakamura and T. Ogasawara,
‘Continuous Valued Q-learning Method Able to
Incrementally Refine State Space’, IEEE/RSJ
IROS, Hawaii, USA 2001.

[12] C.J.C.H. Watkins and P. Dayan, ‘Q-learning’,
Machine Learning, 8:279-292, 1992.

testing learning phase

teleoperation
behavior

