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Abstract. Multivariate imaging technologies such as Dynamic
Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) have re-
cently gained an important attention as it improves tumour detection.
Modelling of contrast media uptake and washout kinetic parameters
which are closely related to physiological and anatomical features helps
to diagnose and detect a possible cancer. One issue that does not gen-
erally receive much attention is the process of detecting regions of in-
terest (ROIs). An automatic region-of-interest (ROI) selection method
is presented to avoid the time consuming and subjective task of manual
ROI selection, which significantly affects reproducibility and accuracy of
measurements.

1 Background

Among the different types of cancer, breast cancer has one of the largest inci-
dences in the women population and is one of the most common causes of death
in occidental countries. X-ray imaging is the most common modality used for
the detection of breast cancer. Although in general it provides sufficient informa-
tion, in some cases it is not conclusive and additional modalities which provide
complementary information need to be used, such as magnetic resonance (MRI)
and ultrasound (US) images.

DCE-MRI is based on capturing tissue magnetic properties during a short
time period when a contrast enhancement agent has been injected to the
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Fig. 1. Sample of temporal study with MR mammography, where t1 is the pre-
contrast selected slice from whole study and t2-t7 are the six post-contrast slices.
While parenchyma tissue remains unaffected by the contrast agent, the intensity of
the suspicious regions shows an enhancement.
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patient. The increase in intensity throughout the DCE-MRI sequence is a non-
linear function of the uptake of a contrast agent (typically Gadolinium DTPA).
Several studies point out DCE-MRI as a valuable tool to discriminate between
benign and malign breast lesions [6,10]. Normal and abnormal tissue will re-
spond differently to the amount of contrast uptake as it is shown in Figure 1.
This contrast differences allows a better visualisation of many different types of
tissue abnormalities and disease processes.

A common study for DCE-MRI data consists in looking for breast areas with
rapid and strong enhancement of the intensity signal (enhanced by the contrast
agent), followed by a quick descent. In terms of contrast uptake-washout behav-
iour, commonly used approaches for selecting the ROI under evaluation consist
of manually outlining the suspicious area. This ROI is within the area of highest
contrast agent uptake. Since manually choosing this ROI is more likely to be
affected by subjective decisions, it is commonly accepted that inter-observer and
intra-observer variability should be minimised hence, reducing reproducibility
errors [6]. The kinetic curve is formed by calculating the average enhancement
over a ROI at all time steps, where the enhancement is defined as the percent-
age of signal intensity increase relative to the pre-contrast signal intensity as
proposed in the study by Kuhl et al. [7] (see Figure 2).

(a) (b)

Fig. 2. Sample of kinetic behaviour where (a) shows the kinetic profile behaviour on
manually selected ROI along seven time steps and (b) the typical signal enhancement
curves [7] that classify the different profiles as benign tissue (Ia-Ib), suspicious tissue
(II), malign tissue (III), and parenchyma response. All curves start with pre-contrast
signal within the ROI.

Efforts done in DCE-MRI data analysis include two main strategies, one of
them is based on conventional pattern recognition techniques [2] by studying the
shape of the extracted profile looking for patterns on the shape using artificial
neural networks, support vector machines, or other classification approaches. On
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the other hand, the uptake-washout behaviour of abnormal tissue can also be
studied by using pharmacokinetic models which try to describe the time varying
distribution of contrast agent during the exchange between blood plasma and
extracellular space compartments [1]. In addition the mixture of both strategies
has also obtained good results [8]. Mainly these works aim to distinguish between
malign or benign ROI, not focusing on obtaining valid ROIs from the whole
volume, whereas the goal of our work is to develop an automatic method to detect
suspicious regions in DCE-MRI. This localisation of ROI candidates is performed
depending on the kinetic and morphological parameters of the kinetic profile.

Briefly outlining the structure of the paper, Section 2 presents our method
while Section 3 shows evaluation results. The paper ends with conclusions and
further work.

2 Materials and Methods

We have evaluated three subjects with DCE-MRI study (GE, Signa LX 1.5T ,
both breasts, fat saturation, coronal, 512x320 matrix, 1.5mm slice thickness).
One pre- and six post-contrast one minute series were obtained. In DCE-MRI,
the injection of a contrast agent has the property of enhancing highly vascu-
larised regions which is characteristic of malignant regions. In those studies, the
patient movement is common as MR acquisition is a relatively long procedure
(about 10 minutes). Hence, image registration is a key processing step to im-
prove diagnosing results, correcting slight movements of the patient during the
imaging process. Registration has generally been applied to dynamic sequences
corresponding a pre-contrast volume to a volume after a contrast agent has been
injected. Acquired volumes were automatically registered using CADStreamTM

software.
The method consists of four steps: optimal enhancement localisation, breast

tissue segmentation, feature extraction and kinetic curve model identification
which are detailed in next sections.

2.1 Optimal Enhancement Localisation

Even within a well manually outlined ROI, the shape of kinetic curve extracted
from different points within the same ROI presents a high inhomogeneity [2],
thereby looking for ROIs with desirable kinetic behaviour (rapid enhancement
and posterior washout curve) within the volume obtains a considerable amount
of false positives (FP). In order to minimise the number of FP, we propose a
novel method to drive the search of ROIs.

An exploration consists of seven volumes (Vi with i ∈ (1..7)), one pre-contrast
and six post-contrast acquisitions. We propose the use of a maximum intensity
projection (MIP) using the seven volumes to produce a Key-volume that captures
the essential enhancement of the whole DCE-MRI exploration. Thus, within the
Key-volume each Key-slice Si,j is calculated as the maximum intensity value
along the projecting ray trough the stack of images using the j-th slice taken
from each Vi volume.



132 D. Raba et al.

Once the Key-volume has been obtained, next step consists of segmenting
the key-volume to obtain: (1) a breast segmentation into background and breast
volume and (2) a set of regions of interest within the breast. For this task, an un-
supervised image segmentation is desirable avoiding the tedious and error prone
task of manually segmenting the images. Next section presents our proposal in
this direction.

2.2 Breast Tissue Segmentation

Certainly, a global segmentation is required since MR breast images show not
only breast regions, but also the chest area and non-homogeneous background.
Thus, the MR volume is split into breast and non-breast regions. The algorithm
used is based on simple morphological filters (two openings and one dilation
filtering). Next, a threshold is used to extract the breast region from the back-
ground. The value of this threshold is determined using the minimum value
between the first two most important peaks, which are the peaks of the back-
ground and the breast tissue. Subsequently, a Connected Component Labeling
algorithm is used in order to recover the largest area, merging the smaller re-
gions that belong to the breast. The chest area has also been extracted from the
image by using the profile segmentation of MRI slice between the two breasts,
in order to remove the artifacts from the hearth and other areas not related to
the breast.

Once the breast profile is detected, a step forward is to identify the differ-
ent breast tissue regions. Our internal tissue segmentation approach is based on
the Expectation-Maximization algorithm (EM) on a mixture of Gaussians [4].
The EM approach allows to assign each pattern to belong to a specific clus-
ter in a Gaussian Mixture model. In this probabilistic model, each pattern is
characterised by a set of mixtures of Gaussian:

p(xi; M) =
M∑

m=1

πmgm(xi) (1)

where gm is a Gaussian distribution and πm a prior distribution (
∑

m πm = 1)
and m is the number of mixtures, the different tissue types in our case. The
model parameters and cluster membership are determined by maximizing the
log-likelihood estimator:

l(M) =
∑

i

log(p(xi; M)) (2)

This second step is efficiently done using the Expectation Maximization algo-
rithm [4]. Segmentation process is carried out using 3D intensity data from the
previously obtained Key-volume.

2.3 Feature Extraction

In order to detect candidate valid ROI we focus on detecting quickly and strongly
enhanced regions. These valid ROIs are conceived as possible malignant re-
gions. Therefore, each region obtained after the segmentation step, represents a
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ROI candidate. Nevertheless, we have to deal with wide range of regions sizes.
Thereby, assuming that the possible lesion is a candidate ROI and that small
regions are more susceptible to be a lesion, a uniform number of samples is
obtained for each segmented region. Hence, N points randomly uniformly sam-
pled, without replacement, are selected as seeds from the values in each region.
A kinetic curve is obtained by averaging over a w × w window around the seed.

Additionally, five features are extracted from each kinetic curve to depict
maximum contrast enhancement (Fn1), time to peak (Fn2), uptake rate (Fn3),
washout rate (Fn4) [2] and curve angles (Fn5). The intensity signal of each sample
is represented by St at time step t(1, 2..., T ), S∗ represents the maximum of the
T signal intensity values and p is the time point of S∗. Thus,

S∗ = max
t=1,2,...T

St, p = arg max
t=1,2,...T

St, (3)

and the four features are defined as,

Fn1 = (S∗ − S1)/S1, Fn2 = p, Fn3 =
Fn1

Fn2
, Fn3 =

Fn1

Fn2
(4)

Fn4 =

{
S∗−ST

S1(T−p) ifp �= T,

0 ifp = T.
, Fn5 = arctan(St+1, St), t(1, 2..., T − 1) (5)

2.4 Kinetic Curve Model Identification

With the feature extraction process a set of features including the uptake profiles
are obtained, which should be grouped into three main behaviours: parenchyma,
benign or suspicious/malignant. In order to cluster this data we have used a
partitional clustering algorithm such as K-Means. It aims to minimise the total
within-cluster dispersion, namely

e2(K) =
K∑

k=1

∑

i∈Ck

||xi − ck||2 (6)

where ck is the centroid of cluster Ck. K-means clustering is applied by using
the set of automatically extracted profiles. An unweighted city-block distance
metric is used to evaluate the distance between two profiles. Defined on R

n, it is

d(a, b) =
n∑

i=1

|bi − ai| (7)

where a and b are vectors in R
n with a = (a1, ..., an) and a = (b1, ..., bn).

Once the profiles are clustered, we calculate a distance (Eq. 7) within the
cluster to assign a probability of belonging to that class. An expert radiologist
labels each cluster as being normal, benign or malign. As a result, we obtain for
each region a classification into normal, benign or malign and the profile mem-
bership probability to its class. Thus, regions with higher probabilities within
the suspicious class will be reported as final ROIs.
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3 Evaluation and Results

The evaluation of the automatic and manual ROI detection is presented using
confusion matrices [5] and a leave-one-out scheme over a k-Nearest Neighbours
classifier algorithm. In the leave-one-out methodology, each ROI is classified
using a model trained with the rest of ROIs, and this procedure is repeated until
all ROIs have been used as a query image.

The k-Nearest Neighbours classifier [5] (kNN) consists of classifying a non-
classified vector into the k most similar vectors found in the training set. Because
kNN is based on distances between sample points in feature space, features need
to be re-scaled to avoid that some features are weighted much more than others
biasing the results. Hence, all features have been normalised to unit variance and
zero mean. For the kNN classifier, the membership value of a class is different
from zero if there is at least one neighbour (of k possible neighbours) belonging
to this class. The membership value for each class will be the sum of the inverse
Euclidean distances among each neighbour of the class and the pattern. A final
unit normalisation between all the membership values is required.

To evaluate our approach we have used a DCE-MRI from three patients.
Parenchyma, benign and suspicious/malign tissue types are present in this im-
ages and manually sampled by an expert providing a total of 106 samples. Pro-
gram execution is done using the following parameters: Key-volume segmenta-
tion into four classes and automatic sample labeling using K-Means with K value
fixed depending on the desired number of classes. Additionally, each confusion
matrix include the kappa (κ) coefficient [3]. This is used as a means of estimating
agreement in categorical data, and is computed as:

κ =
P (D) − P (E)

1 − P (E)
(8)

where P (D) is the proportion of times the model values was equal to the actual
value (the diagonal terms) and P (E) is the expected proportion by chance. A κ
coefficient equal to one means a statistically perfect model whereas a value equal
to zero means every model value was different from the actual value. Table 1
shows a commonly used interpretation of the various κ.

Table 2(b-d) shows classification results for the proposed method, (A-kNN)
the k-Means profile clustering and the subsequent classification into three and
two classes. Comparison with manual profile labelling (M-kNN) is also provided
(Table 2(a-b)) in order to evaluate the benefits of using an automatic clustering
such as k-Means.

In order to compare classification results between normal and automatic clus-
tered profiles, we must take the possible clustering disagreement into account.
That is, different ROIs have different labels and therefore classification could
have been using slightly different data. Nevertheless, the labelling agreement has
been quantified as being around 77%, which is fairly acceptable. Moreover this
error is gathered between parenchyma and normal classes, remaining the suspi-
cious class quite unaffected. Keeping this issue in mind classification results can
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Table 1. Common interpretation of the various kappa values

Agreement Poor Slight Fair Moderate Substantial Almost Perfect
κ < 0 [0, 0.20] [0.21, 0.40] [0.41, 0.60] [0.61, 0.80] [0.81, 1.00]

be compared drawing interesting conclusions. Although more data would be de-
sirable, classification results using automatic clustering seem to have a positive
impact in reducing the number of False positives (classification says is suspicious
when is not) while keeping similar True positive values. This is specially evident
for the two-class classification problem. For instance, slightly better result are
obtained with automatically labeled data (A-kNN) in comparison with manu-
ally labeled data (κ = 0.93 vs κ = 0.89) which can be due to its automatically
clustered origin. Although these results seem to be promising, further improve-
ments and testing on larger database will show the feasibility of our approach
for providing robust ROI detection.

Table 2. Confusion matrices of the kNN classifier. While (a) show results obtained
using manually labelled data (κ = 0.91) and (b) automatically labeled data (κ = 0.90)
taking into account three classes, (c) presents the results using a simplification into two
classes (Parenchyma-Normal vs Suspicious, using manually labelled data (κ = 0.89)
and (d) automatically labelled (κ = 0.93).

M-kNN 3 classes
Parenchyma Normal Suspicious

T
ru

th

Parenchyma 47 1 2
Normal 1 36 1

Suspicious 0 1 17

A-kNN 3 classes
Parenchyma Normal Suspicious

T
ru

th

Parenchyma 44 2 0
Normal 1 42 0

Suspicious 0 3 14

(a) (b)

M-kNN 2 classes
Non Suspicious Suspicious

T
ru

th Non Suspicious 84 4
Suspicious 0 18

A-kNN 2 classes
Non Suspicious Suspicious

T
ru

th Non Suspicious 87 1
Suspicious 1 17

(c) (d)

4 Conclusions

An automatic method to detect suspicious area in Dynamic Contrast Enhance-
ment MRI data have been presented in this paper. Besides, a set of discriminant
features have been tested using a kNN classifier obtaining satisfactory results
compared to manually labelled data. Although the present work has been based
on a reduced set of cases, promising results have been obtained. However, this
needs to be tested clinically far more thoroughly than we have been able to do to
date. The fact that the training of the system is based on direct-image data, not
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depending on an signal modelling step means that the method can be adapted
to other imaging protocols and different imaging location like prostate, liver or
brain imaging.
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