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Abstract 
This paper represents a first step towards a navigation system based on a 
ARGONAUTTM DVL (Doppler Velocity Log) sensor for an underwater 
remotely operated vehicle (ROV). The sensor measures the water currents, 
the vehicle ground speed, the altitude, the depth and its attitude. The 
navigation system is formulated in a way that is able to deal with the 
future integration of new sensors like a DGPS. Hence, sensor fusion and 
filtering techniques are used to get a position estimate using data from all 
sensors. One of the widely applied strategies is the Kalman filter. In this 
paper an EKF-based navigation system using a DVL sensor and the non-
linear dynamic model of an underwater robot is proposed, implemented 
and evaluated through simulation. 

1 Introduction 

The navigation system is responsible for the location (position & orientation) of the vehicle 
in the environment relative to some fixed coordinate system. Its performance is essential 
for the ROV or AUV (Autonomous Underwater Vehicle) in order to be able to maneuver 
between waypoints as well as to return to specific locations within the environment without 
becoming lost. For surface navigation, DGPS is the widely used method. Nevertheless, it is 
well known that DGPS cannot be used under the water. In order to get absolute position 
measurements, it is possible to use acoustic transponder networks like LBL (Long Base 
Line) , SBL (Short Base Line) or USBL (Ultra Short Base Line). LBL is based on the use 
of at least 3 anchored transponders periodically interrogated by the robot, which computes 
the range to each transponder by measuring the times of flight. Then a triangulation 
process allow to compute the absolute position. The drawback of LBL, is due to the need 
of deploying, previously to operation, the transponders as well as the calibration process 
that has to be carried out. Modern systems, like GIB (GPS Intelligent Buoys), work as an 
inverted LBL system which use surface buoys equipped with DGPS incorporating a self-
calibration procedure. The SBL and USBL simplifies the operational procedure. In the 
first, two transducers are mounted on the ship’s hull as far apart as possible. For the 
second, only one transducer is needed, hence, the system becomes more portable and 
flexible. Although USBL and SBL systems do not require additional equipment to be 
deployed in the water or on the seafloor, they do require careful shipboard calibration. 
Although those systems are currently available, there still expensive for very low cost 



ROVs like the one we are dealing with, GARBI (see fig.1). Cheaper navigation systems 
are commonly based on the integration of several low cost sensors, like for instance a DVL 
for estimating the 3D velocity vector, an INS (Inertial Navigation System) for estimating 
the attitude (commonly accelerations are not used for low speed vehicles), and a depth 
sensor (commonly a pressure or an acoustic sonar sensor). For a better description of the 
systems described above, refer to (Blidberg et al. 1995) and the references therein. 

In this paper we present a simple navigation system based on the ARGONATTM DVL 
sensor which includes measurements of ground speed, heading, altitude and depth. All 
the measurements are integrated through an EKF (Extended Kalman Filter) which makes 
use of the non-linear dynamic model of the GARBI ROV. The paper is organized as 
follows. First, GARBI ROV and the ARGONATTM DVL sensor are described in sections 
2 and 3. The dynamic model of the robot is briefly presented in section 4. Next section 
presents the main aspects of the proposed extended Kalman Filter. Section 6 presents the 
design of  experiments and section 7 reports their results. Finally, the conclusions are 
presented in the last section. 

2 GARBI ROV 

GARBI (Amat et al. 1996), see fig. 1a, was designed with the aim of building an 
underwater vehicle using low cost materials, such as fiber-glass and epoxy resins. To 
solve the problem of resistance to underwater pressure, the vehicle is servo pressurized 
with a compressed air bottle. The vehicle has 4 thrusters, two for horizontal movements 
(axis x, T1 and T2) and two for vertical movements (axis z, T3 and T4). Due to the 
distribution of the weights, the vehicle is completely stable. Pitch and roll angles are 
insignificant. For this reason the vertical and horizontal movements are totally 
independent. The number of controlled DOF is 3: heave, yaw and surge. The vehicle had 
several sensors: 2 compasses, 2 pressure sensors and 2 water speed sensors, but after the 
current reconstruction its navigation system will be principally based in an 
ARGONAUT DVL sensor and a DGPS. GARBI’s Dimensions are: length 1.3 m., 
height 0.9 m and width 0.7 m. Maximum speed is 0.5 knots. 

3 The ARGONAUT DVL sensor 

The SonTek/YSI Argonaut-DVL (Doppler Velocity Log) is a versatile sensor which 
measures the water currents, the vehicle speed over the sea floor, and the altitude. In 
addition, the system includes in the same package other sensors able to provide 
measurements of pressure (depth), water temperature, and attitude. The Argonaut DVL 
was developed primarily for the underwater vehicle industry because of their requirements 
for compact, versatile, and affordable components capable of withstanding full-ocean 
depths. The DVL's compact size, low power draw (<0.5W) and 600 m pressure rating 
make it the ideal instrument for experimental underwater vehicles. It is worth noting that as 
a speed sensor, the Argonaut DVL measures its speed relative to a user-programmable 
cell layer that is located far away from the vehicle. This feature allows the sensor to 
measure ocean current or vehicle speed away from the contamination caused by the vehicle 
itself. This is a key advantage of using an Argonaut Doppler instrument instead of 
electromagnetic or mechanical current meters. Furthermore, the Argonaut DVL does not 
require calibration or other significant maintenance, which keeps the long-term operational 
costs to a minimum. 
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Figure 1. (a) the GARBI ROV (b) ARGONAUT DVL. 

4 Model of an underwater vehicle 

As described in the literature (Fossen 1994) the non-linear hydrodynamic equation of 
motion of an underwater vehicle with 6 DOF, in the body fixed frame, can be 
conveniently expressed as1: 
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Through the manipulation of eq. (1) the robot acceleration can be computed. Velocity 
can be obtained through integration, and the position rate of change can be computed 
through the following kinematic transformation: 

( )E J Bη η υ= ⋅  (2) 

For GARBI ROV, the model can be simplified since it is stable in pitch and roll, so it 
can be formulated in 4 degrees of freedom. Section 5.2 shows the discrete-time model 
used for the experiments. The dynamic parameters needed in eq. (9), where previously 
identified through experimentation. Refer to (Ridao et al. 2001) for details about how the 
model was identified. 

5 Extended Kalman filter 

Due to the non-linear behavior of the dynamic model of an ROV, an extended Kalman 
filter has been considered as a convenient method to formulate the navigation problem 
(Grober & Hwang 1983). 
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1 All the equations shown here follow the standard nomenclature proposed in (Fossen 1994) 
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The fig. 2 shows the block diagram of the proposed navigation system. The output of the 
DVL system (the velocity, the depth and the orientation), is used as the measurement update 
for the EKF. The other input to the filter is the control input u, which is the vector of the 
generalized force (force and torque) applied by the propellers. 
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Figure 2. Block diagram of the proposed navigation system. 

In the following sections, the main components of the filter are presented. 

5.1 State vector 
To implement the filter the following state variables have been chosen: 

 ( )Trwvuzyxx ψ=  (8) 
The first 4 components are the 3D position and the heading of the vehicle, while the last 
4 components are the linear velocity vector and the angular speed. 

5.2 Discrete time model 
Adapting the eq. (1) and (2), and simplifying the model to 4 degrees of freedom the 
discrete time model shown in eq. (9) is obtained. The s vector is considered a model 
perturbation and represents the process noise. 
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5.3 Matrices of the filter 
To complete the filter it is also necessary to determine the following matrices: 

• A: the Jacobian matrix of partial derivatives of the model with respect to the state 
vector. 

• W: the Jacobian matrix of partial derivatives of the model with respect to the 
noise vector. 

• H: the Jacobian matrix of partial derivatives of the sensor model with respect to 
the state vector. 

• V: the Jacobian matrix of partial derivatives of the sensor model with respect to 
the noise vector. 

• Q: the covariance matrix of process noise. 
• R: the covariance matrix of measurement noise. 

All the previous matrices are not reproduced here due to space limitations. 

 ( ) 88001111100 xHdiagH ==  (10) 

The H matrix can take two different values, see eq. (10). The first value is used to merge 
the measures from the DVL sensor with the estimate of the model. Note that the sensor 
provides information about velocities in the three axis, depth and yaw orientation. The 
second configuration of H isolates the model estimation, or what is the same, no 
measurement update is taken into account to correct the prediction of the model. This 
value of the H matrix could be used to disconnect a damaged sensor, or to provide 
estimations within two measurements. 

 ( )22222222
rwvuZYXdiagQ σσσσσσσσ ψ=  (11) 

 ( )22222222
87654321 zzzzzzzzdiagR σσσσσσσσ=  (12) 

Q and R are covariance matrices which describe the process and measurement noises, 
both are considered diagonal to simplify the tuning of the filter. The values in the 
diagonal are the noise variances affecting the corresponding state variables. This values 
were selected experimentally. 

6 Experiment design 

The proposed navigation system was implemented using MATLAB scripts. The 
block diagram corresponding to the simulation system is shown in fig. 3. The input 
to the system is the generalized force vector (force and torque). Using this force as 
input, the dynamic model of the robot, together with a source of Gaussian unbiased 
noise acting as process noise, were used to simulate the trajectory followed by the 
robot. In the following paragraphs we will refer to this trajectory as the “real” 
trajectory. A new source of noise, the sensor noise, was added to the real trajectory 
to simulate the measurements provided by the sensor. Finally the force, as well as 
the measured trajectory, are used as the control input and the measurement update 
for the filter. Since the sensor frequency is 6 Hz, and the navigation system is 
expected to work at 10 Hz, the filters iterates at 10 Hz. The switch shown in the 



corresponding block of fig. 3 allows the filter to work exclusively predicting or 
predicting and updating. The switch was implemented, by selecting the correct H 
matrix (eq.10). 

 

 

Figure 3. Block diagram of the proposed experiments. 

7 Results 

The main goal to achieve in the experimental phase was to obtain a good set of tuning 
parameters (values for the covariance matrices Q and R) which assure a near optimal 
behavior of the filter. Hence a set of experiments were undertaken to find the values 
which minimizes the difference between the estimated and the “real” trajectory. 

Due to the pitch and roll stability heave is not coupled with any other DOF. Although 
yaw is coupled with surge and sway, for GARBI ROV this coupling is almost negligible. 
Hence, for both DOF uncoupled experiments were carried out at different speeds to tune 
the filter. On the other hand surge and sway DOFs are highly coupled depending also on 
the yaw DOF. Therefore, the filter parameters related to both DOF were simultaneously 
selected using the same set of trials. The experiments consisted on exciting the robot first 
in surge DOF, then in yaw DOF and finally in surge and yaw DOFs simultaneously. 

After the experiments were completed a set of values for the matrices Q and R were 
determined. The experimental results and the experience acquired about the filter 
behavior was used to choose the final values (see eq. (13) and (14)).  

 ( )4555 10·310·810·110·901.001.001.001.0 −−−−= diagQ  (13) 

 ( )004.004.004.004.004.000 22222diagR =  (14) 



In order to test the whole navigation system, a final experiment was carried out. In this 
case the robot was controlled to follow a spiral shaped trajectory where all the DOFs 
were implied in the movement 

Fig 4 shows the 3D trajectory followed by the robot. Note that the filtered trajectory 
matches quite well the “real” trajectory, reducing the noise present in the measurements 
by the means of the information given by the model. 
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