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Abstract 
 
 Autonomous Underwater Vehicles (AUV) 
represent a challenging control problem with 
complex, noisy, dynamics. Nowadays, not only 
the continuous scientific advances in underwater 
robotics but the increasing number of sub sea 
missions and its complexity ask for an 
automatization of submarine processes. This paper 
proposes a high-level control system for solving 
the action selection problem of an autonomous 
robot. The system is characterized by the use of 
Reinforcement Learning Direct Policy Search 
methods (RLDPS) for learning the internal 
state/action mapping of some behaviors. We 
demonstrate its feasibility with simulated 
experiments using the model of our underwater 
robot URIS in a target following task. 
 

1. Introduction 

 A commonly used methodology in robot 
learning is Reinforcement Learning (RL) [1]. In 
RL, an agent tries to maximize a scalar evaluation 
(reward or punishment) obtained as a result of its 
interaction with the environment. The goal of a 
RL system is to find an optimal policy which 
maps the state of the environment to an action 
which in turn will maximize the accumulated 
future rewards. Most RL techniques are based on 
Finite Markov Decision Processes (FMDP) 
causing finite state and action spaces. The main 
advantage of RL is that it does not use any 
knowledge database, so the learner is not told 
what to do as occurs in most forms of machine 
learning, but instead must discover actions yield 
the most reward by trying them. Therefore, this 
class of learning is suitable for online robot 

learning. The main disadvantages are a long 
convergence time and the lack of generalization 
among continuous variables. 
In order to solve such problems, most of RL 
applications require the use of generalizing 
function approximators such artificial neural-
networks (ANNs), instance-based methods or 
decision-trees. As a result, many RL-based control 
systems have been applied to robotics over the 
past decade. In [2], an instance-based learning 
algorithm was applied to a real robot in a corridor-
following task. For the same task, in [3] a 
hierarchical memory-based RL was proposed.  
Also, some RL applications on autonomous 
helicopter flights [17], optimization of robot 
locomotion movements [19] and robot 
weightlifting task [18] have obtained good results 
as well. 
The dominant approach has been the value-
function approach, and although it has 
demonstrated to work well in many applications, 
it has several limitations, too. If the state-space is 
not completely observable (POMDP), small 
changes in the estimated value of an action cause 
it to be, or not be, selected; and this will detonate 
in convergence problems [4].  
Over the past few years, studies have shown that 
approximating directly a policy can be easier than 
working with value functions, and better results 
can be obtained [5,6]. Instead of approximating a 
value function, new methodologies approximate a 
policy using an independent function 
approximator with its own parameters, trying to 
maximize the expected reward. Examples of direct 
policy methods are the REINFORCE algorithm 
[7], the direct-gradient algorithm [8] and certain 
variants of the actor-critic framework [9]. 
The advantages of policy methods against value-
function based methods are various. A problem 
for which the policy is easier to represent should 



  
 
be solved using policy algorithms [6]. Working 
this way should represent a decrease in the 
computational complexity and, for learning 
control systems which operate in the physical 
world, the reduction in time-consuming would be 
notorious. Furthermore, learning systems should 
be designed to explicitly account for the resulting 
violations of the Markov property. Studies have 
shown that stochastic policy-only methods can 
obtain better results when working in POMDP 
than those ones obtained with deterministic value-
function methods [10]. On the other side, policy 
methods learn much more slowly than RL 
algorithms using value function [5] and they 
typically find only local optima of the expected 
reward [11]. 
In this paper we propose an on-line direct policy 
search algorithm based on Baxter and Bartlett’s 
direct-gradient algorithm OLPOMDP [12] applied 
to a real learning control system in which a 
simulated model of the AUV URIS [13] navigates 
a two-dimensional world. The policy is 
represented by a neural network whose input is a 
representation of the state, whose output is action 
selection probabilities, and whose weights are the 
policy parameters. The proposed method is based 
on a stochastic gradient descent with respect to the 
policy parameter space, it does not need a model 
of the environment to be given and it is 
incremental, requiring only a constant amount of 
computation step. The objective of the agent is to 
compute a stochastic policy [10], which assigns a 
probability over each action. Results obtained in 
simulation show the viability of the algorithm in a 
real-time system. 
The structure of the paper is as follows. In section 
II the direct-policy search algorithm is detailed. In 
section III a description of all the elements that 
affect our problem (the world, the robot and the 
controller) are commented. The simulated 
experiment description and the results obtained 
are included in section IV and finally, some 
conclusions and further work are included in 
section V. 
 

2. The RLDPS Algorithm 

 A partially observable Markov decision 
process (POMDP) consists of a state space S, an 
observation space Y and a control space U. For 
each state i S∈ there is a deterministic reward 

r(i). As mentioned before, the algorithm applied is 
designed to work on-line so at every time step, the 
learner (our vehicle) will be given an observation of 
the state and, according to the policy followed at that 
moment, it will generate a control action. As a result, 
the learner will be driven to another state and will 
receive a reward associated to this new state. This 
reward will allow us to update the controller’s 
parameters that define the policy followed at every 
iteration, resulting in a final policy considered to be 
optimal or closer to optimal. The algorithm procedure 
is summarized in Table 1.  
 
 

TABLE 1 
Algorithm: Baxter & Bartlett’s OLPOMDP 

1: Given: 
• 0T >   
• Initial parameter values 

0
Kθ ∈  

• Arbitrary starting state i0 
 
2: Set z0 = 0 ( z0

K∈ ) 
 
3: for t = 0 to T do 
4:           Observe state yt 

5:       Generate control action ut according to current    
policy ( , )tyµ θ  

6: Observe the reward obtained r(it+1) 
 
7: Set  
 
 
8: Set  
 
9: end for 

 
The algorithm works as follows: having initialized 
the parameters vector 0θ , the initial state i0 and 

the gradient 0 0z = , the learning procedure will 
be iterated T  times. At every iteration, the 
parameters gradient tz will be updated.  
According to the immediate reward received 

1( )tr i + , the new gradient vector 1tz + and a fixed 
learning paramenterα , the new paramenter 
vector 1tθ + can be calculated. The current 

policy tµ is directly modified by the new 

parameters becoming a new policy 1tµ + that will 
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be followed next iteration, getting closer, as 
t T→  to a final policy Tµ that represents a 
correct solution of the problem. 
In order to clarify the steps taken, the next lines 
will relate the update parameter procedure of the 
algorithm closely. The controller uses a neural 
network as a function approximator that generates 
a stochastic policy. Its weights are the policy 
parameters that are updated on-line every time 
step. The accuracy of the approximation is 
controlled by the parameter [0,1)β ∈ .  
The first step in the weight update procedure is to 
compute the ratio: 
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for every weight of the network. In AANs like the 
one used in the algorithm the expression defined 
in step 7 of Table 1 can be rewritten as: 
 
  1t t t tz z yβ δ+ = +  (2)  
 
At any step time t, the term tz represents the 
estimated gradient of the reinforcement sum with 
respect to the network’s layer weights. In addition, 

tδ refers to the local gradient associated to a 
single neuron of the ANN and it is multiplied by 
the input to that neuron ty .  In order to compute 
these gradients, we evaluate the soft-max 
distribution for each possible future state 
exponentiating the real-valued ANN outputs 

{ }1,..., no o being n the number of neurons of the 

output layer [14].  
 

 
Figure 1. Schema of the ANN arquitecture used. 

After applying the soft-max function, the outputs 
of the neural network give a weighting, (0,1)jξ ∈  

to each of the vehicle’s thrust combinations. 
Finally, the probability of the ith thrust 
combination is then given by: 
 
 

1

exp( )Pr
exp( )

i
i n

z
z

o

o
=

=

∑
 (3) 

 
Actions have been labeled with the associated 
thrust combination, and they are chosen at random 
from this probability distribution.  
Once we have computed the output distribution 
over the possible control actions, next step is to 
calculate the gradient for the action chosen by 
applying the chain rule; the whole expression is 
implemented similarly to error back propagation 
[15]. Before computing the gradient, the error on 
the neurons of the output layer must be calculated.  
This error is given by expression (4). 

 
 Prj j je d= −  (4) 

 
The desired output 

jd will be equal to 1 if the action 

selected was jo , and 0 otherwise (see Fig. 2).  

 

 
Figure 2. Soft-Max error computation for every output. 

 
With the soft-max output error calculation 
completed, next phase consists in computing the 
gradient at the output of the ANN and back 
propagate it to the rest of the neurons of the 
hidden layers. For a local neuron j located in the 
output layer we may express the local gradient for 
neuron j as:   



  
 
 

  '· ( )o
j j j je oδ ϕ=  (5) 

 
Where 

je  is the soft-max error at the output of 

neuron j, ' ( )j joϕ  corresponds to the derivative of 

the activation function associated with that neuron 
and jo  is the function signal at the output for that 

neuron. So we do not back propagate the gradient 
of an error measure, but instead we back 
propagate the soft-max gradient of this error. 
Therefore, for a neuron j located in a hidden layer 
the local gradient is defined as follows:   
 

  ' ( )h
j j j k kj

k
o wδ ϕ δ= ∑  (6) 

 
When computing the gradient of a hidden-layer 
neuron, the previously obtained gradient of the 
following layers must be back propagated. In (6) 
the term ' ( )j joϕ represents de derivative of the 

activation function associated to that neuron, jo  

is the function signal at the output for that neuron 
and finally the summation term includes the 
different gradients of the following neurons back 
propagated by multiplying each gradient to its 
corresponding weighting (see Fig. 3).  
 

 
Figure 3. Gradient computation for a hidden-layer 

neuron. 

 
Having all local gradients of the all neurons 
calculated, the expression in (2) can be obtained 
and finally, the old parameters are updated 

following the expression: 
 
  1 1 1( )t t t tr i zθ θ γ+ + += +  (7) 
 
The vector of parameters tθ represents the network 

weights to be updated, 1( )tr i + is the reward given 

to the learner at every time step, 1tz +  describes 
the estimated gradients mentioned before and at 
last we have γ  as the learning rate of the RLDPS 
algorithm.  
 

3. Case Study: Target Following 

 The following lines are going to describe the 
different elements that take place in our problem.  
First, the simulated world will be detailed, in a 
second place we will present the underwater 
vehicle URIS and its model used in our 
simulation. At last, a description of the neural-
network controller is presented.  

3.1. The world 

 As mentioned before, the problem deals with 
the simulated model of the AUV URIS navigating 
a two-dimensional world constrained in a plane 
region without boundaries. The vehicle can be 
controlled in two degrees of freedom (DOFs), 
surge (X movement) and sway (Y movement) by 
applying 4 different control actions: a force in 
either the positive or negative x direction, and 
another force in either the positive or negative y 
direction. 
The simulated robot was given a reward of 0 if the 
vehicle reaches the objective position (if the robot 
enters inside a circle of 2 units radius, the target is 
considered reached) and a reward equal to -1 in all 
other states. To encourage the controller to learn 
to navigate the robot to the target independently of 
the starting state, the AUV position was reset 
every 50 (simulated) seconds to a random location 
in x and y between [-20, 20], and at the same time 
target position was set to a random location within 
the same boundaries. The sample time is set to 0.1 
seconds.  

 



  

 
3.2. URIS AUV description 

 The Autonomous Underwater Vehicle URIS 
(Fig. 4) is an experimental robot developed at the 
University of Girona with the aim of building a 
small-sized UUV. The hull is composed of a 
stainless steel sphere with a diameter of 350 mm, 
designed to withstand pressures of 4 atmospheres 
(30 meters depth).  
   

 
Figure 4. (Left) URIS in experimental test. (Right) 

Robot reference frame 

 
 The experiments carried out use the 
mathematical model of URIS computed by means 
of parameter identification methods [13]. The 
whole model has been adapted to the problem so 
the hydrodinamic equation of motion of an 
underwater vehicle with 6 DOFs [16] has been 
uncoupled and reduced to modellate a robot with 
two DOFs. Let us consider the dynamic equation 
for the surge DOF: 
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Then, due to identification procedure [13], 
expressions in (8) and (9) can be rewritten as 
follows: 
 

  x x x x x x x x xv v v vα β γ τ δ
•

= + + +  (10) 

 

 y y y y y y y y yv v v vα β γ τ δ
•

= + + +  (11) 

 
Where xv and yv represent de acceleration in both 

surge and sway direction, xv and yv are the linear 

velocity in surge and sway. The forces excerted by 
the thrusters in both DOFs are indicated as xτ and 

yτ . The model parameters for both DOFs are 

stated as follows: α and β coeficients refer to the 
linear and the quadratic damping forces, 
γ represent a mass coeficient and the bias term is 
introduced byδ . The identified parameters values 
of the model are indicated in Table 2.  

 
TABLE 2 

URIS Model Parameters for Surge and Sway 
 α  β  γ  δ  

Units 
 

 

 
 

Surge 
 

Sway 

-0.3222 
 

-0.3222 

0 
 

0 

0.0184 
 

0.0184 

0.0012 
 

0.0012 
 

3.3. The Controller 

 A one-hidden-layer neural-network with 4 
input nodes, 3 hidden nodes and 4 output nodes 
has been used to generate a stochastic policy.  
Two of the inputs correspond to the x and y 
vehicle’s distance to target and the other two 
represent the x and y velocities at the current time-
step. Each hidden and output layer has the usual 
additional bias term. The activation function used 
for the neurons of the hidden layer is the 
hyperbolic tangent type (12, Fig. 5), while the 
output layer nodes are linear. The four output 
neurons have been exponentiated and normalized 
as explained in section 2 to produce a probability 
distribution. Control actions are selected at 
random from this distribution.  
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Figure 5. The hyperbolic tangent function. 

 

4. Simulated Results 

 The controller was trained, as commmented in 
section 3, in an episodic task. Robot and target 
positions are reseted every 50 seconds so the total 
amount of reward per episode percieved varies 
depending on the episode. Even though the results 
presented have been obtained as explained in 
section 3, in order to clarify the graphical results 
of time convergence of the algorithm, for the plots 
below some constrains have been applied to the 
simulator: Target initial position is fixed to (0,0) 
and robot initial location has been set to four 
random locations, 20x = ± and 20y = ± , 
therefore, the total amount per episode when 
converged to minima will be the same. 
The number of episodes to be done has been set to 
100.000. For every episode, the total amount of 
reward percieved is calculated. Figure 6 represents 
the performance of the neural-network vehicle 
controller as a function of the number of episodes, 
when trained using OLPOMDP. The episodes 
have been averaged over bins of 50 episodes. The 
experiment has been repeated in 100 independent 
runs, and the results presented are a mean over 
these runs. 
The simulated experiments have been repeated 
and compared for different values ofα and β .  
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Figure 6. Performance of the neural-network puck 
controller as a function of the number of episodes. 

Performance estimates were generatedby simulating 
100.000 episodes, and averaging them over bins of 50 

episodes. Process repeated in 100 independent runs. The 
results are a mean of these runs. Fixed 0.000001α = , 

for different values of 0.999β = , 0.99β =  and 
0.97β =  

For 0.00001α = :  
 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-500

-450

-400

-350

-300

-250

-200

-150

-100

-50
Total R per Episode, Averaged over bins of 50 Episodes (Alfa 0.00001)

Groups of 50 Episodes

M
ea

n 
To

ta
l R

 p
er

 E
pi

so
de

beta 0.999
beta 0.99
beta 0.97

 
Figure 7. Performance of the neural-network puck 
controller as a function of the number of episodes. 

Performance estimates were generatedby simulating 
100.000 episodes, and averaging them over bins of 50 

episodes. Process repeated in 100 independent runs. The 
results are a mean of these runs. Fixed 0.00001α = , for 
different values of 0.999β = , 0.99β =  and 0.97β = . 



  

 
For 0.0001α = :  
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Figure 8. Performance of the neural-network puck 
controller as a function of the number of episodes. 

Performance estimates were generatedby simulating 
100.000 episodes, and averaging them over bins of 50 

episodes. Process repeated in 100 independent runs. The 
results are a mean of these runs. Fixed 0.0001α = , for 
different values of 0.999β = , 0.99β =  and 0.97β = . 

As it can bee apreciated in Fig. 7, the optimal 
performance (within the neural network controller 
used here) is around -100 for this simulated 
problem, due to the fact that the puck and target 
locations are reset every 50 seconds and for this 
reason the vehicle must be away from target a 
fraction of the time. The best results are obtained 
when 0.00001α = and 0.999β = , see Fig. 7.  
Figure 9 represents the behavior of the trained 
robot controller.  For the purpose of the 
illustration, only target location has been reseted 
to random location, not the robot location. 
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Figure 9. Behavior of a trained robot controller, results 

of target following task asfter learning period is 
completed. 

5. Conclusions 

 An on-line direct policy search algorithm for 
AUV control based on Baxter and Bartlett’s direct-
gradient algorithm OLPOMDP has been proposed. 
The method has been applied to a real learning 
control system in which a simulated model of the 
AUV URIS navigates a two-dimensional world in a 
target following task. The policy is represented by a 
neural network whose input is a representation of the 
state, whose output is action selection probabilities, 
and whose weights are the policy parameters. The 
objective of the agent was to compute a stochastic 
policy, which assigns a probability over each of the 
four possible control actions. 
Results obtained confirm some of the ideas presented 
in section 1. The algorithm is easier to implement 
compared with other RL methodologies like value 
function algorithms and it represents a considerable 
reduction of the computational time of the algorithm. 
On the other side, simulated results show a poor 
speed of convergence towards minimal solution. 
In order to validate the performance of the method 
proposed, future experiments are centered on 
obtaining empirical results: the algorithm must be 
tested on real URIS in a real environment. Previous 
investigations carried on in our laboratory with RL 
value functions methods with the same prototype 
URIS [20] will allow us to compare both results. At 
the same time, the work is focused in the 



  
 
development of a methodology to decrease the 
convergence time of the RLDPS algorithm.   
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