
Studying the feasibility of policy reinforcement learning methods
for autonomous agents

Andrés El-Fakdi, Marc Carreras, Pere Ridao, Emili Hernández
Institute of Informatics and Applications

University of Girona
Edifici Politecnica 4, Campus Montilivi

17071 Girona
aelfakdi@eia.udg.es

Abstract

 Autonomous Underwater Vehicles (AUV)
represent a challenging control problem with
complex, noisy, dynamics. Nowadays, not only
the continuous scientific advances in underwater
robotics but the increasing number of sub sea
missions and its complexity ask for an
automatization of submarine processes. This paper
proposes a high-level control system for solving
the action selection problem of an autonomous
robot. The system is characterized by the use of
Reinforcement Learning Direct Policy Search
methods (RLDPS) for learning the internal
state/action mapping of some behaviors. We
demonstrate its feasibility with simulated
experiments using the model of our underwater
robot URIS in a target following task.

1. Introduction

 A commonly used methodology in robot
learning is Reinforcement Learning (RL) [1]. In
RL, an agent tries to maximize a scalar evaluation
(reward or punishment) obtained as a result of its
interaction with the environment. The goal of a
RL system is to find an optimal policy which
maps the state of the environment to an action
which in turn will maximize the accumulated
future rewards. Most RL techniques are based on
Finite Markov Decision Processes (FMDP)
causing finite state and action spaces. The main
advantage of RL is that it does not use any
knowledge database, so the learner is not told
what to do as occurs in most forms of machine
learning, but instead must discover actions yield
the most reward by trying them. Therefore, this
class of learning is suitable for online robot

learning. The main disadvantages are a long
convergence time and the lack of generalization
among continuous variables.
In order to solve such problems, most of RL
applications require the use of generalizing
function approximators such artificial neural-
networks (ANNs), instance-based methods or
decision-trees. As a result, many RL-based control
systems have been applied to robotics over the
past decade. In [2], an instance-based learning
algorithm was applied to a real robot in a corridor-
following task. For the same task, in [3] a
hierarchical memory-based RL was proposed.
Also, some RL applications on autonomous
helicopter flights [17], optimization of robot
locomotion movements [19] and robot
weightlifting task [18] have obtained good results
as well.
The dominant approach has been the value-
function approach, and although it has
demonstrated to work well in many applications,
it has several limitations, too. If the state-space is
not completely observable (POMDP), small
changes in the estimated value of an action cause
it to be, or not be, selected; and this will detonate
in convergence problems [4].
Over the past few years, studies have shown that
approximating directly a policy can be easier than
working with value functions, and better results
can be obtained [5,6]. Instead of approximating a
value function, new methodologies approximate a
policy using an independent function
approximator with its own parameters, trying to
maximize the expected reward. Examples of direct
policy methods are the REINFORCE algorithm
[7], the direct-gradient algorithm [8] and certain
variants of the actor-critic framework [9].
The advantages of policy methods against value-
function based methods are various. A problem
for which the policy is easier to represent should

be solved using policy algorithms [6]. Working
this way should represent a decrease in the
computational complexity and, for learning
control systems which operate in the physical
world, the reduction in time-consuming would be
notorious. Furthermore, learning systems should
be designed to explicitly account for the resulting
violations of the Markov property. Studies have
shown that stochastic policy-only methods can
obtain better results when working in POMDP
than those ones obtained with deterministic value-
function methods [10]. On the other side, policy
methods learn much more slowly than RL
algorithms using value function [5] and they
typically find only local optima of the expected
reward [11].
In this paper we propose an on-line direct policy
search algorithm based on Baxter and Bartlett’s
direct-gradient algorithm OLPOMDP [12] applied
to a real learning control system in which a
simulated model of the AUV URIS [13] navigates
a two-dimensional world. The policy is
represented by a neural network whose input is a
representation of the state, whose output is action
selection probabilities, and whose weights are the
policy parameters. The proposed method is based
on a stochastic gradient descent with respect to the
policy parameter space, it does not need a model
of the environment to be given and it is
incremental, requiring only a constant amount of
computation step. The objective of the agent is to
compute a stochastic policy [10], which assigns a
probability over each action. Results obtained in
simulation show the viability of the algorithm in a
real-time system.
The structure of the paper is as follows. In section
II the direct-policy search algorithm is detailed. In
section III a description of all the elements that
affect our problem (the world, the robot and the
controller) are commented. The simulated
experiment description and the results obtained
are included in section IV and finally, some
conclusions and further work are included in
section V.

2. The RLDPS Algorithm

 A partially observable Markov decision
process (POMDP) consists of a state space S, an
observation space Y and a control space U. For
each state i S∈ there is a deterministic reward

r(i). As mentioned before, the algorithm applied is
designed to work on-line so at every time step, the
learner (our vehicle) will be given an observation of
the state and, according to the policy followed at that
moment, it will generate a control action. As a result,
the learner will be driven to another state and will
receive a reward associated to this new state. This
reward will allow us to update the controller’s
parameters that define the policy followed at every
iteration, resulting in a final policy considered to be
optimal or closer to optimal. The algorithm procedure
is summarized in Table 1.

TABLE 1
Algorithm: Baxter & Bartlett’s OLPOMDP

1: Given:
• 0T >
• Initial parameter values

0
Kθ ∈

• Arbitrary starting state i0

2: Set z0 = 0 (z0

K∈)

3: for t = 0 to T do
4: Observe state yt

5: Generate control action ut according to current
policy (,)tyµ θ

6: Observe the reward obtained r(it+1)

7: Set

8: Set

9: end for

The algorithm works as follows: having initialized
the parameters vector 0θ , the initial state i0 and

the gradient 0 0z = , the learning procedure will
be iterated T times. At every iteration, the
parameters gradient tz will be updated.
According to the immediate reward received

1()tr i + , the new gradient vector 1tz + and a fixed
learning paramenterα , the new paramenter
vector 1tθ + can be calculated. The current

policy tµ is directly modified by the new

parameters becoming a new policy 1tµ + that will

1

(,)
(,)
t

t

u t
t t

u t

y
z z

y
µ θ

β
µ θ+

∇
= +

1 1 1()t t t tr i zθ θ α+ + += +

be followed next iteration, getting closer, as
t T→ to a final policy Tµ that represents a
correct solution of the problem.
In order to clarify the steps taken, the next lines
will relate the update parameter procedure of the
algorithm closely. The controller uses a neural
network as a function approximator that generates
a stochastic policy. Its weights are the policy
parameters that are updated on-line every time
step. The accuracy of the approximation is
controlled by the parameter [0,1)β ∈ .
The first step in the weight update procedure is to
compute the ratio:

 (,)
(,)
t

t

u t

u t

y
y

µ θ
µ θ
∇ (1)

for every weight of the network. In AANs like the
one used in the algorithm the expression defined
in step 7 of Table 1 can be rewritten as:

 1t t t tz z yβ δ+ = + (2)

At any step time t, the term tz represents the
estimated gradient of the reinforcement sum with
respect to the network’s layer weights. In addition,

tδ refers to the local gradient associated to a
single neuron of the ANN and it is multiplied by
the input to that neuron ty . In order to compute
these gradients, we evaluate the soft-max
distribution for each possible future state
exponentiating the real-valued ANN outputs

{ }1,..., no o being n the number of neurons of the

output layer [14].

Figure 1. Schema of the ANN arquitecture used.

After applying the soft-max function, the outputs
of the neural network give a weighting, (0,1)jξ ∈

to each of the vehicle’s thrust combinations.
Finally, the probability of the ith thrust
combination is then given by:

1

exp()Pr
exp()

i
i n

z
z

o

o
=

=

∑
 (3)

Actions have been labeled with the associated
thrust combination, and they are chosen at random
from this probability distribution.
Once we have computed the output distribution
over the possible control actions, next step is to
calculate the gradient for the action chosen by
applying the chain rule; the whole expression is
implemented similarly to error back propagation
[15]. Before computing the gradient, the error on
the neurons of the output layer must be calculated.
This error is given by expression (4).

 Prj j je d= − (4)

The desired output

jd will be equal to 1 if the action

selected was jo , and 0 otherwise (see Fig. 2).

Figure 2. Soft-Max error computation for every output.

With the soft-max output error calculation
completed, next phase consists in computing the
gradient at the output of the ANN and back
propagate it to the rest of the neurons of the
hidden layers. For a local neuron j located in the
output layer we may express the local gradient for
neuron j as:

 '· ()o
j j j je oδ ϕ= (5)

Where

je is the soft-max error at the output of

neuron j, ' ()j joϕ corresponds to the derivative of

the activation function associated with that neuron
and jo is the function signal at the output for that

neuron. So we do not back propagate the gradient
of an error measure, but instead we back
propagate the soft-max gradient of this error.
Therefore, for a neuron j located in a hidden layer
the local gradient is defined as follows:

 ' ()h
j j j k kj

k
o wδ ϕ δ= ∑ (6)

When computing the gradient of a hidden-layer
neuron, the previously obtained gradient of the
following layers must be back propagated. In (6)
the term ' ()j joϕ represents de derivative of the

activation function associated to that neuron, jo

is the function signal at the output for that neuron
and finally the summation term includes the
different gradients of the following neurons back
propagated by multiplying each gradient to its
corresponding weighting (see Fig. 3).

Figure 3. Gradient computation for a hidden-layer

neuron.

Having all local gradients of the all neurons
calculated, the expression in (2) can be obtained
and finally, the old parameters are updated

following the expression:

 1 1 1()t t t tr i zθ θ γ+ + += + (7)

The vector of parameters tθ represents the network

weights to be updated, 1()tr i + is the reward given

to the learner at every time step, 1tz + describes
the estimated gradients mentioned before and at
last we have γ as the learning rate of the RLDPS
algorithm.

3. Case Study: Target Following

 The following lines are going to describe the
different elements that take place in our problem.
First, the simulated world will be detailed, in a
second place we will present the underwater
vehicle URIS and its model used in our
simulation. At last, a description of the neural-
network controller is presented.

3.1. The world

 As mentioned before, the problem deals with
the simulated model of the AUV URIS navigating
a two-dimensional world constrained in a plane
region without boundaries. The vehicle can be
controlled in two degrees of freedom (DOFs),
surge (X movement) and sway (Y movement) by
applying 4 different control actions: a force in
either the positive or negative x direction, and
another force in either the positive or negative y
direction.
The simulated robot was given a reward of 0 if the
vehicle reaches the objective position (if the robot
enters inside a circle of 2 units radius, the target is
considered reached) and a reward equal to -1 in all
other states. To encourage the controller to learn
to navigate the robot to the target independently of
the starting state, the AUV position was reset
every 50 (simulated) seconds to a random location
in x and y between [-20, 20], and at the same time
target position was set to a random location within
the same boundaries. The sample time is set to 0.1
seconds.

3.2. URIS AUV description

 The Autonomous Underwater Vehicle URIS
(Fig. 4) is an experimental robot developed at the
University of Girona with the aim of building a
small-sized UUV. The hull is composed of a
stainless steel sphere with a diameter of 350 mm,
designed to withstand pressures of 4 atmospheres
(30 meters depth).

Figure 4. (Left) URIS in experimental test. (Right)

Robot reference frame

 The experiments carried out use the
mathematical model of URIS computed by means
of parameter identification methods [13]. The
whole model has been adapted to the problem so
the hydrodinamic equation of motion of an
underwater vehicle with 6 DOFs [16] has been
uncoupled and reduced to modellate a robot with
two DOFs. Let us consider the dynamic equation
for the surge DOF:

 (8)

 (9)

Then, due to identification procedure [13],
expressions in (8) and (9) can be rewritten as
follows:

 x x x x x x x x xv v v vα β γ τ δ
•

= + + + (10)

 y y y y y y y y yv v v vα β γ τ δ
•

= + + + (11)

Where xv and yv represent de acceleration in both

surge and sway direction, xv and yv are the linear

velocity in surge and sway. The forces excerted by
the thrusters in both DOFs are indicated as xτ and

yτ . The model parameters for both DOFs are

stated as follows: α and β coeficients refer to the
linear and the quadratic damping forces,
γ represent a mass coeficient and the bias term is
introduced byδ . The identified parameters values
of the model are indicated in Table 2.

TABLE 2

URIS Model Parameters for Surge and Sway
 α β γ δ

Units

Surge

Sway

-0.3222

-0.3222

0

0

0.0184

0.0184

0.0012

0.0012

3.3. The Controller

 A one-hidden-layer neural-network with 4
input nodes, 3 hidden nodes and 4 output nodes
has been used to generate a stochastic policy.
Two of the inputs correspond to the x and y
vehicle’s distance to target and the other two
represent the x and y velocities at the current time-
step. Each hidden and output layer has the usual
additional bias term. The activation function used
for the neurons of the hidden layer is the
hyperbolic tangent type (12, Fig. 5), while the
output layer nodes are linear. The four output
neurons have been exponentiated and normalized
as explained in section 2 to produce a probability
distribution. Control actions are selected at
random from this distribution.

 sinh()tanh()
cosh()

zz
z

= (12)

· · · ·

| | | |
· ·() () () ()

pu uu

u u u u

XXX u
u

u um X m X m X m X
τ

γ α β δ

= − − +
− − − −

· · · ·

| | | |
· ·() () () ()

pv vv

v v v v

YYY v
v

v vm Y m Y m Y m Y
τ

γ α β δ

= − − +
− − − −

1Kg −·
·

N s
Kg m

⎛ ⎞
⎜ ⎟
⎝ ⎠

2

2

·
·

N s
Kg m

⎛ ⎞
⎜ ⎟
⎝ ⎠

N
Kg

⎛ ⎞
⎜ ⎟
⎝ ⎠

Figure 5. The hyperbolic tangent function.

4. Simulated Results

 The controller was trained, as commmented in
section 3, in an episodic task. Robot and target
positions are reseted every 50 seconds so the total
amount of reward per episode percieved varies
depending on the episode. Even though the results
presented have been obtained as explained in
section 3, in order to clarify the graphical results
of time convergence of the algorithm, for the plots
below some constrains have been applied to the
simulator: Target initial position is fixed to (0,0)
and robot initial location has been set to four
random locations, 20x = ± and 20y = ± ,
therefore, the total amount per episode when
converged to minima will be the same.
The number of episodes to be done has been set to
100.000. For every episode, the total amount of
reward percieved is calculated. Figure 6 represents
the performance of the neural-network vehicle
controller as a function of the number of episodes,
when trained using OLPOMDP. The episodes
have been averaged over bins of 50 episodes. The
experiment has been repeated in 100 independent
runs, and the results presented are a mean over
these runs.
The simulated experiments have been repeated
and compared for different values ofα and β .

For 0.000001α = :

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-500

-450

-400

-350

-300

-250

-200

-150

-100
Total R per Episode, Averaged over bins of 50 Episodes (Alfa 0.000001)

Groups of 50 Episodes

M
ea

n
To

ta
l R

 p
er

 E
pi

so
de

beta 0.999
beta 0.99
beta 0.97

Figure 6. Performance of the neural-network puck
controller as a function of the number of episodes.

Performance estimates were generatedby simulating
100.000 episodes, and averaging them over bins of 50

episodes. Process repeated in 100 independent runs. The
results are a mean of these runs. Fixed 0.000001α = ,

for different values of 0.999β = , 0.99β = and
0.97β =

For 0.00001α = :

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-500

-450

-400

-350

-300

-250

-200

-150

-100

-50
Total R per Episode, Averaged over bins of 50 Episodes (Alfa 0.00001)

Groups of 50 Episodes

M
ea

n
To

ta
l R

 p
er

 E
pi

so
de

beta 0.999
beta 0.99
beta 0.97

Figure 7. Performance of the neural-network puck
controller as a function of the number of episodes.

Performance estimates were generatedby simulating
100.000 episodes, and averaging them over bins of 50

episodes. Process repeated in 100 independent runs. The
results are a mean of these runs. Fixed 0.00001α = , for
different values of 0.999β = , 0.99β = and 0.97β = .

For 0.0001α = :

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-500

-450

-400

-350

-300

-250

-200

-150

-100
Total R per Episode, Averaged over bins of 50 Episodes (alfa 0.0001)

Groups of 50 Episodes

M
ea

n
To

ta
l R

 p
er

 E
pi

so
de

beta 0.999
beta 0.99
beta 0.97

Figure 8. Performance of the neural-network puck
controller as a function of the number of episodes.

Performance estimates were generatedby simulating
100.000 episodes, and averaging them over bins of 50

episodes. Process repeated in 100 independent runs. The
results are a mean of these runs. Fixed 0.0001α = , for
different values of 0.999β = , 0.99β = and 0.97β = .

As it can bee apreciated in Fig. 7, the optimal
performance (within the neural network controller
used here) is around -100 for this simulated
problem, due to the fact that the puck and target
locations are reset every 50 seconds and for this
reason the vehicle must be away from target a
fraction of the time. The best results are obtained
when 0.00001α = and 0.999β = , see Fig. 7.
Figure 9 represents the behavior of the trained
robot controller. For the purpose of the
illustration, only target location has been reseted
to random location, not the robot location.

-100 -80 -60 -40 -20 0 20 40 60 80
-100

-80

-60

-40

-20

0

20

INITIAL URIS POSITION

FINAL URIS POSITION

Target Following Task,Results After Learning

X Location
Y

 L
oc

at
io

n

URIS Trajectory
Target Positions

1

2

3

4

Figure 9. Behavior of a trained robot controller, results

of target following task asfter learning period is
completed.

5. Conclusions

 An on-line direct policy search algorithm for
AUV control based on Baxter and Bartlett’s direct-
gradient algorithm OLPOMDP has been proposed.
The method has been applied to a real learning
control system in which a simulated model of the
AUV URIS navigates a two-dimensional world in a
target following task. The policy is represented by a
neural network whose input is a representation of the
state, whose output is action selection probabilities,
and whose weights are the policy parameters. The
objective of the agent was to compute a stochastic
policy, which assigns a probability over each of the
four possible control actions.
Results obtained confirm some of the ideas presented
in section 1. The algorithm is easier to implement
compared with other RL methodologies like value
function algorithms and it represents a considerable
reduction of the computational time of the algorithm.
On the other side, simulated results show a poor
speed of convergence towards minimal solution.
In order to validate the performance of the method
proposed, future experiments are centered on
obtaining empirical results: the algorithm must be
tested on real URIS in a real environment. Previous
investigations carried on in our laboratory with RL
value functions methods with the same prototype
URIS [20] will allow us to compare both results. At
the same time, the work is focused in the

development of a methodology to decrease the
convergence time of the RLDPS algorithm.

Acknowledgments

This research was esponsored by the spanish

commission MCYT (DPI2001-2311-C03-01). I would
like to give my special thanks to Mr. Douglas
Alexander Aberdeen of the Australian National
University for his help.

References

[1] R. Sutton and A. Barto, Reinforcement
Learning, an Introduction. MIT Press, 1998.

[2] W.D. Smart and L.P Kaelbling, “Practical
reinforcement learning in continuous spaces”,
International Conference on Machine
Learning, 2000.

[3] N. Hernandez and S. Mahadevan,
“Hierarchical memory-based reinforcement
learning”, Fifteenth International Conference
on Neural Information Processing Systems,
Denver, USA, 2000.

[4] D.P. Bertsekas and J.N. Tsitsiklis, Neuro-
Dynamic Programming. Athena Scientific,
1996.

[5] R. Sutton, D. McAllester, S. Singh and Y.
Mansour, “Policy gradient methods for
reinforcement learning with function
approximation” in Advances in Neural
Information Processing Systems 12, pp. 1057-
1063, MIT Press, 2000.

[6] C. Anderson, “Approximating a policy can be
easier than approximating a value function”
Computer Science Technical Report, CS-00-
101, February 10, 2000.

[7] R. Williams, “Simple statistical gradient-
following algorithms for connectionist
reinforcement learning” in Machine Learning,
8, pp. 229-256, 1992.

[8] J. Baxter and P.L. Bartlett, “Direct gradient-
based reinforcement learning” IEEE
International Symposium on Circuits and
Systems, May 28-31, Geneva, Switzerland,
2000.

[9] V.R. Konda and J.N. Tsitsiklis, “On actor-
critic algorithms”, in SIAM Journal on Control

and Optimization, vol. 42, No. 4, pp. 1143-
1166, 2003.

[10] S.P. Singh, T. Jaakkola, M.I. Jordan,
“Learning without state-estimation in partially
observable Markovian decision processes”, in
Proceedings of the 11th International
Conference on Machine Learning, pp. 284-
292, 1994.

[11] N. Meuleau, L. Peshkin and K. Kim,
“Exploration in gradient-based reinforcement
learning”, Technical report AI Memo 2001-
003, April 3, 2001.

[12] J. Baxter and P.L. Bartlett, “Direct
gradient-based reinforcement learning I:
Gradient estimation algorithms” Technical
Report. Australian National University, 1999.

[13] P. Ridao, A. Tiano, A. El-Fakdi, M.
Carreras, A. Zirilli, “On the identification of
non-linear models of unmanned underwater
vehicles” in Control Engineering Practice, vol.
12, pp. 1483-1499, 2004.

[14] D. A., Aberdeen, Policy Gradient
Algorithms for Partially Observable Markov
Decision Processes, PhD Thesis, Australian
National University, 2003.

[15] S. Haykin, Neural Networks, a
comprehensive foundation, Prentice Hall,
Upper Saddle River, New Jersey, USA, 1999.

[16] T.I., Fossen, Guidance and Control of
Ocean Vehicles, John Wiley and Sons, New
York, USA, 1994.

[17] J. A. Bagnell, J. G. Schneider,
“Autonomous Helicopter Control using
Reinforcement Learning Policy Search
Methods”, in Proceedings of the IEEE
International Conference on Robotics and
Automation (ICRA), Seoul, Korea, 2001.

[18] M. T. Rosenstein, A. G. Barto, “Robot
Weightlifting by Direct Policy Search”, in
Proceedings of the International Joint
Conference on Artificial Intelligence, 2001.

[19] N. Kohl, P. Stone, “Policy Gradient
Reinforcement Learning for Fast Quadrupedal
Locomotion”, in Proceedings of the IEEE
International Conference on Robotics and
Automation (ICRA), 2004.

[20] M. Carreras, P. Ridao, A. El-Fakdi,
“Semi-Online Neural-Q-Learning for Real-
Time Robot Learning”, in Proceedings of the
IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Las
Vegas, USA, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

