
Control of an Autonomous Robot using Multiple RL-based Behaviors

Andres El-Fakdi, Marc Carreras and Joan Batlle

Institute of Informatics and Applications
University of Girona

Campus Montilivi, Girona 17071, Spain
{aelfakdi,marcc,jbatlle}@eia.udg.es

Abstract

This paper proposes a Behavior-based Control Architecture for solving the action selection problem of
an autonomous robot. This architecture is characterized by the use of a new coordination system
among the behaviors, and also by the use of Reinforcement Learning (RL) for learning the internal
state/action mapping of some behaviors. The coordination system proposes a hybrid method between
competitive and cooperative methodologies with the aim of taking the advantages of robustness and
optimized robot trajectories from both approaches. This paper shows the feasibility of this hybrid
coordinator with a real application of an Autonomous Underwater Vehicle (AUV) in a target
following task. The second feature of the Behavior-based control architecture is the possibility of
learning some of the behaviors. Reinforcement Learning is a very suitable technique for robot
learning, as it can learn in unknown environments and in real-time computation. The main difficultie s
in adapting classic RL algorithms to robotic systems are the generalization problem and the correct
observation of the Markovian state. This paper attempts to solve the generalization problem by
proposing the Semi-Online Neural-Q_learning algorithm (SONQL). The algorithm uses the classic
Q_learning technique with two modifications. First, a Neural Network (NN) approximates the Q-
function allowing the use of continuous states and actions. Second, a database of the most
representative learning samples accelerates and stabilizes the convergence. The term semi-online is
referred to the fact that the algorithm uses the current but also past learning samples. However, the
algorithm is able to learn in real-time while the robot is interacting with the environment. The paper
shows real results of the SONQL algorithm learning a target following behavior.

Keywords : Behavior-based Robotics, Behavior Coordination, Reinforcement Learning, Robot Learning

1 Introduction

Behavior-based Robotics [1] is a methodology for designing autonomous agents and robots. Since its
appearance, in the middle of 1980s, a huge amount of robotic applications have used this methodology. Endless
quantities of methods have been proposed to solve the common characteristics of a Behavior-based system:
behavior expression, design, encoding and coordination. Behaviors are implemented as a control law using
inputs and outputs. The basic structure consists of all behaviors taking inputs from the robot’s sensors and
sending outputs to the robot’s actuators. Behavior coordination is the phase in which a coordinator module
receives the responses of all the behaviors and generates a single output to be applied to the robots. If the output
is the selection of a single behavior, the coordinator is classified as competitive. On the other hand, if the output
is the superposition of several behavior responses, the coordinator is called cooperative.

According to the coordination system, some advantages and disadvantages appear in the control performance of
an autonomous vehicle. After testing 4 well-known behavior-based architectures (Subsumption [4], Action
Selection Dynamics [10], Schema-based approach [2] and Process Description Language [13] in a simulated 3D-
navigation mission with an AUV some conclusions were extracted [5,6]. Competitive methods (subsumption and

action selection dynamics) show good robustness in the behavior selection and modularity when adding new
behaviors. However, a bad trajectory is found when there is a continuous change of the dominant behavior. As
far as cooperative methods are concerned, they have an optimal trajectory when parameters are properly tuned.
However, they lack of robustness. A small change on the parameters can lead to control failures. In some
circumstances, a set of behaviors can cancel the action of behaviors with a higher priority (i.e. obstacle
avoidance behavior).

In this paper we use a hybrid approach between competitive and cooperative coordination systems with the aim
of taking advantage of both. Coordination is done through hierarchical hybrid nodes. These nodes act as
cooperative or competitive coordinators depending on an activation level associated to each behavior. This paper
details the coordination methodology and presents an example in which an underwater robot must follow a target
while avoiding obstacles. In this architecture, a set of behaviors were designed and coordinated to accomplish
the task.

Making use of the high capability of Reinforcement Learning [15] for robot learning, behaviors were
implemented using this technique. In RL, an agent tries to maximize a scalar evaluation (reward or punishment)
of its interaction with the environment. The goal of a RL system is to find an optimal policy that maps the state
of the environment to an action, which in turn, will maximize the accumulated future rewards. Most RL
techniques are based on Finite Markov Decision Processes (FMDP) causing finite state and action spaces. The
main advantage of RL is that it does not use any knowledge database, as do most forms of machine learning,
making this class of learning suitable for online robot learning. The drawbacks are the lack of generalization
among continuous variables and the difficulties in observing the Markovian state in the environment. A very
used RL algorithm is the Q_learning [18] algorithm due to its good learning capabilities: online and off-policy.

Many RL-based systems have been applied to robotics over the past few years and most of them have attempted
to solve the generalization problem. To accomplish this, classic RL algorithms have been usually combined with
other methodologies. The most commonly used methodologies are decision trees [17], CMAC function
approximator [11], memory-based methods [12] and Neural Networks (NN) [8]. These techniques modify the
RL algorithms breaking in many cases their convergence proofs. Only some algorithms which use a linear
function approximator have maintained these proofs [14]. Neural Networks is a non-linear method, however, it
offers a high generalization capability and demonstrated its feasibility in very complex tasks [16]. The drawback
of Neural Networks is the interference problem. This problem is caused by the impossibility of generalizing in
only a local zone of the entire space. Interference occurs when learning in one area of the input space causes
unlearning in another area [19].

In this paper the state/action mapping of each behavior is learnt with the Semi-Online Neural-Q_learning
algorithm (SONQL) [7]. This algorithm attempts to solve the generalization problem combining the Q_learning
algorithm with a NN function approximator. This approach implements the Q-function directly into a NN. This
implementation, known as direct Q_learning [1], is the simplest and straightest way to generalize with a NN. In
order to solve the interference problem, the proposed algorithm introduces a database of the most recent and
representative learning samples, from the whole state/action space. These samples are repeatedly used in the NN
weight update phase, assuring the convergence of the NN to the optimal Q-function and, also, accelerating the
learning process. The algorithm was designed to work in real systems with continuous variables. To preserve the
real time execution, two different execution threads, one for learning and another for output generation, are used.
The SONQL algorithm was conceived to learn the internal state/action mapping of a reactive robot behavior.
This paper demonstrates its feasibility with real experiments using the underwater robot URIS in a target
following task, see Figure 1. Results demonstrate the feasibility of the algorithm in a real-time system.

The structure of this paper is as follows. In section 2, an overall description of the behavior-based control
scheme is done. Section 3 describes the proposed Semi On-Line Neural-Q_learning algorithm. In section 4, the
experimental setup designed to carry out the target following task with URIS’s AUV and the learning results are
presented. And finally, conclusions are presented in section 5.

Figure 1: URIS’s underwater vehicle during the target following task in a water tank.

2 Behavior Based control Architecture

The proposed behavior based coordinator algorithm was designed to coordinate a set of independent behaviors
without the need of a complex designing phase or tuning phase. The addition of a new behavior only implies the
assignment of its priority with reference to other behaviors. The BBCA uses a hybrid coordinator between
competitive and cooperative methodologies; the coordinator uses this priority and a behavior activation level to
calculate the resultant control action. Therefore, the response ri of each behavior is composed of the activation
level ai and the desired robot control action vi, as illustrated in Figure 2. The activation level indicates the degree
to which the behavior wants to control the robot. This degree is expressed by a numerical value from 0 to 1.

Figure 2: The normalized robot control action vi and the behavior activation level ai constitute the behavior

response ri

The robot control action is the movement to be followed by the robot. There is a different movement for each
degree of freedom (DOF). By movement, we mean the velocity the robot will achieve for a particular DOF. In
the case of the underwater robot URIS, which has 3 controllable DOFs, the control action is a vector with three
components. This vector is normalized and its magnitude cannot be greater than 1. Therefore, the units of the
vector vi do not correspond to any real units. After the coordination phase, this normalized vector will be re-
escalated to the velocities of the vehicle.

The hybrid coordinator uses the behavior responses to compose a final control action. This process is executed at
each sample time of the high-level controller. The coordination system is composed of a set of nodes ni. Each
node has two inputs and generates a response which also has an activation level and a control action. The
response of a node cannot be discerned from one of a behavior. By using these nodes, the whole coordination
process is accomplished. After connecting all the behavior and node responses with other nodes, a final response
will be generated to control the robot.

Each node has a dominant and a non-dominant input. The response connected to the dominant input will have a
higher priority than the one connected to the non-dominant. When the dominant behavior is completely
activated, ad = 1, the response of the node will be equal to the dominant behavior. Therefore, in this case, the
coordination node will behave competitively. However, if the dominant behavior is partially activated, 0 < ad <
1, the two responses will be combined. The idea is that non-dominant behaviors can modify the responses of
dominant behaviors slightly when these are not completely activated. In this case, the node will behave
cooperatively. Finally, if the dominant behavior is not activated, ad = 0, the response of the node will be equal to

vi=(vi,x, vi,z, vi,yaw); |vi|=[0 1]

ai=[0 1]

ri Si
bi

X
vi,x

v i

Y

Z

vi,z

vi,yaw

the non-dominant behavior. These nodes are called Hierarchical Hybrid Coordination Nodes (HHCN) as its
coordination methodology changes depending on the activation level of the behaviors and the hierarchy between
them.

Figure 3: Hierarchical Hybrid Coordination Node. The equations used to calculate the response of the node are

shown.

Figure 3 shows the equations used to calculate the response of an HHCN. The activation level will be the sum of
the activation levels of the input responses, in which the non-dominant activation level has been multiplied by a

reduction factor. This factor, (1)k

d
a− , depends on the activation of the dominant behavior and on the value of

the integer parameter k . If k = 1, the activation level will linearly decrease as ad increases. If mo re drastic
reduction is desired, the value of k can be set at 2, 3, 4,... This parameter does not have to be tuned for each node.
The same value, for example a quadratic reduction k=2 , can be applied to all the coordination nodes. Finally, if
the new activation level is larger than 1, the level is saturated to 1.

The control action is calculated in the same way as the activation level. Vector vi will be the sum of vd and vnd,
applying the corresponding proportional factors. Therefore, each component of vd will be taken in the proportion
of the activation level, ad with respect to ai. And, each component of vnd will be taken in the proportion of the
reduced activation level, and with respect to ai. If the module of vi is larger than 1, the vector will be resized to a
magnitude equal to 1.

An example of the use of the hierarchical hybrid coordination node is seen in Figure 4. In this figure, two
different situations are depicted. In the first situation, the node acts cooperatively, generating an action which
mainly follows the dominant response, but it is also affected by the non-dominant response. In the second
situation, the dominant behavior is completely activated and the node acts competitively.

Figure 4: Response of the HHCN. Only two-dimensional actions are represented for a better understanding. The
node acts cooperatively a), when the dominant behavior is not fully activated. In case the dominant behavior is

completely activated, a competitive action is generated b).

rd

rnd
ri Dominant

Non-dominant

ni

ai ad + and ·(1 - ad)
k

if (ai>1) ai=1

Vi Vd·ad/ai +vnd ·and·(1 - ad)
k /ai

if (|vi|>1) vi= vi /|vi|

Sd bd

bnd
Snd

k=1,2,3,...

Behavior ND

Behavior D

ni

k=2

D
ND

vD=(0.7, -0.5, 0.0)

aD=0.5

v i=(0.76, -0.27, 0.0)

ai=0.7

vD

X

Z

v i

vND

a)

Behavior ND

Behavior D

ni

k=2
D
ND

vD=(0.7, -0.5, 0.0)

aD=1.0

vND=(0.9, 0.3, 0.0)

aND=0.8

v i=(0.7, -0.5, 0.0)

ai=1.0

vD

X

Z

vi

vND

b)
vND=(0.9, 0.3, 0.0)

aND=0.8

As commented on above, the hybrid coordinator is composed of a set of HHCNs which connect each pair of
behaviors or nodes until a final response is generated. In order to build up this network of nodes, it is necessary
to set up the hierarchy among the behaviors. This hierarchy will depend on the task to be performed. Once the
priorities have been set, usually by the mission designer, the hybrid coordinator will be ready to use. Figure 5
shows an example of a set of three nodes which coordinate four behaviors.

Figure 5: Example of a reactive layer with four behaviors and the hybrid coordinator. The priority among the

behaviors depends on the input connections of the HHCNs.

The advantage of the hybrid coordination system is that the coordinator has good modularity. Each time a new
behavior is added, the priority of the new behavior with respect to the others is the only aspect which has to be
chosen. The tuning time is also a very good property since after implementing a new behavior, only the k parameter
has to be changed. Therefore, these advantages, together with the advantage of robustness from competition and
optimized trajectories from cooperation, point out the suitability of the proposed hybrid coordinator.

3 SONQL – Based Behavior

The SONQL algorithm is used to learn the internal mapping between state and action spaces that each behavior
must contain. The state space is the sensor information perceived by the robot and is needed by the behavior in
order to accomplish its goal. The action space is the velocity set-points the robot should follow. Next subsections
describe the basic features of the Semi-Online Neural-Q_learning algorithm (SONQL). First of all, the original
Q_learning technique is introduced. Then, the modifications found in the SONQL are presented. And finally, the
phases of the algorithm and some implementation aspects are detailed.

3.1 Q_learning

Q_learning [18] is a temporal difference algorithm, see [15], designed to solve the reinforcement learning
problem (RLP). Temporal difference algorithms solve the RLP without knowing the transition probabilities
between the states of the Finite Markov Decision Problem (FMDP), and therefore, in our context, the dynamics
of the robot environment does not have to be known. Temporal difference methods are also suitable for learning
incrementally, or real-time robot learning. The importance of real-time learning resides in the possibility of
executing new behaviors without any previous phase such as "on-site manual tuning" or "data collection +
offline learning". Another important characteristic of Q_learning is that it is an off-policy algorithm. The optimal
state/action mapping is learnt independently of the policy being followed. This is a very important feature in a
robotic domain, since sometimes; the actions that are proposed by the learning algorithm can not be carried out.
For example, if the algorithm proposes an action that would cause a collision, another behavior with more
priority will prevent it, and the learning algorithm will use the real executed action.

The original Q_learning algorithm is based on FMDPs. It uses the perceived states (s), the taken actions (a) and the
received reinforcements (r) to update the values of a table, denoted as Q(s,a) or Q-function. If state/action pairs are
continually visited, the Q values converge to a greedy policy, in which the maximum Q value for a given state,
points to the optimal action. Figure 6 shows a diagram of the Q_learning algorithm. The parameters of the
algorithm are the discount factor ?, the learning rate a and the e parameter for the random actions.

Sensors Actions

Behavior 1

Behavior 2

Behavior 4 S
T
I
M
U
L
U
S

Behavior 3

HYBRID COORDINATOR

n 1 D
ND

n 2 D
ND

n 3 D
ND

s1...

st+1
...

st
...

sp

Q a1 ... at ... at+1 ... aq

Q_learning diagram

1 1 maxmax
[-]+ max

t t t t t t t taQ (s , a) = Q (s , a) + r Q(s ,a) Q (s , a)α γ+ +

1t
s

+

1t
r

+

delay

1ts +

ts

1tr +

1 max 1imax | max
t t iaQ(s ,a) Q(s , a)a + +=

e-greedye-greedy
1t

a
+

delay
t

a

Environment
D

E
LA

Y
2ts +

2tr +

n

m

Figure 6: Diagram of the Q_learning algorithm

3.2 Generalization with Neural Networks

When working with continuous states and actions, as it is usual in robotics, the Q-function table becomes too
large for the required state/action resolution. In these cases, tabular Q_learning requires a very long learning
time, making the implementation of the algorithm in real-time control architecture impractical. This problem is
known as the generalization problem.

The use of a Neural Network to generalize among states and actions reduces the number of values stored in the
Q-function table to a set of NN weights. The approximation of the Q-function using a feed-forward NN with the
backpropagation algorithm [9] is known as direct Q_learning [3]. In this implementation, the NN has as inputs
the state and the action, and as output, the one-dimensional Q value. The function that must be approximated is
the one shown in Equation 1. Other implementations of the Q-function with a NN can also be found, although
this is the most straightforward one.

1 1 1(,) · (,)
tt t t a t tQ s a r max Q s aγ
+ + += + (1)

The direct Q_learning appro ach has been taken to solve the generalization problem. In particular, the NN configuration
is composed by one or two hidden layers containing a set of neurons, and the output layer, which has one neuron. The
number of layers and neurons depends on the complexity and the number of dimensions of the Q-function to be
approximated. For the hidden layers, an hyperbolic tangent function is used as the activation function. This function is
antisymmetric and accelerates the learning process. The output layer has a lineal activation function, which allows to
the NN to approximate any real value. The initialization of the NN weights is done randomly.

3.3 Semi-Online Learning

Neural Networks have a high generalization capability; however they suffer from the interference problem [19].
Interference occurs when learning in one zone of the input space causes loss of learning in other zones. To solve
the interference problem, the SONQL uses a database of learning samples. The main goal of the database is to
include a representative set of visited learning samples, which is repeatedly used to update the SONQL
algorithm. The immediate advantage of the database is the stability of the learning process and its convergence
even in difficult problems. Due to the representative set of learning samples, the Q-function is regularly updated
with samples of the whole visited state/action space, which is one of the conditions of the original Q_learning
algorithm. A consequence of the database is the acceleration of the learning. This second advantage is most
important when using the algorithm in a real system. The updating of the SONQL is done with all the samples of
the database and, therefore, the convergence is achieved with less iterations. The term semi -online is therefore
referred to the fact that the current and also past samples are used in the learning.

Each learning sample is composed of the initial state st, the action at, the new state st+1 and the reward rt+1.
During the learning evolution, the learning samples are added to the database. Each new sample replaces older
samples previously introduced. The replacement is based on the geometrical distance between vectors (st, at, rt+1)
of the new and old samples. If this distance is less than a density parameter t for any old sample, the sample is

removed from the database. The size of the database is, therefore, controlled by this parameter which has to be
set by the designer. Once the algorithm has explored the reachable state/action space, a homogeneous, and
therefore, representative set of learning sample is contained in the database.

3.4 Algorithm phases

The proposed Semi-Online Neural-Q_learning algorithm can be divided in four different phases, as shown in
Figure 7. In the first phase, the current learning sample is assembled. The state st+1 and the last taken action at
are received from the environment. The reward rt is computed according to st+1 , and, the past state st is extracted
from a unit delay. In the second phase, the database is updated with the new learning sample. As has been
commented on, old samples simi lar to the new one will be removed.

Reinforcement
function

state s t+1 action at

Q(st,i ,a t,i) = r t,i +γ · maxQ a’(st+1,i ,a’)

Back -
propagation
learning

unit
delay

s t+1 r t s t a t

amax |Q(s
t +1

,a
max

)
=max(Q(s,a))

Q (s
t+1

,a
max

)

ε-greedy

amax

P
H

A
S

E
 1

P
H

A
S

E
 2

P
H

A
S

E
 3

R
E

W
A

R
D

C

O
M

P
U

T
A

T
IO

N
N

N
 W

E
IG

H
T

S

U
P

D
A

T
E

A
C

T
IO

N

S
E

L
E

C
T

IO
N

S

L
E

A
R

N
IN

G

S
A

M
P

L
E

S
 U

P
D

A
T

E
1

-1
A

-1

0

10

P
H

A
S

E
 4

action at+1

s t+1

Figure 7: Phases of the semi-Online Neural-Q_learning algorithm.

The third phase consists of updating the weights of the NN according to the back-propagation algorithm and
Equation 1. If the SONQL algorithm is used in a real-time system, such as a robot, this phase is executed in a
separate thread. This thread has a lower priority and uses all the non-used computational power to learn the
optimal Q-function. Using these two execution threads, the real-time execution of the control system can be
accomplished.

The fourth phase consists of proposing a new action at+1. The policy that is followed is the e-greedy policy. With
probability (1- e), the action will be the one that maximizes the Q-function in the current state st+1. Otherwise, a
random action is generated. Due to the continuous action space in the Neural-Q_function, the maximization is
accomplished by evaluating a finite set of actions. As this evaluation is very fast, the action space can be
discretized with the necessary resolution without an important computational cost.

4 Results

4.1 URIS’s Experimental Setup

The proposed target following task, to test the hybrid coordination system and the SONQL-based behaviors,
consisted of following a target by means of a color camera. Experiments were carried out with the small-sized
underwater robot URIS (hull ∅ 0.35m), an Autonomous Underwater Vehicle (AUV) developed at the University
of Girona. URIS is a non-holonomic robot stable in pitch and roll, where only x, z and yaw degrees of freedom
(DOF) can be controlled.

Figure 8: Water tank with the positioning pattern used in the experiments with URIS.

A water tank (4.5 m. diameter and 1.2 m. depth) was used to test the control system and to perform the
experiments, see Figure 8. Due to the shallowness of the tank, the vehicle was only moved in the horizontal
plane maintaining an intermediate depth. The position and the velocity of the vehicle was computed by a
computer vision system which used a down looking camera attached to URIS and a coded pattern placed on the
bottom of the tank. The pattern contains several dots with two different colors, gray and black. The vision
system estimates the six-dimensional position of the vehicle by tracking the detected dots and solving the
equations of the projective geometry. The pattern also contains some marks to reset the estimated position to an
absolute position inside the water tank. The vehicle’s velocity is also estimated. The main utility of this
positioning system was to provide velocity feedback to the low level controller (, ,x z yaw& &&). Also the absolute
position was used by the behavior-based high level control system.

The control architecture of the robot was based on a real time distributed object oriented framework which
assures the deadlines of the entire task. Three different computers were used in these experiments, the onboard
PC-104 which runs QNX and contains all the control objects, an external PC running Windows which computes
the vision objects, and finally, another external PC running QNX used as HMI.

TARGET RECOVERY

HYBRID
COORDINATOR

LOW-LEVEL
CONTROL

URIS

TARGET FOLLOWING

nc

D

N D

T
A

R
G

E
T

 P
O

S
IT

IO
N

 A
N

D
 D

E
R

IV
A

T
IV

E

U
R

IS
 P

O
SI

T
IO

N
 A

N
D

 V
E

L
O

C
IT

Y

st

at-1
NQL x dof

NQL y dof

a’x

a’y

TELEOPERATION

WALL AVOIDANCE

nc

D

ND

nc

D

ND

sx,ax, rx
sx,ax, rx
sx,ax, rx

s x,ax,rxs x,ax,rxs x,ax,rx

ENVIRONMENT
PERCEPTION:

TARGET CAMERA

POSITIONING CAMERA

at

, ,X Z Yaw& & &

MANUAL
COMMANDS

Figure 9: URIS’s target following task scheme.

The control scheme of the target following task can be seen in Figure 9. Four behaviors were used. The wall
avoidance behavior had the highest priority and prevented the vehicle to collide with the walls of the water tank.
The teleoperation behavior was used to move manually the robot. The target following behavior was the one
learnt with the proposed SONQL algorithm. And finally, the target recovery behavior spun the robot in order to
find the lost target. The output action of each behavior was a 2D-speed vector (X and Yaw velocities) and an
activation level, which determined the final output according to the hierarchy of behaviors.

4.2 Experimental Results

As previously stated, the experiments were designed to test the feasibility of the SONQL-based behaviors. The
target following behavior was implemented with 2 different SONQL algorithms (one for each DOF, X and
Yaw). In these experiments, only one SONQL algorithm was learnt at a time, no simultaneous learning between
different DOFs or behaviors was tested. Each DOF received information about the current state and the last
action taken. The state was the position of the target in the image as well as its derivative. A reinforcement
function gave different rewards (-1, 0 or 1) depending on the distance at which the target was detected.
Activation was 1 when the target was seen.

1 -1fx0

fx
fy

1

-1

0

fy
camera

target
URIS

field of view

Figure 10: Coordinates of the target respect URIS.

Several trials were carried out in order to find the best learning performance. The sample time of the SONQL-
based behaviors was set at 0.3 [s], while the one of the low level controllers was 0.1 [s]. The robot was able to
learn how to move in both DOFs achieving the target following task. The parameters we used in the SONQL
algorithms can be seen in Table 1, and Figure 10 shows the normalization used for the target states. The learnt
state/action optimal mappings can be seen in figures 11.a) and 11.b). Note the obtained non-lineal mappings.

Sensors color camera + target detection by color
segmentation + object tracking

Codification [fx, fy] : normalized target position [-1, 1]
Activation if target detected af= 1; else af= 0
DOF X YAW
State fx : position

fvx : derivative
fy : position
fvy : derivative

Action afx : lineal speed (X) afy :angular speed (yaw)
Reinfor-
cement
function

If 0.4>fx>0.1: rfx = 1
if 0.5>fx>0.4: rfx = 0
if 0.1>fx>0.0: rfx = 0
else rfx = -1

If |fy | < 0.2 : rfy = 1
else if |fy | < 0.4 : rfy = 0
else rfy = -1

NQL
parameters

α=0.1; γ=0.9; ∈=0.3
database size = 50
samples

α=0.1; γ =0.9; ∈=0.3
database size = 50
samples

NQL
structure

inputs=3: [fx, fvx, afx]
output: Q_value
layer 1: 6 neurons
layer 2: 1 neuron

inputs= 3 : [fy , fvy , afy]
output: Q_value
layer 1: 6 neurons
layer 2: 1 neuron

Table 1: Specifications of the target following
NQL behavior

Figure 11: a) State/action mappings learnt for the target following behavior in the X DOF. b) State/action
mappings learnt for the target following behavior in the Yaw DOF.

The SONQL behaviors showed a good robustness and presented a small convergence time (only 40 [s]). Figure
12 shows six consecutive learning attempts by the target following behavior in the Yaw DOF. The figure also
shows that the averaged reward increased, demonstrating that the behavior was being learnt. In this experiment,
the robot was learning how to turn in order to keep the target in the center of the image. It can be seen that the
algorithm starts exploring the state in order to find maximum rewards. Once the whole state had been explored,
the algorithm exploited the learnt Q-function and obtained the maximum rewards. And in Figure 13, it can be
seen how the robot followed the target at a certain distance. The target was moved manually around the water
tank and, therefore, the robot trajectory was also a circumference. Note that the position of the target is
approximate since there is no system to measure it.

Figure 12: Behavior convergence proof. Results of six different learning trials of the target following behavior in
the Yaw DOF. The averaged rewards over the last 20 iterations are shown. The average of the six experiments

can also be seen. Accumulated rewards increased in measure as the behavior was learnt.

a) b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

URIS trajectory

approximated
target trajectory

wate
r ta

nk

Y

X

Figure 13: Trajectory of URIS while following the target in the water tank.

5 Conclusions

This paper has proposed a hybrid coordination method for Behavior-based control architectures. The
methodology is able to coordinate a set of behaviors cooperatively when priority behaviors are partially
activated, but also competitively when they are fully activated. As a second contribution, the paper has proposed
the use of the Semi-Online Neural-Q_learning algorithm to learn the internal state/action mapping of the
behaviors. The architecture has been tested with the underwater robot URIS in a target following task. Results
showed the feasibility of the hybrid approach as well as the convergence of the learning algorithm. The proposed
hybrid coordination demonstrated as behaving with the robustness of competitive coordinators and with the
optimized trajectories of cooperative ones. The neural network implementation of the Q_learning algorithm also
demonstrated the convergence to the optimal policy, obtaining maximum rewards. The use of a database with the
most significant learning samples assures the convergence of the algorithm. The paper has demonstrated the
algorithm’s suitability showing real results with the underwater robot URIS.

Acknowledgments

This research was sponsored by the Spanish commission MCYT (DPI2001-2311-C03-01).

References

[1] Arkin, R.C., (1998). Behavior-based Robotics, MIT Press.

[2] Arkin, R.C., (1989). Motor schema-based mobile robot navigation. International Journal of Robotic

Research, vol. 8, is. 4, pp. 92-112.

[3] Baird, K., (1995). Residual algorithms: Reinforcement learning with function approximation. In

Machine Learning: 12th International Conference, San Francisco, USA.

[4] Brooks, R., (1986). A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics

and Automation, vol. RA-2, is.1, pp.14-23.

[5] Carreras, M., Batlle, J., Ridao, P. and Roberts, G.N., (2000). An overview on behavior-based methods

for AUV control. MCMC2000, 5th IFAC Conference on Maneuvering and Control of Marine Crafts.
Aalborg, Denmark.

[6] Carreras, M., (2000). An Overview of Behavior-based Robotics with simulated implementations on an
Underwater Vehicle. University of Girona, Spain. Informatics and Applications Institute. Research
report: IIiA 00-14-RR.

[7] Carreras, M., Ridao, P. and El-Fakdi, A., (2003). Semi-Online Neural-Q- learning for Real-time

Robot Learning. IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas,
USA.

[8] Gaskett, C., (2002). Q_learnig for Control. PhD thesis, Australian National University.

[9] Haykin, S., (1999). Neural Networks, a comprehensive foundation. Prentice Hall, 2nd edition.

[10] Maes, P., (1990). Situated Agents Can Have Goals. Robotics and Automation Systems, vol. 6, pp. 49-

70.

[11] Santamaria, J.C., Sutton, R.S. and Ram, A., (1998). Experiments with reinforcement learning in

problems with continuous state and action spaces. Adaptive behavior, 6:163-218.

[12] Smart W.D., (2002). Making Reinforcement Learning Work on Real Robots. PhD thesis, Department

of Computer Science at Brown University, Rhode Island.

[13] Steels, L., (1993). Building agents with autonomous behavior systems. The artificial route to artificial

intelligence. Building situated embodied agents. Lawrence Erlbaum Associates, New Haven.

[14] Sutton, R.S., (1988). Learning to predict by the method of temporal differences. Machine Learning,

3:9-44.

[15] Sutton, R.S. and Barto, A., (1998). Reinforcement Learning, MIT Press.

[16] Tesauro, G.J., (1992). Practical issues in temporal difference learning. Machine Learning, 8(3/4):257-

277.

[17] Uther, W.T.B. and Veloso, M.M., (1998). Tree based discretization for continuous space state

reinforcement learning. In Proceedings of the 15th National Conference on Artificial Intelligence.

[18] Watkins, C.J.C.H. and Dayan, P., (1992). Q-learning. Machine Learning, 8:279-292.

[19] Weaver, S., Baird L., Polycarpou, M., (1998). An Analytical Framework for Local Feedforward

Networks. IEEE Transactions on Neural Networks, 9(3).

